WO2017063567A1 - 防止tcu与esp产生干扰的方法 - Google Patents

防止tcu与esp产生干扰的方法 Download PDF

Info

Publication number
WO2017063567A1
WO2017063567A1 PCT/CN2016/101994 CN2016101994W WO2017063567A1 WO 2017063567 A1 WO2017063567 A1 WO 2017063567A1 CN 2016101994 W CN2016101994 W CN 2016101994W WO 2017063567 A1 WO2017063567 A1 WO 2017063567A1
Authority
WO
WIPO (PCT)
Prior art keywords
tcs
tcu
request
esp
curve
Prior art date
Application number
PCT/CN2016/101994
Other languages
English (en)
French (fr)
Inventor
何麒瑜
董洪雷
金吉刚
Original Assignee
浙江吉利汽车研究院有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利汽车研究院有限公司, 浙江吉利控股集团有限公司 filed Critical 浙江吉利汽车研究院有限公司
Priority to US15/767,691 priority Critical patent/US10344812B2/en
Priority to BR112018007332-6A priority patent/BR112018007332B1/pt
Publication of WO2017063567A1 publication Critical patent/WO2017063567A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/50833Control during a stability control operation [ESP]

Definitions

  • the present invention relates to the field of vehicle control, and in particular to a method for preventing interference between a TCU and an ESP.
  • Vehicles with ESP are generally integrated with the TCS (Traction Control System) function.
  • TCS Traction Control System
  • the inventors have found that in vehicles with ESP and TCU (Transmission Control Unit), vehicle sway, vehicle lock, vehicle speed reduction, and clutch hardware damage are too fast under certain operating conditions. The problem.
  • the present invention provides a method for preventing interference between a TCU and an ESP integrated with TCS, the method comprising:
  • a splitting step splitting signals of the ESP and the TCS, so that the TCU can obtain whether the TCS is in a control state;
  • Detecting control step the TCU independently detects the split signal of the ESP and the TCS, and when detecting that the TCS is in the control state, the TCU suspends actively sending its own down-twist to the ECU request.
  • control state is a state in which the TCS is activated
  • the splitting step includes splitting the ESP and the status signal and the failure signal of the TCS.
  • control state is a state in which the TCS down-reduction request is activated
  • the splitting step includes splitting the ESP and the Twistdown request signal of the TCS.
  • the detecting and controlling step includes:
  • the TCU stops transmitting the twist-down request if it is determined that the TCS is activated by detecting the status signal of the TCS.
  • the detecting and controlling step further includes:
  • the TCU can send the TCU according to the control requirement of the transmission. The described twistdown request.
  • the detecting and controlling step includes the following steps:
  • Step 1 The TCU determines whether the transmission has a torque reduction requirement, and if yes, proceeds to step 2;
  • Step 2 The TCU determines whether the TCS is invalid according to whether the failure signal of the TCS is detected; if yes, proceeds to step 4, otherwise proceeds to step 3;
  • Step 3 The TCU determines whether the TCS is in the TCS activated state according to whether the status signal of the TCS is received; if otherwise, the process proceeds to step 4, and if yes, the TCU does not send a request for the twistdown, and returns to step 1 .
  • Step 4 The TCU sends the twist-down request.
  • the TCU suspends actively sending the t-down request to the ECU if the TCS-reduction request signal is detected; if the T-reduction request is not detected; The TCU sends the down-reduction request according to the transmission control requirement when the TCS's down-reduction request signal is determined to determine that the TCS-reduction request is not activated.
  • the detecting and controlling step includes the following steps:
  • Step 1 The TCU determines whether the transmission has a torque reduction requirement, and if yes, proceeds to step 2, if otherwise, repeats step 1;
  • Step 2 The TCU determines whether the TCS has a request for a twist-down according to whether the TCS-reduction request signal is detected, and if yes, proceeds to step 3, otherwise proceeds to step 4;
  • Step 3 The TCU does not send the twist-down request
  • Step 4 The TCU sends the twist-down request.
  • the TCU communicates with the ESP via a CAN bus.
  • the ESP transmits a signal for prohibiting the shift request, a status signal of the ESP, a failure signal of the ESP, and a torque reduction request signal through the CAN bus.
  • the status signal of the ESP includes: an ESP status signal and a TCS status signal;
  • the failure signal of the ESP includes: an ESP failure signal and a TCS failure signal;
  • the down-reduction request signal includes: an ESP down-reduction request signal, a TCS down-reduction request signal, an ESP down-reduction request activation signal, and a TCS down-reduction request activation signal.
  • the present invention splits the signals of the ESP and the TCS, so that the TCU can obtain whether the TCS is in a control state, and when detecting that the TCS is in the control state, The TCU suspends the initiative to send its own request for a twistdown to the ECU. This avoids the mutual interference between the TCU and the TCS, and solves the problem of the vehicle swaying, the vehicle being locked, the vehicle speed being reduced too fast, and the clutch hardware being damaged too fast.
  • the description in the examples section please refer to the description in the examples section.
  • FIG. 1 is a schematic view showing a normal bonding process of a clutch in the prior art
  • FIG. 2 is a schematic diagram of a TCS drop request request value in the prior art higher than a TCU drop request value
  • FIG. 3 is a schematic diagram of a TCS drop request request value in the prior art that is smaller than a TCU drop request value
  • FIG. 4 is a flow chart of a method in accordance with an embodiment of the present invention.
  • Figure 5 is a schematic view of the method of Figure 4 applied to the start of a large throttle of a wet sliding road surface of a CVT transmission;
  • FIG. 6 is a flow chart of a method according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the method shown in FIG. 6 applied to a large throttle starting process of a wet sliding road surface of a CVT transmission.
  • TCS traction control system
  • TCU transmission control unit
  • ECU engine control unit
  • CAN controller area network
  • Prohibit shift request Require TCU to maintain the current gear position to prevent sudden change of wheel end torque caused by shifting;
  • Down-twist request requires the ECU to reduce the output torque to the set value
  • Low-adhesion pavement pavements with less adhesion, such as wet and snowy wet ground and sand surface.
  • the method of the present invention detects the TCS separately through the TCU, and suspends the transmission of the twist-down request when the TCS is activated, avoids interference with the TCS operation, and optimizes the joint control between the automatic transmission TCU and the TCS.
  • the ESP and TCS drop request in the prior art when the ESP is activated, the TCU is prohibited from transmitting the request, and the TCU responds to the request according to the actual working condition.
  • This is the only coordinated control of the vehicle by the transmission control unit TCU and ESP in the prior art.
  • ESP and TCS integrated in ESP have different control logic for vehicles: ESP, which mainly detects vehicle skidding and deviation, etc.
  • ESP adopts different degrees of system for each wheel. Move to keep the body in balance.
  • the ESP sends a prohibition of the shift request to prevent the transmission shifting from changing the wheel end torque to ensure the ESP control accuracy.
  • the transmission does not shift gears, and the TCU does not send a request for a twist-down, and does not interfere with the ESP's request for a twist-down.
  • the TCS detects the driving wheel. When the driving wheel slips, the TCS sends a torque reduction request to the ECU while controlling the braking force of the driving wheel, so that the ECU reduces the engine output torque. In addition, the TCS sends a disable shift request to prevent the transmission shifting from changing the wheel end torque to ensure TCS control accuracy.
  • TCS activation usually occurs at the start of a large throttle or low adhesion road.
  • the automatic transmission control unit TCU also sends a torque reduction request to the ECU under certain working conditions to implement hardware protection and optimize the control effect.
  • a torque converter type automatic transmission such as a serial automatic transmission AT
  • the TCU will send a request for a twist-down when shifting.
  • the TCU also sends a torque reduction request to protect the transmission hardware;
  • clutch automatic transmissions such as the dual clutch automatic transmission DCT and the mechanical automated manual transmission AMT, when the vehicle starts It is necessary to experience the combination of the clutches, so the request for the twisting down is also sent when the vehicle starts.
  • the TCU will send a request to reduce the twist to protect the steel strip or chain in special conditions such as wheel slip, wheel lock, and bumpy road. Therefore, it can be concluded that under certain operating conditions, the TCU and the TCS will simultaneously send a request for a twist-down to the ECU, causing mutual interference. Usually the ECU only responds to the lower set torque request, which affects the other control. The above findings were obtained after careful research by the inventors and paid a lot of hard work.
  • ESP_GearShiftInhibit disables the shift request signal
  • ESP_TorqueReductionRequestActive ESP down-reverse request activation
  • ESP_TorqueReductionRequest ESP drop request.
  • This setting causes the ESP_Active signal to be set to "1" as long as the ESP or TCS has an activation, indicating the on state. Similarly, as long as ESP or TCS has a failure, the ESP_Failed signal is set to "1", indicating the on state.
  • the ESP and TCS drop-off requests are also sent through the same signal. The TCU cannot distinguish whether the TCS is activated. Therefore, the TCU only sends a request for a twist-down according to the control requirements of the transmission, which inevitably causes interference to the TCS control.
  • the present invention designs the TCU and the ESP to communicate via the CAN bus.
  • the ESP disable shift request is sent to the TCU via the CAN bus signal.
  • the ESP will send a status signal, a fail signal, and a twist-down request to the CAN bus.
  • the status signal of the ESP includes: an ESP status signal and a TCS status signal;
  • the ESP failure signal includes: an ESP failure signal and a TCS failure signal;
  • the down-reduction request signal includes: an ESP down-reduction request signal, a TCS-reduction request Signal, ESP down-request request activation signal and TCS down-request request activation signal.
  • the splitting step of the present invention splits the signals of the ESP and the TCS so that the TCU can obtain whether the TCS is in a controlled state.
  • the detection control step of the present invention independently detects the split signals of the ESP and the TCS for the TCU, and when detecting that the TCS is in the control state, the TCU suspends actively sending its own request for the twistdown to the ECU. This avoids the mutual interference between the TCU and the TCS, and solves the problem of the vehicle swaying, the vehicle being locked, the vehicle speed being reduced too fast, and the clutch hardware being damaged too fast.
  • FIG. 1 is a schematic view of a normal coupling process of a prior art clutch, wherein:
  • Curve 11 accelerator pedal opening
  • Curve 12 clutch state, where open is the clutch open, closing is the clutch engagement process, closed is the clutch combination
  • Curve 15 TCU down-twist request signal
  • Curve 16 TCU down-twist request activation signal.
  • the TCU controls the clutch pressure to make the clutches combined. The process is described as follows:
  • Process 2 The driver steps on the throttle (curve 11) and the vehicle starts.
  • the clutch pressure rises (curve 13) and the clutch begins to engage (curve 12, closing).
  • the TCU triggers the downshift request activation signal (curve 16) and the TCU begins to send the twistdown request (curve 15).
  • the ECU is controlled according to the TCU Engine torque (curve 14)
  • Process 3 The vehicle continues to accelerate, the clutch engagement is completed (curve 12, closed), the TCU cancels the downshift request activation signal (curve 16), and stops transmitting the twistdown request (curve 15).
  • Engine torque (curve 14) is no longer affected by the TCU drop request.
  • FIG. 2 is a schematic diagram of a TCS drop request request value in the prior art higher than a TCU drop request value, wherein:
  • Curve 21 accelerator pedal opening
  • Curve 22 clutch state, where open is the clutch open, closing is the clutch engagement process, closed is the clutch combination
  • Curve 24 TCU drop request activation signal
  • Curve 26 TCU drop request
  • Curve 28 TCS state, where 1 indicates activation and 0 indicates inactivity;
  • Curve 29 ABS wheel speed signal, wheel speed refers to the drive wheel and the driven wheel.
  • Process 2 The driver steps on the throttle (curve 21) and the vehicle starts.
  • the clutch pressure rises (curve 23) and the clutch begins to engage (curve 22).
  • the TCU triggers the downshift request activation signal (curve 24) and the TCU begins to send a twistdown request (curve 26).
  • the ECU controls the engine torque in accordance with the TCU drop request (curve 25). At this time, since the driving wheel of the vehicle is slipping, the driving wheel speed starts to deviate from the driven wheel speed, and it is apparent that the driving wheel speed is higher than the driven wheel speed in FIG.
  • Process 3 The vehicle continues to accelerate, the clutch engagement is complete (curve 22), the TCU cancels the down-reduction request activation signal (curve 24), and stops transmitting the twist-down request (curve 26).
  • Engine torque (curve 25) is no longer affected by the TCU drop request.
  • FIG. 3 is a schematic diagram of a TCS drop request request value in the prior art that is smaller than a TCU drop request value, where:
  • Curve 31 accelerator pedal opening
  • Curve 32 clutch state, where open is the clutch open, closing is the clutch engagement process, closed is the clutch combination
  • Curve 34 TCU drop request activation signal
  • Curve 36 TCS drop request
  • Curve 37 TCU drop request
  • Curve 38 TCS status, where 1 indicates activation and 0 indicates inactivity;
  • Curve 39 ABS wheel speed signal, wheel speed refers to the drive wheel and the driven wheel.
  • Process 2 The driver steps on the throttle (curve 31) and the vehicle starts.
  • the clutch pressure rises (curve 33) and the clutch begins to engage (curve 32).
  • the TCU triggers the downshift request activation signal (curve 34) and the TCU begins to send a twistdown request (curve 37).
  • the ECU controls the engine torque in accordance with the TCU drop request (curve 35). At this time, since the driving wheel of the vehicle is slipping, the driving wheel speed starts to deviate from the driven wheel speed.
  • Process 3 The vehicle continues to accelerate, clutch engagement is complete (curve 32), the TCU cancels the downshift request activation signal (curve 34), and stops transmitting the twistdown request (curve 37). Engine torque (curve 35) is no longer affected by the TCU drop request.
  • One method embodiment of the present invention illustrated in Figure 4 is based on the concept that the TCU independently responds to the TCS by splitting the ESP status signal.
  • the ESP control unit splits the status signal and the failure signal, that is, the ESP control unit sends the ESP and TCS status and failure signals:
  • the detection control step includes the following steps:
  • Step 1 The TCU determines if the transmission has a need to reduce the torque. If there is a request to reduce the twist, proceed to step 2;
  • Step 4 The TCU sends a request for a twistdown.
  • Figure 5 is a schematic view of the method of Figure 4 applied to the start of a large throttle of a wet slip road surface of a CVT transmission, wherein:
  • Curve 51 accelerator pedal opening
  • Curve 52 clutch state, where open is the clutch open, closing is the clutch engagement process, closed is the clutch combination, and creep is the idle speed state;
  • Curve 54 TCU drop request activation signal
  • Curve 56 TCU drop request
  • Curve 57 TCS drop request
  • Curve 58 TCS state, where 1 indicates activation and 0 indicates inactivity;
  • Curve 59 ABS wheel speed signal (drive wheel and driven wheel).
  • Process 2 The driver steps on the throttle (curve 51) and the vehicle starts.
  • the clutch pressure rises (curve 53) and the clutch begins to engage (curve 52).
  • the TCU triggers the downshift request activation signal (curve 54) and the TCU begins to send a twistdown request (curve 56).
  • the ECU controls the engine torque in accordance with the TCU drop request (curve 55). At this time, since the driving wheel of the vehicle is slipping, the driving wheel speed starts to deviate from the driven wheel speed.
  • the TCU detects the TCS operation, interrupts the TCU drop request activation signal (curve 54), stops transmitting the TCU drop request (curve 56), suspends the clutch engagement process, remains in the creep state (curve 52), and ensures that a certain torque is transmitted to the wheel. .
  • the ECU controls the engine torque (curve 55) in accordance with the TCS drop request (curve 57).
  • the TCU detects that the TCS operation is stopped, can continue to activate the torque reduction request (curve 54), send a torque reduction request (curve 56), and continue the clutch engagement process (curve 52).
  • Process 3 The vehicle continues to accelerate, clutch engagement is complete (curve 52), the TCU cancels the downshift request activation signal (curve 54), and stops transmitting the twistdown request (curve 56). Engine torque (curve 55) is no longer affected by the TCU drop request.
  • FIG. 6 Another method embodiment of the present invention illustrated in Figure 6 is based on the concept of independently responding to the TCS by splitting the ESP kickdown request signal. Split the ESP down-twist request signal without splitting the ESP status signal and the fail signal:
  • ESP_ESPTorqueReductionRequestActive ESP down-request request activation signal
  • ESP_ESPTorqueReductionRequest ESP drop request signal
  • the ESP control unit sends the ECN and TCS drop request separately.
  • the detection control step includes the following steps:
  • Step 1 The TCU determines whether the transmission has a torque reduction requirement. If yes, go to step 2. If not, repeat step 1.
  • Step 2 The TCU determines whether the TCS has a request for a twist-down according to whether the TCS-reduction request signal is detected. If yes, the process proceeds to step 3, otherwise, the process proceeds to step 4.
  • Step 3 The TCU does not send a drop request.
  • Step 4 The TCU sends a request for a twistdown.
  • FIG. 7 is a schematic diagram of the method shown in FIG. 6 applied to a large throttle starting process of a wet sliding road surface of a CVT transmission, wherein:
  • Curve 71 accelerator pedal opening
  • Curve 72 clutch state, where open is the clutch open, closing is the clutch engagement process, closed is the clutch combination, and creep is the idle speed state;
  • Curve 74 TCU down-twist request activation signal
  • Curve 76 TCU drop request
  • Curve 77 TCS drop request
  • Curve 78 TCS state, where 1 indicates activation and 0 indicates inactivity;
  • Curve 79 ABS wheel speed signal (drive wheel and driven wheel).
  • Process 2 The driver steps on the throttle (curve 71) and the vehicle starts.
  • the clutch pressure rises (curve 73) and the clutch begins to engage (curve 72).
  • the TCU triggers the downshift request activation signal (curve 74) and the TCU begins to send a twistdown request (curve 76).
  • the ECU controls the engine torque in accordance with the TCU drop request (curve 75). At this time, since the driving wheel of the vehicle is slipping, the driving wheel speed starts to deviate from the driven wheel speed.
  • TCU detects TCS drop request activation, interrupts TCU drop request activation signal (Curve 74), stop transmitting the TCU drop request (curve 76), suspend the clutch engagement process, and remain in the creep state (curve 72) to ensure that a certain amount of torque is transmitted to the wheel.
  • the ECU controls the engine torque (curve 75) in accordance with the TCS drop request (curve 77).
  • the TCU detects that the TCS has stopped transmitting the spin down request, continues to activate the TCU drop request (curve 74), sends a downshift request (curve 76), and continues the clutch engagement process (curve 72).
  • Process 3 The vehicle continues to accelerate, clutch engagement is complete (curve 72), the TCU cancels the downshift request activation signal (curve 74), and stops transmitting the twistdown request (curve 76).
  • Engine torque (curve 75) is no longer affected by the TCU drop request.
  • the method of the present invention solves the problems of vehicle swaying, vehicle lock-up, vehicle speed reduction too fast, and clutch hardware damage too fast by avoiding the problem of mutual interference between the TCU and the TCS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

一种防止TCU与ESP产生干扰的方法,该方法包括:拆分步骤:对ESP和TCS的信号进行拆分,使得TCU能够获得TCS是否处于控制状态;检测控制步骤:TCU分别对ESP和TCS的拆分信号进行独立检测,当检测到TCS处于控制状态时,TCU暂停主动向ECU发送其自身的降扭请求。这样就避免了TCU与TCS的相互干扰,解决了车辆耸动、车辆抱死、车速减小过快和离合器硬件损坏过快的问题。

Description

防止TCU与ESP产生干扰的方法 技术领域
本发明涉及一种车辆控制领域,特别是涉及一种防止TCU与ESP产生干扰的方法。
背景技术
具有ESP(Electronic Stability Program,车身电子稳定系统)的车辆,一般都集成有TCS(Traction Control System,牵引力控制系统)功能。发明人发现,在具有ESP和TCU(Transmission Control Unit,自动变速箱控制单元)的车辆中,在某些工况下会出现车辆耸动、车辆抱死、车速减小过快和离合器硬件损坏过快的问题。
发明内容
本发明的目的是要找到具有ESP和TCU的车辆出现上述问题的原因,并提供一种解决上述问题的方法。
特别地,本发明提供了一种方法,该方法用于防止TCU与集成有TCS的ESP产生干扰,所述方法包括:
拆分步骤:对所述ESP和所述TCS的信号进行拆分,使得所述TCU能够获得所述TCS是否处于控制状态;
检测控制步骤:所述TCU分别对所述ESP和所述TCS的拆分信号进行独立检测,当检测到所述TCS处于所述控制状态时,所述TCU暂停主动向ECU发送其自身的降扭请求。
进一步地,所述控制状态为TCS激活的状态;
所述拆分步骤包括:将所述ESP以及所述TCS的状态信号及失效信号进行拆分。
进一步地,所述控制状态为TCS降扭请求激活的状态;
所述拆分步骤包括:将所述ESP以及所述TCS的降扭请求信号进行拆分。
进一步地,所述检测控制步骤包括:
若检测到所述TCS的状态信号而判断出所述TCS激活时,所述TCU停止发送所述降扭请求。
进一步地,所述检测控制步骤还包括:
若检测到所述ESP的失效信号而判断出所述ESP失效,且检测到所述TCS的失效信号而判断出所述TCS失效时,则所述TCU才能根据变速器的控制需求,发送所述TCU的所述降扭请求。
进一步地,所述检测控制步骤包括如下步骤:
步骤1:所述TCU判断变速器是否有降扭需求,若是则进入步骤2;
步骤2:所述TCU根据是否检测到所述TCS的失效信号来判断所述TCS是否失效;若是则进入步骤4,若否则进入步骤3;
步骤3:所述TCU根据是否收到所述TCS的状态信号判断所述TCS是否处于所述TCS激活的状态;若否则进入步骤4,若是则所述TCU不发送降扭请求,回到步骤1。
步骤4:所述TCU发送所述降扭请求。
进一步地,若检测到所述TCS的降扭请求信号而判断出所述TCS降扭请求激活时,所述TCU暂停主动向所述ECU发送其自身的所述降扭请求;若未检测到所述TCS的降扭请求信号而判断出所述TCS降扭请求未被激活时,所述TCU根据变速器控制需求来发送所述降扭请求。
进一步地,所述检测控制步骤包括如下步骤:
步骤1:所述TCU判断所述变速器是否有降扭需求,若是则进入步骤2,若否则重复步骤1;
步骤2:所述TCU根据是否检测到所述TCS的降扭请求信号来判断所述TCS是否有降扭请求,若是则进入步骤3,若否则进入步骤4;
步骤3:所述TCU不发送所述降扭请求;
步骤4:所述TCU发送所述降扭请求。
进一步地,所述TCU与所述ESP通过CAN总线进行通讯。
进一步地,所述ESP将禁止换挡请求的信号、ESP的状态信号、ESP的失效信号以及降扭请求信号通过CAN总线发送出去。
进一步地,所述ESP的状态信号包括:ESP状态信号和TCS状态信号;
所述ESP的失效信号包括:ESP失效信号和TCS失效信号;以及
所述降扭请求信号包括:ESP降扭请求信号、TCS降扭请求信号、ESP降扭请求激活信号和TCS降扭请求激活信号。
本发明对所述ESP和所述TCS的信号进行拆分,使得所述TCU能够获得所述TCS是否处于控制状态,当检测到所述TCS处于所述控制状态时,所述 TCU暂停主动向ECU发送其自身的降扭请求。这样就避免了TCU与TCS的相互干扰,解决了车辆耸动、车辆抱死、车速减小过快和离合器硬件损坏过快的问题。具体原理,请参见实施例部分的叙述。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
图1是现有技术中的离合器正常结合过程示意图;
图2是现有技术中的TCS降扭请求值高于TCU降扭请求值示意图;
图3是现有技术中的TCS降扭请求值小于TCU降扭请求值的示意图;
图4是本发明一个实施例的方法流程图;
图5是图4所示方法应用于CVT变速器湿滑路面大油门起步过程的示意图;
图6是本发明另一个实施例的方法流程图;
图7是图6所示方法应用于CVT变速器湿滑路面大油门起步过程的示意图。
若无特别说明,以下术语在下文中指的是:
ESP:车身电子稳定系统;
TCS:牵引力控制系统;
TCU:变速器控制单元;
ECU:发动机控制单元;
CAN:控制器局域网络;
禁止换挡请求:要求TCU保持当前档位,防止因换挡造成车轮端扭矩的突变;
降扭请求:要求ECU降低输出扭矩到设定值;
低附着路面:附着力较小的路面,如雨雪天湿滑地面以及沙土地面等。
具体实施方式
背景技术中提及,在具有ESP和TCU的车辆中,会出现车辆耸动、车辆抱死、车速减小过快和离合器硬件损坏过快的问题。发明人经过研究发现,由于ESP集成有TCS,当TCS激活时,会向ECU(Electronic Control Unit,电子控制单元)发出降扭请求。对于自动挡车型来说,变速器在车辆起步、离合 器结合等工况时,TCU也会向ECU发出降扭请求,存在TCU与TCS相互干扰的风险。总体来说,本发明的方法通过TCU对TCS单独进行检测,在TCS激活时,暂停发送降扭请求,避免干扰TCS工作,优化了自动变速器TCU与TCS之间的联合控制。
概括的说,现有技术中的ESP和TCS降扭请求:ESP激活时,会向TCU发送禁止换挡请求,TCU根据实际工况响应该请求。这是现有技术中,变速器控制单元TCU与ESP对车辆唯一的协同控制。而实际上,ESP以及集成于ESP内的TCS对车辆有不同的控制逻辑:其中ESP,主要检测车辆侧滑以及偏离等,当车身处于不稳定工况时,ESP对各车轮采取不同程度的制动,使车身保持平衡。同时,ESP发送禁止换挡请求,防止变速器换挡改变车轮端扭矩,以保证ESP控制精度。此时,变速器不换挡,TCU不发送降扭请求,不会对ESP的降扭请求产生干扰。其中TCS,检测驱动轮,当驱动轮打滑时,TCS在控制驱动轮制动力的同时,向ECU发送降扭请求,使ECU减小发动机输出扭矩。此外,TCS发送禁止换挡请求,防止变速器换挡改变车轮端扭矩,以保证TCS控制精度。TCS激活通常发生在大油门起步或低附着路面起步。具体来说,现有技术中的TCU降扭请求:自动变速器控制单元TCU也会在某些工况下,向ECU发送降扭请求,以实现硬件保护,优化控制效果。对于液力变矩器式自动变速器,如序列式自动变速器AT,TCU会在换挡时发送降扭请求。此外,当发动机输出扭矩超过变速器承载扭矩时,TCU也会发送降扭请求,以保护变速器硬件;对于离合器式自动变速器,如双离合自动变速器DCT以及机械式手自一体变速器AMT,在车辆起步时,需要经历离合器的结合,因此在车辆起步时也会发送降扭请求。对于无极变速器CVT,除了上述两种变速器的情况外,在车轮打滑、车轮抱死、颠簸路面等特殊工况,TCU都会发送降扭请求,以保护钢带或链条。因此,能得到如下结论:在某些工况下,TCU和TCS会同时向ECU发送降扭请求,导致相互干扰。通常ECU只响应设定值更低的降扭请求,从而影响另一的控制。上述发现是发明人经过认真研究得出的,付出了辛勤的劳动。
从信号方面来看,现有技术中,ESP的状态信号、失效信号以及降扭信号都只有一个:
ESP_GearShiftInhibit:禁止换挡请求信号;
ESP_Active:ESP状态信号;
ESP_Failed:ESP失效信号;
ESP_TorqueReductionRequestActive:ESP降扭请求激活;
ESP_TorqueReductionRequest:ESP降扭请求。
该种设置导致只要ESP或TCS有一个激活,ESP_Active信号都置“1”,表示开的状态。同样,只要ESP或TCS有一个失效,ESP_Failed信号就置“1”,表示开的状态。而ESP和TCS的降扭请求也都通过同一个信号发送。TCU无法区分TCS是否激活,因此,TCU仅按照变速器的控制需求发送降扭请求,难免导致对TCS控制的干扰。
本发明将TCU与ESP设计为通过CAN总线进行通讯,如上文所述ESP的禁止换挡请求即是通过CAN总线信号发送给TCU。同样,ESP会发送状态信号、失效信号以及降扭请求到CAN总线。所述ESP的状态信号包括:ESP状态信号和TCS状态信号;所述ESP的失效信号包括:ESP失效信号和TCS失效信号;所述降扭请求信号包括:ESP降扭请求信号、TCS降扭请求信号、ESP降扭请求激活信号和TCS降扭请求激活信号。
本发明的拆分步骤对ESP和TCS的信号进行拆分,使得TCU能够获得TCS是否处于控制状态。本发明的检测控制步骤对TCU分别对ESP和TCS的拆分信号进行独立检测,当检测到TCS处于控制状态时,TCU暂停主动向ECU发送其自身的降扭请求。这样就避免了TCU与TCS的相互干扰,解决了车辆耸动、车辆抱死、车速减小过快和离合器硬件损坏过快的问题。
下文将通过对比的方法来阐述本发明带来的技术效果。
图1是现有技术中的离合器正常结合过程示意图,其中:
曲线11:油门踏板开度;
曲线12:离合器状态,其中open为离合器打开,closing为离合器结合过程,closed为离合器结合;
曲线13:离合器压力;
曲线14:发动机扭矩;
曲线15:TCU降扭请求信号;
曲线16:TCU降扭请求激活信号。
如图1所示,正常起步过程中(车轮不打滑,TCS不工作),TCU控制离合器压力,使离合器结合,过程描述如下:
过程1:车辆原地静止,此时离合器(曲线12)处于打开状态(open)
过程2:驾驶员踩下油门(曲线11),车辆起动。离合器压力升高(曲线13),离合器开始结合(曲线12,closing)。此时TCU触发降扭请求激活信号(曲线16),TCU开始发送降扭请求(曲线15)。ECU按照TCU降扭请求控 制发动机扭矩(曲线14)
过程3:车辆继续加速,离合器结合完成(曲线12,closed),TCU取消降扭请求激活信号(曲线16),停止发送降扭请求(曲线15)。发动机扭矩(曲线14)不再受到TCU降扭请求影响。
需要说明的是,现有技术中,当TCU与TCS同时发送降扭请求时,ECU只响应降扭值更小的请求,从而影响车辆控制。
图2是现有技术中的TCS降扭请求值高于TCU降扭请求值示意图,其中:
曲线21:油门踏板开度;
曲线22:离合器状态,其中open为离合器打开,closing为离合器结合过程,closed为离合器结合;
曲线23:离合器压力;
曲线24:TCU降扭请求激活信号;
曲线25:发动机扭矩;
曲线26:TCU降扭请求;
曲线27:TCS降扭请求;
曲线28:TCS状态,其中1表示激活,0表示未激活;
曲线29:ABS轮速信号,轮速指的是驱动轮与从动轮。
如图2所示,当TCS降扭请求值高于TCU降扭请求值时,过程描述如下:
过程1:车辆原地静止,此时离合器(曲线22)处于打开状态(open)
过程2:驾驶员踩下油门(曲线21),车辆起动。离合器压力升高(曲线23),离合器开始结合(曲线22)。此时TCU触发降扭请求激活信号(曲线24),TCU开始发送降扭请求(曲线26)。ECU按照TCU降扭请求控制发动机扭矩(曲线25)。此时由于车辆驱动轮打滑,驱动轮速度与从动轮转速开始出现偏差,很明显的在图2中表示的是驱动轮转速高于从动轮转速。
过程2.1:当驱动轮转速与从动轮转速过大,TCS功能激活(曲线28,ESP_TCSActive=1),TCS开始发送降扭请求(曲线27)。假定TCS降扭请求值高于TCU降扭请求值(曲线26),由于TCU的降扭请求更低,ECU将继续按照TCU的降扭请求控制发动机扭矩(曲线25)。因此发动机扭矩(曲线25)小于TCS控制的所需的扭矩,导致TCS施加于驱动轮的制动力过大,驱动轮转速下降过快(曲线29),制动感过强,导致车辆耸动,影响驾驶舒适性。另一方面,湿滑路面上,驱动轮制动力过大,还容易造成车轮抱死,车辆失控。驱动轮转速与从动轮转速接近后(曲线29),TCS退出控制(曲线28, ESP_TCSActive=0)。
过程3:车辆继续加速,离合器结合完成(曲线22),TCU取消降扭请求激活信号(曲线24),停止发送降扭请求(曲线26)。发动机扭矩(曲线25)不再受到TCU降扭请求影响。
图3是现有技术中的TCS降扭请求值小于TCU降扭请求值的示意图,其中:
曲线31:油门踏板开度;
曲线32:离合器状态,其中open为离合器打开,closing为离合器结合过程,closed为离合器结合;
曲线33:离合器压力;
曲线34:TCU降扭请求激活信号;
曲线35:发动机扭矩;
曲线36:TCS降扭请求;
曲线37:TCU降扭请求;
曲线38:TCS状态,其中1表示激活,0表示未激活;
曲线39:ABS轮速信号,轮速指的是驱动轮与从动轮。
如图3所示,当TCS降扭请求值小于TCU降扭请求值时,过程描述如下:
过程1:车辆原地静止,此时离合器(曲线32)处于打开状态(open)
过程2:驾驶员踩下油门(曲线31),车辆起动。离合器压力升高(曲线33),离合器开始结合(曲线32)。此时TCU触发降扭请求激活信号(曲线34),TCU开始发送降扭请求(曲线37)。ECU按照TCU降扭请求控制发动机扭矩(曲线35)。此时由于车辆驱动轮打滑,驱动轮速度与从动轮转速开始出现偏差。
过程2.1:当驱动轮转速与从动轮转速过大,TCS功能激活(曲线38,ESP_TCSActive=1),TCS开始发送降扭请求(曲线36)。假定TCS降扭请求值(曲线6)低于TCU降扭请求值(曲线37)。由于TCS的降扭请求更低,ECU将按照TCS的降扭请求控制发动机扭矩(曲线35)。因此发动机扭矩(曲线35)小于TCU控制的所需的扭矩,由于TCU基于发动机扭矩控制离合器压力,因此离合器压力(曲线33)随发动机扭矩(曲线35)被迫减小。导致离合器无法结合,车速也随之迅速减小,影响舒适性。另一方面,离合器处于长时间滑磨状态,产生大量热量,严重时可导致离合器损坏。过程2.1后,当驱动轮转速与从动轮转速接近(曲线39),TCS退出控制(曲线38,ESP_TCSActive=0),离合器得以继续完成结合过程。
过程3:车辆继续加速,离合器结合完成(曲线32),TCU取消降扭请求激活信号(曲线34),停止发送降扭请求(曲线37)。发动机扭矩(曲线35)不再受到TCU降扭请求影响。
图4所示的本发明的一个方法实施例基于如下构思:TCU通过ESP状态信号的拆分,对TCS进行独立响应。ESP控制单元对状态信号以及失效信号进行拆分,即ESP控制单元分别发送ESP以及TCS的状态及失效信号:
ESP_ESPActive:ESP状态信号;
ESP_TCSActive:TCS状态信号;
ESP_ESPFailed:ESP失效信号;
ESP_TCSFailed:TCS失效信号;
TCU对TCS状态进行监控,若检测到TCS激活(ESP_TCSActive=1)而判断出TCS处于所述控制状态时,TCU停止发送降扭请求,避免对TCS产生干扰。TCS控制结束(ESP_TCSActive=0),TCU继续发送降扭请求。同时TCU监控TCS和ESP失效信号。若仅检测到ESP失效(ESP_ESPFailed),TCU仍然监控TCS状态,避免对TCS产生干扰。若检测到TCS失效(ESP_TCSFailed=1),则认为TCS无法正常工作,TCU可根据变速器控制需求,发送TCU的降扭请求。
此时,检测控制步骤包括如下步骤:
步骤1:TCU判断变速器是否有降扭需求。若有降扭请求,则进入步骤2;
步骤2:TCU检测TCS是否失效。若TCS失效(ESP_TCSFailed=1),则进入步骤4,TCU可以发送降扭请求;若TCS未失效(ESP_TCSFailed=0),则进入步骤3;
步骤3:TCU检测TCS是否工作。若TCS不工作(ESP_TCSActive=0),则进入步骤4,TCU可以发送降扭请求;若TCS工作(ESP_TCSActive=1),则TCU不能发送降扭请求,回到步骤1。
步骤4:TCU发送降扭请求。
图5是图4所示方法应用于CVT变速器湿滑路面大油门起步过程的示意图,其中:
曲线51:油门踏板开度;
曲线52:离合器状态,其中open为离合器打开,closing为离合器结合过程,closed为离合器结合,creep为怠速滑行状态;
曲线53:离合器压力;
曲线54:TCU降扭请求激活信号;
曲线55:发动机扭矩;
曲线56:TCU降扭请求;
曲线57:TCS降扭请求;
曲线58:TCS状态,其中1表示激活,0表示未激活;
曲线59:ABS轮速信号(驱动轮与从动轮)。
如图5所示,以CVT变速器湿滑路面大油门起步过程为例:
过程1:车辆原地静止,此时离合器(曲线52)处于打开状态(open)
过程2:驾驶员踩下油门(曲线51),车辆起动。离合器压力升高(曲线53),离合器开始结合(曲线52)。此时TCU触发降扭请求激活信号(曲线54),TCU开始发送降扭请求(曲线56)。ECU按照TCU降扭请求控制发动机扭矩(曲线55)。此时由于车辆驱动轮打滑,驱动轮速度与从动轮转速开始出现偏差。
过程2.1:当驱动轮转速与从动轮转速过大,TCS功能激活(曲线58,ESP_TCSActive=1),TCS开始发送降扭请求(曲线57)。TCU检测到TCS工作,中断TCU降扭请求激活信号(曲线54),停止发送TCU降扭请求(曲线56),暂停离合器结合过程,保持在creep状态(曲线52),保证一定的扭矩传递到车轮。此时ECU按照TCS降扭请求(曲线57)控制发动机扭矩(曲线55)。过程2.1之后,驱动轮与从动轮转速差(曲线59)减小,TCS停止工作(曲线8,ESP_TCSActive=0)。TCU检测到TCS工作停止,可继续激活降扭请求(曲线54),发送降扭请求(曲线56),继续离合器结合过程(曲线52)。
过程3:车辆继续加速,离合器结合完成(曲线52),TCU取消降扭请求激活信号(曲线54),停止发送降扭请求(曲线56)。发动机扭矩(曲线55)不再受到TCU降扭请求影响。
图6所示的本发明的另一个方法实施例基于如下构思:通过ESP降扭请求信号的拆分,对TCS进行独立响应。对ESP降扭请求信号进行拆分,而不拆分ESP状态信号和失效信号:
ESP_ESPTorqueReductionRequestActive:ESP降扭请求激活信号;
ESP_ESPTorqueReductionRequest:ESP降扭请求信号;
ESP_TCSTorqueReductionRequestActive:TCS降扭请求激活信号;
ESP_TCSTorqueReductionRequest:TCS降扭请求信号;
ESP控制单元分别发送ESP和TCS的降扭请求。TCU监控TCS降扭信号。当TCS降扭请求激活(ESP_TCSTorqueReductionRequestActive=1)而判断出 TCS处于所述控制状态时,TCU暂缓或取消降扭请求,避免对TCS产生干扰。当TCS停止发送降扭请求后(ESP_TCSTorqueReductionRequestActive=0),TCU可根据变速器控制需求,发送降扭请求。
此时,检测控制步骤包括如下步骤:
步骤1:TCU判断变速器是否有降扭需求,若是则进入步骤2,若否则重复步骤1。
步骤2:TCU根据是否检测到TCS的降扭请求信号来判断TCS是否有降扭请求,若是则进入步骤3,若否则进入步骤4。
步骤3:TCU不发送降扭请求。
步骤4:TCU发送降扭请求。
图7是图6所示方法应用于CVT变速器湿滑路面大油门起步过程的示意图,其中:
曲线71:油门踏板开度;
曲线72:离合器状态,其中open为离合器打开,closing为离合器结合过程,closed为离合器结合,creep为怠速滑行状态;
曲线73:离合器压力;
曲线74:TCU降扭请求激活信号;
曲线75:发动机扭矩;
曲线76:TCU降扭请求;
曲线77:TCS降扭请求;
曲线78:TCS状态,其中1表示激活,0表示未激活;
曲线79:ABS轮速信号(驱动轮与从动轮)。
如图7所示,仍然以CVT变速器湿滑路面大油门起步过程为例:
过程1:车辆原地静止,此时离合器(曲线72)处于打开状态(open)
过程2:驾驶员踩下油门(曲线71),车辆起动。离合器压力升高(曲线73),离合器开始结合(曲线72)。此时TCU触发降扭请求激活信号(曲线74),TCU开始发送降扭请求(曲线76)。ECU按照TCU降扭请求控制发动机扭矩(曲线75)。此时由于车辆驱动轮打滑,驱动轮速度与从动轮转速开始出现偏差。
过程2.1:当驱动轮转速与从动轮转速过大,TCS工作,TCS降扭请求激活(曲线78ESP_TCSTorqueReductionRequestActive=1),TCS开始发送降扭请求(曲线77)。TCU检测到TCS降扭请求激活,中断TCU降扭请求激活信号 (曲线74),停止发送TCU降扭请求(曲线76),暂停离合器结合过程,保持在creep状态(曲线72),保证一定的扭矩传递到车轮。此时ECU按照TCS降扭请求(曲线77)控制发动机扭矩(曲线75)。过程2.1之后,驱动轮与从动轮转速差(曲线79)减小,TCS降扭请求中断(曲线78,ESP_TCSTorqueReductionRequestActive=0)。TCU检测到TCS停止发送降扭请求,可继续激活TCU降扭请求(曲线74),发送降扭请求(曲线76),继续离合器结合过程(曲线72)。
过程3:车辆继续加速,离合器结合完成(曲线72),TCU取消降扭请求激活信号(曲线74),停止发送降扭请求(曲线76)。发动机扭矩(曲线75)不再受到TCU降扭请求影响。
通过上述比较可以看出,本发明的方法通过避免TCU与TCS的相互干扰的问题,解决了车辆耸动、车辆抱死、车速减小过快和离合器硬件损坏过快的问题。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (9)

  1. 一种用于防止TCU与集成有TCS的ESP产生干扰的方法,其特征在于,所述方法包括:
    拆分步骤:对所述ESP和所述TCS的信号进行拆分,使得所述TCU能够获得所述TCS是否处于控制状态;
    检测控制步骤:所述TCU分别对所述ESP和所述TCS的拆分信号进行独立检测,当检测到所述TCS处于所述控制状态时,所述TCU暂停主动向ECU发送其自身的降扭请求。
  2. 根据权利要求1所述的方法,其特征在于,
    所述控制状态为TCS激活的状态;
    所述拆分步骤包括:将所述ESP以及所述TCS的状态信号及失效信号进行拆分。
  3. 根据权利要求1所述的方法,其特征在于,
    所述控制状态为TCS降扭请求激活的状态;
    所述拆分步骤包括:将所述ESP以及所述TCS的降扭请求信号进行拆分。
  4. 根据权利要求2所述的方法,其特征在于,所述检测控制步骤包括:
    若检测到所述TCS的状态信号而判断出所述TCS激活时,所述TCU停止发送所述降扭请求。
  5. 根据权利要求4所述的方法,其特征在于,所述检测控制步骤还包括:
    若检测到所述ESP的失效信号而判断出所述ESP失效,且检测到所述TCS的失效信号而判断出所述TCS失效时,则所述TCU才能根据变速器的控制需求,发送所述TCU的所述降扭请求。
  6. 根据权利要求2所述的方法,其特征在于,所述检测控制步骤包括如下步骤:
    步骤1:所述TCU判断变速器是否有降扭需求,若是则进入步骤2;
    步骤2:所述TCU根据是否检测到所述TCS的失效信号来判断所述TCS是否失效;若是则进入步骤4,若否则进入步骤3;
    步骤3:所述TCU根据是否收到所述TCS的状态信号判断所述TCS是否处于所述TCS激活的状态;若否则进入步骤4,若是则所述TCU不发送降扭请求,回到步骤1。
    步骤4:所述TCU发送所述降扭请求。
  7. 根据权利要求3所述的方法,其特征在于,
    若检测到所述TCS的降扭请求信号而判断出所述TCS降扭请求激活时,所述TCU暂停主动向所述ECU发送其自身的所述降扭请求;若未检测到所述TCS的降扭请求信号而判断出所述TCS降扭请求未被激活时,所述TCU根据变速器控制需求来发送所述降扭请求。
  8. 根据权利要求3所述的方法,其特征在于,所述检测控制步骤包括如下步骤:
    步骤1:所述TCU判断所述变速器是否有降扭需求,若是则进入步骤2,若否则重复步骤1;
    步骤2:所述TCU根据是否检测到所述TCS的降扭请求信号来判断所述TCS是否有降扭请求,若是则进入步骤3,若否则进入步骤4;
    步骤3:所述TCU不发送所述降扭请求;
    步骤4:所述TCU发送所述降扭请求。
  9. 根据权利要求1所述的方法,其特征在于,
    所述TCU与所述ESP通过CAN总线进行通讯。
PCT/CN2016/101994 2015-10-15 2016-10-13 防止tcu与esp产生干扰的方法 WO2017063567A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/767,691 US10344812B2 (en) 2015-10-15 2016-10-13 Method for preventing interference between TCU and ESP
BR112018007332-6A BR112018007332B1 (pt) 2015-10-15 2016-10-13 Método para evitar interferência entre uma unidade de controle de transmissão e um programa de estabilidade eletrônico integrado com um sistema de controle de tração

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510673135.9 2015-10-15
CN201510673135.9A CN105259804B (zh) 2015-10-15 2015-10-15 防止tcu与esp产生干扰的方法

Publications (1)

Publication Number Publication Date
WO2017063567A1 true WO2017063567A1 (zh) 2017-04-20

Family

ID=55099544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101994 WO2017063567A1 (zh) 2015-10-15 2016-10-13 防止tcu与esp产生干扰的方法

Country Status (4)

Country Link
US (1) US10344812B2 (zh)
CN (1) CN105259804B (zh)
BR (1) BR112018007332B1 (zh)
WO (1) WO2017063567A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771836A (zh) * 2020-06-05 2021-12-10 北京新能源汽车股份有限公司 一种电子稳定系统介入的扭矩链控制方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259804B (zh) * 2015-10-15 2018-01-19 浙江吉利汽车研究院有限公司 防止tcu与esp产生干扰的方法
CN114475276B (zh) * 2022-03-04 2024-04-19 广汽埃安新能源汽车有限公司 一种驱动电机力矩的控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168955A (en) * 1989-10-09 1992-12-08 Nissan Motor Company, Limited Traction control system for four-wheel drive vehicle
KR20100056942A (ko) * 2008-11-20 2010-05-28 현대자동차주식회사 하이브리드 차량의 토크 저감 방법
CN103266956A (zh) * 2013-05-29 2013-08-28 中国第一汽车股份有限公司无锡油泵油嘴研究所 内燃机扭矩控制系统
CN104136269A (zh) * 2013-02-28 2014-11-05 株式会社小松制作所 工作车辆
CN105259804A (zh) * 2015-10-15 2016-01-20 浙江吉利汽车研究院有限公司 防止tcu与esp产生干扰的方法
CN105276168A (zh) * 2015-10-13 2016-01-27 哈尔滨东安汽车发动机制造有限公司 一种车辆控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204164B (zh) * 2013-04-09 2016-02-17 郑州宇通客车股份有限公司 混合动力汽车的控制系统和发动机降扭矩、怠速停机控制方法
CN103498879B (zh) * 2013-08-26 2016-04-27 浙江吉利汽车研究院有限公司 一种用于车辆自动变速器的离合器接合的控制方法及装置
KR20180024450A (ko) * 2016-08-30 2018-03-08 현대자동차주식회사 Usb 호스트의 usb 통신 제어 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168955A (en) * 1989-10-09 1992-12-08 Nissan Motor Company, Limited Traction control system for four-wheel drive vehicle
KR20100056942A (ko) * 2008-11-20 2010-05-28 현대자동차주식회사 하이브리드 차량의 토크 저감 방법
CN104136269A (zh) * 2013-02-28 2014-11-05 株式会社小松制作所 工作车辆
CN103266956A (zh) * 2013-05-29 2013-08-28 中国第一汽车股份有限公司无锡油泵油嘴研究所 内燃机扭矩控制系统
CN105276168A (zh) * 2015-10-13 2016-01-27 哈尔滨东安汽车发动机制造有限公司 一种车辆控制方法
CN105259804A (zh) * 2015-10-15 2016-01-20 浙江吉利汽车研究院有限公司 防止tcu与esp产生干扰的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771836A (zh) * 2020-06-05 2021-12-10 北京新能源汽车股份有限公司 一种电子稳定系统介入的扭矩链控制方法及装置
CN113771836B (zh) * 2020-06-05 2024-04-26 北京新能源汽车股份有限公司 一种电子稳定系统介入的扭矩链控制方法及装置

Also Published As

Publication number Publication date
CN105259804B (zh) 2018-01-19
CN105259804A (zh) 2016-01-20
BR112018007332B1 (pt) 2023-04-04
US20180306252A1 (en) 2018-10-25
US10344812B2 (en) 2019-07-09
BR112018007332A2 (pt) 2018-10-30

Similar Documents

Publication Publication Date Title
US4899279A (en) Method for controlling AMT system including wheel lock-up detection and tolerance
US9358884B2 (en) Vehicle and method of controlling a vehicle
KR101836669B1 (ko) 하이브리드 차량용 변속 제어방법
US7556587B2 (en) Hill hold for a vehicle
JP3956700B2 (ja) 車両の駆動系の制御装置
EP1928717B1 (en) Selective anti-lock braking system
US8996267B2 (en) Driving force control device for four-wheel-drive vehicle
CN109322990B (zh) 一种滑行工况扭矩控制方法
WO2017063567A1 (zh) 防止tcu与esp产生干扰的方法
US7597650B2 (en) Automatic transmission with neutral coast down feature
WO2011027441A1 (ja) 車両制動力制御装置
MY188635A (en) Vehicle lock-up control method and control device
US7976430B2 (en) Driver intention detection algorithm for transmission control
US9182036B2 (en) Binary clutch disengagement control in a neutral shift
RU2528470C2 (ru) Способ и система для управления сцеплением
CN111356619A (zh) 具有处于低速档的分动箱的混合动力的动力总成系统和操作
KR101714239B1 (ko) 차량용 클러치 제어방법
KR101664705B1 (ko) 차량의 제어 방법
US6719663B2 (en) Vehicular automatic transmission apparatus
JPH02227342A (ja) 車両用無段変速機の制動時制御装置
US6848549B2 (en) Method and apparatus for operating an automated change-speed gearbox
JP2012057654A (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15767691

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018007332

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018007332

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180412

122 Ep: pct application non-entry in european phase

Ref document number: 16854944

Country of ref document: EP

Kind code of ref document: A1