WO2017063489A1 - 全齿啮合传动方法及装置 - Google Patents

全齿啮合传动方法及装置 Download PDF

Info

Publication number
WO2017063489A1
WO2017063489A1 PCT/CN2016/099691 CN2016099691W WO2017063489A1 WO 2017063489 A1 WO2017063489 A1 WO 2017063489A1 CN 2016099691 W CN2016099691 W CN 2016099691W WO 2017063489 A1 WO2017063489 A1 WO 2017063489A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
roller positioning
hole
disc
tooth
Prior art date
Application number
PCT/CN2016/099691
Other languages
English (en)
French (fr)
Inventor
于杰
于泓
Original Assignee
于杰
于泓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 于杰, 于泓 filed Critical 于杰
Publication of WO2017063489A1 publication Critical patent/WO2017063489A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H27/00Step-by-step mechanisms without freewheel members, e.g. Geneva drives
    • F16H27/04Step-by-step mechanisms without freewheel members, e.g. Geneva drives for converting continuous rotation into a step-by-step rotary movement

Definitions

  • the present application relates to a transmission method, and more particularly to a full tooth engagement transmission method and apparatus.
  • the spur gear and the cycloid secondary drive are used to achieve deceleration. Although it has the advantages of small backlash, high motion precision and good rotary stiffness;
  • the roller in the transmission system has a large sliding on the groove wheel, the groove ring and the positioning ring.
  • the roller is subjected to shearing force during the relative movement of the sheave to the groove.
  • the overhang of the output shaft is too long to increase the volume of the transmission system.
  • the purpose of the present application is to provide a full-tooth meshing transmission method and apparatus to solve the problems of the transmission system provided in the prior art.
  • the full-tooth meshing transmission device is a small-tooth differential transmission device comprising: a housing related member and an input crankshaft related member;
  • the housing related member includes: a housing, and is mounted on the housing a cover at a left end of the body, a ring gear mounted in the middle hole of the housing, a positioning ring axially positioned to the ring gear, and a bearing mounted in the hole at the end of the housing;
  • the input crankshaft related component includes: mounted on the housing a support plate on the inner ring of the left end bearing, an output shaft mounted on the inner ring of the bearing at the right end of the housing, a bearing mounted in the stepped hole of the support plate and the stepped hole of the output shaft, and an input crankshaft supported by the two bearings;
  • Two sets of roller positioning disc assemblies are mounted on the outer rings of the two eccentric cylindrical bearings, and the two sets of roller positioning disc assemblies include: a left roller positioning disc, a roller positioning disc, and a left roller positioning
  • a roller for mounting the roller and a roller in the hole, and a roller spacer is arranged between the two sets of roller positioning disk assemblies; the left roller positioning plate and the Roller positioning plate Arranged on both sides of the ring gear coupled to the housing through the housing pin; the transmission pin and the round nut couple the support disc and the output shaft together; the input crankshaft rotates and pushes a plurality of rollers along the tooth on the roller positioning disc assembly
  • the ring tooth envelope and the root envelope roll, the movement of the roller to the full tooth meshing profile curve causes the roller positioning disk assembly to rotate, and is mounted on the end face of the roller positioning plate assembly center line Rx.
  • the transmission pin sleeve and the transmission pin in the circumferential uniform hole are superimposed on the translation and rotation of the roller positioning plate assembly, and are converted into a circular motion of the output shaft around the center line of the system, and the output shaft and the input crankshaft are set at a speed Rotating than i, the magnitude of the speed ratio depends on the envelope of the moving roller, that is, the full tooth meshing profile of the ring gear.
  • the device further includes a profiled part, the profiled part being inserted into the ring gear;
  • the full tooth meshing profile is divided into two parts: a root engaging envelope and a crest engaging envelope; the envelope of the moving roller comprises: a tooth top envelope and a root envelope, The addendum envelope and the root envelope form a complete tooth profile of the ring gear profile, referred to as the full tooth mesh profile.
  • the full tooth meshing profile is obtained by the following method:
  • E, R, ⁇ input, ⁇ output calculate the movement path of the roller centerline.
  • the tooth top envelope and the root envelope of the moving roller are calculated, and the full tooth meshing profile curve is obtained.
  • the tooth tip and the tooth root of the ring gear can be modified.
  • the full-tooth meshing transmission device provided by the present application is a first-stage transmission device.
  • the structure is simple, the precision is more controllable, and the processing technology requirement can be reduced; the roller along the ring gear curve During the rolling process, the roller has no slip to the ring gear; the engagement of the roller with the root and the top envelope of the tooth can unload the radial force of the input crankshaft; the special-shaped part can change the force of the roller from shearing.
  • the transmission pin couples the support disc and the output shaft as a whole, the whole is supported on the left and right end bearings of the housing, and the output shaft does not extend outward, so that the entire device is small in volume.
  • FIG. 1 is a schematic structural view of a full-tooth meshing transmission device provided by the present application.
  • Fig. 2 is a cross-sectional view taken along line A-A of Fig. 1;
  • the full-tooth meshing transmission device shown in FIG. 1 to FIG. 2 mainly comprises: input crankshaft 1, cover 2, support plate 3, round nut 4, transmission pin 5, transmission pin sleeve 6, left roller positioning plate 7, and roller
  • Input crankshaft 1 is a crankshaft with four main cylinders that fit the bearing from left to right.
  • the first main cylinder is fitted with a bearing mounted in the stepped hole of the support plate 3 and supports the left end of the input crankshaft 1.
  • the second main cylinder is a left eccentric cylinder of the input crankshaft 1, the center line of the cylinder is at a distance E from the center line of the system, and the bearing mounted on the cylinder supports the roller positioning disc assembly.
  • the third main cylinder is a right eccentric cylinder of the input crankshaft 1, the center line of the cylinder is at a distance -E from the center line of the system, and the bearing mounted on the cylinder supports another set of roller positioning disc assemblies.
  • the center line of the left and right eccentric cylinders of the input crankshaft 1 is in the same plane as the center line of the system.
  • the fourth main cylinder of the input crankshaft 1 cooperates with a bearing mounted in the stepped bore of the output shaft 15 and supports the right end of the input crankshaft 1. Except for the left and right eccentric cylindrical centerlines, the other cylindrical centerlines of the input crankshaft 1 coincide with the system centerline.
  • Cover 2 is a disc type part, and its right end surface is machined with a large diameter boss and a small diameter boss.
  • the center of the cover 2 is machined with a hole into which the left end of the input crankshaft 1 can be inserted.
  • the cover 2 large diameter boss cooperates with the left end hole of the housing 12, and an annular groove is formed between the small diameter boss and the large diameter boss.
  • the left end of the cover 2 is processed along the edge A circumferentially uniform stepped hole that can be inserted into the inner hexagonal bolt.
  • the inner hexagonal bolt penetrating into the stepped hole and the threaded hole on the left end surface of the housing 12 can fasten the cover 2 to the left end surface of the housing 12.
  • the support tray 3 is composed of two outer cylinders from right to left, and a stepped hole is provided at the center of the support disc 3.
  • the first section of the outer cylinder of the support disc 3 cooperates with the inner ring of the bearing mounted at the left end of the housing.
  • the second outer cylinder is the shoulder of the first outer cylinder.
  • a stepped hole in the center of the support disk 3 is mounted with a bearing that supports the input crankshaft 1.
  • the end surface of the support plate 3 is machined with holes uniformly distributed along the circumference and equal in number to the transfer pins, and the distance from the center line of the support plate is Rx. Each of the holes is axially arranged from right to left, respectively
  • the transmission pin 5 has an elongated shaft fit, a threaded engagement with the left end of the transmission pin 5, and a hole through which the round nut can be placed.
  • the centerlines of the three holes coincide. Wherein, the hole that cooperates with the external thread of the left end of the transmission pin 5 is a threaded hole.
  • Round nut 4 A nut that is grooved on the outer cylinder.
  • Transmission pin 5 is an elongated shaft.
  • the left end of the transmission pin 5 is an external thread
  • the middle is an elongated shaft
  • the right end is a large cylinder.
  • the flat end of the large cylinder is machined with a wrench that can rotate the transfer pin 5.
  • the rotation transmitting pin 5 can adjust the distance between the outer cylindrical shoulder of the support disk 3 and the outer cylindrical shoulder of the output shaft 15. In this way, the bearing clearances installed in the two end holes of the casing 12 are adjusted, and the support disk 3, the transmission pin 5, the output shaft 15, and the round nut are fastened together.
  • This integral left end support disk 3 is supported on a bearing of the left end opening of the housing 12, and its right end output shaft 15 is supported on a bearing at the right end of the housing.
  • the transmission pin sleeve 6 is a part composed of an outer cylinder and a hole.
  • the left roller positioning disk 7 and the roller positioning disk 7a are disk-type parts in which holes are formed in the center.
  • the roller positioning plate 7a is identical to the other geometric shapes except that the stepped hole corresponding to the end face processing of the left roller positioning plate 7 is changed into a threaded hole.
  • the center line from the left roller positioning disk 7 and the roller positioning disk 7a is an end face of R, and a hole in which the roller 8 is mounted is uniformly distributed along the circumference. The number of these holes is determined by the speed ratio.
  • the center line of the left roller positioning disk 7 and the roller positioning disk 7a is at a distance of Rx, and a hole having a diameter of the outer cylindrical diameter plus 2E of the transmission pin sleeve 6 is uniformly distributed along the circumference. The number of these holes is the same as the number of the transfer pins 5.
  • the end faces are also machined with positioning pin holes.
  • the left end surface of the left roller positioning plate 7 is machined with a stepped hole into which the inner hexagonal bolt can be inserted.
  • the roller 8 is a short cylinder.
  • the roller 8 is mounted in a hole in which the left roller positioning disk 7 and the roller positioning disk 7a are mounted to the roller.
  • the roller 8 rotates in the hole of the left roller positioning disk 7 and the roller positioning disk 7a mounting roller 8 while rolling along the full tooth meshing profile curve.
  • the ring gear 9 is composed of an outer cylinder and inner teeth.
  • the outer cylinder is machined with a plurality of semicircular grooves having the same radius as the casing pin.
  • the ring gear 9 is an internal tooth, and the tooth shape is a full tooth meshing tooth profile curve, which is an envelope of the moving roller 8
  • the wire that is, the ring gear, is provided with a plurality of internal teeth shaped as a full-toothed tooth profile curve. It can also be seen from FIG. 2 that the number of internal teeth on the ring gear is greater than the number of the rollers.
  • the tooth profile curve of the ring gear is two parts, and the root meshing envelope and the tooth tip meshing envelope.
  • the area of the rollers 8 that enter and engage the crests is the addendum engagement zone.
  • the area of the rollers 8 that enter and engage the root is the root engaging zone.
  • the addendum envelope and the root envelope form the complete tooth profile of the ring gear profile. It is called a full tooth meshing profile curve.
  • the profiled part 10 is a part that is inserted into the ring gear 9.
  • the part is machined with a circular arc groove having the same radius as the roller 8, and the number of the circular arc grooves is equal to the number of the holes of the left roller positioning plate 7 on which the roller 8 is mounted.
  • the end face of the profiled part 10 is machined with a positioning pin hole having the same diameter and orientation as the positioning pin hole on the left roller positioning disk 7.
  • the profiled part 10 is uniformly provided with a hole having a diameter of the outer cylindrical diameter plus 2E of the pin sleeve 6 at a circumference Rx from the center line thereof.
  • the number of these holes is the same as the number of the transfer pins 5.
  • the profiled component 10 is a component that is inserted into the ring gear 9 so that the movement does not interfere with the tooth profile of the ring gear 9, and a groove that does not interfere with the tooth root curve of the ring gear 9 is processed between the two arc grooves, that is, A groove that does not interfere with the root curve of the ring gear 9 is machined between two adjacent circular arc grooves.
  • the end face of the profiled part 10 is machined with holes having the same orientation and diameter as the small diameter holes in the stepped holes of the end face of the left roller positioning plate 7.
  • the pins in the pin holes are aligned to ensure that the center lines of the above three parts coincide, that is, the center lines of the three parts of the left roller positioning plate 7, the profiled part 10, and the roller positioning plate 7a are coincident.
  • the left roller locating disc 7, the profiled part 10, and the roller locating disc 7a can be fastened into a roller locating disc assembly by the inner hexagonal bolt.
  • Roller partition 11 a sheet-like part composed of an outer circle and a hole. The function is to block the roller 8 in the roller positioning plate assembly installed on the outer ring of the left eccentric cylindrical bearing of the input crankshaft 1 and the roller in the roller positioning plate assembly mounted on the outer ring of the right eccentric cylindrical bearing of the input crankshaft 1 The axial movement of the shaft 8 is.
  • Housing 12 A part consisting of three outer cylinders from left to right and three holes in the center.
  • the left end surface of the first section of the outer cylinder is machined with a threaded hole which is evenly distributed along the circumference and can be fastened to the left end of the casing 12 by the inner hexagonal bolt.
  • the second outer cylindrical end face is machined with a pin for mounting the pin and a hole for inserting the inner hexagonal bolt.
  • the three holes in the center of the casing 12 are the left and right ends and the middle hole respectively, and the bearings installed in the left and right end holes respectively support the output shaft 15 and the support plate 3 which have been coupled together by the transmission pin 5 as a whole.
  • the middle hole is a hole in which the ring gear 9 is mounted.
  • a semicircular groove having the same radius as that of the casing pin 13 is machined in the wall of the ring gear.
  • the number of slots is the number of semicircular grooves on the outer cylinder of the ring gear 9 that are the same as the radius of the housing pin 13.
  • the housing pin 13 is a semicircular groove on the outer cylinder of the ring gear 9 and a half on the middle hole of the casing 12 A cylinder with a round groove. Its function is to limit the degree of freedom of rotation of the ring gear 9 mounted in the middle hole of the housing 12.
  • Ring gear positioning ring 14 A part consisting of an outer cylinder and a hole, the function of which is to axially and accurately position the ring gear 9 installed in the middle hole of the casing 12.
  • the output shaft 15 is composed of three outer cylinders from left to right, and a stepped hole is provided at the center of the output shaft 15. Its first outer cylindrical cylinder cooperates with the bearing inner ring at the right end of the housing 12.
  • the second outer cylinder is a shoulder coupled to the first outer cylinder.
  • the distance from the center line of the output shaft 15 is Rx, and a stepped hole uniformly distributed along the circumference and equal in number to the transmission pin is processed, and the large diameter hole at the right end of the stepped hole and the right end of the transmission pin 5 are large.
  • the diameter cylindrical fits, the small diameter bore of the stepped bore mates with the elongated shaft in the transfer pin 5.
  • a bearing engaged with the fourth main cylinder of the input crankshaft 1 is mounted in the stepped hole centered in the output shaft 15, and the bearing supports the right end of the input crankshaft 1.
  • the full tooth meshing transmission device provided by the embodiment of the present application is a small tooth difference transmission device. It mainly includes housing related parts and input crankshaft related parts.
  • the housing related component mainly comprises: a housing, a cover mounted at a left end of the housing, a ring gear installed in the middle hole of the housing, a ring gear positioning ring for axially positioning the ring gear, and a ring positioning hole installed in the two end holes of the housing Bearing.
  • the input crankshaft related parts mainly include: a support plate mounted on the inner ring of the bearing at the left end of the housing, an output shaft mounted on the inner ring of the bearing at the right end of the housing, a bearing mounted in the stepped hole of the support plate and the stepped hole of the output shaft, and the bearing Two bearings support the input crankshaft.
  • Two sets of roller positioning disc assemblies are mounted on the outer rings of the two eccentric cylindrical bearings of the input crankshaft.
  • the two sets of roller positioning disc assemblies include: a left roller positioning disc, a roller positioning disc, a hole for mounting the roller and a roller in the hole respectively on the left roller positioning disc and the roller positioning disc axis.
  • a roller spacer is mounted between the two sets of roller positioning disc assemblies.
  • the left roller positioning plate and the roller positioning plate are respectively disposed on both sides of the ring gear coupled to the housing through the housing pin.
  • the transfer pin and the round nut connect the support plate and the output shaft together.
  • the input crankshaft rotation pushes a number of rollers mounted on the roller positioning plate assembly to roll along the ring gear top envelope and the root envelope.
  • the movement of the roller to the full tooth meshing profile causes the roller to position the disk assembly to rotate.
  • Installed on the end face Rx from the center of the roller locating disc assembly, the pin sleeve and the transmission pin in the circumferential uniform hole are superimposed on the translation and rotation of the roller locating disc assembly, and converted into the output shaft winding system center The circular motion of the line.
  • the output shaft and the input crankshaft are rotated at a set speed ratio i, the magnitude of which depends on the envelope of the moving roller, that is, the full tooth meshing profile of the ring gear.
  • the housing, the support plate, the output shaft, the ring gear, and the input crankshaft journal center line supported on the output shaft and the bearing plate step hole are the system center line.
  • the distance between the center line of the left roller positioning plate and the roller positioning plate to the mounting roller hole is R.
  • the center line distance between the center line of the left roller positioning plate and the roller positioning plate to the hole of the mounting transmission pin is Rx.
  • the roller movement mounted on the left roller positioning plate and the roller positioning plate is pushed by inputting the bearing of the eccentric cylinder of the crankshaft.
  • the roller meshes with the ring gear fixed to the housing to change the speed ratio.
  • the transmission pin sleeve installed in the hole of the Rx is located at the center line of the left roller and the center line of the roller positioning plate, and the transmission pin is superimposed on the left roller positioning plate and the roller positioning plate to convert and rotate. A circular motion of the output shaft around the centerline of the system.
  • the full tooth meshing profile of the ring gear is divided into two parts: the root engaging envelope and the addendum engagement envelope.
  • the envelope of the moving roller including the addendum envelope and the root envelope.
  • the tooth top envelope and the root envelope form a complete tooth profile of the ring gear tooth shape, which is called a full tooth meshing tooth profile curve.
  • the full tooth meshing profile is obtained by the following method:
  • E, R, ⁇ input, ⁇ output calculate the movement path of the roller centerline.
  • the tooth top envelope and the root envelope of the moving roller are calculated, and the full tooth meshing profile curve is obtained.
  • the tooth tip and the tooth root of the ring gear can be modified.
  • the movement of the left roller locating disc and the roller locating disc causes the roller to move from the addendum of the ring gear to the root envelope of the ring gear. Since the roller that meshes with the addendum envelope of the ring gear or the roller that meshes with the root envelope of the ring gear, the roller has no slip to the ring gear during meshing, therefore, the full tooth engagement provided by the present application
  • the transmission device can solve the problem that the roller existing in the prior art has a large sliding on the sheave, the groove ring and the positioning ring.
  • the gear tooth shape acts on the roller, so that the roller supported between the left roller positioning plate and the roller positioning plate is sheared. force.
  • the profiled part projects into the toothed tooth profile, and the profiled part geometry that extends into the ring gear is divided into two parts.
  • the first part is an arc equal to the radius of the roller.
  • the center line of the arc equal to the radius of the roller coincides with the center line of the hole of the left roller positioning disk and the roller positioning disk mounting roller.
  • the geometry of the second part is a curve between two arcs equal to the radius of the roller to ensure that the profiled part does not interfere with the tooth profile of the ring during the movement of the left roller positioning disk and the roller positioning disk. Because when the roller is subjected to radial force, the arc that extends into the ring gear and the radius of the roller supports the radial force of the ring gear to the roller, so that the force of the roller changes from shear to extrusion, so The occurrence of the shearing force of the roller in the relative movement of the sheave to the groove in the prior art is well avoided.
  • the left roller positioning plate, the profiled part and the roller positioning plate, the three parts can be integrally connected by the positioning pin and the inner hexagonal bolt, and the whole is called the roller positioning.
  • the left roller positioning disc, the profiled part, the roller positioning disc, the left roller positioning disc, and the ring gear between the roller positioning discs, which are coupled as a whole, are called roller positioning disc assembly parts.
  • the roller Since the ring gear is a full-tooth meshing tooth profile curve, the roller is tangential to the root envelope at any moment, and at the same time, the rollers are tangent to the crown envelope, so many rollers will position the roller. Supported on the centerline of the roller positioning disc assembly. This self-positioning allows the bearings supporting the roller locating discs to be unstressed, thereby enabling the unloading of the radial forces acting on the input crankshaft.
  • the support disc is coupled to the output shaft by a transfer pin.
  • the integral left end support disc is supported on the bearing of the left end hole of the housing, and the output shaft of the right end thereof is supported on the bearing at the right end of the housing, and the output shaft itself does not extend outward, thereby making the full tooth provided by the present application
  • the meshing transmission is small in size.
  • a bearing that engages with the fourth main cylinder of the input crankshaft 1 is mounted in the stepped bore of the output shaft 15.
  • a bearing is mounted in the first stage of the output shaft 15 and mounted to the bore at the right end of the housing 12.
  • a transmission pin 5 is mounted in the stepped hole of the right end surface of the output shaft 15.
  • a positioning pin is inserted into the positioning pin hole of the roller positioning disk 7a.
  • a ring gear positioning ring 14 is mounted in the intermediate hole of the housing 12 to determine the axial position of the ring gear 9 by the ring gear positioning ring 14, and the ring gear 9 and the housing pin 13 are mounted.
  • the profiled part 10 is mounted such that the profiled part 10 is positioned with the pin hole penetrating into the locating pin on the roller locating disc 7a.
  • the arcuate groove center line of the profiled part 10 and the roller radius is coincident with the center line of the roller positioning plate 7a mounting roller 8 hole.
  • the roller 8 is mounted in the hole in which the left roller positioning disk 7 and the roller positioning disk 7a can be mounted with the roller 8. Insert the inner hexagonal bolt into the stepped hole of the end surface of the roller positioning plate 7, and tighten the inner hexagonal bolt to fasten the left roller positioning plate 7, the profiled part 10, and the roller positioning plate 7a into a whole, and complete the assembly part of the roller positioning plate. Assembly.
  • a bearing that fits the hole at the left end of the housing 12 is mounted on the outer cylinder of the support disk 3.
  • a bearing that mates with the first main cylinder of the input crankshaft 1 is mounted in the center stepped hole of the support disk 3.
  • the bearing is mated with the first main cylinder of the input crankshaft 1. Align the threaded hole on the support plate 3 with the external thread of the left end of the transmission pin 5, insert the left end cylinder of the transmission pin 5 into the right end face of the support plate 3 with which it is engaged, and screw the external thread of the left end of the transmission pin 5 into the buckle. Supported in the threaded hole of the disk 3. All parts that have been assembled are supported by the right end face of the outer cylinder of the second section of the housing 12.
  • the outer ring of the bearing on the outer cylinder of the right end of the support plate 3 will be installed
  • the left end of the housing 12 is in a hole that cooperates with the outer ring of the bearing.
  • the flat portion of the right end of the rotation transmitting pin 5 is flat, and the bearing clearance in the left and right end holes of the housing 12 is adjusted and the transmission pin is fastened with a round nut.
  • the hole in the center of the cover 2 is inserted into the cylinder at the left end of the input crankshaft 1. Install the large-diameter boss of the right end face of the cover 2 into the hole at the left end of the housing. Fasten the cover 2 to the left end of the housing with the inner hexagon bolts.
  • the input crankshaft 1 is input and rotated at an angular velocity ⁇ , and the bearings input to the left and right eccentric cylinders of the crankshaft 1 respectively push the roller positioning disc assembly mounted on the respective bearings to move.
  • the roller 8 installed in the left roller locating disc 7, the roller locating disc 7a and the roller 8 having the same diameter has a full-tooth meshing tooth profile curve along the ring gear 9, and the roller 8 and the ring gear 9 have a tooth top engagement curve.
  • the tangent and the rollers 8 are tangent to the tooth root 9 meshing curve.
  • the transmission pin sleeve 6 and the transmission pin 5 which are installed in the circumferential uniform hole of the Rx end surface from the center line of the roller positioning disc assembly are converted into the output shaft 15 by the translation and rotation superimposed on the roller positioning disc assembly. A circular motion around the centerline of the system.
  • the full-tooth meshing transmission device provided by the present application is a first-stage transmission device.
  • the structure is simple, the precision is more controllable, and the processing technology requirement can be reduced; the roller along the ring gear curve During the rolling process, the roller has no slip to the ring gear; the engagement of the roller with the root and the top envelope of the tooth can unload the radial force of the input crankshaft; the special-shaped part can change the force of the roller from shearing.
  • the transmission pin couples the support disc and the output shaft as a whole, the whole is supported on the left and right end bearings of the housing, and the output shaft does not extend outward, so that the entire device is small in volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

一种全齿啮合传动方法及装置,输入曲轴(1)的旋转通过其偏心圆柱上的轴承,推动滚轴定位盘装配体中的滚轴(8)与齿圈(9)的全齿啮合齿形曲线啮合,完成滚轴定位盘装配体的平动与自转。传递销(5)将滚轴定位盘装配体的运动转换成输出轴(15)绕系统中心线的圆运动。该装置是一种一级传动装置,比现有二级传动装置结构简单、精度更易控制;传递销(5)将支撑盘(3)、输出轴(15)联接成整体,该整体被支撑在壳体(12)左右二端轴承上能减小体积;滚轴(8)沿齿圈曲线滚动,啮合过程中滚轴(8)对齿圈(9)无滑动,同时滚轴(8)在安装它的孔中转动;滚轴(8)与齿根、齿顶包络线的啮合可使输入曲轴(1)所受径向力被卸载;异形零件使滚轴(8)的受力方式由剪切变为挤压。

Description

全齿啮合传动方法及装置
本申请要求于2015年10月14日提交中国专利局、申请号为201510657516.8、申请名称为“全齿啮合传动方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种传动方法,尤其是涉及一种全齿啮合传动方法及装置。
背景技术
目前公知的日本帝人RV减速机的传动系统中,采用正齿轮加摆线二级传动实现减速。虽其具有回程间隙小、运动精度高、回转刚度好的优点;
但其结构复杂加工工艺要求很高制造困难。
本申请又是对申请名称为《极径角传动系统》,申请号为201410065655.7的专利申请的改进,该专利申请公开的极径角传动系统具有如下缺陷:
一、与帝人RV减速机有类似问题—结构较复杂。
二、传动系统中滚轴对槽轮、槽圈及定位圈有较大的滑动。
三、槽轮对槽圈的相对运动中滚轴受剪切力。
四、对滚轴作用于槽轮的力卸载效果不理想。
五、输出轴的外伸部过长,增加传动系统的体积。
发明内容
本申请的目的在于提供一种全齿啮合传动方法及装置,以解决现有技术中提供的传动系统存在的问题。
为达到上述目的,本申请提供的全齿啮合传动装置,是一种少齿差传动装置,包括:壳体相关件和输入曲轴相关件;所述壳体相关件包括:壳体、安装在壳体左端的盖,安装在壳体中间孔中的齿圈,给齿圈轴向定位的定位环,和安装在壳体二端孔中的轴承;所述输入曲轴相关件包括:安装在壳体左端轴承内环上的支撑盘,安装在壳体右端轴承内环上的输出轴,安装在支撑盘台阶孔和输出轴台阶孔中的轴承及由这二个轴承支撑的输入曲轴;在输入曲轴的两个偏心圆柱轴承外环上安装有两套滚轴定位盘装配体,这两套滚轴定位盘装配体均包括:左滚轴定位盘、滚轴定位盘、分别在左滚轴定位盘和滚轴定位盘上开设的用于安装滚轴的孔以及孔中的滚轴,所述两套滚轴定位盘装配体之间安装有滚轴隔板;所述左滚轴定位盘和所述滚轴定位盘分别 布置在通过壳体销与壳体联接的齿圈两侧;传递销及圆螺母将支撑盘与输出轴联接成一整体;输入曲轴旋转推动安装在滚轴定位盘装配体上的若干滚轴沿齿圈齿顶包络线及齿根包络线滚动,滚轴对全齿啮合齿形曲线的运动使滚轴定位盘装配体自转,安装在距离滚轴定位盘装配体中心线为Rx的端面,圆周均布孔中的传递销套及传递销将叠加在滚轴定位盘装配体上的平动与自转,转换成输出轴绕系统中心线的圓运动,输出轴与输入曲轴按设定的速比i旋转,速比的大小取决于运动滚轴的包络线,即齿圈的全齿啮合齿形曲线。
所述装置还包括异型零件,所述异型零件插入至所述齿圈中;
所述全齿啮合齿形曲线被分成二部分:齿根啮合包络线与齿顶啮合包络线;运动滚轴的包络线包括:齿顶包络线及齿根包络线,所述齿顶包络线及所述齿根包络线构成齿圈齿形的完整齿形曲线,称之为所述全齿啮合齿形曲线。
全齿啮合齿形曲线用以下方法求出:
首先,设定以下相关参数,求出全齿啮合齿形曲线:
1.设定输入曲轴偏心圆柱对系统中心线的偏心距E。
2.设定左滚轴定位盘及滚轴定位盘端面沿圆周均布的可安装滚轴的孔,该孔中心线与左滚轴定位盘、滚轴定位盘中心线距离为R。
3.设定速比i。
4.设定输入曲轴角速度为ω输入。
5.确定左滚轴定位盘、滚轴定位盘自转角速为ω滚轴定位盘自转=ω输入/i。
因ω滚轴定位盘自转=ω输出,所以,ω输出=ω输入/i。利用参数E、R、ω输入、ω输出,计算出滚轴中心线运动轨迹。进而计算出运动滚轴的齿顶包络线、齿根包络线,并求出全齿啮合齿形曲线。为减小齿顶、齿根的压力角可对齿圈的齿顶、齿根进行修形。输入曲轴旋转,滚轴由与齿圈的齿顶包络线相切,过渡到与齿圈的齿根包络线相切,必满足方程:ω输入/ω输出=i。
本申请提供的全齿啮合传动装置,是一种一级传动装置,相比于现有技术中的二级传动装置,结构简单,精度更易控制,能降低加工工艺要求;滚轴沿齿圈曲线滚动,啮合过程中滚轴对齿圈无滑动;滚轴与齿根、齿顶包络线的啮合可使输入曲轴所受径向力被卸载;异型零件能使滚轴受力由剪切变 为挤压;传递销将支撑盘、输出轴联接成整体,该整体被支撑在壳体左右二端轴承上,并且输出轴没有向外延伸,使得整个装置的体积较小。
附图说明
为清楚地展示左滚轴定位盘、插入到齿圈中的异形零件、滚轴、齿圈的全齿啮合关系,下面将对实施例中所需使用的附图做简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在图2中除左滚轴定位盘上台阶孔及定位销孔外,其它均用细实线表示。
图1是本申请提供的全齿啮合传动装置的结构示意图;
图2是图1的A-A向剖视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1至图2所示的全齿啮合传动装置,主要包括:输入曲轴1、盖2、支撑盘3、圆螺母4、传递销5、传递销套6、左滚轴定位盘7、滚轴定位盘、滚轴8、齿圈9、异形零件10、滚轴隔板11、壳体12、壳体销13、齿圈定位环14和输出轴15。
其中:
输入曲轴1:是一曲轴,从左到右有四个与轴承配合的主要圆柱。第一主要圆柱与安装在支撑盘3台阶孔中轴承配合并支撑输入曲轴1左端。第二主要圆柱为输入曲轴1的左偏心圆柱,该圆柱中心线与系统中心线距离为E,安装在该圆柱上的轴承支撑滚轴定位盘装配体。第三主要圆柱为输入曲轴1的右偏心圆柱,该圆柱中心线与系统中心线距离为-E,安装在该圆柱上的轴承支撑另一套滚轴定位盘装配体。输入曲轴1左、右偏心圆柱中心线与系统中心线在同一平面。输入曲轴1的第四主要圆柱与安装在输出轴15台阶孔中的轴承配合,并支撑输入曲轴1右端。除左、右偏心圆柱中心线外,输入曲轴1的其它圆柱中心线均与系统中心线重合。
盖2:是一盘类零件,其右端面加工有大直径凸台及小直径凸台。盖2中心加工有能将输入曲轴1左端插入的孔。盖2大直径凸台与壳体12左端孔配合,其小直径凸台与大直径凸台间,加工有环形凹槽。盖2左端面加工有沿 圆周均布可插入内六方螺栓的台阶孔。穿入该台阶孔中的内六方螺栓及壳体12左端面上的螺纹孔可将盖2紧固到壳体12左端面上。
支撑盘3由从右到左的二段外圆柱构成,支撑盘3的中心处设有台阶孔。
支撑盘3的第一段外圆柱与安装在壳体左端轴承内环配合。其第二段外圆柱是第一段外圆柱的轴肩。支撑盘3中心的台阶孔安装有支撑输入曲轴1的轴承。支撑盘3端面加工有沿圆周均布的、与传递销数量相等、到支撑盘的中心线距离为Rx的孔,这些孔中的每一组都是从右到左轴向排列,分别为与传递销5细长轴配合、与传递销5左端螺纹配合及可放置圆螺母的孔。这三个孔的中心线重合。其中,与传递销5左端外螺纹配合的孔为螺纹孔。
圆螺母4:为在外圆柱上加工有槽的螺母。
传递销5:是细长轴。传递销5的左端为外螺纹,中间是细长轴,右端为大圆柱。在大圆柱右端加工有可用扳手转动传递销5的扁。当传递销5左端的外螺纹旋入支撑盘3的螺纹孔中,旋转传递销5可调整支撑盘3外圆柱轴肩与输出轴15外圆柱轴肩的距离。用此方法调整安装在壳体12二端孔中的轴承间隙,并可将支撑盘3、传递销5、输出轴15、圆螺母紧固成一整体。这一整体左端的支撑盘3被支撑在壳体12左端孔的轴承上,其右端的输出轴15被支撑在壳体右端的轴承上。
传递销套6:是由外圆柱及孔构成的零件。
左滚轴定位盘7、滚轴定位盘7a是中心加工有孔的盘类零件。
滚轴定位盘7a除将对应左滚轴定位盘7端面加工的台阶孔改成螺纹孔外,二者的其它几何形状完全相同。距左滚轴定位盘7和滚轴定位盘7a的中心线为R的端面,沿圆周均布有安装滚轴8的孔。这些孔的数量由速比决定。距左滚轴定位盘7和滚轴定位盘7a的中心线为Rx的距离处,沿圆周均布有直径为传递销套6外圆柱直径加2E的孔。这些孔的数量与传递销5的数量相同。为使左滚轴定位盘7及滚轴定位盘安装滚轴8的孔的中心线重合,其端面还加工有定位销孔。为将左滚轴定位盘7、异形零件10、滚轴定位盘7a联接成一整体,左滚轴定位盘7左端面加工有可插入内六方螺栓的台阶孔。
滚轴8是一短圆柱体。滚轴8被安装在左滚轴定位盘7、滚轴定位盘7a安装滚轴的孔中。滚轴8沿全齿啮合齿形曲线滚动的同时,在左滚轴定位盘7、滚轴定位盘7a安装滚轴8的孔中转动。
齿圈9由外圆柱及内齿构成。其外圆柱上加工若干个与壳体销半径相同的半圆槽。齿圈9为内齿,齿形为全齿啮合齿形曲线,是运动滚轴8的包络 线,也即齿圈上开设有形状为全齿啮合齿形曲线的多个内齿,从图2中还可以看出,齿圈上内齿的数量大于所述滚轴的数量。齿圈的齿形曲线为二部分,齿根啮合包络线与齿顶啮合包络线。进入并与齿顶啮合的诸滚轴8所在区域为齿顶啮合区。进入并与齿根啮合的诸滚轴8所在区域为齿根啮合区。齿顶包络线及齿根包络线构成齿圈齿形的完整齿形曲线。称之为全齿啮合齿形曲线。
异形零件10是插入到齿圈9中的零件。该零件上加工有与滚轴8半径相等的圆弧槽,圆弧槽的数量等于左滚轴定位盘7上安装滚轴8的孔的数量。为保证圆弧槽中心线与滚轴定位盘7a上安装滚轴孔的中心线重合。异形零件10端面加工有与左滚轴定位盘7上的定位销孔直径及方位相同的定位销孔。异形零件10在距其中心线为Rx的圆周均布有直径为传递销套6外圆柱直径加2E的孔。这些孔的数量与传递销5的数量相同。异形零件10是插入到齿圈9中的零件,为使其运动不与齿圈9的齿形发生干涉,在二圆弧槽间加工有与齿圈9齿根曲线不干涉的槽,也即在相邻两个圆弧槽之间加工有与齿圈9齿根曲线不干涉的槽。为将左滚轴定位盘7、异形零件10、滚轴定位盘7a联接成一整体,异形零件10端面加工有与左滚轴定位盘7端面台阶孔中小直径孔的方位与直径均相同的孔。定位销孔中的销,保证以上三个零件的中心线重合,也即保证左滚轴定位盘7、异形零件10、滚轴定位盘7a三个零件的中心线重合。用内六方螺栓可将左滚轴定位盘7、异形零件10、滚轴定位盘7a紧固成滚轴定位盘装配体。
滚轴隔板11:由外圆和孔构成的片状零件。其作用是阻隔输入曲轴1左偏心圆柱轴承外环上安装的滚轴定位盘装配体中的滚轴8,与输入曲轴1右偏心圆柱轴承外环上安装的滚轴定位盘装配体中的滚轴8的轴向窜动。
壳体12:由从左到右三段外圆柱及中心三个孔构成的零件。第一段外圆柱左端面加工有沿圆周均布、通过内六方螺栓可将盖2紧固到壳体12左端的螺纹孔。第二段外圆柱端面加工有可安装销子的孔及可插入内六方螺栓的孔。壳体12中心的三个孔,分别为左、右二端及中间的孔,左、右二端孔中安装的轴承,分别支撑已被传递销5联接成整体的输出轴15与支撑盘3,中间孔为安装齿圈9的孔。为限制壳体12中间孔中齿圈9旋转自由度,安装齿圈9的孔壁上加工有与壳体销13半径相同的半圆槽。槽数为齿圈9外圆柱上与壳体销13半径相同的半圆槽数。
壳体销13:是分别与齿圈9外圆柱上的半圆槽及及壳体12中间孔上的半 圆槽配合的圆柱体。其作用是限制安装在壳体12中间孔中的齿圈9的旋转自由度。
齿圈定位环14:由外圆柱与孔构成的零件,其作用是给安装在壳体12中间孔中的齿圈9轴向准确定位。
输出轴15:由从左到右的三段外圆柱构成,输出轴15的中心设有台阶孔。其第一段外圆柱与壳体12右端的轴承内环配合。其第二段外圆柱是与第一段外圆柱联接的轴肩。在输出轴的右端面上距离输出轴15中心线的距离为Rx处,加工有沿圆周均布、与传递销数量相等的台阶孔,该台阶孔右端的大直径孔与传递销5右端的大直径圆柱配合,该台阶孔的小直径孔与传递销5中的细长轴配合。输出轴15中心加工的台阶孔中安装有与输入曲轴1的第四主要圆柱配合的轴承,该轴承支撑输入曲轴1的右端。
本申请实施例提供的全齿啮合传动装置;是一种少齿差传动装置。主要包括壳体相关件和输入曲轴相关件。
壳体相关件主要包括:壳体、安装在壳体左端的盖、安装在壳体中间孔中的齿圈、给齿圈轴向定位的齿圈定位环和安装在壳体二端孔中的轴承。
输入曲轴相关件主要包括:安装在壳体左端轴承内环上的支撑盘、安装在壳体右端轴承内环上的输出轴、安装在支撑盘台阶孔和输出轴台阶孔中的轴承及由这二个轴承支撑的输入曲轴。在输入曲轴两个偏心圆柱轴承外环上安装有两套滚轴定位盘装配体。这两套滚轴定位盘装配体均包括:左滚轴定位盘、滚轴定位盘、分别在左滚轴定位盘和滚轴定位盘上开设的用于安装滚轴的孔以及孔中的滚轴。两套滚轴定位盘装配体间安装有滚轴隔板。左滚轴定位盘、滚轴定位盘分别布置在通过壳体销与壳体联接的齿圈两侧。传递销及圆螺母将支撑盘与输出轴联接成一整体。
输入曲轴旋转推动安装在滚轴定位盘装配体上的若干滚轴沿齿圈齿顶包络线及齿根包络线滚动。滚轴对全齿啮合齿形曲线的运动使滚轴定位盘装配体自转。安装在距离滚轴定位盘装配体中心线为Rx的端面,圆周均布孔中传递销套及传递销将叠加在滚轴定位盘装配体上的平动与自转,转换成输出轴绕系统中心线的圓运动。输出轴与输入曲轴按设定的速比i旋转,所述速比的大小取决于运动滚轴的包络线,即齿圈的全齿啮合齿形曲线。
为了更清楚地说明本申请提供的全齿啮合传动装置的特点,我们首先做出如下的设定:
设定:壳体、支撑盘、输出轴、齿圈、支撑在输出轴、支撑盘台阶孔中轴承上的输入曲轴轴颈中心线为系统中心线。
设定:左滚轴定位盘、滚轴定位盘中心线到安装滚轴孔的中心线距离为R。
设定:左滚轴定位盘、滚轴定位盘中心线到安装传递销套孔的中心线距离为Rx。
设定:输入曲轴偏心圆柱中心线与系统中心线距离为E;具体的,设定输入曲轴的第二主要圆柱为输入曲轴的左偏心圆柱,该圆柱中心线与系统中心线距离为E,设定输入曲轴的第三主要圆柱为输入曲轴的右偏心圆柱,该圆柱中心线与系统中心线距离为-E。
针对现有技术的缺陷,本申请的目的主要包括以下几方面:
(一)提供一级传动实现减速的方法:
通过输入曲轴偏心圆柱的轴承,推动安装在左滚轴定位盘、滚轴定位盘上的滚轴运动。滚轴与固定在壳体上的齿圈啮合改变速比。又通过距离左滚轴定位盘、滚轴定位盘中心线为Rx的孔中安装的传递销套,带动传递销将叠加在左滚轴定位盘、滚轴定位盘上的平动加自转,转换成输出轴绕系统中心线的圆运动。
(一)提供一种全齿啮合的齿圈全齿啮合齿形曲线及全齿啮合齿形曲线确定方法:
首先定义何为全齿啮合齿形曲线。齿圈的全齿啮合齿形曲线被分成二部分:齿根啮合包络线与齿顶啮合包络线。运动滚轴的包络线,包括齿顶包络线及齿根包络线。齿顶包络线及齿根包络线构成齿圈齿形的完整齿形曲线,称之为全齿啮合齿形曲线。
全齿啮合齿形曲线用以下方法求出:
首先,设定以下相关参数,求出全齿啮合齿形曲线。
1.设定输入曲轴偏心圆柱对系统中心线的偏心距E。
2.设定左滚轴定位盘及滚轴定位盘端面沿圆周均布的可安装滚轴的孔,该孔中心线与左滚轴定位盘、滚轴定位盘中心线距离为R。
3.设定速比i。
4.设定输入曲轴角速度为ω输入。
5.确定左滚轴定位盘、滚轴定位盘自转角速为ω滚轴定位盘自转=ω输入/i。
因ω滚轴定位盘自转=ω输出,所以ω输出=ω输入/i。利用参数E、R、ω输入、ω输出,计算出滚轴中心线运动轨迹。进而计算出运动滚轴的齿顶包络线、齿根包络线,并求出全齿啮合齿形曲线。为减小齿顶、齿根的压力角可对齿圈的齿顶、齿根进行修形。输入曲轴旋转,滚轴由与齿圈的齿顶包络线相切,过渡到与齿圈的齿根包络线相切,必满足方程:ω输入/ω输出=i。
(二)解决滚轴与齿圈齿形的相对滑动;
左滚轴定位盘、滚轴定位盘的运动使滚轴由齿圈的齿顶包络线,运动到齿圈的齿根包络线。由于不论与齿圈的齿顶包络线啮合的滚轴还是与齿圈的齿根包络线啮合的滚轴,啮合过程中滚轴对齿圈无滑动,因此,本申请提供的全齿啮合传动装置,可以解决现有技术中存在的滚轴对槽轮、槽圈及定位圈有较大的滑动的问题。
(三)提供一种使滚轴在运动过程中不受剪切的方法:
因左滚轴定位盘、滚轴定位盘布置在齿圈左右二侧、齿圈齿形作用于滚轴的力,使支撑在左滚轴定位盘及滚轴定位盘间的滚轴受剪切力。异形零件伸入到齿圈齿形中,伸入齿圈的异形零件几何形状又分成二部分。第一部分是与滚轴半径相等的圆弧。与滚轴半径相等的圆弧中心线与左滚轴定位盘、滚轴定位盘安装滚轴的孔中心线重合。第二部分的几何形状为二个与滚轴半径相等圆弧间的曲线,以保证左滚轴定位盘、滚轴定位盘运动过程中异形零件不与齿圈齿形干涉。由于当滚轴受到径向力时,伸入齿圈与滚轴半径相等的圆弧支撑了齿圈给滚轴的径向力,使滚轴受力由剪切变为挤压,因此,很好地避免了现有技术中存在的槽轮对槽圈的相对运动中滚轴受剪切力的情况的发生。
在本申请提供的全齿啮合传动装置中,左滚轴定位盘、异形零件、滚轴定位盘,三零件可通过定位销及内六方螺栓联接成一整体,并称这一整体为滚轴定位盘装配体。被联接成整体的左滚轴定位盘、异形零件、滚轴定位盘及左滚轴定位盘、滚轴定位盘间的齿圈,称为滚轴定位盘装配部件。
(四)提供一种对滚轴作用于输入曲轴上的径向力的卸载方法:
因齿圈为全齿啮合齿形曲线,任意瞬时总有滚轴与齿根包络线相切,同时又有诸滚轴与齿顶包络线相切,故诸多滚轴将滚轴定位盘支撑在滚轴定位盘装配体的中心线上。这一自定位方式使支撑滚轴定位盘的轴承不受力,进而实现了对滚轴作用于输入曲轴上的径向力的卸载。
(五)减小输出轴外伸的措施:
用传递销将支撑盘与输出轴联接成一整体。这一整体左端的支撑盘被支撑在壳体左端孔的轴承上,其右端的输出轴被支撑在壳体右端的轴承上,输出轴本身并没有向外延伸,进而使得本申请提供的全齿啮合传动装置的体积较小。
下面对本申请提供的全齿啮合传动装置的装配过程进行说明,具体如下。
1.安装输出轴15:
在输出轴15的台阶孔中安装与输入曲轴1第四主要圆柱配合的轴承。在输出轴15第一段圆柱安装轴承,并将其安装到壳体12右端的孔中。在输出轴15右端面的台阶孔中安装传递销5。
2.安装与输入曲轴1右偏心圆柱相关零件:
安装轴承到输入曲轴1右偏心圆柱上,在输入曲轴1右偏心圆柱轴承外环上安装滚轴定位盘7a。在滚轴定位盘7a的定位销孔中插入定位销。在壳体12中间孔中安装齿圈定位环14用齿圈定位环14确定齿圈9的轴向位置,安装齿圈9及壳体销13。安装异形零件10,使异形零件10定位销孔穿入滚轴定位盘7a上的定位销。并使异形零件10与滚轴半径相等的圆弧槽中心线与滚轴定位盘7a安装滚轴8孔的中心线重合。用同样方法安装左滚轴定位盘7。在左滚轴定位盘7、滚轴定位盘7a可安装滚轴8的孔中安装滚轴8。将内六方螺栓插入滚轴定位盘7端面的台阶孔中,拧紧内六方螺栓将左滚轴定位盘7、异形零件10、滚轴定位盘7a紧固成一整体,完成对滚轴定位盘装配部件的装配。
3.用与安装与输入曲轴1右偏心圆柱相关零件同样的方法,安装与输入曲轴1左偏心圆柱相关零件,完成对输入曲轴1左偏心圆柱上对滚轴定位盘装配部件的装配。
4.安装支撑盘3:
在支撑盘3外圆柱上安装与壳体12左端孔配合的轴承。在支撑盘3中心台阶孔中安装与输入曲轴1第一主要圆柱配合的轴承。使该轴承与输入曲轴1第一主要圆柱配合。将支撑盘3上的螺纹孔与传递销5左端外螺纹对正,将传递销5左端圆柱插入到与其配合的支撑盘3右端面孔中,并将传递销5左端外螺纹旋入数扣到与支撑盘3的螺纹孔中。用壳体12第二段外圆柱右端面支撑已经装配好的所有零件。将安装有支撑盘3右端外圆柱上的轴承外环压 入壳体12左端与该轴承外环配合的孔中。旋转传递销5右端大直径上的扁,调整壳体12左、右二端孔中的轴承间隙并用圆螺母紧固传递销。
5.安装盖2
将盖2中心上的孔穿入到输入曲轴1左端圆柱体。将盖2右端面大直径凸台安装到壳体左端孔中。用内六方螺栓将盖2紧固到壳体左端。
下面对本申请实施例提供的全齿啮合传动装置的工作原理进行说明,具体如下:
输入曲轴1以角速度ω输入旋转,输入曲轴1左、右偏心圆柱上的轴承分别推动安装在各自轴承上的滚轴定位盘装配体平动。安装在左滚轴定位盘7、滚轴定位盘7a与滚轴8直径相同孔中的滚轴8沿齿圈9全齿啮合齿形曲线滚动,诸滚轴8与齿圈9齿顶啮合曲线相切又有诸滚轴8与齿圈9齿根啮合曲线相切。这些与齿圈9全齿啮合齿形曲线啮合的滚轴8推动滚轴定位盘装配体以角速度ω滚轴定位盘自转自转。安装在距离滚轴定位盘装配体中心线为Rx端面圆周均布孔中的传递销套6及传递销5,将叠加在滚轴定位盘装配体上的平动与自转,转换成输出轴15绕系统中心线的圓运动。
本申请提供的全齿啮合传动装置,是一种一级传动装置,相比于现有技术中的二级传动装置,结构简单,精度更易控制,能降低加工工艺要求;滚轴沿齿圈曲线滚动,啮合过程中滚轴对齿圈无滑动;滚轴与齿根、齿顶包络线的啮合可使输入曲轴所受径向力被卸载;异型零件能使滚轴受力由剪切变为挤压;传递销将支撑盘、输出轴联接成整体,该整体被支撑在壳体左右二端轴承上,并且输出轴没有向外延伸,使得整个装置的体积较小。
以上所述仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (12)

  1. 一种全齿啮合传动方法,包括:壳体相关件和输入曲轴相关件;所述壳体相关件包括:安装在壳体左端的盖、安装在壳体中间孔中的齿圈、给齿圈轴向定位的齿圈定位环和安装在壳体二端孔中的轴承;所述输入曲轴相关件包括:安装在壳体左端轴承内环上的支撑盘、安装在壳体右端轴承内环上的输出轴、安装在支撑盘台阶孔和输出轴台阶孔中的轴承及由这二个轴承支撑的输入曲轴、安装在输入曲轴两个偏心圆柱轴承外环上的两套滚轴定位盘装配体;所述两套滚轴定位盘装配体均包括:左滚轴定位盘、滚轴定位盘、分别在所述左滚轴定位盘和所述滚轴定位盘上开设的用于安装滚轴的孔及孔中的滚轴,所述两套滚轴定位盘装配体之间安装有滚轴隔板;所述左滚轴定位盘和所述滚轴定位盘分别布置在通过壳体销与壳体联接的齿圈两侧;传递销及圆螺母将所述支撑盘与所述输出轴联接成一整体;所述输入曲轴旋转推动安装在滚轴定位盘装配体上的若干滚轴沿齿圈齿顶包络线及齿根包络线滚动,滚轴对全齿啮合齿形曲线的运动使滚轴定位盘装配体自转,安装在距离滚轴定位盘装配体中心线为Rx的端面,圆周均布孔中的传递销套及传递销将叠加在滚轴定位盘装配体上的平动与自转,转换成输出轴绕系统中心线的圓运动,输出轴与输入曲轴按设定的速比i旋转,所述速比的大小取决于运动滚轴的包络线,即齿圈的全齿啮合齿形曲线;
    其特征在于:所述全齿啮合齿形曲线被分成二部分:齿根啮合包络线与齿顶啮合包络线;运动滚轴的包络线包括:齿顶包络线及齿根包络线,所述齿顶包络线及所述齿根包络线构成齿圈齿形的完整齿形曲线,称之为所述全齿啮合齿形曲线;
    所述全齿啮合齿形曲线用以下方法求出:
    设定以下相关参数,求出全齿啮合齿形曲线:设定输入曲轴偏心圆柱对系统中心线的偏心距E;设定左滚轴定位盘及滚轴定位盘端面圆周均布的可安装滚轴的孔,该孔中心线与左滚轴定位盘、滚轴定位盘中心线距离为R;设定速比i;设定输入曲轴角速度为ω输入;确定左滚轴定位盘、滚轴定位盘自转角速为ω滚轴定位盘自转=ω输入/i;因ω滚轴定位盘自转=ω输出,所以,ω输出=ω输入/i;利用参数E、R、ω输入、ω输出,计算出滚轴中心线运动轨迹;进而计算出运动滚轴的齿顶包络线、齿根包络线,并求出全齿啮合齿形曲线;为减小齿顶、齿根,的压力角可对齿圈的齿顶、齿根进行修形,全齿啮合齿形曲线使诸多滚轴将滚轴定位盘支撑在滚轴定位盘装配体的中心线上,这一自定位方式使支撑滚轴定位盘的轴承不受力。
  2. 根据权利要求1所述的全齿啮合传动方法,其特征在于:所述支撑盘 由从右到左的二段外圆柱构成,所述支撑盘的中心处设有台阶孔;所述支撑盘的第一段外圆柱与安装在壳体左端轴承内环配合,所述支撑盘的第二段外圆柱是第一段外圆柱的轴肩;所述支撑盘中心的台阶孔安装有支撑所述输入曲轴的轴承;所述支撑盘端面加工有沿圆周均布的、与所述传递销数量相等的、到所述支撑盘的中心线距离为Rx的孔,这些孔中的每一组都是从右到左轴向排列,分别为与所述传递销细长轴配合、与所述传递销左端螺纹配合及可放置圆螺母的孔,这三个孔的中心线重合,其中与所述传递销左端外螺纹配合的孔为螺纹孔。
  3. 根据权利要求1所述的全齿啮合传动方法,其特征在于:所述输出轴由从左到右的三段外圆柱构成,所述输出轴的中心设有台阶孔;所述输出轴的第一段外圆柱与所述壳体右端的轴承内环配合;所述输出轴的第二段外圆柱是与所述第一段外圆柱联接的轴肩;在所述输出轴的右端面上距离所述输出轴中心线的距离为Rx处,加工有沿圆周均布、与所述传递销数量相等的台阶孔,所述台阶孔右端的大直径孔,与所述传递销右端的大直径圆柱配合,所述台阶孔左端的小直径孔与所述传递销中的细长轴配合;所述输出轴中心加工的台阶孔中安装有与所述输入曲轴的第四主要圆柱配合的轴承,该轴承支撑所述输入曲轴的右端。
  4. 根据权利要求1所述的全齿啮合传动方法,其特征在于:所述传递销的左端为外螺纹,中间是细长轴,右端为大圆柱;在所述大圆柱的右端加工有可用扳手转动所述传递销的扁;当所述传递销左端的外螺纹旋入所述支撑盘的螺纹孔中,旋转所述传递销可调整所述支撑盘外圆柱轴肩与所述输出轴外圆柱轴肩的距离,用此方法调整安装在壳体二端孔中的轴承间隙,并可将所述支撑盘、所述传递销、所述输出轴、所述圆螺母紧固成一整体,这一整体左端的所述支撑盘被支撑在所述壳体左端孔的轴承上,这一整体右端的所述输出轴被支撑在所述壳体右端的轴承上。
  5. 根据权利要求1所述的全齿啮合传动方法,其特征在于:距所述左滚轴定位盘和所述滚轴定位盘的中心线为R的端面沿圆周均布有安装滚轴的孔,这些孔的数量由速比决定;距所述左滚轴定位盘和所述滚轴定位盘的中心线为Rx的距离处,沿圆周均布有直径为所述传递销套外圆柱直径加2E的孔,这些孔的数量与所述传递销的数量相同;为使所述左滚轴定位盘及所述滚轴定位盘安装滚轴的孔的中心线重合,所述左滚轴定位盘和所述滚轴定位盘的端面还加工有定位销孔;为将所述左滚轴定位盘、所述异形零件、所述滚轴定位盘联接成一整体,所述左滚轴定位盘的左端面加工有可插入内六方螺栓的台阶孔;所述滚轴定位盘除将对应左滚轴定位盘端面加工的台阶孔改 成螺纹孔外,二者其它几何形状完全相同。
  6. 根据权利要求1所述的全齿啮合传动方法,其特征在于:所述滚轴被安装在所述左滚轴定位盘和所述滚轴定位盘安装滚轴的孔中,滚轴沿全齿啮合齿形曲线滚动的同时,在所述左滚轴定位盘和所述滚轴定位盘安装滚轴的孔中转动。
  7. 根据权利要求1所述的全齿啮合传动方法,其特征在于:所述滚轴定位盘装配体还包括异型零件,所述异形零件插入到所述齿圈中,所述异型零件上加工有与滚轴半径相等的圆弧槽,所述圆弧槽的数量等于所述左滚轴定位盘上安装滚轴的孔的数量;为保证所述圆弧槽中心线与所述滚轴定位盘上安装滚轴的孔的中心线重合,所述异形零件端面加工有与所述左滚轴定位盘上的定位销孔直径及方位相同的定位销孔;在距所述异形零件的中心线为Rx的圆周均布有直径为传递销套外圆柱直径加2E的孔,这些孔的数量与所述传递销的数量相同;为使所述异型零件的运动不与齿圈齿形发生干涉,在相邻二圆弧槽间加工有与齿圈齿根曲线不干涉的槽;为将所述左滚轴定位盘、所述异形零件、所述滚轴定位盘联接成一整体,所述异形零件端面加工有与所述左滚轴定位盘端面台阶孔中小直径孔方位与直径相同的孔。
  8. 一种全齿啮合传动装置,包括:输入曲轴、一套滚轴定位盘装配体和安装在壳体中间孔中的一个齿圈,所述滚轴定位盘装配体安装在所述输入曲轴的左偏心圆柱轴承外环上;其中,所述滚轴定位盘装配体包括:左滚轴定位盘、滚轴定位盘、分别在所述左滚轴定位盘和所述滚轴定位盘上开设的用于安装滚轴的多个孔及孔中的多个滚轴;其特征在于:所述齿圈上开设有形状为全齿啮合齿形曲线的多个内齿,所述内齿的数量大于所述滚轴的数量;
    所述全齿啮合齿形曲线包括:齿根啮合包络线和齿顶啮合包络线,所述齿根啮合包络线为所述运动滚轴的齿根包络线,所述齿顶啮合包络线为所述运动滚轴的齿顶包络线。
  9. 根据权利要求8所述的装置,其特征在于,所述全齿啮合齿形曲线用以下方法求出:
    设定输入曲轴偏心圆柱对系统中心线的偏心距E;
    设定左滚轴定位盘及滚轴定位盘端面圆周均布的可安装滚轴的孔,该孔中心线与左滚轴定位盘、滚轴定位盘中心线距离为R;
    设定速比i;
    设定输入曲轴角速度为ω输入;确定左滚轴定位盘、滚轴定位盘自转角速为ω滚轴定位盘自转=ω输入/i;因ω滚轴定位盘自转=ω输出,所以,ω输出=ω输入/i;
    利用参数E、R、ω输入、ω输出,计算出滚轴中心线运动轨迹;进而计算出运动滚轴的齿顶包络线、齿根包络线,进而求出全齿啮合齿形曲线。
  10. 根据权利要求8所述的装置,其特征在于,所述滚轴沿全齿啮合齿形曲线滚的同时,在所述左滚轴定位盘和所述滚轴定位盘安装滚轴的孔中转动。
  11. 根据权利要求8所述的装置,其特征在于,所述滚轴定位盘装配体还包括:异型零件;
    所述异型零件安装在所述左滚轴定位盘和所述滚轴定位盘之间,并插入所述齿圈内;
    所述异型零件上加工有与滚轴半径相等的圆弧槽,所述圆弧槽的数量与所述滚轴的数量相等;所述异型零件的两个相邻所述圆弧槽之间加工有与所述齿圈的齿根曲线不干涉的槽。
  12. 根据权利要求8-11任一项所述的装置,其特征在于,所述装置还包括:另一套滚轴定位盘装配体和安装在壳体中间孔中的另一个齿圈,所述另一套滚轴定位盘装配体安装在所述输入曲轴的右偏心圆柱轴承外环上。
PCT/CN2016/099691 2015-10-14 2016-09-22 全齿啮合传动方法及装置 WO2017063489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510657516.8A CN106122411B (zh) 2015-10-14 2015-10-14 全齿啮合传动方法
CN201510657516.8 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017063489A1 true WO2017063489A1 (zh) 2017-04-20

Family

ID=57471562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099691 WO2017063489A1 (zh) 2015-10-14 2016-09-22 全齿啮合传动方法及装置

Country Status (2)

Country Link
CN (1) CN106122411B (zh)
WO (1) WO2017063489A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112112948A (zh) * 2020-10-20 2020-12-22 贵州群建精密机械有限公司 一种提高少齿差传动输出机构承载能力的方法及装置
CN113263314A (zh) * 2021-05-19 2021-08-17 中航西安飞机工业集团股份有限公司 一种用于封闭箱体结构中轴承拆装装置安装方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299968B (zh) * 2017-08-01 2023-11-28 于杰 一种鱼形线减速机
CN108468776A (zh) * 2018-02-14 2018-08-31 于杰 减速装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2138547Y (zh) * 1991-07-09 1993-07-21 于杰 快接扣件
JP3515928B2 (ja) * 1998-09-24 2004-04-05 高広工業株式会社 ローラタレットおよびその製造方法
CN102287488A (zh) * 2010-06-18 2011-12-21 姚杰 少齿差滚柱啮合传动机构及其减速机
CN103968009A (zh) * 2013-01-29 2014-08-06 范正富 一种少齿差传动机构及其减速机
CN104864055A (zh) * 2014-02-26 2015-08-26 于杰 极径角传动系统
CN205534083U (zh) * 2015-10-14 2016-08-31 于杰 全齿啮合传动装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318360A (ja) * 1988-02-23 1988-12-27 Toshiba Seiki Kk 回転駆動装置
CN100593653C (zh) * 2006-07-13 2010-03-10 重庆大学 内齿圈输出的行星减速机
CN101832364A (zh) * 2010-04-17 2010-09-15 吴声震 工业机器人双摆线单级减速器
CN101949429B (zh) * 2010-08-18 2013-02-06 吴声震 工业机器人单级摆线减速器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2138547Y (zh) * 1991-07-09 1993-07-21 于杰 快接扣件
JP3515928B2 (ja) * 1998-09-24 2004-04-05 高広工業株式会社 ローラタレットおよびその製造方法
CN102287488A (zh) * 2010-06-18 2011-12-21 姚杰 少齿差滚柱啮合传动机构及其减速机
CN103968009A (zh) * 2013-01-29 2014-08-06 范正富 一种少齿差传动机构及其减速机
CN104864055A (zh) * 2014-02-26 2015-08-26 于杰 极径角传动系统
CN205534083U (zh) * 2015-10-14 2016-08-31 于杰 全齿啮合传动装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112112948A (zh) * 2020-10-20 2020-12-22 贵州群建精密机械有限公司 一种提高少齿差传动输出机构承载能力的方法及装置
CN113263314A (zh) * 2021-05-19 2021-08-17 中航西安飞机工业集团股份有限公司 一种用于封闭箱体结构中轴承拆装装置安装方法
CN113263314B (zh) * 2021-05-19 2023-07-21 中航西安飞机工业集团股份有限公司 一种用于封闭箱体结构中轴承拆装装置安装方法

Also Published As

Publication number Publication date
CN106122411A (zh) 2016-11-16
CN106122411B (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2017063489A1 (zh) 全齿啮合传动方法及装置
US11002353B2 (en) Cycloidal pin wheel harmonic transmission device
JPH0621624B2 (ja) 駆動力伝達装置
TWI609143B (zh) 偏心擺動減速裝置
CN106352024A (zh) 一种单偏心短传动链减速器
TW201947138A (zh) 波動齒輪裝置
WO2019090900A1 (zh) 精密摆线回转关节减速器
CN102927255B (zh) 一种行星齿轮传动装置的装配方法
JP4759607B2 (ja) ロータリー減速機
CN107299968B (zh) 一种鱼形线减速机
CN110242704A (zh) 一种基于滚动摩擦的传动装置及其传动方法
WO2013189161A1 (zh) 一种新型行星滚柱丝杠副
WO2011132580A1 (ja) 減速装置
EP0791147B1 (en) Eccentric gear
CN107202157B (zh) 一种弯管机及其齿轮传动装置
CN206522408U (zh) 一种工业机器人关节减速机
CN111043275B (zh) 一种小型双级锤形滚柱活齿减速器
CN210566170U (zh) 一种机器人齿轮间隙调整机构
JP5445961B2 (ja) 減速装置
CN205534083U (zh) 全齿啮合传动装置
CN212455376U (zh) 一种内置行星齿轮减速器
CN213206457U (zh) 一种双导程蜗轮蜗杆间隙调节机构
CN104864055A (zh) 极径角传动系统
JP4918507B2 (ja) 遊星ローラ式動力伝達装置
CN207500418U (zh) 一种鱼形线减速机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854871

Country of ref document: EP

Kind code of ref document: A1