WO2017063329A1 - 一种耐高温各向同性粘结NdFeB磁体及其制备方法 - Google Patents

一种耐高温各向同性粘结NdFeB磁体及其制备方法 Download PDF

Info

Publication number
WO2017063329A1
WO2017063329A1 PCT/CN2016/075843 CN2016075843W WO2017063329A1 WO 2017063329 A1 WO2017063329 A1 WO 2017063329A1 CN 2016075843 W CN2016075843 W CN 2016075843W WO 2017063329 A1 WO2017063329 A1 WO 2017063329A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonded
magnetic powder
magnet
isotropic
ndfeb
Prior art date
Application number
PCT/CN2016/075843
Other languages
English (en)
French (fr)
Inventor
岳明
尹玉霞
刘卫强
胡瑞金
张东涛
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US15/567,957 priority Critical patent/US10210972B2/en
Publication of WO2017063329A1 publication Critical patent/WO2017063329A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/45Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention invents a high temperature isotropic bonded NdFeB magnet and a preparation method thereof, and belongs to the technical field of functional materials.
  • the molding process of permanent magnet materials is divided into two types: sintering molding and bonding molding, each having advantages and disadvantages.
  • the sintered magnet has better magnetic properties, but the process is more complicated and the cost is higher.
  • the magnetic properties of the bonded magnet are slightly reduced, it is easy to mass-produce, accurate in size, small in density, stable in magnetic properties, and multi-polarized magnetization. Therefore, it is widely used in electronics and medical fields.
  • the binder is generally used in such a manner that a thin coating layer can be formed on the surface of each of the magnetic powder particles to achieve magnetic exchange coupling, which is generally related to the magnetic powder structure and particle size used.
  • epoxy resin is generally used as the binder, which has outstanding alkali resistance and low curing shrinkage, and the amount generally does not exceed 3% of the mass of the magnet.
  • NdFeB bonded magnets prepared by compression molding have higher coercivity using epoxy resin as binder, but epoxy bonded magnets cannot be used at high temperatures due to the temperature resistance of the epoxy adhesive itself. In the environment, the working environment is limited to below 110 °C (Li Fei. Development and application status of bonded NdFeB magnets [J]. Rare Earth, 1999, 63-66).
  • the high-temperature isotropic bonded NdFeB magnet of the invention adopts sodium silicate as the main binder and the high temperature resistant epoxy resin as the auxiliary binder, which can effectively improve the temperature resistance of the magnet, and the working environment temperature can reach 200. °C.
  • the Japanese patent reported a method for preparing bonded magnet parts by using sodium silicate as a binder and magnetic powder.
  • the obtained parts can work normally in a slightly high temperature environment such as an electric motor or a generator, but the magnet parts have a large moisture absorption.
  • the problem requires the necessary surface treatment to be used (Minami Tadashi, Nakamura Katsuya, Odakane Masaaki. Manufacture of bond magnet. Japan, H01F 41/02, 1997.). If sodium silicate and epoxy resin are used simultaneously to bond the NdFeB magnet, the resulting magnet will bond to the epoxy bond.
  • the advantages of the junction magnet and the sodium silicate bonded magnet have unique advantages in high temperature resistance, enhanced toughening, osmosis resistance, corrosion resistance and the like.
  • Sodium silicate has good heat resistance and strength, can make up for the lack of high temperature resistance of epoxy resin, and improve the strength properties of the magnet.
  • epoxy resin penetrates into the sodium silicate system at the molecular scale, and forms silicon after cross-linking and solidification.
  • the interpenetrating network structure of sodium and epoxy resin will improve the permeability resistance and corrosion resistance of the magnet and further reduce its hygroscopicity.
  • the isotropic NdFeB magnetic powder is used as the magnetic substance
  • the sodium silicate is used as the main binder
  • the high temperature resistant epoxy resin is used as the auxiliary binder, and the temperature resistance of the isotropic bonded NdFeB magnet is greatly improved.
  • Improve, its working environment temperature can reach 200 ° C, and has the advantages of resistance to penetration, corrosion resistance and so on.
  • the object of the present invention is to provide a high temperature isotropic bonded NdFeB magnet and a preparation method thereof, which are easy to obtain, can be mass produced, and have low cost.
  • the high-temperature isotropic bonded NdFeB magnet of the invention is a bonded magnet prepared by using an isotropic NdFeB magnetic powder and a binder as a main constituent material, and then adding an appropriate amount of a surfactant and a lubricant.
  • the mass ratio of each main constituent material of the magnet is: isotropic NdFeB magnetic powder 90-96%, sodium silicate binder 3-6.5%, epoxy binder 0.5-3.3%, surfactant 0.1-0.3%
  • the lubricant is 0.1 to 0.3%.
  • the sodium silicate binder is an aqueous solution of sodium silicate having a modulus of 3.1 to 3.4 and a Baume degree of 39 to 41°.
  • the surfactant is preferably selected from the group consisting of KH-550, KH-560, KH-570, stearic acid, aluminate, titanate and the like.
  • the lubricant is preferably selected from the group consisting of paraffin, glycerol, silicate, silicone oil and the like.
  • the preparation method of a high temperature resistant isotropic bonded NdFeB magnet of the invention is as follows:
  • the isotropic NdFeB magnetic powder is mixed with a certain amount of surfactant, and stirred uniformly to obtain a bonded magnetic powder A;
  • the bonded magnetic powder A obtained in the first step is mixed with the epoxy binder according to a certain mass ratio, and the mixture is evenly stirred until the magnetic powder is loose, and the magnetic powder B is bonded;
  • the bonded magnetic powder B obtained in the second step is mixed with the sodium silicate binder according to the mass ratio, and the mixture is evenly stirred until the magnetic powder is loose, and the magnetic powder C is bonded;
  • the bonded magnetic powder C obtained in the third step is mixed with a certain amount of lubricant, and stirred uniformly to obtain a bonded magnetic powder D;
  • the fifth step spraying a small amount of organic solvent into the bonded magnetic powder D obtained in the fourth step to accelerate the evaporation of water in the binder, stirring until the magnetic powder is loose, to obtain the bonded magnetic powder E;
  • the appropriate amount of the bound magnetic powder E obtained in the fifth step is placed in a mold for tapping, press molding in a press molding machine, demolding to obtain an initial magnet blank F;
  • the initial magnet blank F obtained in the sixth step is placed in an isostatic pressing device to be densified to obtain a densified magnet blank G;
  • the densified magnet blank G obtained in the seventh step is solidified in a vacuum or an inert gas atmosphere to obtain a high temperature isotropic bonded NdFeB magnet, and the curing temperature is 175 to 200 ° C for 30 to 40 min.
  • the epoxy binder is diluted and dissolved with a small amount of acetone before use, and is used immediately.
  • the organic solvent is a mixture of one or more of acetone, methanol, ethanol, and ethyl acetate.
  • the present invention has the following advantageous effects as compared with the prior art.
  • the invention relates to a high temperature resistant isotropic bonded NdFeB magnet and a preparation method thereof, which not only have good magnetic properties and high use temperature (200 ° C), and at the same time, the invention has simple equipment and convenient operation in the implementation process. Low cost, easy to mass production, and high economic value. Therefore, the invention has great application prospects in the field of permanent magnet materials.
  • Example 1 A method for preparing a high temperature isotropic bonded NdFeB magnet was carried out in the following procedure.
  • 96g isotropic NdFeB magnetic powder is mixed with 0.3g KH-550, and stirred uniformly to obtain bonded magnetic powder A1;
  • the bonded magnetic powder A1 obtained in the first step and 0.5 g of the epoxy binder are mixed according to a certain mass ratio, and the mixture is evenly stirred until the magnetic powder is loose, and the magnetic powder B1 is bonded;
  • the bonded magnetic powder B1 obtained in the second step and the 3 g sodium silicate binder (modulus 3.1, Baume degree 40°) are mixed according to the mass ratio, and the mixture is evenly stirred until the magnetic powder is loose, and the bonding is performed.
  • the bonded magnetic powder C1 obtained in the third step is mixed with 0.2 g of paraffin, and stirred uniformly to obtain a bonded magnetic powder D1;
  • the appropriate amount of bonded magnetic powder E1 obtained in the fifth step is placed in a mold for tapping, press molding in a press molding machine, demolding to obtain an initial magnet blank F1;
  • the initial magnet blank F1 obtained in the sixth step is placed in an isostatic pressing device to densify it to obtain a densified magnet blank G1;
  • the densified magnet blank G1 obtained in the seventh step is solidified in a vacuum environment to obtain a high temperature isotropic bonded NdFeB magnet 1#, and the curing temperature is 175 ° C for 40 min.
  • the sodium silicate binder is replaced with the same quality epoxy binder to obtain an isotropic bonded NdFeB magnet 1"#.
  • the two directions obtained in this embodiment The temperature coefficient data of the homogenous bonded NdFeB magnets 1# and 1"# are shown in Table 1.
  • the magnetic properties at room temperature and 200 ° C of the isotropic bonded NdFeB magnets 1# and 1"# obtained in this example are shown in Table 2.
  • Bonded magnet 1"# uses only epoxy resin as the binder, and its working environment does not exceed 110 °C.
  • Bonded magnet 1"# uses only epoxy resin as the binder, which cracks when tested at 200 ° C, so there is no data.
  • Example 2 A method for preparing a high temperature isotropic bonded NdFeB magnet, according to the following steps get on.
  • 93g isotropic NdFeB magnetic powder is mixed with 0.2g KH-560, and stirred uniformly to obtain bonded magnetic powder A2;
  • the bonded magnetic powder A2 obtained in the first step is mixed with 1.5 g of the epoxy binder according to a certain mass ratio, and the mixture is uniformly stirred until the magnetic powder is loose, and the magnetic powder B2 is bonded;
  • the bonded magnetic powder B2 obtained in the second step is mixed with 5 g of sodium silicate binder (modulus 3.2, Baume 39°) by mass ratio, and stirred evenly until the magnetic powder is loose, and the bond is obtained.
  • the bonded magnetic powder C2 obtained in the third step is mixed with 0.3 g of glycerin, and stirred uniformly to obtain a bonded magnetic powder D2;
  • the appropriate amount of the bound magnetic powder E2 obtained in the fifth step is placed in a mold for tapping, press molding in a press molding machine, demolding to obtain an initial magnet blank F2;
  • the initial magnet blank F2 obtained in the sixth step is placed in an isostatic pressing device to be densified to obtain a densified magnet blank G2;
  • the densified magnet blank G2 obtained in the seventh step is solidified in an argon atmosphere to obtain a high temperature isotropic bonded NdFeB magnet 2#, and the curing temperature is 185 ° C for 35 min.
  • the sodium silicate binder is replaced with the same quality epoxy binder to obtain an isotropic bonded NdFeB magnet 2"#.
  • the two directions obtained in this embodiment The temperature coefficient data of the homogenous bonded NdFeB magnets 2# and 2"# are shown in Table 3.
  • the magnetic properties at room temperature and 200 ° C of the isotropic bonded NdFeB magnets 2# and 2"# obtained in this example are shown in Table 4.
  • Bonded magnet 2"# uses only epoxy resin as the binder, and its working environment does not exceed 110 °C.
  • Bonded magnet 2"# uses only epoxy resin as the binder, which cracks when tested at 200 ° C, so there is no data.
  • Example 3 A method for preparing a high temperature isotropic bonded NdFeB magnet was carried out in the following procedure.
  • the bonded magnetic powder A3 obtained in the first step and the 3.3 g epoxy adhesive are mixed according to a certain mass ratio, and stirred uniformly until the magnetic powder is loose, and the magnetic powder B3 is bonded;
  • the bonded magnetic powder B3 obtained in the second step is mixed with 6.5 g of sodium silicate binder (modulus 3.4, Baume 41 °) by mass ratio, and stirred uniformly until the magnetic powder is loose and sticky.
  • the bonded magnetic powder C3 obtained in the third step is mixed with 0.1 g of paraffin, and stirred uniformly to obtain a bonded magnetic powder D3;
  • the appropriate amount of the bound magnetic powder E3 obtained in the fifth step is placed in a mold for tapping, press molding in a press molding machine, demolding to obtain an initial magnet blank F3;
  • the initial magnet blank F3 obtained in the sixth step is placed in an isostatic pressing device to be densified to obtain a densified magnet blank G3;
  • the densified magnet blank G3 obtained in the seventh step is solidified in a vacuum environment to obtain a high temperature isotropic bonded NdFeB magnet 3#, and the curing temperature is 200 ° C for 30 min.
  • the sodium silicate binder is replaced with the same quality epoxy binder to obtain an isotropic bonded NdFeB magnet 3"#.
  • the two directions obtained in this embodiment The temperature coefficient data of the isotropic bonded NdFeB magnets 3# and 3"# are shown in Table 5.
  • the magnetic properties at room temperature and 200 ° C of the isotropic bonded NdFeB magnets 3# and 3"# obtained in this example are shown in Table 6.
  • Bonded magnet 3"# uses only epoxy resin as the binder, and its working environment does not exceed 110 °C.
  • Bonded magnet 3"# uses only epoxy resin as the binder, which cracks when tested at 200 ° C, so there is no data.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一种耐高温各向同性NdFeB粘结磁体及其制备方法,属于功能材料技术领域。本发明以各向同性NdFeB磁粉为磁性物质,以硅酸钠为主粘结剂,以耐高温环氧树脂为辅助粘结剂,制得各向同性粘结NdFeB磁体。所得磁体耐温性得到大幅提高,其工作环境温度可达到200℃,且具有抗渗透、耐腐蚀等优点。本发明的一种耐高温各向同性粘结NdFeB磁体及其制备方法,所得磁体具有良好的磁学性能、较高的使用温度,在实施过程中设备简单、操作简便、成本较低,易于大规模生产,经济价值高,在永磁材料领域有着很大的应用前景。

Description

一种耐高温各向同性粘结NdFeB磁体及其制备方法 技术领域
本专利发明了一种耐高温各向同性粘结NdFeB磁体及其制备方法,属于功能材料技术领域。
背景技术
永磁材料的成型工艺分为烧结成型和粘结成型两种,各有优缺点。烧结磁体磁性能较好,但工艺较复杂,成本较高;而粘结磁体虽磁性能稍有降低,但易批量生产、尺寸精确、密度小、磁性能稳定,并可多极化充磁,故在电子和医疗领域应用广泛。目前粘结磁体的成型方法有四种:模压成型、注塑成型、挤压成型和压延成型。其中模压成型和注塑成型研究和应用较多,特别是模压成型由于添加剂加入量较少,磁性能相对较高,成型方法简单,对其研究和应用尤为深入和普遍。粘结剂的用量一般以能在每一个磁粉颗粒表面形成一个薄薄的包裹层从而实现磁交换耦合为宜,这通常与所使用的磁粉结构和粒度搭配有关。
在模压粘结NdFeB永磁体的制备中,一般选用环氧树脂作为粘结剂,其具有突出的耐碱性和低固化收缩率,用量一般不超过磁体质量的3%。采用环氧树脂作为粘结剂,利用模压成型技术制备的NdFeB粘结磁体具有较高的矫顽力,但是受环氧粘结剂本身的耐温性影响,环氧粘结磁体不能使用在高温环境中,其工作环境限制在110℃以下(李飞.粘结钕铁硼磁体开发应用现状[J].稀土,1999,63-66)。为了提高粘结NdFeB磁体的耐温性,开发耐高温粘结剂体系用以提高粘结磁体的工作温度成为研究的一个重要方向。本发明的耐高温各向同性粘结NdFeB磁体以硅酸钠为主粘结剂,以耐高温环氧树脂为辅助粘结剂,可有效提高磁体的耐温性,其工作环境温度可达到200℃。
日本专利报道了一种采用硅酸钠作为粘结剂与磁粉混合制备粘结磁体部件的方法,制得的部件可以在电动机、发电机等稍高温环境中正常工作,但是磁体部件存在吸湿大的问题,需要进行必要的表面处理才能使用(Minami Tadashi,Nakamura Katsuya,Odakane Masaaki.Manufacture of bond magnet.Japan,H01F 41/02,1997.)。如果将硅酸钠与环氧树脂同时用于粘结NdFeB磁体,则所得磁体会结合环氧粘 结磁体和硅酸钠粘结磁体的各项优点,在耐高温、增强增韧、抗渗透吸湿、耐腐蚀等方面有着独特的优势。硅酸钠具有良好的耐热性和强度,可弥补环氧树脂不耐高温的缺憾,并提高磁体的强度性能;同时,环氧树脂以分子尺度渗入硅酸钠体系,交联固化后形成硅酸钠与环氧树脂的互穿网络结构,将很好地改善磁体的抗渗透性能和耐腐蚀性,并进一步降低其吸湿性。
本发明以各向同性NdFeB磁粉为磁性物质,以硅酸钠为主粘结剂,以耐高温环氧树脂为辅助粘结剂,制得的各向同性粘结NdFeB磁体的耐温性得到大幅提高,其工作环境温度可达到200℃,且具有抗渗透、耐腐蚀等优点。
发明内容
本发明的目的是提供一种耐高温各向同性粘结NdFeB磁体及其制备方法,原材料易获得、可大规模生产且成本低。
本发明的一种耐高温各向同性粘结NdFeB磁体是以各向同性NdFeB磁粉和粘结剂为主要组成原料,再加入适量表面活性剂和润滑剂而制得的粘结磁体。磁体的各主要组成原料的质量比分别为:各向同性NdFeB磁粉90~96%、硅酸钠粘结剂3~6.5%、环氧粘结剂0.5~3.3%、表面活性剂0.1~0.3%,润滑剂0.1~0.3%。
所述的硅酸钠粘结剂是硅酸钠水溶液,模数3.1~3.4,波美度39~41°。
所述的表面活性剂优选自KH-550、KH-560、KH-570、硬脂酸、铝酸酯、钛酸酯等。
所述的润滑剂优选自石蜡、丙三醇、硅酸酯、硅油等。
本发明的一种耐高温各向同性粘结NdFeB磁体的制备方法如下:
第一步,将各向同性NdFeB磁粉与一定质量的表面活性剂混合,搅拌均匀,得粘结磁粉A;
第二步,将第一步得到的粘结磁粉A与环氧粘结剂按一定质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉B;
第三步,将第二步得到的粘结磁粉B与硅酸钠粘结剂按质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉C;
第四步,将第三步得到的粘结磁粉C与一定质量的润滑剂混合,搅拌均匀,得粘结磁粉D;
第五步,向第四步得到的粘结磁粉D中喷洒少许有机溶剂以加速粘结剂中水分挥发,搅拌至磁粉松散,得粘结磁粉E;
第六步,将第五步得到的适量粘结磁粉E置于模具中振实,在模压成型机中压制成型,脱模得到初始磁体坯F;
第七步,将第六步得到的初始磁体坯F置于等静压设备中,使其致密化,得到致密化磁体坯G;
第八步,将第七步得到的致密化磁体坯G置于真空或惰性气体环境中固化,得到耐高温各向同性粘结NdFeB磁体,固化温度为175~200℃,时间30~40min。
所述的环氧粘结剂在使用前先用少量丙酮稀释溶解,即溶即用。
所述的有机溶剂是丙酮、甲醇、乙醇、乙酸乙酯中的一种或几种的混合。
常规的各向同性粘结NdFeB磁体易于批量生产、尺寸精确,是磁性材料常用的成型方法。但常规各向同性粘结NdFeB磁体的长期使用温度较低,一般不超过110℃,这限制了粘结磁体在某些领域的使用。因此,开发耐高温的各向同性粘结NdFeB磁体,不仅在永磁材料领域有重要的应用前景,且具有非常大的经济价值。
本发明与现有技术相比具有以下有益效果。
本发明的一种耐高温各向同性粘结NdFeB磁体及其制备方法,不仅具有良好的磁学性能、较高的使用温度(200℃),同时,本发明在实施过程中设备简单、操作简便、成本较低,易于大规模生产,经济价值高。因此,本发明在永磁材料领域有着很大的应用前景。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1:一种耐高温各向同性粘结NdFeB磁体的制备方法,按以下步骤进行。
第一步,将96g各向同性NdFeB磁粉与0.3gKH-550混合,搅拌均匀,得粘结磁粉A1;
第二步,将第一步得到的粘结磁粉A1与0.5g环氧粘结剂按一定质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉B1;
第三步,将第二步得到的粘结磁粉B1与3g硅酸钠粘结剂(模数3.1,波美度40°)按质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉C1;
第四步,将第三步得到的粘结磁粉C1与0.2g的石蜡混合,搅拌均匀,得粘结磁粉D1;
第五步,向第四步得到的粘结磁粉D1中喷洒3ml丙酮,搅拌至磁粉松散,得粘结磁粉E1;
第六步,将第五步得到的适量粘结磁粉E1置于模具中振实,在模压成型机中压制成型,脱模得到初始磁体坯F1;
第七步,将第六步得到的初始磁体坯F1置于等静压设备中,使其致密化,得到致密化磁体坯G1;
第八步,将第七步得到的致密化磁体坯G1置于真空环境中固化,得到耐高温各向同性粘结NdFeB磁体1#,固化温度为175℃,时间40min。
采用本实施实例相同的工艺步骤,将硅酸钠粘结剂换用相同质量的环氧粘结剂,制得各向同性粘结NdFeB磁体1”#。本实施实例所得到的两种各向同性粘结NdFeB磁体1#和1”#的温度系数数据如表1所示。本实施实例所得的各向同性粘结NdFeB磁体1#和1”#的室温和200℃下的磁性能如表2所示。
表1 各向同性粘结NdFeB磁体1#和1”#的磁性能温度系数
Figure PCTCN2016075843-appb-000001
注:粘结磁体1”#仅使用环氧树脂为粘结剂,其工作环境不超过110℃。
表2 各向同性粘结NdFeB磁体1#和1”#的磁性能
Figure PCTCN2016075843-appb-000002
注:粘结磁体1”#仅使用环氧树脂为粘结剂,其在200℃下测试时碎裂,因此没有数据。
实施例2:一种耐高温各向同性粘结NdFeB磁体的制备方法,按以下步骤 进行。
第一步,将93g各向同性NdFeB磁粉与0.2gKH-560混合,搅拌均匀,得粘结磁粉A2;
第二步,将第一步得到的粘结磁粉A2与1.5g环氧粘结剂按一定质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉B2;
第三步,将第二步得到的粘结磁粉B2与5g硅酸钠粘结剂(模数3.2,波美度39°)按质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉C2;
第四步,将第三步得到的粘结磁粉C2与0.3g的丙三醇混合,搅拌均匀,得粘结磁粉D2;
第五步,向第四步得到的粘结磁粉D2中喷洒4ml丙酮,搅拌至磁粉松散,得粘结磁粉E2;
第六步,将第五步得到的适量粘结磁粉E2置于模具中振实,在模压成型机中压制成型,脱模得到初始磁体坯F2;
第七步,将第六步得到的初始磁体坯F2置于等静压设备中,使其致密化,得到致密化磁体坯G2;
第八步,将第七步得到的致密化磁体坯G2置于氩气环境中固化,得到耐高温各向同性粘结NdFeB磁体2#,固化温度为185℃,时间35min。
采用本实施实例相同的工艺步骤,将硅酸钠粘结剂换用相同质量的环氧粘结剂,制得各向同性粘结NdFeB磁体2”#。本实施实例所得到的两种各向同性粘结NdFeB磁体2#和2”#的温度系数数据如表3所示。本实施实例所得的各向同性粘结NdFeB磁体2#和2”#的室温和200℃下的磁性能如表4所示。
表3 各向同性粘结NdFeB磁体2#和2”#的磁性能温度系数
Figure PCTCN2016075843-appb-000003
注:粘结磁体2”#仅使用环氧树脂为粘结剂,其工作环境不超过110℃。
表4 各向同性粘结NdFeB磁体2#和2”#的磁性能
Figure PCTCN2016075843-appb-000004
Figure PCTCN2016075843-appb-000005
注:粘结磁体2”#仅使用环氧树脂为粘结剂,其在200℃下测试时碎裂,因此没有数据。
实施例3:一种耐高温各向同性粘结NdFeB磁体的制备方法,按以下步骤进行。
第一步,将90g各向同性NdFeB磁粉与0.1gKH-570混合,搅拌均匀,得粘结磁粉A3;
第二步,将第一步得到的粘结磁粉A3与3.3g环氧粘结剂按一定质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉B3;
第三步,将第二步得到的粘结磁粉B3与6.5g硅酸钠粘结剂(模数3.4,波美度41°)按质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉C3;
第四步,将第三步得到的粘结磁粉C3与0.1g的石蜡混合,搅拌均匀,得粘结磁粉D3;
第五步,向第四步得到的粘结磁粉D3中喷洒5ml丙酮,搅拌至磁粉松散,得粘结磁粉E3;
第六步,将第五步得到的适量粘结磁粉E3置于模具中振实,在模压成型机中压制成型,脱模得到初始磁体坯F3;
第七步,将第六步得到的初始磁体坯F3置于等静压设备中,使其致密化,得到致密化磁体坯G3;
第八步,将第七步得到的致密化磁体坯G3置于真空环境中固化,得到耐高温各向同性粘结NdFeB磁体3#,固化温度为200℃,时间30min。
采用本实施实例相同的工艺步骤,将硅酸钠粘结剂换用相同质量的环氧粘结剂,制得各向同性粘结NdFeB磁体3”#。本实施实例所得到的两种各向同性粘结NdFeB磁体3#和3”#的温度系数数据如表5所示。本实施实例所得的各向同性粘结NdFeB磁体3#和3”#的室温和200℃下的磁性能如表6所示。
表5 各向同性粘结NdFeB磁体3#和3”#的磁性能温度系数
Figure PCTCN2016075843-appb-000006
Figure PCTCN2016075843-appb-000007
注:粘结磁体3”#仅使用环氧树脂为粘结剂,其工作环境不超过110℃。
表6 各向同性粘结NdFeB磁体3#和3”#的磁性能
Figure PCTCN2016075843-appb-000008
注:粘结磁体3”#仅使用环氧树脂为粘结剂,其在200℃下测试时碎裂,因此没有数据。

Claims (7)

  1. 一种耐高温各向同性粘结NdFeB磁体,其特征在于,是以各向同性NdFeB磁粉和粘结剂为主要组成原料,再加入适量表面活性剂和润滑剂而制得的粘结磁体。磁体的各主要组成原料的质量比分别为:各向同性NdFeB磁粉90~96%、硅酸钠粘结剂3~6.5%、环氧粘结剂0.5~3.3%、表面活性剂0.1~0.3%,润滑剂0.1~0.3%。
  2. 按照权利要求1的一种耐高温各向同性粘结NdFeB磁体,其特征在于,硅酸钠粘结剂是硅酸钠水溶液,模数3.1~3.4,波美度39~41°。
  3. 按照权利要求1的一种耐高温各同性粘结NdFeB磁体,其特征在于,表面活性剂优选自:KH-550、KH-560、KH-57 0、硬脂酸、铝酸酯、钛酸酯。
  4. 按照权利要求1的一种耐高温各向同性粘结NdFeB磁体,其特征在于,润滑剂优选自:石蜡、丙三醇、硅酸酯、硅油。
  5. 制备权利要求1或2的耐高温各向同性粘结NdFeB磁体的方法,其特征在于,包括以下步骤:
    第一步,将各向同性NdFeB磁粉与一定质量的表面活性剂混合,搅拌均匀,得粘结磁粉A;
    第二步,将第一步得到的粘结磁粉A与环氧粘结剂按一定质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉B;
    第三步,将第二步得到的粘结磁粉B与硅酸钠粘结剂按质量比混合,搅拌均匀,直至磁粉呈松散状,得粘结磁粉C;
    第四步,将第三步得到的粘结磁粉C与一定质量的润滑剂混合,搅拌均匀,得粘结磁粉D;
    第五步,向第四步得到的粘结磁粉D中喷洒少许有机溶剂以加速粘结剂中水分挥发,搅拌至磁粉松散,得粘结磁粉E;
    第六步,将第五步得到的适量粘结磁粉E置于模具中振实,在模压成型机中压制成型,脱模得到初始磁体坯F;
    第七步,将第六步得到的初始磁体坯F置于等静压设备中,使其致密化,得到致密化磁体坯G;
    第八步,将第七步得到的致密化磁体坯G置于真空或惰性气体环境中固化,得到耐高温各向同性粘结NdFeB磁体,固化温度为175~200℃,时间30~40min。
  6. 按照权利要求5的方法,其特征在于,所述的环氧粘结剂在使用前先用丙酮稀释溶解,即溶即用。
  7. 按照权利要求5的方法,其特征在于,所述的有机溶剂是丙酮、甲醇、乙醇、乙酸乙酯 中的一种或几种的混合。
PCT/CN2016/075843 2015-10-12 2016-03-08 一种耐高温各向同性粘结NdFeB磁体及其制备方法 WO2017063329A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/567,957 US10210972B2 (en) 2015-10-12 2016-03-08 Heat-resistant isotropic bonded NdFeB magnet and its preparation technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510660957.3A CN105206370B (zh) 2015-10-12 2015-10-12 一种耐高温各向同性粘结NdFeB磁体及其制备方法
CN201510660957.3 2015-10-12

Publications (1)

Publication Number Publication Date
WO2017063329A1 true WO2017063329A1 (zh) 2017-04-20

Family

ID=54953989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075843 WO2017063329A1 (zh) 2015-10-12 2016-03-08 一种耐高温各向同性粘结NdFeB磁体及其制备方法

Country Status (3)

Country Link
US (1) US10210972B2 (zh)
CN (1) CN105206370B (zh)
WO (1) WO2017063329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456540A (zh) * 2022-01-14 2022-05-10 滁州杰事杰新材料有限公司 一种三聚氰胺甲醛树脂复合材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206370B (zh) 2015-10-12 2017-11-03 北京工业大学 一种耐高温各向同性粘结NdFeB磁体及其制备方法
CN108242307A (zh) * 2018-01-08 2018-07-03 北京工业大学 一种基于高耐温粘结体系的各向同性粘结NdFeB磁体及其制备方法
CN109411174B (zh) * 2018-10-12 2020-04-03 北京工业大学 一种高流动性耐高温粘结NdFeB预制磁粉的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007549A (zh) * 2008-04-15 2011-04-06 东邦亚铅株式会社 复合磁性材料及其制造方法
CN104070161A (zh) * 2014-05-28 2014-10-01 浙江大学 一种无机-有机复合粘结剂包覆软磁复合材料的制备方法
CN104575911A (zh) * 2014-12-01 2015-04-29 横店集团东磁股份有限公司 一种高磁导率铁镍钼磁粉芯的制备方法
CN105206370A (zh) * 2015-10-12 2015-12-30 北京工业大学 一种耐高温各向同性粘结NdFeB磁体及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619653B2 (ja) * 1987-10-16 1997-06-11 セイコーエプソン株式会社 希土類磁石
JPH09129466A (ja) 1995-11-06 1997-05-16 Nippon Koshuha Kogyo Kk ボンドマグネットの製造方法
JP2001196210A (ja) * 2000-01-06 2001-07-19 Seiko Epson Corp 磁石粉末および等方性ボンド磁石
WO2001084563A1 (fr) * 2000-04-28 2001-11-08 Sumitomo Osaka Cement Co., Ltd. Aimant a liaison de composition hydraulique
CN102982961B (zh) * 2012-12-14 2015-08-05 北京科技大学 采用保压固化工艺制备各向异性粘结磁体的方法
CN105206369B (zh) * 2015-10-12 2017-11-14 北京工业大学 一种耐高温各向异性粘结NdFeB磁体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007549A (zh) * 2008-04-15 2011-04-06 东邦亚铅株式会社 复合磁性材料及其制造方法
CN104070161A (zh) * 2014-05-28 2014-10-01 浙江大学 一种无机-有机复合粘结剂包覆软磁复合材料的制备方法
CN104575911A (zh) * 2014-12-01 2015-04-29 横店集团东磁股份有限公司 一种高磁导率铁镍钼磁粉芯的制备方法
CN105206370A (zh) * 2015-10-12 2015-12-30 北京工业大学 一种耐高温各向同性粘结NdFeB磁体及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456540A (zh) * 2022-01-14 2022-05-10 滁州杰事杰新材料有限公司 一种三聚氰胺甲醛树脂复合材料及其制备方法

Also Published As

Publication number Publication date
US10210972B2 (en) 2019-02-19
CN105206370B (zh) 2017-11-03
CN105206370A (zh) 2015-12-30
US20180166191A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2017063329A1 (zh) 一种耐高温各向同性粘结NdFeB磁体及其制备方法
CN103708846B (zh) 一种C/C-SiC复合材料的制备方法
CN103489621A (zh) 一种采用两步成型工艺制备各向异性粘结磁体的方法
CN105206369B (zh) 一种耐高温各向异性粘结NdFeB磁体及其制备方法
CN106746914B (zh) 一种陶瓷环氧树脂复合材料
CN104292764A (zh) 一种用于高储能电容器的复合介电材料及其制备方法
CN103951403B (zh) 非磁性材料与NiCuZn铁氧体材料低温匹配共烧方法
KR102454806B1 (ko) 이방성 본드 자석 및 그 제조 방법
TW200740697A (en) Yttrium oxide composition, method of preparing the same, and method of forming yttrium oxide layer using the same
CN104464997A (zh) 一种高矫顽力钕铁硼永磁材料及其制备方法
JP5989724B2 (ja) フェライトセラミックスの製造方法
CN107619282B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法
CN109692963A (zh) 一种表面附有耐腐蚀涂层的钕铁硼磁体的制备方法
CN111363228B (zh) 一种采用eea填充改性的注塑用磁性颗粒料及其制备方法
CN113248256B (zh) 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN1314748C (zh) 一种永磁铁氧体聚合物复合磁体的制备方法
CN103849790A (zh) 一种原位生成均质纳米级陶瓷-金属复合材料及其制备方法
CN108395256B (zh) 一种致密型富碳先驱体陶瓷的制备方法
CN105225780B (zh) 一种耐高温各向异性粘结钐铁氮磁体及其制备方法
Xi et al. Preparation and characterization of phenol formaldehyde bonded Nd–Fe–B magnets with high strength and heat resistance
CN113996791B (zh) 一种高性能热压钕铁硼磁环的制造方法
KR101136106B1 (ko) 탄소원이 코팅된 탄화규소 복합 분말 및 반응소결 탄화규소 소결체의 제조방법
CN111370217B (zh) 一种光固化辅助直写3d打印制备永磁体的方法
WO2021031852A2 (zh) 高抗压强度的磁性材料及其制备方法
KR101525781B1 (ko) 희토류계 본드자석용 유기바인더 조성물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16854719

Country of ref document: EP

Kind code of ref document: A1