WO2017061482A1 - 炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法 - Google Patents

炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法 Download PDF

Info

Publication number
WO2017061482A1
WO2017061482A1 PCT/JP2016/079652 JP2016079652W WO2017061482A1 WO 2017061482 A1 WO2017061482 A1 WO 2017061482A1 JP 2016079652 W JP2016079652 W JP 2016079652W WO 2017061482 A1 WO2017061482 A1 WO 2017061482A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbonaceous fuel
gasification
aluminum oxide
fluidized bed
Prior art date
Application number
PCT/JP2016/079652
Other languages
English (en)
French (fr)
Inventor
▲高▼木 克彦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP16853636.5A priority Critical patent/EP3360948A4/en
Priority to AU2016334756A priority patent/AU2016334756A1/en
Priority to CN201680058458.XA priority patent/CN108138058A/zh
Publication of WO2017061482A1 publication Critical patent/WO2017061482A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/095Exhaust gas from an external process for purification
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/24Increasing the gas reduction potential of recycled exhaust gases by shift reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a carbonized fuel gasification method, a steel mill operation method, and a gasification gas production method using a fluidized bed gasification furnace.
  • Patent Document 1 by withdrawing a portion of the product gas produced in the coal gasification furnace, by burning the extracted product gas with oxygen to convert into CO 2 and H 2 O, the CO 2 and H 2 A coal gasification facility using a mixed gas with O as a carrier gas for supplying coal to a coal gasification furnace is disclosed.
  • the combustion heat of the product gas is increased as compared with the case of transporting coal with N 2 .
  • Patent Document 2 discloses a gasification furnace that supplies pure oxygen, and supplies a gas-producing furnace with a by-product gas containing CO 2 generated from a steelmaking furnace and generates char by coal gasification. A method is disclosed in which the generated gas is reformed and the calorific value is increased by the CO generated by the reaction with CO 2 in the steelmaking byproduct gas.
  • Patent Document 3 as a coal coke gasification apparatus, a fluidized bed gasification furnace (reactor) containing a fluidized bed composed of a mixture of coal coke particles and a fluidized medium, and sunlight on the upper surface of the fluidized bed.
  • the gasification furnace includes a draft pipe embedded in the fluidized bed and a means for introducing water vapor into the gasification furnace from below, and the fluidized bed is drafted by the introduced water vapor.
  • a gasifier having a configuration that circulates in and out of a pipe is disclosed.
  • quartz sand (SiO 2 ) is mainly used as a fluid medium.
  • the apparatus described in Patent Document 3 uses a fluidized bed made of a mixture of coal coke particles and a fluidized medium, thereby preventing a decrease in the reaction rate of the fluidized bed particles and allowing the gasification reaction to proceed smoothly. Yes.
  • JP 2000-355893 A Japanese Patent Laid-Open No. 2007-9069 Japanese Patent Laying-Open No. 2015-86232
  • Patent Document 1 extracts a part of the product gas generated in the gasification furnace, burns it with oxygen and converts it into CO 2 and H 2 O, and converts this CO 2 and H 2 O mixed gas into coal.
  • Use carrier gas Therefore, the ratio of CO 2 and H 2 O supplied into the gasification furnace as the carrier gas cannot be arbitrarily controlled.
  • Patent Document 2 is a method of reforming the product gas by the above formula (1) using CO 2 in the iron by-product gas and char obtained in the gasification furnace.
  • the reforming efficiency is determined depending on the CO 2 concentration. Therefore, it is the same as the equipment described in Patent Document 1 that it has a problem that the produced gas cannot be produced with high yield.
  • an object of the present invention is to provide a gasification method for carbonaceous fuel capable of gasifying carbonaceous fuel with high yield, a method for operating a steelworks using gasification of carbonaceous fuel with high yield, and carbonaceous fuel.
  • Another object of the present invention is to provide a gasification gas production method capable of producing gasification gas with high yield.
  • the inventors of the present invention used a gasifying agent containing H 2 , CO 2, and H 2 O for fluidizing a carbonaceous fuel in a fluidized bed gasification furnace. It has been found that it is effective to use aluminum oxide as a fluid medium while supplying the gasification furnace. Furthermore, knowledge was also acquired about the preferable composition range of the aluminum oxide crystal system and the iron-produced byproduct gas, and the present invention was completed. The present invention has been made on the basis of such findings and has the following gist.
  • gasification method for carbonaceous fuel of the present invention when gasifying a carbonaceous fuel in a fluidized bed gasification furnace, aluminum oxide is used as a fluid medium, and gasification including H 2 , CO 2 and H 2 O A carbonaceous fuel gasification method is provided, wherein an agent is supplied to the fluidized bed gasification furnace.
  • the gasifying agent is preferably obtained by shift modification by adding excess water vapor to an iron by-product gas.
  • the iron by-product gas preferably has a CO concentration of 5 vol% or more and an N 2 concentration of 60 vol% or less.
  • the aluminum oxide is preferably at least one selected from ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 and ⁇ -Al 2 O 3 .
  • the aluminum oxide is preferably ⁇ -Al 2 O 3 .
  • the said carbonaceous fuel is 1 or more types chosen from peat, lignite, and subbituminous coal.
  • a fluidized bed gasification furnace using aluminum oxide as a fluidized medium is provided with a carbonaceous fuel and a gasifying agent containing H 2 , CO 2 and H 2 O.
  • a gasifying agent containing H 2 , CO 2 and H 2 O By supplying the gas, the carbonaceous fuel is gasified, and a method of operating the steelworks using the generated gas as at least a part of the energy source of the steelworks is provided.
  • the second aspect of the method for operating a steel mill according to the present invention is a gasifying agent containing carbonaceous fuel, H 2 , CO 2 and H 2 O in a fluidized bed gasifier using aluminum oxide as a fluid medium.
  • the gasifying agent is preferably obtained by shift modification by adding excess water vapor to a steelmaking byproduct gas.
  • the generated gas is preferably a mixed gas containing CO, H 2 and a hydrocarbon having 1 to 4 carbon atoms.
  • the gasification gas production method of the present invention supplies a carbonaceous fuel and a gasifying agent containing H 2 , CO 2, and H 2 O to a fluidized bed gasification furnace using aluminum oxide as a fluid medium.
  • a gasified gas production method is provided, wherein the carbonaceous fuel is gasified.
  • the gasifying agent is preferably obtained by shift modification by adding excess water vapor to an iron-produced by-product gas.
  • the carbonaceous fuel can be gasified with a high yield, and the carbonization fuel can be gasified at low cost. Further, according to the method of operating a steel plant of the present invention, the operation cost in the steel plant is obtained by gasifying the carbonaceous fuel with a high yield and using the generated gas for the energy source of the steel plant and the reduction of iron oxide. Can be reduced. Furthermore, according to the gasification gas production method of the present invention, gasification gas can be produced with high yield by gasification of carbonaceous fuel.
  • FIG. 1 is a conceptual diagram for explaining an example of a carbonaceous fuel gasification method, an ironworks operation method, and a gasification gas production method of the present invention.
  • FIG. 1 shows a conceptual diagram for explaining an example of a carbonized fuel gasification method, an ironworks operation method, and a gasification gas production method of the present invention.
  • the operation method of the steelworks of the present invention is that the generated gas generated by the method shown in FIG. 1 is converted into at least part of the energy in the steelworks or at least part of the reducing material in the reduction of iron oxide at the steelworks. It is used as
  • the present invention gasifies carbonaceous fuel such as coal.
  • a gas dispersion plate 12 is provided in the fluidized bed gasification furnace 10, and aluminum oxide (powder) is used as a fluidized medium on the gas dispersion plate 12 in the fluidized bed gasification furnace 10.
  • a shift modifier 14 is provided below the gasification furnace 10.
  • an iron-produced by-product gas and water vapor are supplied to the shift modifier 14 and the iron-produced by-product gas (shift-modified iron-produced byproduct gas) modified by the shift modifier 14 is used as a gasifying agent.
  • this gasifying agent By blowing this gasifying agent into the fluidized bed 16 via the gas dispersion plate 12, the gasifying agent is supplied to the gasification furnace 10, and the fluidized bed 16, that is, the aluminum oxide as the fluidizing medium is fluidized.
  • the carbonaceous fuel supplied to the gasification furnace 10 is gasified by the action of the gasifying agent and aluminum oxide which is a fluid medium.
  • the product gas generated by the gasification of the carbonaceous fuel is discharged (recovered) from the upper part of the gasification furnace 10.
  • the gasification furnace 10 is not limited. Therefore, in addition to a general bubble fluidized bed, various known types of fluidized bed gasification furnaces such as a high-speed fluidized bed, an external circulating fluidized bed, or an internal circulating fluidized bed can be used.
  • the present invention uses a fluidized bed gasifier with fast heat transfer and uses aluminum oxide as a fluid medium, thereby eliminating the temperature distribution and making the reaction progress and the product gas uniform in the gasifier.
  • the carbonaceous fuel can be gasified with a high yield by fully expressing the action of aluminum oxide as described below as a catalyst.
  • the well-known reactor which can perform shift modification reaction such as a fixed bed reactor and a fluidized bed reactor, can be used.
  • the shift modifier 14 is usually filled with a commercially available shift catalyst.
  • the shift-modifier 14 is supplied with both the iron-produced by-product gas and water vapor with the flow rate adjusted by a known method.
  • the shift modifier 14 is supplied with a mixed gas of iron by-product gas and excess water vapor.
  • steam means the excessive quantity with respect to CO contained in iron-making byproduct gas in Formula (1) mentioned later.
  • the ironmaking byproduct gas contains CO and H 2 O.
  • the carbonaceous fuel that is the gasification raw material is supplied in a constant amount from the upper portion of the gasification furnace 10 continuously or intermittently.
  • the carbonaceous fuel supplied into the gasification furnace 10 is gasified by the action of the gasifying agent and the fluidized medium.
  • the present invention gasifies carbonaceous fuel in a high yield by using aluminum oxide as the fluidized medium (fluidized bed 16) in the gasification of carbonaceous fuel using a fluidized bed gasification furnace.
  • the product gas (gasification gas) can be produced. Therefore, it is assumed that aluminum oxide has a catalytic function for the gasification reaction of carbonaceous fuel, but details are unknown.
  • Examples of the catalytic function by aluminum oxide include various reforming reactions such as formulas (2) to (5) and hydrocracking reaction such as formula (6).
  • C + CO 2 ⁇ 2CO (2) C + H 2 O ⁇ CO + H 2 (3)
  • the carbonaceous fuel is shown to be supplied from the upper part of the gasification furnace 10, but it may be supplied to the middle stage of the gasification furnace 10, or the lower fluidized bed 16 may be supplied. You may make it supply directly to an area
  • a carrier gas such as N 2 may be supplied to a pipe for supplying the carbonaceous fuel to the gasifier 10, and the carbonaceous fuel may be supplied to the gasifier 10 together with the carrier gas.
  • the product gas generated by the gasification of the carbonaceous fuel is extracted from the upper part of the gasification furnace 10 and purified through a cyclone, a gas scrubber, an oil-water separator (not shown), etc. It is taken out.
  • the extracted product gas can be widely used as fuel.
  • the generated gas generated in this way is used as an energy source of the steelworks or a reducing material of iron oxide in the steelworks.
  • carbonaceous fuel is gasified using a fluidized bed gasification furnace.
  • aluminum oxide is used as a fluid medium.
  • various known materials can be used, but at least one selected from ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , and ⁇ -Al 2 O 3 can be used.
  • ⁇ -Al 2 O 3 is particularly preferable in consideration of stability, handling, and the point that ⁇ -Al 2 O 3 and the like all change to ⁇ -Al 2 O 3 at the gasification temperature described later.
  • Aluminum oxide not only has sufficient heat resistance corresponding to the gasification of the carbonaceous fuel, but also acts as a catalyst for the gasification reaction of the carbonaceous fuel as described above. Therefore, according to the present invention, a carbonaceous fuel can be gasified with a high yield to produce a product gas (gasification gas), and the produced gas produced with a high yield can be converted into the energy and oxidation of a steelworks. It can be used as an iron reducing material.
  • the average particle diameter of aluminum oxide is used as the fluidizing medium of the (fluidized bed) gasification furnace 10.
  • the average particle diameter of aluminum oxide is preferably about 30 to 300 ⁇ m, more preferably about 50 to 200 ⁇ m.
  • the filling amount of aluminum oxide there is no limitation on the filling amount of aluminum oxide, depending on the size of the gasification furnace 10, the amount of carbonaceous fuel supplied to the gasification furnace 10, the amount of gasifying agent supplied to the gasification furnace 10, etc. What is necessary is just to set suitably the supply amount which can gasify quality fuel appropriately.
  • Gasifying agent used in the gasification of carbonaceous fuels is intended to include H 2, CO 2 and H 2 O.
  • a gasification agent containing H 2 , CO 2, and H 2 O is used as a shift-modified iron-produced by-product gas obtained by shift modification by adding excess water vapor to the iron-produced by-product gas. It is used as.
  • the gasification agent becomes cheaper than a gasification agent in which pure H 2 and CO 2 gas is mixed with water vapor. preferable.
  • the iron by-product gas used as a gasifying agent by shift modification preferably has a CO concentration of 5 vol% or more and an N 2 concentration of 60 vol% or less.
  • the CO concentration of the iron by-product gas By setting the CO concentration of the iron by-product gas to 5 vol% or more, the concentrations of H 2 and CO 2 in the gasifying agent obtained by shift modification can be sufficiently increased, and the product gas yield can be improved.
  • the N 2 concentration of the iron by-product gas is set to 60 vol% or less, it is possible to obtain sufficient combustion heat of the gaseous fuel and to improve the shift reaction rate.
  • iron by-product gas examples include blast furnace gas and shaft furnace gas (general gas compositions are CO: 10 to 30 vol%, CO 2 : 10 to 30 vol%, N from the viewpoint of the preferable gas composition described above. 2: 55 ⁇ 30vol%, H 2: 0 ⁇ 10vol%) is preferred.
  • other iron-producing by-product gas containing CO may be used, but those having a gas composition in the above-described preferred range are preferable.
  • Examples of other steelmaking by-product gas containing CO include exhaust gas discharged from a combustion furnace in a steel mill and metallurgical furnace generated exhaust gas such as converter gas. The above steelmaking byproduct gas can be used alone or in combination of two or more.
  • the H 2 O concentration is preferably about 5 to 70 vol% from the viewpoint of ensuring the yield of the product gas and suppressing the residual CO 2 in the product gas.
  • both the H 2 concentration and the CO 2 concentration in the gasifying agent are preferably 3 vol% or more.
  • the preferred composition of the gasifying agent is H 2 O concentration: 20 to 70 vol%, H 2 concentration: 5 to 40 vol%, and CO 2 concentration: 5 to 40 vol%.
  • the inclusion of other components for example, N 2 ) is not hindered.
  • the gasifying agent used in the present invention is not limited to the shift-modified iron-produced by-product gas obtained by shift modification by adding excess water vapor to the iron-produced by-product gas as described above. That is, in the present invention, for example, the CO 2 obtained by vaporizing H 2 gas and liquefied gas, may be used gasifying agent was prepared by mixing the steam generated in a boiler or the like. Alternatively, in the present invention, a gasifying agent containing H 2 , CO 2 and H 2 O prepared by purifying and mixing gases produced as a by-product in the iron making process or the like may be used.
  • the supply amount of the gasifying agent There is no limitation on the supply amount of the gasifying agent. Depending on the size of the gasification furnace 10, the amount of aluminum oxide charged in the gasification furnace 10, the supply amount of the carbonaceous fuel, etc. What is necessary is just to set suitably the supply amount which can be performed appropriately.
  • the carbonaceous fuel used as the gasification raw material various known carbonaceous fuels such as coal, biomass, wastes such as waste tires and plastics can be used.
  • the carbonaceous fuel is preferably at least one selected from peat, lignite, and sub-bituminous coal.
  • Peat, lignite, and subbituminous coal are preferably used because they are carbonaceous fuels that are relatively easily gasified, are relatively inexpensive, and are resources that exist in large quantities.
  • the carbonaceous fuel supply method is not limited, and may be dry supply or wet supply using water slurry or the like.
  • the size of the carbonaceous fuel is not particularly limited, but may be a standard size as a solid raw material supplied to the fluidized bed. Specifically, the size of the carbonaceous fuel is preferably 1 to 50 mm, and more preferably 3 to 30 mm.
  • the granulation of the carbonaceous fuel may be performed by a known method.
  • the gasification reaction temperature of the carbonaceous fuel is not limited, but the gasification reaction temperature is preferably 600 to 1500 ° C, more preferably 800 to 1200 ° C.
  • the gasification reaction temperature is preferably 600 to 1500 ° C, more preferably 800 to 1200 ° C.
  • the reaction temperature is set to 600 ° C. or higher, the yield of the product gas can be improved, and the by-product of a highly viscous tar-like substance can be prevented, and troubles such as blockage of piping can be prevented.
  • a product gas having high combustion heat can be obtained.
  • it is preferable in that the cost can be reduced by suppressing the amount of the heat source input to the gasification furnace 10.
  • the heating method of the gasification furnace 10 such as a method using an external heating heater, a method of supplying a heating medium to a jacket covering the gasification furnace, and heating the gasification furnace 10. What is necessary is just to perform by the well-known method utilized for heating of this.
  • the steel mill operation method of the present invention uses the gas produced by performing the same treatment as the carbonaceous fuel gasification method of the present invention for the operation of a steel mill, and uses aluminum oxide as a fluid medium.
  • the carbonaceous fuel is gasified by supplying a carbonaceous fuel and a gasifying agent containing H 2 , CO 2 and H 2 O to the bed gasifier, and in the first aspect, the generated gas is It is used as at least a part of the energy source of the steelworks, and in the second aspect, the generated gas is used as at least a part of the reducing material in the reduction of iron oxide in ironmaking.
  • the product gas according to the present invention has a wide range of uses as a fuel gas, it is preferable to use a shift-modified iron production by-product gas as a gasifying agent as described above, so that it is used as an energy source in a steel plant. It is reasonable.
  • the use of the product gas according to the present invention specifically includes a fuel for private power generation facilities, a fuel gas for sintering iron ore, a fuel gas for a blast furnace hot stove, or a mix produced by mixing various by-product gases. Examples thereof include gas source gas.
  • the product gas according to the present invention is a gas containing CO, H 2 and hydrocarbons having 1 to 4 carbon atoms.
  • this generated gas can be used as a reducing material for iron oxide to be introduced into a blast furnace, a shaft furnace, or the like.
  • iron oxide includes dust and sludge containing iron oxide generated in a blast furnace, a converter, and the like.
  • product gas can be obtained from carbonaceous fuel with high yield. Therefore, according to the operation method of the steelworks of the present invention, the cost of energy used at the steelworks and the reduction cost of the oxidizing gas can be reduced.
  • the gasified gas production method of the present invention is a gasified gas produced by performing the same process as the carbonaceous fuel gasification method of the present invention, and fluidized bed gasification using aluminum oxide as a fluidized medium.
  • This is a gasified gas production method in which a carbonaceous fuel and a gasifying agent containing H 2 , CO 2, and H 2 O are supplied to a furnace to gasify the carbonaceous fuel.
  • product gas can be obtained from carbonaceous fuel with high yield. Therefore, according to the gasification gas production method of the present invention, the gasification gas can be produced with a high yield, and the production cost of the gasification gas can be reduced.
  • Example 1 A micro fluidized bed gasification test apparatus (inner diameter: 22 mm) capable of supplying 10-30 g / h (hours) of coal by dry supply was prepared. Within the gasification test device, as the flowing medium, a reagent ⁇ -Al 2 O 3 made of Kojundo Chemical Laboratory was 75mm filled as resting bed height. Further, a mixed gas containing H 2 : 16 vol%, H 2 O: 58 vol%, CO 2 : 20 vol%, N 2 : 6 vol% was prepared as a simulated shift-modified iron by-product gas and used as a gasifying agent.
  • lignite 55 wt% volatile, 36 wt% fixed carbon, 8 wt% ash
  • water water content after granulation: 14 wt%
  • CO, H 2 , and hydrocarbons having 1 to 4 carbon atoms were contained in a total of 83 vol%.
  • N 2 and CO 2 were included as incombustible components. Since this product gas has a total concentration of CO, H 2 , and hydrocarbon concentration of 1 to 4 carbon atoms of 83%, it is clear that there is no problem as an energy source for ironworks or a reducing material for iron oxide. .
  • the carbon-based product gas yield was determined as follows.
  • the carbon sources supplied to the gasification furnace are carbonaceous fuel (brown coal) and a gasifying agent (simulated shift-modified iron byproduct gas).
  • the supply amount of carbonaceous fuel supplied to the gasification furnace is Akg / h and the carbon concentration of the carbonaceous fuel is xwt%
  • the supply amount ⁇ [kmol / h] of carbon to the gasification furnace by carbonaceous fuel is It can be calculated by the following formula. In the following formula, “12” is the atomic weight of carbon.
  • ⁇ [kmol / h] (A / 12) ⁇ (x / 100)
  • the supply amount ⁇ [kmol / h] can be calculated by the following equation.
  • “22.4” is the volume (L) of 1 mol of gas.
  • ⁇ [kmol / h] (B / 22.4) ⁇ (y / 100) That is, ⁇ + ⁇ [kmol / h] is the amount of carbon supplied to the gasifier.
  • the amount of generated gas generated in the gasifier is CNm 3 / h.
  • the product gas includes, as a carbon compound, CO, CO 2 , C 1 hydrocarbon (C 1 ), C 2 hydrocarbon (C 2 ), C 3 hydrocarbon (C 3 ) And C 4 hydrocarbons (C 4 ).
  • the content of CO in the product gas is Z 1 vol%
  • the content of CO 2 is Z 2 vol%
  • the content of C 1 is Z 3 vol%
  • the content of C 2 is Z 4
  • the carbon amount ⁇ [kmol / h] in the product gas is represented by the following formula.
  • carbon resulting from a gasifying agent is also contained in the product gas produced
  • Product gas yield [%] [( ⁇ ) / ( ⁇ + ⁇ )] / 100
  • Example 2 A gasification test was conducted in the same manner as in Example 1 except that the carbonaceous fuel was sub-bituminous coal having a volatile content of 40 wt%, fixed carbon of 52 wt%, ash content of 9 wt%, and a moisture content of 3 wt% after granulation. As a result, the carbon-based product gas yield was 16%, and the combustion heat of the product gas was 2.4 Mcal / Nm 3 . Although the gas yield was lower than that of lignite, a gas with high combustion heat was obtained at a relatively high yield considering that 52 wt% of fixed carbon was contained.
  • Example 1 aluminum oxide is considered to act as a good catalyst in the gasification reaction of carbonaceous fuel.
  • the gas component in the product gas, CO, H 2, hydrocarbons having 1 to 4 carbon atoms (mixture of paraffins and olefins) were contained 71 vol% in total.
  • N 2 and CO 2 were included as incombustible components. Since the total concentration of CO, H 2 , and hydrocarbons having 1 to 4 carbon atoms is 71 vol%, it is clear that this product gas can be used as an energy source for ironworks or as a reducing material for iron oxide. is there.
  • Example 1 A gasification test was performed in the same manner as in Example 1 except that the fluid medium was industrial silica sand (SiO 2 ). As a result, the carbon-based product gas yield was 37%, and the combustion heat of the product gas was 2.9 Mcal / Nm 3 . Since SiO 2 is considered to be completely inactive as a catalyst for the gasification reaction, the gas yield was very low compared to Example 1 using ⁇ -Al 2 O 3 as a fluid medium. The combustion heat of the product gas was almost the same as in Example 1.
  • Example 2 A gasification test was performed in the same manner as in Example 2 except that the fluid medium was industrial silica sand (SiO 2 ). As a result, the carbon-based product gas yield was 9%, and the combustion heat of the product gas was 2.3 Mcal / Nm 3 . As in Comparative Example 1, in this example using SiO 2 having no catalytic activity as a fluid medium, the gas yield was much lower than that in Example 2. The combustion heat of the product gas was about the same as in Example 2.
  • Gasifier 12 Gas Dispersion Plate 14 Shift Modifier 16 Fluidized Bed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Industrial Gases (AREA)
  • Manufacture Of Iron (AREA)

Abstract

炭素質燃料を高い収率でガス化できる炭素質燃料のガス化方法、炭素質燃料を高い収率でガス化して用いる製鉄所の操業方法、および、炭素質燃料から高い収率でガス化ガスを製造できるガス化ガスの製造方法の提供を課題とする。流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、この課題を解決する。

Description

炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法
 本発明は、流動層ガス化炉を用いる、炭素質燃料のガス化方法、製鉄所の操業方法、および、ガス化ガスの製造方法に関する。
 石炭などの炭素質燃料をガス化して比較的発熱量の高い生成ガスに変換する方法は、過去、多くの技術が開示されてきた。
 例えば、特許文献1には、石炭ガス化炉で生成した生成ガスの一部を抜出して、抜き出した生成ガスを酸素で燃焼させてCO2とH2Oに変換し、このCO2とH2Oとの混合ガスを石炭ガス化炉に石炭を供給する搬送ガスとする石炭ガス化設備が開示されている。
 特許文献1の石炭ガス化設備では、このような構成を有することにより、N2で石炭を搬送する場合と比較して、生成ガスの燃焼熱を高めている。
 また、特許文献2には、純酸素を供給するガス化炉であって、ガス化炉に製鋼炉から発生するCO2を含む製鉄副生ガスを供給して、石炭ガス化で生成するチャーと製鉄副生ガス中のCO2との反応により生成するCOによって、生成ガスを改質して発熱量を増加させる方法が開示されている。
 さらに、特許文献3には、石炭コークスのガス化装置として、石炭コークス粒子および流動媒体の混合物からなる流動層を収容した流動層ガス化炉(反応器)と、流動層の上面に太陽光を集光する手段とを備え、かつ、ガス化炉が、流動層に埋没して設けられるドラフト管と、下方からガス化炉に水蒸気を導入する手段と有し、導入する水蒸気によって流動層がドラフト管の内外で循環流動する構成を有するガス化装置が開示されている。また、特許文献3においては、流動媒体として、主に石英砂(SiO2)を用いている。
 特許文献3に記載される装置は、石炭コークス粒子と流動媒体との混合物からなる流動層を用いることにより、流動層粒子の反応速度の低下を防止して、ガス化反応を円滑に進行させている。
特開2000-355693号公報 特開2007-9069号公報 特開2015-86232号公報
 しかしながら、上記従来技術には、以下のような問題がある。
 特許文献1に記載の設備は、ガス化炉で生成した生成ガスの一部を抜出して酸素で燃焼させてCO2とH2Oに変換し、このCO2とH2O混合ガスを石炭の搬送ガスとする。
 そのため、搬送ガスとしてガス化炉内に供給されるCO2とH2Oの比率を任意に制御することができない。その結果、下記の式(1)および式(2)の各反応量を制御して、生成ガスを高い収率で製造することができない。
  C+CO2 → 2CO ・・・ 式(1)
  C+H2O → CO+H2 ・・・式(2)
 また、特許文献2に記載の方法は、製鉄副生ガス中のCO2およびガス化炉で得られるチャーによって、上記式(1)によって生成ガスを改質する方法であり、製鉄副生ガス中のCO2濃度に依存して改質効率が決まる方法である。
 そのため、生成ガスを高い収率で製造することができない問題点を有することは、特許文献1に記載の設備と同じである。
 さらに、特許文献3に記載の装置では、太陽エネルギーを用いてガス化反応を行うことができ、かつ、ガス化反応を円滑に進行させることができるものの、生成ガスの収率という点では、充分とは言えない。
 また、流動媒体として二酸化硅素を用いた場合には、ガス化原料として亜瀝青炭のようにナトリウム分が多い炭素質燃料を用いると、ナトリウムと二酸化硅素とが反応してソーダガラスになって、ソーダガラスがガス化炉で溶融してしまい、円滑にガス化を行うことができないという問題も有る。
 したがって本発明の目的は、炭素質燃料を高い収率でガス化できる炭素質燃料のガス化方法、炭素質燃料を高い収率でガス化して利用する製鉄所の操業方法、および、炭素質燃料から高い収率でガス化ガスを製造できるガス化ガスの製造方法を提供することにある。
 本発明者らは、上記課題を解決するため検討を重ねた結果、炭素質燃料を流動層ガス化炉でガス化するにあたり、H2、CO2およびH2Oを含むガス化剤を流動層ガス化炉に供給すると共に、流動媒体として酸化アルミニウムを用いることが有効であることを見出した。さらに、酸化アルミニウムの結晶系や製鉄副生ガスの好ましい組成範囲についても知見を得、本発明を完成した。
 本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
 すなわち、本発明の炭素質燃料のガス化方法は、炭素質燃料を流動層ガス化炉でガス化するにあたり、流動媒体として酸化アルミニウムを用い、H2、CO2およびH2Oを含むガス化剤を前記流動層ガス化炉に供給することを特徴とする炭素質燃料のガス化方法を提供する。
 このような本発明の炭素質燃料のガス化方法において、前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものであるのが好ましい。
 また、前記製鉄副生ガスは、CO濃度が5vol%以上で、N2濃度が60vol%以下であるのが好ましい。
 また、前記酸化アルミニウムが、γ-Al23、δ-Al23、θ-Al23およびα-Al23から選ばれる1種以上であるのが好ましい。
 また、前記酸化アルミニウムがα-Al23であるのが好ましい。
 また、前記炭素質燃料が、泥炭、褐炭および亜瀝青炭から選ばれる1種以上であるのが好ましい。
 本発明の製鉄所の操業方法の第1の態様は、流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化して、生成したガスを製鉄所のエネルギー源の少なくとも一部として用いる製鉄所の操業方法を提供する。
 また、本発明の製鉄所の操業方法の第2の態様は、流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化して、生成したガスを酸化鉄の還元材の少なくとも一部として用いる製鉄所の操業方法を提供する。
 このような本発明の製鉄所の操業方法において、前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものであるのが好ましい。
 また、前記生成したガスが、CO、H2および炭素数1~4の炭化水素を含む混合ガスであるのが好ましい。
 さらに、本発明のガス化ガスの製造方法は、流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化することを特徴とするガス化ガスの製造方法を提供する。
 このような本発明のガス化ガスの製造方法において、前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものであるのが好ましい。
 本発明の炭素質燃料のガス化方法によれば、炭素質燃料を高い収率でガス化することができ、炭素質燃料のガス化を低コストで行うことができる。また、本発明の製鉄所の操業方法によれば、炭素質燃料を高い収率でガス化して、生成したガスを製鉄所のエネルギー源や酸化鉄の還元に用いることにより、製鉄所における操業コストを低減できる。さらに、本発明のガス化ガスの製造方法によれば、炭素質燃料のガス化によって高い収率でガス化ガスを製造できる。
図1は、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法の一例を説明するための概念図である。
 以下、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法について、添付の図面に示される好適例を基に詳細に説明する。
 図1に、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法の一例を説明するための概念図を示す。なお、本発明の製鉄所の操業方法は、図1に示す方法で生成した生成ガスを、製鉄所におけるエネルギーの少なくとも一部、あるいは、製鉄所での酸化鉄の還元における還元材の少なくとも一部として用いるものである。
 本発明は、石炭などの炭素質燃料をガス化するものである。
 図1に示す例において、流動層ガス化炉10内にはガス分散板12が設けられ、流動層ガス化炉10内のガス分散板12の上には、流動媒体として酸化アルミニウム(粉状)が充填され、流動層16を形成する。なお、以下の説明では、『流動層ガス化炉10』を『ガス化炉10』とも言う。
 また、ガス化炉10の下方には、シフト変性器14が設けられる。図1においては、製鉄副生ガスおよび水蒸気をシフト変性器14に供給して、シフト変性器14で変性した製鉄副生ガス(シフト変性製鉄副生ガス)をガス化剤とする。このガス化剤をガス分散板12を介して流動層16に吹き込むことで、ガス化剤をガス化炉10に供給し、かつ、流動層16すなわち流動媒体である酸化アルミニウムを流動化させる。
 ガス化原料となる褐炭などの炭素質燃料は、図示しない供給器によって所定量が切り出されて、上部からガス化炉10内に、連続的あるいは断続的に定量供給される。ガス化炉10に供給された炭素質燃料は、ガス化剤と流動媒体である酸化アルミニウムとの作用によってガス化される。炭素質燃料のガス化によって生成した生成ガスは、ガス化炉10の上部から排出(回収)される。
 本発明において、ガス化炉10には制約はない。従って、一般的な気泡流動層の他に、高速流動層、外部循環流動層、あるいは、内部循環流動層など、公知の各種形式の流動層ガス化炉を用いることができる。
 本発明は、熱の移動が早い流動層ガス化炉を用い、かつ、流動媒体として酸化アルミニウムを使用することにより、温度分布を無くしてガス化炉内における反応の進行および生成ガスの均一化を図り、さらに、後述する酸化アルミニウムの触媒としての作用を充分に発現させることにより、高収率で炭素質燃料をガス化することを可能にしている。
 シフト変性器14にも制約はなく、固定床反応器、流動床反応器など、シフト変性反応を行うことができる公知の反応器を用いることができる。
 シフト変性器14には、通常、市販のシフト触媒が充填される。なお、シフト触媒としては低温シフト触媒と高温シフト触媒とが有るが、本発明では、そのどちらも用いることができる。
 図示例において、シフト変性器14には、製鉄副生ガスおよび水蒸気が、共に公知の方法で流量を調節されて供給される。また、必要に応じて、製鉄副生ガス、もしくは、水蒸気、もしくは、製鉄副生ガスと水蒸気との混合ガスを予熱してもよい。
 シフト変性器14には、製鉄副生ガスと、過剰な水蒸気との混合ガスが供給される。なお、過剰な水蒸気とは、後述する式(1)において、製鉄副生ガスに含まれるCOに対して過剰の量という意味である。
 製鉄副生ガスには、COおよびH2Oが含まれる。シフト変性器14に製鉄副生ガスと過剰の水蒸気とを供給すると、下記式(1)のように製鉄副生ガスがシフト変性して、CO2、H2およびH2Oを含むガス化剤(シフト変性製鉄副生ガス)となる。
   CO+H2O → CO2+H2           (1)
 すなわち、製鉄副生ガスに過剰な水蒸気を添加してシフト変性したガス化剤には、シフト変性によるCO2およびH2と、過剰に添加した水蒸気の余剰分のH2Oとが含まれる。
 前述のように、ガス化原料である炭素質燃料は、ガス化炉10の上部から、連続的あるいは断続的に、定量供給される。
 ガス化炉10の内部に供給された炭素質燃料は、ガス化剤と流動媒体との作用によってガス化される。後に実施例でも示すが、本発明は、流動層ガス化炉を用いる炭素質燃料のガス化において、流動媒体(流動層16)として酸化アルミニウムを用いることにより、高い収率で炭素質燃料をガス化して生成ガス(ガス化ガス)を製造できる。そのため、酸化アルミニウムは、炭素質燃料のガス化反応に対する触媒機能を有していると推察されるが、詳細は不明である。
 なお、酸化アルミニウムによる触媒機能の例としては、式(2)~(5)のような各種の改質反応や、式(6)のような水素化分解反応が挙げられる。
   C+CO2 → 2CO               (2)
   C+H2O → CO+H2              (3)
   CH4+CO2 → 2CO+2H2           (4)
   CH4+H2O → CO+3H2            (5)
   C26+H2 → 2CH4               (6)
 なお、図1に示す例では、炭素質燃料はガス化炉10の上部から供給するように示しているが、ガス化炉10の中段に供給してもよく、あるいは、下段の流動層16の領域に直接供給するようにしても良い。
 また、ガス化炉10に炭素質燃料を供給する配管に、N2などの搬送ガスを供給し、搬送ガスと共に、炭素質燃料をガス化炉10に供給するようにしても良い。
 炭素質燃料のガス化によって生成された生成ガスは、ガス化炉10の上部から抜き出され、図示しないサイクロン、ガス洗浄器、油水分離機などを経由して精製された後、生成ガスとして系外に取り出される。
 取り出された生成ガスは、燃料として広く利用可能である。本発明の製鉄所の操業方法では、このようにして生成した生成ガスを、製鉄所のエネルギー源や製鉄所における酸化鉄の還元材として使用する。
 以下、本発明の炭素質燃料のガス化方法、製鉄所の操業方法、および、ガス化ガスの製造方法の詳細と好ましい条件について説明する。
 本発明では、流動層ガス化炉を用いて炭素質燃料をガス化する。また、流動媒体として酸化アルミニウムを用いる。
 酸化アルミニウムは、公知の各種の物が利用可能であるが、γ-Al23、δ-Al23、θ-Al23、α-Al23から選ばれる1種以上であることが好ましい。中でも、安定性や取り扱い性、後述するガス化温度ではγ-Al23等は全てα-Al23に変化する点などを考慮すると、α-Al23が特に好ましい。
 酸化アルミニウムは、炭素質燃料のガス化に対応する充分な耐熱性を有するのみならず、前述のように炭素質燃料のガス化反応の触媒としても作用する。そのため、本発明によれば、高い収率で炭素質燃料をガス化して生成ガス(ガス化ガス)を製造することができ、また、高い収率で製造した生成ガスを製鉄所のエネルギーや酸化鉄の還元材として用いることができる。
 酸化アルミニウムの平均粒径には制限はなく、ガス化炉10の大きさや想定される充填量、ガス化剤の供給量等に応じて、適宜、設定すればよい。
 ここで、本発明では、酸化アルミニウムを(流動層)ガス化炉10の流動媒体として用いる。この点を考慮すると、酸化アルミニウムの平均粒径は30~300μm程度が好ましく、50~200μm程度がより好ましい。酸化アルミニウムの平均粒径を30~300μmとすることにより、良好な流動性を確保することができ、ガス化炉10の操業を安定して行うことが可能になる。
 酸化アルミニウムの充填量には制限はなく、ガス化炉10の大きさ、ガス化炉10に供給する炭素質燃料の量、ガス化炉10に供給するガス化剤の量等に応じて、炭素質燃料のガス化を適性に行える供給量を、適宜、設定すればよい。
 炭素質燃料のガス化に用いるガス化剤は、H2、CO2およびH2Oを含むものである。
 図示例においては、好ましい態様として、製鉄副生ガスに過剰の水蒸気を添加してシフト変性して得られたシフト変性製鉄副生ガスを、H2、CO2およびH2Oを含むガス化剤として用いている。
 ガス化剤として、製鉄副生ガスをシフト変性して得られたガス化剤を用いることにより、H2およびCO2の純ガスを水蒸気に混合したガス化剤よりも、ガス化剤が安価となり好ましい。
 シフト変性してガス化剤とする製鉄副生ガスは、CO濃度が5vol%以上で、N2濃度が60vol%以下であるのが好ましい。
 製鉄副生ガスのCO濃度を5vol%以上とすることにより、シフト変性によって得られるガス化剤中のH2およびCO2の濃度を充分に高くして、生成ガス収率を向上できる。また、製鉄副生ガスのN2濃度を60vol%以下とすることにより、充分な気体燃料の燃焼熱を得られると共に、シフト反応速度も向上できる。
 製鉄副生ガスの具体例としては、上述した好ましいガス組成の観点から、特に高炉ガスやシャフト炉ガス(一般的なガス組成は、CO:10~30vol%、CO2:10~30vol%、N2:55~30vol%、H2:0~10vol%)が好ましい。
 また、その他のCOを含有する製鉄副生ガスを用いてもよいが、上述した好適範囲のガス組成を有するものが好ましい。その他のCOを含有する製鉄副生ガスとしては、例えば、製鉄所内の燃焼炉から排出される排ガスや転炉ガスなどの冶金炉発生排ガスなどが挙げられる。以上のような製鉄副生ガスは、1種を単独で若しくは2種以上を混合して用いることができる。
 本発明において、ガス化剤におけるH2、CO2およびH2Oの濃度に制限はない。
 ここで、生成ガスの収率を確保する一方で、生成ガス中のCO2の残留を抑えるなどの観点から、H2O濃度は5~70vol%程度であるのが好ましい。また、生成ガスの収率を確保する観点から、ガス化剤中のH2濃度およびCO2濃度は、共に、3vol%以上が好ましい。また、同様の観点から、ガス化剤の好ましい組成は、H2O濃度:20~70vol%、H2濃度:5~40vol%、CO2濃度:5~40vol%である。なお、これらの成分の他に、他の成分(例えば、N2など)が含まれることは妨げない。
 なお、本発明に用いるガス化剤は、前述のような、製鉄副生ガスに過剰な水蒸気を添加してシフト変性して得られるシフト変性製鉄副生ガスに限定はされない。
 すなわち、本発明においては、例えば、H2ガスおよび液化ガスを気化したCO2に、ボイラ等で生成した水蒸気を混合して調製したガス化剤を用いてもよい。あるいは、本発明においては、製鉄工程等において副生されるガスを精製、混合して調製した、H2、CO2およびH2Oを含むガス化剤を用いても良い。
 ガス化剤の供給量には制限はなく、ガス化炉10の大きさ、ガス化炉10に充填する酸化アルミニウムの量、炭素質燃料の供給量等に応じて、炭素質燃料のガス化を適性に行える供給量を、適宜、設定すればよい。
 ガス化原料となる炭素質燃料としては、石炭、バイオマス、廃タイヤや廃プラスチック等の廃棄物類等、公知の各種の炭素質燃料を用いることができる。
 中でも、炭素質燃料は、泥炭、褐炭、亜瀝青炭から選ばれる1種以上であるのが好ましい。泥炭や褐炭や亜瀝青炭は、比較的ガス化し易い炭素質燃料であると共に、比較的安価で、かつ、大量に存在する資源であるため、好ましく用いられる。
 本発明において、炭素質燃料の供給方式には制限はなく、乾式供給でもよく、水スラリー等を用いる湿式供給でもよい。
 また、炭素質燃料の大きさは特に制約はないが、流動層に供給する固体原料として標準的なサイズとすれば良い。炭素質燃料の大きさは、具体的には、1~50mmが好ましく、3~30mmがより好ましい。炭素質燃料の造粒も公知の方法で行えばよい。
 炭素質燃料の供給量にも制限はなく、ガス化炉10の大きさ、ガス化炉10に充填する酸化アルミニウムの量、供給できるガス化剤の量等に応じて、炭素質燃料のガス化を適性に行える供給量を、適宜、設定すればよい。
 炭素質燃料のガス化反応温度にも制限は無いが、ガス化反応温度は600~1500℃が好ましく、800~1200℃がより好ましい。
 反応温度を600℃以上とすることにより、生成ガスの収率を向上できると共に、高粘性のタール状物質の副生も防止して、配管の閉塞などのトラブルの発生を防止できる。また、反応温度を1500℃以下とすることにより、燃焼熱の高い生成ガスを得ることができる。さらに、反応温度を1500℃以下とすることにより、ガス化炉10に投入する熱源の量を抑制して、コストを低減できる点でも好ましい。
 ガス化炉10の加熱方法にも制限はなく、外熱式ヒーターを用いる方法、ガス化炉を被覆するジャケットに加熱媒体を供給して加熱する方法等、炭素質燃料のガス化におけるガス化炉の加熱に利用されている公知の方法で行えばよい。
 本発明の製鉄所の操業方法は、本発明の炭素質燃料のガス化方法と同様の処理を行って生成したガスを、製鉄所の操業に利用するもので、流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、炭素質燃料をガス化して、第1の態様では、生成したガスを製鉄所のエネルギー源の少なくとも一部として用い、第2の態様では、生成したガスを製鉄における酸化鉄の還元における還元材の少なくとも一部として用いるものである。
 本発明による生成ガスは、燃料ガスとして広範囲の用途を持っているが、前述のようにガス化剤としてシフト変性した製鉄副生ガスを用いるのが好ましいことから、製鉄所内のエネルギー源として利用することが合理的である。本発明による生成ガスの用途としては、具体的には、自家発電設備用燃料、鉄鉱石焼結用燃料ガス、高炉熱風炉用燃料ガス、あるいは、種々の副生ガスを混合して製造するミックスガスの原料ガス等を挙げることができる。
 また、本発明による生成ガスは、CO、H2、炭素数1~4までの炭化水素を含むガスである。そのため、この生成ガスは、高炉やシャフト炉等に投入する酸化鉄の還元材として利用することもできる。ここで、酸化鉄とは鉄鉱石の他に、高炉や転炉等で発生する酸化鉄を含有するダストやスラッジ類も含まれる。
 後に実施例でも示すが、本発明によれば、炭素質燃料から、高い収率で生成ガスを得ることができる。そのため、本発明の製鉄所の操業方法によれば、製鉄所で使用するエネルギーのコストや、酸化ガスの還元コストを低減できる。
 また、本発明のガス化ガスの製造方法は、本発明の炭素質燃料のガス化方法と同様の処理を行ってガス化ガスを製造するもので、流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、炭素質燃料をガス化する、ガス化ガスの製造方法である。
 前述のように、本発明によれば、炭素質燃料から、高い収率で生成ガスを得ることができる。そのため、本発明のガス化ガスの製造方法によれば、高い収率でガス化ガスを製造して、ガス化ガスの製造コストを低減できる。
 以上、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げ、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法について、より詳細に説明する。
 なお、本発明は、以下の実施例に限定されないのは、もちろんである。
 [実施例1]
 乾式供給によって石炭を10~30g/h(時間)供給できる、マイクロ流動層ガス化試験装置(内径22mm)を準備した。
 ガス化試験装置内部に、流動媒体として、高純度化学研究所製の試薬α-Al23を、静止時層高として75mm充填した。また、H2:16vol%、H2O:58vol%、CO2:20vol%、N2:6vol%を含む混合ガスを模擬シフト変性製鉄副生ガスとして調製して、ガス化剤とした。
 このガス化剤400mL(リットル)/minを流動層の下部から供給し、α-Al23を流動化させた。
 炭素質燃料は、水をバインダーとして褐炭(揮発分55wt%、固定炭素36wt%、灰分8wt%)をφ1~3mmに造粒したものを用いた(造粒後の含水率:14wt%)。
 外熱式ヒーターによって流動層内部の温度を1000℃に昇温した後、供給量20g/hで造粒褐炭を供給し、ガス化反応を開始した。反応時間は1時間とし、20分毎に3回のガスサンプリングを行い、生成ガスの分析を行った。
 3回のガス分析結果を平均した結果として、炭素基準の生成ガス収率は52%、生成ガスの燃焼熱は2.7Mcal/Nm3と、比較的高燃焼熱のガスが高い収率で得られた。この結果および後述する比較例1の結果を考慮すると、酸化アルミニウムは、炭素質燃料のガス化反応における良好な触媒として作用していると考えられる。
 生成ガス中のガス成分としては、CO、H2、炭素数1~4の炭化水素(パラフィンおよびオレフィンの混合物)が合計で83vol%含まれていた。この他、不燃成分としてN2およびCO2を含んでいた。この生成ガスは、CO、H2、炭素数1~4の炭化水素濃度の合計が83%であるので、製鉄所のエネルギー源としても、酸化鉄の還元材としても問題ないことが明らかである。
 なお、炭素基準の生成ガス収率は、以下のようにして求めた。
 本発明において、ガス化炉(ガス化試験装置)に供給する炭素源は、炭素質燃料(褐炭)およびガス化剤(模擬シフト変性製鉄副生ガス)である。
 ガス化炉に供給する炭素質燃料の供給量をAkg/h、炭素質燃料の炭素濃度をxwt%とすると、炭素質燃料による炭素のガス化炉への供給量β[kmol/h]は、下記式で算出できる。なお、下記式において、『12』は炭素の原子量である。
   β[kmol/h]=(A/12)×(x/100)
 また、ガス化炉に供給するガス化剤の供給量をBNm3/h、ガス化剤のCO2濃度をyvol%とすると、ガス化剤による炭素のガス化炉への供給量γ[kmol/h]は、下記式で算出できる。なお、下記式において、『22.4』は1molの気体の体積(L)である。
   γ[kmol/h]=(B/22.4)×(y/100)
 すなわち、β+γ[kmol/h]が、ガス化炉に供給する炭素の量となる。
 一方、ガス化炉で生成される生成ガスの量をCNm3/hとする。
 前述のように、生成ガスには、炭素化合物として、CO、CO2、炭素数1の炭化水素(C1)、炭素数2の炭化水素(C2)、炭素数3の炭化水素(C3)および炭素数4の炭化水素(C4)が含まれる。ここで、生成ガス中におけるCOの含有量をZ1vol%、同CO2の含有量をZ2vol%、同C1の含有量をZ3vol%、同C2の含有量をZ4vol%、同C3の含有量をZ5vol%、同C4の含有量をZ6vol%とすると、生成ガス中の炭素の量α[kmol/h]は、下記式となる。なお、下記式において、『22.4』は1molの気体の体積(L)である。
   α[kmol/h]=
      {C×[(Z1+Z2+Z3+2Z4+3Z5+4Z6)/100]}/22.4
 ここで、本発明においては、ガス化炉で生成される生成ガスの中には、ガス化剤に起因する炭素も含まれる。これに応じて、生成ガス中の炭素の量αから、ガス化剤による炭素のガス化炉への供給量γを減算して、下記式によって炭素基準の生成ガス収率[%]を算出する。
   生成ガス収率[%]=[(α-γ)/(β+γ)]/100
 [実施例2]
 炭素質燃料を揮発分40wt%、固定炭素52wt%、灰分9wt%、造粒後の含水率3wt%である亜瀝青炭とした以外は、実施例1と同様にしてガス化試験を行った。
 その結果、炭素基準の生成ガス収率は16%、生成ガスの燃焼熱は2.4Mcal/Nm3であった。褐炭に比べてガス収率は低くなったものの、固定炭素が52wt%含有されていることを考慮すれば、比較的高い収率で高燃焼熱のガスが得られた。この結果および後述する比較例2の結果を考慮すると、実施例1と同様、酸化アルミニウムは、炭素質燃料のガス化反応における良好な触媒として作用していると考えられる。
 生成ガス中のガス成分としては、CO、H2、炭素数1~4の炭化水素(パラフィンおよびオレフィンの混合物)が合計で71vol%含まれていた。この他、不燃成分としてN2およびCO2を含んでいた。この生成ガスは、CO、H2、炭素数1~4の炭化水素濃度の合計が71vol%であったので、製鉄所のエネルギー源としても、酸化鉄の還元材としても問題ないことが明らかである。
 [比較例1]
 流動媒体を工業珪砂(SiO2)とした以外は、実施例1と同様にしてガス化試験を行った。
 その結果、炭素基準の生成ガス収率は37%、生成ガスの燃焼熱は2.9Mcal/Nm3であった。SiO2は、ガス化反応の触媒としてはまったく不活性であると考えられるので、α-Al23を流動媒体とした実施例1に比べて、ガス収率が非常に低くなった。なお、生成ガスの燃焼熱は実施例1と同程度であった。
 [比較例2]
 流動媒体を工業珪砂(SiO2)とした以外は、実施例2と同様にしてガス化試験を行った。
 その結果、炭素基準の生成ガス収率は9%、生成ガスの燃焼熱は2.3Mcal/Nm3であった。比較例1と同様、触媒活性のないSiO2を流動媒体とした本例では、実施例2に比べてガス収率が非常に低くなった。なお、生成ガスの燃焼熱は実施例2と同程度であった。
 鉄鋼業や発電業などで使用する燃料ガスの生成や製鉄所における酸化鉄の還元に好適に利用可能である。
 10 ガス化炉
 12 ガス分散板
 14 シフト変性器
 16 流動層

Claims (12)

  1.  炭素質燃料を流動層ガス化炉でガス化するにあたり、流動媒体として酸化アルミニウムを用い、H2、CO2およびH2Oを含むガス化剤を前記流動層ガス化炉に供給することを特徴とする炭素質燃料のガス化方法。
  2.  前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものである請求項1に記載の炭素質燃料のガス化方法。
  3.  前記製鉄副生ガスは、CO濃度が5vol%以上で、N2濃度が60vol%以下である請求項2に記載の炭素質燃料のガス化方法。
  4.  前記酸化アルミニウムが、γ-Al23、δ-Al23、θ-Al23およびα-Al23から選ばれる1種以上である請求項1~3のいずれかに記載の炭素質燃料のガス化方法。
  5.  前記酸化アルミニウムがα-Al23である請求項1~3のいずれかに記載の炭素質燃料のガス化方法。
  6.  前記炭素質燃料が、泥炭、褐炭および亜瀝青炭から選ばれる1種以上である請求項1~5のいずれかに記載の炭素質燃料のガス化方法。
  7.  流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化して、生成したガスを製鉄所のエネルギー源の少なくとも一部として用いる製鉄所の操業方法。
  8.  流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化して、生成したガスを酸化鉄の還元材の少なくとも一部として用いる製鉄所の操業方法。
  9.  前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものである請求項7または8に記載の製鉄所の操業方法。
  10.  前記生成したガスが、CO、H2および炭素数1~4の炭化水素を含む混合ガスである請求項7~9のいずれかに記載の製鉄所の操業方法。
  11.  流動媒体として酸化アルミニウムを用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化することを特徴とするガス化ガスの製造方法。
  12.  前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものである請求項11に記載のガス化ガスの製造方法。
PCT/JP2016/079652 2015-10-07 2016-10-05 炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法 WO2017061482A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16853636.5A EP3360948A4 (en) 2015-10-07 2016-10-05 Carbonaceous fuel gasification method, steel mill operation method, and gasified gas production method
AU2016334756A AU2016334756A1 (en) 2015-10-07 2016-10-05 Carbonaceous fuel gasification method, steel mill operation method, and gasified gas production method
CN201680058458.XA CN108138058A (zh) 2015-10-07 2016-10-05 碳质燃料的气化方法、炼铁厂的操作方法以及气化气体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-199423 2015-10-07
JP2015199423A JP2017071692A (ja) 2015-10-07 2015-10-07 炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法

Publications (1)

Publication Number Publication Date
WO2017061482A1 true WO2017061482A1 (ja) 2017-04-13

Family

ID=58487754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079652 WO2017061482A1 (ja) 2015-10-07 2016-10-05 炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法

Country Status (5)

Country Link
EP (1) EP3360948A4 (ja)
JP (1) JP2017071692A (ja)
CN (1) CN108138058A (ja)
AU (1) AU2016334756A1 (ja)
WO (1) WO2017061482A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878807A1 (en) 2020-03-13 2021-09-15 Clariant International Ltd Process for the production of synthesis gas via allothermic gasification with controlled carbon dioxide reduction

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229520A1 (en) 2017-06-16 2018-12-20 Arcelormittal Operating method of an iron making installation and associated operating installation
JP6904388B2 (ja) * 2018-08-30 2021-07-14 Jfeスチール株式会社 有機物質の熱分解方法
JP7251978B2 (ja) * 2018-12-28 2023-04-04 川崎重工業株式会社 流動床炉
CN116656384B (zh) * 2023-02-17 2024-04-16 张文斌 一种基于负碳排放becnu生态系统工程碳循环的钢铁产品碳中和的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140800A (ja) * 1995-11-28 2000-05-23 Ebara Corp 廃棄物のガス化処理装置
JP2004517169A (ja) * 2000-12-26 2004-06-10 株式会社荏原製作所 流動層ガス化方法及び装置
JP2014037524A (ja) * 2012-07-18 2014-02-27 Jfe Steel Corp 有機物質の低分子化方法
JP2015131277A (ja) * 2014-01-14 2015-07-23 Jfeスチール株式会社 有機物質の低分子化方法および低分子化システム
JP2015131916A (ja) * 2014-01-14 2015-07-23 Jfeスチール株式会社 有機物質の低分子化方法および低分子化システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260412A (en) * 1980-01-16 1981-04-07 Midrex Corporation Method of producing direct reduced iron with fluid bed coal gasification
US6149859A (en) * 1997-11-03 2000-11-21 Texaco Inc. Gasification plant for direct reduction reactors
BRPI0817040A2 (pt) * 2007-08-01 2015-03-24 Nagarjuna Energy Private Ltd Processo para produção de compostos orgânicos de baixo peso molecular de materiais carbonáceos.
US8668753B2 (en) * 2009-04-24 2014-03-11 G.D.O. Inc Two stage process for converting biomass to syngas
JP4968402B1 (ja) * 2010-08-31 2012-07-04 Jfeスチール株式会社 有機物質の低分子化方法及び冶金炉発生排ガスの利用方法
US9101900B2 (en) * 2011-07-27 2015-08-11 Res Usa, Llc Gasification system and method
JP5679088B2 (ja) * 2012-02-27 2015-03-04 Jfeスチール株式会社 有機物質の低分子化方法
ES2752224T3 (es) * 2013-02-05 2020-04-03 Reliance Industries Ltd Proceso para la gasificación catalítica de una materia prima carbonosa

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140800A (ja) * 1995-11-28 2000-05-23 Ebara Corp 廃棄物のガス化処理装置
JP2004517169A (ja) * 2000-12-26 2004-06-10 株式会社荏原製作所 流動層ガス化方法及び装置
JP2014037524A (ja) * 2012-07-18 2014-02-27 Jfe Steel Corp 有機物質の低分子化方法
JP2015131277A (ja) * 2014-01-14 2015-07-23 Jfeスチール株式会社 有機物質の低分子化方法および低分子化システム
JP2015131916A (ja) * 2014-01-14 2015-07-23 Jfeスチール株式会社 有機物質の低分子化方法および低分子化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3360948A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878807A1 (en) 2020-03-13 2021-09-15 Clariant International Ltd Process for the production of synthesis gas via allothermic gasification with controlled carbon dioxide reduction
WO2021180482A1 (en) 2020-03-13 2021-09-16 Clariant International Ltd Process for the production of synthesis gas by gasification with controlled carbon dioxide reduction

Also Published As

Publication number Publication date
EP3360948A1 (en) 2018-08-15
EP3360948A4 (en) 2018-10-03
JP2017071692A (ja) 2017-04-13
CN108138058A (zh) 2018-06-08
AU2016334756A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2017061482A1 (ja) 炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法
Luo et al. Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas
WO2017086070A1 (ja) 炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法
Tursun et al. Steam co-gasification of biomass and coal in decoupled reactors
Hildor et al. Steel converter slag as an oxygen carrier for chemical-looping gasification
Pinto et al. Co-gasification of coal and wastes in a pilot-scale installation 1: Effect of catalysts in syngas treatment to achieve tar abatement
US20130101476A1 (en) Two stage dry feed gasification system
Xiao et al. Catalytic steam gasification of lignite for hydrogen-rich gas production in a decoupled triple bed reaction system
Xiao et al. Gasification of low-rank coal for hydrogen-rich gas production in a dual loop gasification system
US20150152344A1 (en) Melt gasifier system
Jenkins Thermal gasification of biomass—a primer
Gupta et al. An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
EP0196359B1 (en) Method and apparatus for fluidized bed reduction of iron ore
JP2015507082A (ja) 銑鉄または基礎生産物をカーボサーマル方式または電熱式に製造する方法
JP2014074144A (ja) 三塔式循環流動層による石炭/バイオマス共ガス化方法及びその装置
US4309197A (en) Method for processing pulverized solid fuel
CN102361961A (zh) 附加生产有用材料的煤气化方法
Speight Types of gasifier for synthetic liquid fuel production: design and technology
JP2008163257A (ja) 流動床ガス化装置の運転方法及び流動床ガス化装置並びに石炭ガス化複合発電システム
JP2008025929A (ja) 廃棄物溶融処理方法
JPWO2013128843A1 (ja) 有機物質の低分子化方法
Lahijani et al. Air gasification of palm empty fruit bunch in a fluidized bed gasifier using various bed materials
JP2018053053A (ja) 炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法
JP2012219182A (ja) 石炭ガス中のタール分解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016334756

Country of ref document: AU

Date of ref document: 20161005

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016853636

Country of ref document: EP

Ref document number: 2018116585

Country of ref document: RU