WO2017057985A1 - 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트 - Google Patents

적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트 Download PDF

Info

Publication number
WO2017057985A1
WO2017057985A1 PCT/KR2016/011044 KR2016011044W WO2017057985A1 WO 2017057985 A1 WO2017057985 A1 WO 2017057985A1 KR 2016011044 W KR2016011044 W KR 2016011044W WO 2017057985 A1 WO2017057985 A1 WO 2017057985A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
superconducting wire
laminated
copper
wire
Prior art date
Application number
PCT/KR2016/011044
Other languages
English (en)
French (fr)
Inventor
손명환
하홍수
심기덕
이원재
하동우
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2017057985A1 publication Critical patent/WO2017057985A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a method of joining a laminated superconducting wire and a superconducting wire unit laminated through the same, and more particularly, using a high purity copper particle without impurities between a plurality of superconducting wires or reinforcing wires and a superconducting wire. It is possible to form a thin copper stabilization layer through vacuum deposition, through which a method of joining a laminated superconducting wire in which the current per unit area is increased, and a superconducting wire unit laminated through this.
  • Superconducting wire refers to a material with zero electrical resistance of an object, and a material near current resistance of 0 near 4K, which is the liquid helium, has a low temperature superconductor (LTS) and a liquid nitrogen temperature higher than that of liquid helium.
  • the material exhibiting superconductivity at 77K is referred to as a high temperature superconductor (HTS). Since superconducting wires exhibit high critical temperatures, critical current densities and critical magnetic fields, they are expected to be applied to power devices such as superconducting magnets, superconducting cables, superconducting motors or superconducting generators.
  • the thin film type superconducting wire is formed of a metal layer, a superconducting layer, and a buffer layer to minimize the difference in physical properties between the metal layer and the superconducting layer.
  • the thin film type superconducting wire must be used with a stabilizing material formed of a separate metal material because the metal layer cannot be used as a stabilizing material due to the buffer layer. Therefore, in order to energize a large current, several superconducting wires are stacked and used together, and a metal stabilizing material is generally padded around the superconducting thin film.
  • the most common method of aggregating superconducting wires is to solder the superconducting wires together and connect them in parallel, and the aggregated superconducting wires are soldered and bonded to metal stabilizing materials.
  • both the superconducting wire assembly and the bonding with the metal stabilizing material have been realized by soldering.
  • a typical soldering related art is 'Lamination joining apparatus and method of superconducting wire of Korea Patent Office No. 10-0760993.'
  • such a conventional technique is not intended for soldering between superconducting wires, but soldering for bonding between the superconducting wires and the stabilizing material, and thus there is a difference from the technique for collecting the superconducting wires.
  • a method for gathering thin film type superconducting wires and gathering superconducting wires includes: stacking thin film type superconducting wires; Inserting a metal stabilizing material between the superconducting wires and between the uppermost layer and the lowermost layer to pass the superconducting wire and the metal stabilizing material through a heating and pressing roller to aggregate the superconducting wires; The resultant is passed through a resistance welding roller to weld the metal stabilizers to each other to join.
  • a resistance welding roller to weld the metal stabilizers to each other to join.
  • an object of the present invention is to form a thin copper stabilized layer through vacuum deposition using a high purity copper particles and no impurities between a plurality of superconducting wires or reinforcing wires and superconducting wires, through which the current per unit area It is to provide a superconducting method of the laminated superconducting wire material is increased and the superconducting wire unit is laminated through this.
  • the superconducting method of the laminated superconducting wire which can prevent the superconducting wire and the copper stabilization layer from being separated by the difference in thermal expansion coefficient and the superconducting wire unit laminated through the same To provide.
  • the above object is a step of charging a plurality of superconducting wires in a vacuum chamber, each spaced apart; Attaching the copper particles by vacuum evaporation of copper (Cu) particles in a region in which a plurality of the superconducting wires are stacked together under a vacuum atmosphere; Passing the copper particles attached between the plurality of superconducting wires and the superconducting wire together through a pressure roller to form the copper particles into a copper stabilization layer and simultaneously bonding the superconducting wires to each other via the copper stabilization layer. It is achieved by a method of bonding a laminated superconducting wire, characterized in that it comprises a step.
  • the superconducting wire material preferably includes a metal substrate, a buffer layer, a superconducting layer, and a protective layer.
  • a plurality of the superconducting wire materials are disposed to face each other such that the protective layers are close to each other in order to vacuum deposit the copper particles to the protective layer, or the copper particles are placed on the metal substrate.
  • the plurality of superconducting wires may be disposed to face each other such that the metal substrates are adjacent to each other, or the plurality of superconducting wires may be stacked in the same order as metal substrates, buffer layers, superconducting layers, and protective layers. .
  • the method further comprises the step of washing a plurality of surfaces of the superconducting wire, in the step of attaching the copper particles, a plurality of the superconducting wire is bonded to the outer surface of the form It is preferable to vacuum-deposit copper particles on the outer surface of the superconducting wire so that a copper stabilizer is formed, and in the step of attaching the copper particles, the vacuum deposition may be performed using a sputtering or thermal evaporation method. desirable.
  • the pressure roller is capable of temperature control so as to pressurize and simultaneously heat-treat the superconducting wires
  • the protective layer is a silver protective layer made of silver (Ag), A silver protective layer made of silver (Ag); It is preferable that the copper protective layer is laminated on the silver protective layer.
  • the above object is to charge the superconducting wire and the reinforcing wire having a copper coating layer formed on the outer circumferential surface thereof, respectively, in the vacuum chamber; Attaching the copper particles by vacuum evaporation of copper (Cu) particles in a region where the superconducting wire and the reinforcing wire are stacked in a vacuum atmosphere; The superconducting wire, the reinforcing wire, and the copper particles attached between the superconducting wire and the reinforcing wire are passed through a pressure roller to form the copper particles as a copper stabilizing layer and at the same time the superconducting through the copper stabilizing layer. It is also achieved by a method of joining a laminated superconducting wire comprising the step of joining the wire rod and the reinforcing wire rod.
  • the reinforcing wire is preferably used in plurality so as to be laminated on the upper and lower portions of the superconducting wire, respectively.
  • the above object is also provided with a plurality of superconducting wires; It is also achieved by a superconducting wire unit laminated superconducting wire, characterized in that it comprises a copper stabilization layer which is a medium for bonding the superconducting wires to each other in a region where the plurality of superconducting wires are laminated to each other.
  • the superconducting wire is preferably made of a metal substrate-buffer layer-superconducting layer-protective layer.
  • the plurality of superconducting wires may be disposed to face each other such that the protective layers are close to each other, or the plurality of superconducting wires may be disposed to face each other so that the metal substrates are in close proximity to each other, or the plurality of superconducting wires may be a metal substrate-buffer layer-superconducting layer-. It is preferable that the protective layers are laminated in the same order to each other.
  • the protective layer may be a silver protective layer made of silver (Ag), or a silver protective layer made of silver (Ag); It is preferable that the copper protective layer is laminated on the silver protective layer.
  • the above object is a superconducting wire;
  • a copper coating layer is formed on an outer circumferential surface and is reinforced with the superconducting wire;
  • a superconducting wire unit in which the superconducting wires are laminated and bonded, comprising a copper stabilization layer, which is a medium for bonding the reinforcing wires and the superconducting wires to a region where the reinforcing wires and the superconducting wires are laminated to each other.
  • a thin copper stabilized layer may be formed through vacuum deposition using copper particles having high purity and no impurities between the plurality of superconducting wires or the reinforcing wires and the superconducting wires, and thereby the unit. The effect of increasing the current per area can be obtained.
  • FIG. 1 is a cross-sectional view of a superconducting wire unit according to a first embodiment of the present invention
  • Figure 2 is a flow chart of the bonding method of the laminated superconducting wire according to the first embodiment of the present invention
  • 3 is a conceptual diagram showing that the copper particles are vacuum deposited in the vacuum chamber
  • 4A and 4B are conceptual views illustrating copper deposition in a vacuum between a plurality of superconducting wires
  • FIG. 5 is a cross-sectional view of the superconducting wire unit according to the second embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing that the copper particles are vacuum deposited in the vacuum chamber
  • FIG. 7 is a flowchart illustrating a method of bonding the laminated superconducting wire according to the second embodiment of the present invention.
  • the laminated superconducting wire unit 100 includes metal substrates 111 and 121-buffer layers 113 and 123 and superconducting layers ( 115, 125) and a plurality of superconducting wires 110 and 120 made of the protective layers 117 and 127, and a copper stabilization layer 130 stacked between the plurality of superconducting wires 110 and 120.
  • the copper stabilization layer 130 has no impurities in the region where the plurality of superconducting wires 110 and 120 are stacked on each other in the vacuum chamber 200 and vacuum evaporates copper particles 10 having high purity. It is formed between the plurality of superconducting wire (110, 120) by a method.
  • the superconducting wires 110 and 120 to be laminated and laminated may stack as many superconducting wires as necessary depending on the amount of current flowing.
  • the metal substrates 111 and 121 of the superconducting wires 110 and 120 are made of nickel alloy or stainless steel having oxidation resistance, and the oxide buffer layers 113 and 123 formed on the metal substrates 111 and 121 are metal substrates. It is formed between the (111, 121) and the superconducting layer (115, 125) serves to buffer a variety of external stimulation. Specifically, when the superconducting wires 110 and 120 are manufactured, the superconducting layers 115 and 125 are formed at a high temperature. In this case, the metal material of the metal substrates 111 and 121 is diffused into the superconducting layers 115 and 125, so that the superconducting layers 115 are formed. , 125 to prevent contamination, and improves the superconductivity of the superconducting layers 115 and 125.
  • the superconducting layers 115 and 125 formed on the buffer layers 113 and 123 are formed by coating in a physical or chemical manner.
  • the superconducting layers 115 and 125 are made of rare earth elements having high temperature superconducting properties, and the preferred superconducting layers 115 and 125 are rare earth elements-barium-copper-oxygen (RE-Ba-Cu-O). .
  • the protective layer 117, 127 are stacked.
  • the protective layers 117 and 127 are thinly coated on the superconducting layers 115 and 125 and serve to protect the superconducting layers 115 and 125 from the outside.
  • the protective layer 117 also increases the bonding force of the stabilization layer 130 made of metal. 127).
  • the protective layers 117 and 127 may be formed of silver protective layers 117a and 127a made of silver (Ag) and copper protective layers 117b and 127b stacked on the silver protective layers 117a and 127a. Do. In some cases, the superconducting wires 110 and 120 including only the silver protective layers 117a and 127a without the copper protective layers 117b and 127b may be used.
  • the first superconducting wire 110 made of the metal substrate 111, the buffer layer 113, the superconducting layer 115, and the protective layer 117, and the second superconducting wire having the same configuration as the first superconducting wire 110 ( 120 may remove most of impurities on the surfaces of the superconducting wires 110 and 120 through a surface cleaning step before being charged into the vacuum chamber 200.
  • the washing step may be performed in various ways, but the superconducting wires 110 and 120 generally use pickling.
  • Pickling treatment means cleaning the surface with hydrochloric acid, sulfuric acid or phosphoric acid in advance for the purpose of easily adhering the plating material to the surface before plating.
  • impurities such as scale, rust, and mixed substances on the surfaces of the superconducting wires 110 and 120 are washed out.
  • the removal of impurities on the surface of the metal is one of the very important process because the friction force is determined by the impurities covering the surface.
  • the first superconducting wire 110 and the second superconducting wire 120 may use a superconducting wire having a copper stabilizer formed therein.
  • the plurality of superconducting wires 110 and 120 are charged in the vacuum chamber in a spaced apart state (S2a).
  • Vacuum evaporation uses a vacuum chamber to create a vacuum atmosphere by heating the copper in a vacuum atmosphere to attach the evaporated copper particles 10 to the superconducting wire (110, 120).
  • the impurities are removed from the surface of the superconducting wires 110 and 120, but if the superconducting wires 110 and 120 are continuously exposed to air, the impurities may be attached to the surface or oxidation may occur on the surface.
  • the superconducting wires 110 and 120 are charged into the vacuum chamber 200. When the superconducting wires 110 and 120 are charged into the vacuum chamber 200, some dust remaining on the surfaces of the superconducting wires 110 and 120 may be removed.
  • the copper particles 10 having no impurities and high purity are vacuum-deposited to attach the copper particles 10 between the superconducting wires 110 and 120 (S3a).
  • the first superconducting wire 110 and the second superconducting wire 120 which are charged into the vacuum chamber 200 while being spaced apart from each other, are approached to each other as the separation distance in the vacuum chamber 200 gradually decreases.
  • the copper particles 10 are vacuum-deposited on the region where the 110 and the second superconducting wires 120 are laminated to each other to attach the copper particles 10 between the superconducting wires 110 and 120.
  • the copper particles 10 having high purity and high purity are formed of the first superconducting wire 110 and the second superconducting wire 120.
  • the copper particles 10 are attached to the surfaces facing each other, and the first superconducting wire 110 and the second superconducting wire 120 are laminated at the same time as the copper particles 10 are attached to the surface. It is disposed between the superconducting wire (110, 120).
  • the first superconducting wire 110 and the second superconducting wire 120 have silver protective layers 117a and 127a or copper protective layers 117b and 127b formed at the top thereof. Such silver or copper protective layers 117 and 127 are formed.
  • the first superconducting wire 110 and the second superconducting wire 120 are disposed to face each other so as to deposit the copper particles 10 in a vacuum.
  • the metal substrates 111 and 121 instead of the copper protective layers 117b and 127b are used.
  • Parts may be arranged to face each other.
  • the first superconducting wire 110 is not the shape of the copper protective layer (117b, 127b) or the metal substrates (111, 121) facing each other, the metal substrate 111-buffer layer 113-superconducting layer 115
  • the second superconducting wire 120 disposed in the protective layer 117 in this order and stacked thereon is also disposed in the order of the metal substrate 121, the buffer layer 123, the superconducting layer 125, and the protective layer 127.
  • the first superconducting wire 110 and the second superconducting wire 120 may be disposed to face the same direction.
  • the first superconducting wire 110 and the second superconducting wire 120 are disposed at the positions facing each other with the silver protective layers 117a and 127a or the copper protective layers 117b and 127b and facing the protective layers (
  • the copper particles 10 are vacuum deposited between the 117 and 127.
  • copper particles 10 having high purity are attached between the first superconducting wire 110 and the second superconducting wire 120 and have high purity. The position is ambiguous whether it is combined with the protective layer 117 of the first superconducting wire 110 or the protective layer 127 of the second superconducting wire 120.
  • the copper particles 10 which are vacuum-deposited themselves are first superconducting wires 110. It is ambiguous whether it belongs to the protective layer 117 of the second superconducting wire 120 or the second superconducting wire 110 and the second superconducting wire 120 is thereby firmly coupled. Can be.
  • the protective layers 117 and 127 are made of a metal, and the metal has a property that the metals adhere to each other in a clean state when the metals rub against each other, such as plastic or fiber.
  • the present invention is to vacuum-deposit copper particles 10 having high purity without impurities.
  • the copper particles may be formed on the surface area of the superconducting wires 110 and 120 such that the copper stabilizer 140 is formed at the outermost sides of the plurality of superconducting wires 110 and 120. 10) may be vacuum deposited.
  • the vacuum deposition of the copper particles 10 on the surface area is performed simultaneously with forming the copper stabilization layer 130 so that the copper stabilization layer 130 and the copper stabilizing material 140 do not exist as separate components. It is desirable to be formed integrally. This is possible because the boundary of which copper particle 10 belongs to becomes obscure as described above because vacuum deposition of the copper particle 10 in the state in which the impurity does not exist in the surface in the vacuum chamber 200 is made.
  • the vacuum deposition is most preferably, but not limited to, using a sputtering or thermal evaporation process.
  • the superconducting wires 110 and 120 are bonded to each other through a copper stabilization layer 130 (S4a).
  • the pressure roller 300 By passing the pressure roller 300 formed in a pressure range such that the superconducting wires 110 and 120 are not damaged, the copper particles 10 are formed into the copper stabilization layer 130 and the copper stabilization layer 130 is mediated.
  • the first superconducting wire 110 and the second superconducting wire 120 are bonded to each other.
  • the first superconducting wire 110 and the second superconducting wire 120 may be bonded to each other without a separate heat treatment through the pressure roller 300, but may be pressurized simultaneously with the heat treatment as necessary.
  • the pressure roller 300 is preferably a roller that can control the temperature so that the heat treatment to the first superconducting wire 110 and the second superconducting wire 120.
  • the pressure roller 300 together with the high purity copper particles 10 attached between the first superconducting wire 110, the second superconducting wire 120, and the first superconducting wire 110 and the second superconducting wire 120. Passing through to form the copper particles 10 as the copper stabilization layer 130 as shown in Figure 4b.
  • the high purity copper particles 10 adhered between the first superconducting wire 110 and the second superconducting wire 120 are formed into the copper stabilization layer 130 through pressure, through which the copper particles 10 are formed.
  • the first superconducting wire 110 and the second superconducting wire 120 may be prevented from being separated from the superconducting wires 110 and 120 that are firmly coupled to and laminated by the c-axis force.
  • the superconducting wire unit 100 is disposed at room temperature to cryogenic temperature, the superconducting wires 110 and 120 are not separated from the copper stabilization layer 130 by the difference in thermal expansion coefficient.
  • a much smaller thickness of the copper stabilization layer 130 than the conventional stabilization layer can be obtained.
  • a stabilization layer is separately prepared and disposed between a plurality of superconducting wires, and then pressurized at a high temperature to be laminated, or a stabilizing material is formed to surround the entire surface of one superconducting wire, and then the superconducting wires are laminated to each other to stabilize the surface.
  • Superconducting wire was fabricated so that ash acts as a stabilization layer.
  • the stabilizing material enclosed on the stabilization layer or the surface prepared separately is made of a thickness of 10 to 20 ⁇ m the overall cross-sectional area of the laminated superconducting wire including the same increased.
  • the cross-sectional area of the superconducting wire increases, the current Je per unit area decreases.
  • the copper stabilization layer 130 preferably has a thickness of 1 to 6 ⁇ m.
  • the thickness of the copper stabilization layer 130 is less than 1 ⁇ m the first superconducting wire 110 and the second superconducting wire 120 may be separated without being firmly bonded to each other, if the thickness of more than 6 ⁇ m overall Since the thickness of the superconducting wire unit 100 increases, the current Je per unit area decreases.
  • the superconducting wire unit 400 according to the second embodiment is similar to the superconducting wire unit 100 and the fitting method according to the first embodiment, but instead of stacking a plurality of superconducting wires 110 and 120 and the reinforcing wire 420. There is a difference in that the superconducting wire 410 is laminated and bonded.
  • the superimposed superconducting wire unit 400 is a superconducting wire 410 and a reinforcing wire 420 stacked between the superconducting wire 410 and the upper or lower portion as shown in FIG. 5.
  • a copper stabilization layer 430 stacked between the superconducting wire 410 and the reinforcing wire 420.
  • the reinforcing wire 420 may use a high strength wire such as stainless steel or brass to strengthen the strength of the superconducting wire unit 410.
  • the copper coating layer 440 is formed on the outer circumferential surface of the reinforcing wire 420 so that the reinforcing wire 420 can be easily bonded to the superconducting wire 410 by copper vacuum deposition.
  • a plurality of reinforcing wires 420 may be bonded as illustrated in FIG. 6 so as to be stacked on the upper and lower portions of the superconducting wires 410 to further increase the strength of the superconducting wires 410.
  • Such a superconducting wire unit 400 is a step (S1b) to clean the surface of the superconducting wire 410 and the reinforcing wire 420, as shown in Figure 7, the superconducting wire 410 and the reinforcing wire 420 spaced apart Step (S2b) to be charged into the vacuum chamber 200 in a state of being in a state, and the copper particles (10) between the superconducting wire 410 and the reinforcing wire 420 by vacuum depositing copper particles 10 of high purity without impurities.
  • the solder member used to bond the stabilization layer with the superconducting wire or surround the front surface of the superconducting wire is a material having a different thermal expansion coefficient from the stabilization layer, when the superconducting wire is disposed at room temperature to cryogenic, the thermal expansion coefficient is separated from each other. There was this. In addition, because the heating must be performed at a high temperature in order to join the solder member, there was a problem that some of the superconducting wire is damaged or oxidized.
  • the copper stabilized layers 130 and 430 are formed by vacuum deposition using the copper particles 10 having no impurities and high purity, a thin copper stabilized layer 130 and 430 may be obtained.
  • the current per unit area can be increased.
  • the copper stabilization layers 130 and 430 may be easily formed through pressurization, particularly when the protective layers 117 and 127 are silver or copper. Due to having a coefficient of thermal expansion similar to or the same as that of the particles, the superconducting wires 110, 120, and 410 do not have a problem in that they are separated from each other by a difference in coefficient of thermal expansion.
  • the present invention relates to a method of joining a laminated superconducting wire and a superconducting wire unit laminated through the same, and more particularly, using a high purity copper particle without impurities between a plurality of superconducting wires or reinforcing wires and a superconducting wire. It is possible to form a thin copper stabilization layer through vacuum deposition, which can be used in the method of joining laminated superconducting wires in which the current per unit area is increased, and superconducting wire units laminated through the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

본 발명은, 복수의 초전도선재를 이격되는 상태로 각각 진공챔버 내에 장입하는 단계와; 진공 분위기 하에서 복수의 상기 초전도선재가 서로 적층되는 영역에 구리(Cu) 입자를 진공증착(vacuum evaporation)하여 상기 구리 입자를 부착하는 단계와; 복수의 상기 초전도선재 및 상기 초전도선재 사이에 부착된 상기 구리 입자를 함께 가압롤러를 통과시켜 상기 구리 입자를 구리 안정화층으로 형성시킴과 동시에 상기 구리 안정화층을 매개로 상기 초전도선재 상호 간을 접합시키는 단계를 포함하는 것을 기술적 요지로 한다. 이에 의해 복수의 초전도선재 또는 보강선재와 초전도선재 사이에 순도가 높은 구리 입자를 이용하여 진공증착을 통해 두께가 얇은 구리 안정화층을 형성할 수 있으며, 이를 통해 단위면적당 전류가 증가되는 효과를 얻을 수 있다. 또한 구리 입자를 진공증착함에 의해 상온에서 극저온으로 이동하더라도 열팽창계수 차이에 의해 초전도선재와 구리 안정화층이 분리되는 것을 방지할 수 있는 효과가 있다.

Description

적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트
본 발명은 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트에 관한 것으로, 더욱 상세하게는 복수의 초전도선재 또는 보강선재와 초전도선재 사이에 불순물이 없으며 순도가 높은 구리 입자를 이용하여 진공증착을 통해 두께가 얇은 구리 안정화층을 형성할 수 있으며, 이를 통해 단위면적당 전류가 증가되는 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트에 관한 것이다.
초전도선재는 물체의 전기저항이 0인 물질을 의미하며, 액체헬륨의 온도인 4K 근처에서 전류저항이 0에 가까운 물질을 저온초전도선재(Low Temperature Superconductor, LTS), 액체 헬륨보다 고온의 액체질소 온도인 77K에서 초전도 현상을 보이는 물질을 고온초전도선재(High Temperature superconductor, HTS)라 일컫는다. 초전도선재는 높은 임계온도, 임계전류밀도 및 임계자기장을 나타내기 때문에 초전도 마그네트, 초전도 케이블, 초전도 모터 또는 초전도 발전기 등과 같은 전력용 기기에 적용이 기대되고 있다. 일반적으로 박막형 초전도선재는 금속층, 초전도층 및 금속층과 초전도층 간의 물성 차이를 최소화시키기 위한 버퍼층(buffer layer)으로 형성되어 있다.
이러한 초전도선재 한 가닥으로는 1000A 이상의 대전류화가 어려울 뿐만 아니라 또한 박막형 초전도선재는 금속층이 완충층으로 인해 안정화재로 사용될 수 없기 때문에 필수적으로 별도의 금속재로 형성된 안정화재를 함께 사용하여야 한다. 따라서 대전류를 통전시키기 위해서는 여러 개의 초전도선재를 적층시켜 집합화하여 사용하고 있으며 초전도 박막 주변에 금속 안정화재를 덧대어 사용하는 것이 일반적이다.
초전도선재를 집합화하는 가장 일반적인 방법으로는 초전도선재 간을 솔더링(soldering, 납땜)하고 병렬로 연결하여 사용하는 것이며, 이러한 집합화된 초전도선재는 금속 안정화재와 솔더링하여 접합되어 사용된다. 즉 초전도선재의 집합화 및 금속 안정화재와의 접합은 모두 솔더링에 의해 실현되어 왔다. 대표적인 솔더링 관련 종래기술로 '대한민국특허청 등록특허 제10-0760993호 초전도 선재의 라미네이션 접합 장치 및 방법'이 있다. 하지만 이와 같은 종래기술은 초전도선재 간의 솔더링을 목적으로 하는 것이 아닌 초전도선재와 안정화재 간의 접합을 위해 솔더링을 행하는 것이므로, 초전도선재를 집합화하기 위한 기술과는 차이가 있다.
솔더링에 의한 초전도선재 간의 집합화 및 금속 안정화재와의 접합은 초전도선재 간에 저항이 비교적 높게 나타나므로, 초전도선재의 본래 기능인 영구전류 운전에 지장을 초래하게 될 뿐만 아니라, 솔더링 부위가 떨어져 나가는 등 집합화된 초전도선재 전체의 저항이 균일하지 못해 전류의 흐름이 한쪽으로 과잉되어 초전도선재 내부의 온도가 상승함에 따라 초전도 상태가 깨어지는 염려가 있다.
다른 종래기술 '대한민국특허청 등록특허 제10-0755899호 박막형 초전도 선재의 집합방법 및 집합화된 초전도 선재'는, 박막형 초전도 선재를 적층시키는 단계와; 초전도선재 사이 및 최상층과 최하층에 금속 안정화재를 삽입시켜 초전도선재와 금속 안정화재를 솔더링 시키면서 가열가압롤러로 통과시켜 초전도선재를 집합화하는 단계와; 결과물을 저항용접롤러로 통과시켜 금속 안정화재를 상호 용접하여 접합시키는 단계로 이루어져 있다. 하지만 이와 같이 금속 안정화재를 형성할 경우 공기 중에 금속 안정화재가 노출되어 산화될 우려가 있으며, 금속의 산화로 인해 금속 안정화재 간에 접합이 원활하게 이루어지지 않는다. 또한 각각 분리된 상태의 초전도선재 및 금속 안정화재를 가열 및 가압을 통해 접합시키기 때문에 c축 방향으로 힘을 가했을 때 서로 박리되는 문제가 발생할 수 있다.
따라서 본 발명의 목적은 복수의 초전도선재 또는 보강선재와 초전도선재 사이에 불순물이 없으며 순도가 높은 구리 입자를 이용하여 진공증착을 통해 두께가 얇은 구리 안정화층을 형성할 수 있으며, 이를 통해 단위면적당 전류가 증가되는 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트를 제공하는 것이다.
또한 구리 입자를 진공증착함에 의해 상온에서 극저온으로 이동하더라도 열팽창계수 차이에 의해 초전도선재와 구리 안정화층이 분리되는 것을 방지할 수 있는 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트를 제공하는 것이다.
상기한 목적은, 복수의 초전도선재를 이격되는 상태로 각각 진공챔버 내에 장입하는 단계와; 진공 분위기 하에서 복수의 상기 초전도선재가 서로 적층되는 영역에 구리(Cu) 입자를 진공증착(vacuum evaporation)하여 상기 구리 입자를 부착하는 단계와; 복수의 상기 초전도선재 및 상기 초전도선재 사이에 부착된 상기 구리 입자를 함께 가압롤러를 통과시켜 상기 구리 입자를 구리 안정화층으로 형성시킴과 동시에 상기 구리 안정화층을 매개로 상기 초전도선재 상호 간을 접합시키는 단계를 포함하는 것을 특징으로 하는 적층된 초전도선재의 접합방법에 의해 달성된다.
상기 초전도선재는, 금속기판-완충층-초전도층-보호층을 포함하는 것이 바람직하다.
상기 초전도선재를 진공챔버 내에 장입하는 단계에서, 상기 보호층에 상기 구리 입자를 진공증착하기 위해 복수의 상기 초전도선재는 상기 보호층끼리 근접하도록 서로 마주보게 배치되거나, 상기 금속기판에 상기 구리 입자를 진공증착하기 위해 복수의 상기 초전도선재는 상기 금속기판끼리 근접하도록 서로 마주보게 배치되는 거나, 또는 복수의 상기 초전도선재는 금속기판-완충층-초전도층-보호층이 서로 동일한 순서로 적층되는 것이 바람직하다.
상기 초전도선재를 진공챔버 내에 장입하는 단계 이전에, 복수의 상기 초전도선재 표면을 세척하는 단계를 더 포함하며, 상기 구리 입자를 부착하는 단계에서, 복수의 상기 초전도선재가 접합된 형태의 외표면에 구리 안정화재가 형성되도록 상기 초전도선재의 외표면에 구리 입자를 진공증착 하는 것이 바람직하며, 상기 구리 입자를 부착하는 단계에서, 상기 진공증착은 스퍼터링(sputtering) 또는 가열증착(thermal evaporation) 방법을 이용하는 것이 바람직하다.
상기 초전도선재 상호 간을 접합시키는 단계에서, 상기 초전도선재에 열처리를 함과 동시에 가압할 수 있도록 상기 가압롤러는 온도조절이 가능하며, 상기 보호층은, 은(Ag)으로 이루어진 은 보호층이거나, 은(Ag)으로 이루어진 은 보호층과; 상기 은 보호층의 상부에 적층되는 구리 보호층으로 이루어진 것이 바람직하다.
상기한 목적은, 초전도선재 및 외주면에 구리코팅층이 형성된 보강선재를 이격되는 상태로 각각 진공챔버 내에 장입하는 단계와; 진공 분위기 하에서 상기 초전도선재 및 상기 보강선재가 서로 적층되는 영역에 구리(Cu) 입자를 진공증착(vacuum evaporation)하여 상기 구리 입자를 부착하는 단계와; 상기 초전도선재, 상기 보강선재 및 상기 초전도선재와 상기 보강선재 사이에 부착된 상기 구리 입자를 함께 가압롤러를 통과시켜 상기 구리 입자를 구리 안정화층으로 형성시킴과 동시에 상기 구리 안정화층을 매개로 상기 초전도선재 및 상기 보강선재 상호 간을 접합시키는 단계를 포함하는 것을 특징으로 하는 적층된 초전도선재의 접합방법에 의해서도 달성된다.
상기 보강선재는 상기 초전도선재의 상부 및 하부에 각각 적층되도록 복수 개가 사용되는 것이 바람직하다.
상기한 목적은 또한, 복수의 초전도선재와; 복수의 상기 초전도선재가 서로 적층되는 영역에 상기 초전도선재 상호 간을 접합시키는 매개인 구리 안정화층을 포함하는 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트에 의해서도 달성된다.
여기서, 상기 초전도선재는 금속기판-완충층-초전도층-보호층으로 이루어진 것이 바람직하다.
복수의 상기 초전도선재는 상기 보호층끼리 근접하도록 서로 마주보게 배치되거나, 복수의 상기 초전도선재는 상기 금속기판끼리 근접하도록 서로 마주보게 배치되거나, 복수의 상기 초전도선재는 금속기판-완충층-초전도층-보호층이 서로 동일한 순서로 적층되는 것이 바람직하다.
또한, 상기 보호층은, 은(Ag)으로 이루어진 은 보호층이거나, 은(Ag)으로 이루어진 은 보호층과; 상기 은 보호층의 상부에 적층되는 구리 보호층으로 이루어진 것이 바람직하다.
이 뿐만 아니라 상기한 목적은, 초전도선재와; 외주면에 구리코팅층이 형성되며 상기 초전도선재에 적층되는 보강선재와; 상기 보강선재와 상기 초전도선재가 서로 적층되는 영역에 상기 보강선재와 상기 초전도선재 상호 간을 접합시키는 매개인 구리 안정화층을 포함하는 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트에 의해서도 달성된다.
상술한 본 발명의 구성에 따르면 복수의 초전도선재 또는 보강선재와 초전도선재 사이에 불순물이 없으며 순도가 높은 구리 입자를 이용하여 진공증착을 통해 두께가 얇은 구리 안정화층을 형성할 수 있으며, 이를 통해 단위면적당 전류가 증가되는 효과를 얻을 수 있다.
또한 구리 입자를 진공증착함에 의해 상온에서 극저온으로 이동하더라도 열팽창계수 차이에 의해 초전도선재와 구리 안정화층이 분리되는 것을 방지할 수 있는 효과가 있다.
도 1은 본 발명의 제1실시예에 따른 초전도선재유니트의 단면도이고,
도 2는 본 발명의 제1실시예에 따른 적층된 초전도선재의 접합방법 순서도이고,
도 3은 진공챔버 내에서 구리 입자가 진공증착되는 것을 나타낸 개념도이고,
도 4a 및 도 4b는 복수의 초전도선재 사이에 구리 입자가 진공증착 되는 것을 나타낸 개념도이고,
도 5는 본 발명의 제2실시예에 따른 초전도선재유니트의 단면도이고,
도 6은 진공챔버 내에서 구리 입자가 진공증착되는 것을 나타낸 개념도이고,
도 7은 본 발명의 제2실시예에 따른 적층된 초전도선재의 접합방법 순서도이다.
이하 도면을 참조하여 본 발명의 실시예에 따른 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트를 상세히 설명한다.
본 발명의 접합방법을 통해 얻어지는 제1실시예에 따른 적층 접합된 초전도선재유니트(100)는, 도 1에 도시된 바와 같이 금속기판(111, 121)-완충층(113, 123)-초전도층(115, 125)-보호층(117, 127)으로 이루어진 복수의 초전도선재(110, 120)와, 복수의 초전도선재(110, 120) 사이에 적층되는 구리 안정화층(130)을 포함한다. 구리 안정화층(130)은 진공챔버(200) 내에서 복수의 초전도선재(110, 120)가 서로 적층되는 영역에 불순물이 없으며 순도가 높은 구리(Cu) 입자(10)를 진공증착(vacuum evaporation)하는 방법을 통해 복수의 초전도선재(110, 120) 사이에 형성된다. 경우에 따라서 적층 접합되는 초전도선재(110, 120)는 전류가 흐르는 양에 따라 필요한 개수만큼의 초전도선재를 적층할 수 있다.
초전도선재(110, 120)의 금속기판(111, 121)은 내산화성을 지닌 니켈합금 또는 스테인레스 스틸로 이루어지며, 금속기판(111, 121)의 상부에 형성된 산화물 완충층(113, 123)은 금속기판(111, 121)과 초전도층(115, 125) 사이에 형성되어 외부의 다양한 자극을 완충시키는 역할을 한다. 구체적으로 초전도선재(110, 120)를 제조시 초전도층(115, 125)은 고온에서 형성되는데 이때 금속기판(111, 121)의 금속물질이 초전도층(115, 125)에 확산되어 초전도층(115, 125)이 오염되는 것을 방지하며, 초전도층(115, 125)의 초전도특성을 향상시키는 역할을 한다.
완충층(113, 123) 상부에 형성된 초전도층(115, 125)은 물리적 또는 화학적인 방법으로 코팅하여 형성된다. 초전도층(115, 125)은 고온초전도 특성을 가지는 희토류계 원소로 제조되며, 바람직한 초전도층(115, 125)의 재료는 희토류원소-바륨-구리-산소(RE-Ba-Cu-O) 계이다.
금속기판(111, 121), 완충층(113, 123) 및 초전도층(115, 125)이 순차적으로 적층된 초전도선재(110, 120)에서 초전도층(115, 125)의 상부에는 보호층(117, 127)이 적층된다. 보호층(117, 127)은 초전도층(115, 125)에 얇게 코팅되며, 외부로부터 초전도층(115, 125)을 보호하는 역할을 한다. 뿐만 아니라 초전도선재(110, 120)를 적층시키기 위해 초전도선재(110, 120) 사이에 구리 안정화층(130)을 형성할 때 금속으로 이루어진 안정화층(130)의 결합력을 증가시키기 위해서도 보호층(117, 127)이 필요하다. 여기서 보호층(117, 127)은 은(Ag)으로 이루어진 은 보호층(117a, 127a)과, 은 보호층(117a, 127a)의 상부에 적층되는 구리 보호층(117b, 127b)으로 이루어지는 것이 바람직하다. 경우에 따라서 구리 보호층(117b, 127b) 없이 은 보호층(117a, 127a)만 존재하는 초전도선재(110, 120)를 사용할 수도 있다.
이와 같은 구성으로 이루어진 초전도선재(110, 120)를 접합하기 위한 방법으로는 먼저, 도 2에 도시된 바와 같이 복수의 초전도선재(110, 120) 표면을 세척한다(S1a).
금속기판(111)-완충층(113)-초전도층(115)-보호층(117)으로 이루어진 제1초전도선재(110)와, 제1초전도선재(110)와 동일한 구성으로 이루어진 제2초전도선재(120)는 진공챔버(200) 내에 장입되기 이전에 표면 세척 단계를 통해 초전도선재(110, 120)의 표면에 불순물을 대부분 제거하도록 할 수 있다. 세척 단계는 다양한 방법이 이루어질 수 있으나 초전도선재(110, 120)는 일반적으로 산세(pickling) 처리를 많이 이용한다. 산세 처리는 도금 전에 도금재가 표면에 용이하게 부착되도록 하는 목적으로 미리 염산, 황산 또는 인산으로 표면을 세정하는 것을 의미한다. 이와 같이 산세 처리를 할 경우 초전도선재(110, 120) 표면의 작은 조각(scale), 녹(rust), 혼재물 등과 같은 불순물이 세척된다. 일반적으로 금속은 표면을 덮고 있는 불순물에 의해 마찰력이 좌우되기 때문에 금속의 표면에 불순물을 제거하는 과정은 매우 중요한 공정 중 하나이다.
경우에 따라서 제1초전도선재(110) 및 제2초전도선재(120)는 주위에 구리 안정화재가 형성된 상태의 초전도선재를 사용할 수도 있다.
복수의 초전도선재(110, 120)를 이격되는 상태로 진공챔버 내에 장입한다(S2a).
S1a 단계를 통해 표면에 불순물이 제거된 제1초전도선재(110)와 제2초전도선재(120)를 서로 이격되는 위치에서 이격되는 상태로 도 3에 도시된 바와 같이 각각 진공챔버(200) 내로 장입한다. 진공증착(vacuum evaporation)은 진공 분위기 하에서 구리를 가열하여 증발된 구리 입자(10)가 초전도선재(110, 120)에 부착되도록 하는 방법으로 진공 분위기를 조성하기 위해서 진공챔버를 사용한다.
또한 S1 단계에서 초전도선재(110, 120)의 표면에 불순물을 제거하였으나 공기 중에 초전도선재(110, 120)를 지속적으로 노출시킬 경우 다시 불순물이 표면에 부착되거나 표면에 산화가 일어날 수 있기 때문에 이를 위해 초전도선재(110, 120)를 진공챔버(200) 내에 장입한다. 초전도선재(110, 120)를 진공챔버(200) 내에 장입하게 되면 초전도선재(110, 120) 표면에 잔존하는 일부 먼지들이 제거될 수도 있다.
불순물이 없으며 순도가 높은 구리 입자(10)를 진공증착하여 초전도선재(110, 120) 사이에 구리 입자(10)를 부착한다(S3a).
서로 이격된 상태로 진공챔버(200) 내로 장입되는 제1초전도선재(110) 및 제2초전도선재(120)는 진공챔버(200) 내에서 이격 거리가 점차 감소되면서 서로 근접해지며, 제1초전도선재(110) 및 제2초전도선재(120)가 서로 적층되는 영역에 구리 입자(10)를 진공증착하여 초전도선재(110, 120) 사이에 구리 입자(10)를 부착한다. 진공 분위기 하에서 제1초전도선재(110)와 제2초전도선재(120)가 적층되기 직전에 불순물이 없으며 순도가 높은 구리 입자(10)가 제1초전도선재(110)와 제2초전도선재(120)가 마주보는 표면에 각각 부착되는데 구리 입자(10)가 표면에 부착됨과 동시에 제1초전도선재(110) 및 제2초전도선재(120)가 적층되어 구리 입자(10)는 도 4a에 도시된 바와 같이 초전도선재(110, 120) 사이에 배치된다.
제1초전도선재(110) 및 제2초전도선재(120)는 최상부에 은 보호층(117a, 127a) 또는 구리 보호층(117b, 127b)이 형성되어 있는데, 이러한 은 또는 구리 보호층(117, 127)에 구리 입자(10)가 진공증착되도록 제1초전도선재(110) 및 제2초전도선재(120)는 서로 마주보게 배치되어 서로 적층된다.
또한 경우에 따라서 제1초전도선재(110) 및 제2초전도선재(120) 주위에 이미 구리 안정화재(140)가 형성되어 있는 경우에는 구리 보호층(117b, 127b)이 아닌 금속기판(111, 121) 부분을 서로 마주보게 배치하여 적층시킬 수도 있다. 뿐만 아니라 구리 보호층(117b, 127b) 또는 금속기판(111, 121)이 서로 마주보는 형상이 아닌, 제1초전도선재(110)가 금속기판(111)-완충층(113)-초전도층(115)-보호층(117) 순서대로 배치되고, 여기에 적층되는 제2초전도선재(120) 또한 금속기판(121)-완충층(123)-초전도층(125)-보호층(127) 순서대로 배치되도록 하여 face to back 배치와 같이 제1초전도선재(110) 및 제2초전도선재(120)가 서로 동일한 방향을 향하도록 배치할 수도 있다.
'Richard Feynman, The Feynman Lectures, 12-2 Friction' 자료에 따르면 구리의 마찰 계수와 관련된 내용이 기재되어 있는데, 불순물이 표면에 전혀 없는 완전한 평면 구리판의 경우, 양쪽 구리판의 경계면에 있는 구리 원자의 입장에서는 자신이 어느 쪽 구리판의 소속인지 알 수 없게 된다고 기재되어 있다. 또한 사실 구리판이 하나인지 두 개인지조차 모호해지며, 표면에 산소 원자가 기타 불순물 층이 형성되어 있어야 구리 원자들은 자신의 소속을 깨닫고 떨어져야 할 순간을 알 수 있다고 한다. 구리판은 원자들 사이에 작용하는 힘 덕분에 그 모양을 유지하고 있으므로, 순수한 물질들 사이의 마찰 계수를 실험적으로 알아내는 것은 불가능하다고 기재되어 있다.
본 발명에서 제1초전도선재(110)와 제2초전도선재(120)는 서로 마주보는 위치에 은 보호층(117a, 127a) 또는 구리 보호층(117b, 127b)이 배치되며, 마주보는 보호층(117, 127) 사이에 구리 입자(10)를 진공증착 하게 된다. 이와 같이 구리 입자(10)를 진공증착 하게 되면 제1초전도선재(110)와 제2초전도선재(120) 사이에 불순물이 없으며 순도가 높은 구리 입자(10)가 부착되며, 이러한 구리 입자(10)는 자신이 제1초전도선재(110)의 보호층(117)과 결합되는지 제2초전도선재(120)의 보호층(127)과 결합되는지 위치가 모호해진다. 즉 보호층(117, 127)을 포함하는 초전도선재(110, 120)에 순도가 높은 구리 입자(10)를 진공증착하게 되면 진공증착되는 구리 입자(10)가 자신이 제1초전도선재(110)의 보호층(117)에 속해 있는지 제2초전도선재(120)의 보호층(127)에 속해 있는지 모호해지며, 이로 인해 제1초전도선재(110)와 제2초전도선재(120)가 견고하게 결합될 수 있다. 이러한 현상이 가능한 이유는 보호층(117, 127)이 금속으로 이루어져 있으며, 금속은 플라스틱이나 섬유 등과 같은 다른 소재에 비해 금속끼리 마찰하게 되면 표면이 깨끗한 상태에서 서로 붙어버리는 성질이있기 때문에 가능하다. 특히 이러한 금속 성질은 금속 중 구리에서 강하게 나타나기 때문에 본 발명에서는 불순물이 없으며 순도가 높은 구리 입자(10)를 진공증착하는 것이다.
경우에 따라서 구리 입자(10)를 부착하는 단계에서, 복수의 초전도선재(110, 120)의 최외곽에 구리 안정화재(140)가 형성되도록 초전도선재(110, 120)의 표면 영역에 구리 입자(10)를 진공증착할 수도 있다. 표면 영역에 구리 입자(10)를 진공증착하는 과정은 구리 안정화층(130)을 형성함과 동시에 수행하여 구리 안정화층(130)과 구리 안정화재(140)가 서로 별개의 구성요소로 존재하지 않고 일체로 형성되도록 하는 것이 바람직하다. 이는 진공챔버(200) 내에서 불순물이 표면에 존재하지 않은 상태로 구리 입자(10)를 진공증착하기 때문에 상기에 기재된 대로 구리 입자(10)가 어느 쪽에 속해 있는지 경계가 모호해지기 때문에 가능하다.
여기서 진공증착은 스퍼터링(sputtering) 또는 가열증착(thermal evaporation) 공정을 이용하는 것이 가장 바람직하나, 이에 한정되지는 않는다.
구리 안정화층(130)을 매개로 상기 초전도선재(110, 120) 상호 간을 접합시킨다(S4a).
초전도선재(110, 120)가 손상되지 않을 정도의 압력 범위로 이루어진 가압롤러(300)를 통과시켜 구리 입자(10)를 구리 안정화층(130)으로 형성시킴과 동시에 구리 안정화층(130)을 매개로 제1초전도선재(110) 및 제2초전도선재(120) 상호 간을 접합시킨다. 이때 가압롤러(300)를 통해 별도의 열처리를 하지 않고도 제1초전도선재(110) 및 제2초전도선재(120)를 접합시킬 수 있지만, 필요에 따라서 열처리와 동시에 가압을 수행할 수 있다. 이때 가압롤러(300)는 제1초전도선재(110) 및 제2초전도선재(120)에 열처리를 할 수 있도록 온도를 조절할 수 있는 롤러인 것이 바람직하다.
제1초전도선재(110), 제2초전도선재(120) 및 제1초전도선재(110)와 제2초전도선재(120) 사이에 부착된 순도가 높은 구리 입자(10)를 함께 가압롤러(300)를 통과시켜 도 4b에 도시된 바와 같이 구리 입자(10)를 구리 안정화층(130)으로 형성한다. 제1초전도선재(110)와 제2초전도선재(120) 사이에 부착되어 있던 순도가 높은 구리 입자(10)를 가압을 통해 구리 안정화층(130)으로 형성하며, 이를 통해 구리 입자(10)는 제1초전도선재(110) 및 제2초전도선재(120)와 각각 견고하게 결합되어 적층된 초전도선재(110, 120)가 c축 방향의 힘을 받아 이탈하는 문제를 방지할 수 있다. 또한 상온에서 극저온으로 초전도선재유니트(100)가 배치되더라도 열팽창계수 차이에 의해 초전도선재(110, 120)가 구리 안정화층(130)과 분리되는 문제가 발생하지 않는다.
특히 구리 입자(10)를 진공증착하여 구리 안정화층(130)을 형성하게 되면 종래의 안정화층보다 훨씬 얇은 두께의 구리 안정화층(130)을 얻을 수 있다. 종래에는 안정화층을 별도로 준비하고 복수의 초전도선재 사이에 배치한 후 이를 고온에서 가압하여 적층하거나, 또는 하나의 초전도선재 전면을 둘러싸도록 안정화재를 형성한 다음 이 초전도선재를 서로 적층시켜 표면의 안정화재가 안정화층 역할을 하도록 초전도선재를 제작하였다. 이 경우 별도로 제조되는 안정화층 또는 표면에 둘러쌓인 안정화재가 10 내지 20㎛의 두께로 이루어지기 때문에 이를 포함하는 적층 초전도선재의 경우 전체적인 단면적이 증가하였다. 초전도선재의 단면적이 증가하게 되면 단위면적당 전류인 Je가 감소하게 되는 단점이 있다. 하지만 본 발명의 경우 구리 입자(10)의 진공증착을 통해 얇으면서 견고하게 고정되는 구리 안정화층(130)을 얻을 수 있으며, 이로 인해 초전도선재유니트(100)의 Je가 종래의 초전도선재보다 증가한다는 이점이 있다.
여기서 구리 안정화층(130)은 1 내지 6㎛의 두께를 가지는 것이 바람직하다. 구리 안정화층(130)의 두께가 1㎛ 미만일 경우 제1초전도선재(110)와 제2초전도선재(120)가 서로 견고하게 결합되지 않고 분리될 우려가 있으며, 6㎛의 두께를 초과할 경우 전체적인 초전도선재유니트(100)의 두께가 증가하여 단위면적당 전류(Je)가 감소한다는 단점이 있다.
제2실시예에 따른 초전도선재유니트(400)는 제1실시예에 따른 초전도선재유니트(100) 및 적합방법과 유사하나 복수의 초전도선재(110, 120)를 적층하는 대신 보강선재(420)와 초전도선재(410)를 적층 접합한다는 점에서 차이가 있다.
제2실시예에 따른 적층 접합된 초전도선재유니트(400)는, 도 5에 도시된 바와 같이 하나의 초전도선재(410)와, 초전도선재(410) 상부 또는 하부에 사이에 적층되는 보강선재(420)와, 초전도선재(410) 및 보강선재(420) 사이에 적층되는 구리 안정화층(430)을 포함한다.
이때 보강선재(420)는 스테인레스 스틸(stainless steel) 또는 브라스(brass)와 같은 고강도 선재를 사용하여 초전도선재유니트(410)의 강도를 강하게 할 수 있다. 또한 보강선재(420)가 구리 진공증착에 의해 초전도선재(410)와의 접합이 용이하도록 보강선재(420)의 외주면에 구리코팅층(440)이 형성되어 있는 것이 바람직하다. 경우에 따라서 보강선재(420)는 초전도선재(410)의 강도를 더욱 증가시키기 위해 초전도선재(410)의 상부 및 하부에 각각 적층되도록 도 6에 도시된 바와 같이 복수 개가 접합될 수 있다.
이와 같은 초전도선재유니트(400)는 도 7에 도시된 바와 같이 초전도선재(410) 및 보강선재(420) 표면을 세척하는 단계(S1b)와, 초전도선재(410) 및 보강선재(420)를 이격되는 상태로 진공챔버(200) 내에 장입하는 단계(S2b)와, 불순물이 없으며 순도가 높은 구리 입자(10)를 진공증착하여 초전도선재(410) 및 보강선재(420) 사이에 구리 입자(10)를 부착하는 단계(S3b)와, 구리 안정화층(430)을 매개로 초전도선재(410) 및 보강선재(420) 상호 간을 접합시키는 단계(S4b)를 통해 접합되며, 이러한 단계는 제1실시예의 초전도선재 접합방법과 유사하므로 자세한 설명은 생략한다.
종래의 적층 접합된 초전도선재는 별도의 안정화층을 제작하여 초전도선재 사이에 적층시켜 이를 납땜하는 방식을 통해 제조하였으나, 이 경우 두께가 두꺼운 안정화층에 의해 적층 초전도선재의 단위면적당 전류가 감소하는 단점이 있었다. 또한 솔더부재를 통해 전면이 둘러쌓인 초전도선재를 적층하는 경우에도 초전도선재 사이에 배치되는 솔더부재의 두께가 두꺼워 이 역시 단위면적당 전류가 감소하는 단점이 있었다.
또한 안정화층을 초전도선재와 접합하거나 초전도선재 전면을 둘러싸기 위해 사용되는 솔더부재는 안정화층과 열팽창계수가 상이한 소재이기 때문에 상온에서 극저온으로 초전도선재를 배치할 때 열팽창계수 차이에 의해 서로 분리되는 문제점이 있었다. 뿐만 아니라 솔더부재를 접합하기 위해 고온에서 가열이 이루어져야 하기 때문에 초전도선재 일부가 손상되거나 산화가 일어나는 문제가 있었다.
하지만 본 발명의 경우 불순물이 없으며 순도가 높은 구리 입자(10)를 이용하여 진공증착을 통해 구리 안정화층(130, 430)을 형성하기 때문에 얇은 두께의 구리 안정화층(130, 430)을 얻을 수 있어 단위면적당 전류를 증가시킬 수 있다. 또한 순도가 높은 구리 입자(10)는 서로 붙으려는 성질이 있기 때문에 가압을 통해 구리 안정화층(130, 430)을 쉽게 형성할 수 있으며, 특히 보호층(117, 127)이 은 또는 구리일 경우 구리 입자와 비슷한 또는 동일한 열팽창계수를 가짐으로 인해 초전도선재(110, 120, 410)가 열팽창계수 차이에 의해 서로 분리되는 문제가 발생하지 않는다는 장점이 있다.
종래의 구리 코팅된 초전도선재는 납과 같은 저온 용융 솔더를 이용하여 초전도선재를 적층시켰다. 이때 저온 솔더로 납땜된 적층 초전도선재와 또 다른 동일한 적층 초전도선재 간 접합시, 기존 적층 초전도선재 사이에 있는 저온 솔더가 재용융되어 분리되는 문제가 발생하였다.
하지만 본 발명에서 제기된 방법을 통해 제조된 적층 초전도선재유니트(100, 400)의 경우 저온 솔더를 이용한 접합시 초전도선재 간 분리가 일어나지 않는 장점이 있다.
본 발명은 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트에 관한 것으로, 더욱 상세하게는 복수의 초전도선재 또는 보강선재와 초전도선재 사이에 불순물이 없으며 순도가 높은 구리 입자를 이용하여 진공증착을 통해 두께가 얇은 구리 안정화층을 형성할 수 있으며, 이를 통해 단위면적당 전류가 증가되는 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트 분야에 이용가능하다.

Claims (21)

  1. 적층된 초전도선재의 접합방법에 있어서,
    복수의 초전도선재를 이격되는 상태로 각각 진공챔버 내에 장입하는 단계와;
    진공 분위기 하에서 복수의 상기 초전도선재가 서로 적층되는 영역에 구리(Cu) 입자를 진공증착(vacuum evaporation)하여 상기 구리 입자를 부착하는 단계와;
    복수의 상기 초전도선재 및 상기 초전도선재 사이에 부착된 상기 구리 입자를 함께 가압롤러를 통과시켜 상기 구리 입자를 구리 안정화층으로 형성시킴과 동시에 상기 구리 안정화층을 매개로 상기 초전도선재 상호 간을 접합시키는 단계를 포함하는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  2. 제 1항에 있어서,
    상기 초전도선재는,
    금속기판-완충층-초전도층-보호층을 포함하는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  3. 제 2항에 있어서,
    상기 초전도선재를 진공챔버 내에 장입하는 단계에서,
    상기 보호층에 상기 구리 입자를 진공증착하기 위해 복수의 상기 초전도선재는 상기 보호층끼리 근접하도록 서로 마주보게 배치되는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  4. 제 2항에 있어서,
    상기 초전도선재를 진공챔버 내에 장입하는 단계에서,
    상기 금속기판에 상기 구리 입자를 진공증착하기 위해 복수의 상기 초전도선재는 상기 금속기판끼리 근접하도록 서로 마주보게 배치되는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  5. 제 2항에 있어서,
    상기 초전도선재를 진공챔버 내에 장입하는 단계에서,
    복수의 상기 초전도선재는 금속기판-완충층-초전도층-보호층이 서로 동일한 순서로 적층되는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  6. 제 1항에 있어서,
    상기 초전도선재를 진공챔버 내에 장입하는 단계 이전에,
    복수의 상기 초전도선재 표면을 세척하는 단계를 더 포함하는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  7. 제 1항에 있어서,
    상기 구리 입자를 부착하는 단계에서,
    복수의 상기 초전도선재가 접합된 형태의 외표면에 구리 안정화재가 형성되도록 상기 초전도선재의 외표면에 구리 입자를 진공증착 하는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  8. 제 1항에 있어서,
    상기 구리 입자를 부착하는 단계에서,
    상기 진공증착은 스퍼터링(sputtering) 또는 가열증착(thermal evaporation) 방법을 이용하는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  9. 제 1항에 있어서,
    상기 초전도선재 상호 간을 접합시키는 단계에서,
    상기 초전도선재에 열처리를 함과 동시에 가압할 수 있도록 상기 가압롤러는 온도조절이 가능한 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  10. 제 2항에 있어서,
    상기 보호층은,
    은(Ag)으로 이루어진 은 보호층인 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  11. 제 2항에 있어서,
    상기 보호층은,
    은(Ag)으로 이루어진 은 보호층과;
    상기 은 보호층의 상부에 적층되는 구리 보호층으로 이루어진 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  12. 적층된 초전도선재의 접합방법에 있어서,
    초전도선재 및 외주면에 구리코팅층이 형성된 보강선재를 이격되는 상태로 각각 진공챔버 내에 장입하는 단계와;
    진공 분위기 하에서 상기 초전도선재 및 상기 보강선재가 서로 적층되는 영역에 구리(Cu) 입자를 진공증착(vacuum evaporation)하여 상기 구리 입자를 부착하는 단계와;
    상기 초전도선재, 상기 보강선재 및 상기 초전도선재와 상기 보강선재 사이에 부착된 상기 구리 입자를 함께 가압롤러를 통과시켜 상기 구리 입자를 구리 안정화층으로 형성시킴과 동시에 상기 구리 안정화층을 매개로 상기 초전도선재 및 상기 보강선재 상호 간을 접합시키는 단계를 포함하는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  13. 제 12항에 있어서,
    상기 보강선재는 상기 초전도선재의 상부 및 하부에 각각 적층되도록 복수 개가 사용되는 것을 특징으로 하는 적층된 초전도선재의 접합방법.
  14. 초전도선재가 적층 접합된 초전도선재유니트에 있어서,
    복수의 초전도선재와;
    복수의 상기 초전도선재가 서로 적층되는 영역에 상기 초전도선재 상호 간을 접합시키는 매개인 구리 안정화층을 포함하는 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트.
  15. 제 14항에 있어서,
    상기 초전도선재는 금속기판-완충층-초전도층-보호층으로 이루어진 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트.
  16. 제 15항에 있어서,
    복수의 상기 초전도선재는 상기 보호층끼리 근접하도록 서로 마주보게 배치되는 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트.
  17. 제 15항에 있어서,
    복수의 상기 초전도선재는 상기 금속기판끼리 근접하도록 서로 마주보게 배치되는 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트.
  18. 제 15항에 있어서,
    복수의 상기 초전도선재는 금속기판-완충층-초전도층-보호층이 서로 동일한 순서로 적층되는 것을 특징으로 하는 적층된 초전도선재유니트.
  19. 제 15항에 있어서,
    상기 보호층은,
    은(Ag)으로 이루어진 은 보호층인 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트.
  20. 제 15항에 있어서,
    상기 보호층은,
    은(Ag)으로 이루어진 은 보호층과;
    상기 은 보호층의 상부에 적층되는 구리 보호층으로 이루어진 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트.
  21. 초전도선재가 적층 접합된 초전도선재유니트에 있어서,
    초전도선재와;
    외주면에 구리코팅층이 형성되며 상기 초전도선재에 적층되는 보강선재와;
    상기 보강선재와 상기 초전도선재가 서로 적층되는 영역에 상기 보강선재와 상기 초전도선재 상호 간을 접합시키는 매개인 구리 안정화층을 포함하는 것을 특징으로 하는 초전도선재가 적층 접합된 초전도선재유니트.
PCT/KR2016/011044 2015-10-02 2016-10-04 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트 WO2017057985A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150139131A KR101845474B1 (ko) 2015-10-02 2015-10-02 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트
KR10-2015-0139131 2015-10-02

Publications (1)

Publication Number Publication Date
WO2017057985A1 true WO2017057985A1 (ko) 2017-04-06

Family

ID=58427655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011044 WO2017057985A1 (ko) 2015-10-02 2016-10-04 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트

Country Status (2)

Country Link
KR (1) KR101845474B1 (ko)
WO (1) WO2017057985A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198937A1 (ko) * 2018-04-10 2019-10-17 한국전기연구원 초전도층이 적층된 고온초전도선재 및 그 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210037378A (ko) 2019-09-27 2021-04-06 한국전기연구원 고온초전도 선재의 제조방법 및 이를 이용한 다중 초전도층을 갖는 고온초전도 선재

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202065A (ja) * 1990-11-30 1992-07-22 Sumitomo Heavy Ind Ltd 酸化物系超電導体と金属系超電導体の接合方法
KR100760993B1 (ko) * 2006-03-15 2007-09-21 한국전기연구원 초전도 선재의 라미네이션 접합 장치 및 방법
KR20100069997A (ko) * 2008-12-17 2010-06-25 한국전기연구원 초전도 선재 및 초전도 선재 접합 방법
KR20110099460A (ko) * 2010-03-02 2011-09-08 한국전기연구원 초전도 선재
KR101374212B1 (ko) * 2013-08-16 2014-03-17 케이조인스(주) ReBCO 고온 초전도 선재 접합 장치 및 이를 이용한 접합 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755899B1 (ko) 2006-09-15 2007-09-06 한국전기연구원 박막형 초전도 선재의 집합방법 및 집합화된 초전도 선재

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202065A (ja) * 1990-11-30 1992-07-22 Sumitomo Heavy Ind Ltd 酸化物系超電導体と金属系超電導体の接合方法
KR100760993B1 (ko) * 2006-03-15 2007-09-21 한국전기연구원 초전도 선재의 라미네이션 접합 장치 및 방법
KR20100069997A (ko) * 2008-12-17 2010-06-25 한국전기연구원 초전도 선재 및 초전도 선재 접합 방법
KR20110099460A (ko) * 2010-03-02 2011-09-08 한국전기연구원 초전도 선재
KR101374212B1 (ko) * 2013-08-16 2014-03-17 케이조인스(주) ReBCO 고온 초전도 선재 접합 장치 및 이를 이용한 접합 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198937A1 (ko) * 2018-04-10 2019-10-17 한국전기연구원 초전도층이 적층된 고온초전도선재 및 그 제조방법
US11659776B2 (en) 2018-04-10 2023-05-23 Korea Electrotechnology Research Institute High temperature-superconducting wire having superconducting layer staked thereon and method for manufacturing same

Also Published As

Publication number Publication date
KR20170039933A (ko) 2017-04-12
KR101845474B1 (ko) 2018-04-04

Similar Documents

Publication Publication Date Title
EP1353339B1 (en) Low resistance conductor, method of producing the same, and electric component using the same
US5801124A (en) Laminated superconducting ceramic composite conductors
EP1449265B1 (en) Superconductor cables and coils
WO2014081097A1 (ko) 고온 초전도 선재
WO2017057985A1 (ko) 적층된 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트
WO2014208843A1 (ko) 라미네이트 구조를 갖는 초전도 선재 그 제조방법
WO2017078287A1 (ko) 구리 이온을 이용한 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트
CA2719469C (en) Interface device and junction box for a htsc degaussing coil
JP2011211110A (ja) 超電導電流リード
US20050016759A1 (en) High temperature superconducting devices and related methods
EP2891160A1 (en) Manufacturing method of superconducting wire and superconducting wire made thereby
WO2021100969A1 (ko) 초전도 층의 박리 방법 및 그의 박리 장치
WO2017043833A1 (ko) 고온 초전도 선재
WO2019198937A1 (ko) 초전도층이 적층된 고온초전도선재 및 그 제조방법
JP2015023056A (ja) 積層パンケーキ型超電導コイル及びそれを備えた超電導機器
WO2021107248A1 (ko) 확산접합을 이용한 고온초전도코일의 제조방법 및 이에 의해 제조되는 고온초전도코일
WO2018236102A1 (ko) 금속-절연체 전이 물질을 구비한 고온 초전도 선재
JP3831307B2 (ja) 低抵抗導体およびその製造方法
JP4414617B2 (ja) 低抵抗導体、その製造方法、電流リード、電力供給用ケーブル、コイル、磁場発生装置、変圧器及び交流電源
JPH0412412A (ja) 超電導導体の送電方法
KR102668419B1 (ko) 다중 초전도층을 가지는 고온초전도선재
JP7127463B2 (ja) 酸化物超電導バルク導体
KR20210037378A (ko) 고온초전도 선재의 제조방법 및 이를 이용한 다중 초전도층을 갖는 고온초전도 선재
US20240071664A1 (en) Joint Schemes for Stacked Plate, Non-Insulated Superconducting Magnets
WO2016175494A1 (ko) 세라믹 선재 및 그의 접합 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16852131

Country of ref document: EP

Kind code of ref document: A1