WO2017057607A1 - 吸湿材料及びその製造方法、包装材料並びに包装物 - Google Patents

吸湿材料及びその製造方法、包装材料並びに包装物 Download PDF

Info

Publication number
WO2017057607A1
WO2017057607A1 PCT/JP2016/078880 JP2016078880W WO2017057607A1 WO 2017057607 A1 WO2017057607 A1 WO 2017057607A1 JP 2016078880 W JP2016078880 W JP 2016078880W WO 2017057607 A1 WO2017057607 A1 WO 2017057607A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
layer
region
thickness
hygroscopic
Prior art date
Application number
PCT/JP2016/078880
Other languages
English (en)
French (fr)
Inventor
小堂 厚司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016189771A external-priority patent/JP2017064708A/ja
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680050317.3A priority Critical patent/CN108025251A/zh
Publication of WO2017057607A1 publication Critical patent/WO2017057607A1/ja
Priority to US15/891,378 priority patent/US20180161723A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof

Definitions

  • the present invention relates to a hygroscopic material, a manufacturing method thereof, a packaging material, and a package.
  • dry products such as foods and pharmaceuticals are packaged with a small bag containing a desiccant such as silica gel in order to keep the humidity in the package low and protect the contents from moisture in the atmosphere.
  • a desiccant such as silica gel
  • This packaging is carried out by putting a dry product into a bag-shaped packaging material, further feeding a small bag containing a desiccant, and sealing the bag-shaped packaging material. Since the step of feeding the desiccant-containing sachet is a step different from the loading of the essential inclusions, although it is usually automated, the packaging step may be complicated. Furthermore, in foods such as confectionery, the desiccant is enclosed in the food. For this reason, there is a concern that the desiccant may be mistakenly mixed into the food due to breakage of the pouch or the desiccant may be accidentally swallowed.
  • a desiccant-containing film that can be used as a packaging material instead of a desiccant-containing sachet has been proposed.
  • a desiccant-mixed film formed by kneading a powdery desiccant such as molecular sieve into a resin has been proposed. It is disclosed. (For example, refer to Japanese Patent No. 3919503).
  • a packaging material capable of controlling the moisture absorption capacity a film for dehumidification comprising a porous film carrying a moisture absorbent has been proposed, and the moisture absorbent is sealed with a film that can control moisture permeability such as air permeability or moisture permeability. It is said that a moisture absorption rate can be controlled by laminating a polyethylene film on one side or a specific region on a film capable of controlling moisture permeation (for example, see JP-A-3-114509).
  • multilayer film which forms a functional layer on a film in a discontinuous pattern shape is proposed in order to make a functionality and a sealing performance compatible (for example, Unexamined-Japanese-Patent No. 2014). No. 0509888).
  • the functional layer since there is a lot of air between the functional layers, even if the functional layers are separated from each other, for example, when the functional layer is a hygroscopic layer, it has a function of suppressing moisture movement between the layers. I don't have it.
  • a resin layer preferably a resin layer having moisture permeability; the same shall apply hereinafter
  • a moisture absorbing layer preferably a moisture absorbing layer having a non-uniform thickness; the same shall apply hereinafter
  • a moisture-proof layer are provided in this order.
  • the first region and the second region present in the peripheral portion of the first region and having a second region thinner than the thickness A have a moisture-proof layer in the first region and the second region.
  • Hygroscopic material ⁇ 2> The moisture-absorbing material according to ⁇ 1>, wherein an occupation ratio of the second region thinner than the thickness A to the entire region of the moisture-absorbing layer is 10% or more and less than 50% in an area ratio in a plan view.
  • the pattern structure in the moisture absorption layer includes the first region, both edges of the first region in the width direction of the moisture absorption layer, and the first region in a direction (orthogonal direction) orthogonal to the width direction of the moisture absorption layer.
  • a second region having a thickness smaller than the thickness A disposed on at least one edge A plurality of the above structures are arranged in a longitudinal direction orthogonal to the width direction of the moisture absorption layer, and in a direction orthogonal to the width direction of the moisture absorption layer, at least one of the first region and the first region in the orthogonal direction described above.
  • the occupancy ratio of the above-mentioned “second region thinner than the thickness A existing in at least one edge of the first region” with respect to the total of the second region thinner than the thickness A existing in one edge portion is The moisture-absorbing material according to ⁇ 1> or ⁇ 2>, wherein the area ratio in a plan view is 10% or more and less than 50%.
  • ⁇ 4> The hygroscopic material according to ⁇ 3>, in which at least one of the second regions arranged at both edges of the first region has a width length of 3 mm or more from the end portion in the width direction of the hygroscopic layer.
  • the thickness A of the moisture absorbing layer in the first region is 20 ⁇ m to 50 ⁇ m, and the thickness of the moisture absorbing layer in the second region thinner than the thickness A is 20% of the thickness of the moisture absorbing layer in the first region of the thickness A.
  • the moisture-absorbing layer is a moisture-absorbing layer having a porous structure containing amorphous silica particles, a water-soluble resin, and a moisture-absorbing agent, and the moisture-absorbing layer has a porosity of 45% to 85%.
  • ⁇ 8> The hygroscopic material according to any one of ⁇ 1> to ⁇ 7>, wherein the hygroscopic layer includes calcium chloride as a hygroscopic agent.
  • a packaging material provided with the moisture-absorbing material according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 12> Forming a patterned adhesive layer on the peeling substrate using at least one selected from an adhesive, a pressure-sensitive adhesive, and a thermoplastic resin, Forming a moisture absorption layer on at least one surface of the resin layer (preferably a resin layer having moisture permeability); Contacting the moisture absorption layer formed on the resin layer with the patterned adhesive layer formed on the substrate for peeling and laminating to form a laminate; By peeling the substrate for peeling from the laminate, the moisture absorbing layer corresponding to the patterned adhesive layer is peeled off, and the patterned moisture absorbing layer (preferably a moisture absorbing layer having a nonuniform thickness) is formed on the surface of the resin layer. And forming a moisture-proof layer on the patterned moisture-absorbing layer.
  • Forming a patterned adhesive layer includes applying at least one selected from an adhesive, a pressure-sensitive adhesive, and a thermoplastic resin in a pattern on a substrate for peeling by a printing method ⁇ The manufacturing method of the moisture-absorbing material as described in 12>.
  • a package which is an adhesive molded body of the hygroscopic material according to any one of ⁇ 1> to ⁇ 10>.
  • a hygroscopic material having a large moisture absorption capacity and capable of maintaining good hygroscopicity for a long time without performing end sealing treatment, a manufacturing method thereof, a packaging material, and a package are provided. .
  • FIG. 3 is a plan view showing a honeycomb pattern which is an example of a pattern structure formed by a first region having a thickness A and a second region having a thickness smaller than A in the moisture absorption layer.
  • FIG. 6 is a plan view showing a lattice pattern as another example of a pattern structure formed by a first region having a thickness A and a second region having a thickness smaller than the thickness A in the moisture absorption layer.
  • solid content in the present specification means a component excluding a solvent, and liquid components such as low molecular weight components other than the solvent are also included in the “solid content” in the present specification.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the moisture-absorbing material of one embodiment of the present invention includes a resin layer and a moisture-absorbing layer having a pattern structure including a first region having a thickness A and a second region having a thickness smaller than the thickness A existing at the peripheral portion of the first region.
  • the moisture-proof layer is provided in this order, and the moisture-proof layer is provided in the first region and the second region of the moisture-absorbing layer.
  • the resin layer in the present disclosure is preferably a resin layer having moisture permeability.
  • the moisture absorption layer in the present disclosure is preferably a moisture absorption layer having a non-uniform thickness.
  • the details of the action of the hygroscopic material of one embodiment of the present invention are not clear, it is estimated as follows.
  • the moisture absorbent material of one embodiment of the present invention when moisture from the outside passes through the moisture barrier layer and reaches the moisture absorbent layer, the moisture once invades into the first region at the end of the moisture absorbent material. Due to the presence of the moisture barrier layer, the second region present at the peripheral edge of the first region, and the moisture barrier layer possessed by the second region, the other first layers adjacent to the first region into which moisture has entered. The penetration of moisture into the region is suppressed.
  • the moisture-absorbing material of one embodiment of the present invention suppresses the ingress of moisture from the end of the material, such as a cutting site, so that a separate sealing process is not required and a desired moisture-absorbing capacity can be obtained over a long period of time. It is possible to hold it across.
  • FIG. 1 is a schematic cross-sectional view of a hygroscopic material 10 according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a hygroscopic material 11 according to another embodiment of the present invention.
  • the moisture-absorbing material 10 includes a moisture-permeable resin layer (hereinafter sometimes referred to as “moisture-permeable resin layer”) 12, a moisture-absorbing layer 14 having a non-uniform thickness, and a moisture-proof layer 16.
  • moisture-permeable resin layer hereinafter sometimes referred to as “moisture-permeable resin layer”
  • the moisture absorption layer 14 having a non-uniform thickness in the moisture absorbent material 10 includes a first region 14A having a thickness A and a second region 14B that is present in the peripheral portion of the first region and is thinner than the thickness A. have.
  • the moisture-absorbing material 11 shown in FIG. 2 includes a moisture-permeable resin layer 12, a moisture-absorbing layer 14 having a non-uniform thickness, and a moisture-proof layer 16 in this order.
  • the moisture absorption layer 14 having a non-uniform thickness in the moisture absorption material 11 includes a first region 14A having a thickness A and a second region 14B present in the peripheral portion of the first region and thinner than the thickness A. have.
  • the moisture-absorbing layer has a first region having a thickness A and a second region that is present in the peripheral portion of the first region and is thinner than the thickness A. It is a uniform moisture absorption layer.
  • the hygroscopic material 10 shown in FIG. 1 has a structure in which a thin hygroscopic layer 14 exists in the second region 14B.
  • the hygroscopic material 11 shown in FIG. 2 has a structure in which the hygroscopic layer 14 does not exist in the second region 14B.
  • the thickness of the moisture absorbing layer in the second region should be thinner than the thickness of the moisture absorbing layer in the first region,
  • a mode in which the thickness is zero, that is, a moisture absorbing layer does not exist in the second region is also included. Therefore, the moisture absorption layer having a non-uniform thickness in the present disclosure is not limited to the embodiment illustrated in FIG. 1, and as illustrated in FIG. 2, the moisture absorption layer is locally disposed through the second region where the moisture absorption layer does not exist. In which a moisture absorption layer, that is, a first region having a thickness A is present.
  • FIG. 3 is a schematic cross-sectional view showing a conventional hygroscopic material 60.
  • the conventional moisture-absorbing material 60 has a moisture-permeable resin layer 62, a moisture-absorbing layer 64, and a moisture-proof layer 66, and the moisture-absorbing layer 64 has a uniform thickness. Therefore, when moisture permeates from the end of the hygroscopic material 60, that is, from the direction of the arrow, there is a concern that the permeated moisture may penetrate to the deep part of the hygroscopic layer 64.
  • the moisture absorption capacity of the moisture absorption layer 64 decreases due to undesired penetration of moisture from the end. When the moisture absorption capacity of the moisture absorbing layer is reduced, for example, a necessary moisture absorbing function may not be given to the inclusion enclosed in the packaging material including the moisture absorbing material.
  • the moisture that has entered from the end portion is the first of the thickness A in the moisture-absorbing layer at the end portion.
  • the region for example, the first region 14A in FIGS. 1 and 2) enters.
  • the moisture-proof layer for example, the moisture-proof layer 16 in FIGS. 1 and 2) included in the first region and the second region ( For example, the second region 14B in FIGS. 1 and 2) and the presence of the moisture-proof layer (for example, the moisture-proof layer 16 in FIGS. 1 and 2) included in the second region are adjacent to the first region at the end.
  • the penetration of moisture into the first region existing inside the hygroscopic material is suppressed.
  • the second region thinner than the thickness A exists in the peripheral portion of the first region of the thickness A in the moisture absorption layer of one embodiment of the present invention.
  • the function and phase of the moisture barrier layer provided in the moisture absorption layer are compatible.
  • the mobility of moisture in the second region is significantly lower than that in the first region. Therefore, the moisture that has entered from the end of the hygroscopic layer is less likely to penetrate to the first region of thickness A existing nearer the center than the end of the hygroscopic material, and is particularly near the article that requires moisture absorption.
  • the moisture-absorbing material of the present disclosure is produced by continuously manufacturing a long moisture-absorbing material, and even if the moisture-absorbing material is cut into any shape and any size, the moisture permeation from the end of the cut piece of the moisture-absorbing layer is It is suppressed at the peripheral edge and hardly penetrates to the deep part, that is, the central part of the hygroscopic material. Therefore, the hygroscopic material can maintain a desired hygroscopic capacity for a long time without performing a special sealing process at the end of the hygroscopic material.
  • the moisture-absorbing material of the present disclosure after cutting into an arbitrary shape, it is not necessary to perform a sealing process on the end, or to manufacture the moisture-absorbing material according to the size of the desired package from the beginning, It also has the advantage of excellent manufacturing efficiency.
  • a hygroscopic material 10 having a second region 14B in which a hygroscopic layer thinner than the thickness A is present at the periphery of the first region 14A having a thickness A is described.
  • a moisture absorbing material 11 having no moisture absorbing layer 14 is also included between adjacent first regions 14 ⁇ / b> A having a thickness A.
  • the hygroscopic material in the present disclosure has the effects of the present disclosure regardless of whether the hygroscopic material 10 shown in FIG. 1 or the hygroscopic material 11 shown in FIG. 2 is used.
  • the thickness of the hygroscopic layer in the non-uniform thickness of the hygroscopic layer does not necessarily need to be composed only of two modes of the hygroscopic layer having the thickness A and the hygroscopic layer thinner than the thickness A, but three or more different thicknesses. It may have a hygroscopic layer.
  • the moisture absorption layer includes a region 14BA having a moisture absorption layer thinner than the thickness A in the second region 14B at the periphery of the first region of thickness A, and a moisture absorption layer thinner than the moisture absorption layer in the region 14AB.
  • the moisture absorption layer has a thickness or the first region 14A having a thickness A has a second region 14B having no moisture absorption layer at the peripheral edge thereof.
  • the thickness A of the hygroscopic layer in the first region of the hygroscopic layer is 20 ⁇ m to 50 ⁇ m, and the thickness of the hygroscopic layer in the second region thinner than the thickness A is the thickness. It is preferable that it is less than 20% of the thickness of the moisture absorption layer in A 1st area
  • the thicker the moisture absorption layer the greater the content of the moisture absorbent contained, and the greater the moisture absorption capacity.
  • the thickness of the moisture absorption layer 14 is preferably 20 ⁇ m to 50 ⁇ m, and more preferably 30 ⁇ m to 40 ⁇ m.
  • the thickness A in the first region of the hygroscopic layer can be measured by cutting the hygroscopic material in a direction perpendicular to the surface direction of the moisture-permeable resin layer and observing the cross section with an optical microscope.
  • the thickness of the hygroscopic layer in the second region is preferably less than 20% of the thickness A of the hygroscopic layer in the first region of thickness A from the viewpoint of more effectively suppressing moisture movement, More preferably, it is more preferably 10% or less.
  • a second region 14B in which no moisture absorption layer exists is provided between adjacent first regions 14A having a thickness A, and the moisture permeable resin layer 12 and the moisture-proof layer are provided in the second region 14B.
  • the aspect in which 16 is in direct contact also has the effect of the present disclosure.
  • the thickness of the hygroscopic layer in the second region can be measured in the same manner as the method for measuring the thickness A in the first region described above.
  • the moisture-absorbing material of the present disclosure may have other layers other than the moisture-permeable resin layer, the moisture-absorbing layer having a non-uniform thickness, and the moisture-proof layer as necessary. Good.
  • the other layer include an adhesive layer.
  • the occupation ratio (ratio) of the second region thinner than the thickness A of the hygroscopic layer with respect to the entire region of the hygroscopic layer is 10% as an area ratio in a plan view seen from a direction orthogonal to the surface having the hygroscopic layer of the support. It is preferable that it is less than 50%.
  • the first region of thickness A is preferably present at a rate exceeding 50% with respect to the entire region of the hygroscopic layer.
  • the area of the second region thinner than the thickness A with respect to the entire region of the hygroscopic layer is 10% or more in a plan view, the effect of suppressing the movement of moisture between the adjacent first regions is sufficiently obtained, and is less than 50%.
  • a sufficient moisture absorption capacity of the moisture absorbing material can be achieved.
  • the area of the second region with respect to the entire region of the moisture absorption layer is more preferably less than 40% and even more preferably less than 20% in plan view.
  • the area of the second region thinner than the thickness A in plan view is more preferably 10% or more and less than 40%, and even more preferably 15% or more and less than 20%, as an area ratio with respect to the entire region of the moisture absorption layer. .
  • the pattern structure formed in the peripheral portion of the first region having the thickness A and having the second region thinner than the thickness A has the first region having the thickness A greater than the thickness A.
  • the first aspect of the present invention is formed, for example, in a so-called sea-island structure pattern in which the first region having a thickness A exists in an island shape in the “second region thinner than the thickness A” corresponding to the sea. May be.
  • sea-island structure patterns include a honeycomb pattern shown in FIG. 4A and a lattice pattern shown in FIG. 4B.
  • FIG. 4A is a plan view showing a honeycomb pattern as an example of a pattern structure formed by the first region 14A having a thickness A and the second region 14B having a thickness smaller than the thickness A.
  • the first region 14A is outlined.
  • the second region 14B is indicated by diagonal lines.
  • 4B is a plan view showing a lattice pattern which is another example of the pattern structure formed by the first region 14A having a thickness A and the second region 14B having a thickness smaller than the thickness A. 14A is shown in white and the second region 14B is shown in diagonal lines.
  • the honeycomb pattern and the lattice pattern are patterns having a repeating structure regularly arranged in one direction.
  • the pattern structure of the moisture absorption layer is, for example, a stone wall structure, An irregular pattern structure such as a camouflage structure may be used.
  • the hygroscopic material of the first aspect even if it is cut at an arbitrary position, the intrusion of moisture from the cut portion to the inside is suppressed. Therefore, there is an advantage that the moisture absorption capacity can be maintained for a long time without performing a separate sealing process.
  • it is easy to manufacture and has a regular repetitive structure from the viewpoint of a hygroscopic material capable of realizing a uniform hygroscopic capacity even when cut as a whole or a desired size.
  • a pattern is preferred.
  • the area ratio of the “second region thinner than the thickness A” with respect to the entire region of the moisture absorption layer can be easily adjusted.
  • the area ratio of the second region to the entire region of the moisture absorption layer is easily adjusted when the pattern structure has the same shape of structural units arranged regularly. be able to.
  • the width W of the second region 14B, the shape of the pattern structure in plan view for example, a hexagon in FIG. 4A, a square in FIG. 4B
  • the width X of the first region 14A By adjusting the width X of the first region 14A, the area ratio of the second region 14B to the entire region of the moisture absorption layer 14 can be easily adjusted.
  • the hygroscopic material may be, for example, a hygroscopic material 30 as shown in FIG.
  • the hygroscopic material 30 is a rectangular first region having a width A in the width direction (arrow direction X) of the hygroscopic layer and a length C in the direction orthogonal to the width direction (arrow direction Y) in the entire region of the hygroscopic layer.
  • the hygroscopic material may be, for example, a hygroscopic material 40 as shown in FIG. In FIG. 7, each symbol has the same meaning as in FIG.
  • the first region 14A is provided such that its longitudinal direction forms an angle with the short axis of the hygroscopic material.
  • the hygroscopic material may be, for example, the hygroscopic material 50 shown in FIG.
  • the first region has a mountain shape (that is, a shape in which a rectangle is bent at the center in the longitudinal direction).
  • the thin region of the moisture-absorbing layer is formed on both edges of the first region (for example, the first region 14A in FIG. 6) in the width direction of the material (for example, the arrow direction X in FIG. 6).
  • region where a moisture absorption layer is thin can be made into the joining area
  • two regions (for example, the region 14B-1 in FIG. 6), which are thin region portions of the moisture absorption layer, present at both edges in the width direction of the moisture absorption material are separated from the width direction end portions of the moisture absorption layer.
  • the width length (for example, width length B in FIG. 6) is preferably 3 mm or more. When the width is 3 mm or more, moisture intrusion (absorption) from the end face is more effectively suppressed.
  • the width length from the end in the width direction of the two regions (for example, the region 14B-1 in FIG. 6) present at both edges in the width direction of the hygroscopic material is a thin region of the hygroscopic layer. Therefore, 5 mm or more is more preferable.
  • the first region for example, the first region 14A in FIG. 6
  • the moisture absorption layer in a direction orthogonal to the width direction of the moisture absorption layer (for example, the arrow direction Y in FIG. 6), the first region (for example, the first region 14A in FIG. 6) and the moisture absorption layer
  • the total area of the second region for example, the region 14B-2 in FIG. 6) existing at one edge of the first region in the direction orthogonal to the width direction (for example, the arrow direction Y in FIG. 6) (For example, in FIG. 6 [(C + D) ⁇ A])
  • the area of the second region for example, the region 14B-2 in FIG. 6) existing at one edge of the first region (for example, In FIG.
  • the occupation ratio (ratio) of [D ⁇ A]) is 10% or more and less than 50% in an area ratio in a plan view as viewed from a direction orthogonal to the surface having the moisture absorption layer of the support. preferable. Since the occupation ratio of the area of the second region is 10% or more in plan view, the effect of suppressing the movement of moisture between the first regions, which are adjacent thick moisture absorption layers, is excellent, and the penetration of moisture from the end face Less. Moreover, when the occupation ratio of the area of the second region is less than 50% in a plan view, the moisture absorption capacity of the moisture absorbent material is excellent. From the viewpoint of moisture absorption capacity, the occupation ratio of the area of the second region is more preferably less than 40% and even more preferably less than 20% in plan view. Furthermore, the occupation ratio of the area of the second region is more preferably 10% or more and less than 40%, and further preferably 15% or more and less than 20% in plan view.
  • Hygroscopic layer The hygroscopic layer of the hygroscopic material 10 of the present disclosure can be used without particular limitation as long as it is a layer that can express the necessary hygroscopicity.
  • a moisture absorbing layer containing a known moisture absorbent such as silica gel, alumina gel, molecular sieve, zeolite, or calcium chloride and a resin as a dispersion medium; And a hygroscopic layer which is a microporous film carrying an agent; and a hygroscopic layer having a porous structure containing amorphous silica, a water-soluble resin, and a hygroscopic agent.
  • a known moisture absorbent such as silica gel, alumina gel, molecular sieve, zeolite, or calcium chloride and a resin as a dispersion medium
  • a hygroscopic layer which is a microporous film carrying an agent
  • a hygroscopic layer having a porous structure containing amorphous silica, a water-soluble resin, and a hygroscopic agent.
  • the hygroscopic layer in the hygroscopic material of the present disclosure includes amorphous silica particles, a water-soluble resin, and a hygroscopic layer.
  • a moisture-absorbing layer having a porous structure containing an agent and having a porosity of 45% to 85% is preferable. Since the moisture absorption layer has a three-dimensional porous structure and a porosity of 45% to 85%, in addition to the moisture absorption capacity of the moisture absorbent, moisture can be retained in the voids of the moisture absorption layer. The hygroscopic capacity of the whole layer becomes better.
  • a preferred hygroscopic layer in the present disclosure has a porous structure including amorphous silica, a water-soluble resin, and a hygroscopic agent, and the hygroscopic layer may further include a cross-linking agent.
  • a moisture absorption layer may also contain other components, such as a dispersing agent and surfactant, as needed. From the viewpoint of the effect, it is preferable to use amorphous silica having an average secondary particle diameter of 10 ⁇ m or less as the amorphous silica.
  • Amorphous silica The hygroscopic layer which is a preferred embodiment of the present disclosure can contain at least one amorphous silica.
  • Amorphous silica is porous amorphous fine particles in which a three-dimensional structure of SiO 2 is formed, and is generally roughly classified into wet method particles and dry method (gas phase method) particles depending on the production method.
  • the Examples of the amorphous silica include gas phase method silica obtained by a dry method and synthetic amorphous silica such as wet silica obtained by a wet method.
  • Vapor Phase Silica Vapor phase silica is silica (silica fine particles) synthesized by vaporizing silicon chloride and causing a gas phase reaction in a high-temperature hydrogen flame. Since vapor-phase process silica has a low refractive index, it is possible to impart transparency to the moisture absorption layer by dispersing it to an appropriate fine particle size. That the moisture absorption layer is transparent is preferable from the viewpoint that the contents of the package can be visually confirmed and an indicator function can be provided.
  • Vapor phase silica is different from hydrous silica in the density of silanol groups on the surface, presence or absence of vacancies, etc., and exhibits different properties, but is suitable for forming a three-dimensional structure with high porosity. Yes.
  • the vapor phase silica contained in the hygroscopic layer is preferably vapor phase silica having a density of silanol groups on the surface of 2 / nm 2 to 3 / nm 2 .
  • the average primary particle size of the vapor phase silica contained in the moisture absorption layer is preferably 20 nm or less, and more preferably 10 nm or less.
  • the average secondary particle diameter of the vapor phase silica contained in the moisture absorption layer is preferably 10 ⁇ m or less, more preferably 50 nm or less, and further preferably 25 nm or less. preferable.
  • the secondary particle size distribution is preferably uniform, and the standard deviation is preferably 10 nm or less, more preferably 8 nm or less, and more preferably 5 nm or less. Further preferred.
  • the average secondary particle diameter of the vapor phase method silica is 10 ⁇ m or less, the transparency and the visibility of the moisture-absorbing material 10 become better.
  • the average primary particle diameter in the present specification is observed with a transmission electron microscope, and for each of 100 primary particles, the projected area is obtained and the diameter when assuming a circle equal to the area is obtained.
  • the average secondary particle diameter in the present specification is observed with a scanning electron microscope, and for each of 100 aggregated particles, the projected area is obtained and the diameter when a circle equal to the area is assumed is obtained.
  • vapor phase silica Commercial products may be used as the vapor phase silica.
  • examples of commercially available vapor phase silica that can be used in the present disclosure include AEROSIL (trade name, manufactured by Nippon Aerosil Co., Ltd.), Leorosil (trade name, manufactured by Tokuyama Corp.), WAKER HDK (trade name, Asahi Kasei).
  • CAB-O-SIL trade name, manufactured by CABOT Co., Ltd.
  • AEROSIL300SF75 (trade name, manufactured by Nippon Aerosil Co., Ltd.) is preferable.
  • Wet silica is hydrous silica obtained by producing active silica by acid decomposition of silicate, polymerizing it moderately and coagulating it.
  • Precipitated silica is produced by reacting sodium silicate and sulfuric acid under alkaline conditions, and the silica particles that have grown are agglomerated and settled, followed by filtration, washing with water, drying, pulverization and classification.
  • the precipitated silica include nip seal (trade name) manufactured by Tosoh Silica Co., Ltd. and Toku seal (trade name) manufactured by Tokuyama Corporation.
  • the gel silica is obtained by reacting sodium silicate and sulfuric acid under acidic conditions. Specific examples include nip gel (trade name) manufactured by Tosoh Silica Co., and syroid (trade name) manufactured by Grace Japan. A silo jet (trade name) may be mentioned.
  • the specific surface area of the amorphous silica contained in the moisture absorption layer by the BET method is preferably 200 m 2 / g or more, and more preferably 250 m 2 / g or more.
  • the specific surface area of the vapor-phase process silica is 200 m 2 / g or more, it is possible to keep the moisture-absorbing layer highly transparent.
  • the BET method in this specification is one of powder surface area measurement methods by vapor phase adsorption method, and is a method for obtaining the total surface area, that is, the specific surface area of a 1 g sample from the adsorption isotherm.
  • nitrogen gas is often used as the adsorbed gas, and the most frequently used method is to measure the amount of adsorption from the change in pressure or volume of the gas to be adsorbed.
  • the most prominent expression for representing the isotherm of multimolecular adsorption is the Brunauer Emmett Teller equation, called the BET equation, which is widely used for determining the surface area.
  • the adsorption amount is obtained based on the BET equation, and the surface area is obtained by multiplying the area occupied by one adsorbed molecule on the surface.
  • the content of amorphous silica in the moisture absorption layer is preferably 20% by mass to 80% by mass, and preferably 30% by mass to 70% by mass with respect to the total solid content of the moisture absorption layer, from the viewpoint of the moisture absorption capacity and transparency of the moisture absorption layer.
  • the mass% is more preferable.
  • a dispersant for example, a chaotic polymer can be used.
  • the chaotic polymer include mordant examples described in paragraphs [0138] to [0148] of JP-A-2006-321176.
  • the dispersion method for realizing the secondary particle size of the above-mentioned vapor phase method silica include, for example, a high-speed rotary disperser, a medium stirring disperser (such as a ball mill, a sand mill, and a bead mill), an ultrasonic disperser, and a colloid mill.
  • Various conventionally known dispersers such as a disperser or a high-pressure disperser can be used. Among them, a bead mill disperser and a liquid / liquid collision type disperser are preferable, and a liquid / liquid collision type disperser is more preferable.
  • the liquid-liquid collision type disperser include an optimizer (trade name, manufactured by Sugino Machine Co., Ltd.).
  • the preferable moisture absorption layer in this indication can contain at least one sort of water-soluble resin.
  • the vapor phase silica is contained in a more suitably dispersed state, and the strength of the moisture absorption layer is further improved.
  • the water-soluble resin that can be used in the present disclosure refers to a resin that finally dissolves in an amount of 0.05 g or more in 100 g of water at 20 ° C. through a heating or cooling step, and preferably a resin that dissolves in an amount of 0.1 g or more.
  • water-soluble resins examples include polyvinyl alcohol resins that are resins having a hydroxy group as a hydrophilic structural unit [polyvinyl alcohol (PVA), acetoacetyl-modified polyvinyl alcohol, cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, silanol-modified polyvinyl.
  • PVA polyvinyl alcohol
  • acetoacetyl-modified polyvinyl alcohol acetoacetyl-modified polyvinyl alcohol
  • cation-modified polyvinyl alcohol anion-modified polyvinyl alcohol
  • silanol-modified polyvinyl silanol-modified polyvinyl.
  • cellulose resins [methyl cellulose (MC), ethyl cellulose (EC), hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, etc.], Chitins, chitosans, starch, resins with ether bonds [polypropylene oxide (PPO), poly Ji glycol (PEG), poly ether (PVE)], and resins having carbamoyl groups [polyacrylamide (PAAM), polyvinyl pyrrolidone (PVP), polyacrylic acid hydrazide, etc.] and the like.
  • PPO polypropylene oxide
  • PEG poly Ji glycol
  • PVE poly ether
  • PAAM polyacrylamide
  • PVP polyvinyl pyrrolidone
  • polyacrylic acid hydrazide etc.
  • water-soluble resin examples include polyacrylates having a carboxyl group as a dissociable group, maleic acid resins, alginates, and gelatins.
  • a polyvinyl alcohol-based resin is preferable from the viewpoint of the film strength of the moisture absorption layer, and polyvinyl alcohol is particularly preferable.
  • the polymerization degree of the water-soluble resin is preferably 1500 or more, more preferably 2000 or more, and further preferably 3300 or more.
  • the degree of polymerization is preferably 4500 or less.
  • the water-soluble resin is a polyvinyl alcohol resin, and the polymerization degree of the polyvinyl alcohol resin is preferably 1800 or more, and the polymerization degree of the polyvinyl alcohol resin is 2000 or more. It is more preferable that the degree of polymerization of the polyvinyl alcohol-based resin is 2400 or more.
  • the polymerization degree of the polyvinyl alcohol resin is more preferably 4500 or less.
  • the saponification degree of the water-soluble resin is preferably 99% or less, more preferably 95% or less, and further preferably 90% or less. Further, the saponification degree is preferably 70% or more, more preferably 78% or more, and further preferably 85% or more. Among them, from the viewpoint of transparency of the moisture absorption layer, the water-soluble resin is a polyvinyl alcohol resin, and the saponification degree of the polyvinyl alcohol resin is preferably 70% or more and 99% or less, more preferably 78% or more and 99% or less. Preferably, it is 85% or more and 99% or less. When the water-soluble resin has a saponification degree of 70% or more, it is practically suitable for maintaining water-solubility.
  • the water-soluble resin used for the hygroscopic layer 14 is preferably polyvinyl alcohol having a saponification degree of 99% or less and a polymerization degree of 3300 or more.
  • the polyvinyl alcohol has a saponification degree in the range of 78% to 99% and a polymerization degree in the range of 1500 to 4500. It is more preferable to use polyvinyl alcohol in the range of 2400 to 3500.
  • the degree of saponification of polyvinyl alcohol is low and the degree of polymerization is high, so that a porous structure equivalent to the case using a crosslinking agent can be formed.
  • the saponification degree of polyvinyl alcohol is preferably in the range of 78% to 99%
  • the polymerization degree of polyvinyl alcohol is preferably in the range of 2400 to 4500.
  • 1 type of water-soluble resin contained in a moisture absorption layer may be single, and it may use 2 or more types together.
  • the content of the water-soluble resin in the moisture-absorbing layer (the total content when two or more types are used in combination) is the viewpoint of preventing a decrease in film strength and cracking during drying due to an excessive content, and the content From the viewpoint of preventing the voids from being easily blocked by the resin due to an excessive amount of moisture and preventing the moisture absorption from decreasing due to a decrease in the void ratio, 4.0% by mass to 16. 0 mass% is preferable, and 6.0 mass% to 14.0 mass% is more preferable.
  • the content of polyvinyl alcohol in the moisture absorption layer is 10% by mass to 60% by mass with respect to the total mass of the amorphous silica.
  • the content is preferably 15% by mass to 30% by mass.
  • the content of polyvinyl alcohol in the moisture absorption layer is preferably in the range of 25% by mass to 60% by mass with respect to the total mass of the amorphous silica. .
  • the water-soluble resin has a hydroxyl group in its structural unit, and this hydroxyl group and a silanol group on the surface of the vapor phase method silica form a hydrogen bond, and a three-dimensional network having a secondary particle of the vapor phase method silica as a chain unit. Make the structure easier to form. It is considered that a hygroscopic layer having a porous structure with a high porosity can be formed by forming such a three-dimensional network structure.
  • the obtained moisture absorption layer having a porous structure is presumed to function as a layer for retaining moisture after moisture absorption.
  • the preferable aspect of the porosity of a moisture absorption layer and the measuring method of the porosity are mentioned later.
  • the hygroscopic layer can contain at least one crosslinking agent capable of forming a crosslinked structure in the water-soluble resin.
  • a crosslinked structure is formed by a crosslinking reaction in a layer containing a water-soluble resin such as polyvinyl alcohol, and a moisture absorption layer having a porous structure cured at a higher level is formed by the crosslinked structure. Therefore, it is preferable.
  • boron compounds which may be used as a crosslinking agent, borax, boric acid, borates (eg, orthoborate, InBO 3, ScBO 3, YBO 3, LaBO 3, Mg 3 (BO 3) 2, Co 3 ( BO 3 ) 2 , diborate (eg, Mg 2 B 2 O 5 , Co 2 B 2 O 5 ), metaborate (eg, LiBO 2 , Ca (BO 2 ) 2 , NaBO 2 , KBO 2 ), Tetraborate (eg, Na 2 B 4 O 7 ⁇ 10H 2 O), pentaborate (eg, KB 5 O 8 ⁇ 4H 2 O, CsB 5 O 5 ), and hexaborate (eg, Ca 2 B 6 O 11 ⁇ 7H 2 O) , and the like.
  • borax boric acid
  • borates eg, orthoborate, InBO 3, ScBO 3, YBO 3, LaBO 3, Mg 3 (BO 3) 2, Co 3 ( BO 3 ) 2
  • diborate
  • borax, boric acid and borates are preferable, and boric acid is particularly preferable in that the crosslinking reaction can proceed more rapidly.
  • Polyvinyl alcohol-based resin suitably used as a water-soluble resin. Most preferably used in combination.
  • the moisture absorption layer may be configured not to contain a crosslinking agent such as boric acid.
  • the boron compound as a crosslinking agent is in the range of 0.15% to 5.80% by mass with respect to 4.0% to 16.0% by mass of polyvinyl alcohol. It is preferably contained, and more preferably in the range of 0.75% by mass to 3.50% by mass.
  • the content of the boron compound is in the above range, polyvinyl alcohol is effectively cross-linked, and the occurrence of undesired cracks in the moisture absorption layer is suppressed.
  • crosslinking agent other than a boron compound as a crosslinking agent suitable for polyvinyl alcohol may be hereinafter referred to as “other crosslinking agent”.
  • crosslinking agents examples include aldehyde compounds such as formaldehyde, glyoxal, and glutaraldehyde; ketone compounds such as diacetyl and cyclopentanedione; bis (2-chloroethylurea) -2-hydroxy-4,6-dichloro Active halogen compounds such as 1,3,5-triazine and 2,4-dichloro-6-S-triazine sodium salt; divinylsulfonic acid, 1,3-vinylsulfonyl-2-propanol, N, N′-ethylene Active vinyl compounds such as bis (vinylsulfonylacetamide) and 1,3,5-triacryloyl-hexahydro-S-triazine; N-methylol compounds such as dimethylolurea and methyloldimethylhydantoin; melamine resins (eg, methylol) Melamine, alkylated methylol melamine); Poxy resin;
  • Hydrazide compounds and low molecules or polymers containing two or more oxazoline groups. What is necessary is just to select another crosslinking agent suitably according to the kind of water-soluble resin used for a moisture absorption layer.
  • the other crosslinking agent contained in the moisture absorption layer may be used alone or in combination of two or more.
  • Hygroscopic agent A preferred hygroscopic layer in the present disclosure may contain at least one hygroscopic agent.
  • the hygroscopic agent include silica gel, alumina gel, zeolite, water-absorbing polymer, and hygroscopic salt.
  • Hygroscopic salts are preferable in terms of the hygroscopic rate.
  • hygroscopic salts include metal halides such as lithium chloride, calcium chloride, magnesium chloride, and aluminum chloride; metal sulfates such as sodium sulfate, calcium sulfate, magnesium sulfate, and zinc sulfate; metals such as potassium acetate Amine salts such as dimethylamine hydrochloride; phosphoric acid compounds such as orthophosphoric acid; guanidine salts such as guanidine hydrochloride, guanidine phosphate, guanidine sulfamate, guanidine methylol phosphate, guanidine carbonate; and potassium hydroxide, sodium hydroxide And metal hydroxides such as magnesium hydroxide.
  • a hygroscopic agent contains a calcium chloride from a viewpoint that moisture absorption capacity is higher.
  • the content of the hygroscopic agent in the hygroscopic layer is controlled by the coating amount per unit area.
  • the coating amount of the moisture absorbent from the viewpoint of compatibility of moisture capacity and transparency, preferably 1g / m 2 ⁇ 20g / m 2, more preferably 2.5g / m 2 ⁇ 15g / m 2, 5g / m 2 ⁇ 13 g / m 2 is more preferable.
  • the thickness A of the hygroscopic layer in the present disclosure is preferably 20 ⁇ m to 50 ⁇ m, more preferably 25 ⁇ m to 45 ⁇ m, and even more preferably 30 ⁇ m to 45 ⁇ m, from the viewpoint of achieving both hygroscopic capacity and transparency.
  • the thickness A of the hygroscopic layer is in the above range, a larger hygroscopic capacity can be obtained and both transparency can be achieved.
  • the moisture absorbing layer having a porous structure is formed by a coating method. However, when the thickness A exceeds 50 ⁇ m, it may be difficult to produce a moisture absorbing layer having a uniform thickness.
  • the porosity of the hygroscopic layer in the hygroscopic material of the present disclosure is preferably 45% to 85%, more preferably 50% to 80%, and even more preferably 55% to 75%.
  • the porosity of the moisture absorption layer is 45% or more, a larger moisture absorption capacity is obtained, and when the porosity of the moisture absorption layer is 85% or less, the film strength is prevented from lowering and cracking during drying is suppressed. Can do.
  • the mercury intrusion method or the moisture absorption layer is immersed in an organic solvent such as diethylene glycol, the void volume is measured from the mass change, and the thickness of the moisture absorption layer is measured and observed by microscopic observation of the cross section.
  • an organic solvent such as diethylene glycol
  • the hygroscopic layer of the present disclosure preferably has a thickness of 20 ⁇ m to 50 ⁇ m and a porosity of 45% to 85%.
  • the average pore diameter in the preferred moisture-absorbing layer of the present disclosure is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 25 nm or less from the viewpoint of moisture absorption capacity. Sufficient transparency is obtained when the average pore diameter of the moisture absorption layer is 40 nm or less.
  • the average pore diameter is a value measured by a mercury intrusion method using Shimadzu Autopore 9220 (trade name, manufactured by Shimadzu Corporation).
  • a method of forming a uniform hygroscopic layer and forming unevenness on the surface with an embossing roll to make the thickness non-uniform a method of peeling and removing at least a part of the uniform hygroscopic layer, and a hygroscopic property as a substrate
  • a method of locally forming a hygroscopic layer on the surface of the resin layer by a printing method and the like examples thereof include a method of locally forming a thick hygroscopic layer region and a thin hygroscopic layer region.
  • the preferable manufacturing method of the hygroscopic material of this indication is mentioned later.
  • the moisture-absorbing material (for example, the moisture-absorbing material 10 shown in FIG. 1 and the moisture-absorbing material 11 in FIG. 2) has a thickness of the moisture-permeable resin layer (for example, the moisture-permeable resin layer 12 in FIGS. 1 and 2). It has a uniform moisture-absorbing layer (for example, the moisture-absorbing layer 14 in FIGS. 1 and 2) and a moisture-proof layer (for example, the moisture-proof layer 16 in FIGS. 1 and 2).
  • the moisture permeability of the moisture permeable resin layer is preferably in the range of 1 g / m 2 ⁇ day to 50 g / m 2 ⁇ day.
  • the moisture permeability in this specification is a value measured by the method described in JIS Z 0208 (1976).
  • the moisture-proof packaging material is a boundary surface at a temperature of 25 ° C.
  • a value obtained by converting the mass (g) of the passing water vapor per 1 m 2 of the material is defined as the moisture permeability of the material.
  • the moisture-permeable resin layer contains at least a film-forming resin and may contain other components as necessary.
  • resins that can be used for the moisture permeable resin layer include linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE), unstretched polypropylene (CPP), biaxially stretched polypropylene (OPP), And polyacrylonitrile (PAN).
  • LLDPE and CPP are preferable from the viewpoint of versatility, and CPP is more preferable.
  • the thickness of the moisture-permeable resin layer is preferably 20 ⁇ m to 100 ⁇ m, and more preferably 20 ⁇ m to 80 ⁇ m.
  • the handling property of the entire moisture-absorbing material and the handling property when used as a packaging material can be achieved at a higher level.
  • the moisture absorption rate of the moisture absorption layer can be controlled by adjusting at least one of the material and thickness of the moisture permeable resin layer in the moisture absorption material of the present disclosure.
  • the moisture-permeable resin layer can be used as an adhesion site.
  • it can be set as the aspect which a moisture absorption layer does not contact an inclusion directly by having a moisture-permeable resin layer in the inclusion side of a packaging material.
  • a moisture absorption material has a moisture-proof layer (for example, moisture-proof layer 16 in Drawing 1 and Drawing 2).
  • the moisture-proof layer is not particularly limited as long as it is a layer containing a moisture-proof material.
  • the moisture-proof layer is preferably a layer having a moisture permeability of less than 1 g / m 2 ⁇ day.
  • As a method for measuring moisture permeability the same method as described in the moisture-permeable resin layer can be applied.
  • the moisture-proof layer may be a layer made of one material, or may have a laminated structure of layers containing two or more materials.
  • a resin film with low moisture permeability that satisfies the above moisture permeability a laminate of different resin films, a laminated film in which a metal or an inorganic material is deposited on the resin film, or a laminate of a resin film and a metal sheet
  • the laminated film etc. which were made can be used suitably.
  • a metal sheet such as a metal sheet or a metal sheet previously deposited on a resin sheet, paper, or the like may be used.
  • the material used for the moisture-proof layer is a laminated film having an inorganic material layer or a metal layer such as a silica vapor-deposited film, an alumina vapor-deposited film or an aluminum vapor-deposited film, and a metal such as an aluminum foil, from the viewpoint that sufficient moisture-proof properties can be obtained. Sheets are preferred.
  • a commercial product may be used as the moisture-proof layer. Examples of commercially available products include Tech Barrier MX (trade name) (namely, silica-deposited PET) manufactured by Mitsubishi Plastics, and Barrier Rocks (trade name) (namely, alumina-deposited PET) manufactured by Toray Industries, Inc. It is done.
  • the thickness of the moisture-proof layer is preferably 6 ⁇ m to 120 ⁇ m, more preferably 6 ⁇ m to 100 ⁇ m, from the viewpoint of moisture resistance.
  • the hygroscopic material may further include an adhesive layer.
  • the adhesive layer has moisture permeability, and the moisture absorption rate in the moisture absorption layer can be controlled by the thickness and type of the adhesive layer.
  • a moisture absorption layer for example, the moisture absorption layer 14 in FIG.1 and FIG.2
  • a moisture-proof layer for example, the moisture-proof layer 16 in FIG.1 and FIG.2
  • a moisture absorption layer for example, the moisture-permeable resin
  • Adhesion with the layer for example, the moisture-permeable resin layer 12 in FIGS. 1 and 2 can be further strengthened.
  • the kind of adhesive used for the adhesive layer is not particularly limited.
  • adhesives examples include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, and silicone adhesives. From the viewpoint of higher adhesion strength, urethane resin adhesives are preferable.
  • the adhesive layer preferably contains at least one urethane resin adhesive.
  • a combined system of a urethane resin adhesive and one or more adhesives other than the urethane resin adhesive is also preferably exemplified.
  • the thickness of the adhesive layer is preferably 3 ⁇ m to 15 ⁇ m, more preferably 3 ⁇ m to 10 ⁇ m, from the viewpoint of adhesive strength and handleability when used as a packaging material.
  • the thickness of the adhesive layer is in the above range, both the adhesive strength and the handleability when used as a packaging material can be achieved at a higher level.
  • rate of a moisture absorption layer is controllable by selecting thickness in the said range.
  • the moisture-absorbing material of the present disclosure may be, for example, a material in which a moisture-permeable resin layer 12, a moisture-absorbing layer 14 having a non-uniform thickness, and a moisture-proof layer 16 illustrated in FIG. From the viewpoint of making the moisture permeation suppression effect between the first regions of thickness A more favorable, as the moisture-absorbing material of the present disclosure, an adhesive is provided between the moisture-absorbing layer and the moisture-proof layer. An embodiment in which the moisture absorption layer and the moisture proof layer are bonded to each other is also preferable.
  • the penetration of moisture from the end portion is suppressed by the second region of the moisture absorbent layer and the moisture proof layer without entering the end portion, and enters the deep portion of the moisture absorbent material. Therefore, a sufficient moisture absorption capacity can be maintained over a long period. For this reason, the hygroscopic material of this indication can be used suitably for the packaging material for maintaining the dry state of an inclusion for a long period of time.
  • the method of manufacturing the moisture-absorbing material of the present disclosure Forming at least one selected from an adhesive, a pressure-sensitive adhesive, and a thermoplastic resin on a peeling substrate, and forming a patterned adhesive layer; Forming a moisture absorption layer on at least one surface of the resin layer (preferably a resin layer having moisture permeability); Contacting the moisture absorption layer formed on the resin layer with the patterned adhesive layer formed on the substrate for peeling and laminating to form a laminate; By peeling the substrate for peeling from the laminate, the moisture absorbing layer corresponding to the patterned adhesive layer is peeled off, and the patterned moisture absorbing layer (preferably a moisture absorbing layer having a nonuniform thickness) is formed on the surface of the resin layer.
  • FIGS. 5A to 5D are schematic views showing a manufacturing process as an example of a method for manufacturing a hygroscopic material taking the hygroscopic material 11 shown in FIG. 2 as an example.
  • An example of a method for producing a moisture-absorbing material according to the present disclosure uses at least one selected from an adhesive, a pressure-sensitive adhesive, and a thermoplastic resin (hereinafter sometimes referred to as an adhesive or the like) for the peeling substrate 20.
  • the patterned adhesive layer 22 is formed (see FIG. 5A)
  • the moisture absorbing layer 14 is formed on at least one surface of the moisture permeable resin layer 12 (see FIG. 5B)
  • the formed moisture absorbing layer 14 is formed.
  • the patterned adhesive layer 22 formed on the peeling substrate 20 are brought into contact with each other and laminated to form a laminate (see FIG. 5B), and the peeling substrate 20 is peeled from the laminate.
  • the moisture absorption layer corresponding to the adhesive layer 22 formed in a pattern is peeled to form the moisture absorption layer 14 having a non-uniform thickness on the surface of the resin layer 12 having moisture permeability (see FIG. 5C), and the thickness.
  • a moisture barrier layer 16 on the non-uniform moisture absorbent layer 14 It is formed (see FIG. 5D), including.
  • the manufacturing method shown in FIGS. 5A to 5D corresponds to the embodiment shown in FIG. 2 in which the hygroscopic layer is not present in the second region 14B of the hygroscopic layer 14, but as shown in FIG.
  • the aspect in which the hygroscopic layer exists in the second region 14B thinner than the first region 14A also includes the thickness of the adhesive layer 22, the type of adhesive used for forming the adhesive layer, and the drying conditions as described in detail below. By controlling, it can be manufactured in the same process. Using at least one selected from an adhesive, a pressure-sensitive adhesive, and a thermoplastic resin as a peeling substrate, forming a patterned adhesive layer on at least one surface of a moisture-permeable resin layer The formation of the moisture absorbing layer may be performed either first or separately in parallel.
  • the moisture-proof layer having a uniform thickness can be easily formed with a general-purpose coating apparatus.
  • the moisture absorption layer having a uniform thickness is a moisture absorption layer that forms the first region of thickness A. At least a part of the thickness A is peeled off from the hygroscopic layer by a method in which the adhesive layer is brought into close contact with the surface of the hygroscopic layer having a uniform thickness, and a second region thinner than the thickness A is formed. According to the method using the patterned adhesive layer, it is possible to easily form a moisture absorption layer having a non-uniform thickness and having an arbitrary pattern structure in a desired shape at a desired position of the moisture absorption layer. .
  • a patterned adhesive layer 22 is formed on at least one surface of the substrate 20 using an adhesive or the like.
  • the peeling base material 20 used in this step can stably hold the patterned adhesive layer 22 applied to the peeling base material 20, and after peeling the adhesive layer 22 to the surface of the moisture absorbing layer 14, peeling is performed.
  • the base material has a strength that does not break when it is used, it can be used without particular limitation.
  • a resin sheet or a paper laminated with a resin can be used as the peeling substrate.
  • a resin sheet is preferable from the viewpoint of easy acquisition and processing.
  • the resin sheet include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and sheets made of resins such as polyethylene (PE) and polypropylene (PP), and PET sheets and the like are preferable.
  • a surface treatment for easy adhesion such as corona discharge treatment may be previously performed on the side on which the adhesive layer is formed.
  • commercially available products may be used as the substrate for peeling, and examples of commercially available products include biaxially stretched PET film Lumirror (registered trademark) manufactured by Toray Industries, Inc.
  • the method of forming the adhesive layer in the region corresponding to the second region thinner than the thickness A on the surface of the peeling substrate there is no particular limitation on the method of forming the adhesive layer in the region corresponding to the second region thinner than the thickness A on the surface of the peeling substrate, and a known method can be applied.
  • a patterned adhesive layer can be formed.
  • the method for forming the adhesive layer include a printing method such as gravure printing, letterpress printing, ink jet printing, and screen printing, and a method of applying an intermittent coating method that controls discharge of liquid using slot die coating.
  • a printing method such as gravure printing, letterpress printing, ink jet printing, and screen printing
  • an intermittent coating method that controls discharge of liquid using slot die coating from the viewpoint of easily forming a desired pattern structure and easily forming an adhesive layer having a predetermined thickness according to the thickness of the moisture absorbing layer to be peeled off, it is bonded to the peeling substrate.
  • gravure printing, screen printing, or the like can be applied to form a pattern structure having regular repetition.
  • a regular repeating pattern-like adhesive layer is easily formed on the surface of the substrate for peeling by producing a gravure roll having a regular repeating pattern structure and using it for printing. be able to.
  • a pattern structure other than a regular repetitive pattern structure can be easily formed.
  • the adhesive for forming the adhesive layer is not particularly limited as long as the adhesiveness with the moisture absorbing layer is good.
  • the moisture absorbing layer having voids which is the preferred embodiment described above, it is possible to control the peeling thickness of the moisture absorbing layer by using an adhesive that easily penetrates into the deep part of the voids of the moisture absorbing layer. From the viewpoint of easy.
  • Adhesives used for forming the adhesive layer include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, and silicones. From the viewpoint that the adhesive strength with the moisture absorption layer is higher, urethane resin adhesives are preferable.
  • Examples of commercially available products include urethane resin adhesives (trade name: LIS-073-50U) manufactured by Toyo Ink Co., Ltd.
  • the adhesive is also preferably used in combination with a curing agent (trade name: CR-001, manufactured by Toyo Ink Co., Ltd.).
  • Examples of the pressure-sensitive adhesive used for forming the adhesive layer include an acrylic pressure-sensitive adhesive (trade name: SK Dyne 1717DT) manufactured by Soken Chemical Co., Ltd.
  • Examples of the thermoplastic resin used for forming the adhesive layer include a polyester thermocompression bonding adhesive (trade name: Seicadyne) manufactured by Dainichi Seika Co., Ltd.
  • the adhesive layer can be formed by applying an adhesive or the like to the substrate for peeling and drying. Drying may be performed at room temperature or by heating at about 40 ° C. to 120 ° C. In the case of heating, a heat drying method that does not come into contact with the adhesive layer, for example, a method of drying with warm air, a method of passing through a heating zone, a method of contacting a heating roll from the peeling substrate side, or the like can be mentioned.
  • the heat drying method is preferably a method of drying with warm air from the viewpoint of productivity.
  • the thickness of the adhesive layer to be formed may be appropriately selected in consideration of the thickness of the moisture absorbing layer to be applied and the thickness of the moisture absorbing layer to be peeled, that is, the thickness of the second region remaining after peeling.
  • the thickness of the adhesive layer after drying is preferably 3 ⁇ m to 15 ⁇ m, more preferably 5 ⁇ m to 10 ⁇ m, and even more preferably 6 ⁇ m to 8 ⁇ m.
  • the thickness of the adhesive layer may be uniform or non-uniform. By making the thickness of the adhesive layer non-uniform, three or more moisture absorption layers having different thicknesses can be formed.
  • the moisture absorption layer is peeled off by the adhesive layer when the moisture absorption layer itself has a self-holding property, such as a moisture absorption layer in which a moisture absorbent is kneaded in the resin layer. By making it larger than its own strength, it can be easily peeled off.
  • the moisture absorbing layer is a porous moisture absorbing layer
  • the adhesive layer after drying penetrates into the voids of the porous structure, so that the self-retaining property is low and the moisture absorbing moisture of the relatively brittle porous structure is obtained.
  • the layer can be peeled off at a deeper position.
  • aging that is stored for several days in a room at around 40 ° C.
  • the adhesive layer and the moisture absorbing layer 14 are brought into close contact with each other, by heating to a temperature around 40 ° C., the penetration and curing of the adhesive layer into the porous structure of the moisture absorbing layer is promoted, and at a desired depth.
  • the moisture absorption layer can be peeled off.
  • the manufacturing method of the present disclosure has a moisture-absorbing layer 14 formed on at least one surface of a resin layer 12 having moisture permeability, for example, as shown in FIG. 5B. Forming. In this step, the moisture absorbing layer 14 having a uniform thickness is formed on the moisture permeable resin layer 12.
  • the hygroscopic layer includes amorphous silica, a water-soluble resin, and a hygroscopic agent.
  • a coating liquid containing amorphous silica and a water-soluble resin is applied to the moisture-permeable resin layer to form a layer having a porous structure.
  • a method of forming a hygroscopic layer by applying a solution containing a hygroscopic agent to the structure and impregnating the hygroscopic agent in the porous structure can be employed.
  • the hygroscopic agent is adsorbed on the surface of the silica forming the porous structure by applying the hygroscopic agent to the hygroscopic layer configured to have a porous structure obtained using the coating liquid containing amorphous silica. A state is formed.
  • the hygroscopic rate is high, and the hygroscopic capacity is larger.
  • the porous structure is formed of vapor phase method silica, transparency is also imparted, and the hygroscopic material has light permeability (that is, visibility through the material).
  • the moisture absorption layer has a porous structure, the moisture absorption layer is formed when the moisture absorption layer on the moisture permeable resin layer, which is subsequently formed, and the release substrate on which the adhesive layer is formed are laminated to form a laminate. The adhesive constituting the adhesive layer penetrates into the voids of the porous structure.
  • the moisture absorption layer preferably has a porous structure.
  • a coating liquid for forming a moisture absorbing layer for forming a preferred moisture absorbing layer of the present disclosure comprises amorphous silica, a water-soluble resin, and, if necessary, other components such as a dispersant, water, and / or a crosslinking agent. It can be prepared by mixing and dispersing. For example, pigment gas phase method silica particles and a dispersant are added to water, and a high-speed rotating wet colloid mill (for example, trade name: CLEAMIX manufactured by M Technique Co., Ltd.) or a liquid-liquid collision type disperser (for example, Using a Sugino Machine Co., Ltd.
  • Optimizer for example, under high speed rotation conditions of 10,000 rpm (preferably 5000 to 20000 rpm), the mixture is dispersed over a predetermined time (preferably 10 to 30 minutes) and then crosslinked.
  • Addition agent for example, boric acid
  • water-soluble resin preferably aqueous polyvinyl alcohol solution
  • add other components as necessary, and disperse under the same rotational conditions as above to form a moisture absorbing layer forming coating solution
  • the obtained coating liquid is a highly uniform sol-like liquid, and the coating liquid is applied on a support by any coating method and dried to form a porous moisture-absorbing layer having a three-dimensional network structure. be able to.
  • the aqueous dispersion containing amorphous silica and a dispersant may be prepared by preparing an amorphous silica aqueous dispersion in advance and adding the obtained aqueous dispersion to the aqueous dispersant solution.
  • the dispersion may be prepared by adding an aqueous dispersant solution to the amorphous silica aqueous dispersion, or by mixing the amorphous silica and the dispersant at the same time.
  • powdered amorphous silica may be used and added to the aqueous dispersant solution as described above.
  • the obtained mixed liquid is refined with a disperser, whereby an aqueous dispersion having an average particle diameter of 20 nm to 5000 nm can be obtained.
  • a disperser a high-speed rotary disperser, a medium agitating disperser (ball mill, sand mill, etc.), an ultrasonic disperser, a colloid mill disperser, a high-pressure disperser or the like, or various conventionally known dispersers may be used. It can. Among these, a stirring type disperser, a colloid mill disperser, and a high pressure disperser are preferable.
  • a solvent can be used for preparing the coating solution.
  • the solvent include water, an organic solvent, or a mixed solvent thereof.
  • the organic solvent include alcohols such as methanol, ethanol, n-propanol, i-propanol, and methoxypropanol, ketones such as acetone and methyl ethyl ketone, tetrahydrofuran, acetonitrile, ethyl acetate, and toluene.
  • Coating can be performed by a coating method using, for example, a blade coater, an air knife coater, a roll coater, a bar coater, a gravure coater, or a reverse coater.
  • the moisture absorbing layer is dried until it shows reduced-rate drying. Drying can be generally carried out at 40 ° C. to 180 ° C. for 0.5 minutes to 10 minutes, preferably 0.5 minutes to 5 minutes.
  • a coating solution is applied and dried to form a porous layer (coating layer), and then the formed layer contains a weak acid ammonium salt such as ammonium carbonate, a weak acid
  • a weak acid ammonium salt such as ammonium carbonate
  • a weak acid A solution containing a basic compound such as an alkali metal salt, an alkaline earth metal salt of a weak acid, hydroxyammonium, a primary to tertiary amine, a primary to tertiary aniline, or pyridine may be applied.
  • a porous structure having a good pore structure is obtained.
  • a method for applying a solution containing a basic compound As a method for applying a solution containing a basic compound, a method of further coating on a moisture-absorbing layer, a method of spraying by a method such as spraying, and a support on which a coating layer is formed is immersed in a solution containing a basic compound.
  • the method etc. can be mentioned.
  • the solution containing the basic compound may be applied simultaneously with the application of the coating liquid for forming the moisture absorption layer.
  • a coating solution and a solution containing a basic compound are simultaneously coated (multilayer coating) on the support so that the coating solution is in contact with the support, and then dried and cured to have a porous structure. It can be a layer.
  • a hygroscopic layer having a void is formed by applying a solution containing a hygroscopic agent to the layer and impregnating the porous structure with the hygroscopic agent.
  • the application of the solution containing the hygroscopic agent include a method of applying the solution on the hygroscopic layer, a method of spraying the solution by a method such as spraying, and a method of immersing a layer having a porous structure in the solution.
  • examples of the coating method include the same method as the coating method of the moisture absorbing layer forming coating solution.
  • the solution containing a hygroscopic agent contains at least one hygroscopic agent, and may contain other components such as a surfactant and / or a solvent, if necessary.
  • a liquid containing a hygroscopic agent can be prepared, for example, by adding a hygroscopic agent (for example, an inorganic salt) to ion-exchanged water and, if necessary, an additive such as a surfactant and stirring.
  • the application amount of the solution containing the hygroscopic agent is preferably an amount in which the application amount of the hygroscopic agent is 1 g / m 2 or more and 20 g / m 2 or less from the viewpoint of the hygroscopic amount of the hygroscopic layer and the hygroscopic rate. Is more preferably 3 g / m 2 or more and 12 g / m 2 or less.
  • the solution containing the hygroscopic agent After the application of the solution containing the hygroscopic agent, it is generally heated at 40 ° C. to 180 ° C. for 0.5 to 30 minutes to be dried and cured. Among them, it is preferable to heat at 40 ° C. to 150 ° C. for 1 minute to 20 minutes. For example, when the solution contains borax or boric acid as a boron compound, heating at 60 ° C. to 100 ° C. is preferably performed for 0.5 to 15 minutes.
  • a moisture absorption layer formed on a resin layer having moisture permeability and a patterned adhesive layer formed on a substrate for peeling are brought into contact and laminated to form a laminate.
  • the moisture absorption layer 14 formed on the moisture permeable resin layer 12 and the patterned adhesive layer 22 formed on the peeling substrate 20 are contacted and laminated to form a laminate.
  • Lamination may be performed at room temperature by passing the laminate between a pair of smooth rollers, or may be performed by passing between rollers heated to 30 ° C. to 100 ° C. By this step, a laminated body in which the moisture absorption layer 14 and the adhesive layer 22 are in close contact is formed.
  • the moisture absorbing layer corresponding to the adhesive layer formed in a pattern is peeled to form a moisture absorbing layer with a non-uniform thickness on the surface of the resin layer having moisture permeability.
  • the peeling substrate 20 is peeled from the laminate.
  • the moisture absorption layer 14 in the region in close contact with the adhesive layer 22 formed in a pattern on the surface of the peeling substrate 20 is peeled off in a pattern according to the region where the adhesive layer 22 is formed.
  • the second region 14B thinner than the thickness A which is the thickness of the original moisture absorption layer is formed.
  • the thickness A of the initially formed moisture absorbing layer 14 is maintained and becomes the first region 14A, and the moisture absorbing layer 14 having a non-uniform thickness is formed on the surface of the moisture permeable resin layer 12.
  • the moisture absorbing layer 14 may not be completely peeled off in the thickness direction of the adhesive layer 22 formation region. If at least a part of the thickness direction of the moisture absorption layer is peeled off, a second region thinner than the thickness A is formed, and the moisture absorption layer becomes a moisture absorption layer having a non-uniform thickness. Three or more moisture absorption layers having different thicknesses may be formed.
  • a moisture-absorbing layer 14 having a non-uniform thickness is formed on the moisture-permeable resin layer 12 by the previous step.
  • the moisture-absorbing layer 16 is formed on the uneven side of the moisture-absorbing layer 14 having a non-uniform thickness obtained on the side opposite to the moisture-permeable resin layer 12.
  • a material is obtained.
  • the method for forming the moisture-proof layer is not particularly limited, and a moisture-proof layer may be formed by laminating a moisture-proof material on a moisture-absorbing layer having a non-uniform thickness provided on the moisture-permeable resin layer.
  • a moisture-proof layer may be formed by preparing a coating solution containing a moisture-proof material, applying the coating solution onto a moisture-absorbing layer having a non-uniform thickness, and drying. Especially, it is preferable to form a moisture-proof layer by bonding from the viewpoint that the moisture-absorbing layer with uneven thickness can sufficiently follow the unevenness and can efficiently form a moisture-proof layer with excellent adhesion.
  • the moisture-proof layer is preferably a layer made of a material having a moisture permeability of less than 1 g / m 2 ⁇ day, a single layer or a laminated resin film having a low moisture permeability, or a metal or inorganic material. It is preferable to use a deposited film or the like.
  • the film described above used for forming the moisture-proof layer can be adhered to the uneven side of the moisture-absorbing layer having a non-uniform thickness to form the moisture-proof layer.
  • the moisture-proof layer from the viewpoint of further improving the adhesion between the moisture-proof layer and the moisture-absorbing layer and more effectively suppressing moisture movement between the first regions of the adjacent thickness A in the moisture-absorbing layer. It is preferable to form an adhesive layer on the film for forming the moisture-proof layer and adhere the moisture-absorbing layer and the moisture-proof layer through the adhesive layer.
  • the moisture-proof layer is firmly bonded to the moisture-absorbing layer along the unevenness of the moisture-absorbing layer having a non-uniform thickness, and the moisture permeation suppressing function in the second region thinner than the thickness A is further improved. .
  • the hygroscopic material of one embodiment of the present invention may be used as a packaging material.
  • a packaging material is a packaging material provided with the moisture absorption material of one Embodiment of this invention as stated above.
  • Examples of the form of the packaging material include a sheet shape or a bag shape.
  • the package of one embodiment of the present invention is an adhesive molded body formed by bonding a part of the hygroscopic material of the one embodiment of the present invention described above and forming, for example, a bag shape.
  • Adhesion may be performed by heat fusion (for example, heat sealing), and an adhesive part to which a part of the hygroscopic material is adhered can be formed into a package.
  • a packaging material provided with a sheet-like moisture absorbing material will be described as an example.
  • the hygroscopic material of one embodiment of the present invention can be used in the form shown below, but the form of the packaging material is not limited to the following examples.
  • a sheet of moisture-absorbing material is formed into a bag shape with the moisture-permeable resin layer side inside and the moisture-proof layer side outside, and the bag-shaped peripheral portion has a moisture-permeable resin.
  • attached at least one part of the layer and puts the inclusion which needs moisture absorption into the inside of a packaging material is mentioned.
  • the bonding portion may be formed by heat-sealing (for example, heat sealing), and a pair of moisture-permeable resin layers is bonded to an adhesive layer, an easy-adhesive sheet, and the like.
  • It may be formed by bonding.
  • a method of forming the packaging material 10 into a bag shape in addition to a method in which one moisture absorbing material is bent and the overlapping moisture permeable resin layers are bonded to each other at the end, two moisture absorbing materials are formed into a moisture permeable resin layer. And the moisture-proof layer on the outside, and a method of adhering the moisture-permeable resin layers at the end portions.
  • the packaging material two different moisture-absorbing materials, an aspect in which the moisture-permeable resin layers are overlapped with each other, and the periphery is bonded to form a bag shape, and a moisture-proof sheet,
  • the material is overlapped with the moisture-permeable material layer side of the moisture-absorbing material as the side in contact with the moisture-proof sheet, and the peripheral portion is adhered to form a bag shape.
  • a moisture absorbing material in which a recess serving as a housing portion is formed is obtained, and the moisture permeable resin layer in the recess non-forming portion on the opening surface side of the recess of the moisture absorbing material is separate from another moisture-proof property.
  • the packaging material which has the accommodating part formed by adhere
  • the packaging material of the present disclosure can also be used as a blister pack (also referred to as PTP packaging) used for packaging medicine or the like in which a concave portion for containing an inclusion is formed.
  • the second aspect of the packaging material two regions (the thin region portion of the hygroscopic layer, which is present at both edges in the width direction of the hygroscopic material) using the hygroscopic material of the second aspect described above (for example, the region 14B-1) in FIG. 6 is bonded to form a bag, and the upper end and the lower end in the longitudinal direction (for example, the arrow direction Y in FIG. 6) of the hygroscopic material are bonded and sealed.
  • a package containing the packaged body is obtained.
  • Examples of the packaging form include pillow packaging, four-side sealed bag packaging, three-side sealed bag packaging, gusset packaging, and standing bag packaging.
  • the size of the package depends on the size of the packaged object, but generally the outer dimension is preferably in the range of 30 mm to 500 mm.
  • the bonding method may be a known bonding method such as thermocompression bonding, heat fusion, ultrasonic bonding, bonding via an adhesive, or bonding via an easy-adhesive sheet, depending on the purpose. Can be applied.
  • the packaging material according to the present disclosure can prevent moisture from entering the cut end portion of the hygroscopic material constituting the packaging material from entering the deep portion without performing a sealing process on the end portion, and can absorb moisture sufficiently for a long period of time. Since the capacity can be maintained, the dry state of the inclusions can be maintained for a long time.
  • the dispersion was kept at 30 ° C., and (5) an aqueous boric acid solution and (6) a polyvinyl alcohol (PVA) solution were added to the dispersion to prepare a coating solution for forming a moisture absorbing layer.
  • PVA polyvinyl alcohol
  • composition of coating liquid for forming hygroscopic layer (1) Gas phase method silica 1 (amorphous silica) 8.9 parts (trade name: AEROSIL300SF75, manufactured by Nippon Aerosil Co., Ltd., average primary particle size: 7 nm, average secondary (Particle size: 20 nm) (2) Ion-exchanged water 47.3 parts (3) Charol DC-902P (51.5% aqueous solution) 0.8 parts (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., dispersant, nitrogen-containing organic cationic polymer) (4) Zircosol ZA-30 0.5 part (trade name, manufactured by Daiichi Elemental Chemical Co., Ltd., zirconyl acetate) (5) Boric acid (5% aqueous solution) 6.6 parts (6) Polyvinyl alcohol (water-soluble resin) solution 26.0 parts
  • polyvinyl alcohol solution 1.81 parts of polyvinyl alcohol (PVA) (1) Examples 1 to 17, 19 to 24: JM33 (Trade name, manufactured by Nihon Economics-Poval Co., Ltd., polyvinyl alcohol (PVA); saponification degree 95.5%, polymerization degree 3300) (2) Example 18: JP33 (Trade name, manufactured by Nippon Vinegar Poval Co., Ltd., polyvinyl alcohol (PVA); degree of saponification 88%, degree of polymerization 4500) -HPC-SSL 0.08 parts (trade name, manufactured by Nippon Soda Co., Ltd., water-soluble cellulose) ⁇ Ion-exchanged water 23.5 parts ⁇ Diethylene glycol monobutyl ether 0.55 parts (Brand name: Buticenol 20P, Kyowa Hakko Chemical Co., Ltd.) ⁇ Polyoxyethylene lauryl ether (surfactant) 0.06 part (trade name: Emulgen 109P, manufactured by Kao Corporation)
  • LLDPE sheets linear low density polyethylene (LLDPE) sheets (hereinafter also referred to as LLDPE sheets) having thicknesses shown in Tables 2 to 4 below were prepared.
  • the coating solution for forming the moisture absorbing layer obtained above was applied by an extrusion die coater in an amount that would be 165 g / m 2 .
  • the coating layer formed by coating was dried with a hot air dryer at 80 ° C. and a wind speed of 3 m / second to 8 m / second until the solid content concentration of the coating layer reached 36%.
  • the coating layer during drying showed constant rate drying.
  • the substrate was immersed in a liquid containing a basic compound having the following composition for 3 seconds, and the liquid containing the basic compound was adhered to the coating layer in an amount such that the coating amount was 13 g / m 2 . Furthermore, it was dried for 10 minutes in an environment of 72 ° C. to form a layer having a porous structure. Thereafter, a moisture absorbent coating solution having the composition shown below was applied to the formed layer with an extrusion die coater at a coating amount of 50 g / m 2 (that is, CaCl 2 applied amount: 7 g / m 2 ), and dried with hot air The moisture-absorbing layer having a thickness of 40 ⁇ m was obtained by drying at 80 ° C. and a wind speed of 3 m / sec to 8 m / sec. The formed moisture absorption layer had a porosity of 60% and an average pore diameter of 20 nm.
  • composition of liquid containing basic compound (1) 0.65 part of boric acid (2) ammonium carbonate (first grade, manufactured by Kanto Chemical Co., Ltd.) 5.0 part (3) 93.75 parts of ion-exchanged water (4) 0.6 parts of polyoxyethylene lauryl ether (surfactant) (trade name: Emulgen 109P, manufactured by Kao Corporation)
  • Emulgen 109P manufactured by Kao Corporation
  • Adhesive Layer Pattern Polyethylene terephthalate (PET) base (registered trademark: Lumirror, manufactured by Toray Industries, Inc.) was used as a peeling substrate.
  • the obtained adhesive mixture was applied in a pattern by a direct gravure printing method.
  • a gravure roll engraved with a repeated pattern structure corresponding to the formation region of the adhesive layer shown below was prepared and used for printing, that is, application of an adhesive.
  • the adhesive After applying the adhesive to the PET base by the direct gravure printing method so that the thickness of the adhesive layer after drying becomes 7 ⁇ m, the adhesive is dried at 60 ° C. for 1 minute, and the thickness after drying is 7 ⁇ m. An adhesive layer was formed.
  • the pattern structure of the adhesive layer 22 used in each example is shown in Table 1 below.
  • the honeycomb pattern shown in FIG. 4A and the lattice pattern shown in FIG. 4B were applied.
  • the size of each pattern is the width X of the first region 14A having a thickness of 40 ⁇ m (described as “X dimension” in Table 1), and the width W of the second region 14B having a thickness of less than 40 ⁇ m (in Table 1, “W dimension”).
  • the laminate was formed by laminating and laminating and laminating the moisture absorption layer and the peeling substrate. Lamination was performed by passing the laminate between a pair of smooth rollers heated to 60 ° C. Thereafter, when the peeling substrate is peeled from the laminate, the moisture absorbing layer in the region where the adhesive layer is formed is adhered to the adhesive layer and peeled off.
  • the first region having a moisture absorption layer with a thickness of 40 ⁇ m that is not peeled in the region where the adhesive layer is not formed and the region that is partially peeled off by the adhesive layer and thinner than the first region are patterned.
  • a moisture absorption layer having a non-uniform thickness in the structure was formed.
  • Tables 2 to 4 show the thickness of the moisture absorption layer in the second region after peeling and the thickness ratio of the thickness of the moisture absorption layer in the second region to the thickness of the moisture absorption layer in the first region.
  • Adhesion of moisture-proof layer Adhesive made by Toyo Ink Co., Ltd. (that is, urethane resin adhesive) on the silica-deposited surface of silica-deposited PET (trade name: Tech Barrier MX, manufactured by Mitsubishi Plastics), which is a moisture-proof layer
  • the obtained silica-deposited PET is coated with the non-uniform thickness formed on the moisture-permeable resin layer. They were laminated together by dry lamination and layered on a hygroscopic layer. In this way, a hygroscopic material was obtained.
  • the obtained moisture-absorbing material is an LLDPE sheet that is a moisture-permeable resin layer / a moisture-absorbing layer having a non-uniform thickness / an adhesive layer / a silica-deposited PET that is a moisture-proof layer (that is, an adhesive layer on the silica-deposited surface of the silica-deposited PET) Is formed).
  • Example 1 the moisture absorbing layer was not peeled off by the adhesive layer, and a moisture absorbing layer having a uniform thickness of 40 ⁇ m (Comparative Example 1) or 30 ⁇ m (Comparative Example 2) was formed. Similarly, a moisture absorbing layer was formed, and a moisture proof layer was bonded to the surface of the moisture absorbing layer having a uniform thickness in the same manner as in Example 1 to obtain a moisture absorbing material for comparison.
  • the moisture absorption capacity at 23 ° C. and 50% RH is 8 g / m 2 or more and less than 10 g / m 2 .
  • C The moisture absorption capacity at 23 ° C. and 50% RH is 6 g / m 2 or more and less than 8 g / m 2 .
  • D The moisture absorption capacity at 23 ° C. and 50% RH is 3 g / m 2 or more and less than 6 g / m 2 .
  • E The moisture absorption capacity at 23 ° C. and 50% RH is less than 3 g / m 2 .
  • the standards A to C are at a level that causes no practical problem.
  • the amount of moisture absorbed from the end face of the moisture absorbent material was evaluated as follows. Two 100 mm ⁇ 100 mm hygroscopic material samples were stored in a constant temperature and humidity chamber at 60 ° C. and 10% RH for 1 hour and dried. After that, two moisture absorbent material samples are overlapped with the LLDPE sheet side which is a moisture permeable resin layer, and the edges of the four sides are heat-sealed to bond the two sheets to measure the amount of moisture absorbed from the end surface. A sample was used. The mass immediately after moving the obtained sample to 23 degreeC50% RH environment was measured, and it was set as the mass of the dry state.
  • the moisture absorption from the end face is 1.0 g / m 2 or more and less than 2.0 g / m 2 .
  • E The moisture absorption from the end face is 2.0 g / m 2 or more.
  • the standards A to C are at a level that causes no practical problem.
  • the porosity of the hygroscopic layer was determined based on the value obtained by calculating the void amount per unit thickness from the void amount (ml / m 2 ) and thickness ( ⁇ m) of the hygroscopic layer. The porosity was measured in the moisture absorption layer before the peeling process with the adhesive, and the thickness of the moisture absorption layer was determined from the result of observation with an optical microscope. In addition, the amount of voids in the moisture absorption layer was calculated by calculating the mass change (that is, the amount of absorption liquid per unit area) before and after the addition by dropping 1 ml of diethylene glycol on the moisture absorption layer and wiping the dropping surface with a cloth after 1 minute. . This calculated value was defined as the void amount. In addition, the porosity of the moisture absorption layer in the already produced moisture absorption material can be measured using the sample obtained by cutting the first region 14A to produce a sample.
  • the moisture-absorbing material of the example has a large moisture-absorbing capacity, and it is understood that the absorption of moisture from the end portion is suppressed without special sealing treatment at the end portion.
  • the hygroscopic materials of Comparative Example 1 and Comparative Example 2 having a uniform moisture-absorbing layer have an initial moisture absorption capacity at a level that is not problematic in practice, but a large amount of moisture absorption from the end portion, It cannot be expected to maintain a good hygroscopic capacity for a long period of time, and it can be seen that there is a problem in using the hygroscopic material for a long period of time.
  • Examples 25-39 A hygroscopic material having a pattern structure similar to that of FIG. 6 was produced by the same process as in Example 1, and pillow packaging or gusset packaging was performed by the method described below using the produced hygroscopic material. Details of the pattern structure are shown in Table 5 below. Moreover, the moisture absorption capacity
  • the pillow wrapping is made by bonding the second region 14B-1 having a width B provided at both edges of the first region 14A in FIG. 6 into a bag shape and further bonding the upper end and the lower end to form a pillow.
  • a package was produced.
  • the gusset packaging is formed by adhering the second region 14B-1 having a width B provided at both edges of the first region 14A in FIG. 6 into a bag shape, and further adhering the upper end and the lower end to each other. A shaped gusset package was produced.
  • Comparative Examples 3-4 Using the comparative hygroscopic material prepared in Comparative Examples 1 and 2, pillow packaging was performed in the same manner as in Example 25 and the like. Moreover, the moisture absorption capacity
  • the moisture-absorbing material of the example has a large moisture-absorbing capacity and is excellent in moisture absorption suppressing effect from the end when the packaging form is adopted.
  • the moisture absorbing material having the pattern structure shown in FIG. 6 or FIG. 7 is different from the moisture absorbing materials of Examples 38 to 39 having a honeycomb pattern or a lattice pattern in which the cut surface is a moisture absorbing layer (first region) having a thickness A. The tendency which was excellent by the sealing performance in an end surface was seen.
  • the moisture absorbing material of the comparative example in which the moisture absorbing layer having a uniform thickness is formed has a small effect of suppressing the absorption of moisture especially from the end in the case of the packaging form, and the long-term maintenance of the moisture absorbing capacity cannot be expected. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laminated Bodies (AREA)
  • Packages (AREA)

Abstract

樹脂層、吸湿層、及び防湿層をこの順に備え、吸湿層は、厚みAの第1の領域と、第1の領域の周縁部に存在し、厚みAより薄い第2の領域と、を含むパターン構造を有し、第1の領域及び第2の領域に防湿層を有する吸湿材料及びその製造方法、包装材料並びに包装物である。

Description

吸湿材料及びその製造方法、包装材料並びに包装物
 本発明は、吸湿材料及びその製造方法、包装材料並びに包装物に関する。
 食品や医薬品等の乾燥商品は、包装内の湿度を低く保ち内容物を大気中の水分から保護するため、シリカゲル等の乾燥剤が入った小袋等を包装内に同梱することが一般的に行われている。この包装は、乾燥商品を袋状包装材に投入し、さらに乾燥剤入りの小袋を投入し、そして袋状包装材を密封することにより行われる。乾燥剤入りの小袋を投入する工程は、必須の内包物の投入とは異なる工程であるため、通常は自動化されているものの、包装工程が煩雑となることがある。さらに、菓子類等の食品では、乾燥剤が食品に同封されることになる。このため、小袋の破損などにより乾燥剤が誤って食品に混入されたり、或いは、乾燥剤が誤飲されたりすることも懸念される。
 そこで、乾燥剤入り小袋に代えて、包装材料として利用可能な乾燥剤入りフィルムが提案されている。例えば、モレキュラーシーブ(molecular sieve)などの粉末状の乾燥剤を樹脂に混練して成形した乾燥剤混入フィルムが提案され、使用態様としては、乾燥剤混入フィルムとガスバリア性フィルムとを積層した態様が開示されている。(例えば、特許第3919503号公報参照)。
 吸湿容量を制御しうる包装材料として、吸湿剤を担持する多孔質膜からなる除湿用フィルムが提案され、吸湿剤を、通気性または透湿性の水分透過を制御しうるフィルムで密封してなる除湿用フィルムが開示され、水分透過を制御しうるフィルムにポリエチレンフィルムを片面或いは特定領域にラミネートすることで、吸湿速度を制御し得るとされている(例えば、特開平3-114509号公報参照)。
 乾燥剤混入フィルムとガスバリア性フィルムとの積層フィルム、或いは、フィルム間に吸湿剤を挟んだ吸湿性フィルムでは、フィルムの端部から吸湿層に水分が浸入することで、所望の吸湿容量を達成すること、及び、良好な吸湿容量を長期間維持することが困難となることがある。
 これに対し、端面からの吸湿を抑制するために、包装材料端部のシーラント部分の厚みを薄くすることで、水分浸入を抑制する包装材料が提案されている(例えば、特許第4450932号公報参照)。また、機能性層を有するフィルムにおいて、機能性とシール性を両立する目的で、フィルム上に機能性層を、不連続なパターン状に形成する積層フィルムが提案されている(例えば、特開2014-050988号公報参照)。
 しかしながら、特許第4450932号公報に記載の方法では、包装材料のサイズに応じて、シーラントの厚みを薄くする位置を変更する必要があり、生産性が悪いという問題がある。また、一般に行われる端部の封止加工も同様に、サイズに応じて封止を行うため、生産性が悪く、また、封止箇所は吸湿性が抑制されるために、封止部の存在により吸湿材料全体における吸湿容量が小さくなるという問題がある。
 また、特開2014-050988号公報に記載の積層フィルムでは、機能性層が直接内容物に接触する側に位置することから、内容物によっては変質することが懸念される。さらに、機能性層の間に多くの空気が存在することから、機能性層同士を離間させても、例えば、機能性層が吸湿層である場合には、層間の水分移動を抑制する機能を有するわけではない。
 本発明の一実施形態によれば、吸湿容量が大きく、端部の封止処理を行わなくても、長時間、良好な吸湿性を維持しうる吸湿材料及びその製造方法、包装材料並びに包装物が提供される。
 課題を解決するための具体的手段は、以下の態様を含む。
 <1> 樹脂層(好ましくは透湿性を有する樹脂層;以下同じ)、吸湿層(好ましくは厚みの不均一な吸湿層;以下同じ)、及び防湿層をこの順に備え、吸湿層は、厚みAの第1の領域と、第1の領域の周縁部に存在し、厚みAより薄い第2の領域と、を含むパターン構造を有し、第1の領域及び第2の領域に防湿層を有する吸湿材料。
 <2> 吸湿層の全領域に対する、厚みAより薄い第2の領域の占有比率が、平面視における面積比で、10%以上50%未満である<1>に記載の吸湿材料。
 <3> 吸湿層におけるパターン構造は、第1の領域と、吸湿層の幅方向における第1の領域の両縁部及び吸湿層の幅方向と直交する方向(直交方向)における第1の領域の少なくとも一方の縁部に配置された厚みAより薄い第2の領域と、を含む構造であり、
 上記の構造が、吸湿層の幅方向と直交する長手方向に複数配置され、かつ、吸湿層の幅方向と直交する方向において、第1の領域と、上記の直交方向における第1の領域の少なくとも一方の縁部に存在する厚みAより薄い第2の領域と、の合計に対する、上記の「第1の領域の少なくとも一方の縁部に存在する厚みAより薄い第2の領域」の占有比率が、平面視における面積比で10%以上50%未満である<1>又は<2>に記載の吸湿材料。
 <4> 第1の領域の両縁部に配置された第2の領域の少なくとも一方は、吸湿層の幅方向端部からの幅長が3mm以上である<3>に記載の吸湿材料。
 <5> 第1の領域における吸湿層の厚みAが20μm~50μmであり、厚みAより薄い第2の領域における吸湿層の厚みが、厚みAの第1の領域における吸湿層の厚みの20%未満である<1>~<4>のいずれか1つに記載の吸湿材料。
 <6> 吸湿層は、非晶質シリカ粒子と水溶性樹脂と吸湿剤とを含む多孔構造を有する吸湿層であり、かつ、吸湿層の空隙率が45%~85%である<1>~<5>のいずれか1つに記載の吸湿材料。
 <7> 水溶性樹脂は、けん化度が99%以下であり、かつ重合度が1500以上であるポリビニルアルコールである<6>に記載の吸湿材料。
 <8> 吸湿層は、吸湿剤として塩化カルシウムを含む<1>~<7>のいずれか1つに記載の吸湿材料。
 <9> 樹脂層の厚みが、20μm~100μmである<1>~<8>のいずれか1つに記載の吸湿材料。
 <10> パターン構造は、吸湿層の一方向に規則的に配置されて存在している<1>~<9>のいずれか1つに記載の吸湿材料。
 <11> <1>~<10>のいずれか1つに記載の吸湿材料を備えた包装材料。
 <12> 剥離用基材に、接着剤、粘着剤、及び熱可塑性樹脂から選択される少なくとも1種を用いてパターン状の接着層を形成すること、
 樹脂層(好ましくは透湿性を有する樹脂層)の少なくとも一方の面に吸湿層を形成すること、
 樹脂層に形成された吸湿層と、剥離用基材に形成されたパターン状の接着層と、を接触させて、ラミネートして積層体を形成すること、
 積層体から、剥離用基材を剥離することで、パターン状の接着層に対応する吸湿層を剥離して、樹脂層の表面にパターン状の吸湿層(好ましくは厚みの不均一な吸湿層)を形成すること、及び
 パターン状の吸湿層の上に防湿層を形成すること、を含む吸湿材料の製造方法。
 <13> パターン状の接着層を形成することは、接着剤、粘着剤、及び熱可塑性樹脂から選択される少なくとも1種を印刷法により剥離用基材上にパターン状に付与することを含む<12>に記載の吸湿材料の製造方法。
 <14> <1>~<10>のいずれか1つに記載の吸湿材料の接着成形体である包装物。
 本開示によれば、吸湿容量が大きく、端部の封止処理を行わなくても、長時間、良好な吸湿性を維持しうる吸湿材料及びその製造方法、包装材料並びに包装物が提供される。
本発明の吸湿材料の一実施態様を示す概略断面図である。 本発明の吸湿材料の別の実施態様を示す概略断面図である。 従来の吸湿材料の層構成を示す概略断面図である。 吸湿層において、厚みAの第1の領域と、厚みAより薄い第2の領域と、によって形成されたパターン構造の一例であるハニカムパターンを示す平面図である。 吸湿層において、厚みAの第1の領域と、厚みAより薄い第2の領域と、によって形成されたパターン構造の他の例である格子パターンを示す平面図である。 図2に示す吸湿材料を製造する際の製造プロセスの一例の一部を示す概略図である。 図2に示す吸湿材料を製造する際の製造プロセスの一例の一部を示す概略図である。 図2に示す吸湿材料を製造する際の製造プロセスの一例の一部を示す概略図である。 図2に示す吸湿材料を製造する際の製造プロセスの一例の一部を示す概略図である。 厚みAの長方形の第1の領域と、第1の領域の幅方向両縁部及び吸湿層の幅方向と直交する方向における第1の領域の一方の縁部に配置された厚みAより薄い第2の領域と、からなるパターン構造を吸湿層に複数配置した例を示す平面図である。 厚みAの長方形の第1の領域と、第1の領域の幅方向両縁部及び吸湿層の幅方向と直交する方向における第1の領域の一方の縁部に配置された厚みAより薄い第2の領域と、からなるパターン構造を吸湿層に複数配置した他の例を示す平面図である。 厚みAの山型の第1の領域と、第1の領域の幅方向両縁部及び吸湿層の幅方向と直交する方向における第1の領域の一方の縁部に配置された厚みAより薄い第2の領域と、からなるパターン構造を吸湿層に複数配置した他の例を示す平面図である。
 以下、本開示の吸湿材料及びその製造方法、並びにこれらを用いた包装材料について詳細に説明する。
 なお、本明細書において、組成物中の各成分の量について言及する場合、組成物中に各成分に相当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書における「固形分」の語は、溶剤を除く成分を意味し、溶剤以外の低分子量成分などの液状の成分も本明細書における「固形分」に含まれる。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
<吸湿材料>
 本発明の一実施形態の吸湿材料は、樹脂層と、厚みAの第1の領域及び第1の領域の周縁部に存在する厚みAより薄い第2の領域を含むパターン構造を有する吸湿層と、防湿層と、をこの順に備えており、吸湿層における第1の領域及び第2の領域に防湿層を有している。本開示における樹脂層は、好ましくは透湿性を有する樹脂層である。また、本開示における吸湿層は、好ましくは厚みの不均一な吸湿層である。
 本発明の一実施形態の吸湿材料が効果を奏する作用の詳細は明確ではないが、以下のように推定される。
 本発明の一実施形態の吸湿材料は、外部からの水分が防湿層を通って吸湿層に達した場合、水分は一旦吸湿材料の端部における第1の領域に浸入するが、第1の領域が有する防湿層、第1の領域の周縁部に存在する第2の領域、及び第2の領域が有する防湿層の存在により、水分が浸入した第1の領域に隣接する、他の第1の領域への水分の浸透が抑制されるようになっている。
 具体的には、吸湿層における第1の領域の周縁部に第1の領域の厚みAより薄い第2の領域が存在するので、吸湿層に備えられた防湿層の機能と相俟って、第2の領域内における水分の移動性は第1の領域に比して著しく低い。これにより、防湿層の端部から浸入した水分は、吸湿材料の端部よりも内部に存在する第1の領域にまで浸透し難く、例えば吸湿が必要とされる物品の近傍領域における吸湿容量を長期に亘って良好に保つことができると考えられる。本発明の一実施形態の吸湿材料は、例えば裁断部位などの材料端部から内部への水分の浸入が抑制されるので、別途の封止処理を要せず、所望とする吸湿容量を長期に亘り保持することが可能である。
 本発明の一実施形態の吸湿材料について、図面を参照して具体的に説明する。図1は、本発明の一実施形態である吸湿材料10の概略断面図であり、図2は、本発明の別の実施形態である吸湿材料11の概略断面図である。
 図1に示すように、吸湿材料10は、透湿性を有する樹脂層(以下、「透湿性樹脂層」と称することがある)12、厚みの不均一な吸湿層14、及び防湿層16をこの順に備えている。吸湿材料10における厚みの不均一な吸湿層14は、厚みAの第1の領域14Aと、第1の領域の周縁部に存在し、厚みAより薄い第2の領域14Bと、を含むパターン構造を有している。一方、図2に示す吸湿材料11は、透湿性を有する樹脂層12、厚みの不均一な吸湿層14、及び防湿層16をこの順に備えている。吸湿材料11における厚みの不均一な吸湿層14は、厚みAの第1の領域14Aと、第1の領域の周縁部に存在し、厚みAより薄い第2の領域14Bと、を含むパターン構造を有している。すなわち、本開示の吸湿材料において、吸湿層は、厚みAの第1の領域と、第1の領域の周縁部に存在し、厚みAより薄い第2の領域とを有することにより、厚みの不均一な吸湿層となっている。
 図1に示す吸湿材料10では、第2の領域14Bにおいて薄厚の吸湿層14が存在する構造となっている。これに対して、図2に示す吸湿材料11では、第2の領域14Bには吸湿層14が存在しない構造となっている。
 つまり、本発明の一実施形態の吸湿材料は、吸湿層のうち、厚みの薄い領域である第2の領域の吸湿層の厚みは、第1の領域における吸湿層の厚みより薄ければよく、例えば図2に示すように厚みがゼロ、すなわち第2の領域に吸湿層が存在しない態様も包含される。よって、本開示における厚みの不均一な吸湿層は、図1に示す態様に限定されず、図2に示すように、互いに空隙、すなわち吸湿層が存在しない第2の領域を介して、局所的に吸湿層、すなわち厚みAの第1の領域が存在する態様を包含する。
 ここで、従来の吸湿材料を図3に示す。図3は、従来の吸湿材料60を示す概略断面図である。
 従来の吸湿材料60は、透湿性樹脂層62、吸湿層64、及び防湿層66を有し、吸湿層64は均一性のある厚みを有している。そのため、吸湿材料60の端部、すなわち矢印方向から水分が浸入した場合、浸入した水分は、吸湿層64の深部まで浸透する懸念がある。端部からの所望されない水分の浸透により、吸湿層64の吸湿容量は低下する。吸湿層の吸湿容量が低下すると、例えば、吸湿材料を備える包装材料の内部に封入された内包物に対して必要な吸湿機能を与えることができないことがある。
 本発明の一実施形態の吸湿材料(例えば、図1における吸湿材料10、及び図2における吸湿材料11)においては、端部から浸入した水分は、端部の吸湿層における厚みAの第1の領域(例えば、図1及び図2における第1の領域14A)には浸入する。しかし、本発明の一実施形態の吸湿材料では、第1の領域が有する防湿層(例えば、図1及び図2における防湿層16)、第1の領域の周縁部に存在する第2の領域(例えば、図1及び図2における第2の領域14B)、及び第2の領域が有する防湿層(例えば、図1及び図2における防湿層16)の存在により、端部における第1の領域と隣接する、吸湿材料のより内部に存在する第1の領域への水分の浸透は抑制される。
 また、本発明の一実施形態の吸湿層における厚みAの第1の領域の周縁部に、厚みAより薄い第2の領域が存在することで、吸湿層に備えられた防湿層の機能と相俟って、第2の領域では、第1の領域と比較して、水分の移動性が著しく低くなる。よって、吸湿層端部から浸入した水分は、吸湿材料の端部よりも中心近くの内部に存在する厚みAの第1の領域まで浸透し難く、特に吸湿を必要とする物品の近傍である吸湿材料の中心部の広い領域で、良好な吸湿容量が得られ、かつ、良好な吸湿容量は長期間維持されると考えられる。
 本開示の吸湿材料は、連続的に長尺の吸湿材料を製造し、任意の形状、任意のサイズに裁断して使用しても、吸湿層の切断片端部からの水分の浸透は吸湿材料の周縁部にて抑制され、深部すなわち吸湿材料の中央部まで浸透し難い。したがって、吸湿材料端部における特段の封止処理を行うことなく、所望の吸湿容量を長時間維持することができる吸湿材料となる。
 すなわち、本開示の吸湿材料では、任意の形状に裁断後、端部に封止処理を行ったり、或いは、当初より所望の包装体のサイズに応じて吸湿材料を製造したりする必要がなく、製造効率に優れるという利点をも有する。
 なお、図1には、厚みAの第1の領域14Aの周縁部に、厚みAより薄い吸湿層が存在する第2の領域14Bを有する吸湿材料10が記載されているが、本開示は、図2に記載の如き、隣接する厚みAの第1の領域14A間に、吸湿層14を有しない吸湿材料11も含む。本開示における吸湿材料は、図1に示す吸湿材料10の態様であっても、図2に示す吸湿材料11の態様であっても、いずれも本開示の効果を奏する。
 厚みの不均一な吸湿層における吸湿層の厚みは、必ずしも、厚みAの吸湿層と厚みAよりも薄い吸湿層との2つの態様のみからなるものである必要はなく、3以上の互いに異なる厚みの吸湿層を有していてもよい。例えば、図示しないが、吸湿層は、厚みAの第1領域の周縁部における第2の領域14Bは、厚みAよりも薄い吸湿層を有する領域14BAと、領域14ABにおける吸湿層よりもさらに薄い吸湿層を有する領域14BBと、を有してもよく、厚みAよりも薄い吸湿層を有する領域14BAと、吸湿層が存在しない領域14BCと、を有してもよい。
 吸湿容量の大きさ、水分移動抑制効果、及び製造適性の観点からは、厚みAの第1の領域14Aの周縁部に、厚みAより薄い吸湿層が存在する第2の領域14Bの2段階の厚みの吸湿層を有する態様、或いは、厚みAの第1の領域14Aの周縁部に、吸湿層を有しない第2の領域14Bを有する態様であることが好ましい。
 吸湿材料が良好な吸湿容量を示すという観点からは、吸湿層の第1の領域における吸湿層の厚みAが20μm~50μmであり、厚みAより薄い第2の領域における吸湿層の厚みが、厚みAの第1の領域における吸湿層の厚みの20%未満であることが好ましい。
 一般に、吸湿層の厚みが厚いほど、内包される吸湿剤の含有量を多くすることができ、吸湿容量は大きくなる。一方、吸湿材料10の用途に依存はするが、吸湿層の厚みが厚くなると、ハンドリング性、包装材料等への加工性が低くなることがある。双方を考慮すれば、吸湿層14の厚みは、20μm~50μmであることが好ましく、30μm~40μmであることがより好ましい。
 吸湿層の第1の領域における厚みAは、吸湿材料を、透湿性を有する樹脂層の面方向に直交する方向に切断し、断面を光学顕微鏡にて観察することにより測定することができる。
 第2の領域1における吸湿層の厚みは、厚みAの第1の領域における吸湿層の厚みの20%未満とすることで、隣接する厚みAの第1の領域間の水分の移動抑制効果がより顕著になる。すなわち、第2の領域における吸湿層の厚みは、水分移動をより効果的に抑制する観点から、厚みAの第1の領域における吸湿層の厚みAの20%未満であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。また、図2に示す如く、隣接する厚みAの第1の領域14A間に、吸湿層が存在しない第2の領域14Bを有し、第2の領域14Bにおいて、透湿性樹脂層12と防湿層16とが直接接触している態様も、本開示の効果を奏する。
 なお、第2の領域の吸湿層の厚みは、既述の第1の領域における厚みAの測定方法と同様にして測定することができる。
 なお、図1には示されないが、本開示の吸湿材料は、必要に応じて、透湿性樹脂層、厚みの不均一な吸湿層、及び防湿層以外の、他の層を有していてもよい。他の層としては、例えば、接着剤層などが挙げられる。
 吸湿層における厚みAの第1の領域と、第1の領域の周縁部に、厚みAよりも薄い第2の領域とが存在するように形成されたパターン構造について述べれば、厚みの不均一な吸湿層の全領域に対する、吸湿層の厚みAより薄い第2の領域の占有比率(割合)は、支持体の吸湿層を有する面と直交する方向から見た平面視における面積比で、10%以上50%未満であることが好ましい。
 言い換えれば、厚みAの第1の領域は、吸湿層の全領域に対し、50%を超える割合で存在することが好ましい。
 吸湿層の全領域に対する厚みAより薄い第2の領域の面積が平面視で10%以上であることで、隣接する第1の領域間の水分の移動抑制効果が十分に得られ、50%未満であることで、吸湿材料の十分な吸湿容量を達成することができる。
 十分な吸湿容量を得るという観点からは、吸湿層の全領域に対する第2の領域の面積は、平面視で40%未満であることがより好ましく、20%未満であることがさらに好ましい。
 厚みAより薄い第2の領域の平面視による面積は、吸湿層の全領域に対する面積比で、10%以上40%未満であることがより好ましく、15%以上20%未満であることがさらに好ましい。
 本開示の吸湿材料における、厚みAの第1の領域の周縁部に、厚みAより薄い第2の領域が存在して形成されたパターン構造は、厚みAの第1の領域が、厚みAより薄い第2の領域により離間されているパターン構造であれば、特に制限はない。
 本発明の第1の態様は、例えば、厚みAの第1の領域が、海に相当する「厚みAより薄い第2の領域」の中に島状に存在する、いわゆる海島構造のパターンに形成されていてもよい。海島構造のパターンの例としては、図4Aに示すハニカムパターン、及び図4Bに示す格子パターンなどが挙げられる。すなわち、これらは、六角形又は正方形の形状を有する厚みAの第1の領域の構造単位が、厚みAより薄い第2の領域により離間されて規則的に繰り返して配列された構造である。図4Aは、厚みAの第1の領域14Aと厚みAより薄い第2の領域14Bとによって形成されたパターン構造の一例であるハニカムパターンを示す平面図であり、第1の領域14Aを白抜きで示し、第2の領域14Bを斜線で示している。また、図4Bは、厚みAの第1の領域14Aと厚みAより薄い第2の領域14Bとによって形成されたパターン構造の他の例である格子パターンを示す平面図であり、第1の領域14Aを白抜きで示し、第2の領域14Bを斜線で示している。
 ハニカムパターン及び格子パターンは、一方向に規則的に配列された繰り返し構造を有するパターンである。本態様では、既述のように、海島構造、すなわち厚みAの第1の領域が、厚みAより薄い第2の領域により離間されていれば、吸湿層のパターン構造は、例えば、石垣構造、迷彩構造などの不規則なパターン構造であってもよい。
 第1の態様の吸湿材料では、任意の位置で裁断しても、裁断部から内部への水分の浸入が抑制される。したがって、別途の封止処理を施さず、吸湿容量を長期間保持される利点を有している。
 第1の態様の中でも、製造が容易であり、全体としても、或いは、所望のサイズに裁断した場合でも、均一な吸湿容量を実現しうる吸湿材料となる観点から、規則的な繰り返し構造を有するパターンであることが好ましい。
 既述の繰り返し構造を有するパターンの場合、吸湿層の全領域に対する「厚みAより薄い第2の領域」の面積比を容易に調整することができる。
 図4A及び図4Bで示すパターン構造の如く、同じ形状の構造単位が規則的に配列されて存在するパターン構造であると、吸湿層の全領域に対する第2の領域の面積比を容易に調整することができる。具体的には、例えば、図4A及び図4Bにおいて、第2の領域14Bの幅W、パターン構造の平面視における形状(例えば、図4Aの場合は六角形、図4Bの場合は正方形)、及び第1の領域14Aの幅Xを調整することで、吸湿層14の全領域に対する第2の領域14Bの面積比を容易に調整することができる。
 本発明の第2の態様において、吸湿材料は、例えば、図6に示すような吸湿材料30であってもよい。吸湿材料30は、吸湿層の全領域中に、吸湿層の幅方向(矢印方向X)における幅長A及び幅方向と直交する方向(矢印方向Y)における長さCの長方形の第1の領域14Aと、吸湿層の幅方向における第1の領域14Aの両縁部に幅長Bとして矢印方向Yに配置された領域14B-1、及び矢印方向Yにおける第1の領域14Aの一方の縁部に幅長A、長さDとして配置された領域14B-2からなる第2の領域と、を有し、第1の領域14Aと領域14B-2とからなる領域35が、長手方向(矢印方向Y)に複数配置されたパターンに形成されていてもよい。
 また、本発明の第2の態様において、吸湿材料は、例えば図7に示すような吸湿材料40であってもよい。図7において、各符号は図6と同じ意味を有する。吸湿材料40において、第1の領域14Aは、その長手方向が吸湿材料の短手方向軸と角度をなすように設けられている。
 さらに、本発明の第2の態様において、吸湿材料は、例えば図8に示す吸湿材料50であってもよい。吸湿材料50において、第1の領域は、山型(すなわち、長方形がその長手方向の中心部で折れ曲がった形)の形状を有する。
 第2の態様の吸湿層には、複数の領域(例えば、図6における領域35)が配置されることにより、第1の領域(例えば、図6における第1の領域14A)が、第2の領域の一部である領域(例えば、図6における領域14B-2)の長さ(例えば、図6における長さD)分の距離を隔ててそれぞれ等間隔に配置されている。
 本態様の吸湿材料では、吸湿層の薄い領域を、材料の幅方向(例えば、図6における矢印方向X)における第1の領域(例えば、図6における第1の領域14A)の両縁部に配置することにより、必要とされる吸湿抑制能を維持しつつ、吸湿容量を最大化することができる。本態様では、吸湿層の薄い領域が包装時における接合領域とすることができる。
 第2の態様において、吸湿材料の幅方向両縁部に存在する、吸湿層の薄い領域部分である2つの領域(例えば、図6における領域14B-1)は、吸湿層の幅方向端部からの幅長(例えば、図6における幅長B)が3mm以上であることが好ましい。幅長が3mm以上であると、端面からの水分の浸入(吸湿)がより効果的に抑制される。吸湿材料の幅方向両縁部に存在する、吸湿層の薄い領域部分である2つの領域(例えば、図6における領域14B-1)の幅方向端部からの幅長としては、上記同様の観点から、5mm以上がより好ましい。
 また、第2の態様において、吸湿層の幅方向と直交する方向(例えば、図6における矢印方向Y)において、第1の領域(例えば、図6における第1の領域14A)と、吸湿層の幅方向と直交する方向(例えば、図6における矢印方向Y)における第1の領域の一方の縁部に存在する第2の領域(例えば、図6における領域14B-2)と、の合計の面積(例えば、図6においては、〔(C+D)×A〕)に対する、第1の領域の一方の縁部に存在する第2の領域(例えば、図6における領域14B-2)の面積(例えば、図6においては、〔D×A〕)の占有比率(割合)は、支持体の吸湿層を有する面と直交する方向から見た平面視における面積比で10%以上50%未満であることが好ましい。
 第2の領域の面積の占有比率が平面視で10%以上であることにより、隣接する厚い吸湿層である第1の領域間の水分の移動抑制効果が優れ、かつ、端面からの水分の浸入も少なく抑えられる。また、第2の領域の面積の占有比率が平面視で50%未満であることにより、吸湿材料の吸湿容量に優れたものとなる。
 吸湿容量の観点から、第2の領域の面積の占有比率は、平面視で40%未満がより好ましく、20%未満がさらに好ましい。更には、第2の領域の面積の占有比率は、平面視で10%以上40%未満がより好ましく、15%以上20%未満がさらに好ましい。
 次に、本発明の一実施形態の吸湿材料における各層について説明する。
吸湿層
 本開示の吸湿材料10が有する吸湿層は、必要な吸湿性を発現しうる層であれば、特に制限なく用いることができる。
 吸湿層としては、シリカゲル、アルミナゲル、モレキュラーシーブ、ゼオライト、又は塩化カルシウムなどの公知の吸湿剤と分散媒としての樹脂とを含む吸湿層;特開平3-114509号公報に記載される如き、吸湿剤を担持した微多孔質膜である吸湿層;並びに非晶質シリカ、水溶性樹脂、及び吸湿剤を含む多孔構造を有する吸湿層、などが挙げられる。
 なかでも、吸湿層の膜厚制御が容易であること、及び、良好な吸湿容量を有するという観点からは、本開示の吸湿材料における吸湿層としては、非晶質シリカ粒子と水溶性樹脂と吸湿剤とを含む多孔構造を有する吸湿層であり、かつ、吸湿層の空隙率が45%~85%である吸湿層が好ましい。吸湿層が、三次元多孔質構造を有し、空隙率が45%~85%であることで、吸湿剤の吸湿容量に加え、吸湿層の空隙内にも水分を保持することができ、吸湿層全体の吸湿容量がより良好となる。
 以下、本開示の好ましい吸湿層である多孔質構造を有する吸湿層について詳述する。
 本開示における好ましい吸湿層は、非晶質シリカ、水溶性樹脂、及び吸湿剤を含む多孔構造を有しており、吸湿層はさらに架橋剤を含んでもよい。また、吸湿層は、必要に応じて、分散剤や界面活性剤などの他の成分を含んでもよい。非晶質シリカとして、平均2次粒子径が10μm以下である非晶質シリカを用いることが効果の観点から好ましい。
 吸湿層の厚みや吸湿剤の種類を変えることで、吸湿層における吸湿速度を制御することが可能である。また、積層した際の層間の貼り合せに用いられる接着剤層の厚みや接着剤の種類を変えることで、吸湿層における吸湿速度を制御することも可能である。
非晶質シリカ
 本開示の好ましい態様である吸湿層は、非晶質シリカの少なくとも一種を含有することができる。
 非晶質シリカとは、SiOの三次元構造が形成された多孔性の不定形微粒子のことであり、一般には製造法によって湿式法粒子と乾式法(気相法)粒子とに大別される。非晶質シリカとしては、例えば、乾式法により得られる気相法シリカ、及び湿式法により得られる湿式シリカ等の合成非晶質シリカなどが挙げられる。
気相法シリカ
 気相法シリカとは、ケイ素塩化物を気化し、高温の水素炎中において気相反応させることで合成されるシリカ(シリカ微粒子)である。
 気相法シリカは、屈折率が低いので、適切な微小粒子径まで分散を行なうことで吸湿層に透明性を付与することができる。吸湿層が透明であるということは、包装の内容物の視認が可能であり、また、インジケータ機能などを付与することができるという観点から好ましい。
 また、気相法シリカは、含水シリカとは表面のシラノール基の密度、空孔の有無等に相違があり、異なった性質を示すが、空隙率が高い三次元構造を形成するのに適している。この理由は明らかではないが、含水シリカの場合には、微粒子表面におけるシラノール基の密度が5個/nm~8個/nmと多く、シリカ粒子が密に凝集(アグリゲート)し易く、一方、気相法シリカの場合には、微粒子表面におけるシラノール基の密度が2個/nm~3個/nmと少ないことから疎な軟凝集(フロキュレート)となり、その結果、空隙率が高い多孔構造になると推定される。
 吸湿層に含まれる気相法シリカとしては、表面におけるシラノール基の密度が2個/nm~3個/nmである気相法シリカが好ましい。吸湿層に含まれる気相法シリカの平均1次粒子径には特に限定はないが、吸湿層の透明性の観点から、20nm以下が好ましく、10nm以下がより好ましい。
 吸湿層に含まれる気相法シリカの平均2次粒子径は、吸湿層の透明性の観点から、10μm以下であることが好ましく、50nm以下であることがより好ましく、25nm以下であることがさらに好ましい。また、吸湿層の透明性の観点から、2次粒子径分布は均一であることが好ましく、標準偏差として10nm以下であることが好ましく、8nm以下であることがより好ましく、5nm以下であることがさらに好ましい。
 気相法シリカの平均2次粒子径が10μm以下であることで、吸湿材料10の透明性、視認性がより良好となる。
 本明細書における平均1次粒子径とは、透過型電子顕微鏡で観察し、100個の一次粒子について、それぞれ投影面積を求めてその面積に等しい円を仮定したときの直径を求め、100個の一次粒子の直径を単純平均して求めた一次粒子の平均径をいう。
 また、本明細書における平均2次粒子径とは、走査型電子顕微鏡で観察し、100個の凝集粒子について、それぞれ投影面積を求めてその面積に等しい円を仮定した場合の直径を求め、100個の凝集粒子の直径を単純平均して求めた2次粒子の平均径をいう。
 気相法シリカとしては市販品を用いてもよい。本開示に使用しうる気相法シリカの市販品の例としては、AEROSIL(商品名、日本アエロジル(株)製)、レオロシール(商品名、トクヤマ(株)製)、WAKER HDK(商品名、旭化成(株)製)、及びCAB-O-SIL(商品名、CABOT(株)製)などを挙げることができ、AEROSIL300SF75(商品名、日本アエロジル(株)製)が好ましい。
湿式シリカ
 湿式シリカは、ケイ酸塩の酸分解により活性シリカを生成し、これを適度に重合させて凝集沈降させて得られる含水シリカである。
 湿式シリカは、製造方法により沈降法シリカ、ゲル法シリカ、又はゾル法シリカに分類される。沈降法シリカは、珪酸ソーダと硫酸をアルカリ条件で反応させて製造され、粒子成長したシリカ粒子が凝集・沈降し、その後濾過、水洗、乾燥、粉砕・分級の工程を経て得られる。沈降法シリカの例としては、東ソー・シリカ社製のニップシール(商品名)、及びトクヤマ社製のトクシール(商品名)が挙げられる。また、ゲル法シリカは、珪酸ソーダと硫酸を酸性条件下で反応させて得られ、具体例として、東ソー・シリカ社製のニップゲル(商品名)、並びにグレースジャパン社製のサイロイド(商品名)及びサイロジェット(商品名)が挙げられる。
 吸湿層に含まれる非晶質シリカのBET法による比表面積は、200m/g以上が好ましく、250m/g以上がより好ましい。気相法シリカの比表面積が200m/g以上であることで、吸湿層の透明性を高く保つことが可能である。
 本明細書におけるBET法とは、気相吸着法による粉体の表面積測定法の一つであり、吸着等温線から1gの試料の持つ総表面積、すなわち比表面積を求める方法である。通常、吸着気体としては、窒素ガスが多く用いられ、吸着量を被吸着気体の圧、又は容積の変化から測定する方法が最も多く用いられている。多分子吸着の等温線を表すのに最も著名なものは、Brunauer Emmett Tellerの式であってBET式と呼ばれ表面積決定に広く用いられている。BET式に基づいて吸着量を求め、吸着分子1個が表面で占める面積を掛けて、表面積が得られる。
 非晶質シリカの吸湿層中における含有量は、吸湿層の吸湿容量及び透明性の観点から、吸湿層の全固形分に対して、20質量%~80質量%が好ましく、30質量%~70質量%がより好ましい。
 吸湿層において、気相法シリカの2次粒子径を実現するための分散方法としては、分散剤を添加することが好ましく、例えば、カオチン性のポリマーを用いることができる。カオチン性のポリマーとしては、特開2006-321176号公報の段落[0138]~[0148]に記載の媒染剤の例などが挙げられる。
 また、上記気相法シリカの2次粒子径を実現するための分散方法としては、例えば、高速回転分散機、媒体撹拌型分散機(ボールミル、サンドミル、ビーズミルなど)、超音波分散機、コロイドミル分散機、又は高圧分散機など、従来公知の各種分散機を用いることができるが、なかでも、ビーズミル分散機及び液液衝突型分散機が好ましく、液液衝突型分散機がより好ましい。液液衝突型分散機としては、例えば、アルティマイザー(商品名、スギノマシン社製)が挙げられる。
水溶性樹脂
 本開示における好ましい吸湿層は、水溶性樹脂の少なくとも一種を含有することができる。
 水溶性樹脂の含有により、気相法シリカがより好適に分散された状態で含有され、吸湿層の強度がより向上する。
 本開示に用いうる水溶性樹脂とは、加熱もしくは冷却工程を経て、最終的に20℃の水100gに対して0.05g以上溶解する樹脂を指し、好ましくは0.1g以上溶解する樹脂のことをいう。
 水溶性樹脂としては、例えば、親水性構造単位としてヒドロキシ基を有する樹脂であるポリビニルアルコール系樹脂〔ポリビニルアルコール(PVA)、アセトアセチル変性ポリビニルアルコール、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、シラノール変性ポリビニルアルコール、ポリビニルアセタール等〕、セルロース系樹脂〔メチルセルロース(MC)、エチルセルロース(EC)、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等〕、キチン類、キトサン類、デンプン、エーテル結合を有する樹脂〔ポリプロピレンオキサイド(PPO)、ポリエチレングリコール(PEG)、ポリビニルエーテル(PVE)等〕、及びカルバモイル基を有する樹脂〔ポリアクリルアミド(PAAM)、ポリビニルピロリドン(PVP)、ポリアクリル酸ヒドラジド等〕等が挙げられる。また、水溶性樹脂としては、解離性基としてカルボキシル基を有するポリアクリル酸塩、マレイン酸樹脂、アルギン酸塩、及びゼラチン類等も挙げることができる。
 水溶性樹脂の中でも、吸湿層の膜強度の観点でポリビニルアルコール系樹脂が好ましく、特にポリビニルアルコールが好ましい。
 水溶性樹脂の重合度は、1500以上が好ましく、2000以上がより好ましく、3300以上がさらに好ましい。また、重合度は、4500以下が好ましい。
 なかでも、吸湿層の膜強度の観点から、水溶性樹脂がポリビニルアルコール系樹脂であって、ポリビニルアルコール系樹脂の重合度が1800以上であるのが好ましく、ポリビニルアルコール系樹脂の重合度が2000以上であるのがより好ましく、ポリビニルアルコール系樹脂の重合度が2400以上であるのがさらに好ましい。また、ポリビニルアルコール系樹脂の重合度は、4500以下がより好ましい。
 また、水溶性樹脂のけん化度は、99%以下が好ましく、95%以下がより好ましく、90%以下がさらに好ましい。また、けん化度は、70%以上が好ましく、78%以上がより好ましく、85%以上がさらに好ましい。
 なかでも、吸湿層の透明性の観点から、水溶性樹脂がポリビニルアルコール系樹脂であって、ポリビニルアルコール系樹脂のけん化度は、70%以上99%以下が好ましく、78%以上99%以下がより好ましく、85%以上99%以下であるのがさらに好ましい。
 水溶性樹脂のけん化度が70%以上であると、実用上水溶性を保つのに適している。
 本開示において吸湿層14に使用される水溶性樹脂は、けん化度が99%以下であり、かつ重合度が3300以上であるポリビニルアルコールであることが好ましい。
 なお、水溶性樹脂としてポリビニルアルコールを用い、かつ、架橋剤としてホウ酸を用いる場合は、ポリビニルアルコールは、けん化度が78%~99%の範囲であり、重合度が1500~4500の範囲、より好ましくは2400~3500の範囲のポリビニルアルコールを用いることがより好ましい。
 一方、水溶性樹脂としてポリビニルアルコールを用い、架橋剤を用いない場合には、ポリビニルアルコールはけん化度が低く高重合度であることが、架橋剤を用いた場合と同等の多孔構造を形成できる点で好ましい。具体的には、ポリビニルアルコールのけん化度は78%~99%の範囲が好ましく、ポリビニルアルコールの重合度は2400~4500の範囲が好ましい。
 水溶性樹脂は、上記具体例として挙げた樹脂の誘導体も好ましい例として挙げることができる。
 吸湿層に含まれる水溶性樹脂は1種単独でもよいし、2種以上を併用してもよい。
 吸湿層における水溶性樹脂の含有量(2種以上を併用する場合はその総含有量)は、含有量の過少による、膜強度の低下や乾燥時のひび割れを防止するという観点、及び、含有量の過多によって空隙が樹脂により塞がれ易くなり、空隙率が減少することで吸湿性が低下するのを防止する観点から、吸湿層の全固形分に対して、4.0質量%~16.0質量%が好ましく、6.0質量%~14.0質量%がより好ましい。
 また、水溶性樹脂をポリビニルアルコールとし、ポリビニルアルコールの架橋剤としてホウ酸を用いる場合、ポリビニルアルコールの吸湿層における含有量は、非晶質シリカの全質量に対して、10質量%~60質量%が好ましく、15質量%~30質量%がより好ましい。水溶性樹脂をポリビニルアルコールとし、ポリビニルアルコールの架橋剤を用いない場合、ポリビニルアルコールの吸湿層における含有量は、非晶質シリカの全質量に対して、25質量%~60質量%の範囲が好ましい。
 水溶性樹脂は、その構造単位に水酸基を有するが、この水酸基と気相法シリカ表面のシラノール基とが水素結合を形成して、気相法シリカの2次粒子を鎖単位とする三次元網目構造を形成し易くする。このような三次元網目構造の形成によって、空隙率の高い多孔構造を有する吸湿層を形成し得ると考えられる。得られた多孔構造を有する吸湿層は、吸湿後の水分を保持する層として機能すると推定される。
 なお、吸湿層の空隙率の好ましい態様及び空隙率の測定方法については後述する。
架橋剤
 吸湿層は、水溶性樹脂に架橋構造を形成し得る架橋剤の少なくとも一種を含有することができる。吸湿層が架橋剤を含むことで、水溶性樹脂、例えばポリビニルアルコールを含有する層に架橋反応によって架橋構造が形成され、架橋構造による、より高いレベルで硬化された多孔構造を有する吸湿層が形成されるため好ましい。
 架橋剤としては、吸湿層に含まれる水溶性樹脂との関係で好適なものを適宜選択すればよい。ホウ素化合物は、架橋反応が迅速である点で架橋剤として好ましい。架橋剤として用いうるホウ素化合物の例として、ホウ砂、ホウ酸、ホウ酸塩(例えば、オルトホウ酸塩、InBO、ScBO、YBO、LaBO、Mg(BO、Co(BO、二ホウ酸塩(例えば、Mg、Co)、メタホウ酸塩(例えば、LiBO、Ca(BO、NaBO、KBO)、四ホウ酸塩(例えば、Na・10HO)、五ホウ酸塩(例えば、KB・4HO、CsB)、及び六ホウ酸塩(例えば、Ca11・7HO)等を挙げることができる。
 ホウ素化合物の中では、より速やかに架橋反応を進行させることができる点で、ホウ砂、ホウ酸、ホウ酸塩が好ましく、特にホウ酸が好ましく、水溶性樹脂として好適に用いられるポリビニルアルコール系樹脂と組合せて使用することが最も好ましい。
 なお、本開示の如きパターン構造の吸湿層を形成する場合には、必ずしも、架橋剤を含まなくてもよい。また、環境適性をより向上させるという観点から、吸湿層がホウ酸などの架橋剤を含まない構成にしてもよい。
 架橋構造を含む吸湿層を作製する場合、架橋剤としてのホウ素化合物は、ポリビニルアルコール4.0質量%~16.0質量%に対して、0.15質量%~5.80質量%の範囲で含有されることが好ましく、0.75質量%~3.50質量%の範囲で含有されることがより好ましい。ホウ素化合物の含有量が上記範囲であると、ポリビニルアルコールを効果的に架橋し、吸湿層の所望されないひび割れ等の発生が抑制される。
 水溶性樹脂としてゼラチンを用いる場合などは、ホウ素化合物以外の下記化合物を架橋剤として用いることができる。ポリビニルアルコールに好適な架橋剤としてのホウ素化合物以外の架橋剤を、以下「他の架橋剤」と称することがある。
 他の架橋剤としては、例えば、ホルムアルデヒド、グリオキザール、グルタールアルデヒド等のアルデヒド系化合物;ジアセチル、シクロペンタンジオン等のケトン系化合物;ビス(2-クロロエチル尿素)-2-ヒドロキシ-4,6-ジクロロ-1,3,5-トリアジン、2,4-ジクロロ-6-S-トリアジン・ナトリウム塩等の活性ハロゲン化合物;ジビニルスルホン酸、1,3-ビニルスルホニル-2-プロパノール、N,N'-エチレンビス(ビニルスルホニルアセタミド)、1,3,5-トリアクリロイル-ヘキサヒドロ-S-トリアジン等の活性ビニル化合物;ジメチロ-ル尿素、メチロールジメチルヒダントイン等のN-メチロール化合物;メラミン樹脂(例えば、メチロールメラミン、アルキル化メチロールメラミン);エポキシ樹脂;1,6-ヘキサメチレンジイソシアネート等のイソシアネート系化合物;米国特許第3017280号明細書、同第2983611号明細書に記載のアジリジン系化合物;米国特許第3100704号明細書に記載のカルボキシイミド系化合物;グリセロールトリグリシジルエーテル等のエポキシ系化合物;1,6-ヘキサメチレン-N,N'-ビスエチレン尿素等のエチレンイミノ系化合物;ムコクロル酸、ムコフェノキシクロル酸等のハロゲン化カルボキシアルデヒド系化合物;2,3-ジヒドロキシジオキサン等のジオキサン系化合物;乳酸チタン、硫酸アルミ、クロム明ばん、カリ明ばん、酢酸ジルコニル、酢酸クロム等の金属含有化合物;テトラエチレンペンタミン等のポリアミン化合物;アジピン酸ジヒドラジド等のヒドラジド化合物;及びオキサゾリン基を2個以上含有する低分子又はポリマー等が挙げられる。
 他の架橋剤は、吸湿層に用いられる水溶性樹脂の種類に応じて適宜選択すればよい。
 吸湿層に含まれる他の架橋剤は、1種単独でもよく、2種以上を併用してもよい。
吸湿剤
 本開示における好ましい吸湿層は、吸湿剤の少なくとも一種を含有することができる。
 吸湿剤としては、例えば、シリカゲル、アルミナゲル、ゼオライト、吸水ポリマー及び、吸湿性塩が挙げられ、吸湿速度の点で吸湿性塩が好ましい。
 吸湿性塩としては、具体的には塩化リチウム、塩化カルシウム、塩化マグネシウム、塩化アルミニウム等のハロゲン化金属塩;硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸亜鉛などの金属硫酸塩;酢酸カリウム等の金属酢酸塩;塩酸ジメチルアミンなどのアミン塩;オルトリン酸などのリン酸化合物;塩酸グアニジン、リン酸グアニジン、スルファミン酸グアニジン、メチロールリン酸グアニジン、炭酸グアニジンなどのグアニジン塩;及び水酸化カリウム、水酸化ナトリウム、水酸化マグネシウム等の金属水酸化物:等が挙げられる。
 なかでも、吸湿容量がより高いという観点から、吸湿剤は塩化カルシウムを含むことが好ましい。
 吸湿層における吸湿剤の含有量は、単位面積当たりの塗布量で制御される。吸湿剤の塗布量は、吸湿容量及び透明性の両立という観点から、1g/m~20g/mが好ましく、2.5g/m~15g/mがより好ましく、5g/m~13g/mがさらに好ましい。
 本開示における吸湿層の厚みAは、吸湿容量及び透明性の両立という観点から、20μm~50μmが好ましく、25μm~45μmがより好ましく、30μm~45μmがさらに好ましい。吸湿層の厚みAが上記範囲であると、より大きな吸湿容量が得られ、かつ透明性を両立することができる。
 また、本開示の如く、多孔質構造を有する吸湿層は、塗布法により形成するが、厚みAが50μmを超える場合、厚みの均一な吸湿層の作製が困難となることがある。
 本開示の吸湿材料における吸湿層の空隙率は、既述のように、45%~85%が好ましく、50%~80%がより好ましく、55%~75%がさらに好ましい。吸湿層の空隙率が45%以上であると、より大きな吸湿容量が得られ、また、吸湿層の空隙率が85%以下であると、膜強度の低下防止及び乾燥時のひび割れを抑制することができる。
 空隙率の測定方法の例としては、水銀圧入法又は吸湿層をジエチレングリコール等の有機溶剤に浸漬させてその質量変化から空隙容量を測定し、吸湿層の厚みを断面の顕微鏡観察により測定し算出する方法が挙げられる。
 本開示の吸湿層は、厚みが20μm~50μmであり、かつ、空隙率が45%~85%であることが好ましい。
 本開示の好ましい吸湿層における平均細孔径は、吸湿容量の観点から40nm以下であることが好ましく、30nm以下がより好ましく、25nm以下がさらに好ましい。吸湿層の平均細孔径が40nm以下であると十分な透明性が得られる。
 本開示において、平均細孔径は、島津オートポア9220(商品名。株式会社島津製作所製)を用いて水銀圧入法により測定される値である。
 吸湿層を、厚みの不均一な吸湿層とする方法には特に制限はない。例えば、均一な吸湿層を形成し、エンボスロールで表面に凹凸を形成して厚みを不均一とする方法、均一な吸湿層の少なくとも一部を剥離し、除去する方法、基材である吸湿性樹脂層表面に、印刷法等により局所的に吸湿層を形成する方法、及び局所的に厚い吸湿層領域と薄い吸湿層領域とを形成する方法などが挙げられる。
 なお、本開示の吸湿材料の好ましい製造方法については後述する。
 
透湿性を有する樹脂層(透湿性樹脂層)
 本開示において、吸湿材料(例えば、図1に示す吸湿材料10及び図2における吸湿材料11)は、透湿性樹脂層(例えば、図1及び図2における透湿性樹脂層12)と、厚みの不均一な吸湿層(例えば、図1及び図2における吸湿層14)と、防湿層(例えば、図1及び図2における防湿層16)とを有する。
 透湿性樹脂層の透湿度は、1g/m・day~50g/m・dayの範囲であることが好ましい。本明細書における透湿度は、JIS Z 0208(1976年)に記載の方法で測定される値である。この方法では、温度25℃において防湿包装材料を境界面とし、一方の側の空気を相対湿度90%、他の側の空気を吸湿剤によって乾燥状態に保ったとき、24時間にこの境界面を通過する水蒸気の質量(g)を、その材料1m当たりに換算した値をその材料の透湿度と定める。
 透湿性樹脂層は少なくとも膜形成性樹脂を含み、必要に応じて他の成分を含んでもよい。
 透湿性樹脂層に用いうる樹脂としては、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、無延伸ポリプロピレン(CPP)、二軸延伸ポリプロピレン(OPP)、及びポリアクリロニトリル(PAN)等が挙げられる。特に汎用性の点でLLDPE、CPPが好ましく、CPPがより好ましい。
 透湿性樹脂層の厚みは、20μm~100μmが好ましく、20μm~80μmがより好ましい。
 透湿性樹脂層の厚みが上記の範囲であると、吸湿材料全体のハンドリング性と、包装材料等とした場合の取り扱い性と、をより高いレベルで両立することができる。
 本開示の吸湿材料における透湿性樹脂層の材質及び厚みの少なくともいずれかを調整することにより、吸湿層の吸湿速度を制御することができる。
 本開示の吸湿材料を包装材料として用いる場合、透湿性樹脂層を接着部位とすることができる。また、包装材料の内包物側に透湿性樹脂層を有することで、吸湿層が内包物に直接接触しない態様とすることができる。
防湿層
 本開示において、吸湿材料は防湿層(例えば、図1及び図2における防湿層16)を有する。
 防湿層は、防湿性を有する材料を含む層であれば特に限定されない。防湿層は、透湿度1g/m・day未満の層であることが好ましい。透湿度の測定方法は、透湿性樹脂層において述べた方法と同じ方法を適用することができる。
 防湿層は、1つの材料からなる層であってもよく、2以上の材料を含む層の積層構造を有していてもよい。
 防湿層としては、透湿性が上記透湿度を満たす透湿性の低い樹脂フィルム、異種の樹脂フィルムの積層体、樹脂フィルムに金属、無機材料を蒸着した積層フィルム、又は樹脂フィルムと金属シートとをラミネートした積層フィルムなどを適宜用いることができる。
 防湿性が良好であるという点から、樹脂シート、紙などに予め金属を蒸着したシート、又は金属箔などの金属シートを用いてもよい。
 防湿層に使用される材料は、十分な防湿性が得られるという観点から、シリカ蒸着フィルム、アルミナ蒸着フィルム、アルミ蒸着フィルムなどの無機材料層又は金属層を有する積層フィルム、及びアルミ箔などの金属シートなどが好ましい。
 防湿層としては市販品を用いてもよい。市販品の例としては、三菱樹脂社製のテックバリアMX(商品名)(すなわち、シリカ蒸着PET)、及び東レ(株)製のバリアロックス(商品名)(すなわち、アルミナ蒸着PET)等が挙げられる。
 防湿層の厚みは、防湿性の観点から、6μm~120μmが好ましく、6μm~100μmがより好ましい。
接着剤層
 本開示において、吸湿材料はさらに接着剤層を有してもよい。
 接着剤層は、透湿性を有しており、接着剤層の厚み及び種類により、吸湿層における吸湿速度を制御することができる。また、所望により接着剤層を設けることで、吸湿層(例えば、図1及び図2における吸湿層14)と防湿層(例えば、図1及び図2における防湿層16)、吸湿層と透湿性樹脂層(例えば、図1及び図2における透湿性樹脂層12)との接着性をより強固にすることができる。
 接着剤層に用いる接着剤の種類は特に限定されない。接着剤としては、例えば、ウレタン樹脂系接着剤、ポリエステル系接着剤、アクリル樹脂系接着剤、エチレン酢酸ビニル樹脂系接着剤、ポリビニルアルコール系接着剤、ポリアミド系接着剤、及びシリコーン系接着剤等が挙げられ、接着強度がより高いという観点から、ウレタン樹脂系接着剤が好ましい。
 接着剤層には、少なくとも1種のウレタン樹脂系接着剤が含まれることが好ましい。ウレタン樹脂系接着剤と、ウレタン樹脂系接着剤以外の接着剤の1種以上との併用系も好ましく挙げられる。
 接着剤層の厚みは、接着強度及び包装材料等とした場合の取り扱い性の観点から3μm~15μmが好ましく、3μm~10μmがより好ましい。接着剤層の厚みが上記範囲であると、接着強度と包装材料等とした場合の取り扱い性をより高いレベルで両立することができる。
 また、上記範囲で厚みを選択することで、吸湿層の吸湿速度を制御することができる。
 本開示の吸湿材料は、例えば、図1に示す、透湿性樹脂層12と、厚みの不均一な吸湿層14と、防湿層16と、をこの順に積層した材料でもよい。厚みAの第1の領域間の水分透過抑制効果をより良好にするという観点からは、本開示の吸湿材料としては、吸湿層と防湿層との間に接着剤を付与し、接着剤層を介して吸湿層と防湿層とを接着した態様も好ましい。
 本開示の吸湿材料は、端部に封止処理を行わなくても、端部からの水分の浸入が、吸湿層の第2の領域及び防湿層により抑制され、吸湿材料の深部に浸入することがないため、長期間に亘り十分な吸湿容量を維持することができる。このため、本開示の吸湿材料は、内包物の乾燥状態を長期間維持するための包装材料に好適に用いることができる。
<吸湿材料の製造方法>
 本開示の吸湿材料の製造方法には特に制限はない。厚みの不均一な吸湿層の形成方法は既述のように公知の方法を適宜選択して適用することができる。
 本開示の吸湿材料の製造方法は、
 剥離用基材に、接着剤、粘着剤、及び熱可塑性樹脂から選択される少なくとも1種を用いて、パターン状の接着層を形成すること、
 樹脂層(好ましくは透湿性を有する樹脂層)の少なくとも一方の面に吸湿層を形成すること、
 樹脂層に形成された吸湿層と、剥離用基材に形成されたパターン状の接着層と、を接触させて、ラミネートして積層体を形成すること、
 積層体から、剥離用基材を剥離することで、パターン状の接着層に対応する吸湿層を剥離して、樹脂層の表面にパターン状の吸湿層(好ましくは厚みの不均一な吸湿層)を形成すること、及び
 パターン状の吸湿層の上に防湿層を形成すること、を含む。
 なかでも、厚みの不均一な吸湿層の生産性を考慮すれば、以下に示す実施形態の吸湿材料の製造方法により製造されることが好ましい。本開示の製造方法を、図5A~図5Dにより説明する。図5A~図5Dは、図2に示す吸湿材料11を例に挙げた吸湿材料の製造方法の一例である製造プロセスを示す概略図である。
 本開示の吸湿材料の製造方法の一例は、剥離用基材20に、接着剤、粘着剤、及び熱可塑性樹脂から選択される少なくとも1種(以下、接着剤等と称することがある)を用いて、パターン状の接着層22を形成すること(図5A参照)、透湿性を有する樹脂層12の少なくとも一方の面に吸湿層14を形成すること(図5B参照)、形成された吸湿層14と、剥離用基材20に形成されたパターン状の接着層22とを接触させ、ラミネートして積層体を形成すること(図5B参照)、積層体から剥離用基材20を剥離することで、パターン状に形成された接着層22に対応する吸湿層を剥離して、透湿性を有する樹脂層12表面に厚みの不均一な吸湿層14を形成すること(図5C参照)、及び、厚みの不均一な吸湿層14上に防湿層16を形成すること(図5D参照)、を含む。なお、図5A~図5Dに示される製造方法は、図2に示される、吸湿層14における第2の領域14Bに吸湿層が存在しない態様に対応しているが、図1に記載の如く、第1の領域14Aより薄い第2の領域14Bに吸湿層が存在する態様も、以下に詳述するように、接着層22の厚み、接着層の形成に用いる接着剤の種類、乾燥条件などを制御することで、同様の工程で製造することができる。
 剥離用基材に、接着剤、粘着剤、及び熱可塑性樹脂から選択される少なくとも1種を用いて、パターン状の接着層を形成することと、透湿性を有する樹脂層の少なくとも一方の面に吸湿層を形成することとは、いずれを先に行なってもよく、別々に並行して行ってもよい。
 後述するように、厚みの均一な防湿層は、汎用の塗布装置にて簡易に形成することができる。厚みの均一な吸湿層は、厚みAの第1の領域を形成する吸湿層である。厚みの均一な吸湿層表面に、接着層を密着させた後、剥離する方法により、吸湿層に、厚みAの少なくとも一部が剥離され、厚みAよりも薄い第2の領域が形成される。パターン状の接着層を用いた方法によれば、吸湿層の所望の位置に、所望の形状で、容易に任意のパターン構造を有する、厚みの不均一な吸湿層を簡易に形成することができる。
剥離用基材に、接着剤、粘着剤、及び熱可塑性樹脂から選択される少なくとも1種を用いて、パターン状の接着層を形成すること
 本工程では、例えば図5Aに示すように、剥離用基材20の少なくとも片方の表面に接着剤等を用いて、パターン状の接着層22を形成する。
 本工程に用いられる剥離用基材20は、剥離用基材20に付与されたパターン状の接着層22を安定に保持することができ、接着層22を吸湿層14表面に接着した後、剥離する際に破損しない程度の強度を有する基材である限り、特に制限なく使用することができる。
 剥離用基材としては、樹脂シート、又は樹脂をラミネートした紙などを用いることができる。なかでも、入手及び加工が容易であるという観点から、樹脂シートが好ましい。樹脂シートとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリエチレン(PE)、及びポリプロピレン(PP)などの樹脂からなるシートが挙げられ、PETシート等が好ましい。
 剥離用基材として樹脂シートを使用する場合、接着層を形成する側に、予めコロナ放電処理などの易接着を目的とした表面処理を行ってもよい。
 剥離用基材としては、市販品を使用してもよく、市販品としては、例えば、東レ(株)製の二軸延伸PETフィルム ルミラー(登録商標)などが挙げられる。
 剥離用基材の表面に、厚みAよりも薄い第2の領域に応じた領域に接着層を形成する方法には特に制限はなく、公知の方法を適用できる。
 この様な様式で接着層を剥離用基材の表面にパターン状に付与することにより、パターン状の接着層を形成できる。
 接着層の形成方法としては、例えば、グラビア印刷、凸版印刷、インクジェット印刷、スクリーン印刷などの印刷法、スロットダイ塗布を用いて液の吐出を制御する間欠塗布方式を適用する方法などが挙げられる。
 なかでも、所望のパターン構造を簡易に形成し易いこと、剥離する吸湿層の厚みに応じて、所定の厚みを有する接着層を形成し易いこと、などの観点から、剥離用基材に、接着剤等を用いて、パターン状の接着層を形成する際には、接着剤等、粘着剤及び熱可塑性樹脂から選択される少なくとも1種を印刷法により剥離用基材上に付与することが好ましい。
 既述の図4A及び図4Bに示す如き、規則的な繰り返しを有するパターン構造を形成する場合には、グラビア印刷、又はスクリーン印刷等を適用することができる。グラビア印刷を例に挙げれば、規則的な繰り返しパターン構造を形成したグラビアロールを作製して印刷に用いることで、剥離用基材の表面に容易に規則的な繰り返しパターン状の接着層を形成することができる。
 また、例えば、インクジェット印刷法などを適用することにより、規則的な繰り返しパターン構造以外のパターン構造を容易に形成することができる。
 接着層形成用の接着剤等としては、吸湿層との接着性が良好であれば特に制限はない。なかでも、吸湿層として、既述の好ましい態様である空隙を有する吸湿層を適用する場合、吸湿層の空隙の深部に浸透しやすい接着剤等を用いることが、吸湿層の剥離厚みを制御し易いという観点から好ましい。
 接着層の形成に使用する接着剤としては、ウレタン樹脂系接着剤、ポリエステル系接着剤、アクリル樹脂系接着剤、エチレン酢酸ビニル樹脂系接着剤、ポリビニルアルコール系接着剤、ポリアミド系接着剤、及びシリコーン系接着剤等が挙げられ、吸湿層との接着強度がより高いという観点から、ウレタン樹脂系接着剤が好ましい。
 接着剤は市販品を使用することができ、市販品としては、たとえば、東洋インキ(株)製のウレタン樹脂系接着剤(商品名:LIS-073-50U)が挙げられる。接着剤は、硬化剤(商品名:CR-001、東洋インキ(株)製)と併用することも好ましい。
 接着層の形成に使用する粘着剤としては、例えば、綜研化学(株)製、アクリル系粘着剤(商品名:SKダイン1717DT)などが挙げられる。
 接着層の形成に使用する熱可塑性樹脂としては、例えば、大日精化(株)製、ポリエステル系熱圧着型接着剤(商品名:セイカダイン)などが挙げられる。
 接着層の形成に用いられる接着剤等は1種のみでもよく、2種以上を併用してもよい。
 接着層は、剥離用基材に接着剤等を付与し、乾燥することで形成することができる。乾燥は常温で行ってもよく、40℃~120℃程度で加熱して行ってもよい。加熱する場合、接着層に接触しない加熱乾燥方法、例えば、温風にて乾燥する方法、加熱ゾーンを通過させる方法、又は剥離用基材側から加熱ロールを接触させる方法などが挙げられる。加熱乾燥方法は、生産性の観点から温風にて乾燥する方法が好ましい。
 形成される接着層の厚みは、適用する吸湿層の厚み、及び、剥離する吸湿層の厚み、すなわち剥離後に残存する第2の領域の厚みを考慮して、適宜選択すればよい。一般的には、接着層の乾燥後の厚みは、3μm~15μmであることが好ましく、5μm~10μmであることがより好ましく、6μm~8μmであることがさらに好ましい。接着層の厚みは均一であっても、不均一であってもよい。接着層の厚みを不均一にすることにより、3以上の互いに異なる厚みの吸湿層を形成することができる。
 なお、接着層による吸湿層の剥離は、樹脂層内に吸湿剤を混練した吸湿層の如く、吸湿層自体が自己保持性を持つ場合には、接着層と吸湿層との接着力を吸湿層自体の強度よりも大きくすることで、容易に剥離することができる。
 また、吸湿層が、多孔質構造の吸湿層である場合は、乾燥後の接着層が、多孔質構造の空隙内に浸透することで、自己保持性が低く、比較的もろい多孔質構造の吸湿層をより深い位置で剥離することができる。一般的に接着層の形成において、接着剤の硬化を促進させるために40℃前後の室内で数日保管するエージングを行うが、その際に接着剤がやや軟化することで、吸湿層の多孔質構造内への接着層の浸透が促進されると考えられる。また、接着層と吸湿層14とを密着させた後、40℃前後の温度に加熱することで、吸湿層の多孔質構造内への接着層の浸透と硬化が促進され、所望の深さで吸湿層を剥離することができる。
透湿性を有する樹脂層の少なくとも一方の面に吸湿層を形成すること
 本開示の製造方法は、例えば図5Bに示すように、透湿性を有する樹脂層12の少なくとも一方の面に吸湿層14を形成することを含む。
 本工程では、透湿性樹脂層12に、厚みの均一な吸湿層14を形成する。本開示の好ましい態様では、吸湿層は、非晶質シリカと水溶性樹脂と吸湿剤とを含む。既述の好適な吸湿層を形成する場合を例に挙げれば、非晶質シリカと水溶性樹脂とを含む塗布液を透湿性樹脂層に塗布して、多孔構造を有する層を形成し、多孔構造に吸湿剤を含む溶液を付与し、多孔構造内に吸湿剤を含浸させることで吸湿層を形成する方法をとることができる。
 非晶質シリカを含む塗布液を用いて得られた多孔構造を有するように構成された吸湿層に吸湿剤が付与されることにより、多孔構造を形成しているシリカ表面に吸湿剤が吸着した状態が形成される。したがって、吸湿表面を広く確保することが可能になり、吸湿速度が高く、吸湿容量がより大きくなる。特に多孔構造が気相法シリカで形成されている場合、透明性も付与され、吸湿材料は、光透過性(すなわち材料を通しての視認性)を有する。
 また、吸湿層が多孔構造を有することで、引き続き行われる透湿性樹脂層上の吸湿層と、接着層が形成された剥離用基材とをラミネートして積層体を形成するに際して、吸湿層が有する多孔構造の空隙に接着層を構成する接着剤等が浸透する。よって、剥離用基材を剥離する際に、接着層を構成する接着剤等が浸透した、吸湿層深部の所望の領域まで、吸湿層を容易に剥離することができ、所望の厚みの第2の領域を形成することができるため、吸湿層が多孔構造を有することが好ましい。
 本開示の好ましい吸湿層を形成するための、吸湿層形成用塗布液は、非晶質シリカ、水溶性樹脂、及び必要に応じて分散剤、水、及び/又は架橋剤などの他の成分を混合し、分散処理することで調製することができる。
 例えば、顔料である気相法シリカ粒子と分散剤とを水中に添加し、高速回転湿式コロイドミル(例えばエム・テクニック(株)製の商品名:クレアミックス)又は液液衝突型分散機(例えばスギノマシン社製の商品名:アルティマイザー)を用いて、例えば10000rpm(好ましくは5000~20000rpm)の高速回転条件下、あらかじめ定めた時間(好ましくは10~30分間)かけて分散させた後、架橋剤(例えばホウ酸)、水溶性樹脂(好ましくはポリビニルアルコール水溶液)を加え、更に必要に応じて他の成分を加えて、上記と同様の回転条件下、分散させることで吸湿層形成用塗布液を調製することができる。
 得られる塗布液は、均一性の高いゾル状の液であり、塗布液を任意の塗布法により支持体上に塗布し乾燥させることにより、三次元網目構造を有する多孔構造の吸湿層を形成することができる。
 また、非晶質シリカと分散剤を含有する水分散物は、非晶質シリカ水分散液をあらかじめ調製し、得られた水分散液を分散剤水溶液に添加することによって調製してもよいし、分散剤水溶液を非晶質シリカ水分散液に添加することによって調製してもよいし、非晶質シリカと分散剤を同時に混合することによって調製してもよい。また、非晶質シリカ水分散液ではなく、粉体の非晶質シリカを用いて既述の如く分散剤水溶液に添加してもよい。
 非晶質シリカと分散剤とを混合した後、得られた混合液を分散機で細粒化することで、平均粒子径20nm~5000nmの水分散液を得ることができる。特に、非晶質シリカとして気相法シリカを用いる場合には、平均粒子径20nm~100nmの水分散液を得ることができる。
 分散機としては、高速回転分散機、媒体撹拌型分散機(ボールミル、サンドミルなど)、超音波分散機、コロイドミル分散機、高圧分散機等、又は従来公知の各種の分散機を使用することができる。中でも、撹拌型分散機、コロイドミル分散機、及び高圧分散機が好ましい。
 塗布液の調製には、溶媒を用いることができる。溶媒の例として、水、有機溶媒、又はこれらの混合溶媒が挙げられる。有機溶媒としては、メタノール、エタノール、n-プロパノール、i-プロパノール、メトキシプロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、アセトニトリル、酢酸エチル、及びトルエン等が挙げられる。
 塗布は、例えば、ブレードコーター、エアーナイフコーター、ロールコーター、バーコーター、グラビアコーター、又はリバースコーター等を用いた塗布法により行える。
 塗布液の塗布後は、吸湿層は減率乾燥を示すまで乾燥される。乾燥は、一般に40℃~180℃で0.5分~10分、好ましくは0.5分~5分の範囲で行うことができる。
 多孔構造の吸湿層を形成する場合、塗布液を塗布し乾燥させて多孔構造を有する層(塗布層)を形成した後、形成された層に、炭酸アンモニウムのような弱酸のアンモニウム塩、弱酸のアルカリ金属塩、弱酸のアルカリ土類金属塩、ヒドロキシアンモニウム、1~3級アミン、1級~3級アニリン、又はピリジン等の塩基性化合物を含む溶液を付与してもよい。このプロセスを経ることで、良好な細孔構造を有する多孔構造が得られる。
 塩基性化合物を含む溶液の付与方法としては、吸湿層上にさらに塗布する方法、スプレー等の方法により噴霧する方法、及び塩基性化合物を含む溶液中に塗布層が形成された支持体を浸漬する方法等を挙げることができる。
 また、塩基性化合物を含む溶液は、吸湿層形成用の塗布液を塗布すると同時に付与してもよい。この場合、塗布液と塩基性化合物を含む溶液とを、塗布液が支持体と接触するようにして支持体上に同時塗布(重層塗布)し、その後、乾燥硬化させることで、多孔構造を有する層とすることができる。
 既述の如く、多孔構造を有する層を形成した後、この層に、吸湿剤を含む溶液を付与し、多孔構造内に吸湿剤を含浸させることにより空隙を有する吸湿層が形成される。
 吸湿剤を含む溶液の付与は、吸湿層上に溶液を塗布する方法、スプレー等の方法により溶液を噴霧する方法、及び多孔構造を有する層を溶液中に浸漬する方法、等が挙げられる。
 塗布により吸湿剤を含む溶液を付与する場合、塗布法としては、吸湿層形成用塗布液の塗布方法と同様の方法を挙げることができる。
 吸湿剤を含む溶液は、吸湿剤の少なくとも1種を含有し、必要に応じて、界面活性剤、及び/又は溶媒等の他の成分を含んでもよい。
 吸湿剤を含む液は、例えば、イオン交換水に、吸湿剤(例えば無機塩)、及び必要に応じて界面活性剤等の添加剤を添加し、撹拌することで調製することができる。
 吸湿剤を含む溶液の付与量としては、吸湿層の吸湿量、吸湿速度の観点から、吸湿剤の付与量が1g/m以上20g/m以下となる量が好ましく、吸湿剤の付与量が3g/m以上12g/m以下となる量がより好ましい。
 吸湿剤を含む溶液の付与後は、一般に40℃~180℃で0.5分間~30分間加熱され、乾燥および硬化が行われる。中でも、40℃~150℃で1分間~20分間加熱することが好ましい。例えば、上記溶液がホウ素化合物として硼砂や硼酸を含有する場合には、60℃~100℃での加熱を0.5分間~15分間行うことが好ましい。
透湿性を有する樹脂層に形成された吸湿層と、剥離用基材に形成されたパターン状の接着層と、を接触させて、ラミネートして積層体を形成すること
 次に、例えば図5Bに示すように、透湿性樹脂層12に形成された吸湿層14と、剥離用基材20に形成されたパターン状の接着層22と、を接触させて、ラミネートして積層体を形成する。ラミネートは、積層体を一対の平滑なローラ間を通過させることで、常温で行なってもよく、30℃~100℃に加熱したローラ間を通過させることで熱ラミネートを行ってもよい。
 本工程により、吸湿層14と接着層22とが密着した積層体を形成する。
積層体から、剥離用基材を剥離することで、パターン状に形成された接着層に対応する吸湿層を剥離して、透湿性を有する樹脂層表面に厚みの不均一な吸湿層を形成すること
 本工程では、例えば図5Cに示すように、剥離用基材20を積層体から剥離する。剥離により、剥離用基材20表面にパターン状に形成された接着層22に密着した領域の吸湿層14が、接着層22の形成領域に応じてパターン状に剥離され、剥離後、パターン状に、もとの吸湿層の厚みである厚みAよりも薄い第2の領域14Bが形成される。接着層22が形成されない領域は、当初形成された吸湿層14の厚みAが維持され、第1の領域14Aとなり、透湿性樹脂層12表面に厚みの不均一な吸湿層14が形成される。なお、本工程における吸湿層14の剥離は、例えば図5Cに示すように、接着層22形成領域の厚み方向に吸湿層14が全てが剥離されなくてもよい。吸湿層の厚み方向の少なくとも一部が剥離されれば、厚みAよりも薄い第2の領域が形成され、吸湿層は、厚みの不均一な吸湿層となる。また、3以上の互いに異なる厚みの吸湿層が形成されてもよい。
厚みの不均一な吸湿層上に防湿層を形成すること
 前工程により、透湿性樹脂層12上に、厚みの不均一な吸湿層14が形成される。本工程では、例えば図5Dに示すように、得られた厚みの不均一な吸湿層14の、透湿性樹脂層12とは反対側の、凹凸を有する側に防湿層16を形成して、吸湿材料が得られる。
 防湿層の形成方法は、特に制限されず、透湿性樹脂層上に設けられた厚みの不均一な吸湿層上に、防湿性を有する材料を貼り合せて防湿層を形成してもよい。また、防湿性を有する材料を含む塗布液を調製し、塗布液を厚みの不均一な吸湿層上に塗布し、乾燥して防湿層を形成してもよい。
 なかでも、厚みの不均一な吸湿層の凹凸に十分に追従し、密着性に優れた防湿層を効率よく形成しうるという観点からは、貼り合わせにより防湿層を形成することが好ましい。
 防湿層としては、吸湿材料の欄で述べた如く、透湿度1g/m・day未満の材料からなる層が好ましく、透湿性が低い単層又は積層構造の樹脂フィルム、又は金属若しくは無機材料を蒸着したフィルム等を用いて形成することが好ましい。
 防湿層の形成に使用される既述のフィルムを、厚みの不均一な吸湿層の凹凸を有する側に接着して防湿層を形成することができる。
 防湿層と吸湿層との密着性をより向上し、吸湿層において、隣接する厚みAの第1の領域間の水分移動を、より効果的に抑制するという観点から、防湿層を形成する際に、防湿層形成用のフィルムに接着剤層を形成し、接着剤層を介して、吸湿層と防湿層とを接着することが好ましい。接着剤層を介することで、厚みの不均一な吸湿層の凹凸に添って、防湿層が吸湿層に強固に接着され、厚みAよりも薄い第2の領域における水分透過抑制機能がより向上する。
<包装材料及び包装物>
 本発明の一実施形態の吸湿材料は、包装材料として用いてもよい。包装材料は、既述の本発明の一実施形態の吸湿材料を備えた包装材料である。包装材料の形態としては、シート状、又は袋状等が挙げられる。
 また、本発明の一実施形態の包装物は、既述の本発明の一実施形態の吸湿材料の一部を接着して例えば袋状に成形された接着成形体である。例えば袋状に接着成形された包装材料の場合は、その内部に被包装体を内包して包装することが可能である。接着は、熱融着(例えばヒートシール)により行ってもよく、吸湿材料の一部が接着された接着部位を形成して包装物とすることができる。
 以下において、シート状の吸湿材料を備えた包装材料を例に挙げて説明する。
 本発明の一実施形態の吸湿材料を包装材料として用いる場合、以下に示す形態で用いることができるが、包装材料の形態は以下の例に制限されない。
 包装材料の第1の態様としては、1枚のシート状の吸湿材料の、透湿性樹脂層側を内部とし、防湿層側を外側とした袋状とし、袋状の周縁部において、透湿性樹脂層の少なくとも一部同士を接着した接着部位を有し、吸湿が必要な内包物を、包装材料の内部に入れる態様が挙げられる。
 透湿性樹脂層が熱融着しうる材料の場合、接着部位は、熱融着(例えばヒートシール)により形成してもよく、一対の透湿性樹脂層間を、接着剤層、易接着シート等を介して接着して形成してもよい。
 包装材料10を袋状に成形する方法としては、1枚の吸湿材料を折り曲げて、重なり合った透湿性樹脂層同士を端部で接着する方法の他、2枚の吸湿材料を、透湿性樹脂層を内側、防湿層を外側として重ね合わせ、端部の透湿性樹脂層同士を接着する方法などが挙げられる。
 包装材料の別の態様としては、互いに異なる2種の吸湿材料を、互いの透湿性樹脂層同士を重ね合わせて、周縁部を接着して袋状とする態様、及び防湿性のシートと、吸湿材料とを、吸湿材料の透湿性樹脂層側を、防湿性のシートと接する側として、重ね合わせて、周縁部を接着して袋状とする態様などが挙げられる。
 また、予め吸湿材料を成形することにより、収容部となる凹部が成形された吸湿材料を得て、吸湿材料の凹部の開口面側における凹部非形成部における透湿性樹脂層と、別の防湿性シートとを接着することで形成された、収容部を有する包装材料の形態をとることもできる。
 具体例には、本開示の包装材料は、内包物を収容する凹部が形成された、薬等の包装に用いられるブリスターパック(PTP包装ともいう)として利用することもできる。
 上記のほか、包装材料の第2の態様として、既述の第2の態様の吸湿材料を用い、吸湿材料の幅方向両縁部に存在する、吸湿層の薄い領域部分である2つの領域(例えば、図6における領域14B-1)を接着等して袋状にし、さらに吸湿材料の長手方向(例えば、図6における矢印方向Y)の上端部及び下端部を接着等して封止することにより、被包装体を内包した包装物が得られる。
 包装形態としては、ピロー包装、四方シール袋包装、三方シール袋包装、ガゼット包装、スタンディング袋包装などが挙げられる。
 包装の大きさは、被包装体の大きさによるが、一般には、外寸で30mm~500mmの範囲が好ましい。
 いずれの包装材料の形態においても、接着方法は、熱圧着、熱融着、超音波接着、接着剤を介した接着、又は易接着シートを介した接着など、公知の接着方法を目的に応じて適用することができる。
 本開示の包装材料は、端部に封止処理を行わなくても、包装材料を構成する吸湿材料の裁断端部からの水分が深部に浸入することが抑制され、長期間に亘り十分な吸湿容量を維持することができるため、内包物の乾燥状態を長期間維持することができる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその主旨を超えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
実施例1~24
 以下のプロセスで、下記表2~表4に記載の吸湿材料構成に従い、実施例、比較例の吸湿材料を作製した。
<吸湿層の形成>
吸湿層形成用塗布液の調製
 下記組成に示す(1)気相法シリカ1、(2)イオン交換水、(3)シャロールDC-902P(商品名)、及び(4)ジルコゾールZA-30を混合し、液液衝突型分散機(アルティマイザー、スギノマシン社製)を用いて分散させた(この工程を適宜、シリカ分散処理と称する)。その後、得られた分散液を45℃に加熱し、20時間保持した。その後、分散液を30℃に保持し、分散液に(5)ホウ酸水溶液及び(6)ポリビニルアルコール(PVA)溶解液を加え、吸湿層形成用塗布液を調製した。
吸湿層形成用塗布液の組成
(1)気相法シリカ1(非晶質シリカ)        8.9部
  (商品名:AEROSIL300SF75、日本アエロジル(株)製、平均1次粒子径:7nm、平均2次粒子径:20nm)
(2)イオン交換水                 47.3部
(3)シャロールDC-902P(51.5%水溶液) 0.8部
  (商品名、第一工業製薬(株)製、分散剤、含窒素有機カチオンポリマー)
(4)ジルコゾールZA-30            0.5部
  (商品名、第一稀元素化学工業(株)製、酢酸ジルコニル)
(5)ホウ酸(5%水溶液)             6.6部
(6)ポリビニルアルコール(水溶性樹脂)溶解液   26.0部
ポリビニルアルコール溶解液の組成
 ・ポリビニルアルコール(PVA)         1.81部
 (1)実施例1~17、19~24:JM33
  (商品名、日本酢ビ・ポバール(株)製、ポリビニルアルコール(PVA);けん化度95.5%、重合度3300)
 (2)実施例18:JP33
  (商品名、日本酢ビ・ポバール(株)製、ポリビニルアルコール(PVA);けん化度88%、重合度4500)
 ・HPC-SSL                 0.08部
  (商品名、日本曹達(株)製、水溶性セルロース)
 ・イオン交換水                  23.5部
 ・ジエチレングリコールモノブチルエーテル     0.55部
  (商品名:ブチセノール20P、協和発酵ケミカル(株))
 ・ポリオキシエチレンラウリルエーテル(界面活性剤)0.06部
  (商品名:エマルゲン109P、花王(株)製)
吸湿層の形成
 透湿性樹脂層として、下記表2~表4に示した厚みの直鎖状低密度ポリエチレン(LLDPE)のシート(以下、LLDPEシートともいう)を用意した。透湿性樹脂層としてのLLDPEシート上に、上記で得られた吸湿層形成用塗布液をエクストルージョンダイコーターにて、塗布量が165g/mとなる量で塗布した。
 塗布により形成された塗布層を、熱風乾燥機にて80℃、風速3m/秒~8m/秒で塗布層の固形分濃度が36%になるまで乾燥させた。乾燥させている間の塗布層は、恒率乾燥を示した。乾燥終了の直後、下記組成の塩基性化合物を含む液に3秒間浸漬し、塩基性化合物を含む液を、塗布層に塗布量が13g/mとなる量で付着させた。さらに、72℃の環境下で10分間乾燥させ、多孔構造を有する層を形成した。
 その後、形成された層に、以下に示す組成の吸湿剤塗布液をエクストルージョンダイコーターにより、塗布量を50g/m(つまり、CaCl付与量:7g/m)として塗布し、熱風乾燥機にて80℃、風速3m/秒~8m/秒で乾燥し、厚み40μmの吸湿層を得た。
 形成された吸湿層は、空隙率が60%であり、平均細孔径が20nmであった。
塩基性化合物を含む液の組成
(1)ホウ酸                    0.65部
(2)炭酸アンモニウム(1級、関東化学(株)製)  5.0部
(3)イオン交換水                 93.75部
(4)ポリオキシエチレンラウリルエーテル(界面活性剤)0.6部
  (商品名:エマルゲン109P、花王(株)製)
吸湿剤塗布液の組成
(1)イオン交換水                 85.4部
(2)塩化カルシウム(CaCl、吸湿剤)     14.0部
(3)ポリオキシエチレンラウリルエーテル(界面活性剤)0.6部
  (商品名:エマルゲン109P、花王(株)製)
接着層パターンの形成
 剥離用基材としてポリエチレンテレフタレート(PET)ベース(登録商標:ルミラー、東レ(株)製)を用いた。剥離用基材の一方の表面に、東洋インキ(株)製の接着剤であるウレタン樹脂系接着剤LIS-073-50U(商品名)と硬化剤であるCR-001(商品名)とを混合した接着剤混合物を、ダイレクトグラビア印刷法によりパターン状に塗布した。
 ダイレクトグラビア印刷法においては、以下に示す、接着層の形成領域に応じた繰り返しパターン構造の彫刻を施したグラビアロールを作製し、印刷、すなわち接着剤の塗布に用いた。
 接着剤をPETベースにダイレクトグラビア印刷法にて、乾燥後の接着層の厚みが7μmとなる量で付与した後に、60℃にて1分間乾燥し、乾燥後の厚みが7μmであるパターン状の接着層を形成した。
 各実施例に用いた接着層22のパターン構造を下記表1に示す。
 パターン構造としては、図4Aに示すハニカムパターン及び図4Bに示す格子パターンを適用した。各パターンのサイズを、厚み40μmの第1の領域14Aの幅X(表1には、「X寸法」と記載)、厚み40μmよりも薄い第2の領域14Bの幅W(表1には、「W寸法」と記載)で示す。
Figure JPOXMLDOC01-appb-T000001
厚みの不均一な吸湿層の作製
 既述の方法で得られた透湿性樹脂層上に形成された厚みの均一な吸湿層と、剥離用基材表面に形成されたパターン状の接着層と、を接触させて吸湿層及び剥離用基材を重ね合わせ、ラミネートすることで積層体を形成した。ラミネートは、積層体を、60℃に加熱した一対の平滑なローラ間を通過させることで行った。
 その後、積層体から剥離用基材を剥離すると、接着層が形成された領域の吸湿層が接着層に密着して剥離される。その結果、接着層の非形成領域で、剥離されていない厚み40μmの吸湿層を有する第1の領域と、接着層により一部剥離されて、第1の領域よりも厚みの薄い領域とをパターン構造で有する厚みの不均一な吸湿層が形成された。
 剥離後の第2の領域の吸湿層の厚み、第1の領域における吸湿層の厚みに対する第2の領域の吸湿層の厚みの厚み比を表2~表4に示す。
防湿層の貼合
 防湿層であるシリカ蒸着PET(商品名:テックバリアMX、三菱樹脂社製)のシリカ蒸着面に、東洋インキ(株)製の接着剤(つまり、ウレタン樹脂系接着剤である商品名:LIS-073-50Uと硬化剤である商品名:CR-001との混合物)を、乾燥後の塗布量が厚さ3.5μmとなる量で塗布した。厚みの不均一な吸湿層が形成された透湿性樹脂層の、吸湿層形成面側が接着剤に接する方向で、得られたシリカ蒸着PETを、透湿性樹脂層上に形成された厚みの不均一な吸湿層に重ね、ドライラミネートすることにより貼り合せた。このようにして、吸湿材料を得た。
 得られた吸湿材料は、透湿性樹脂層であるLLDPEシート/厚みの不均一な吸湿層/接着剤層/防湿層であるシリカ蒸着PET(すなわち、シリカ蒸着PETのシリカ蒸着面上に接着材層が形成されている)の積層構造を有している。
比較例1~2
 実施例1において、吸湿層の接着剤層による剥離を行わず、それぞれ厚み40μm(比較例1)又は厚み30μm(比較例2)の均一な厚みの吸湿層を形成した以外は、実施例1と同様にして吸湿層を形成し、均一な厚みの吸湿層表面に、実施例1と同様に防湿層を貼り合せ、比較用の吸湿材料を得た。
評価
 上記のようにして得た吸湿材料に対して、以下の評価を行った。評価結果は、下記表2~表4に示す。
<吸湿容量>
 吸湿材料の吸湿容量は、以下のように評価した。
 100mm×100mm吸湿材料サンプルを60℃10%RHの恒温恒湿槽内に1時間保管し、乾燥させた。23℃50%RH環境に移した直後の質量を測定し、乾燥状態の質量とした。その後、経時による質量変化を測定し、質量変化がなくなった時の質量から吸湿容量を求めた。
 <評価基準>
  A:23℃50%RHでの吸湿容量が10g/m以上である。
  B:23℃50%RHでの吸湿容量が8g/m以上10g/m未満である。
  C:23℃50%RHでの吸湿容量が6g/m以上8g/m未満である。
  D:23℃50%RHでの吸湿容量が3g/m以上6g/m未満である。
  E:23℃50%RHでの吸湿容量が3g/m未満である。
 なお、基準A~Cが実用上問題のないレベルである。
<端面からの吸湿量>
 吸湿材料の端面からの吸湿量は、以下のように評価した。
 100mm×100mm吸湿材料サンプル2枚を60℃10%RHの恒温恒湿槽内に1時間保管し、乾燥させた。その後、2枚の吸湿材料サンプルを、透湿性樹脂層であるLLDPEシート側を合わせて重ね合わせ、4方の周縁端部をヒートシールして2枚のシートを接着させて端面からの吸湿量測定用サンプルとした。
 得られたサンプルを、23℃50%RH環境に移した直後の質量を測定し、乾燥状態の質量とした。その後、23℃50%RH環境にて30日間保存し、経時後の質量を測定し、乾燥状態における質量との経時後の質量との差を、端面からの吸湿量とし、以下の基準にて評価した。
 <評価基準>
  A:端面からの吸湿量が0.3g/m未満である。
  B:端面からの吸湿量が0.3g/m以上0.5g/m未満である。
  C:端面からの吸湿量が0.5g/m以上1.0g/m未満である。
  D:端面からの吸湿量が1.0g/m以上2.0g/m未満である。
  E:端面からの吸湿量が2.0g/m以上である。
 なお、基準A~Cが実用上問題のないレベルである。
<空隙率>
 吸湿層の空隙率は、吸湿層の空隙量(ml/m)と厚み(μm)とから単位厚み当たりの空隙量を算出し、その値を基に求めた。
 空隙率は、接着剤による剥離工程前の吸湿層にて測定し、吸湿層の厚みは、光学顕微鏡により観察した結果から求めた。また、吸湿層の空隙量は、吸湿層上にジエチレングリコール1mlを滴下し、1分間経過後に滴下面を布で拭き、滴下前後での質量変化(つまり、単位面積当たりの吸収液量)を算出した。この算出値を空隙量とした。なお、すでに作製された吸湿材料における吸湿層の空隙率は、第1の領域14Aで裁断してサンプルを作製し、得られたサンプルを用いて測定することができる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2~表4に示すように、実施例の吸湿材料は、吸湿容量が大きく、端部に特段の封止処理を行わなくても、端部から水分の吸収が抑制されていることがわかる。
 これに対し、厚みの均一な吸湿層を有する比較例1及び比較例2の吸湿材料は、初期の吸湿容量は、実用上問題のないレベルではあるが、端部からの水分吸収量が大きく、良好な吸湿容量を長期間維持することは期待できず、吸湿材料として長期間使用するには問題があることがわかる。
実施例25~39
 実施例1と同様のプロセスで、図6と同様のパターン構造を有する吸湿材料を作製し、作製した吸湿材料を用いて以下に示す方法でピロー包装又はガゼット包装を行った。パターン構造の詳細は、下記表5に示す。また、包装形態での吸湿容量及び端面からの吸湿量を評価した。評価は、実施例1等と同様の方法で行った。下記表5に評価結果を示す。
 なお、表5に示すパターン構造において、Aパターンは図6に示す構造を指し、Bパターンは図7に示す構造を指す。
 ピロー包装は、例えば図6における第1の領域14Aの両縁部に設けた幅長Bの第2の領域14B-1同士を接着して袋状にし、さらに上端及び下端を接着することによりピロー包装体を作製した。
 ガゼット包装は、例えば図6における第1の領域14Aの両縁部に設けた幅長Bの第2の領域14B-1同士を接着して袋状にし、さらに上端及び下端を接着することによりスティック状のガゼット包装体を作製した。
比較例3~4
 比較例1~2で作製した比較用の吸湿材料を用い、実施例25等と同様にしてピロー包装を行った。また、包装形態での吸湿容量及び端面からの吸湿量を評価した。評価は、実施例1等と同様の方法で行った。下記表5に評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例の吸湿材料では、吸湿容量が大きく、しかも包装形態にした場合の端部から水分の吸収抑制効果に優れていることがわかる。なお、図6又は図7に示すパターン構造を有する吸湿材料は、裁断面が厚みAの吸湿層(第1の領域)となるハニカムパターン又は格子パターンを有する実施例38~39の吸湿材料に対し、端面における封止性により優れる傾向がみられた。
 これに対し、厚みが一様な吸湿層が形成されている比較例の吸湿材料では、特に包装形態にした場合の端部から水分の吸収抑制効果が小さく、吸湿容量の長期間維持が期待できない。
 2015年9月30日出願の日本国特許出願2015-195102号及び2016年9月28日出願の日本国特許出願2016-189771号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  樹脂層、吸湿層、及び防湿層をこの順に備え、
     前記吸湿層は、厚みAの第1の領域と、前記第1の領域の周縁部に存在し、前記厚みAより薄い第2の領域と、を含むパターン構造を有し、前記第1の領域及び第2の領域に前記防湿層を有する吸湿材料。
  2.  前記吸湿層の全領域に対する、前記厚みAより薄い第2の領域の占有比率が、平面視における面積比で、10%以上50%未満である請求項1に記載の吸湿材料。
  3.  前記吸湿層における前記パターン構造は、前記第1の領域と、前記吸湿層の幅方向における前記第1の領域の両縁部及び前記吸湿層の幅方向と直交する方向における前記第1の領域の少なくとも一方の縁部に配置された前記厚みAより薄い第2の領域と、を含む構造であり、
     前記構造が、前記吸湿層の幅方向と直交する長手方向に複数配置され、かつ、前記吸湿層の幅方向と直交する方向において、前記第1の領域と、前記直交する方向における前記第1の領域の少なくとも一方の縁部に存在する前記厚みAより薄い第2の領域と、の合計に対する、前記少なくとも一方の縁部に存在する第2の領域の占有比率が、平面視における面積比で10%以上50%未満である請求項1又は請求項2に記載の吸湿材料。
  4.  前記第1の領域の両縁部に配置された第2の領域の少なくとも一方は、前記吸湿層の幅方向端部からの幅長が3mm以上である請求項3に記載の吸湿材料。
  5.  前記第1の領域における吸湿層の厚みAが20μm~50μmであり、前記厚みAより薄い第2の領域における吸湿層の厚みが、前記厚みAの第1の領域における吸湿層の厚みの20%未満である請求項1~請求項4のいずれか1項に記載の吸湿材料。
  6.  前記吸湿層は、非晶質シリカ粒子と水溶性樹脂と吸湿剤とを含む多孔構造を有する吸湿層であり、かつ、吸湿層の空隙率が45%~85%である請求項1~請求項5のいずれか1項に記載の吸湿材料。
  7.  前記水溶性樹脂は、けん化度が99%以下であり、かつ重合度が1500以上であるポリビニルアルコールである請求項6に記載の吸湿材料。
  8.  前記吸湿層は、吸湿剤として塩化カルシウムを含む請求項1~請求項7のいずれか1項に記載の吸湿材料。
  9.  前記樹脂層の厚みが、20μm~100μmである請求項1~請求項8のいずれか1項に記載の吸湿材料。
  10.  前記パターン構造は、前記吸湿層の一方向に規則的に配置されて存在している請求項1~請求項9のいずれか1項に記載の吸湿材料。
  11.  請求項1~請求項10のいずれか1項に記載の吸湿材料を備えた包装材料。
  12.  剥離用基材に、接着剤、粘着剤、及び熱可塑性樹脂から選択される少なくとも1種を用いて、パターン状の接着層を形成すること、
     樹脂層の少なくとも一方の面に吸湿層を形成すること、
     前記樹脂層に形成された吸湿層と、前記剥離用基材に形成されたパターン状の接着層と、を接触させて、ラミネートして積層体を形成すること、
     前記積層体から、前記剥離用基材を剥離することで、パターン状の接着層に対応する吸湿層を剥離して、樹脂層の表面にパターン状の吸湿層を形成すること、及び
     前記パターン状の吸湿層の上に防湿層を形成すること、
    を含む吸湿材料の製造方法。
  13.  前記パターン状の接着層を形成することは、接着剤、粘着剤、及び熱可塑性樹脂から選択される少なくとも1種を印刷法により前記剥離用基材上にパターン状に付与することを含む請求項12に記載の吸湿材料の製造方法。
  14.  請求項1~請求項10のいずれか1項に記載の吸湿材料の接着成形体である包装物。
PCT/JP2016/078880 2015-09-30 2016-09-29 吸湿材料及びその製造方法、包装材料並びに包装物 WO2017057607A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680050317.3A CN108025251A (zh) 2015-09-30 2016-09-29 吸湿材料及其制造方法、包装材料以及包装物
US15/891,378 US20180161723A1 (en) 2015-09-30 2018-02-08 Hygroscopic material, method of producing same, packaging material, and packaging item

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-195102 2015-09-30
JP2015195102 2015-09-30
JP2016189771A JP2017064708A (ja) 2015-09-30 2016-09-28 吸湿材料及びその製造方法、包装材料並びに包装物
JP2016-189771 2016-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/891,378 Continuation US20180161723A1 (en) 2015-09-30 2018-02-08 Hygroscopic material, method of producing same, packaging material, and packaging item

Publications (1)

Publication Number Publication Date
WO2017057607A1 true WO2017057607A1 (ja) 2017-04-06

Family

ID=58423723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078880 WO2017057607A1 (ja) 2015-09-30 2016-09-29 吸湿材料及びその製造方法、包装材料並びに包装物

Country Status (1)

Country Link
WO (1) WO2017057607A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111218204A (zh) * 2018-11-26 2020-06-02 信越化学工业株式会社 吸湿性有机硅树脂组合物、有机el用透明密封材料、透明干燥材料及其使用方法
WO2021107022A1 (ja) * 2019-11-27 2021-06-03 株式会社トレスコ 野球バット用ケース
CN115108169A (zh) * 2022-05-16 2022-09-27 武汉市美泰乐餐饮管理有限公司 吸湿贴片、餐食包装袋及包装盒

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135168A (ja) * 1985-12-03 1987-06-18 科研製薬株式会社 除湿包装材料
JPH03188922A (ja) * 1989-09-06 1991-08-16 Japan Vilene Co Ltd 高吸放湿性材料及びその製造方法
JPH0471613A (ja) * 1990-07-10 1992-03-06 Nippon Synthetic Chem Ind Co Ltd:The 除湿用包装体
JP2001171723A (ja) * 1999-12-10 2001-06-26 Tomoe Engineering Co Ltd 防錆包装材
JP2001253444A (ja) * 2000-03-14 2001-09-18 Dainippon Printing Co Ltd 防湿性の優れた易開封袋
JP2010201630A (ja) * 2009-02-27 2010-09-16 Kyodo Printing Co Ltd 乾燥剤含有多層フィルム及び該フィルムを備えた電子デバイス
JP2014050988A (ja) * 2012-09-05 2014-03-20 Dainippon Printing Co Ltd 機能性物質層積層フィルム、及び該積層フィルムを適用した包装体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135168A (ja) * 1985-12-03 1987-06-18 科研製薬株式会社 除湿包装材料
JPH03188922A (ja) * 1989-09-06 1991-08-16 Japan Vilene Co Ltd 高吸放湿性材料及びその製造方法
JPH0471613A (ja) * 1990-07-10 1992-03-06 Nippon Synthetic Chem Ind Co Ltd:The 除湿用包装体
JP2001171723A (ja) * 1999-12-10 2001-06-26 Tomoe Engineering Co Ltd 防錆包装材
JP2001253444A (ja) * 2000-03-14 2001-09-18 Dainippon Printing Co Ltd 防湿性の優れた易開封袋
JP2010201630A (ja) * 2009-02-27 2010-09-16 Kyodo Printing Co Ltd 乾燥剤含有多層フィルム及び該フィルムを備えた電子デバイス
JP2014050988A (ja) * 2012-09-05 2014-03-20 Dainippon Printing Co Ltd 機能性物質層積層フィルム、及び該積層フィルムを適用した包装体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111218204A (zh) * 2018-11-26 2020-06-02 信越化学工业株式会社 吸湿性有机硅树脂组合物、有机el用透明密封材料、透明干燥材料及其使用方法
WO2021107022A1 (ja) * 2019-11-27 2021-06-03 株式会社トレスコ 野球バット用ケース
CN115108169A (zh) * 2022-05-16 2022-09-27 武汉市美泰乐餐饮管理有限公司 吸湿贴片、餐食包装袋及包装盒
CN115108169B (zh) * 2022-05-16 2024-05-28 湖北亿谦食品科技有限公司 吸湿贴片、餐食包装袋及包装盒

Similar Documents

Publication Publication Date Title
JP6021851B2 (ja) 吸湿材料及びその製造方法並びに包装材料
JP6211686B2 (ja) 吸湿材料及びその製造方法並びにブリスターパック
US20180161723A1 (en) Hygroscopic material, method of producing same, packaging material, and packaging item
US11534519B2 (en) PTP blister sheet, and PTP blister pack formed from same
WO2017057607A1 (ja) 吸湿材料及びその製造方法、包装材料並びに包装物
WO2016178353A1 (ja) 吸湿材料及びその製造方法、並びに包装材料
JP6089511B2 (ja) 機能性物質層積層フィルム、及び該積層フィルムを適用した包装体
JP6553337B2 (ja) 使い捨てカイロ外袋用多層フィルム及び使い捨てカイロ
CN108472152B (zh) 一次性暖贴包装用外袋和一次性暖贴
US11400682B2 (en) Hygroscopic packaging container
JP6421404B2 (ja) 医薬品包装体
WO2018179864A1 (ja) ガス吸着材料及びその製造方法、並びに、包装材料
JP6396872B2 (ja) 吸湿材料及びその製造方法並びに包装材料
JP6648806B2 (ja) 吸湿性易剥離性包装体
JP2018165025A (ja) 吸湿フィルム及びその製造方法
JP6984231B2 (ja) 吸湿フィルム、包装袋および吸湿層の製造方法
WO2017069175A1 (ja) 吸湿材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851778

Country of ref document: EP

Kind code of ref document: A1