WO2017057480A1 - 遠心圧縮機 - Google Patents

遠心圧縮機 Download PDF

Info

Publication number
WO2017057480A1
WO2017057480A1 PCT/JP2016/078659 JP2016078659W WO2017057480A1 WO 2017057480 A1 WO2017057480 A1 WO 2017057480A1 JP 2016078659 W JP2016078659 W JP 2016078659W WO 2017057480 A1 WO2017057480 A1 WO 2017057480A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
shaft
bearing
impeller
centrifugal compressor
Prior art date
Application number
PCT/JP2016/078659
Other languages
English (en)
French (fr)
Inventor
国彰 飯塚
吉田 隆
達身 猪俣
拓也 小篠
光太 来海
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2017057480A1 publication Critical patent/WO2017057480A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning

Definitions

  • This disclosure relates to a centrifugal compressor in which a shaft is supported by a bearing.
  • an electric supercharger with a built-in electric motor includes a centrifugal compressor.
  • the rotor is provided on the shaft, and the stator is provided on the housing side.
  • the shaft is rotationally driven by the mutual force between the rotor and the stator.
  • An impeller is provided on the shaft. When the shaft is rotated by the electric motor, the impeller rotates together with the shaft.
  • the electric supercharger compresses air and sends it to the engine as the impeller rotates.
  • the shaft of a centrifugal compressor such as the above-described electric supercharger is supported by a bearing.
  • the bearing is disposed on the back side of the impeller.
  • a gap between the rear surface of the impeller and the wall portion of the housing communicates with the diffuser flow path. Part of the air may leak from the diffuser flow path toward the gap on the back side of the impeller.
  • An object of the present disclosure is to provide a centrifugal compressor capable of suppressing a decrease in bearing performance due to a metal foreign object such as metal powder reaching the bearing.
  • a centrifugal compressor includes an impeller provided on a shaft, a wall portion that is spaced apart from the back surface of the impeller, and is provided on the wall portion, and the shaft is inserted therethrough.
  • An insertion hole that is provided, a bearing that is provided in the insertion hole and supports the shaft, and a magnet that is provided on the wall portion.
  • the magnet may be provided on the impeller side of the wall portion relative to the bearing.
  • Grease may be interposed as a lubricant in the bearing.
  • the housing portion may be opened on a facing surface of the wall portion that faces the back surface of the impeller.
  • the magnet may be provided at a position recessed from the facing surface.
  • the housing portion may be formed with a protruding portion that protrudes toward the radially outer side of the shaft toward the opposing surface side, closer to the opposing surface side than the magnet, on the inner wall surface on the radially inner side of the shaft.
  • the bearing may be composed of a ball bearing in which the ball is a non-magnetic material.
  • the magnet may be disposed such that the position of the shaft in the radial direction is outside the inner ring of the bearing.
  • FIG.2 (a) is a 1st figure for demonstrating collection of a metal powder.
  • FIG. 2B is a second diagram for explaining the collection of the metal powder.
  • FIG. 3A is a diagram corresponding to FIG. 2A in the modified example.
  • FIG. 3B is a diagram corresponding to FIG. 2B in the modified example.
  • FIG. 1 is a schematic sectional view of an electric supercharger C (centrifugal compressor).
  • the direction of the arrow L shown in FIG. 1 will be described as the left side of the electric supercharger C.
  • An arrow R direction shown in FIG. 1 will be described as the right side of the electric supercharger C.
  • the electric supercharger C includes a supercharger main body 1.
  • the supercharger main body 1 includes a motor housing 2.
  • a compressor housing 4 is connected to the left side of the motor housing 2 by fastening bolts 3.
  • a plate member 6 is connected to the right side of the motor housing 2 by a fastening bolt 5.
  • a cord housing 8 is connected to the right side of the plate member 6 by a fastening bolt 7.
  • the motor housing 2, the compressor housing 4, the plate member 6, and the cord housing 8 are integrated.
  • the electric motor 9 is accommodated in the motor hole 2a.
  • the electric motor 9 includes a stator 10 and a rotor 11.
  • the stator 10 is formed by winding a coil 13 around a stator core 12.
  • the stator core 12 has a cylindrical shape.
  • a plurality of coils 13 are arranged in the circumferential direction of the stator core 12.
  • the phase of the supplied AC power is arranged in the order of the U phase, the V phase, and the W phase.
  • the conducting wire 14 is provided for each of the U phase, the V phase, and the W phase.
  • One end of the conducting wire 14 is connected to the U-phase, V-phase, and W-phase coils 13.
  • the conducting wire 14 supplies AC power to the coil 13.
  • the stator core 12 is inserted into the motor hole 2a from the opening side of the motor hole 2a.
  • the stator core 12 is attached inside the motor hole 2a.
  • the opening on the right side of the motor hole 2 a is blocked by the plate member 6.
  • the cord housing 8 connected to the plate member 6 has a cord hole 8a.
  • the cord hole 8a penetrates in the left-right direction in FIG. One end of the cord hole 8 a is blocked by the plate member 6.
  • the plate member 6 is provided with a plate hole 6a.
  • the motor hole 2a and the cord hole 8a communicate with each other through the plate hole 6a.
  • the conducting wire 14 extends from the coil 13 to the cord hole 8a through the plate hole 6a.
  • the lead wire 14 is accommodated in the cord hole 8a.
  • the other end of the conducting wire 14 opposite to the coil 13 is connected to the connector 15.
  • the connector 15 has a flange portion 15a.
  • the flange portion 15 a closes the other end of the cord hole 8 a of the cord housing 8.
  • the flange portion 15 a is attached to the cord housing 8 by fastening bolts 16.
  • AC power is supplied to the coil 13 of the stator 10 via the connector 15 and the conductive wire 14.
  • the stator 10 functions as an electromagnet.
  • the rotor 11 is attached to the shaft 17.
  • the rotor 11 is inserted through the stator core 12.
  • the rotor 11 has a gap in the radial direction of the shaft 17 with respect to the stator core 12.
  • the rotor 11 includes a rotor core 18.
  • the rotor core 18 is a cylindrical member.
  • the rotor core 18 is formed with a hole penetrating in the axial direction of the shaft 17.
  • a magnet 19 (permanent magnet) is accommodated in the hole.
  • the electric motor 9 generates a driving force in the rotational direction on the shaft 17 by a mutual force generated between the rotor 11 and the stator 10.
  • the shaft 17 is inserted into the insertion hole 2b of the motor housing 2.
  • the insertion hole 2 b passes through the wall portion 2 c constituting the bottom surface of the motor hole 2 a in the axial direction of the shaft 17.
  • a ball bearing 20 (bearing) is disposed in the insertion hole 2b.
  • the shaft 17 is pivotally supported by the ball bearing 20.
  • the plate member 6 is formed with a boss hole 6b.
  • One end of the shaft 17 that protrudes closer to the plate member 6 than the rotor 11 is inserted into the boss hole 6b.
  • the plate member 6 is provided with an annular protrusion 6c.
  • the annular protrusion 6c protrudes into the motor hole 2a.
  • the annular protrusion 6c forms a part of the outer wall that forms the boss hole 6b.
  • a ball bearing 21 is disposed inside the boss hole 6b.
  • the shaft 17 is pivotally supported by the ball bearing 21.
  • a compressor impeller 22 (impeller) is provided on the other end side of the shaft 17 that protrudes into the compressor housing 4 from the insertion hole 2b.
  • the compressor impeller 22 is rotatably accommodated in the compressor housing 4.
  • the compressor housing 4 has an air inlet 23 formed therein.
  • the intake port 23 opens on the left side of the electric supercharger C.
  • the air inlet 23 is connected to an air cleaner (not shown).
  • a diffuser flow path 24 is formed.
  • the diffuser flow path 24 is formed by facing surfaces of the motor housing 2 and the compressor housing 4.
  • the diffuser flow path 24 pressurizes air.
  • the diffuser flow path 24 is formed in an annular shape from the radially inner side to the outer side of the shaft 17.
  • the diffuser flow path 24 communicates with the intake port 23 via the compressor impeller 22 on the radially inner side.
  • the compressor housing 4 is provided with a compressor scroll passage 25.
  • the compressor scroll channel 25 is annular.
  • the compressor scroll passage 25 is located on the radially outer side of the shaft 17 with respect to the diffuser passage 24.
  • the compressor scroll passage 25 communicates with an intake port of an engine (not shown).
  • the compressor scroll channel 25 also communicates with the diffuser channel 24.
  • the rotation of the compressor impeller 22 causes air to enter the compressor housing 4 from the intake port 23 on the front side of the compressor impeller 22 in the axial direction of the shaft 17. Sucked.
  • the sucked air is accelerated by the action of centrifugal force in the process of flowing between the blades of the compressor impeller 22.
  • the increased air is sent to the diffuser flow path 24 and the compressor scroll flow path 25 to be pressurized (compressed).
  • the pressurized air is guided to the intake port of the engine.
  • FIG. 2 (a) is a first diagram for explaining the collection of metal powder.
  • FIG. 2B is a second diagram for explaining the collection of the metal powder.
  • 2 (a) and 2 (b) show a broken line portion of FIG.
  • the back surface 22 a is a surface of the compressor impeller 22 on the side opposite to the intake port 23. As shown in FIG. 2A, the back surface 22 a of the compressor impeller 22 faces the space B.
  • the facing surface 2 d is a surface of the wall 2 c of the motor housing 2 that faces the back surface 22 a of the compressor impeller 22.
  • the facing surface 2d of the wall 2c is separated from the back surface 22a of the compressor impeller 22 in the axial direction of the shaft 17.
  • the space B is formed with the back surface 22a of the compressor impeller 22 and the facing surface 2d of the wall 2c of the motor housing 2 as inner wall surfaces. That is, the space B is formed between the back surface 22a of the compressor impeller 22 and the facing surface 2d.
  • the downstream end 22 b is the radially outer end of the compressor impeller 22.
  • the space B communicates with the diffuser flow path 24 in the vicinity of the downstream end 22b.
  • an insertion hole 2b is opened. As described above, the shaft 17 is inserted through the insertion hole 2b.
  • the shaft 17 is pivotally supported by a ball bearing 20 disposed in the insertion hole 2b.
  • An enlarged diameter portion 2e is formed on the inner peripheral surface of the insertion hole 2b.
  • the enlarged diameter portion 2e is formed on the motor hole 2a side in the inner peripheral surface of the insertion hole 2b.
  • the enlarged diameter portion 2e has a larger inner diameter than the compressor impeller 22 side.
  • a first spacer 26 is inserted into the enlarged diameter portion 2e.
  • the first spacer 26 is a cylindrical member.
  • the ball bearing 20 is inserted on the inner peripheral side of the first spacer 26. That is, the ball bearing 20 is accommodated in the enlarged diameter portion 2e with the first spacer 26 interposed therebetween.
  • the ball bearing 20 includes an outer ring 20a, an inner ring 20b, and a plurality of rolling elements 20c (balls).
  • the rolling element 20c is disposed between the outer ring 20a and the inner ring 20b.
  • the ball bearing 20 is a grease-filled bearing. Grease is interposed as a lubricant in the ball bearing 20 (between the rolling element 20c and the outer ring 20a and the inner ring 20b).
  • the outer ring 20a is fitted into the first spacer 26.
  • the outer ring 20a has a slight radial gap between the outer ring 20a and the first spacer 26, for example.
  • the inner ring 20b is attached to the shaft 17 by, for example, compressive stress (axial force) acting in the axial direction of the shaft 17.
  • the shaft 17 is formed with a large diameter portion 17a.
  • the large diameter portion 17a protrudes in the radial direction.
  • the inner ring 20b is in contact with the large diameter portion 17a in the axial direction.
  • a second spacer 27 is disposed between the compressor impeller 22 and the inner ring 20b.
  • the second spacer 27 is a cylindrical member.
  • the second spacer 27 has the shaft 17 inserted on the inner diameter side.
  • a fastening bolt is fastened to the end portion of the shaft 17 on the compressor impeller 22 side.
  • the inner ring 20b, the second spacer 27, and the compressor impeller 22 are sandwiched between the large diameter portion 17a and the fastening bolt.
  • the space B communicates with the diffuser flow path 24. Therefore, a part of the compressed air may leak from the diffuser flow path 24 to the space B side.
  • the second spacer 27 and the insertion hole 2 b are separated from each other in the radial direction of the shaft 17.
  • a gap S is formed between the second spacer 27 and the insertion hole 2b. Therefore, if the air leaked to the space B side contains metal powder, for example, as a metal foreign object, the metal powder may pass through the gap S.
  • the metal powder that has passed through the gap S may enter the ball bearing 20.
  • scratches or wear may occur on the sliding surfaces between the rolling element 20c and the outer ring 20a and the inner ring 20b. Depending on the degree of scratches and wear on the sliding surface and the operating conditions of the engine, the bearing performance may deteriorate.
  • a magnet 28 is provided on the wall 2c.
  • the magnet 28 is provided on the compressor impeller 22 side (space B side) with respect to the ball bearing 20 in the wall portion 2c.
  • the magnet 28 causes a magnetic force to act on the air flow path leaking from the diffuser flow path 24 to the ball bearing 20 side.
  • the wall 2c is provided with an accommodation hole 2f (accommodating portion) that opens to the compressor impeller 22 side (opposing surface 2d).
  • the housing hole 2 f is formed between the ball bearing 20 and the compressor impeller 22.
  • the magnet 28 is accommodated inside the accommodation hole 2f.
  • a plurality of the housing holes 2 f are formed apart from each other in the circumferential direction of the shaft 17.
  • the magnet 28 is accommodated in each accommodation hole 2f.
  • the receiving hole 2f is longer in the axial direction of the shaft 17 than the magnet 28.
  • the magnet 28 is pushed into the bottom surface side of the accommodation hole 2f.
  • the magnet 28 is disposed at a position recessed from the facing surface 2d.
  • a recess 22 a 1 is formed on the back surface 22 a of the compressor impeller 22. Recess 22a 1 is recessed in a direction away from the opposing surface 2d. Flow rate of air flowing through the recess 22a 1 is slower because the flow channel area is widened.
  • the magnet 28 when the magnet 28 is provided at a position facing the hollow portion 22a 1 in the axial direction, the flow rate of the air flowing through the hollow portion 22a 1 becomes slow, so that the metal powder contained in the air is easily attracted to the magnet. As a result, the metal powder is easily collected. Moreover, the collected metal powder is accommodated in the accommodation hole 2f. Even if the collected metal powder is separated from the magnet 28 by the air flow, it is difficult to escape from the inside of the accommodation hole 2f. The collected metal powder is prevented from joining the flow toward the ball bearing 20 again.
  • a protruding portion 2g is formed in the accommodation hole 2f.
  • the protrusion 2g is formed on the inner wall surface of the housing hole 2f on the radially inner side of the shaft 17 (the lower side in FIGS. 2A and 2B).
  • the housing hole 2f is formed on the opposite surface 2d side (opening side of the housing hole 2f) from the magnet 28.
  • the protruding portion 2g protrudes toward the radially outer side of the shaft 17 toward the facing surface 2d side.
  • the metal powder collected by the magnet 28 is blocked by the protruding portion 2g even if it is affected by the flow of air toward the space B toward the ball bearing 20 (in the radial direction). Therefore, compared with the case where there is no protrusion 2g, it is difficult for the metal powder to escape from the inside of the accommodation hole 2f.
  • the rolling element 20c and the inner ring 20b are magnetized, there is a possibility that resistance to the movement of the rolling element 20c and the inner ring 20b is generated by the magnetic force between the rolling element 20c and the inner ring 20b. Therefore, in the ball bearing 20, the rolling element 20c is made of a nonmagnetic material. Therefore, the rolling element 20c is not magnetized. Further, the magnet 28 is disposed such that the radial position of the shaft 17 is spaced outward from the inner ring 20b. Therefore, the inner ring 20b is less likely to be magnetized than, for example, when the magnets 28 are arranged to face each other in the axial direction. The movement of the inner ring 20 b is not easily affected by the magnetic force of the magnet 28. An increase in the mechanical loss of the ball bearing 20 is suppressed.
  • the outer ring 20a is arranged closer to the magnet 28 than the inner ring 20b.
  • the outer ring 20a is easily magnetized.
  • the outer ring 20 a is fitted into the first spacer 26 with a gap. In this case, a gap is provided between the outer ring 20a and the first spacer 26 in the radial direction. Therefore, the outer ring 20 a is not completely fixed to the first spacer 26.
  • an attractive force is generated between the outer ring 20 a and the magnet 28. Due to the attractive force between the outer ring 20 a and the magnet 28, it can be expected that the rotation (co-rotation) of the outer ring 20 a due to the rotation of the shaft 17 is suppressed.
  • FIG. 3A is a diagram corresponding to FIG. 2A in the modified example.
  • FIG. 3B is a diagram corresponding to FIG. 2B in the modified example.
  • the case where the magnet 28 is accommodated in the accommodation hole 2f has been described.
  • the accommodating part of the magnet 28 differs.
  • the magnet 28 is accommodated in the accommodation hole 30a (accommodating portion).
  • a plurality of the accommodation holes 30 a are provided apart from each other in the circumferential direction of the shaft 17.
  • the magnet 28 is accommodated in each of the plurality of accommodating portions 30a.
  • the accommodation hole 30a is a hole that penetrates the wall 2c.
  • the accommodation hole 30 a is formed between the ball bearing 20 and the compressor impeller 22. That is, the magnet 28 is provided closer to the compressor impeller 22 than the ball bearing 20 in the wall 2c.
  • the accommodation hole 30a opens to the enlarged diameter portion 2e and the facing surface 2d. That is, the accommodation hole 30a opens to the back surface 22a side of the compressor impeller 22 and the ball bearing 20 side.
  • the protrusion part 30b is formed in the accommodation hole 30a similarly to the protrusion part 2g of embodiment mentioned above.
  • the protrusion 30b is formed on the inner wall surface of the housing hole 30a on the radially inner side of the shaft 17.
  • the protrusion 30b is formed on the facing surface 2d side with respect to the magnet 28.
  • the protruding portion 30b protrudes toward the radially outer side of the shaft 17 toward the opposing surface 2d side.
  • the metal powder (indicated by a black circle in the figure) is attracted to the magnet 28 as shown in FIG. Metal powder is collected. A decrease in the bearing performance of the ball bearing 20 is suppressed.
  • the opening 30 c on the rear surface 22 a side of the compressor impeller 22 has a radial width of the shaft 17 smaller than that of the magnet 28. Therefore, the magnet 28 is prevented from falling off from the back surface 22a side of the compressor impeller 22. That is, contact between the back surface 22a of the compressor impeller 22 and the magnet 28 can be avoided.
  • a known attachment structure such as press fitting is appropriately selected.
  • the ball bearing 20 may be lubricated with oil instead of grease.
  • the case where the magnet 28 is accommodated in the accommodation hole 2f has been described.
  • the case where the magnet 28 is accommodated in the accommodation hole 30a has been described.
  • the accommodation part which accommodates the magnet 28 does not need to be provided in the wall part 2c.
  • the magnet 28 may be bonded to the facing surface 2d of the wall 2c. If the magnet 28 is provided in the wall part 2c, an installation position and an attachment structure will not ask
  • the accommodation hole 30a is opened on the rear surface 22a side of the compressor impeller 22 .
  • the accommodation hole 30 a may not be opened on the back surface 22 a side of the compressor impeller 22.
  • the magnet 28 causes a magnetic force to act on the air flow path with a part of the wall 2c interposed therebetween.
  • the accommodation hole 30a is opened to the back surface 22a side of the compressor impeller 22, the following effects are obtained. That is, the collected metal powder fits in the accommodation hole 30a. Therefore, even if the metal powder is separated from the magnet 28 by the air flow, it is difficult for the metal powder to escape from the inside of the accommodation hole 2f. The metal powder is prevented from joining again with the flow toward the ball bearing 20.
  • the magnet 28 is provided closer to the compressor impeller 22 than the ball bearing 20 in the wall 2c.
  • the magnet 28 may be provided on the side of the wall 2c that is farther from the compressor impeller 22 than the ball bearing 20 is.
  • the magnet 28 is provided closer to the compressor impeller 22 than the ball bearing 20 in the wall 2c, the following effects are obtained. That is, the magnet 28 is disposed closer to the space B than the ball bearing 20. Therefore, the magnetic force of the magnet 28 tends to act on the space B.
  • the magnet 28 is arranged at a position recessed with respect to the facing surface 2d has been described.
  • the magnet 28 may protrude from the facing surface 2d.
  • the rolling element 20c is formed of a nonmagnetic material.
  • the rolling element 20c may not be a nonmagnetic material.
  • a roller bearing may be provided.
  • the magnet 28 has been described with respect to the case where the radial position of the shaft 17 is disposed outside the inner ring 20b of the ball bearing 20.
  • the magnet 28 may have the same radial position of the shaft 17 as the inner ring 20b.
  • the magnet 28 may be disposed such that the radial position of the shaft 17 is located on the inner side of the inner ring 20b.
  • the present disclosure can be used for a centrifugal compressor in which a shaft is supported by a bearing.

Abstract

遠心圧縮機は、シャフト17に設けられたコンプレッサインペラ22(インペラ)と、コンプレッサインペラ22の背面22aと離隔して対向する壁部2cと、壁部2cに設けられ、シャフト17が挿通される挿通孔2bと、挿通孔2b内に設けられ、シャフト17を軸支するボールベアリング20(軸受)と、壁部2cに設けられた磁石28と、を備える。

Description

遠心圧縮機
 本開示は、軸受によってシャフトが軸支された遠心圧縮機に関する。
 従来、電動機が内蔵された電動過給機が知られている。電動過給機は、遠心圧縮機を備える。電動過給機では、ロータがシャフトに設けられ、ステータがハウジング側に設けられる。ロータと、ステータとの間の相互力によってシャフトが回転駆動する。シャフトにはインペラが設けられている。電動機によってシャフトが回転すると、シャフトと共にインペラが回転する。こうして、電動過給機は、インペラの回転に伴い、空気を圧縮してエンジンに送出する。
 例えば、特許文献1に記載されているように、電動過給機では、ハウジングの吸気口からハウジング内のインペラの正面側に向かって空気が吸引される。そして、インペラの径方向外側に形成されたディフューザ流路を流通する過程で、空気が圧縮される。
特開2013-24041号公報
 ところで、上記の電動過給機などの遠心圧縮機のシャフトは、軸受によって軸支される。軸受は、インペラの背面側に配される。インペラの背面とハウジングの壁部との間隙は、上記のディフューザ流路と連通している。ディフューザ流路からインペラの背面側の間隙に向かって空気の一部が漏れることがある。この空気とともに金属粉などの金属異物が軸受に流されると、軸受性能の低下を招くおそれがある。
 本開示の目的は、金属粉などの金属異物が軸受に到達することによる軸受性能の低下を抑制することが可能な遠心圧縮機を提供することである。
 上記課題を解決するために、本開示の一態様に係る遠心圧縮機は、シャフトに設けられたインペラと、インペラの背面と離隔して対向する壁部と、壁部に設けられ、シャフトが挿通される挿通孔と、挿通孔内に設けられ、シャフトを軸支する軸受と、壁部に設けられた磁石と、を備える。
 磁石は、壁部のうち、軸受よりもインペラ側に設けられてもよい。
 軸受内に潤滑剤としてグリースが介在してもよい。
 壁部に設けられ、磁石を内部に収容する収容部をさらに備えてもよい。
 収容部は、壁部のうちインペラの背面と対向する対向面に開口してもよい。
 磁石は、対向面から窪んだ位置に設けられてもよい。
 収容部には、シャフトの径方向内側の内壁面において、磁石よりも対向面側に、対向面側に向かうほどシャフトの径方向外側に向かって突出する突出部が形成されてもよい。
 軸受は、ボールが非磁性体であるボールベアリングで構成されてもよい。
 磁石は、シャフトの径方向の位置が、軸受の内輪よりも外側に配されてもよい。
 本開示によれば、金属粉などの金属異物が軸受に到達することによる軸受性能の低下を抑制することが可能となる。
電動過給機(遠心圧縮機)の概略断面図である。 図2(a)は、金属粉の捕集を説明するための第1の図である。図2(b)は、金属粉の捕集を説明するための第2の図である。 図3(a)は、変形例における図2(a)に対応する図である。図3(b)は、変形例における図2(b)に対応する図である。
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。
 図1は、電動過給機C(遠心圧縮機)の概略断面図である。以下では、図1に示す矢印L方向を電動過給機Cの左側として説明する。図1に示す矢印R方向を電動過給機Cの右側として説明する。図1に示すように、電動過給機Cは、過給機本体1を備える。この過給機本体1は、モータハウジング2を備える。モータハウジング2の左側に締結ボルト3によってコンプレッサハウジング4が連結される。モータハウジング2の右側に締結ボルト5によってプレート部材6が連結される。プレート部材6の右側に締結ボルト7によってコードハウジング8が連結される。モータハウジング2、コンプレッサハウジング4、プレート部材6、コードハウジング8は、一体化されている。
 モータハウジング2の内部には、図1中、右側に開口するモータ穴2aが形成される。モータ穴2aの内部に電動機9が収容されている。電動機9は、ステータ10とロータ11を含んで構成される。ステータ10は、ステータコア12にコイル13が巻回されて形成される。ステータコア12は円筒形状である。
 コイル13は、ステータコア12の周方向に複数配される。コイル13は、供給される交流電力の位相がU相、V相、W相の順に配される。導線14は、U相、V相、W相それぞれに設けられる。導線14の一端が、U相、V相、W相それぞれのコイル13に結線する。導線14は、コイル13に交流電力を供給する。
 また、ステータコア12は、モータ穴2aの開口側からモータ穴2aに挿通される。ステータコア12は、モータ穴2aの内部に取り付けられている。モータ穴2aの右側の開口は、プレート部材6によって塞がれている。プレート部材6に連結されるコードハウジング8は、コード孔8aを有する。コード孔8aは、図1中、左右方向に貫通する。コード孔8aの一端がプレート部材6によって塞がれる。プレート部材6には、プレート孔6aが設けられている。プレート孔6aによってモータ穴2aとコード孔8aが連通している。導線14は、プレート孔6aを通ってコイル13からコード孔8aまで延在する。
 コード孔8aには、導線14が収容されている。導線14のうち、コイル13と反対側の他端がコネクタ15に結線される。コネクタ15は、フランジ部15aを有する。フランジ部15aは、コードハウジング8のコード孔8aの他端を塞ぐ。フランジ部15aは、締結ボルト16によってコードハウジング8に取り付けられる。コネクタ15、導線14を介してステータ10のコイル13に交流電力が供給される。ステータ10が電磁石として機能する。
 また、ロータ11は、シャフト17に取り付けられる。ロータ11は、ステータコア12に挿通される。ロータ11は、ステータコア12に対してシャフト17の径方向に間隙を有する。詳細には、ロータ11は、ロータコア18を含んで構成される。ロータコア18は、円筒部材である。ロータコア18には、シャフト17の軸方向に貫通する孔が形成されている。この孔の内部に磁石19(永久磁石)が収容されている。電動機9は、ロータ11とステータ10との間に生じる相互力によって、シャフト17に回転方向の駆動力を発生させる。
 シャフト17は、モータハウジング2の挿通孔2bに挿通される。挿通孔2bは、モータ穴2aの底面を構成する壁部2cをシャフト17の軸方向に貫通する。挿通孔2bにはボールベアリング20(軸受)が配される。ボールベアリング20によってシャフト17が軸支される。
 また、プレート部材6には、ボス穴6bが形成される。シャフト17のうち、ロータ11よりもプレート部材6側に突出した一端は、ボス穴6bに挿通される。プレート部材6には、環状突起6cが設けられる。環状突起6cは、モータ穴2aの内部に突出する。環状突起6cは、ボス穴6bを形成する外壁の一部を成している。ボス穴6bの内部には、ボールベアリング21が配される。ボールベアリング21によってシャフト17が軸支される。
 シャフト17のうち、挿通孔2bからコンプレッサハウジング4の内部に突出した他端側には、コンプレッサインペラ22(インペラ)が設けられている。コンプレッサインペラ22は、コンプレッサハウジング4の内部に回転自在に収容されている。
 コンプレッサハウジング4には、吸気口23が形成されている。吸気口23は、電動過給機Cの左側に開口する。吸気口23は、不図示のエアクリーナに接続される。また、締結ボルト3によってモータハウジング2とコンプレッサハウジング4が連結された状態では、ディフューザ流路24が形成される。ディフューザ流路24は、モータハウジング2とコンプレッサハウジング4の対向面によって形成される。ディフューザ流路24は、空気を昇圧する。ディフューザ流路24は、シャフト17の径方向内側から外側に向けて環状に形成されている。ディフューザ流路24は、上記の径方向内側において、コンプレッサインペラ22を介して吸気口23に連通している。
 また、コンプレッサハウジング4には、コンプレッサスクロール流路25が設けられている。コンプレッサスクロール流路25は、環状である。コンプレッサスクロール流路25は、ディフューザ流路24よりもシャフト17の径方向外側に位置する。コンプレッサスクロール流路25は、不図示のエンジンの吸気口と連通する。コンプレッサスクロール流路25は、ディフューザ流路24にも連通している。
 したがって、電動機9から伝達された駆動力によりコンプレッサインペラ22が回転すると、コンプレッサインペラ22の回転によって、コンプレッサインペラ22の正面側の吸気口23からシャフト17の軸方向に、コンプレッサハウジング4内に空気が吸引される。当該吸気された空気は、コンプレッサインペラ22の翼間を流通する過程において遠心力の作用により増速される。増速された空気は、ディフューザ流路24およびコンプレッサスクロール流路25に送出されて昇圧(圧縮)される。昇圧された空気は、エンジンの吸気口に導かれる。
 図2(a)は、金属粉の捕集を説明するための第1の図である。図2(b)は、金属粉の捕集を説明するための第2の図である。図2(a)、図2(b)には、図1の破線部分が示される。背面22aは、コンプレッサインペラ22のうち、上記の吸気口23に対して反対側の面である。図2(a)に示すように、コンプレッサインペラ22の背面22aは、空間Bに面している。
 対向面2dは、モータハウジング2の壁部2cのうち、コンプレッサインペラ22の背面22aと対向する面である。壁部2cの対向面2dは、コンプレッサインペラ22の背面22aとシャフト17の軸方向に離隔する。空間Bは、コンプレッサインペラ22の背面22aと、モータハウジング2の壁部2cの対向面2dを内壁面として形成される。すなわち、空間Bは、コンプレッサインペラ22の背面22aおよび対向面2dの間に形成される。下流端22bは、コンプレッサインペラ22における径方向外側の端部である。空間Bは、下流端22bの近傍において、ディフューザ流路24と連通している。
 モータハウジング2の対向面2dには、挿通孔2bが開口している。上記のように、シャフト17は、挿通孔2bに挿通される。シャフト17は、挿通孔2b内に配設されたボールベアリング20によって軸支されている。
 挿通孔2bの内周面には、拡径部2eが形成されている。拡径部2eは、挿通孔2bの内周面のうち、モータ穴2a側に形成される。拡径部2eは、コンプレッサインペラ22側よりも内径が大きい。拡径部2eには、第1スペーサ26が挿入されている。第1スペーサ26は円筒部材である。ボールベアリング20は、第1スペーサ26の内周側に挿入されている。すなわち、ボールベアリング20は、第1スペーサ26を間に介在させて拡径部2eに収容されている。
 ボールベアリング20は、外輪20a、内輪20b、複数の転動体20c(ボール)を含んで構成される。転動体20cは、外輪20aと内輪20bの間に配される。また、ボールベアリング20は、グリース封入型の軸受である。ボールベアリング20内(転動体20cと、外輪20aおよび内輪20bの間)に潤滑剤としてグリースが介在している。
 そして、外輪20aは、第1スペーサ26に嵌め込まれている。外輪20aは、例えば、第1スペーサ26との間に僅かに径方向の隙間を有する。内輪20bは、例えば、シャフト17の軸方向に作用する圧縮応力(軸力)によってシャフト17に取り付けられる。
 シャフト17には、大径部17aが形成されている。大径部17aは、径方向に突出する。内輪20bが大径部17aに軸方向に当接している。コンプレッサインペラ22と内輪20bとの間には第2スペーサ27が配される。第2スペーサ27は、円筒部材である。第2スペーサ27は、内径側にシャフト17が挿通されている。シャフト17のコンプレッサインペラ22側の端部には締結ボルトが締結されている。内輪20b、第2スペーサ27、および、コンプレッサインペラ22が大径部17aと締結ボルトの間に挟まれる。これらの部材は、締結ボルトの締め付けから生じる軸力によってシャフト17に取り付けられる。これらの部材は、シャフト17と一体回転する。
 ところで、空間Bは、ディフューザ流路24と連通している。そのため、圧縮された空気の一部が、ディフューザ流路24から空間B側に漏れることがある。第2スペーサ27と挿通孔2bは、シャフト17の径方向に離隔している。第2スペーサ27と挿通孔2bとの間に隙間Sが形成されている。そのため、空間B側に漏れた空気に、例えば金属異物として、金属粉が含まれていると、金属粉が隙間Sを通ってしまうおそれがある。隙間Sを通った金属粉は、ボールベアリング20の内部に進入してしまうおそれがある。こうして、金属粉がボールベアリング20の内部に進入すると、転動体20cと外輪20aおよび内輪20bとの間の摺動面に傷や摩耗などが発生してしまう場合がある。摺動面の傷や摩耗の程度やエンジンの運転状況によっては、軸受性能が低下してしまう場合がある。
 そこで、壁部2cには、磁石28が設けられている。磁石28は、壁部2cのうち、ボールベアリング20よりもコンプレッサインペラ22側(空間B側)に設けられる。磁石28は、ディフューザ流路24からボールベアリング20側に漏れる空気の流路上に磁力を作用させる。壁部2cには、コンプレッサインペラ22側(対向面2d)に開口する収容穴2f(収容部)が設けられている。収容穴2fは、ボールベアリング20とコンプレッサインペラ22の間に形成される。磁石28は、収容穴2fの内部に収容されている。収容穴2fは、シャフト17の周方向に離隔して複数形成されている。磁石28は、各収容穴2fにそれぞれ収容されている。
 このように、磁石28を設けることで、ディフューザ流路24からボールベアリング20に向かう空気に金属粉が巻き込まれていても、図2(b)に示すように、金属粉(図中、黒丸で示す)を磁石28が吸い寄せて捕集する。その結果、金属粉のボールベアリング20への到達が低減される。ボールベアリング20の軸受性能の低下が抑制される。
 また、収容穴2fは、シャフト17の軸方向の長さが磁石28よりも長い。磁石28が収容穴2fの底面側に押し込まれている。磁石28は、対向面2dから窪んだ位置に配される。
 そのため、磁石28が対向面2dから突出している場合に比べ、コンプレッサインペラ22の背面22aと磁石28との接触を防止するために、空間Bを大きく確保する必要がない。空間Bに漏れる空気量が低減される。また、コンプレッサインペラ22の背面22aには、窪み部22aが形成される。窪み部22aは、対向面2dから離隔する方向に窪んでいる。窪み部22aを流れる空気の流速は、流路面積が広くなるため遅くなる。例えば、窪み部22aに軸方向に対向する位置に磁石28を設けると、窪み部22aを流れる空気の流速が遅くなるため、空気に含まれる金属粉が磁石に吸い寄せられ易くなる。その結果、金属粉が捕集され易くなる。また、捕集された金属粉は、収容穴2f内に収まる。捕集された金属粉が空気の流れによって磁石28から離れても、収容穴2fの内部から抜け出し難い。捕集された金属粉がボールベアリング20へ向かう流れに再び合流することが抑制される。
 また、収容穴2fには、突出部2gが形成される。突出部2gは、収容穴2fのうち、シャフト17の径方向内側(図2(a)、図2(b)中、下側)の内壁面に形成される。収容穴2fは、磁石28よりも対向面2d側(収容穴2fの開口側)に形成される。突出部2gは、対向面2d側に向かうほどシャフト17の径方向外側に向かって突出している。磁石28に捕集された金属粉は、空間Bをボールベアリング20側(径方向内側)に向かう空気の流れの影響を受けても、突出部2gに阻まれる。そのため、突出部2gがない場合に比べて、収容穴2fの内部から金属粉が抜け出し難い。
 また、仮に、転動体20cや内輪20bが磁化されると、磁石28との間の磁力によって、転動体20cや内輪20bの運動に抵抗が生じるおそれがある。そこで、ボールベアリング20は、転動体20cが非磁性体で構成されている。したがって、転動体20cが磁化されることはない。また、磁石28は、シャフト17の径方向の位置が、内輪20bよりも外側に離隔して配される。そのため、内輪20bは、例えば磁石28が軸方向に対向して配される場合に比べ、磁化され難い。内輪20bの運動が磁石28の磁力による影響を受け難い。ボールベアリング20の機械損失の増加が抑制される。
 また、外輪20aは、内輪20bよりも磁石28の近くに配されている。外輪20aは、磁化され易い。外輪20aは第1スペーサ26に対して隙間嵌めされている。この場合、外輪20aと第1スペーサ26との径方向の間に隙間が設けられる。よって、外輪20aは、第1スペーサ26に完全には固定されていない。例えば、外輪20aが磁化されると、外輪20aと磁石28との間に引力が生じる。外輪20aと磁石28との間の引力により、シャフト17の回転による外輪20aの回転(共回り)を抑制することが期待できる。
 図3(a)は、変形例における図2(a)に対応する図である。図3(b)は、変形例における図2(b)に対応する図である。上述した実施形態では、磁石28は、収容穴2fに収容される場合について説明した。変形例においては、磁石28の収容部分が異なる。
 図3(a)に示すように、磁石28が、収容孔30a(収容部)に収容される。収容孔30aは、シャフト17の周方向に離隔して複数設けられる。磁石28は、複数の収容部30aそれぞれに収容される。収容孔30aは、壁部2cを貫通する孔である。収容孔30aは、ボールベアリング20とコンプレッサインペラ22の間に形成される。すなわち、磁石28は、壁部2cのうち、ボールベアリング20よりもコンプレッサインペラ22側に設けられる。収容孔30aは、拡径部2eおよび対向面2dに開口している。すなわち、収容孔30aは、コンプレッサインペラ22の背面22a側と、ボールベアリング20側に開口している。
 また、収容孔30aには、上述した実施形態の突出部2gと同様、突出部30bが形成されている。突出部30bは、収容孔30aのうち、シャフト17の径方向内側の内壁面に形成される。突出部30bは、磁石28よりも対向面2d側に形成される。突出部30bは、対向面2d側に向かうほどシャフト17の径方向外側に向かって突出する。
 変形例では、上述した実施形態同様、磁石28を設けることで、図3(b)に示すように、金属粉(図中、黒丸で示す)が磁石28に吸い寄せられる。金属粉は、捕集される。ボールベアリング20の軸受性能の低下が抑制される。
 また、収容孔30aのうち、コンプレッサインペラ22の背面22a側の開口部30cは、シャフト17の径方向の幅が磁石28よりも小さい。そのため、磁石28がコンプレッサインペラ22の背面22a側から脱落することが防止される。すなわち、コンプレッサインペラ22の背面22aと磁石28との接触回避が可能となる。また、収容孔30aに磁石28を取り付ける構成は、例えば、圧入など、公知の取付構造が適宜選択される。
 以上、添付図面を参照しながら実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に技術的範囲に属するものと了解される。
 例えば、上述した実施形態および変形例では、ボールベアリング20内に潤滑剤としてグリースが介在する場合について説明した。ただし、ボールベアリング20は、グリースの代わりにオイルで潤滑されてもよい。
 また、上述した実施形態では、収容穴2fに磁石28が収容される場合について説明した。変形例では、収容孔30aに磁石28が収容される場合について説明した。ただし、収容穴2fや収容孔30aのように、磁石28を収容する収容部が壁部2cに設けられなくともよい。磁石28は、例えば、壁部2cの対向面2dに接合してもよい。磁石28は、壁部2cに設けられれば、設置位置や取付構造は問わない。
 また、上述した変形例では、収容孔30aがコンプレッサインペラ22の背面22a側に開口している場合について説明した。ただし、収容孔30aは、コンプレッサインペラ22の背面22a側に開口せずともよい。この場合、磁石28は、壁部2cの一部を挟んで、空気の流路上に磁力を作用させることとなる。ただし、収容孔30aをコンプレッサインペラ22の背面22a側に開口させると、以下の効果がある。すなわち、捕集された金属粉は、収容孔30a内に収まる。そのため、金属粉が空気の流れによって磁石28から離れても、収容穴2fの内部から抜け出し難い。金属粉がボールベアリング20へ向かう流れに再び合流することが抑制される。
 また、上述した実施形態および変形例では、磁石28は、壁部2cのうち、ボールベアリング20よりもコンプレッサインペラ22側に設けられる場合について説明した。ただし、磁石28は、壁部2cのうち、ボールベアリング20よりもコンプレッサインペラ22から離隔する側に設けられてもよい。磁石28が、壁部2cのうち、ボールベアリング20よりもコンプレッサインペラ22側に設けられる場合、以下の効果がある。すなわち、ボールベアリング20よりも空間Bの近くに磁石28が配される。そのため、空間Bに磁石28の磁力が作用し易い。
 また、上述した実施形態および変形例では、磁石28は、対向面2dに対して窪んだ位置に配される場合について説明した。ただし、磁石28が対向面2dから突出していてもよい。
 また、上述した実施形態および変形例では、突出部2g、30bが形成される場合について説明した。ただし、突出部2g、30bは必須の構成ではない。
 また、上述した実施形態および変形例では、転動体20cが非磁性体で構成される場合について説明した。ただし、転動体20cが非磁性体でなくてもよい。ボールベアリング20の代わりに、ころ軸受が設けられてもよい。
 また、上述した実施形態および変形例では、磁石28は、シャフト17の径方向の位置が、ボールベアリング20の内輪20bよりも外側に配される場合について説明した。ただし、磁石28は、シャフト17の径方向の位置が、内輪20bと同じでもよい。磁石28は、シャフト17の径方向の位置が、内輪20bよりも内側に配されてもよい。
 本開示は、軸受によってシャフトが軸支された遠心圧縮機に利用することができる。
C 電動過給機(遠心圧縮機)
2b 挿通孔
2c 壁部
2d 対向面
2f 収容穴(収容部)
2g 突出部
17 シャフト
20 ボールベアリング(軸受)
20b 内輪
20c 転動体(ボール)
22 コンプレッサインペラ(インペラ)
22a 背面
28 磁石
30a 収容孔(収容部)
30b 突出部

Claims (9)

  1.  シャフトに設けられたインペラと、
     前記インペラの背面と離隔して対向する壁部と、
     前記壁部に設けられ、前記シャフトが挿通される挿通孔と、
     前記挿通孔内に設けられ、前記シャフトを軸支する軸受と、
     前記壁部に設けられた磁石と、
    を備える遠心圧縮機。
  2.  前記磁石は、前記壁部のうち、前記軸受よりも前記インペラ側に設けられる請求項1に記載の遠心圧縮機。
  3.  前記軸受内に潤滑剤としてグリースが介在する請求項1または2に記載の遠心圧縮機。
  4.  前記壁部に設けられ、前記磁石を内部に収容する収容部をさらに備える請求項1から3のいずれか1項に記載の遠心圧縮機。
  5.  前記収容部は、前記壁部のうち前記インペラの背面と対向する対向面に開口している請求項4に記載の遠心圧縮機。
  6.  前記磁石は、前記対向面から窪んだ位置に設けられる請求項5に記載の遠心圧縮機。
  7.  前記収容部には、前記シャフトの径方向内側の内壁面において、前記磁石よりも前記対向面側に、前記対向面側に向かうほど前記シャフトの径方向外側に向かって突出する突出部が形成される請求項6に記載の遠心圧縮機。
  8.  前記軸受は、ボールが非磁性体であるボールベアリングで構成される請求項1から7のいずれか1項に記載の遠心圧縮機。
  9.  前記磁石は、前記シャフトの径方向の位置が、前記軸受の内輪よりも外側に配される請求項8に記載の遠心圧縮機。
PCT/JP2016/078659 2015-10-02 2016-09-28 遠心圧縮機 WO2017057480A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015196470 2015-10-02
JP2015-196470 2015-10-02

Publications (1)

Publication Number Publication Date
WO2017057480A1 true WO2017057480A1 (ja) 2017-04-06

Family

ID=58423737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078659 WO2017057480A1 (ja) 2015-10-02 2016-09-28 遠心圧縮機

Country Status (1)

Country Link
WO (1) WO2017057480A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879320A (zh) * 2021-02-19 2021-06-01 胡伟锋 一种轨道交通低噪音轴流风机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296402A (en) * 1976-02-09 1977-08-13 Kubota Ltd Shaft seal protecting device for under water pump
JPH06505070A (ja) * 1991-03-09 1994-06-09 ライボルト アクチエンゲゼルシヤフト ラジアルブロワ
JP2004011896A (ja) * 2002-06-11 2004-01-15 Nsk Ltd 転がり軸受および圧縮機、送風機
JP2008121431A (ja) * 2006-11-08 2008-05-29 Aisin Seiki Co Ltd ウォータポンプ
JP2011017294A (ja) * 2009-07-09 2011-01-27 Sanso Electric Co Ltd キャンドポンプ
JP2015017535A (ja) * 2013-07-10 2015-01-29 株式会社Ihi ターボ圧縮機及びターボ冷凍機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296402A (en) * 1976-02-09 1977-08-13 Kubota Ltd Shaft seal protecting device for under water pump
JPH06505070A (ja) * 1991-03-09 1994-06-09 ライボルト アクチエンゲゼルシヤフト ラジアルブロワ
JP2004011896A (ja) * 2002-06-11 2004-01-15 Nsk Ltd 転がり軸受および圧縮機、送風機
JP2008121431A (ja) * 2006-11-08 2008-05-29 Aisin Seiki Co Ltd ウォータポンプ
JP2011017294A (ja) * 2009-07-09 2011-01-27 Sanso Electric Co Ltd キャンドポンプ
JP2015017535A (ja) * 2013-07-10 2015-01-29 株式会社Ihi ターボ圧縮機及びターボ冷凍機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879320A (zh) * 2021-02-19 2021-06-01 胡伟锋 一种轨道交通低噪音轴流风机
CN112879320B (zh) * 2021-02-19 2023-01-13 中铁三局集团有限公司 一种轨道交通低噪音轴流风机

Similar Documents

Publication Publication Date Title
JP6485552B2 (ja) 遠心圧縮機
WO2017057479A1 (ja) 電動過給機
JP2009121676A (ja) 動力伝達装置
JP6016910B2 (ja) 磁束漏れ路遮断器を有する回転結合装置
EP3144497A1 (en) Electric supercharger
CN110637168B (zh) 磁性轴承
JP5601826B2 (ja) 燃料ポンプ
WO2017057480A1 (ja) 遠心圧縮機
CN115380167B (zh) 离心式压缩机
WO2020196325A1 (ja) スラスト磁気軸受およびそれを備えたターボ圧縮機
KR102444631B1 (ko) 모터 구조체
US20230353014A1 (en) Electric motor capable of quick shutdown
EP3128150B1 (en) Electrically driven supercharger, and supercharging system
US20050099077A1 (en) Magnetic coupling using magnets on a motor rotor
JP6484507B2 (ja) アキシャルギャップ型回転電機
US11466695B2 (en) Motor assembly and method for manufacturing the same
WO2015107840A1 (ja) 電動過給機
JP2014107951A (ja) モータ
WO2021171556A1 (ja) 電動機、送風機及び空気調和装置
JP2013126267A (ja) 回転電気機械および圧縮機
US11808273B2 (en) Rotor assembly
US20220247245A1 (en) Ec motor, fan with ec motor, and household appliance
KR102453150B1 (ko) 모터의 냉각구조
KR101899779B1 (ko) 압축기용 전자클러치
KR102373383B1 (ko) 스테이터 코어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP