WO2017057202A1 - Vリブドベルト及びその製造方法 - Google Patents

Vリブドベルト及びその製造方法 Download PDF

Info

Publication number
WO2017057202A1
WO2017057202A1 PCT/JP2016/078106 JP2016078106W WO2017057202A1 WO 2017057202 A1 WO2017057202 A1 WO 2017057202A1 JP 2016078106 W JP2016078106 W JP 2016078106W WO 2017057202 A1 WO2017057202 A1 WO 2017057202A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
layer
fibers
ribbed belt
rubber layer
Prior art date
Application number
PCT/JP2016/078106
Other languages
English (en)
French (fr)
Inventor
大司 原田
恒平 杉村
脩平 田中
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016175415A external-priority patent/JP6480392B2/ja
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to US15/938,171 priority Critical patent/US10760646B2/en
Priority to EP16851376.0A priority patent/EP3358216B1/en
Priority to CN201680056698.6A priority patent/CN108138908B/zh
Publication of WO2017057202A1 publication Critical patent/WO2017057202A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a V-ribbed belt used for driving an automobile engine accessory and the like, and more particularly, to a V-ribbed belt capable of reducing the amount of grinding in a method of forming a rib portion by grinding and having excellent appearance and durability, and a method for manufacturing the same. .
  • V-ribbed belt having ribs provided along the longitudinal direction of the belt.
  • the V-ribbed belt is, for example, an auxiliary drive such as an automobile air compressor or alternator. Widely used for power transmission.
  • a manufacturing method of a V-ribbed belt a manufacturing method is known in which a rib portion (compressed rubber layer) having an inverted trapezoidal cross section is formed by grinding.
  • a belt sleeve is formed by winding each molded member (cover cloth, unvulcanized rubber sheet, core wire, etc.) around the outer peripheral surface of a cylindrical mold.
  • the belt sleeve is formed such that the grinding surface (compressed rubber layer forming the rib) is on the outer peripheral side and the belt rear surface is on the inner peripheral side.
  • vulcanization is performed by placing the belt sleeve in a vulcanizing can with the vulcanization jacket placed on the outer peripheral side of the belt sleeve.
  • vulcanization is performed in a state where the outer peripheral surface of the belt sleeve and the inner peripheral surface of the vulcanization jacket are in contact with each other, and the vulcanization jacket is removed (released) after vulcanization. Further, ventilation (air venting) is necessary so that air (bubbles) does not accumulate in the belt sleeve during vulcanization.
  • a thick non-woven fabric is wound around the outer peripheral surface of the sleeve and vulcanized, and after release, the non-woven fabric is ground together with the ground portion of the compressed rubber.
  • a removal method (a method of grinding the entire rib portion) is employed.
  • the rib rubber layer has a structure in which rubber layers and nonwoven fabric layers are alternately laminated in the belt thickness direction, and a V-ribbed belt having a nonwoven fabric layer on the rib front end surface of the rib rubber layer is disclosed.
  • the belt becomes rigid, and the belt is less flexible in belt running (the nonwoven fabric is stretched and hinders bending) and is durable. The properties are reduced (cracks are easily generated). Furthermore, since the rib rubber layer is divided by the nonwoven fabric layer, delamination is likely to occur. Furthermore, in this document, in order to suppress abnormal noise generated between the pulley and the wear of the friction belt surface, a non-woven fabric layer is introduced in place of the short fibers contained in the rubber, and the problem in the grinding method is Not listed. Although this document does not describe details of the nonwoven fabric layer such as the weight per unit area, generally, in the V-ribbed belt having the nonwoven fabric on the rib tip surface, the appearance of the nonwoven fabric surface is deteriorated.
  • the nonwoven fabric is not used, the releasability and air permeability (air bleeding) become insufficient, and the surface property of the vulcanized jacket is transferred to the sleeve surface (rib tip surface). In the case of a vulcanized jacket with scratches, the scratches are transferred and the appearance is deteriorated.
  • Patent Document 2 discloses a V-ribbed belt having a thermoplastic resin layer (a film-like layer instead of a fiber) on the rib tip surface. This document describes that after a thermoplastic resin layer is bonded to a rib, the belt is cut and cut into a V-belt shape.
  • an object of the present invention is to provide a V-ribbed belt that can be formed by grinding a rib portion with a small grinding amount (waste rubber amount) and that can smoothly proceed with a vulcanization process, and a method for manufacturing the same.
  • Another object of the present invention is to provide a V-ribbed belt excellent in appearance and capable of improving durability such as crack resistance and heat resistance, and a method for producing the same.
  • Still another object of the present invention is to provide a V-ribbed belt that does not require a bonding treatment of a fiber assembly and that can improve winding workability even if it contains fibers, and a method for manufacturing the same.
  • the bottom portion of the compressed rubber layer of the V-ribbed belt is a ground surface in which the side portion is in contact with the pulley and the bottom portion is a non-ground surface that is not in contact with the pulley.
  • a vulcanization of the rubber composition impregnated between fibers of a specific basis weight including a heat-resistant fiber that does not melt at the vulcanization temperature of the rubber composition constituting the compressed rubber layer on the surface, and between the fibers of the fiber assembly By forming a composite layer containing a product, it was found that a rib portion can be formed by grinding with a small grinding amount (waste rubber amount) and the vulcanization process can proceed smoothly, and the present invention has been completed.
  • the V-ribbed belt of the present invention includes a compressed rubber layer containing a vulcanizate of a rubber composition, a core, and an extension layer, and a side surface of the compressed rubber layer is a ground surface that comes into contact with a pulley, and
  • the compressed rubber layer is a V-ribbed belt that is a non-ground surface that does not come into contact with a pulley, and includes a heat-resistant fiber that does not melt at the vulcanization temperature of the rubber composition and a basis weight of 25 g. / M 2 or less and a composite layer containing a vulcanized product of the rubber composition impregnated (permeated or present) between the fibers of the fiber assembly.
  • the heat resistant fiber may include a polyester fiber.
  • the fiber assembly may have a non-woven fiber structure.
  • the basis weight of the fiber assembly may be about 8 to 20 g / m 2 .
  • the compressed rubber layer may form a continuous phase with a vulcanized product of a rubber composition.
  • the average fiber diameter of the heat resistant fiber may be about 1 to 50 ⁇ m.
  • the heat resistant fiber may include a long fiber. In the composite layer, the heat-resistant fibers are preferably not fused.
  • the compressed rubber layer may contain short fibers.
  • the heat-resistant fibers may be oriented in a predetermined direction, and the longitudinal direction may be parallel to the longitudinal direction of the belt.
  • the compressed rubber layer may have a rib portion, and the average thickness of the rib portion may be 54% or less with respect to the average thickness of the entire V-ribbed belt.
  • a stretch layer mounting process for mounting a stretch layer member for forming a stretch layer on a cylindrical drum, a core spinning process for winding a core wire as a core, and a compression rubber layer Compressed rubber layer winding step of winding the unvulcanized rubber sheet, a fiber assembly winding step of winding a fiber assembly containing a heat-resistant fiber on the wound unvulcanized rubber sheet, and obtained by the above steps Vulcanization process to obtain a vulcanized belt sleeve by vulcanizing the belt molded body (unvulcanized belt sleeve), grinding process for forming only the side of the compressed rubber layer by grinding on the fiber assembly side of the vulcanized belt sleeve
  • the manufacturing method of the said V ribbed belt containing is also included.
  • the average thickness of the fiber assembly may be about 0.03 to 0.15 mm.
  • the rubber composition constituting the compression rubber layer on the surface of the bottom of the compression rubber layer of the V-ribbed belt, the side of which is a ground surface in contact with the pulley and the bottom is an unground surface that does not contact the pulley Since a composite layer containing a fiber assembly having a specific basis weight including heat-resistant fibers that do not melt at the vulcanization temperature and a vulcanized product of the rubber composition impregnated between the fibers of the fiber assembly is laminated, It is not necessary to grind the bottom of the compressed rubber layer, and the rib portion can be formed by grinding with a small amount of grinding (waste rubber amount).
  • a fiber assembly such as a non-woven fabric can ensure releasability and breathability in the vulcanization process, air release during vulcanization and release from the vulcanization jacket can proceed smoothly. Therefore, transfer of scratches and spots on the vulcanization jacket can be suppressed.
  • the rubber composition is appropriately embedded and mixed between the fibers, so that fiber fluff can be suppressed and the appearance can be improved.
  • the fibers are integrated with the vulcanizate of the rubber composition constituting the compression rubber layer only on the bottom surface of the compression rubber layer, the belt has excellent bending resistance and can improve durability such as crack resistance. Both can maintain heat resistance.
  • the fiber assembly and the compressed rubber layer are integrated by vulcanization, an adhesive treatment of the fiber assembly is unnecessary.
  • the longitudinal direction of the heat-resistant fiber parallel to the longitudinal direction of the belt even if the fiber is contained, it is possible to suppress elongation and breakage when pulled in the winding direction (circumferential direction), and the belt winding workability Can be improved.
  • FIG. 1 is a schematic sectional view showing an example of the V-ribbed belt of the present invention.
  • FIG. 2 is a layout of a testing machine used in the bending fatigue resistance (crack resistance) test in the examples.
  • FIG. 3 is a surface electron micrograph of the composite layer of the V-ribbed belt obtained in Example 1.
  • 4 is a photograph of the rib portion of the V-ribbed belt obtained in Example 1.
  • FIG. 5 is a photograph of the rib portion of the V-ribbed belt obtained in Reference Example 1.
  • the V-ribbed belt of the present invention is provided with a compressed rubber layer having a substantially inverted trapezoidal cross section by grinding and containing a vulcanizate of a rubber composition, and the side of the compressed rubber layer is in contact with a pulley. And a non-ground surface where the bottom of the compressed rubber layer does not contact the pulley.
  • FIG. 1 is a schematic cross-sectional view showing an example of a V-ribbed belt of the present invention.
  • the stretch layer 1 composed of an outer fabric (woven fabric, knitted fabric, non-woven fabric, etc.), the core body (core wire) in the belt longitudinal direction 2, an adhesive rubber layer 3 in which 2 is embedded, a compressed rubber layer 4, and a composite layer 5 are laminated.
  • a plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compressed rubber layer 4, and a V-shaped cross section [reverse trapezoidal shape (a trapezoidal shape that tapers toward the tip of the rib) is formed between the grooves. )] Are formed (two in the example shown in FIG. 1), and the two inclined surfaces (surfaces) of each rib portion form a friction transmission surface, and contact the pulley to transmit power (friction). Transmission).
  • the side surface (inclined surface) of the rib portion is the ground surface 4a, and the non-ground surface composite layer 5 is formed on the bottom surface of the rib portion.
  • the V-ribbed belt of the present invention is not limited to this form, and may be provided with such a compressed rubber layer.
  • the stretch layer may be formed of a rubber composition, and the stretch layer may be formed without providing an adhesive rubber layer.
  • a core body (core wire) may be embedded between the rubber layer and the compressed rubber layer.
  • an adhesive rubber layer is provided on either the compression rubber layer or the stretch layer, and the core (core wire) is provided between the adhesive rubber layer (compression rubber layer side) and the stretch layer, or the adhesive rubber layer (stretch layer side). ) And a compression rubber layer.
  • the composite layer is formed without being ground at the bottom of the compressed rubber layer, and includes a fiber assembly including heat-resistant fibers that do not melt at the vulcanization temperature of the rubber composition constituting the compressed rubber layer, and fibers of the fiber assembly And a vulcanized product of the rubber composition impregnated in the space (gap between the fibers inside the assembly).
  • the fiber assembly only needs to contain heat-resistant fibers as main fibers, and unless the effects of the present invention are impaired, non-heat-resistant fibers (for example, polyolefin fibers, acrylic fibers, vinyl fibers, styrene fibers, Polycarbonate fiber, polyurethane fiber, thermoplastic elastomer fiber, etc.).
  • the proportion of the heat-resistant fiber is 50% by mass or more with respect to the entire fiber assembly, for example, 50 to 100% by mass, preferably about 80 to 100% by mass, more preferably about 90 to 100% by mass, and 100% by mass. % (Heat-resistant fiber only).
  • the heat-resistant fiber may be any fiber that does not melt at the vulcanization temperature of the rubber composition constituting the compressed rubber layer, and may be either an organic fiber or an inorganic fiber.
  • organic fibers examples include natural fibers (cellulosic fibers such as cotton, hemp, and rayon fibers); synthetic fibers [aliphatic polyamide fibers (polyamide 6, polyamide 66, polyamide 46 fibers, etc.), polyester fibers (polybutylene terephthalate).
  • Poly C 2-4 alkylene C 6-14 arylate fibers such as polyethylene terephthalate and polyethylene naphthalate fibers), fluorine fibers (such as polytetrafluoroethylene fibers), polyacryl fibers (such as polyacrylonitrile fibers), polyvinyl alcohol fibers
  • the inorganic fiber include carbon fiber, glass fiber, and metal fiber. These heat resistant fibers can be used alone or in combination of two or more.
  • polyester fibers Of these heat resistant fibers, organic fibers such as aliphatic polyamide fibers (nylon fibers), aromatic polyamide fibers (aramid fibers), polyester fibers, and PBO fibers are preferred because of their high elastic modulus and excellent flexibility. Polyester fibers (especially poly C 2-4 alkylene C 6-14 arylate fibers such as polyethylene terephthalate and polyethylene naphthalate fibers) are particularly preferred from the viewpoint of excellent balance between mechanical properties and heat resistance.
  • the heat-resistant fiber may be, for example, a combination of polyester fibers (such as polyethylene terephthalate long fibers) that are main fibers and short fibers (such as cotton fibers and aramid fibers) derived from the compressed rubber layer.
  • the heat-resistant fiber When the heat-resistant fiber is an organic fiber, it may have a softening point or melting point exceeding the vulcanization temperature (eg, about 140 to 200 ° C., particularly about 180 ° C.) in order to maintain the fiber shape even after vulcanization,
  • the softening point or melting point (or decomposition point) of the heat-resistant fiber may be, for example, T + 10 ° C. or higher, where T is the vulcanization temperature, for example, (T + 10) to (T + 300) ° C., preferably (T + 20) to It is (T + 200) ° C., more preferably about (T + 30) to (T + 100) ° C.
  • the melting point of the heat resistant fiber may be, for example, about 180 to 350 ° C., preferably about 200 to 300 ° C., and more preferably about 250 to 280 ° C.
  • the softening point or the melting point is not higher than the vulcanization temperature, the fiber shape is lost by vulcanization to form a film, which may reduce the bending resistance of the belt.
  • the fiber form of the heat resistant fiber is not particularly limited, and may be any form of monofilament, multifilament, spun yarn (spun yarn), or a combination thereof.
  • the average fiber diameter of the heat-resistant fiber is, for example, about 1 to 50 ⁇ m, preferably 2 to 30 ⁇ m, more preferably about 3 to 10 ⁇ m (particularly 5 to 9 ⁇ m). If the fiber diameter is too large, the flexibility may be reduced and the bending resistance of the belt may be reduced. If the fiber diameter is too small, the air permeability in the belt manufacturing process may be reduced.
  • the fiber length of the heat resistant fiber is not particularly limited, and may be a short fiber (for example, a short fiber having an average fiber length of about 1 to 500 mm, preferably 3 to 300 mm, more preferably about 5 to 100 mm). From the viewpoint of excellent shape stability and the like, long fibers (infinite fiber length long fibers) are preferred. Furthermore, it may be a combination of long fibers (such as polyester long fibers) as the main fibers and short fibers (such as short fibers derived from the compressed rubber layer) as auxiliary fibers.
  • long fibers such as polyester long fibers
  • short fibers such as short fibers derived from the compressed rubber layer
  • the structure of the fiber assembly may be a woven fiber structure (knitted fabric or woven fabric structure).
  • a non-woven fiber structure nonwoven fabric structure
  • the non-woven fiber structure in the present invention is usually a structure in which a rubber composition is filled (impregnated) between non-woven fibers as a raw material.
  • the basis weight of the fiber aggregate may be 25 g / m 2 or less, for example, 5 to 25 g / m 2 , preferably 7 to 23 g / m 2 (eg 8 to 20 g / m 2 ), and more preferably 8 to 15 g / m 2. It is about m 2 (especially 8 to 12 g / m 2 ). Furthermore, the weight per unit area may be about 6 to 11 g / m 2 (particularly 7 to 10 g / m 2 ) from the viewpoint of stably producing a belt having high bending resistance.
  • the basis weight of the heat-resistant fiber assembly having a non-woven fiber structure is the same as the basis weight of the nonwoven fabric as a raw material.
  • fibers may be fused, but fibers (particularly heat-resistant fibers) are not fused (has no fusion point) from the viewpoint of improving the bending resistance. ) Fiber is preferred.
  • the heat-resistant fibers may be randomly oriented, but are preferably oriented in a predetermined direction [such as a flow direction (MD) direction in the manufacturing process] from the viewpoint of improving strength in a specific direction.
  • a fiber assembly in which fibers are oriented in a predetermined direction can suppress elongation and breakage when pulled in the winding direction (circumferential direction) by making the longitudinal direction of the fibers parallel to the longitudinal direction of the belt.
  • the belt winding workability can be improved.
  • the fiber aggregate may be formed on the fiber surface or inside each fiber by using conventional additives such as reinforcing agents, fillers, metal oxides, plasticizers, processing agents or processing aids, colorants, couplings.
  • additives such as reinforcing agents, fillers, metal oxides, plasticizers, processing agents or processing aids, colorants, couplings.
  • Agents stabilizers (ultraviolet absorbers, antioxidants, ozone degradation inhibitors, thermal stabilizers, etc.), lubricants, flame retardants, antistatic agents, and the like.
  • the ratio of the additive is about 10% by weight or less (for example, 0.1 to 5% by weight) with respect to the entire fiber assembly.
  • the rubber composition is a rubber composition in which the rubber composition of the compressed rubber layer penetrates (exists or is contained) between the fibers of the fiber assembly.
  • the rubber composition is not particularly limited, but usually a rubber composition containing a rubber component and a vulcanizing agent or a crosslinking agent is used.
  • the present invention forms an unvulcanized rubber layer from a rubber composition containing sulfur or an organic peroxide (particularly an organic peroxide vulcanized rubber composition), and vulcanizes or crosslinks the unvulcanized rubber layer. Useful to do.
  • rubber components include vulcanizable or crosslinkable rubbers such as diene rubbers (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), and hydrogenated nitrile rubber. , Mixed polymers of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt, etc.), ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, Examples thereof include urethane rubber and fluorine rubber. These rubber components can be used alone or in combination of two or more.
  • diene rubbers natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nit
  • ethylene- ⁇ -olefin elastomers are preferred because they do not contain harmful halogens, have ozone resistance, heat resistance, cold resistance, and are economical. Furthermore, since the ethylene- ⁇ -olefin elastomer has low water wettability compared to other rubbers, the power transmission performance and quietness during water injection can be remarkably improved.
  • ethylene- ⁇ -olefin elastomer examples include ethylene- ⁇ -olefin rubber and ethylene- ⁇ -olefin-diene rubber.
  • ⁇ -olefins examples include chain ⁇ -C 3-12 olefins such as propylene, butene, pentene, methylpentene, hexene and octene.
  • the ⁇ -olefins can be used alone or in combination of two or more.
  • ⁇ -C 3-4 olefins particularly propylene
  • propylene such as propylene
  • diene monomer usually include non-conjugated diene monomers such as dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, and cyclooctadiene. These diene monomers can be used alone or in combination of two or more.
  • Typical ethylene- ⁇ -olefin elastomers include, for example, ethylene- ⁇ -olefin rubber (ethylene-propylene rubber (EPR)), ethylene- ⁇ -olefin-diene rubber (ethylene-propylene-diene copolymer (EPDM, etc.)). And the like.
  • EPR ethylene-propylene rubber
  • EPDM ethylene- ⁇ -olefin-diene rubber
  • EPDM ethylene-propylene-diene copolymer
  • the proportion of diene can be selected from the range of about 4 to 15% by mass relative to the whole rubber, for example 4.2 to 13% by mass (eg 4.3 to 12% by mass), preferably 4.4 to 11%. It may be about 5% by mass (for example, 4.5 to 11% by mass).
  • the iodine value of the ethylene- ⁇ -olefin rubber containing the diene component may be, for example, about 3 to 40 (preferably 5 to 30, more preferably 10 to 20). If the iodine value is too small, vulcanization of the rubber composition will be insufficient and wear and adhesion will tend to occur. Conversely, if the iodine value is too large, the scorch of the rubber composition will become short and difficult to handle and heat resistance Tend to decrease.
  • organic peroxides usually used for crosslinking of rubber and resin for example, diacyl peroxide, peroxy ester, dialkyl peroxide (for example, dicumyl peroxide, t-butyl cumyl peroxide) are used.
  • These organic peroxides can be used alone or in combination of two or more.
  • the organic peroxide is preferably a peroxide having a half-life of 1 minute by thermal decomposition of about 150 to 250 ° C. (for example, 175 to 225 ° C.).
  • the proportion of the vulcanizing agent or cross-linking agent is 1 to 10 parts by mass, preferably 1.2, in terms of solid content with respect to 100 parts by mass of the rubber component (such as ethylene- ⁇ -olefin elastomer). It is about 8 parts by mass, more preferably about 1.5 to 6 parts by mass (particularly 2 to 5 parts by mass).
  • the rubber composition may further contain a vulcanization accelerator.
  • a vulcanization accelerator examples include thiuram accelerators, thiazol accelerators, sulfenamide accelerators, bismaleimide accelerators, urea accelerators, and the like. These vulcanization accelerators can be used alone or in combination of two or more.
  • the proportion of the vulcanization accelerator is, for example, 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass, and more preferably about 2 to 5 parts by mass with respect to 100 parts by mass of the rubber component in terms of solid content. .
  • the rubber composition may further contain a co-crosslinking agent (crosslinking aid or co-vulcanizing agent) in order to increase the degree of crosslinking and prevent adhesive wear and the like.
  • co-crosslinking agents include conventional crosslinking aids such as polyfunctional (iso) cyanurates [for example, triallyl isocyanurate (TAIC), triallyl cyanurate (TAC), etc.], polydienes (for example, 1,2-polybutadiene, etc.).
  • metal salts of unsaturated carboxylic acids [eg, zinc (meth) acrylate, magnesium (meth) acrylate, etc.], oximes (eg, quinone dioxime), guanidines (eg, diphenyl guanidine, etc.), Multifunctional (meth) acrylate [eg, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, etc.], bismaleimides (NN′-m-phenylenebismaleimide) Etc.).
  • These crosslinking aids can be used alone or in combination of two or more.
  • the ratio of the crosslinking aid (total amount when a plurality of types are combined) is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 8 parts by mass, and more preferably 0.05 to 8 parts by mass with respect to 100 parts by mass of rubber.
  • the amount is preferably about 0.1 to 5 parts by mass.
  • the rubber composition may be prepared by adding conventional additives such as a vulcanization aid, a vulcanization accelerator, a vulcanization retarder, a reinforcing agent (carbon oxide, silicon oxide such as hydrous silica), a filler ( Clay, calcium carbonate, talc, mica, etc.), metal oxides (eg, zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), softeners (paraffin oil, naphthene) Oils such as system oils and process oils), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, fatty acid amide, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, bending) Anti-cracking materials, anti-ozonants, etc.), colorants, tackifiers, plasticizers, coupling agents (such as silane coupling agents), stabilizers (such as External absorbers, thermal stabilizers), lubricants, a flame retard,
  • the ratio of these additives can be selected from a conventional range depending on the type.
  • the ratio of the reinforcing agent carbon black, silica, etc.
  • the ratio of the metal oxide such as zinc oxide
  • the ratio of processing agents such as stearic acid
  • a composite layer in which a fiber assembly containing heat-resistant fibers not melted by vulcanization of a rubber composition constituting a compressed rubber layer is embedded in the surface of the compressed rubber layer and mixed (integrated) with the rubber composition is formed. Because it is formed, the flexibility of the fiber can be maintained, it does not become an obstacle (stretching) in bending of the belt, the durability of the belt can be improved, fuzz at the bottom of the compressed rubber layer can be suppressed, and the appearance properties are not impaired . Furthermore, since the composite layer does not lose its fiber shape in the vulcanization process and remains, the fiber shape can ensure releasability, breathability, and durability in the vulcanization process.
  • the presence form of the heat-resistant fiber in the composite layer is preferably such that at least a part of the heat-resistant fiber is exposed on the surface of the composite layer in order to ensure release properties and breathability in the vulcanization process,
  • the composite layer may be embedded in a rubber composition impregnated between the fibers.
  • the appearance and durability of the belt can be improved.
  • the average thickness of the composite layer is, for example, about 0.005 to 0.05 mm, preferably about 0.006 to 0.02 mm, more preferably about 0.007 to 0.015 mm (particularly 0.008 to 0.012 mm). If the thickness is too thin, the releasability and breathability may be reduced in the belt manufacturing process, and if it is too thick, the bending resistance may be reduced.
  • the average thickness of the composite layer can be measured with reference to heat resistant fibers embedded in the compressed rubber layer, and can be measured by measuring the embedded depth at any 10 locations on the bottom surface of the compressed rubber layer and determining the average value.
  • the compressed rubber layer is formed of the same rubber composition as the rubber composition contained in the composite layer.
  • a short fiber such as a polyamide short fiber such as an aramid short fiber, a polyester short fiber, or a vinylon short fiber is used. Fibers may be included.
  • the proportion of the reinforcing fiber may be 80 parts by mass or less with respect to 100 parts by mass of the rubber component, for example, 1 to 80 parts by mass, preferably 3 to 60 parts by mass, more preferably 5 to 50 parts by mass (particularly 10 parts by mass). (About 45 parts by mass). If the proportion of short fibers is too small, the durability of the belt may be reduced.
  • the compressed rubber layer preferably does not have a nonwoven fabric layer or the like in the layer, and the rubber composition preferably forms a continuous phase. Therefore, the rubber component is not divided in the layer, and the durability of the belt can be improved.
  • the average thickness of the compressed rubber layer is, for example, about 2 to 20 mm, preferably about 2.5 to 15 mm, and more preferably about 3 to 10 mm.
  • the same rubber composition as the compressed rubber layer (rubber composition containing a rubber component such as ethylene- ⁇ -olefin elastomer) can be used for the adhesive rubber layer.
  • a rubber component such as ethylene- ⁇ -olefin elastomer
  • the same type or the same type of rubber as the rubber component of the rubber composition of the compressed rubber layer is often used.
  • the ratio of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent or a crosslinking aid, and a vulcanization accelerator can be selected from the same range as that of the rubber composition of the compressed rubber layer.
  • the rubber composition of the adhesive rubber layer may further contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).
  • the average thickness of the adhesive rubber layer is, for example, about 0.4 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.8 to 1.5 mm.
  • the core body is not particularly limited, but normally, a core wire (twisted cord) that is spirally spun in the longitudinal direction of the belt is used, and the core wires are embedded in parallel at predetermined intervals in parallel to the longitudinal direction of the belt. May be.
  • high modulus fibers such as polyester fibers (polyalkylene arylate fibers), synthetic fibers such as aramid fibers, and inorganic fibers such as carbon fibers are widely used.
  • Polyester fibers polyethylene terephthalate fibers, polyethylene naphthalates) System fibers
  • aramid fibers are preferred.
  • the fiber may be a multifilament yarn, for example, a multifilament yarn having a fineness of 2000 to 10000 denier (particularly 4000 to 8000 denier).
  • the core wire usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used.
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm.
  • the core wire is embedded between the stretched layer and the compressed rubber layer (especially the adhesive rubber layer) after various adhesive treatments with epoxy compounds, isocyanate compounds, etc. Also good.
  • the cover cloth may be a cloth material (preferably a woven cloth) such as a woven cloth, a wide-angle canvas, a knitted cloth, or a non-woven cloth.
  • the rubber composition constituting the stretch layer may be formed of a rubber composition that forms a compressed rubber layer.
  • the thickness of the stretched layer is, for example, about 0.8 to 10 mm, preferably about 1.2 to 6 mm, and more preferably about 1.6 to 5 mm.
  • the average thickness of the V-ribbed belt of the present invention can be selected from a range of about 2 to 12 mm, and is, for example, 2.5 to 10 mm, preferably about 3.8 to 5 mm, for example, about 4.1 to 4.3 mm. Also good.
  • the average thickness of the rib portion can be selected from a range of about 1 to 3.5 mm, for example, 1.2 to 3 mm, preferably 1.5 to 2.7 mm, and more preferably about 1.6 to 2 mm.
  • the average thickness of the rib portion may be 54% or less with respect to the average thickness of the entire belt, and is preferably about 36 to 53%.
  • the thickness of the rib portion can be reduced.
  • the belt thickness can be reduced and the grinding allowance (grinding for the bottom portion of the rib portion) that has been conventionally required is unnecessary, the amount of the rubber composition constituting the belt can be reduced. Further, since the amount of grinding is reduced, grinding time and grinding waste can be reduced. Further, since the belt bendability is improved as the belt thickness is reduced, the crack resistance is improved by reducing the stress, and the fuel efficiency is improved by reducing the bending loss.
  • the V-ribbed belt manufacturing method of the present invention includes a stretch layer mounting step for mounting a stretch layer member for forming a stretch layer on a cylindrical drum, a core spinning process for winding a core wire as a core, and a compressed rubber A compressed rubber layer winding step of winding an unvulcanized rubber sheet for forming a layer, a fiber assembly winding step of winding a fiber assembly containing a heat-resistant fiber on the wound unvulcanized rubber sheet, In the vulcanization process to obtain a vulcanized belt sleeve by vulcanizing the belt molded body (unvulcanized belt sleeve) obtained in each process, on the fiber assembly side of the vulcanized belt sleeve, only the side part of the compressed rubber layer is ground Including the grinding process of forming with.
  • the stretch layer member is mounted on a cylindrical forming drum.
  • the attachment method of the stretch layer member can be selected according to the type of the stretch layer member.
  • the stretch layer member may be wound around a cylindrical drum. The member may be placed on a cylindrical drum.
  • an adhesive rubber layer mounting step for mounting the adhesive rubber layer may be included as a pre-process and / or a post-process of the core spinning process, if necessary.
  • the adhesive rubber layer mounting step includes, for example, an annular laminate of an unvulcanized rubber sheet for forming the adhesive rubber layer and a member for forming the stretched layer.
  • a method of covering a cylindrical drum, a method of winding a laminate of an unvulcanized rubber sheet for forming an adhesive rubber layer and a member for forming an extension layer around the cylindrical drum, on the attached member for the extension layer A method of winding an unvulcanized rubber sheet for forming the adhesive rubber layer may be used.
  • the adhesive rubber layer mounting step includes, for example, a method of winding an unvulcanized rubber sheet for forming the adhesive rubber layer on the core wire, and an adhesive rubber layer.
  • a method of winding a laminate of an unvulcanized rubber sheet and a member for forming a compressed rubber layer on a core wire may be used.
  • the cord is usually spirally formed on the stretch layer member or the unvulcanized sheet for the adhesive rubber layer attached in the step, depending on the presence or absence of the adhesive rubber layer winding step. Spin and wrap around.
  • the unvulcanized rubber is usually used to form a compressed rubber layer (rib rubber layer) on the core wire spun in the step or the wound unvulcanized sheet for the adhesive rubber layer. Wrap the sheet.
  • the fiber assembly in the fiber assembly winding step, includes heat-resistant fibers that do not melt at the vulcanization temperature of the rubber composition on the surface of the unvulcanized rubber sheet for forming the compressed rubber layer. Wrap (especially non-woven fabric).
  • the heat resistant fibers are oriented in a predetermined direction, it is preferable that the heat resistant fibers are wound with the longitudinal direction of the heat resistant fibers arranged parallel to the longitudinal direction of the belt.
  • the basis weight of the fiber aggregate (especially nonwoven fabric) before the heat treatment can be selected from a range of about 5 to 50 g / m 2 , for example, 6 to 30 g / m 2 , preferably 8 to 20 g / m 2 , more preferably 8 to 15 g. / M 2 (particularly 8 to 12 g / m 2 ).
  • the average thickness of the fiber aggregate (especially non-woven fabric) before heat treatment is, for example, 0.02 to 0.15 mm, preferably 0.03 to 0.15 mm, more preferably 0.03 to 0.1 mm (particularly 0.03 to 0.13 mm). About 0.05 mm).
  • the basis weight or thickness of the fiber assembly is too small, there is a risk that the releasability and breathability in the vulcanization process may be reduced, and the fiber assembly is formed during molding (wrapping of each member before vulcanization). If it is pulled, it may tear and cannot be wound. On the other hand, if the basis weight or thickness of the fiber assembly is too large, the gap between the fibers becomes small, so that the rubber component may not easily enter between the fibers. Moreover, there is a possibility that the fiber assembly becomes rigid and winding becomes difficult.
  • the vulcanization method may be a vulcanization can method.
  • the vulcanization temperature can be selected depending on the type of rubber, but may be, for example, about 140 to 200 ° C., preferably 150 to 180 ° C., and more preferably about 165 to 180 ° C. If the vulcanization temperature is too low, the rubber composition may not be easily impregnated between the fibers of the fiber assembly, and if it is too high, the fiber shape may be lost.
  • the fiber assembly and the rubber composition located on the bottom surface of the compressed rubber layer are integrated by the vulcanization process (because the rubber composition is impregnated between the fibers of the fiber assembly). Body bonding treatment is unnecessary and productivity is high. Further, since the fiber assembly is buried in the compressed rubber layer while maintaining the fiber form to some extent during vulcanization, it is also effective for releasing air during vulcanization and releasing from the vulcanization jacket.
  • the V-ribbed belt is usually obtained by grinding the vulcanized belt sleeve to form ribs in the compressed rubber layer, and then cutting it into a predetermined width and cutting it.
  • a grinding method a conventional method can be used. However, since only the side portion of the compressed rubber layer is ground on the fiber assembly side of the compressed rubber layer, a composite layer is formed on the bottom surface and the amount of grinding can be reduced. .
  • Nonwoven fabric Polyethylene terephthalate (PET) nonwoven fabrics of Examples 1 to 5: manufactured by Hirose Paper Co., Ltd., melting point 260 ° C., no thermal fusion point
  • Example 1 Trade name “05TH-8”, basis weight 8 g / m 2 , thickness 0.03 mm
  • Example 2 Trade name “05TH-12”, basis weight 12 g / m 2 , thickness 0.04 mm
  • Example 3 Trade name “05TH-15”, basis weight 15 g / m 2 , thickness 0.04 mm
  • Example 4 Product name “05TH-20”, weight per unit area 20 g / m 2 , thickness 0.07 mm
  • Example 5 Trade name “05TH-20H”, basis weight 20 g / m 2 , thickness 0.05 mm
  • PET Polyethylene terephthalate
  • Example 4 Polypropylene (PP) non-woven fabric, manufactured by Asahi Kasei Fibers Co., Ltd., trade name “PL2020”, basis weight 15 g / m 2 , thickness 0.14 mm, melting point 165 ° C., thermal fusion point present Comparative Example 5: Polypropylene (PP ) Non-woven fabric, manufactured by Idemitsu Unitech Co., Ltd., trade name “Stratec RN2030”, weight per unit 30 g / m 2 , thickness 0.24 mm, melting point 165 ° C., with heat fusion point
  • EPDM polymer “IP3640” manufactured by DuPont Dow Elastomer Japan Co., Ltd., Mooney viscosity 40 (100 ° C.)
  • Polyamide short fiber “66 nylon” manufactured by Asahi Kasei Corporation Carbon black HAF: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
  • Paraffin softener “Diana Process Oil” manufactured by Idemitsu Kosan Co., Ltd.
  • Core wire A fiber obtained by bonding a cord of total denier 6,000, which is a 2 ⁇ 3 twisted configuration of 1,000 denier PET fiber and twisted with an upper twist factor of 3.0 and a lower twist factor of 3.0.
  • the outer peripheral surface of the vulcanized belt sleeve (corresponding to the surface of the bottom of the compressed rubber layer) can be easily peeled off without sticking to the vulcanizing jacket. Difficult (requires tools) A rubbing pattern is generated on the surface and the appearance is inferior.
  • the running test machine used for the heat durability test is configured by arranging a driving pulley (diameter 120 mm), an idler pulley (diameter 85 mm), a driven pulley (diameter 120 mm), and a tension pulley (diameter 45 mm). Then, a V-ribbed belt is suspended on each pulley so that the winding angle around the tension pulley is 90 ° and the winding angle around the idler pulley is 120 °. Was run. At this time, a load was applied to the drive pulley so that the belt tension was 40 kgf / rib, and a load of 8.8 kW was applied to the driven pulley. Then, the V-ribbed belt was run in this way, and the time until six cracks reaching the core were generated was measured.
  • Non-woven fiber fluff or skin layer lump on the rib tip surface 3: Non-woven fiber fluff or skin layer lump slightly on the rib tip surface, but not noticeable 2: Rib tip surface Non-woven fiber fluff or skin layer lump is slightly noticeable 1: Non-woven fiber fluff or skin layer lump is present on the entire rib tip surface.
  • “fluffing” in the evaluation criteria means that the rib tip surface includes a thread-like material in the following states (1) and (2).
  • Examples 1 to 6 and Comparative Examples 1 to 5 (Cover for forming stretch layer)
  • a wide-angle plain woven canvas (thickness: 0.63 mm) using a mixed yarn of 50:50 by weight of cotton fiber and polyethylene terephthalate fiber was used as the covering fabric.
  • These canvases were immersed in an RFL solution, and then heat treated at 150 ° C. for 2 minutes to obtain an adhesion-treated canvas.
  • a laminate was produced by laminating a rubber sheet (thickness 0.5 mm) for forming an adhesive rubber layer obtained from the rubber composition shown in Table 1 on this adhesion-treated canvas.
  • Rubber sheet for forming a compressed rubber layer and an adhesive rubber layer A rubber sheet for forming an adhesive rubber layer having a thickness of 2.2 mm is formed by kneading the rubber composition shown in Table 1 with a Banbury mixer and rolling with a calender roll to form a compressed rubber layer. Was made to a thickness of 0.5 mm.
  • An adhesive rubber layer is formed by laminating a laminate of an outer cloth for forming an extension layer and a rubber sheet for forming an adhesive rubber layer on the outer periphery of a cylindrical drum (molding die) having a smooth surface. For this reason, the rubber sheet was wound so as to be an outer peripheral surface. After winding the core wire spirally around the outer peripheral surface of the laminate, a rubber sheet for forming an adhesive rubber layer and a rubber sheet for forming a compression rubber layer were further stacked on the core wire. The laminate was wound so that the rubber sheet for forming the compressed rubber layer was the outermost peripheral surface. Furthermore, a nonwoven fabric was wound around the outermost peripheral surface to produce an unvulcanized belt molded body (unvulcanized belt sleeve).
  • the belt molded body was placed in a vulcanization can with a vulcanization jacket covered on the outer peripheral side, and vulcanized with pressurized steam at 180 ° C., 0.9 MPa for 25 minutes.
  • the vulcanized belt sleeve obtained by removing (releasing) the vulcanization jacket is compressed rubber with a grinding wheel (grinding stone) having a predetermined shape for forming a V-shaped groove. Only the side of the layer was ground to form a plurality of ribs (grooves with a V-shaped cross section). Then, the vulcanized belt sleeve formed with the plurality of ribs is cut into a predetermined width so as to be cut by a cutter, and then the inner peripheral side and the outer peripheral side are reversed, whereby the cross-sectional structure V shown in FIG. A ribbed belt was obtained.
  • the nonwoven fabric was embedded in the compressed rubber layer with a part of the fiber exposed on the surface, forming a composite layer.
  • a scanning electron micrograph (SEM photograph) of the surface of the rib portion of the V-ribbed belt obtained in Example 1 is shown in FIG.
  • a thin linear part is a part derived from a nonwoven fabric, and another part is a part derived from a compression rubber layer.
  • a composite layer in which the nonwoven fabric and the rubber composition were mixed was formed on the surface of the rib portion of the V-ribbed belt of Example 1.
  • the central portion where the fibrous portion can be observed is the bottom surface (non-ground surface), and the left and right side portions are ground surfaces.
  • a V-ribbed belt was manufactured by a method using a mold described in Examples of Japanese Patent Application Laid-Open No. 2013-145032.
  • Table 2 shows the evaluation results of the heat resistant durability, the bending fatigue resistance, and the appearance of the rib surface of the manufactured V-ribbed belt.
  • Examples 1 to 6 in which the bottom of the compressed rubber layer formed a composite layer in which the rubber composition was impregnated between the fibers of the nonwoven fabric, and the nonwoven fabric melted and the fiber shape disappeared. Comparing with Comparative Examples 2 and 3 in which a single film-like resin layer (skin layer) was formed, Examples 1 to 6 had a long time to cracking both in heat resistance and bending fatigue resistance. It was excellent in nature.
  • the heat-treated product of the nonwoven fabric is formed of a fibrous portion in which the fiber shape remains and a non-fibrous portion in which the fiber shape has disappeared. Therefore, the composite layer forms a structure in which three components of a fibrous part, a non-fibrous part, and a rubber component are mixed, and the remaining fiber shape is an example in which a PET nonwoven fabric has heat resistance and bending fatigue resistance. Equivalent to 1-6.
  • the belt containing the melt of the fibrous part (Comparative Examples 2 to 5) is inferior in releasability from the vulcanization jacket after vulcanization, and further, the variation in the test results of the bending fatigue resistance is large and stable. Since it was not possible, it was lacking in practicality.
  • Examples 1 to 6 were compared with Comparative Example 1 in which the nonwoven fabric remained in the fiber shape as in Examples 1 to 6, Examples 1 to 6 were superior to Comparative Example 1 in durability. .
  • the bottom surface of the compressed rubber layer is a composite layer in which the rubber composition is impregnated between the fibers of the PET nonwoven fabric
  • the bottom surface of the compressed rubber layer is a film-like resin layer (skin layer) or
  • the belt was easily bent and was excellent in durability.
  • the surface of the bottom part of the compression rubber layer was excellent in releasability from the vulcanization jacket as compared with the comparative example in which the nonwoven fabric melted with the fiber shape remaining.
  • the nonwoven fabric having a smaller basis weight and thickness has a longer time until cracking in the bending fatigue resistance test.
  • Example 3 when Example 3 having no thermal fusion point and Example 6 having a thermal fusion point were compared for a nonwoven fabric having the same basis weight, Example 3 was superior in durability. If there is a heat fusion point, it can be estimated that the nonwoven fabric is thick and the flexibility is lowered. In addition, it can be estimated that stress is concentrated at the heat fusion point at the time of bending, and that cracks are easily generated.
  • the belts of Examples 1 to 6 had no non-woven fabric fluff or were inconspicuous and had a good appearance. It was.
  • FIG. 4 shows a photograph of the rib portion of the V-ribbed belt obtained in Example 1, and scratches and spots were not transferred from the vulcanized jacket, and the appearance was good. That is, in the SEM photograph, the nonwoven fabric can be observed, but the nonwoven fabric was not noticeable visually.
  • the V-ribbed belt of the present invention can be used as a friction transmission belt for a transmission device such as an automobile engine accessory drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

本発明は、ゴム組成物の加硫物を含む圧縮ゴム層と芯体と伸張層とを備えるとともに、前記圧縮ゴム層の側部がプーリと接触する研削面であり、かつ前記圧縮ゴム層の底部がプーリと接触しない非研削面であるVリブドベルトであって、前記底部の表面に、前記ゴム組成物の加硫温度で溶融しない耐熱性繊維を含み、かつ目付量が25g/m以下である繊維集合体と、この繊維集合体の繊維間に含浸した前記ゴム組成物の加硫物とを含む複合層を有するVリブドベルトに関する。

Description

Vリブドベルト及びその製造方法
 本発明は、自動車エンジン補機駆動などに用いられるVリブドベルトに関し、詳しくは、研削によりリブ部を形成する方法において研削量を削減でき、かつ外観及び耐久性に優れたVリブドベルト及びその製造方法に関する。
 ゴム工業分野のなかでも、特に自動車用部品においては高機能、高性能化が望まれている。このような自動車用部品に用いられるゴム製品の一つとして、リブをベルト長手方向に沿って設けたVリブドベルトがあり、このVリブドベルトは、例えば、自動車のエアーコンプレッサーやオルタネータなどの補機駆動の動力伝達に広く用いられている。
 Vリブドベルトの製造方法として、研削により断面逆台形状のリブ部(圧縮ゴム層)を形成する製造方法が知られている。具体的には、Vリブドベルトの製造過程で、まず、円筒状金型の外周面に各成形部材(外被布、未加硫ゴムシート、心線など)を巻き付けて積層したベルトスリーブを形成する。通常、ベルトスリーブは研削面(リブを形成する圧縮ゴム層)が外周側に、ベルト背面が内周側となるようにスリーブを形成する。次に、ベルトスリーブの外周側に加硫ジャケットを被せた状態で加硫缶内に配置して加硫を行う。ベルトスリーブの加硫においては、ベルトスリーブ外周表面と加硫ジャケット内周表面とを接触させた状態で加硫し、加硫後に加硫ジャケットを外す(離型する)。また、加硫中にベルトスリーブ内にエア(気泡)が溜まらないように通気(エア抜き)が必要である。この離型性と、通気性(エア抜き)とを確保するために、スリーブ外周表面に分厚めの不織布を巻いて加硫を行い、離型後に、圧縮ゴムの研削部位とともに不織布も研削して除去する工法(リブ部全体を研削する方法)が採られている。
 近年、コスト低減の観点から研削量(廃棄ゴム量)の低減や、ベルト厚みの低減などによる材料費低減の取り組みがなされている。研削量(廃棄ゴム量)の低減としては、リブ全体を研削するのではなく、リブ部の先端面(逆台形状の底部)を研削せずV溝のみ(側部のみ)を研削する工法が検討されているが、この工法では加硫ベルトスリーブ外周表面がそのままリブ先端面となるので、外周表面に不織布を用いると、リブ部の先端面(リブ先端面)に不織布が残存する。
 リブ先端面に不織布を有するVリブドベルトとしては、例えば、特許文献1には、短繊維含有ゴムを使用せずに、プーリとの間で発生する異音の発生やベルト表面の磨耗を抑制するために、リブゴム層をベルト厚み方向にゴム層と不織布層とを交互に積層した構造に構成することが提案されており、リブゴム層のリブ先端面に不織布層を有するVリブドベルトが開示されている。
 しかし、このVリブドベルトでは、リブゴム層が複数の不織布層を内在するため、ベルトが剛直となり、ベルト走行において、ベルトの屈曲性が低下して(不織布が突っ張って曲げの妨げになって)、耐久性が低下する(クラックが入り易くなる)。さらに、リブゴム層が不織布層で分断されているため、層間剥離も発生し易い。さらに、この文献では、プーリとの間で発生する異音の抑制及び摩擦ベルト表面の磨耗抑制のために、ゴムに含有させる短繊維の代わりに不織布層が導入されており、研削工法における課題は記載されていない。この文献には、目付量など、不織布層の詳細は記載されていないが、一般的に、リブ先端面に不織布を有するVリブドベルトでは、不織布面の外観的な見映えが低下する。
 一方、不織布を使用せずに製造すると、離型性や通気性(エア抜き)が不充分になるほか、スリーブ表面(リブ先端面)には加硫ジャケットの表面性状が転写され、例えば、表面に傷がある加硫ジャケットの場合は、傷が転写され外観が低下する。
 また、特許文献2には、リブ先端面に熱可塑性樹脂層(繊維状でなく被膜状の層)を有するVリブドベルトが開示されている。この文献には、熱可塑性樹脂層をリブと接合した後、ベルトを切断してVベルト状に削られると記載されている。
 しかし、このVリブドベルトでも、通気性(エア抜き)が不充分なうえに、ベルトの屈曲性が低下し(熱可塑性樹脂層が突っ張って曲げの妨げになり)、耐久性が低下する(クラックが入り易くなる)。
日本国特開2005-69358号公報 日本国特表2005-533983号公報
 従って、本発明の目的は、少ない研削量(廃棄ゴム量)でリブ部を研削して形成でき、かつ加硫工程を円滑に進行できるVリブドベルト及びその製造方法を提供することにある。
 本発明の他の目的は、外観に優れ、かつ耐クラック性や耐熱性などの耐久性も向上できるVリブドベルト及びその製造方法を提供することにある。
 本発明のさらに他の目的は、繊維集合体の接着処理が不要であり、かつ繊維を含んでいても、巻き付け作業性を向上できるVリブドベルト及びその製造方法を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、側部がプーリと接触する研削面であり、かつ底部がプーリと接触しない非研削面であるVリブドベルトの圧縮ゴム層の底部の表面に、前記圧縮ゴム層を構成するゴム組成物の加硫温度で溶融しない耐熱性繊維を含む特定目付の繊維集合体と、この繊維集合体の繊維間に含浸した前記ゴム組成物の加硫物とを含む複合層を形成することにより、少ない研削量(廃棄ゴム量)で研削によりリブ部を形成でき、かつ加硫工程を円滑に進行できることを見いだし、本発明を完成した。
 すなわち、本発明のVリブドベルトは、ゴム組成物の加硫物を含む圧縮ゴム層と芯体と伸張層とを備えるとともに、前記圧縮ゴム層の側部がプーリと接触する研削面であり、かつ前記圧縮ゴム層の底部がプーリと接触しない非研削面であるVリブドベルトであって、前記底部の表面に、前記ゴム組成物の加硫温度で溶融しない耐熱性繊維を含み、かつ目付量が25g/m以下である繊維集合体と、この繊維集合体の繊維間に含浸した(浸透した又は存在する)前記ゴム組成物の加硫物とを含む複合層を有する。前記耐熱性繊維はポリエステル繊維を含んでいてもよい。前記繊維集合体は、不織繊維構造を有していてもよい。前記繊維集合体の目付量は8~20g/m程度であってもよい。前記圧縮ゴム層はゴム組成物の加硫物で連続相を形成していてもよい。前記耐熱性繊維の平均繊維径は1~50μm程度であってよい。前記耐熱性繊維は長繊維を含んでいてもよい。前記複合層において、耐熱性繊維同士は融着していないのが好ましい。前記圧縮ゴム層は短繊維を含んでいてもよい。不織繊維構造を有する繊維集合体(不織繊維構造体又は不織布)において、耐熱性繊維は、所定の方向に配向し、長手方向がベルトの長手方向と平行であってもよい。前記圧縮ゴム層はリブ部を有していてもよく、このリブ部の平均厚みはVリブドベルト全体の平均厚みに対して54%以下であってもよい。
 本発明には、円筒状ドラムに伸張層を形成するための伸張層用部材を装着する伸張層装着工程、さらに芯体となる心線を巻き付ける心線スピニング工程、さらに圧縮ゴム層を形成するための未加硫ゴムシートを巻き付ける圧縮ゴム層巻付工程、巻き付けた未加硫ゴムシートの上に、さらに耐熱性繊維を含む繊維集合体を巻き付ける繊維集合体巻付工程、前記各工程により得られたベルト成形体(未加硫ベルトスリーブ)を加硫して加硫ベルトスリーブを得る加硫工程、加硫ベルトスリーブの繊維集合体側において、圧縮ゴム層の側部のみを研削で成形する研削工程を含む前記Vリブドベルトの製造方法も含まれる。前記繊維集合体の平均厚みは0.03~0.15mm程度であってもよい。
 本発明では、側部がプーリと接触する研削面であり、かつ底部がプーリと接触しない非研削面であるVリブドベルトの圧縮ゴム層の底部の表面に、前記圧縮ゴム層を構成するゴム組成物の加硫温度で溶融しない耐熱性繊維を含む特定目付の繊維集合体と、この繊維集合体の繊維間に含浸した前記ゴム組成物の加硫物とを含む複合層が積層されているため、圧縮ゴム層の底部の研削が不要であり、少ない研削量(廃棄ゴム量)で研削によりリブ部を形成できる。また、不織布などの繊維集合体が加硫工程において離型性や通気性を確保できるため、加硫時のエア抜きや、加硫ジャケットからの離型を円滑に進行できる。そのため、加硫ジャケットの傷やシミなどの転写も抑制できる。また、不織繊維構造を有する特定の繊維集合体を選択することにより、繊維間に適度にゴム組成物が埋設して混在するため、繊維の毛羽立ちも抑制でき、外観を向上できる。また、圧縮ゴム層の底部表面のみで繊維が圧縮ゴム層を構成するゴム組成物の加硫物と一体化するため、ベルトの耐屈曲性にも優れ、耐クラック性などの耐久性を向上できるともに、耐熱性も保持できる。さらに、加硫により繊維集合体と圧縮ゴム層とが一体化するため、繊維集合体の接着処理が不要である。また、耐熱性繊維の長手方向をベルトの長手方向と平行とすることにより、繊維を含んでいても、巻き付け方向(周方向)に引っ張ったときに伸びや破損を抑制でき、ベルトの巻き付け作業性を向上できる。
図1は本発明のVリブドベルトの一例を示す概略断面図である。 図2は実施例における耐屈曲疲労性(耐クラック性)試験に用いた試験機のレイアウトである。 図3は実施例1で得られたVリブドベルトの複合層の表面電子顕微鏡写真である。 図4は実施例1で得られたVリブドベルトのリブ部の写真である。 図5は参考例1で得られたVリブドベルトのリブ部の写真である。
 本発明のVリブドベルトは、研削によって断面が略逆台形状に形成され、かつゴム組成物の加硫物を含む圧縮ゴム層を備えており、この圧縮ゴム層の側部がプーリと接触する研削面であり、かつ前記圧縮ゴム層の底部がプーリと接触しない非研削面である。
 Vリブドベルトの形態は、このような圧縮ゴム層を有していれば、特に制限されず、例えば、図1に示す形態が例示される。図1は、本発明のVリブドベルトの一例を示す概略断面図である。この形態は、ベルト上面(背面)からベルト下面(内周面)に向かって順に、外被布(織物、編物、不織布など)で構成された伸張層1、ベルト長手方向に芯体(心線)2を埋設した接着ゴム層3、圧縮ゴム層4、複合層5を積層した形態を有している。前記圧縮ゴム層4には、ベルト長手方向に伸びる複数の断面V字状の溝が形成され、この溝の間には断面V字形状[逆台形状(リブの先端に向かって先細る台形状)]の複数のリブ(図1に示す例では4個)が形成されおり、この各リブ部の二つの傾斜面(表面)が摩擦伝動面を形成し、プーリと接して動力を伝達(摩擦伝動)する。特に、本発明では、前記リブ部の側面(傾斜面)が研削面4aであり、リブ部の底部表面に非研削面の複合層5が形成されている。
 本発明のVリブドベルトはこの形態に限定されず、このような圧縮ゴム層を備えていればよく、例えば、伸張層をゴム組成物で形成してもよく、接着ゴム層を設けることなく伸張層と圧縮ゴム層との間に芯体(心線)を埋設してもよい。さらに、接着ゴム層を圧縮ゴム層又は伸張層のいずれか一方に設け、芯体(心線)を接着ゴム層(圧縮ゴム層側)と伸張層との間、もしくは接着ゴム層(伸張層側)と圧縮ゴム層との間に埋設する形態であってもよい。
 [複合層]
 複合層は、圧縮ゴム層の底部において、研削されずに形成され、圧縮ゴム層を構成するゴム組成物の加硫温度で溶融しない耐熱性繊維を含む繊維集合体と、この繊維集合体の繊維間(集合体内部の繊維同士の隙間)に含浸した前記ゴム組成物の加硫物とを含む。
 (繊維集合体)
 繊維集合体は、耐熱性繊維を主要な繊維として含んでいればよく、本発明の効果を損なわない限り、非耐熱性繊維(例えば、ポリオレフィン繊維、アクリル系繊維、ビニル系繊維、スチレン系繊維、ポリカーボネート系繊維、ポリウレタン繊維、熱可塑性エラストマー繊維など)を含んでいてもよい。耐熱性繊維の割合は、繊維集合体全体に対して50質量%以上であり、例えば50~100質量%、好ましくは80~100質量%、さらに好ましくは90~100質量%程度であり、100質量%(耐熱性繊維のみ)であってもよい。
 耐熱性繊維は、圧縮ゴム層を構成するゴム組成物の加硫温度で溶融しない繊維であればよく、有機繊維、無機繊維のいずれであってもよい。
 有機繊維としては、例えば、天然繊維(綿、麻、レーヨン繊維などのセルロース系繊維など);合成繊維[脂肪族ポリアミド繊維(ポリアミド6、ポリアミド66、ポリアミド46繊維など)、ポリエステル繊維(ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート繊維などのポリC2-4アルキレンC6-14アリレート系繊維など)、フッ素繊維(ポリテトラフルオロエチレン繊維など)、ポリアクリル繊維(ポリアクリロニトリル繊維など)、ポリビニルアルコール繊維、ポリフェニレンサルファイド(PPS)繊維、ポリ-p-フェニレンベンゾビスオキサゾール(PBO)繊維、芳香族ポリアミド繊維(p-アラミド、m-アラミド繊維など)など]などが挙げられる。無機繊維としては、例えば、炭素繊維、ガラス繊維、金属繊維などが挙げられる。これらの耐熱性繊維は、単独で又は二種以上組み合わせて使用できる。これらの耐熱性繊維のうち、弾性率が高く、柔軟性に優れる点から、脂肪族ポリアミド繊維(ナイロン繊維)や芳香族ポリアミド繊維(アラミド繊維)、ポリエステル繊維、PBO繊維などの有機繊維が好ましく、機械的特性と耐熱性とのバランスに優れる点から、ポリエステル繊維(特にポリエチレンテレフタレート、ポリエチレンナフタレート繊維などのポリC2-4アルキレンC6-14アリレート系繊維)が特に好ましい。耐熱性繊維は、例えば、主要な繊維であるポリエステル繊維(ポリエチレンテレフタレート長繊維など)と、圧縮ゴム層由来の短繊維(綿繊維やアラミド繊維など)との組み合わせであってもよい。
 耐熱性繊維が有機繊維である場合、加硫後も繊維形状を保持させるため、加硫温度(例えば140~200℃、特に180℃程度)を超える軟化点又は融点を有していてもよく、耐熱性繊維の軟化点又は融点(又は分解点)は、加硫温度をTとすると、例えば、T+10℃以上であってもよく、例えば(T+10)~(T+300)℃、好ましくは(T+20)~(T+200)℃、さらに好ましくは(T+30)~(T+100)℃程度である。耐熱性繊維の融点は、例えば180~350℃、好ましくは200~300℃、さらに好ましくは250~280℃程度であってもよい。軟化点又は融点が加硫温度以下であると、加硫によって繊維形状が消失してフィルム化し、ベルトの耐屈曲性が低下する虞がある。
 耐熱性繊維の繊維形態は、特に限定されず、モノフィラメント、マルチフィラメント、紡績糸(スパン糸)のいずれの形態であってもよく、これらの組み合わせであってもよい。
 耐熱性繊維の平均繊維径は、例えば1~50μm、好ましくは2~30μm、さらに好ましくは3~10μm(特に5~9μm)程度である。繊維径が大きすぎると、柔軟性が低下し、ベルトの耐屈曲性が低下する虞があり、小さすぎると、ベルト製造工程における通気性が低下する虞がある。
 耐熱性繊維の繊維長は、特に限定されず、短繊維(例えば1~500mm、好ましくは3~300mm、さらに好ましくは5~100mm程度の平均繊維長を有する短繊維)であってもよいが、形態安定性などに優れる点から、長繊維(無限繊維長の長繊維)が好ましい。さらに、主要な繊維としての長繊維(ポリエステル長繊維など)と、補助的な繊維としての短繊維(圧縮ゴム層由来の短繊維など)との組み合わせであってもよい。
 繊維集合体の構造は、編織繊維構造(編布又は織布の構造)であってもよいが、繊維間にゴム組成物が含浸又は浸透し易い点から、不織繊維構造(不織布の構造)が好ましい。本発明における不織繊維構造は、通常、原料である不織布の繊維間にゴム組成物が充填(含浸)された構造である。
 繊維集合体の目付量は25g/m以下であればよく、例えば5~25g/m、好ましくは7~23g/m(例えば8~20g/m)、さらに好ましくは8~15g/m(特に8~12g/m)程度である。さらに、耐屈曲性が高いベルトを安定して生産できる点から、目付量は6~11g/m(特に7~10g/m)程度であってもよい。目付量が小さすぎると、ベルト製造工程において離型性及び通気性が低下する虞があり、大きすぎると、ゴム組成物との一体化が阻害されたり、耐屈曲性が低下する虞がある。なお、不織繊維構造を有する耐熱性繊維集合体の目付量は、原料である不織布の目付量と同一である。
 繊維集合体は、繊維同士が融着していてもよいが、耐屈曲性を向上できる点から、繊維同士(特に耐熱性繊維同士)が融着していない(融着点を有していない)繊維が好ましい。
 耐熱性繊維は、ランダムに配向していてもよいが、特定の方向に対する強度を向上できる点から、所定の方向[製造工程における流れ方向(MD)方向など]に配向しているのが好ましい。所定の方向に繊維が配向した繊維集合体(特に不織布)は、繊維の長手方向をベルトの長手方向と平行とすることにより、巻き付け方向(周方向)に引っ張ったときに伸びや破損を抑制でき、ベルトの巻き付け作業性を向上できる。
 繊維集合体は、必要に応じて、繊維表面又は各繊維内部に、慣用の添加剤、例えば、増強剤、充填剤、金属酸化物、可塑剤、加工剤又は加工助剤、着色剤、カップリング剤、安定剤(紫外線吸収剤、酸化防止剤、オゾン劣化防止剤、熱安定剤など)、潤滑剤、難燃剤、帯電防止剤などを含んでいてもよい。添加剤の割合は、繊維集合体全体に対して10重量%以下(例えば、0.1~5重量%)程度である。
 (ゴム組成物の加硫物)
 前記ゴム組成物は、圧縮ゴム層のゴム組成物が繊維集合体の繊維間に浸透した(存在した又は含まれた)ゴム組成物である。ゴム組成物は、特に制限されないが、通常、ゴム成分と加硫剤又は架橋剤とを含むゴム組成物が使用される。本発明は、特に、硫黄や有機過酸化物を含むゴム組成物(特に有機過酸化物加硫型ゴム組成物)で未加硫ゴム層を形成し、未加硫ゴム層を加硫又は架橋するのに有用である。
 ゴム成分としては、加硫又は架橋可能なゴム、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム、水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーなど)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらのゴム成分は単独で又は二種以上組み合わせて使用できる。
 これらのうち、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性を有し、経済性にも優れる点から、エチレン-α-オレフィンエラストマー(エチレン-α-オレフィン系ゴム)が好ましい。さらに、エチレン-α-オレフィンエラストマーは、他のゴムに比べて水濡れ性が低いため、注水時の動力伝動性や静音性を著しく向上できる。
 エチレン-α-オレフィンエラストマー(エチレン-α-オレフィン系ゴム)としては、例えば、エチレン-α-オレフィンゴム、エチレン-α-オレフィン-ジエンゴムなどが挙げられる。
 α-オレフィンとしては、例えば、プロピレン、ブテン、ペンテン、メチルペンテン、ヘキセン、オクテンなどの鎖状α-C3-12オレフィンなどが挙げられる。α-オレフィンは、単独又は2種以上組み合わせて使用できる。これらのα-オレフィンのうち、プロピレンなどのα-C3-4オレフィン(特にプロピレン)が好ましい。
 ジエンモノマーとしては、通常、非共役ジエン系単量体、例えば、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4-ヘキサジエン、シクロオクタジエンなどが例示できる。これらのジエンモノマーは単独で又は二種以上組み合わせて使用できる。
 代表的なエチレン-α-オレフィンエラストマーとしては、例えば、エチレン-α-オレフィンゴム(エチレン-プロピレンゴム(EPR))、エチレン-α-オレフィン-ジエンゴム(エチレン-プロピレン-ジエン共重合体(EPDMなど))などが例示できる。好ましいエチレン-α-オレフィンエラストマーはEPDMである。
 エチレン-α-オレフィンゴムにおいて、エチレンとα-オレフィンとの割合(質量比)は、前者/後者=40/60~90/10、好ましくは45/55~85/15(例えば50/50~82/18)、さらに好ましくは55/45~80/20(例えば、55/45~75/25)程度であってもよい。また、ジエンの割合は、ゴム全体に対して4~15質量%程度の範囲から選択でき、例えば4.2~13質量%(例えば4.3~12質量%)、好ましくは4.4~11.5質量%(例えば、4.5~11質量%)程度であってもよい。なお、ジエン成分を含むエチレン-α-オレフィンゴムのヨウ素価は、例えば3~40(好ましくは5~30、さらに好ましくは10~20)程度であってもよい。ヨウ素価が小さすぎると、ゴム組成物の加硫が不十分になって磨耗や粘着が発生し易く、逆にヨウ素価が大きすぎると、ゴム組成物のスコーチが短くなって扱い難くなると共に耐熱性が低下する傾向がある。
 有機過酸化物としては、通常、ゴム、樹脂の架橋に使用されている有機過酸化物、例えば、ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイド(例えば、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、1,1-ジ-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキサン、1,3-ビス(t-ブチルパーオキシ-イソプロピル)ベンゼン、ジ-t-ブチルパーオキサイドなど)などが挙げられる。これらの有機過酸化物は、単独で又は二種以上組み合わせて使用できる。さらに、有機過酸化物は、熱分解による1分間の半減期が150~250℃(例えば、175~225℃)程度の過酸化物が好ましい。
 加硫剤又は架橋剤(特に有機過酸化物)の割合は、ゴム成分(エチレン-α-オレフィンエラストマーなど)100質量部に対して、固形分換算で1~10質量部、好ましくは1.2~8質量部、さらに好ましくは1.5~6質量部(特に2~5質量部)程度である。
 ゴム組成物は、さらに加硫促進剤を含んでいてもよい。加硫促進剤としては、例えば、チウラム系促進剤、チアゾ-ル系促進剤、スルフェンアミド系促進剤、ビスマレイミド系促進剤、ウレア系促進剤などが挙げられる。これらの加硫促進剤は、単独で又は二種以上組み合わせて使用できる。加硫促進剤の割合は、固形分換算で、ゴム成分100質量部に対して、例えば0.5~15質量部、好ましくは1~10質量部、さらに好ましくは2~5質量部程度である。
 ゴム組成物は、架橋度を高め、粘着摩耗などを防止するために、さらに共架橋剤(架橋助剤、又は共加硫剤)を含んでいてもよい。共架橋剤としては、慣用の架橋助剤、例えば、多官能(イソ)シアヌレート[例えば、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート(TAC)など]、ポリジエン(例えば、1,2-ポリブタジエンなど)、不飽和カルボン酸の金属塩[例えば、(メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウムなど]、オキシム類(例えば、キノンジオキシムなど)、グアニジン類(例えば、ジフェニルグアニジンなど)、多官能(メタ)アクリレート[例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなど]、ビスマレイミド類(N-N’-m-フェニレンビスマレイミドなど)などが挙げられる。これらの架橋助剤は、単独で又は二種以上組み合わせて使用できる。架橋助剤の割合(複数種を組み合わせる場合は合計量)は、固形分換算で、ゴム100質量部に対して、例えば0.01~10質量部、好ましくは0.05~8質量部、さらに好ましくは0.1~5質量部程度である。
 ゴム組成物は、必要に応じて、慣用の添加剤、例えば、加硫助剤、加硫促進剤、加硫遅延剤、増強剤(カーボンブラック、含水シリカなどの酸化ケイ素など)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、金属酸化物(例えば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、軟化剤(パラフィンオイル、ナフテン系オイル、プロセスオイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイドなど)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止材、オゾン劣化防止剤など)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、潤滑剤、難燃剤、帯電防止剤などを含んでいてもよい。なお、金属酸化物は架橋剤として作用してもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。
 これらの添加剤の割合は、種類に応じて慣用の範囲から選択でき、例えば、ゴム成分100質量部に対して増強剤(カーボンブラック、シリカなど)の割合は10~200質量部(特に20~150質量部)程度であってもよく、金属酸化物(酸化亜鉛など)の割合は1~15質量部(特に2~10質量部)程度であってもよく、軟化剤(パラフィンオイルなどのオイル類)の割合は1~30質量部(特に5~25質量部)程度であってもよく、加工剤(ステアリン酸など)の割合は0.1~5質量部(特に0.5~3質量部)程度であってもよい。
 (複合層の特性)
 本発明では、圧縮ゴム層を構成するゴム組成物の加硫によって溶融しない耐熱性繊維を含む繊維集合体が圧縮ゴム層の表面に埋設してゴム組成物と混在(一体化)した複合層を形成するため、繊維の柔軟性を保持でき、ベルトの屈曲における障害(突っ張り)とならず、ベルトの耐久性を向上できるとともに、圧縮ゴム層底部での毛羽立ちを抑制でき、外観性状も損なわれない。さらに、複合層は、加硫工程において繊維形状が消失せず、残存するため、繊維形状により加硫工程における離型性や通気性、更には耐久性を確保できる。
 複合層における耐熱性繊維の存在形態は、加硫工程における離型性及び通気性を確保するため、複合層の表面に耐熱性繊維の少なくとも一部が露出するのが好ましく、他の部分は、複合層の内部において、繊維間に含浸したゴム組成物に埋設されていてもよい。また、耐熱性繊維の大部分がゴム組成物中に埋設することにより、ベルトの外観及び耐久性を向上できる。
 複合層の平均厚みは、例えば0.005~0.05mm、好ましくは0.006~0.02mm、さらに好ましくは0.007~0.015mm(特に0.008~0.012mm)程度である。厚みが薄すぎると、ベルト製造工程において離型性及び通気性が低下する虞があり、厚すぎると、耐屈曲性が低下する虞がある。複合層の平均厚みは、圧縮ゴム層に埋設した耐熱性繊維を基準に測定でき、圧縮ゴム層の底部表面における任意の10箇所における埋設深さを測定して平均値を求めることにより測定できる。
 [圧縮ゴム層]
 圧縮ゴム層は、前記複合層に含まれるゴム組成物と同一のゴム組成物で形成されており、さらに補強繊維として、アラミド短繊維などのポリアミド短繊維、ポリエステル短繊維、ビニロン短繊維などの短繊維を含んでいてもよい。補強繊維の割合は、ゴム成分100質量部に対して80質量部以下であってもよく、例えば1~80質量部、好ましくは3~60質量部、さらに好ましくは5~50質量部(特に10~45質量部)程度である。短繊維の割合が少なすぎると、ベルトの耐久性が低下する虞がある。
 圧縮ゴム層は、層内に不織布層などを有しておらず、ゴム組成物が連続相を形成していることが好ましい。そのため、ゴム成分が層内で分断されておらず、ベルトの耐久性を向上できる。
 圧縮ゴム層の平均厚みは、例えば2~20mm、好ましくは2.5~15mm、さらに好ましくは3~10mm程度である。
 [他の層及び芯体]
 接着ゴム層にも前記圧縮ゴム層と同様のゴム組成物(エチレン-α-オレフィンエラストマーなどのゴム成分を含むゴム組成物)が使用できる。接着ゴム層のゴム組成物において、ゴム成分としては、前記圧縮ゴム層のゴム組成物のゴム成分と同系統又は同種のゴムを使用する場合が多い。また、加硫剤又は架橋剤、共架橋剤又は架橋助剤、加硫促進剤などの添加剤の割合も、それぞれ、前記圧縮ゴム層のゴム組成物と同様の範囲から選択できる。接着ゴム層のゴム組成物は、さらに接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、アミノ樹脂など)を含んでいてもよい。接着ゴム層の平均厚みは、例えば0.4~3mm、好ましくは0.6~2mm、さらに好ましくは0.8~1.5mm程度である。
 芯体としては特に限定されないが、通常、ベルトの長手方向に螺旋状にスピニングされた心線(撚りコード)が用いられ、心線はベルト長手方向に平行に所定間隔で並列的に埋設されていてもよい。
 心線は、高モジュラスな繊維、例えば、ポリエステル繊維(ポリアルキレンアリレート系繊維)、アラミド繊維などの合成繊維、炭素繊維などの無機繊維などが汎用され、ポリエステル繊維(ポリエチレンテレフタレート系繊維、ポリエチレンナフタレート系繊維)、アラミド繊維が好ましい。繊維はマルチフィラメント糸、例えば、繊度2000~10000デニール(特に4000~8000デニール)程度のマルチフィラメント糸であってもよい。
 心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば、0.5~3mm、好ましくは0.6~2mm、さらに好ましくは0.7~1.5mm程度であってもよい。
 ポリマー成分との接着性を改善するため、心線は、エポキシ化合物、イソシアネート化合物などによる種々の接着処理を施した後に、伸張層と圧縮ゴム層との間(特に接着ゴム層)に埋設してもよい。
 伸張層が外被布で形成されている場合、外被布としては、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)であってもよい。伸張層がゴム組成物で形成されている場合、伸張層を構成するゴム組成物は、圧縮ゴム層を形成するゴム組成物で形成されていてもよい。伸張層の厚みは、例えば0.8~10mm、好ましくは1.2~6mm、さらに好ましくは1.6~5mm程度である。
 [Vリブドベルト及びその製造方法]
 本発明のVリブドベルトの平均厚みは2~12mm程度の範囲から選択でき、例えば、2.5~10mm、好ましくは3.8~5mm程度であり、例えば4.1~4.3mm程度であってもよい。リブ部の平均厚みは1~3.5mm程度の範囲から選択でき、例えば1.2~3mm、好ましくは1.5~2.7mm、さらに好ましくは1.6~2mm程度である。リブ部の平均厚みは、ベルト全体の平均厚みに対して54%以下であってもよく、好ましくは36~53%程度である。
 本発明では、リブ部の底部表面に複合層が形成されており、ベルトの耐久性に優れるため、リブ部の厚みを小さくできる。例えば、従来品がベルト厚み4.3±0.3mm、リブ高さ2.0±0.2mmのとき、リブ高さを0.2mm小さくすることで(2.0→1.8mm)、ベルト厚みを4.1±0.3mmに減らすことができる。リブ高さを小さくできる上に、従来必要であった研削代(リブ部の底部のための研削)が不要であるため、ベルトを構成するゴム組成物の使用量を低減できる。また、研削量が減るので、研削時間や研削屑も低減できる。さらに、ベルト厚みが減る分、ベルトの屈曲性が向上するため、応力減により耐クラック性が向上し、曲げロスの低減により省燃費性が向上する。
 本発明のVリブドベルトの製造方法は、円筒状ドラムに伸張層を形成するための伸張層用部材を装着する伸張層装着工程、さらに芯体としての心線を巻き付ける心線スピニング工程、さらに圧縮ゴム層を形成するための未加硫ゴムシートを巻き付ける圧縮ゴム層巻付工程、巻き付けた未加硫ゴムシートの上に、さらに耐熱性繊維を含む繊維集合体を巻き付ける繊維集合体巻付工程、前記各工程により得られたベルト成形体(未加硫ベルトスリーブ)を加硫して加硫ベルトスリーブを得る加硫工程、加硫ベルトスリーブの繊維集合体側において、圧縮ゴム層の側部のみを研削で成形する研削工程を含む。
 具体的には、本発明の製造方法では、伸張層装着工程として、円筒状の成形ドラムに伸張層用部材を装着する。伸張層用部材の装着方法としては、伸張層用部材の種類に応じて選択でき、シート状部材の場合、伸張層用部材を円筒状ドラムに巻き付けてもよく、環状部材の場合、伸張層用部材を円筒状ドラムに被せてもよい。
 本発明では、必要に応じて、心線スピニング工程の前工程及び/又は後工程として、接着ゴム層を装着する接着ゴム層装着工程を含んでいてもよい。前工程として接着ゴム層装着工程を含む場合は、接着ゴム層装着工程は、例えば、接着ゴム層を形成するための未加硫ゴムシートと伸張層を形成するための部材との環状積層体を円筒状ドラムに被せる方法、接着ゴム層を形成するための未加硫ゴムシートと伸張層を形成するための部材との積層体を円筒状ドラムに巻き付ける方法、装着した伸張層用部材の上に接着ゴム層を形成するための未加硫ゴムシートを巻き付ける方法などであってもよい。後工程として接着ゴム層装着工程を含む場合は、接着ゴム層装着工程は、例えば、接着ゴム層を形成するための未加硫ゴムシートを心線の上に巻き付ける方法、接着ゴム層を形成するための未加硫ゴムシートと圧縮ゴム層を形成するための部材との積層体を心線の上に巻き付ける方法などであってもよい。
 そのため、前記心線スピニング工程では、通常、接着ゴム層巻付工程の有無に応じて、前記工程で装着した伸張層用部材又は接着ゴム層用未加硫シートの上に、心線を螺旋状にスピニングして巻き付ける。また、前記圧縮ゴム層巻付工程では、通常、前記工程でスピニングした心線又は巻き付けた接着ゴム層用未加硫シートの上に圧縮ゴム層(リブゴム層)を形成するための未加硫ゴムシートを巻き付ける。
 さらに、本発明では、繊維集合体巻付工程において、圧縮ゴム層を形成するための未加硫ゴムシートの表面に、前記ゴム組成物の加硫温度で溶融しない耐熱性繊維を含む繊維集合体(特に、不織布)を巻き付ける。前記耐熱性繊維が所定の方向に配向されている場合は、耐熱性繊維の長手方向がベルトの長手方向と平行に配置させて巻き付けるのが好ましい。
 熱処理前の繊維集合体(特に不織布)の目付量は5~50g/m程度の範囲から選択でき、例えば6~30g/m、好ましくは8~20g/m、さらに好ましくは8~15g/m(特に8~12g/m)程度である。熱処理前の繊維集合体(特に不織布)の平均厚みは、例えば0.02~0.15mm、好ましくは0.03~0.15mm、さらに好ましくは0.03~0.1mm(特に0.03~0.05mm)程度である。繊維集合体の目付量や厚みが小さすぎると、加硫工程における離型性や通気性が低下する虞がある上に、成形(加硫前の各部材の巻き付け)の際に繊維集合体を引っ張ると破れて巻き付けできない虞がある。一方、繊維集合体の目付量や厚みが大きすぎると、繊維間の隙間が小さくなるため、ゴム成分が繊維間に入り込み難い虞がある。また、繊維集合体が剛直となり、巻き付けが困難となる虞がある。
 加硫工程では、加硫方式は加硫缶方式であってもよい。加硫温度は、ゴムの種類に応じて選択できるが、例えば140~200℃、好ましくは150~180℃、さらに好ましくは165~180℃程度であってもよい。加硫温度が低すぎると、繊維集合体の繊維間にゴム組成物が含浸し難くなる虞があり、高すぎると、繊維形状が消失する虞がある。本発明では、加硫工程により、繊維集合体と圧縮ゴム層の底部表面に位置するゴム組成物とが一体化するため(繊維集合体の繊維間にゴム組成物が含浸するため)、繊維集合体の接着処理が不要であり、生産性も高い。また、加硫時に、繊維集合体は繊維の形態をある程度維持したまま圧縮ゴム層に埋もれていくため、加硫時のエア抜きや、加硫ジャケットからの離型にも有効である。
 研削工程では、通常、加硫ベルトスリーブを研削して圧縮ゴム層にリブを形成した後、所定幅に輪切りして切断することによりVリブドベルトが得られる。研削方法としては、慣用の方法を利用できるが、圧縮ゴム層の繊維集合体側において、圧縮ゴム層の側部のみを研削するため、底部表面に複合層が形成されるとともに、研削量も削減できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例で使用した不織布、ゴム組成物の成分及び芯体(心線)の詳細と、測定した評価項目の評価方法を以下に示す。
 [不織布]
 (実施例1~5のポリエチレンテレフタレート(PET)不織布:廣瀬製紙(株)製、融点260℃、熱融着点なし)
 実施例1:商品名「05TH-8」、目付8g/m、厚み0.03mm
 実施例2:商品名「05TH-12」、目付12g/m、厚み0.04mm
 実施例3:商品名「05TH-15」、目付15g/m、厚み0.04mm
 実施例4:商品名「05TH-20」、目付20g/m、厚み0.07mm
 実施例5:商品名「05TH-20H」、目付20g/m、厚み0.05mm
 (実施例6のポリエチレンテレフタレート(PET)不織布:東洋紡(株)製、融点260℃、熱融着点有り)
 実施例6:商品名「3151AD」、目付15g/m、厚み0.12mm
 (比較例の不織布)
 比較例1:レーヨン不織布、シンワ(株)製、商品名「#5130」、目付30g/m、厚み0.4mm、融点(軟化点)なし
 比較例2及び3:低密度ポリエチレン(PE)不織布、出光ユニテック(株)製、商品名「ストラテックLL」、目付30g/m、厚み0.3mm、融点130℃
 比較例4:ポリプロピレン(PP)不織布、旭化成せんい(株)製、商品名「PL2020」、目付15g/m、厚み0.14mm、融点165℃、熱融着点有り
 比較例5:ポリプロピレン(PP)不織布、出光ユニテック(株)製、商品名「ストラテックRN2030」、目付30g/m、厚み0.24mm、融点165℃、熱融着点有り
 [ゴム組成物の成分]
 EPDMポリマー:デュポン・ダウエラストマージャパン(株)製「IP3640」、ムーニー粘度40(100℃)
 ポリアミド短繊維:旭化成(株)製「66ナイロン」
 カーボンブラックHAF:東海カーボン(株)製「シースト3」
 パラフィン系軟化剤:出光興産(株)製「ダイアナプロセスオイル」
 有機過酸化物:化薬アクゾ(株)製「パーカドックス14RP」
 含水シリカ:東ソー・シリカ(株)製「Nipsil VN3」、比表面積240m/g
 老化防止剤:精工化学(株)製「ノンフレックスOD3」
 加硫促進剤DM:ジ-2-ベンゾチアゾリルジスルフィド。
 [芯体(心線)]
 心線:1,000デニールのPET繊維を2×3の撚り構成で、上撚り係数3.0、下撚り係数3.0で緒撚りしたトータルデニール6,000のコードを接着処理した繊維。
 [加硫ジャケットに対する離型性]
 実施例及び比較例におけるベルトの製造において、加硫ジャケットを外した加硫ベルトスリーブの状態を観察し、以下の基準で評価した。
  A:加硫ベルトスリーブの外周面(圧縮ゴム層底部の表面に相当)が加硫ジャケットと粘着せず容易に剥離できる
  B:加硫ベルトスリーブの外周面が加硫ジャケットと粘着して剥離しにくい(工具が必要)。表面に擦れ模様が生じて外観に劣る。
 [耐熱耐久性]
 耐熱耐久性の試験に用いた走行試験機は、駆動プーリ(直径120mm)、アイドラープーリ(直径85mm)、従動プーリ(直径120mm)、テンションプーリ(直径45mm)を配置して構成される。そして、テンションプーリへの巻き付け角度が90°、アイドラープーリへの巻き付け角度が120°になるように各プーリにVリブドベルトを懸架し、雰囲気温度120℃、駆動プーリの回転数4900rpmの条件でVリブドベルトを走行させた。このとき、ベルト張力40kgf/リブとなるように駆動プーリに荷重を付与し、従動プーリに負荷8.8kWを与えた。そして、このようにVリブドベルトを走行させ、心線に達する亀裂が6個発生するまでの時間を測定した。
 [耐屈曲疲労性(耐クラック性)]
 図2に示すレイアウトの試験機を用いて、実施例及び比較例で得られたVリブドベルトを130℃雰囲気下でVリブドベルトの走行試験を行い、リブ部にクラックが発生するまでの時間を測定し、耐屈曲疲労性を評価した。測定は、比較例1を除いて2回以上行い、平均値及びバラツキ(最大値と最小値との差)を算出した。
 [外観性状の評価]
 実施例及び比較例で得られたVリブドベルトのリブ先端面を目視で観察し、以下の基準で判定した。
  4:リブ先端面に不織布の繊維の毛羽立ちまたはスキン層の塊がない
  3:リブ先端面の一部に不織布の繊維の毛羽立ちまたはスキン層の塊がわずかにあるが目立たない
  2:リブ先端面に不織布の繊維の毛羽立ちまたはスキン層の塊があり、やや目立つ
  1:リブ先端面の全体に不織布の繊維の毛羽立ちまたはスキン層の塊がある。
 なお、評価基準における「毛羽立ち」とは、リブ先端面が以下の状態(1)及び(2)の糸状物を含むことを意味する。
 (1)不織布の繊維形状が維持された糸状物が、ゴムに埋設しきれず底部表面に現れている状態
 (2)側部を研削する際に、底部(複合層)に埋設していた繊維形状を維持した糸状物が、グラインダーの影響で複合層から引っ張り出されて表面に出てきた状態。
 実施例1~6及び比較例1~5
 (伸張層を形成するため外被布)
 外被布として、綿繊維とポリエチレンテレフタレート繊維を重量比で50:50の混撚糸を使用したワイドアングルの平織帆布(厚み0.63mm)を用いた。これらの帆布をRFL液に浸漬した後、150℃で2分間熱処理して接着処理帆布とした。さらに、この接着処理帆布に、表1に示すゴム組成物により得た接着ゴム層を形成するためのゴムシート(厚み0.5mm)を積層した積層体を作製した。
 (圧縮ゴム層、及び接着ゴム層を形成するためのゴムシート)
 表1に示すゴム組成物をバンバリーミキサーで混練し、カレンダーロールによって圧延することによって、圧縮ゴム層を形成するためのゴムシートを2.2mmの厚みで、接着ゴム層を形成するためのゴムシートを0.5mmの厚みで作製した。
Figure JPOXMLDOC01-appb-T000001
 (ベルトの製造)
 表面が平滑な円筒状ドラム(成形金型)の外周に、伸張層を形成するための外被布と接着ゴム層を形成するためのゴムシートとを積層した積層体を、接着ゴム層を形成するためのゴムシートが外周面となるように巻き付けた。この積層体の外周面に心線をスパイラル状に巻き付けた後、さらにこの心線の上に、接着ゴム層を形成するためのゴムシートと圧縮ゴム層を形成するためのゴムシートとを積層した積層体を、圧縮ゴム層を形成するためのゴムシートが最外周面となるように巻き付けた。さらに、この最外周面に不織布を巻き付け、未加硫状態のベルト成形体(未加硫ベルトスリーブ)を作製した。
 さらに、ベルト成形体の外周側に加硫ジャケットを被せた状態で加硫缶内に配置し、加圧水蒸気により、180℃、0.9MPa、25分間の条件にて加硫を行った。
 さらに、冷却した後、加硫ジャケットを外して(離型して)得られた加硫ベルトスリーブにおいて、断面V字状の溝を形成するための所定形状の研削ホイール(砥石)にて圧縮ゴム層の側部のみを研削して、複数のリブ(断面V字状の溝)を形成した。そして、この複数のリブが形成された加硫ベルトスリーブを、カッターにより輪切りするように所定幅に切断した後、内周側と外周側とを反転することによって、図1に示す断面構造のVリブドベルトを得た。
 実施例で得られたVリブドベルトのリブ部表面では、不織布が、表面に一部の繊維が露出した状態で圧縮ゴム層中に埋設し、複合層が形成されていた。実施例1で得られたVリブドベルトのリブ部表面の走査型電子顕微鏡写真(SEM写真)を、図3に示す。図3において、細い線状部分が不織布由来の部分であり、他の部分が圧縮ゴム層由来の部分である。図3から明らかなように、実施例1のVリブドベルトのリブ部表面には、不織布とゴム組成物とが混在した複合層が形成されていた。詳しくは、図3について、繊維状部が観察できる中央部分が底部の表面(非研削面)であり、左右両側部が研削面である。
 なお、比較例3については、特開2013-145032号公報の実施例に記載された金型を用いた方法でVリブドベルトを製造した。
 (ベルトの評価)
 作製したVリブドベルトの耐熱耐久性、耐屈曲疲労性、リブ部表面の外観の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、圧縮ゴム層の底部が不織布の繊維間にゴム組成物が含浸した複合層を形成した実施例1~6と、不織布が溶融し、繊維形状を消失して単一のフィルム状の樹脂層(スキン層)を形成した比較例2及び3とを比較すると、実施例1~6は、耐熱耐久性、耐屈曲疲労性ともに亀裂発生までの時間が長く、耐久性に優れていた。
 また、ポリプロピレン不織布を用いた比較例4及び5では、不織布の熱処理物は、繊維形状が残存した繊維状部と、繊維形状が消失した非繊維状部とで形成される。そのため、複合層は、繊維状部と非繊維状部とゴム成分との3成分が混在した構造を形成し、残存した繊維形状により耐熱耐久性、耐屈曲疲労性がPET不織布を用いた実施例1~6と同等である。しかし、繊維状部の溶融物を含むベルト(比較例2~5)では、加硫後の加硫ジャケットからの離型性に劣り、さらに、耐屈曲疲労性の試験結果のバラツキが大きく安定性が得られないことから、実用性に欠けていた。
 また、実施例1~6と、実施例1~6と同様に不織布が繊維形状のままである比較例1とを比較すると、実施例1~6は比較例1よりも耐久性が優れていた。
 以上から、圧縮ゴム層の底部の表面が、PET不織布の繊維間にゴム組成物が含浸した複合層である実施例は、圧縮ゴム層の底部の表面がフィルム状の樹脂層(スキン層)や分厚い不織布である比較例に比べ、ベルトが屈曲し易く、耐久性に優れていた。また、圧縮ゴム層の底部の表面が、繊維形状が残存した不織布の溶融物である比較例に比べ、加硫ジャケットからの離型性に優れていた。
 また、実施例の中では、目付及び厚みの小さい不織布ほど、耐屈曲疲労性試験において亀裂発生までの時間が長くなった。
 さらに、目付が同一の不織布について、熱融着点が無い実施例3と、熱融着点を有する実施例6とを比較すると、実施例3の方が耐久性に優れていた。熱融着点が有ると、不織布が厚くなって屈曲性が低下したためと推定できる。また、屈曲時に熱融着点に応力が集中して、亀裂が入り易くなることも影響していると推定できる。
 外観については、圧縮ゴム層の底部全面で不織布の毛羽立ちが発生する比較例1のベルトと比較すると、実施例1~6のベルトは、不織布の毛羽立ちがないか、目立たず、外観が良好であった。
 図4に実施例1で得られたVリブドベルトのリブ部の写真を示すが、加硫ジャケットから傷やシミが転写されず、外観が良好であった。すなわち、SEM写真では、不織布が観察できるが、目視では不織布は目立たなかった。
 なお、図5に不織布を用いずに製造したVリブドベルト(参考例1)のリブ部の写真を示すが、加硫ジャケットから傷やシミが転写されていた。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2015年9月29日出願の日本特許出願2015-191401、及び2016年9月8日付出願の日本特許出願2016-175415に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のVリブドベルトは、自動車エンジン補機駆動などの伝動装置の摩擦伝動ベルトとして利用できる。
 1…伸張層
 2…芯体(心線)
 3…接着ゴム層
 4…圧縮ゴム層
 4a…研削面
 5…複合層

Claims (13)

  1.  ゴム組成物の加硫物を含む圧縮ゴム層と芯体と伸張層とを備えるとともに、前記圧縮ゴム層の側部がプーリと接触する研削面であり、かつ前記圧縮ゴム層の底部がプーリと接触しない非研削面であるVリブドベルトであって、
     前記底部の表面に、前記ゴム組成物の加硫温度で溶融しない耐熱性繊維を含み、かつ目付量が25g/m以下である繊維集合体と、この繊維集合体の繊維間に含浸した前記ゴム組成物の加硫物とを含む複合層を有するVリブドベルト。
  2.  耐熱性繊維がポリエステル繊維を含む請求項1に記載のVリブドベルト。
  3.  繊維集合体が不織繊維構造を有する請求項1又は2に記載のVリブドベルト。
  4.  繊維集合体の目付量が8~20g/mである請求項1~3のいずれか一項に記載のVリブドベルト。
  5.  圧縮ゴム層がゴム組成物の加硫物で連続相を形成している請求項1~4のいずれか一項に記載のVリブドベルト。
  6.  耐熱性繊維の平均繊維径が1~50μmである請求項1~5のいずれか一項に記載のVリブドベルト。
  7.  耐熱性繊維が長繊維を含む請求項1~6のいずれか一項に記載のVリブドベルト。
  8.  耐熱性繊維同士が融着していない請求項1~7のいずれか一項に記載のVリブドベルト。
  9.  圧縮ゴム層が短繊維を含む請求項1~8のいずれか一項に記載のVリブドベルト。
  10.  繊維集合体が不織繊維構造を有し、耐熱性繊維が所定の方向に配向しており、前記耐熱性繊維の長手方向がベルトの長手方向と平行である請求項1~9のいずれか一項に記載のVリブドベルト。
  11.  圧縮ゴム層がリブ部を有し、かつこのリブ部の平均厚みがVリブドベルト全体の平均厚みに対して54%以下である請求項1~10のいずれか一項に記載のVリブドベルト。
  12.  円筒状ドラムに伸張層を形成するための伸張層用部材を装着する伸張層装着工程、さらに芯体となる心線を巻き付ける心線スピニング工程、さらに圧縮ゴム層を形成するための未加硫ゴムシートを巻き付ける圧縮ゴム層巻付工程、巻き付けた未加硫ゴムシートの上に、さらに耐熱性繊維を含む繊維集合体を巻き付ける繊維集合体巻付工程、前記各工程により得られたベルト成形体を加硫して加硫ベルトスリーブを得る加硫工程、加硫ベルトスリーブの繊維集合体側において、圧縮ゴム層の側部のみを研削で成形する研削工程を含む請求項1~11のいずれか一項に記載のVリブドベルトの製造方法。
  13.  繊維集合体の平均厚みが0.03~0.15mmである請求項12に記載の製造方法。
PCT/JP2016/078106 2015-09-29 2016-09-23 Vリブドベルト及びその製造方法 WO2017057202A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/938,171 US10760646B2 (en) 2015-09-29 2016-09-23 V-ribbed belt and method for producing same
EP16851376.0A EP3358216B1 (en) 2015-09-29 2016-09-23 V-ribbed belt and method for producing same
CN201680056698.6A CN108138908B (zh) 2015-09-29 2016-09-23 多楔带及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-191401 2015-09-29
JP2015191401 2015-09-29
JP2016175415A JP6480392B2 (ja) 2015-09-29 2016-09-08 Vリブドベルト及びその製造方法
JP2016-175415 2016-09-08

Publications (1)

Publication Number Publication Date
WO2017057202A1 true WO2017057202A1 (ja) 2017-04-06

Family

ID=58423778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078106 WO2017057202A1 (ja) 2015-09-29 2016-09-23 Vリブドベルト及びその製造方法

Country Status (1)

Country Link
WO (1) WO2017057202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040101A1 (ja) * 2018-08-23 2020-02-27 三ツ星ベルト株式会社 摩擦伝動ベルト用心線および摩擦伝動ベルトならびにそれらの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502574A (ja) * 1992-10-16 1996-03-19 デイコ プロダクツ,インコーポレイテッド ベルト構造体、ベルト構造体とプーリの組み合せ体、及びそれらの製造方法
JP2005069358A (ja) * 2003-08-25 2005-03-17 Bando Chem Ind Ltd 摩擦伝動ベルト及びその製造方法
JP2005533983A (ja) * 2002-07-29 2005-11-10 ザ ゲイツ コーポレイション ベルト
JP2009533606A (ja) * 2006-03-03 2009-09-17 ハッチンソン 伝動ベルト

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502574A (ja) * 1992-10-16 1996-03-19 デイコ プロダクツ,インコーポレイテッド ベルト構造体、ベルト構造体とプーリの組み合せ体、及びそれらの製造方法
JP2005533983A (ja) * 2002-07-29 2005-11-10 ザ ゲイツ コーポレイション ベルト
JP2005069358A (ja) * 2003-08-25 2005-03-17 Bando Chem Ind Ltd 摩擦伝動ベルト及びその製造方法
JP2009533606A (ja) * 2006-03-03 2009-09-17 ハッチンソン 伝動ベルト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358216A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040101A1 (ja) * 2018-08-23 2020-02-27 三ツ星ベルト株式会社 摩擦伝動ベルト用心線および摩擦伝動ベルトならびにそれらの製造方法
JP2020033686A (ja) * 2018-08-23 2020-03-05 三ツ星ベルト株式会社 摩擦伝動ベルト用心線および摩擦伝動ベルトならびにそれらの製造方法
US11815158B2 (en) 2018-08-23 2023-11-14 Mitsuboshi Belting Ltd. Core wire for friction transmission belts, friction transmission belt, and manufacturing methods therefor

Similar Documents

Publication Publication Date Title
JP6480392B2 (ja) Vリブドベルト及びその製造方法
JP5956162B2 (ja) 摩擦伝動ベルト及びその製造方法
JP5981330B2 (ja) Vリブドベルト
JP5869332B2 (ja) 伝動ベルト
JP6616808B2 (ja) 伝動用vベルト
JP5926543B2 (ja) 摩擦伝動ベルト及びその製造方法
JP6059004B2 (ja) 伝動ベルト及びその製造方法
JP2019007618A (ja) Vリブドベルト及びその製造方法
JP2017211084A (ja) 伝動ベルト
JP2018197605A (ja) Vリブドベルト及びその製造方法
JP6423321B2 (ja) Vリブドベルト及びその製造方法
WO2018016557A1 (ja) 伝動用vベルト
JP6577157B1 (ja) ラップド結合vベルト
JP6748152B2 (ja) Vリブドベルト
WO2017057202A1 (ja) Vリブドベルト及びその製造方法
WO2018216738A1 (ja) Vリブドベルト及びその製造方法
JP6224886B2 (ja) 伝動ベルト及びその製造方法
KR102478923B1 (ko) 랩드 v 벨트
JP4856375B2 (ja) Vリブドベルト
JP2007298162A (ja) 摩擦伝動ベルト
JP2018197606A (ja) Vリブドベルト及びその製造方法
US11933383B2 (en) Twisted cord for core wire of transmission belt, manufacturing method and use of same, and transmission belt
JP2006077785A (ja) 動力伝動ベルト
JP2020008026A (ja) Vリブドベルト及びその製造方法
JP2018141556A (ja) ラップドvベルト及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15938171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851376

Country of ref document: EP