WO2017057201A1 - 導電性ペースト及び導電膜 - Google Patents

導電性ペースト及び導電膜 Download PDF

Info

Publication number
WO2017057201A1
WO2017057201A1 PCT/JP2016/078101 JP2016078101W WO2017057201A1 WO 2017057201 A1 WO2017057201 A1 WO 2017057201A1 JP 2016078101 W JP2016078101 W JP 2016078101W WO 2017057201 A1 WO2017057201 A1 WO 2017057201A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
graphite
powder
silver powder
conductive film
Prior art date
Application number
PCT/JP2016/078101
Other languages
English (en)
French (fr)
Inventor
卓 岡野
徳昭 野上
謙雄 茂木
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015232404A external-priority patent/JP6318137B2/ja
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201680056946.7A priority Critical patent/CN108140443B/zh
Priority to KR1020187011412A priority patent/KR102117653B1/ko
Priority to US15/763,334 priority patent/US20180308603A1/en
Publication of WO2017057201A1 publication Critical patent/WO2017057201A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present invention relates to a conductive paste and a conductive film.
  • the ratio (A) / (B) of the conductive fine powder (A) to the carbon powder (B) is 99.9 / 0.1 to 93/7 (for example, Patent Document 1). reference).
  • An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide a conductive paste and a conductive film that can form a conductive film having both excellent conductivity and thermal conductivity.
  • Means for solving the problems are as follows. That is, ⁇ 1> A conductive paste containing a filler containing silver powder and graphite powder, a polymer, and a solvent, The conductive paste is characterized in that the 1% weight loss starting temperature of the graphite powder by thermogravimetric / differential thermal analysis is 300 ° C. or higher and 640 ° C. or lower. ⁇ 2> The conductive paste according to ⁇ 1>, wherein the graphite powder has a 1% weight loss starting temperature of 500 ° C. or more and 600 ° C. or less by thermogravimetric / differential thermal analysis.
  • ⁇ 3> The conductive paste according to any one of ⁇ 1> to ⁇ 2>, wherein the graphite powder is at least one selected from graphene, spherical graphite, and scaly graphite.
  • ⁇ 4> The conductive paste according to any one of ⁇ 1> to ⁇ 3>, wherein a content of the graphite powder is 0.1% by mass or more and 10% by mass or less with respect to a total amount of the filler. .
  • ⁇ 5> The conductive paste according to any one of ⁇ 1> to ⁇ 4>, wherein the silver powder is a mixture of flaky silver powder and spherical silver powder.
  • ⁇ 6> The conductive paste according to any one of ⁇ 1> to ⁇ 5>, wherein the polymer is an epoxy resin.
  • ⁇ 7> A conductive film formed from the conductive paste according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> The conductive film according to ⁇ 7>, wherein the volume resistivity is 100 ⁇ ⁇ cm or less and the thermal conductivity is 10 W / m ⁇ K or more.
  • a conductive paste and a conductive film that can solve conventional problems and can form a conductive film having both excellent conductivity and thermal conductivity.
  • Example 1 shows the graphite powder No. 1 used in Example 1. It is a graph which shows the measurement result of TG and DTA by the thermogravimetric / differential thermal analysis method of No.1.
  • 2 shows the graphite powder No. 1 used in Example 2. It is a graph which shows the measurement result of TG and DTA by 2 thermogravimetric and differential thermal analysis methods.
  • 3 shows the graphite powder No. 1 used in Example 3.
  • 3 is a graph showing measurement results of TG and DTA by the thermogravimetric / differential thermal analysis method of No. 3.
  • 4 shows the graphite powder No. 1 used in Example 4.
  • 4 is a graph showing measurement results of TG and DTA by thermogravimetric / differential thermal analysis method of No. 4; 5 shows the graphite powder No. used in Comparative Example 2.
  • 5 is a graph showing the results of measurement of TG and DTA by 5 thermogravimetric / differential thermal analysis methods.
  • 6 shows the silver powder No. 1 used in Example 1.
  • 1 is a scanning electron micrograph of 1 (flaky silver powder).
  • FIG. 7 shows the silver powder No. used in Example 2.
  • 2 is a scanning electron micrograph of 2 (spherical silver powder).
  • the conductive paste of the present invention contains a filler, a polymer, and a solvent, and further contains other components as necessary.
  • the filler includes silver powder and graphite powder.
  • content of the said filler 80 to 95 mass% is preferable with respect to electroconductive paste whole quantity.
  • the content is less than 80% by mass, the thermal conductivity and conductivity of the conductive film made of the conductive paste may be lowered.
  • the content exceeds 95% by mass, the workability of applying the conductive paste is reduced. May decrease, and an appropriate conductive film may not be obtained.
  • the graphite powder has a 1% weight loss starting temperature of 300 ° C. or more and 640 ° C. or less, preferably 500 ° C. or more and 600 ° C. or less, by thermogravimetric / differential thermal analysis (TG-DTA method).
  • TG-DTA method thermogravimetric / differential thermal analysis
  • the 1% weight loss starting temperature exceeds 640 ° C., the sinterability with silver deteriorates, which may adversely affect heat and electricity transfer.
  • the 1% weight loss starting temperature is 300 ° C. or higher and 640 ° C. or lower, a conductive paste capable of forming a conductive film having both excellent conductivity and thermal conductivity is obtained.
  • the 1% weight loss starting temperature can be determined by a thermogravimetric / differential thermal analysis method (TG-DTA method) under a nitrogen atmosphere under a temperature increase rate of 10 ° C./min. Specifically, using a differential thermobalance TG8120 manufactured by Rigaku Corporation, the temperature reduced by 1% by weight can be determined as the 1% weight loss starting temperature.
  • TG-DTA method thermogravimetric / differential thermal analysis method
  • the graphite powder is not particularly limited as long as the 1% weight loss starting temperature by a thermogravimetric / differential thermal analysis method (TG-DTA method) is 300 ° C. or higher and 640 ° C. or lower, and can be appropriately selected according to the purpose. Is preferably at least one selected from graphene, spherical graphite, and flaky graphite, and graphene and spherical graphite are more preferable from the viewpoint of thermal conductivity.
  • the spherical graphite and the flaky graphite are carbons bonded to each other in a hexagonal shape, and the layers are bonded by van der Waals force, and the thermal conductivity is 300 W / m ⁇ K or more and 1,500 W / m.
  • the graphene is a planar material having a thickness of only one carbon atom, is composed of a honeycomb-like crystal lattice formed by sp 2 bonds of carbon atoms, and has all other dimensions. This is a basic building block of graphite material. Fullerene can be obtained by wrapping graphene in a circle, carbon nanotubes by rolling, and graphite by stacking. The thermal conductivity of the graphene is preferably 3,000 W / m ⁇ K or more. As said graphite powder, what was manufactured suitably may be used and a commercial item may be used.
  • Examples of commercially available graphite powder include graphene (GNH-X2, manufactured by Graphene Platform Co., Ltd.), spherical graphite (WF-15C, manufactured by Chuetsu Graphite Industries Co., Ltd.), and scaled graphite (BF-15AK, Chuetsu Co., Ltd.). Graphite industry)).
  • the content of the graphite powder is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 5% by mass or less with respect to the total amount of the filler. When the content is less than 0.1% by mass, the graphite powder cannot exhibit its characteristics and does not lead to improvement in thermal conductivity and conductivity.
  • the physical properties of the graphite powder are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the BET specific surface area, the cumulative 50% particle diameter, and the like are preferably in the following ranges.
  • BET specific surface area of graphite powder-- The BET specific surface area of the graphite powder is preferably 0.1 m 2 / g or more and 5.0 m 2 / g or less, and more preferably 0.3 m 2 / g or more and 2.0 m 2 / g or less.
  • the BET specific surface area of the graphite powder can be measured by a BET one-point method by nitrogen adsorption using Macsorb HM-model 1210 (manufactured by MOUNTECH). In the measurement of the BET specific surface area, the deaeration conditions before the measurement are 60 ° C. and 10 minutes.
  • the cumulative 50% particle size (D 50 ) in the volume-based particle size distribution of the graphite powder is preferably from 0.1 ⁇ m to 30 ⁇ m, and more preferably from 1 ⁇ m to 25 ⁇ m.
  • the cumulative 50% particle size of the graphite powder can be measured by wet laser diffraction type particle size distribution measurement. That is, wet laser diffraction particle size distribution measurement was performed by adding 0.1 g of graphite powder to 40 mL of isopropyl alcohol and dispersing for 2 minutes with an ultrasonic homogenizer with a tip diameter of 20 mm. Measured using MICROTORAC MT3300EXII manufactured by Co., Ltd. Graph the measurement results and determine the frequency and accumulation of the particle size distribution of the silver powder. Then, a cumulative 50% particle size is expressed as D 50.
  • -Silver powder- There is no restriction
  • As said silver powder what was manufactured suitably may be used and a commercial item may be used.
  • the method for producing the silver powder include a method of reducing and precipitating silver particles by adding a reducing agent-containing aqueous solution to an aqueous reaction system containing silver ions.
  • the silver powder may use the silver powder which the surface is silver and the inside consists of materials other than silver like silver covering copper powder.
  • the physical properties of the silver powder are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the BET specific surface area, cumulative 50% particle diameter, loss on ignition, etc. are preferably in the following ranges.
  • BET specific surface area of silver powder-- BET specific surface area of the silver powder is preferably from 0.1 m 2 / g or more 5.0 m 2 / g or less, 0.3 m 2 / g or more 2.0 m 2 / g or less is more preferable.
  • the BET specific surface area of the silver powder can be measured in the same manner as the BET specific surface area of the graphite powder.
  • the cumulative 50% particle size (D 50 ) in the volume-based particle size distribution measured by the laser diffraction particle size distribution measurement method of the silver powder is preferably 0.05 ⁇ m or more and 6.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 4.0 ⁇ m or less. preferable.
  • the cumulative 50% particle size of the silver powder can be measured in the same manner as the cumulative 50% particle size of the graphite powder.
  • the ignition loss of the silver powder is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.02% by mass to 1% by mass.
  • the ignition loss of the silver powder is obtained by weighing 2 g of a silver powder sample (w1), putting it in a magnetic crucible, igniting at 800 ° C. for 30 minutes, cooling, and weighing (w2).
  • Can be obtained from Loss on ignition (mass%) [(w1-w2) / w1] ⁇ 100
  • the polymer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include cellulose derivatives such as methyl cellulose and ethyl cellulose, acrylic resins, alkyd resins, polypropylene resins, polyurethane resins, rosin resins, terpene resins, phenols.
  • Resin aliphatic petroleum resin, acrylic ester resin, xylene resin, coumarone indene resin, styrene resin, dicyclopentadiene resin, polybutene resin, polyether resin, urea resin, melamine resin, vinyl acetate resin, polyisobutyl resin, olefin
  • TPO thermoplastic elastomers
  • an epoxy resin is preferable from the viewpoints of curability, adhesion, and versatility.
  • the epoxy resin either a monoepoxy compound, a polyvalent epoxy compound, or a mixture thereof is used.
  • a curing agent for the epoxy resin it is preferable to use a curing agent for the epoxy resin together.
  • the solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include ethyl carbitol, butyl carbitol, ethyl carbitol acetate, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, and diethylene glycol mono-n-ethyl ether acetate.
  • These may be used individually by 1 type and may use 2 or more types together.
  • the method for producing the conductive paste is not particularly limited and can be appropriately selected according to the purpose.
  • the filler, the polymer, the solvent, and the other components as necessary for example, It can be produced by mixing using an ultrasonic dispersion, a disper, a three-roll mill, a ball mill, a bead mill, a twin-screw kneader, a self-revolving stirrer and the like.
  • the conductive paste of the present invention can be printed on a substrate by, for example, screen printing, offset printing, photolithography, or the like.
  • the viscosity of the conductive paste is preferably 10 Pa ⁇ s or more and 800 Pa ⁇ s or less at a cone spindle rotation speed of 1 rpm and 25 ° C.
  • the viscosity of the conductive paste can be adjusted by the filler content, the addition of a viscosity modifier, and the type of solvent.
  • the viscosity of the conductive paste can be measured, for example, using a viscometer 5XHBDV-IIIUC manufactured by BROOKFIELD at a cone spindle CP-52 and a paste temperature of 25 ° C.
  • the conductive paste of the present invention is, for example, a transparent conductive film provided directly on various substrates such as silicon wafers for solar cells, films for touch panels, glass for EL elements, or further on a substrate as necessary. It can be suitably used for forming a conductive film by coating or printing on the film.
  • the conductive film of the present invention is formed from the conductive paste of the present invention.
  • the volume resistivity of the conductive film is preferably 100 ⁇ ⁇ cm or less, and more preferably 50 ⁇ ⁇ cm or less. When the volume resistivity is 100 ⁇ ⁇ cm or less, a conductive film having an extremely low volume resistivity can be realized. When the volume resistivity exceeds 100 ⁇ ⁇ cm, the conductivity of the conductive film may be insufficient.
  • the conductive film preferably has a thermal conductivity of 10 W / m ⁇ K or more, and more preferably 15 W / m ⁇ K or more. When the thermal conductivity is less than 10 W / m ⁇ K, the thermal conductivity of the conductive film may be insufficient.
  • the thermal conductivity can be measured by, for example, a laser flash method.
  • the conductive film of the present invention is suitable for, for example, a collector electrode of a solar battery cell, an external electrode of a chip-type electronic component, an RFID, an electromagnetic wave shield, a vibrator adhesive, a membrane switch, an electrode such as electroluminescence, or an electrical wiring application. Used for.
  • the measurement methods of the BET specific surface area, tap density, particle size distribution (D 10 , D 50 , and D 90 ) of the filler, 1% weight loss starting temperature, and ignition loss of silver powder are as follows.
  • the BET specific surface area of the silver powder was Macsorb HM-model 1210 (manufactured by MOUNTECH). He: 70%, N 2 : 30% carrier gas was used, 3 g of silver powder was put into the cell, and deaeration was performed at 60 ° C. for 10 minutes. After the measurement, measurement was performed by the BET one-point method.
  • ⁇ Size distribution (D 10, D 50, and D 90)> For the particle size distribution, using a laser diffraction scattering type particle size distribution measuring device (MICROTORAC MT3300EXII, manufactured by Microtrack Bell Co., Ltd.), 0.1 g of silver powder is added to 40 mL of isopropyl alcohol and dispersed for 2 minutes by an ultrasonic homogenizer having a tip diameter of 20 mm. A sample was prepared, and the particle size was measured in the total reflection mode. Based on the volume-based cumulative distribution obtained by the measurement, the values of cumulative 10% particle diameter (D 10 ), cumulative 50% particle diameter (D 50 ), and cumulative 90% particle diameter (D 90 ) were determined.
  • a laser diffraction scattering type particle size distribution measuring device MICROTORAC MT3300EXII, manufactured by Microtrack Bell Co., Ltd.
  • TG-DTA method Differential thermal balance TG8120, manufactured by Rigaku Corporation
  • Example 1 Provide of conductive paste- 2.76 parts by mass of graphene 1 as graphite powder, 53.544 parts by mass of flaky silver powder (manufactured by DOWA Electronics Co., Ltd.), 35.696 parts by mass of spherical silver powder (manufactured by DOWA Electronics Co., Ltd.), epoxy resin (EP4901E, stock) 8 parts by mass of ADEKA company), 0.4 parts by mass of curing agent (BF 3 NH 2 EtOH, manufactured by Wako Pure Chemical Industries, Ltd.), 0.1 part by mass of oleic acid (manufactured by Wako Pure Chemical Industries, Ltd.), and solvent 2 parts by weight of butyl carbitol acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and mixed using a propellerless self-revolving agitation deaerator (AR-250, manufactured by Shinky Corporation).
  • AR-250 propellerless self-revolving agitation deaerator
  • Viscosity of conductive paste The viscosity of the obtained conductive paste was measured using a viscometer 5XHBDV-IIIUC manufactured by BROOKFIELD at a cone spindle CP-52 and a paste temperature of 25 ° C. The value for 5 minutes was measured at 1 rpm (shear speed 2 sec ⁇ 1 ).
  • ⁇ Volume resistivity 1> Using a conductive paste, a sample having a diameter of 10 mm and a thickness of 1 mm was cured at 200 ° C. for 20 minutes to prepare a sample. The volume resistivity 1 of the obtained sample was measured by a four-point probe method (Loresta HP MCP-T410, manufactured by Mitsubishi Chemical Corporation).
  • ⁇ Thermal conductivity> Using a conductive paste, a sample having a diameter of 10 mm and a thickness of 1 mm was cured at 200 ° C. for 20 minutes to prepare a sample. The obtained sample was measured for thermal diffusivity by laser flash method (manufactured by ULVAC, TC-7000), and the thermal conductivity was determined from the specific heat and density.
  • Example 2 In Example 1, except that the graphene 1 was replaced with graphene 2 (GNH-X2, manufactured by Graphene Platform Co., Ltd.), a conductive paste was produced in the same manner as in Example 1, and various characteristics were similarly obtained. evaluated. The results are shown in Table 3. Table 1 shows the characteristics of the graphite powder used.
  • Example 3 In Example 1, except that the graphene 1 was replaced with spheroidal graphite (WF-15C, manufactured by Chuetsu Graphite Industry Co., Ltd.), a conductive paste was prepared in the same manner as in Example 1, and various types were similarly performed. Characteristics were evaluated. The results are shown in Table 3. Table 1 shows the characteristics of the graphite powder used.
  • Example 4 In Example 1, a conductive paste was prepared in the same manner as in Example 1 except that the graphene 1 was replaced with scaly graphite (BF-15AK, manufactured by Chuetsu Graphite Industries Co., Ltd.). The characteristics were evaluated. The results are shown in Table 3. Table 1 shows the characteristics of the graphite powder used.
  • Example 1 In Example 1, except that the graphene 1 was not added, a conductive paste was prepared in the same manner as in Example 1, and various characteristics were similarly evaluated. The results are shown in Table 3. Table 1 shows the characteristics of the graphite powder used.
  • Example 2 A conductive paste was produced in the same manner as in Example 1 except that the graphene 1 was replaced with graphite (Sony Corporation) in Example 1, and various characteristics were evaluated in the same manner. The results are shown in Table 3. Table 1 shows the characteristics of the graphite powder used.
  • FIG. 7 shows an SEM photograph (10,000 times) of the silver powder (spherical silver powder) of No. 2 using a scanning electron microscope (SEM, manufactured by JEOL Ltd., JSM-6100).
  • Example 5 -Production of conductive paste- 3 parts by mass of the graphene 1 as graphite powder, 53.544 parts by mass of flaky silver powder (manufactured by DOWA Electronics Co., Ltd.), 35.696 parts by mass of spherical silver powder (manufactured by DOWA Electronics Co., Ltd.), epoxy resin (EP4901E, Inc.) 8 parts by mass of ADEKA), 0.4 parts by mass of a curing agent (BF 3 NH 2 EtOH, manufactured by Wako Pure Chemical Industries, Ltd.), 0.1 part by mass of oleic acid (manufactured by Wako Pure Chemical Industries, Ltd.), and a solvent 5.24 parts by mass of butyl carbitol acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and mixed using a propellerless self-revolving agitation deaerator (AR-250, manufactured by Shinky Corporation).
  • AR-250 propellerless self-revolving agitation dea
  • ⁇ Preparation of conductive film> A film of the produced conductive paste was formed on an alumina substrate by screen printing. Screen printing conditions were as follows. -Printing device: MT-320T manufactured by Microtec Corporation Plate: line width 500 ⁇ m, routing 37.5 mm, 250 mesh, wire diameter 23 ⁇ m ⁇ Printing conditions: Squeegee pressure 180Pa, printing speed 80mm / s, clearance 1.3mm
  • the obtained film was heat-treated at 200 ° C. for 20 minutes using an air circulation dryer. Thus, a conductive film was produced.
  • ⁇ Average thickness of conductive film> Using the surface roughness meter (SE-30D, manufactured by Kosaka Laboratory Ltd.), measure the level difference between the part where the film is not printed and the part of the conductive film on the alumina substrate. Thus, the average thickness of the conductive film was measured.
  • ⁇ Volume resistivity 2> The resistance value at the position of the length (interval) of each conductive film was measured using a digital multimeter (manufactured by ADVANTEST, R6551). The volume of the conductive film was determined from the size (film thickness, width, length) of each conductive film, and the volume resistivity 2 was determined from this volume and the measured resistance value.
  • Example 6 a conductive paste and a conductive film were produced in the same manner as in Example 5 except that the graphene 1 was replaced with scaly graphite (BF-15AK, manufactured by Chuetsu Graphite Industries Co., Ltd.). Various properties were evaluated. The results are shown in Table 4.
  • Example 3 (Comparative Example 3) In Example 5, except that the graphene 1 was replaced with graphite (Sony Corporation), a conductive paste and a conductive film were produced in the same manner as in Example 5, and various characteristics were evaluated in the same manner. The results are shown in Table 4.
  • the conductive paste and conductive film of the present invention include, for example, a collector electrode of a solar battery cell, an external electrode of a chip-type electronic component, an RFID, an electromagnetic wave shield, a vibrator adhesive, a membrane switch, an electrode such as electroluminescence, or an electrical wiring It is suitably used for applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

銀粉と黒鉛粉を含むフィラー、ポリマー、及び溶剤を含有する導電性ペーストであって、前記黒鉛粉の熱重量・示差熱分析法による1%減量開始温度が、300℃以上640℃以下である導電性ペーストを提供する。

Description

導電性ペースト及び導電膜
 本発明は、導電性ペースト及び導電膜に関する。
 従来より、電子部品等の電極や回路、電磁波シールドフィルム、電磁波シールド材等を形成するために、銀粉等の金属フィラーを樹脂中に分散させた導電性ペーストが使用されている。
 近年、電子部品の高密度化が急速に進むと共に、その量産における作業性の向上及びコストダウンが重要な課題となってきており、前記導電性ペーストから作製される導電膜の導電性の向上が強く求められている。また、それと同時に、導電膜に電気を導通させた際に発生する熱を逃がすために、導電膜の熱伝導性の向上も求められている。
 このような導電性ペーストを得るために銀粉等の金属フィラーを高濃度に充填すると、粘度が高くなって塗布作業性が低下したり、前記金属フィラーの沈降により導電性ペーストの不均一化、及び導電膜の厚膜化が生じる。また、粘度を低下させるために添加する溶剤が加熱時に飛散し、ボイドの原因となって接続部の熱伝導性の低下や電気抵抗の上昇などの不具合がある。
 そこで、前記課題を解決するため、例えば、カーボン以外の導電性微粉末(A)、カーボン粉(B)、結合剤(C)、及び溶剤(D)を主成分とする導電性ペーストにおいて、前記導電性微粉末(A)と前記カーボン粉(B)との割合(A)/(B)が99.9/0.1~93/7であることが提案されている(例えば、特許文献1参照)。
特開平1-159905号公報
 しかしなから、前記提案においても、優れた導電性及び熱伝導性を兼ね備えた導電膜を形成できる導電性ペーストは得られておらず、その速やかな提供が望まれている。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、優れた導電性及び熱伝導性を兼ね備えた導電膜を形成できる導電性ペースト及び導電膜を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 銀粉と黒鉛粉を含むフィラー、ポリマー、及び溶剤を含有する導電性ペーストであって、
 前記黒鉛粉の熱重量・示差熱分析法による1%減量開始温度が、300℃以上640℃以下であることを特徴とする導電性ペーストである。
 <2> 前記黒鉛粉の熱重量・示差熱分析法による1%減量開始温度が、500℃以上600℃以下である前記<1>に記載の導電性ペーストである。
 <3> 前記黒鉛粉が、グラフェン、球状黒鉛、及び鱗片状黒鉛から選択される少なくとも1種である前記<1>から<2>のいずれかに記載の導電性ペーストである。
 <4> 前記黒鉛粉の含有量が、前記フィラーの全量に対して、0.1質量%以上10質量%以下である前記<1>から<3>のいずれかに記載の導電性ペーストである。
 <5> 前記銀粉が、フレーク状銀粉及び球状銀粉の混合物である前記<1>から<4>のいずれかに記載の導電性ペーストである。
 <6> 前記ポリマーが、エポキシ樹脂である前記<1>から<5>のいずれかに記載の導電性ペーストである。
 <7> 前記<1>から<6>のいずれかに記載の導電性ペーストから形成されたことを特徴とする導電膜である。
 <8> 体積抵抗率が100μΩ・cm以下であり、かつ熱伝導率が10W/m・K以上である前記<7>に記載の導電膜である。
 本発明によると、従来における問題を解決することができ、優れた導電性及び熱伝導性を兼ね備えた導電膜を形成できる導電性ペースト及び導電膜を提供することができる。
図1は、実施例1で用いた黒鉛粉No.1の熱重量・示差熱分析法によるTG及びDTAの測定結果を示すグラフである。 図2は、実施例2で用いた黒鉛粉No.2の熱重量・示差熱分析法によるTG及びDTAの測定結果を示すグラフである。 図3は、実施例3で用いた黒鉛粉No.3の熱重量・示差熱分析法によるTG及びDTAの測定結果を示すグラフである。 図4は、実施例4で用いた黒鉛粉No.4の熱重量・示差熱分析法によるTG及びDTAの測定結果を示すグラフである。 図5は、比較例2で用いた黒鉛粉No.5の熱重量・示差熱分析法によるTG及びDTAの測定結果を示すグラフである。 図6は、実施例1で用いた銀粉No.1(フレーク状銀粉)の走査型電子顕微鏡写真である。 図7は、実施例2で用いた銀粉No.2(球状銀粉)の走査型電子顕微鏡写真である。
(導電性ペースト)
 本発明の導電性ペーストは、フィラー、ポリマー、及び溶剤を含有し、更に必要に応じてその他の成分を含有してなる。
<フィラー>
 前記フィラーとしては、銀粉と黒鉛粉を含む。
 前記フィラーの含有量は、導電性ペースト全量に対して、80質量%以上95質量%以下が好ましい。前記含有量が、80質量%未満であると、導電性ペーストからなる導電膜の熱伝導性及び導電性が低下してしまうことがあり、95質量%を超えると、導電性ペーストの塗布作業性が低下し、適切な導電膜を得ることができなくなることがある。
-黒鉛粉-
 前記黒鉛粉は、熱重量・示差熱分析法(TG-DTA法)による1%減量開始温度が、300℃以上640℃以下であり、500℃以上600℃以下が好ましい。前記1%減量開始温度が640℃を超えると、銀との焼結性が悪化し、熱及び電気の伝達に悪影響を及ぼすことがある。
 前記1%減量開始温度が、300℃以上640℃以下であると、優れた導電性及び熱伝導性を兼ね備えた導電膜を形成できる導電性ペーストが得られる。
 ここで、前記1%減量開始温度は、窒素雰囲気下、昇温速度10℃/分間の条件で熱重量・示差熱分析法(TG-DTA法)により求めることができる。具体的には、株式会社リガク製の示差熱天秤TG8120を用いて、1%重量減少した温度を1%減量開始温度として求めることができる。
 前記黒鉛粉としては、熱重量・示差熱分析法(TG-DTA法)による1%減量開始温度が300℃以上640℃以下であれば特に制限はなく、目的に応じて適宜選択することができるが、グラフェン、球状黒鉛、及び鱗片状黒鉛から選択される少なくとも1種であることが好ましく、熱伝導率の点から、グラフェン、球状黒鉛がより好ましい。
 前記球状黒鉛及び前記鱗片状黒鉛は、炭素同士が共有結合で六角形に結合し、層間がファンデルワースル力で結合したものであり、熱伝導率は300W/m・K以上1,500W/m・K以下が好ましい。
 前記グラフェンは、炭素原子1個分の厚さしかない平面状の物質であり、炭素原子のsp結合によって形成されたハチの巣状の結晶格子で構成されており、他の全ての次元のグラファイト系材料の基本構成ブロックである。グラフェンを丸く包めばフラーレン、巻けばカーボンナノチューブ、積み重ねればグラファイトが得られる。前記グラフェンの熱伝導率は3,000W/m・K以上が好ましい。
 前記黒鉛粉としては、適宜製造したものを使用してもよいし、市販品を使用してもよい。
 前記黒鉛粉の市販品としては、例えば、グラフェン(GNH-X2、グラフェンプラットフォーム株式会社製)、球状黒鉛(WF-15C、株式会社中越黒鉛工業所製)、鱗状黒鉛(BF-15AK、株式会社中越黒鉛工業所製)などが挙げられる。
 前記黒鉛粉の含有量は、フィラーの全量に対して、0.1質量%以上10質量%以下が好ましく、1質量%以上5質量%以下がより好ましい。前記含有量が、0.1質量%未満であると、黒鉛粉がその特性を発揮することができず、熱伝導率及び導電性の改善に繋がらない。一方、前記含有量が、10質量%を超えると、導電性ペースト中でのフィラーの分散性が著しく悪化し、その結果、導電膜を得ることが著しく困難な導電性ペーストが得られるため、本用途に適さない。
 前記黒鉛粉の物性としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、BET比表面積、累積50%粒子径等が以下の範囲であることが好ましい。
--黒鉛粉のBET比表面積--
 前記黒鉛粉のBET比表面積は、0.1m/g以上5.0m/g以下が好ましく、0.3m/g以上2.0m/g以下がより好ましい。
 前記黒鉛粉のBET比表面積は、Macsorb HM-model 1210(MOUNTECH社製)を用いて窒素吸着によるBET1点法で測定することができる。なお、前記BET比表面積の測定において、測定前の脱気条件は60℃、10分間とする。
--黒鉛粉の累積50%粒子径(D50)--
 前記黒鉛粉の体積基準の粒子径分布における累積50%粒子径(D50)は、0.1μm以上30μm以下が好ましく、1μm以上25μm以下がより好ましい。
 前記黒鉛粉の累積50%粒子径は、湿式レーザー回折式の粒度分布測定により行うことができる。即ち、湿式レーザー回折式の粒度分布測定は、黒鉛粉0.1gをイソプロピルアルコール40mLに加え、チップ径20mmの超音波ホモジナイザーにより2分間分散させ、レーザー回折散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製、MICROTORAC MT3300EXII)を用いて測定する。測定結果をグラフ化し、銀粉の粒度分布の頻度と累積を求める。そして、累積50%粒子径をD50と表記する。
-銀粉-
 前記銀粉としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フレーク状銀粉、樹枝状銀粉、球状銀粉、又はこれらの混合物などが挙げられる。これらの中でも、フレーク状銀粉及び球状銀粉の混合物が好ましい。
 前記銀粉としては、適宜製造したものを使用してもよいし、市販品を使用してもよい。
 前記銀粉の製造方法としては、例えば、銀イオンを含有する水性反応系に還元剤含有水溶液を添加して銀粒子を還元析出させる方法などが挙げられる。また、銀粉は銀被覆銅粉のように、表面が銀であり内部が銀以外の材料からなる銀粉を用いてもよい。
 前記銀粉の含有量は、フィラーの全量に対して、90質量%以上99.9質量%以下が好ましく、95質量%以上99質量%以下がより好ましい。前記含有量が90質量%未満であると、カーボン量が多くなり、導電性ペースト中でのフィラーの分散性が著しく悪化し、その結果、導電膜を得ることが著しく困難な導電性ペーストが得られるため、本用途に適さない。一方、前記含有量が99質量%を超えると、黒鉛粉がその特性を発揮することができず、熱伝導率及び導電性の改善に繋がらないことがある。
 前記銀粉の物性としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、BET比表面積、累積50%粒子径、強熱減量等が以下の範囲であることが好ましい。
--銀粉のBET比表面積--
 前記銀粉のBET比表面積は、0.1m/g以上5.0m/g以下が好ましく、0.3m/g以上2.0m/g以下がより好ましい。
 前記銀粉のBET比表面積は、前記黒鉛粉のBET比表面積と同様にして測定することができる。
--銀粉の累積50%粒子径--
 前記銀粉のレーザー回折式粒度分布測定法による体積基準の粒子径分布における累積50%粒子径(D50)は、0.05μm以上6.0μm以下が好ましく、0.1μm以上4.0μm以下がより好ましい。
 前記銀粉の累積50%粒子径は、前記黒鉛粉の累積50%粒子径と同様にして測定することができる。
--銀粉の強熱減量--
 前記銀粉の強熱減量は、特に制限はなく、目的に応じて適宜選択することができるが、0.02質量%~1質量%が好ましい。
 前記銀粉の強熱減量は、銀粉試料2gを秤量(w1)して磁性るつぼに入れ、800℃で恒量になるまで30分間強熱した後、冷却し、秤量(w2)することにより、次式から求めることができる。
 強熱減量(質量%)=[(w1-w2)/w1]×100
<ポリマー>
 前記ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルセルロース、エチルセルロース等のセルロース誘導体、アクリル樹脂、アルキド樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ロジン樹脂、テルペン樹脂、フェノール樹脂、脂肪族石油樹脂、アクリル酸エステル樹脂、キシレン樹脂、クマロンインデン樹脂、スチレン樹脂、ジシクロペンタジエン樹脂、ポリブテン樹脂、ポリエーテル樹脂、ユリア樹脂、メラミン樹脂、酢酸ビニル樹脂、ポリイソブチル樹脂、オレフィン系熱可塑性エラストマー(TPO)、エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、硬化性、密着性、及び汎用性の点から、エポキシ樹脂が好ましい。
 前記エポキシ樹脂としては、モノエポキシ化合物、多価エポキシ化合物のいずれか又はそれらの混合物が用いられる。前記エポキシ樹脂を用いる場合には、前記エポキシ樹脂の硬化剤を併用することが好ましい。
 前記ポリマーの含有量は、特に制限はなく、目的に応じて適宜選択することができる。
<溶剤>
 前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、テトラデカン、テトラリン、プロピルアルコール、イソプロピルアルコール、テルピネオール、ジヒドロターピネオール、ジヒドロターピネオールアセテート、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、ブチルカルビトールアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、酢酸ジエチレングリコールモノ-n-エチルエーテルなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記溶剤の含有量は、特に制限はなく、目的に応じて適宜選択することができる。
<その他の成分>
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、界面活性剤、分散剤、分散安定剤、粘度調整剤、レベリング剤、消泡剤などが挙げられる。
 前記導電性ペーストの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記フィラー、前記ポリマー、前記溶剤、及び必要に応じて前記その他の成分を、例えば、超音波分散、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、自公転式攪拌機などを用い、混合することにより作製することができる。
 本発明の導電性ペーストは、例えば、スクリーン印刷、オフセット印刷、フォトリソグラフィ法などにより、基板上に印刷することができる。前記スクリーン印刷の場合、導電性ペーストの粘度は、コーンスピンドル回転速度1rpm、25℃で、10Pa・s以上800Pa・s以下が好ましい。前記導電性ペーストの粘度が、10Pa・s未満であると、印刷時に「にじみ」が発生することがあり、800Pa・sを超えると、「かすれ」などの印刷ムラが発生することがある。
 前記導電性ペーストの粘度は、前記フィラーの含有量、粘度調整剤の添加や溶剤の種類により調整することができる。前記導電性ペーストの粘度は、例えば、BROOKFIELD社製の粘度計5XHBDV-IIIUCを用い、コーンスピンドルCP-52、ペースト温度25℃で測定することができる。
 本発明の前記導電性ペーストは、例えば、太陽電池用のシリコンウエハ、タッチパネル用フィルム、EL素子用ガラス等の各種基体上に直接、あるいは必要に応じて基体上に更に透明導電膜を設けたその膜上に、塗布又は印刷して導電膜の形成などに好適に用いることができる。
(導電膜)
 本発明の導電膜は、本発明の前記導電性ペーストから形成される。
 前記導電膜の体積抵抗率は、100μΩ・cm以下が好ましく、50μΩ・cm以下がより好ましい。前記体積抵抗率が、100μΩ・cm以下であると、極めて低い体積抵抗率の導電膜が実現可能である。前記体積抵抗率が、100μΩ・cmを超えると、導電膜の導電性が不十分となることがある。
 前記導電膜の体積抵抗率は、例えば、デジタルマルチメーター(ADVANTEST社製、R6551)を用いて、導電膜の長手方向の2点間の抵抗値を測定し、体積抵抗率=抵抗値×導電膜の厚み×導電膜の幅÷導電膜の長さを算出することにより測定することができる。
 前記導電膜の熱伝導率は、10W/m・K以上が好ましく、15W/m・K以上がより好ましい。前記熱伝導率が10W/m・K未満であると、導電膜の熱伝導率が不十分となることがある。
 前記熱伝導率は、例えば、レーザーフラッシュ法などにより測定することができる。
 本発明の導電膜は、例えば、太陽電池セルの集電電極、チップ型電子部品の外部電極、RFID、電磁波シールド、振動子接着、メンブレンスイッチ、エレクトロルミネセンス等の電極又は電気配線用途などに好適に用いられる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
 フィラーのBET比表面積、タップ密度、粒度分布(D10、D50、及びD90)、1%減量開始温度、及び銀粉の強熱減量の測定方法は、以下に示す通りである。
<BET比表面積>
 銀粉のBET比表面積は、Macsorb HM-model 1210(MOUNTECH社製)で、He:70%、N:30%のキャリアガスを用い、銀粉3gをセルに入れて脱気を60℃で10分間行った後、BET1点法により測定を行った。
<タップ密度>
 タップ密度は、タップ密度測定装置(柴山科学株式会社製、カサ比重測定装置SS-DA-2)を使用し、銀粉15gを計量して、容器(20mL試験管)に入れ、落差20mmで1,000回タッピングし、タップ密度=試料重量(15g)/タッピング後の試料体積から算出した。
<粒度分布(D10、D50、及びD90)>
 粒度分布は、レーザー回折散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製、MICROTORAC MT3300EXII)を用いて、銀粉0.1gをイソプロピルアルコール40mLに加え、チップ径20mmの超音波ホモジナイザーにより2分間分散させて試料を準備し、全反射モードで粒径の測定を行った。測定により得た体積基準の累積分布により、累積10%粒子径(D10)、累積50%粒子径(D50)、及び累積90%粒子径(D90)の値を求めた。
<1%減量開始温度>
 窒素雰囲気下、昇温速度10℃/分間の条件で熱重量・示差熱分析法(TG-DTA法)(株式会社リガク製の示差熱天秤TG8120)により、1%重量減少した温度を1%減量開始温度として求めた。
<銀粉の強熱減量>
 銀粉の強熱減量は、銀粉試料2gを秤量(w1)して磁性るつぼに入れ、800℃で恒量になるまで30分間強熱した後、冷却し、秤量(w2)することにより、次式から求めた。
 強熱減量(質量%)=[(w1-w2)/w1]×100
(実施例1)
-導電性ペーストの作製-
 黒鉛粉としてのグラフェン1を2.76質量部、フレーク状銀粉(DOWAエレクトロニクス株式会社製)53.544質量部、球状銀粉(DOWAエレクトロニクス株式会社製)35.696質量部、エポキシ樹脂(EP4901E、株式会社ADEKA製)8質量部、硬化剤(BFNHEtOH、和光純薬工業株式会社製)0.4質量部、オレイン酸(和光純薬工業株式会社製)0.1質量部、及び溶剤としてのブチルカルビトールアセテート(和光純薬工業株式会社製)2質量部を加え、プロペラレス自公転式攪拌脱泡装置(株式会社シンキー製、AR-250)を用い、混合した。その後、3本ロールミル(EXAKT社製、EXAKT80S)を用いて、ロールギャップを徐々に狭めながら通過させて導電性ペーストを得た。なお、用いた黒鉛粉の諸特性を表1に、用いたフレーク状銀粉及び球状銀粉の諸特性を表2に、用いたフレーク状銀粉及び球状銀粉の走査型電子顕微鏡写真を図6及び図7に示す。
 次に、得られた導電性ペーストについて、以下のようにして、粘度、体積抵抗率1、及び熱伝導率を測定した。結果を表3に示した。
<導電性ペーストの粘度>
 得られた導電性ペーストの粘度は、BROOKFIELD社製の粘度計5XHBDV-IIIUCを用い、コーンスピンドルCP-52、ペースト温度25℃で測定した。1rpm(ずり速度2sec-1)で5分間の値を測定した。
<体積抵抗率1>
 導電性ペーストを用い、直径10mm、厚み1mmの成形体を200℃で20分間硬化させてサンプルを作製した。
 得られたサンプルを四探針法(三菱化学株式会社製、Loresta HP MCP-T410)により、体積抵抗率1を測定した。
<熱伝導率>
 導電性ペーストを用い、直径10mm、厚み1mmの成形体を200℃で20分間硬化させてサンプルを作製した。
 得られたサンプルをレーザーフラッシュ法(株式会社ULVAC製、TC-7000)により熱拡散率を測定し、比熱と密度から熱伝導率を求めた。
(実施例2)
 実施例1において、前記グラフェン1を、グラフェン2(GNH-X2、グラフェンプラットフォーム株式会社製)に代えた以外は、実施例1と同様にして、導電性ペーストを作製し、同様にして諸特性を評価した。結果を表3に示した。なお、用いた黒鉛粉の諸特性を表1に示す。
(実施例3)
 実施例1において、前記グラフェン1を、球状黒鉛(WF-15C、株式会社中越黒鉛工業所製)に代えた以外は、実施例1と同様にして、導電性ペーストを作製し、同様にして諸特性を評価した。結果を表3に示した。なお、用いた黒鉛粉の諸特性を表1に示す。
(実施例4)
 実施例1において、前記グラフェン1を、鱗状黒鉛(BF-15AK、株式会社中越黒鉛工業所製)に代えた以外は、実施例1と同様にして、導電性ペーストを作製し、同様にして諸特性を評価した。結果を表3に示した。なお、用いた黒鉛粉の諸特性を表1に示す。
(比較例1)
 実施例1において、前記グラフェン1を添加しない以外は、実施例1と同様にして、導電性ペーストを作製し、同様に諸特性を評価した。結果を表3に示した。なお、用いた黒鉛粉の諸特性を表1に示す。
(比較例2)
 実施例1において、前記グラフェン1を、黒鉛(ソニー株式会社)に代えた以外は、実施例1と同様にして、導電性ペーストを作製し、同様にして諸特性を評価した。結果を表3に示した。なお、用いた黒鉛粉の諸特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
*黒鉛粉No.1(グラフェン1)の熱重量・示差熱分析法によるTG及びDTAの測定結果を図1に示した。
*黒鉛粉No.2(グラフェン2)の熱重量・示差熱分析法によるTG及びDTAの測定結果を図2に示した。
*黒鉛粉No.3(球状黒鉛)の熱重量・示差熱分析法によるTG及びDTAの測定結果を図3に示した。
*黒鉛粉No.4(鱗状黒鉛)の熱重量・示差熱分析法によるTG及びDTAの測定結果を図4に示した。
*黒鉛粉No.5(黒鉛)の熱重量・示差熱分析法によるTG及びDTAの測定結果を図5に示した。
Figure JPOXMLDOC01-appb-T000002
*No.1の銀粉(フレーク状銀粉)の走査型電子顕微鏡(SEM、日本電子工業株式会社製、JSM-6100)によるSEM写真(10,000倍)を図6に示した。
*No.2の銀粉(球状銀粉)の走査型電子顕微鏡(SEM、日本電子工業株式会社製、JSM-6100)によるSEM写真(10,000倍)を図7に示した。
Figure JPOXMLDOC01-appb-T000003
*表3中の各成分の配合量の単位は質量部である。
(実施例5)
-導電性ペーストの作製-
 黒鉛粉としての前記グラフェン1を3質量部、フレーク状銀粉(DOWAエレクトロニクス株式会社製)53.544質量部、球状銀粉(DOWAエレクトロニクス株式会社製)35.696質量部、エポキシ樹脂(EP4901E、株式会社ADEKA製)8質量部、硬化剤(BFNHEtOH、和光純薬工業株式会社製)0.4質量部、オレイン酸(和光純薬工業株式会社製)0.1質量部、及び溶剤としてのブチルカルビトールアセテート(和光純薬工業株式会社製)5.24質量部を加え、プロペラレス自公転式攪拌脱泡装置(株式会社シンキー製、AR-250)を用い、混合した。その後、3本ロールミル(EXAKT社製、EXAKT80S)を通した後に粘度を確認しながら、溶剤としてのブチルカルビトールアセテート(和光純薬工業株式会社製)を添加して粘度を500Pa・s~600Pa・sに調整し、ロールギャップを徐々に狭めながら通過させて導電性ペーストを得た。
 得られた導電性ペーストについて、実施例1と同様にして、粘度及び熱伝導率を測定した。
 また、前記導電性ペーストを用いて、以下のようにして、導電膜を作製し、導電膜の平均厚み、及び体積抵抗率2を測定した。結果を表4に示した。
<導電膜の作製>
 アルミナ基板上にスクリーン印刷で、作製した前記導電性ペーストの膜を形成した。スクリーン印刷条件は、下記のとおりであった。
 ・印刷装置:マイクロテック株式会社製 MT-320T
 ・版:線幅500μm、引き回し37.5mm、250メッシュ、線径23μm
 ・印刷条件:スキージ圧180Pa、印刷速度80mm/s、クリアランス1.3mm
 次に、得られた膜を、大気循環式乾燥機を用い、200℃で20分間の条件で加熱処理した。以上により、導電膜を作製した。
<導電膜の平均厚み>
 得られた導電膜を、表面粗さ計(株式会社小坂研究所製、SE-30D)を用いて、アルミナ基板上で膜を印刷していない部分と導電膜の部分との段差を測定することにより、導電膜の平均厚みを測定した。
<体積抵抗率2>
 デジタルマルチメーター(ADVANTEST社製、R6551)を用いて、各導電膜の長さ(間隔)の位置の抵抗値を測定した。各導電膜のサイズ(膜厚、幅、長さ)より、導電膜の体積を求め、この体積と測定した抵抗値から、体積抵抗率2を求めた。
(実施例6)
 実施例5において、前記グラフェン1を、鱗状黒鉛(BF-15AK、株式会社中越黒鉛工業所製)に代えた以外は、実施例5と同様にして、導電性ペースト及び導電膜を作製し、同様にして諸特性を評価した。結果を表4に示した。
(比較例3)
 実施例5において、前記グラフェン1を、黒鉛(ソニー株式会社)に代えた以外は、実施例5と同様にして、導電性ペースト及び導電膜を作製し、同様にして諸特性を評価した。結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
*表4中の各成分の配合量の単位は質量部である。
 本発明の導電性ペースト及び導電膜は、例えば、太陽電池セルの集電電極、チップ型電子部品の外部電極、RFID、電磁波シールド、振動子接着、メンブレンスイッチ、エレクトロルミネセンス等の電極又は電気配線用途などに好適に用いられる。

 

Claims (8)

  1.  銀粉と黒鉛粉を含むフィラー、ポリマー、及び溶剤を含有する導電性ペーストであって、
     前記黒鉛粉の熱重量・示差熱分析法による1%減量開始温度が、300℃以上640℃以下であることを特徴とする導電性ペースト。
  2.  前記黒鉛粉の熱重量・示差熱分析法による1%減量開始温度が、500℃以上600℃以下である請求項1に記載の導電性ペースト。
  3.  前記黒鉛粉が、グラフェン、球状黒鉛、及び鱗片状黒鉛から選択される少なくとも1種である請求項1から2のいずれかに記載の導電性ペースト。
  4.  前記黒鉛粉の含有量が、前記フィラーの全量に対して、0.1質量%以上10質量%以下である請求項1から3のいずれかに記載の導電性ペースト。
  5.  前記銀粉が、フレーク状銀粉及び球状銀粉の混合物である請求項1から4のいずれかに記載の導電性ペースト。
  6.  前記ポリマーが、エポキシ樹脂である請求項1から5のいずれかに記載の導電性ペースト。
  7.  請求項1から6のいずれかに記載の導電性ペーストから形成されたことを特徴とする導電膜。
  8.  体積抵抗率が100μΩ・cm以下であり、かつ熱伝導率が10W/m・K以上である請求項7に記載の導電膜。
PCT/JP2016/078101 2015-09-30 2016-09-23 導電性ペースト及び導電膜 WO2017057201A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680056946.7A CN108140443B (zh) 2015-09-30 2016-09-23 导电浆料和导电膜
KR1020187011412A KR102117653B1 (ko) 2015-09-30 2016-09-23 도전성 페이스트 및 도전막
US15/763,334 US20180308603A1 (en) 2015-09-30 2016-09-23 Conductive Paste and Conductive Film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-194516 2015-09-30
JP2015194516 2015-09-30
JP2015232404A JP6318137B2 (ja) 2015-09-30 2015-11-27 導電性ペースト及び導電膜
JP2015-232404 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017057201A1 true WO2017057201A1 (ja) 2017-04-06

Family

ID=58423461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078101 WO2017057201A1 (ja) 2015-09-30 2016-09-23 導電性ペースト及び導電膜

Country Status (1)

Country Link
WO (1) WO2017057201A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331437A (zh) * 2017-07-17 2017-11-07 南通强生光电科技有限公司 石墨烯低温固化银浆料组合物及其制备方法
JP2021107475A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物、及び電子部品装置の製造方法
JP2021107476A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194659A (ja) * 1996-01-11 1997-07-29 E I Du Pont De Nemours & Co 可撓性厚膜導電体組成物
WO2005041213A1 (ja) * 2003-10-27 2005-05-06 Toyo Boseki Kabushiki Kaisha 導電性ペースト
JP2011034869A (ja) * 2009-08-04 2011-02-17 Jsr Corp 導電性ペースト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194659A (ja) * 1996-01-11 1997-07-29 E I Du Pont De Nemours & Co 可撓性厚膜導電体組成物
WO2005041213A1 (ja) * 2003-10-27 2005-05-06 Toyo Boseki Kabushiki Kaisha 導電性ペースト
JP2011034869A (ja) * 2009-08-04 2011-02-17 Jsr Corp 導電性ペースト

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331437A (zh) * 2017-07-17 2017-11-07 南通强生光电科技有限公司 石墨烯低温固化银浆料组合物及其制备方法
JP2021107475A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物、及び電子部品装置の製造方法
JP2021107476A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物
JP7369031B2 (ja) 2019-12-27 2023-10-25 京セラ株式会社 ペースト組成物、及び電子部品装置の製造方法

Similar Documents

Publication Publication Date Title
JP6318137B2 (ja) 導電性ペースト及び導電膜
JP4832615B1 (ja) 低温焼結性導電性ペーストおよびそれを用いた導電膜と導電膜の形成方法
WO2017033911A1 (ja) 低温焼結性に優れる金属ペースト及び該金属ペーストの製造方法
WO2013161966A1 (ja) 導電性組成物
JP7167262B2 (ja) 導電性ペースト組成物およびそれによって製造された半導体デバイス
WO2016017600A1 (ja) 銀粉及びその製造方法、並びに導電性ペースト
WO2016017599A1 (ja) 銀粉及びその製造方法、並びに導電性ペースト
JP6423508B2 (ja) 銀粉の製造方法
JP2018040056A (ja) 銀被覆合金粉末、導電性ペースト、電子部品及び電気装置
WO2017057201A1 (ja) 導電性ペースト及び導電膜
CN108367927A (zh) 银被覆石墨粒子、银被覆石墨混合粉及其制造方法和导电浆料
WO2014054618A1 (ja) 銀ハイブリッド銅粉とその製造法、該銀ハイブリッド銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路
TW201736496A (zh) 樹脂組成物、導電性銅膏、以及半導體裝置
TWI567756B (zh) 柔性基板用導電性糊組合物及其製備方法
JP2017084587A (ja) 酸化銀泥漿、導電性ペースト及びその製造方法
KR20120004122A (ko) 전도성 페이스트 및 이를 이용한 전극
WO2017033889A1 (ja) 銀粉およびその製造方法、ならびに導電性ペースト
CN103219065A (zh) 一种基于碳纳米管-纳米铜粉的环保型导电浆料
KR102495578B1 (ko) 은 미립자 분산액
JPWO2012060284A1 (ja) 低温焼結性導電性ペーストおよびそれを用いた導電膜と導電膜の形成方法
JP6681437B2 (ja) 導電性ペースト
WO2019009146A1 (ja) 導電性ペースト
EP3872143A1 (en) Conductive ink, use thereof, and method for producing electronic circuit using the same
JP7276052B2 (ja) 導電性組成物
JP6357599B1 (ja) 導電性ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763334

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011412

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16851375

Country of ref document: EP

Kind code of ref document: A1