WO2017056994A1 - Thermosetting composition, sheet, and method for manufacturing device - Google Patents

Thermosetting composition, sheet, and method for manufacturing device Download PDF

Info

Publication number
WO2017056994A1
WO2017056994A1 PCT/JP2016/077116 JP2016077116W WO2017056994A1 WO 2017056994 A1 WO2017056994 A1 WO 2017056994A1 JP 2016077116 W JP2016077116 W JP 2016077116W WO 2017056994 A1 WO2017056994 A1 WO 2017056994A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting composition
sheet
electronic component
weight
composite
Prior art date
Application number
PCT/JP2016/077116
Other languages
French (fr)
Japanese (ja)
Inventor
豪士 志賀
智絵 飯野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to SG11201802323SA priority Critical patent/SG11201802323SA/en
Priority to CN201680052778.4A priority patent/CN108026354A/en
Publication of WO2017056994A1 publication Critical patent/WO2017056994A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate

Definitions

  • the present invention relates to a thermosetting composition, a sheet, and a method for producing an apparatus.
  • the step of placing a sheet-like thermosetting composition on the electronic component, the step of softening the thermosetting composition, covering the electronic component with the thermosetting composition, and the electronic component with the thermosetting composition can be manufactured by a method including a step of causing curing of the thermosetting composition by heating the composite formed by the covering step.
  • thermosetting composition When the electronic component is covered with the thermosetting composition, gas may be trapped between the electronic component and the thermosetting composition. The gas moves, and irregularities and pinholes may be generated on the surface of the thermosetting composition after curing.
  • thermosetting composition may be generated on the surface of the thermosetting composition after curing.
  • the present invention solves the above-mentioned problems, and provides a thermosetting composition that can reduce the gas trapped between the electronic component and the thermosetting composition and can suppress the generation of flow marks. With the goal. Another object of the present invention is to provide a sheet that can reduce the gas trapped between the electronic component and the thermosetting composition and can suppress the generation of flow marks. It is another object of the present invention to provide a method for manufacturing a device having few internal voids and irregularities / pinholes / flow marks.
  • the present invention relates to a sheet-like thermosetting composition containing a phenol resin, an inorganic filler, and silicone-based particles.
  • thermosetting composition of the present invention the gas trapped between the electronic component and the thermosetting composition can be reduced. This is because the thermosetting composition has a high viscosity when the electronic component is covered with the thermosetting composition.
  • thermosetting composition of the present invention the generation of flow marks can also be suppressed. This is probably because the silicone particles suppress the gloss of the package surface.
  • the silicone-based particles have an epoxy group. This is because the strength of the thermosetting composition after curing can be increased.
  • the phenolic resin will bind to the silicone particles and bind the silicone rubber particles.
  • the present invention also relates to a sheet containing the thermosetting composition. Both sides of the thermosetting composition are defined by a first surface and a second surface facing the first surface.
  • the sheet of the present invention further includes a first separator provided on the first surface and a second separator provided on the second surface.
  • the present invention also relates to a device manufacturing method.
  • the manufacturing method of the apparatus of this invention includes the process of arrange
  • the composite includes an electronic component and a thermosetting composition that covers the electronic component.
  • the step of forming the composite includes a step of causing softening of the thermosetting composition.
  • the manufacturing method of the apparatus of this invention further includes the process of raise
  • FIG. 3 is a schematic cross-sectional view of a sheet according to Embodiment 1.
  • FIG. It is a schematic sectional drawing of the manufacturing process of an apparatus. It is a schematic sectional drawing of the manufacturing process of an apparatus. It is a schematic sectional drawing of the manufacturing process of an apparatus. It is a schematic sectional drawing of the process in the 1st manufacture example of a semiconductor device. It is a schematic sectional drawing of the process in the 1st manufacture example of a semiconductor device. It is a schematic sectional drawing of the process in the 1st manufacture example of a semiconductor device. It is a schematic sectional drawing of the process in the 2nd manufacture example of a semiconductor device. It is a schematic sectional drawing of the process in the 2nd manufacture example of a semiconductor device. It is a schematic sectional drawing of the process in the 2nd manufacture example of a semiconductor device. It is a schematic sectional drawing of the process in the 2nd manufacture example of a semiconductor device. It is a schematic sectional drawing of the process in the 2nd
  • the sheet 1 includes a sheet-like thermosetting composition 11. Both surfaces of the thermosetting composition 11 are defined by the first surface and the second surface facing the first surface.
  • the sheet 1 further includes a first separator 12 provided on the first surface. Examples of the first separator 12 include a polyethylene terephthalate (PET) film.
  • the sheet 1 further includes a second separator 13 provided on the second surface. Examples of the second separator 13 include a polyethylene terephthalate (PET) film.
  • thermosetting composition 11 examples include 100 ⁇ m and 200 ⁇ m.
  • examples of the upper limit of the thickness of the thermosetting composition 11 include 2000 ⁇ m and 1500 ⁇ m.
  • the minimum melt viscosity of the thermosetting composition 11 is preferably 100 Pa ⁇ s to 10,000 Pa ⁇ s. When it is 100 Pa ⁇ s or more, there is a tendency that the gas trapped between the electronic component and the thermosetting composition 11 is small. When the pressure is 10,000 Pa ⁇ s or less, there is a tendency that no space—an unfilled region—is generated between the electronic component and the thermosetting composition 11 during molding.
  • the thermosetting composition 11 includes silicone particles.
  • the silicone-based particles are preferably silicone elastomer particles.
  • the silicone-based particles have a group that reacts with at least one of a phenol resin and an epoxy resin.
  • the group that reacts with at least one of a phenol resin and an epoxy resin include an epoxy group.
  • the shape of the silicone-based particles is preferably spherical.
  • the average particle size of the silicone-based particles is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. Examples of the lower limit of the average particle diameter of the silicone particles include 0.5 ⁇ m and 1 ⁇ m.
  • the total weight of the silicone-based particles is preferably 0.5% or more, more preferably 1%. That's it.
  • the total weight of the silicone-based particles is preferably 50% or less, more preferably 45% or less. is there. If it exceeds 50%, a space—an unfilled region—may remain between the electronic component and the thermosetting composition 11.
  • the thermosetting composition 11 includes an epoxy resin that is liquid at 25 ° C. and an epoxy resin that is solid at 25 ° C. By blending a liquid epoxy resin at 25 ° C., the thermosetting composition 11 can be produced by kneading extrusion using a roll kneader or the like.
  • the epochine equivalent of the epoxy resin that is liquid at 25 ° C. is preferably 100 g / eq or more, more preferably 120 g / eq or more.
  • the epoxy equivalent of the epoxy resin that is liquid at 25 ° C. is preferably 500 g / eq or less, more preferably 300 g / eq or less.
  • the epoxy equivalent can be measured by the method defined in JIS K 7236-2009.
  • Examples of the epoxy resin that is liquid at 25 ° C. include bisphenol A type epoxy resin.
  • Examples of the epoxy resin solid at 25 ° C. include an epoxy resin having an epoxy equivalent of 100 to 180 g / eq, an epoxy resin having an epoxy equivalent of 200 g / eq or more, and the like.
  • the thermosetting composition 11 preferably contains an epoxy resin having an epoxy equivalent of 100 to 180 g / eq and an epoxy resin having an epoxy equivalent of 200 g / eq or more. By blending an epoxy resin having an epoxy equivalent of 100 to 180 g / eq, the glass transition temperature of the thermosetting composition 11 after thermosetting can be increased.
  • Examples of the epoxy resin having an epoxy equivalent of 200 g / eq or more include a dicyclopentadiene type epoxy resin.
  • the total weight of the epoxy resin is preferably 20% or more.
  • the total weight of the epoxy resin is preferably 80% or less.
  • the thermosetting composition 11 contains a phenol resin.
  • the phenol resin include a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolac resin, and a resole resin. These phenolic resins may be used alone or in combination of two or more.
  • the hydroxyl equivalent of the phenol resin is preferably 70 to 250.
  • the softening point of the phenol resin is preferably 50 to 110 ° C.
  • the blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
  • the total weight of the phenol resin is preferably 5% or more, more preferably 10% or more.
  • the total weight of the phenol resin is preferably 60% or less, more preferably 40% or less.
  • the thermosetting composition 11 contains an inorganic filler.
  • the inorganic filler include quartz glass, talc, silica, alumina, boron nitride, aluminum nitride, and silicon carbide.
  • silica is preferable because the thermal expansion coefficient can be satisfactorily reduced.
  • fused silica is preferred, and spherical fused silica is more preferred.
  • Alumina, boron nitride, and aluminum nitride are preferred because of their high thermal conductivity.
  • the thermosetting composition 11 can contain one kind of inorganic filler. Two or more inorganic fillers can also be included.
  • the average particle diameter of the inorganic filler is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the average particle diameter of the filler is preferably 30 ⁇ m or less.
  • the average particle diameter can be derived by, for example, using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the content of the inorganic filler in the thermosetting composition 11 is 55% by volume or more, more preferably 60% by volume or more, and still more preferably 70% by volume or more. By increasing the content of the inorganic filler, it is possible to bring the linear expansion coefficient of the cured thermosetting composition 11 closer to the linear expansion coefficient of the substrate or the like.
  • the content of the inorganic filler in the thermosetting composition 11 is preferably 85% by volume or less, more preferably 80% by volume or less. It is easy to shape
  • the content of the inorganic filler can be explained in units of “% by weight”. Typically, the silica content will be described in terms of “% by weight”.
  • the content of silica in the thermosetting composition 11 is preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and further preferably 85% by weight or more.
  • the upper limit of the content of silica in the thermosetting composition 11 is, for example, 95% by weight.
  • the content of alumina is also described in “% by weight”.
  • the content of alumina in the thermosetting composition 11 is preferably 72% by weight or more, more preferably 80% by weight or more, and further preferably 87% by weight or more.
  • the content of alumina in the thermosetting composition 11 is preferably 95% by weight or less, more preferably 93% by weight or less.
  • the thermosetting composition 11 contains a silane coupling agent.
  • silane coupling agents include 3-glycidoxypropyltrimethoxysilane.
  • the thermosetting composition 11 includes a curing accelerator.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin.
  • 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11-Z) ), 2-heptadecylimidazole (trade name; C17Z), 1,2-dimethylimidazole (trade name; 1.2 DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (product) Name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1-benzyl-2-methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-cyanoethyl 2-Undecylim
  • 2-phenyl-4,5-dihydroxymethylimidazole 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl) is preferable because the progress of the curing reaction at the kneading temperature can be suppressed.
  • -(1 ')]-Ethyl-s-triazine is more preferred, and 2-phenyl-4,5-dihydroxymethylimidazole is more preferred.
  • the content of the curing accelerator is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more, further preferably 0.8 parts by weight or more with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin. It is.
  • the content of the curing accelerator is preferably 5 parts by weight or less, more preferably 2 parts by weight or less with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
  • thermosetting composition 11 contains carbon black.
  • the thermosetting composition 11 can be manufactured, for example, by a method including a step of forming a mixture obtained by kneading a phenol resin, an inorganic filler, silicone-based particles and the like into a sheet shape.
  • the upper limit of the temperature in kneading is, for example, 140 ° C or 130 ° C.
  • the lower limit of the temperature is, for example, 30 ° C. or 50 ° C.
  • the kneading time is preferably 1 to 30 minutes. It is preferable to knead under reduced pressure conditions (under reduced pressure atmosphere).
  • the pressure in the reduced pressure atmosphere is, for example, 1 ⁇ 10 ⁇ 4 to 0.1 kg / cm 2 .
  • thermosetting composition 11 phenol resin, inorganic filler, silicone particles, etc.
  • a solvent for preparing a varnish
  • this varnish is applied onto a support, and a coating film
  • the thermosetting composition 11 can also be manufactured by drying.
  • the solvent include methyl ethyl ketone, ethyl acetate, toluene and the like.
  • the thermosetting composition 11 can be used for sealing electronic components.
  • the electronic component include a sensor, a MEMS (Micro Electro Mechanical Systems), a SAW (Surface Acoustic Wave) chip, a semiconductor element, a capacitor, and a resistor.
  • the sensor include a pressure sensor and a vibration sensor.
  • the semiconductor element include a semiconductor chip, an IC (integrated circuit), and a transistor.
  • the thermosetting composition 11 can be particularly preferably used for sealing a semiconductor element.
  • the device manufacturing method includes a step of disposing the thermosetting composition 11 on the electronic component 21. As shown in FIG. 3, the device manufacturing method further includes a step of forming the electronic component 21 and the composite 2 including the thermosetting composition 11 covering the electronic component 21. The device manufacturing method further includes a step of causing the thermosetting composition 11 to cure by heating the composite 2.
  • the device manufacturing method further includes a step of peeling the first separator 12 from the thermosetting composition 11 before the step of disposing the thermosetting composition 11 on the electronic component 21.
  • the step of disposing the thermosetting composition 11 on the electronic component 21 specifically includes the thermosetting composition 11 and the second separator 13 provided on the second surface of the thermosetting composition 11. This is a step of disposing the containing sheet on the electronic component 21.
  • the process of forming the composite 2 includes a step of causing the thermosetting composition 11 to soften.
  • the thermosetting composition 11 is preferably heated at 40 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher.
  • the thermosetting composition 11 is preferably heated at 150 ° C. or lower, more preferably 100 ° C. or lower, and further preferably 90 ° C. or lower.
  • the process of forming the composite 2 further includes a step of covering the electronic component 21 with the thermosetting composition 11.
  • the step of covering the electronic component 21 with the thermosetting composition 11 is a step of embedding the electronic component 21 in the thermosetting composition 11 under a reduced pressure atmosphere.
  • the reduced pressure atmosphere is, for example, an atmosphere of 0.1 kPa to 5 kPa, an atmosphere of 0.1 Pa to 100 Pa, or the like.
  • the composite 2 is preferably heated at 100 ° C. or higher, more preferably 120 ° C. or higher.
  • the composite 2 is preferably heated at 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the composite 2 after the step of causing the thermosetting composition 11 to cure includes an electronic component 21 and a cured thermosetting composition 31 that covers the electronic component 21.
  • the device manufacturing method includes a step of forming a wiring.
  • the laminated body 101 includes a temporary fixing body 141, a thermosetting composition 11 disposed on the temporary fixing body 141, and a second separator 13 disposed on the thermosetting composition 11. Including.
  • the laminate 101 is disposed between the lower heating plate 161 and the upper heating plate 162.
  • the temporarily fixed body 141 includes a support plate 142, an adhesive layer 143 disposed on the support plate 142, and a semiconductor chip 121 fixed to the adhesive layer 143.
  • Examples of the material of the pressure-sensitive adhesive layer 143 include a heat-peelable pressure-sensitive adhesive such as a heat-foamable pressure-sensitive adhesive.
  • the chip composite 102 is formed by heat-pressing the laminated body 101 in a reduced pressure atmosphere by a parallel plate method using a lower heating plate 161 and an upper heating plate 162.
  • the chip composite 102 includes a semiconductor chip 121 and the thermosetting composition 11 that covers the semiconductor chip 121.
  • the chip composite 102 is in contact with the adhesive layer 143.
  • the chip composite 102 is in contact with the second separator 13.
  • the second separator 13 is peeled from the chip composite 102. Curing of the thermosetting composition 11 occurs.
  • the pressure-sensitive adhesive layer 143 is heated, and the chip composite 102 is peeled from the pressure-sensitive adhesive layer 143.
  • wirings 171 and the like are formed. After the wiring 171 is formed, the chip composite 102 is diced. The semiconductor device is obtained by the above procedure.
  • the laminated structure 201 includes a mounting wafer 241, a thermosetting composition 11 disposed on the mounting wafer 241, and a second separator 13 disposed on the thermosetting composition 11. including.
  • the laminated structure 201 is disposed between the lower heating plate 261 and the upper heating plate 262.
  • the mounting wafer 241 includes a semiconductor wafer 242, a semiconductor chip 221, and an underfill material 243 sandwiched between the semiconductor wafer 242 and the semiconductor chip 221.
  • the semiconductor wafer 242 has electrodes.
  • a wafer composite 202 is formed by hot-pressing the laminated structure 201 by a parallel plate method using a lower heating plate 261 and an upper heating plate 262.
  • the wafer composite 202 includes a semiconductor wafer 242, a semiconductor chip 221, an underfill material 243 sandwiched between the semiconductor wafer 242 and the semiconductor chip 221, and the thermosetting composition 11 that covers the semiconductor chip 221.
  • Wafer composite 202 is in contact with second separator 13.
  • the second separator 13 is peeled from the wafer composite 202. Curing of the thermosetting composition 11 occurs. As shown in FIG. 10, the wafer composite 202 is ground. As shown in FIG. 11, wirings 271 and the like are formed. After forming the wiring 271 and the like, the wafer composite 202 is diced. The semiconductor device is obtained by the above procedure.
  • thermosetting composition 11 has a multilayer structure having a plurality of layers.
  • Epoxy resin 1 EPPN-501HY (Epokin equivalent 162 g / eq. To 172 g / eq. Epoxy resin having a softening point of 51 ° C. to 57 ° C.) manufactured by Nippon Kayaku Co., Ltd.
  • Epoxy resin 2 jER828 (Epkin equivalent 184 g / eq. To 194 g / eq., Bisphenol A type epoxy resin liquid at 25 ° C.)
  • Epoxy resin 3 HP7200 (dicyclopentadiene type epoxy resin having an epkin equivalent of 254 g / eq.
  • Silicone particles EP-2601 manufactured by Toray Dow Corning (spherical silicone elastomer particles having an epoxy group and an average particle diameter of 2 ⁇ m) Carbon black: # 20 manufactured by Mitsubishi Chemical Catalyst: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Silane coupling agent KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • thermosity A circular sample having a diameter of 25 mm was obtained by hollowing out the resin sheet.
  • the melt viscosity of the sample was measured using a viscoelasticity measuring device ARES (manufactured by Rheometrics Scientific). Specifically, the sample was sandwiched between parallel plates having a plate diameter of 25 mm, and the melt viscosity was measured at a heating rate of 10 ° C./min, a strain of 10%, and a frequency of 1 Hz. The lowest melt viscosity at 50 ° C. to 150 ° C. was defined as the minimum melt viscosity.
  • a laminated body was formed by laminating a disk-shaped resin on a “wafer with chips”. By pressing the laminated body with a flat plate pressing apparatus, a mirror wafer, 150 silicon chips with adhesive sheet fixed to the mirror wafer, and a protective resin with a thickness of 700 ⁇ m covering 150 silicon chips with adhesive sheet are provided. A structure was obtained.
  • the protective resin was cured by heating the structure at 180 ° C. for 2 hours using a hot air circulating dryer.
  • a hot air circulating dryer When at least one of the unevenness having a diameter of 1 mm or more and the pinhole having a diameter of 0.5 mm or more is on the surface of the protective resin after curing, it was determined as x. In the case where neither the unevenness having a diameter of 1 mm or more and the pinhole having a diameter of 0.5 mm or more were present, it was judged as “good”.
  • the protective resin was cured by heating the structure at 180 ° C. for 2 hours using a hot air circulating dryer. With respect to the heated structure, the internal voids and the unfilled region-internal space- were observed with an ultrasonic imaging device (FS200II manufactured by Hitachi Finetech). Observation was performed in the reflection mode using a 25 MHz probe. When there was at least either an internal void of 0.5 mm or more or an unfilled region of 0.5 mm or more, it was determined as x. When there was neither a void of 0.5 mm or more and an unfilled region of 0.5 mm or more, it was determined as ⁇ .
  • the protective resin was cured by heating the structure at 180 ° C. for 2 hours using a hot air circulating dryer.
  • the surface (hymen) of the protective resin after curing was visually observed. When a pattern was recognized, it determined with x. When the pattern was not recognized, it was judged as “good”.

Abstract

Provided are a thermosetting composition and a sheet, whereby gas trapped between an electronic component and the thermosetting composition can be decreased and the occurrence of flow marks can be suppressed. Provided is a method for manufacturing a device having few internal voids and minimal unevenness/pinholing/flow marks. The present invention relates to a sheet-shaped thermosetting composition including a phenol resin, an inorganic filler, and silicone-based particles. The present invention relates to a sheet including a thermosetting composition. The present invention relates to a method for manufacturing a device including a step for arranging a thermosetting composition on an electronic component, a step for forming a complex, and a step for causing curing of the thermosetting composition by heating the complex.

Description

熱硬化性組成物およびシート・装置の製造方法Thermosetting composition and sheet / device manufacturing method
 本発明は、熱硬化性組成物とシートと装置の製造方法とに関する。 The present invention relates to a thermosetting composition, a sheet, and a method for producing an apparatus.
 電子部品上にシート状の熱硬化性組成物を配置する工程と、熱硬化性組成物の軟化を起こし、熱硬化性組成物で電子部品を覆う工程と、熱硬化性組成物で電子部品を覆う工程により形成された複合体を加熱することにより熱硬化性組成物の硬化を起こす工程とを含む方法により装置を製造できる。 The step of placing a sheet-like thermosetting composition on the electronic component, the step of softening the thermosetting composition, covering the electronic component with the thermosetting composition, and the electronic component with the thermosetting composition The apparatus can be manufactured by a method including a step of causing curing of the thermosetting composition by heating the composite formed by the covering step.
特開2006-19714号公報JP 2006-19714 A
 熱硬化性組成物で電子部品を覆うときに電子部品と熱硬化性組成物との間に気体が閉じ込められることがある。気体は移動し、硬化後における熱硬化性組成物の表面に凹凸やピンホールが発生することがある。 When the electronic component is covered with the thermosetting composition, gas may be trapped between the electronic component and the thermosetting composition. The gas moves, and irregularities and pinholes may be generated on the surface of the thermosetting composition after curing.
 いっぽう、硬化後における熱硬化性組成物の表面にフローマークが発生することもある。 On the other hand, a flow mark may be generated on the surface of the thermosetting composition after curing.
 本発明は前記課題を解決し、電子部品と熱硬化性組成物との間に閉じ込められる気体を減らすことが可能で、フローマークの発生を抑制することができる熱硬化性組成物を提供することを目的とする。本発明はまた、電子部品と熱硬化性組成物との間に閉じ込められる気体を減らすことが可能で、フローマークの発生を抑制することができるシートを提供することを目的とする。本発明はまた、内部ボイドおよび凹凸・ピンホール・フローマークが少ない装置を製造するための方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and provides a thermosetting composition that can reduce the gas trapped between the electronic component and the thermosetting composition and can suppress the generation of flow marks. With the goal. Another object of the present invention is to provide a sheet that can reduce the gas trapped between the electronic component and the thermosetting composition and can suppress the generation of flow marks. It is another object of the present invention to provide a method for manufacturing a device having few internal voids and irregularities / pinholes / flow marks.
 本発明は、フェノール樹脂と無機充填剤とシリコーン系粒子とを含む、シート状の熱硬化性組成物に関する。本発明の熱硬化性組成物により、電子部品と熱硬化性組成物との間に閉じ込められる気体を減らすことができる。熱硬化性組成物で電子部品を覆うときの熱硬化性組成物の粘度が高いからだろう。本発明の熱硬化性組成物により、フローマークの発生を抑制することもできる。シリコーン系粒子がパッケージ表面の艶を抑えるからだろう。 The present invention relates to a sheet-like thermosetting composition containing a phenol resin, an inorganic filler, and silicone-based particles. With the thermosetting composition of the present invention, the gas trapped between the electronic component and the thermosetting composition can be reduced. This is because the thermosetting composition has a high viscosity when the electronic component is covered with the thermosetting composition. With the thermosetting composition of the present invention, the generation of flow marks can also be suppressed. This is probably because the silicone particles suppress the gloss of the package surface.
 シリコーン系粒子がエポキシ基を有することが好ましい。硬化後の熱硬化性組成物の強度を高められるからである。フェノール樹脂がシリコーン系粒子と結合し、シリコーンゴム粒子を拘束するのだろう。 It is preferable that the silicone-based particles have an epoxy group. This is because the strength of the thermosetting composition after curing can be increased. The phenolic resin will bind to the silicone particles and bind the silicone rubber particles.
 本発明はまた、熱硬化性組成物を含むシートに関する。熱硬化性組成物は、第1面と第1面に対向した第2面とで両面が定義される。本発明のシートは、第1面上に設けられた第1セパレータと、第2面上に設けられた第2セパレータとをさらに含む。 The present invention also relates to a sheet containing the thermosetting composition. Both sides of the thermosetting composition are defined by a first surface and a second surface facing the first surface. The sheet of the present invention further includes a first separator provided on the first surface and a second separator provided on the second surface.
 本発明はまた、装置の製造方法に関する。本発明の装置の製造方法は、熱硬化性組成物を電子部品上に配置する工程と、複合体を形成する工程とを含む。複合体は、電子部品および電子部品を覆う熱硬化性組成物を含む。複合体を形成する工程は、熱硬化性組成物の軟化を起こすステップを含む。本発明の装置の製造方法は、複合体を加熱することにより熱硬化性組成物の硬化を起こす工程をさらに含む。 The present invention also relates to a device manufacturing method. The manufacturing method of the apparatus of this invention includes the process of arrange | positioning a thermosetting composition on an electronic component, and the process of forming a composite_body | complex. The composite includes an electronic component and a thermosetting composition that covers the electronic component. The step of forming the composite includes a step of causing softening of the thermosetting composition. The manufacturing method of the apparatus of this invention further includes the process of raise | generating the thermosetting composition by heating a composite_body | complex.
実施形態1に係るシートの概略断面図である。3 is a schematic cross-sectional view of a sheet according to Embodiment 1. FIG. 装置の製造工程の概略断面図である。It is a schematic sectional drawing of the manufacturing process of an apparatus. 装置の製造工程の概略断面図である。It is a schematic sectional drawing of the manufacturing process of an apparatus. 装置の製造工程の概略断面図である。It is a schematic sectional drawing of the manufacturing process of an apparatus. 半導体装置の第1製造例における工程の概略断面図である。It is a schematic sectional drawing of the process in the 1st manufacture example of a semiconductor device. 半導体装置の第1製造例における工程の概略断面図である。It is a schematic sectional drawing of the process in the 1st manufacture example of a semiconductor device. 半導体装置の第1製造例における工程の概略断面図である。It is a schematic sectional drawing of the process in the 1st manufacture example of a semiconductor device. 半導体装置の第2製造例における工程の概略断面図である。It is a schematic sectional drawing of the process in the 2nd manufacture example of a semiconductor device. 半導体装置の第2製造例における工程の概略断面図である。It is a schematic sectional drawing of the process in the 2nd manufacture example of a semiconductor device. 半導体装置の第2製造例における工程の概略断面図である。It is a schematic sectional drawing of the process in the 2nd manufacture example of a semiconductor device. 半導体装置の第2製造例における工程の概略断面図である。It is a schematic sectional drawing of the process in the 2nd manufacture example of a semiconductor device.
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited only to these embodiments.
 [実施形態1]
 (シート1)
 図1に示すように、シート状の熱硬化性組成物11をシート1は含む。第1面と第1面に対向した第2面とで熱硬化性組成物11の両面は定義される。シート1は、第1面上に設けられた第1セパレータ12をさらに含む。第1セパレータ12としてポリエチレンテレフタレート(PET)フィルムなどを挙げることができる。シート1は、第2面上に設けられた第2セパレータ13をさらに含む。第2セパレータ13としてポリエチレンテレフタレート(PET)フィルムなどを挙げることができる。
[Embodiment 1]
(Sheet 1)
As shown in FIG. 1, the sheet 1 includes a sheet-like thermosetting composition 11. Both surfaces of the thermosetting composition 11 are defined by the first surface and the second surface facing the first surface. The sheet 1 further includes a first separator 12 provided on the first surface. Examples of the first separator 12 include a polyethylene terephthalate (PET) film. The sheet 1 further includes a second separator 13 provided on the second surface. Examples of the second separator 13 include a polyethylene terephthalate (PET) film.
 熱硬化性組成物11の厚みの下限として100μm、200μmなどを例示できる。熱硬化性組成物11の厚みの上限として2000μm、1500μmなどを例示できる。 Examples of the lower limit of the thickness of the thermosetting composition 11 include 100 μm and 200 μm. Examples of the upper limit of the thickness of the thermosetting composition 11 include 2000 μm and 1500 μm.
 熱硬化性組成物11の最低溶融粘度は好ましくは100Pa・s~10000Pa・sである。100Pa・s以上であると、電子部品と熱硬化性組成物11との間に閉じ込められる気体が少ない傾向がある。10000Pa・s以下であると、成型時に電子部品と熱硬化性組成物11との間に空間―未充填の領域―が生じない傾向がある。 The minimum melt viscosity of the thermosetting composition 11 is preferably 100 Pa · s to 10,000 Pa · s. When it is 100 Pa · s or more, there is a tendency that the gas trapped between the electronic component and the thermosetting composition 11 is small. When the pressure is 10,000 Pa · s or less, there is a tendency that no space—an unfilled region—is generated between the electronic component and the thermosetting composition 11 during molding.
 熱硬化性組成物11はシリコーン系粒子を含む。シリコーン系粒子は、好ましくはシリコーンエラストマー粒子である。 The thermosetting composition 11 includes silicone particles. The silicone-based particles are preferably silicone elastomer particles.
 フェノール樹脂またはエポキシ樹脂の少なくともどちらかと反応する基をシリコーン系粒子が有することが好ましい。フェノール樹脂またはエポキシ樹脂の少なくともどちらかと反応する基としてエポキシ基などを挙げることができる。 It is preferable that the silicone-based particles have a group that reacts with at least one of a phenol resin and an epoxy resin. Examples of the group that reacts with at least one of a phenol resin and an epoxy resin include an epoxy group.
 シリコーン系粒子の形状は、好ましくは球状である。シリコーン系粒子の平均粒子径は、好ましくは20μm以下、より好ましくは10μm以下である。シリコーン系粒子の平均粒子径の下限として0.5μm、1μmなどを例示できる。 The shape of the silicone-based particles is preferably spherical. The average particle size of the silicone-based particles is preferably 20 μm or less, more preferably 10 μm or less. Examples of the lower limit of the average particle diameter of the silicone particles include 0.5 μm and 1 μm.
 熱硬化性組成物11の重量から無機充填剤の合計重量を減じることにより求められた重量を100%としたとき、シリコーン系粒子の合計重量は好ましくは0.5%以上、より好ましくは1%以上である。熱硬化性組成物11の重量から無機充填剤の合計重量を減じることにより求められた重量を100%としたとき、シリコーン系粒子の合計重量は好ましくは50%以下、より好ましくは45%以下である。50%をこえると、電子部品と熱硬化性組成物11との間に空間―未充填の領域―が残ることがある。 When the weight obtained by subtracting the total weight of the inorganic filler from the weight of the thermosetting composition 11 is 100%, the total weight of the silicone-based particles is preferably 0.5% or more, more preferably 1%. That's it. When the weight obtained by subtracting the total weight of the inorganic filler from the weight of the thermosetting composition 11 is defined as 100%, the total weight of the silicone-based particles is preferably 50% or less, more preferably 45% or less. is there. If it exceeds 50%, a space—an unfilled region—may remain between the electronic component and the thermosetting composition 11.
 25℃で液状のエポキシ樹脂と25℃で固形のエポキシ樹脂とを熱硬化性組成物11が含む。25℃で液状のエポキシ樹脂を配合することにより、ロール混練機などを用いた混練押出による熱硬化性組成物11の製造が可能となる。 The thermosetting composition 11 includes an epoxy resin that is liquid at 25 ° C. and an epoxy resin that is solid at 25 ° C. By blending a liquid epoxy resin at 25 ° C., the thermosetting composition 11 can be produced by kneading extrusion using a roll kneader or the like.
 25℃で液状をなすエポキシ樹脂のエポキン当量は、好ましくは100g/eq以上、より好ましくは120g/eq以上である。25℃で液状をなすエポキシ樹脂のエポキシ当量は、好ましくは500g/eq以下、より好ましくは300g/eq以下である。エポキシ当量は、JIS K 7236-2009に規定された方法で測定できる。25℃で液状のエポキシ樹脂としてビスフェノールA型エポキシ樹脂などを挙げることができる。 The epochine equivalent of the epoxy resin that is liquid at 25 ° C. is preferably 100 g / eq or more, more preferably 120 g / eq or more. The epoxy equivalent of the epoxy resin that is liquid at 25 ° C. is preferably 500 g / eq or less, more preferably 300 g / eq or less. The epoxy equivalent can be measured by the method defined in JIS K 7236-2009. Examples of the epoxy resin that is liquid at 25 ° C. include bisphenol A type epoxy resin.
 25℃で固形のエポキシ樹脂としてエポキシ当量100~180g/eqのエポキシ樹脂、エポキシ当量200g/eq以上のエポキシ樹脂などを挙げることができる。エポキシ当量100~180g/eqのエポキシ樹脂とエポキシ当量200g/eq以上のエポキシ樹脂とを熱硬化性組成物11が好ましくは含む。エポキシ当量100~180g/eqのエポキシ樹脂を配合することにより、熱硬化後における熱硬化性組成物11のガラス転移温度を上げることができる。エポキシ当量200g/eq以上のエポキシ樹脂としてジシクロペンタジエン型エポキシ樹脂などを挙げることができる。 Examples of the epoxy resin solid at 25 ° C. include an epoxy resin having an epoxy equivalent of 100 to 180 g / eq, an epoxy resin having an epoxy equivalent of 200 g / eq or more, and the like. The thermosetting composition 11 preferably contains an epoxy resin having an epoxy equivalent of 100 to 180 g / eq and an epoxy resin having an epoxy equivalent of 200 g / eq or more. By blending an epoxy resin having an epoxy equivalent of 100 to 180 g / eq, the glass transition temperature of the thermosetting composition 11 after thermosetting can be increased. Examples of the epoxy resin having an epoxy equivalent of 200 g / eq or more include a dicyclopentadiene type epoxy resin.
 熱硬化性組成物11の重量から無機充填剤の合計重量を減じることにより求められた重量を100%としたとき、エポキシ樹脂の合計重量は好ましくは20%以上である。熱硬化性組成物11の重量から無機充填剤の合計重量を減じることにより求められた重量を100%としたとき、エポキシ樹脂の合計重量は好ましくは80%以下である。 When the weight obtained by subtracting the total weight of the inorganic filler from the weight of the thermosetting composition 11 is taken as 100%, the total weight of the epoxy resin is preferably 20% or more. When the weight obtained by subtracting the total weight of the inorganic filler from the weight of the thermosetting composition 11 is 100%, the total weight of the epoxy resin is preferably 80% or less.
 熱硬化性組成物11はフェノール樹脂を含む。フェノール樹脂としてフェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などを挙げることができる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。フェノール樹脂の水酸基当量は好ましくは70~250である。フェノール樹脂の軟化点は好ましくは50~110℃である。 The thermosetting composition 11 contains a phenol resin. Examples of the phenol resin include a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolac resin, and a resole resin. These phenolic resins may be used alone or in combination of two or more. The hydroxyl equivalent of the phenol resin is preferably 70 to 250. The softening point of the phenol resin is preferably 50 to 110 ° C.
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 The blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
 熱硬化性組成物11の重量から無機充填剤の合計重量を減じることにより求められた重量を100%としたとき、フェノール樹脂の合計重量は好ましくは5%以上、より好ましくは10%以上である。熱硬化性組成物11の重量から無機充填剤の合計重量を減じることにより求められた重量を100%としたとき、フェノール樹脂の合計重量は好ましくは60%以下、より好ましくは40%以下である。 When the weight obtained by subtracting the total weight of the inorganic filler from the weight of the thermosetting composition 11 is 100%, the total weight of the phenol resin is preferably 5% or more, more preferably 10% or more. . When the weight obtained by subtracting the total weight of the inorganic filler from the weight of the thermosetting composition 11 is taken as 100%, the total weight of the phenol resin is preferably 60% or less, more preferably 40% or less. .
 熱硬化性組成物11は無機充填剤を含む。無機充填剤として石英ガラス、タルク、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、炭化珪素などを挙げることができる。なかでも、熱膨張係数を良好に低減できるという理由からシリカが好ましい。流動性に優れるという理由から、溶融シリカが好ましく、球状溶融シリカがより好ましい。熱伝導率が高いという理由から、アルミナ、窒化ホウ素、窒化アルミニウムが好ましい。1種の無機充填剤を熱硬化性組成物11は含むことができる。2種以上の無機充填剤を含むこともできる。 The thermosetting composition 11 contains an inorganic filler. Examples of the inorganic filler include quartz glass, talc, silica, alumina, boron nitride, aluminum nitride, and silicon carbide. Among these, silica is preferable because the thermal expansion coefficient can be satisfactorily reduced. For reasons of excellent fluidity, fused silica is preferred, and spherical fused silica is more preferred. Alumina, boron nitride, and aluminum nitride are preferred because of their high thermal conductivity. The thermosetting composition 11 can contain one kind of inorganic filler. Two or more inorganic fillers can also be included.
 無機充填剤の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上である。フィラーの平均粒子径は、好ましくは30μm以下である。平均粒子径は、たとえば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。 The average particle diameter of the inorganic filler is preferably 0.5 μm or more, more preferably 1 μm or more. The average particle diameter of the filler is preferably 30 μm or less. The average particle diameter can be derived by, for example, using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 熱硬化性組成物11中の無機充填剤の含有量は、55体積%以上、より好ましくは60体積%以上、さらに好ましくは70体積%以上である。無機充填剤の含有量を高めることにより、硬化後の熱硬化性組成物11の線膨張係数を基板などの線膨張係数に近づけることが可能である。熱硬化性組成物11中の無機充填剤の含有量は、好ましくは85体積%以下、より好ましくは80体積%以下である。85体積%以下であると、シート状に成形しやすい。 The content of the inorganic filler in the thermosetting composition 11 is 55% by volume or more, more preferably 60% by volume or more, and still more preferably 70% by volume or more. By increasing the content of the inorganic filler, it is possible to bring the linear expansion coefficient of the cured thermosetting composition 11 closer to the linear expansion coefficient of the substrate or the like. The content of the inorganic filler in the thermosetting composition 11 is preferably 85% by volume or less, more preferably 80% by volume or less. It is easy to shape | mold into a sheet form as it is 85 volume% or less.
 無機充填剤の含有量は、「重量%」を単位としても説明できる。代表的にシリカの含有量を「重量%」で説明する。熱硬化性組成物11中のシリカの含有量は、好ましくは60重量%以上、より好ましくは70重量%以上、さらに好ましくは80重量%以上、さらに好ましくは85重量%以上である。熱硬化性組成物11中のシリカの含有量の上限はたとえば95重量%である。 The content of the inorganic filler can be explained in units of “% by weight”. Typically, the silica content will be described in terms of “% by weight”. The content of silica in the thermosetting composition 11 is preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and further preferably 85% by weight or more. The upper limit of the content of silica in the thermosetting composition 11 is, for example, 95% by weight.
 アルミナの含有量も「重量%」で説明する。熱硬化性組成物11中のアルミナの含有量は、好ましくは72重量%以上、より好ましくは80重量%以上、さらに好ましくは87重量%以上である。熱硬化性組成物11中のアルミナの含有量は、好ましくは95重量%以下、より好ましくは93重量%以下である。 The content of alumina is also described in “% by weight”. The content of alumina in the thermosetting composition 11 is preferably 72% by weight or more, more preferably 80% by weight or more, and further preferably 87% by weight or more. The content of alumina in the thermosetting composition 11 is preferably 95% by weight or less, more preferably 93% by weight or less.
 熱硬化性組成物11はシランカップリング剤を含む。シランカップリング剤として3-グリシドキシプロピルトリメトキシシランなどを挙げることができる。 The thermosetting composition 11 contains a silane coupling agent. Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane.
 熱硬化性組成物11は硬化促進剤を含む。硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、たとえば、2-メチルイミダゾール(商品名;2MZ)、2-ウンデシルイミダゾール(商品名;C11-Z)、2-ヘプタデシルイミダゾール(商品名;C17Z)、1,2-ジメチルイミダゾール(商品名;1.2DMZ)、2-エチル-4-メチルイミダゾール(商品名;2E4MZ)、2-フェニルイミダゾール(商品名;2PZ)、2-フェニル-4-メチルイミダゾール(商品名;2P4MZ)、1-ベンジル-2-メチルイミダゾール(商品名;1B2MZ)、1-ベンジル-2-フェニルイミダゾール(商品名;1B2PZ)、1-シアノエチル-2-メチルイミダゾール(商品名;2MZ-CN)、1-シアノエチル-2-ウンデシルイミダゾール(商品名;C11Z-CN)、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS-PW)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZ-A)、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;C11Z-A)、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2E4MZ-A)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MA-OK)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(商品名;2P4MHZ-PW)などのイミダゾール系硬化促進剤を挙げることができる(いずれも四国化成工業(株)製)。なかでも、混練温度における硬化反応の進行を抑えることができるという理由から、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンがより好ましく、2-フェニル-4,5-ジヒドロキシメチルイミダゾールがさらに好ましい。 The thermosetting composition 11 includes a curing accelerator. The curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin. For example, 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11-Z) ), 2-heptadecylimidazole (trade name; C17Z), 1,2-dimethylimidazole (trade name; 1.2 DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (product) Name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1-benzyl-2-methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-cyanoethyl 2-Undecylimidazole (trade name; C11Z-CN), 1-cyanoethyl-2-phenylimidazolium trimellitate (trade name; 2PZCNS-PW), 2,4-diamino-6- [2'-methylimidazolyl- (1 ′)]-Ethyl-s-triazine (trade name; 2MZ-A), 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine (trade name) C11Z-A), 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine (trade name; 2E4MZ-A), 2,4- Diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct (trade name; 2MA-OK), 2-phenyl-4,5-dihydroxymethyl ester Examples include imidazole curing accelerators such as dazole (trade name; 2PHZ-PW) and 2-phenyl-4-methyl-5-hydroxymethylimidazole (trade name; 2P4MHZ-PW). Made by Co., Ltd.). Among them, 2-phenyl-4,5-dihydroxymethylimidazole, 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl) is preferable because the progress of the curing reaction at the kneading temperature can be suppressed. -(1 ')]-Ethyl-s-triazine is more preferred, and 2-phenyl-4,5-dihydroxymethylimidazole is more preferred.
 硬化促進剤の含有量は、エポキシ樹脂およびフェノール樹脂の合計100重量部に対して、好ましくは0.2重量部以上、より好ましくは0.5重量部以上、さらに好ましくは0.8重量部以上である。硬化促進剤の含有量は、エポキシ樹脂およびフェノール樹脂の合計100重量部に対して、好ましくは5重量部以下、より好ましくは2重量部以下である。 The content of the curing accelerator is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more, further preferably 0.8 parts by weight or more with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin. It is. The content of the curing accelerator is preferably 5 parts by weight or less, more preferably 2 parts by weight or less with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
 熱硬化性組成物11はカーボンブラックを含む。 The thermosetting composition 11 contains carbon black.
 熱硬化性組成物11は、たとえば、フェノール樹脂、無機充填剤、シリコーン系粒子などを混練して得られる混合物をシート状に成形する工程を含む方法により製造できる。混練における温度の上限はたとえば140℃、130℃である。温度の下限はたとえば30℃、50℃である。混練の時間は、好ましくは1~30分である。減圧条件下(減圧雰囲気下)で混練することが好ましい。減圧雰囲気の圧力は、たとえば1×10-4~0.1kg/cmである。 The thermosetting composition 11 can be manufactured, for example, by a method including a step of forming a mixture obtained by kneading a phenol resin, an inorganic filler, silicone-based particles and the like into a sheet shape. The upper limit of the temperature in kneading is, for example, 140 ° C or 130 ° C. The lower limit of the temperature is, for example, 30 ° C. or 50 ° C. The kneading time is preferably 1 to 30 minutes. It is preferable to knead under reduced pressure conditions (under reduced pressure atmosphere). The pressure in the reduced pressure atmosphere is, for example, 1 × 10 −4 to 0.1 kg / cm 2 .
 熱硬化性組成物11を形成するための成分(フェノール樹脂、無機充填剤、シリコーン系粒子など)を溶剤に溶解または分散させてワニスを調整し、このワニスを支持体上に塗布し、塗布膜を乾燥させることにより熱硬化性組成物11を製造することもできる。溶剤としてメチルエチルケトン、酢酸エチル、トルエンなどを挙げることができる。 Components for forming the thermosetting composition 11 (phenol resin, inorganic filler, silicone particles, etc.) are dissolved or dispersed in a solvent to prepare a varnish, and this varnish is applied onto a support, and a coating film The thermosetting composition 11 can also be manufactured by drying. Examples of the solvent include methyl ethyl ketone, ethyl acetate, toluene and the like.
 熱硬化性組成物11は電子部品を封止するために使用できる。電子部品としてセンサー、MEMS(Micro Electro Mechanical Systems)、SAW(Surface Acoustic Wave)チップ、半導体素子、コンデンサ、抵抗などを挙げることができる。センサーとして圧力センサー、振動センサーなどを挙げることができる。半導体素子としては、半導体チップ、IC(集積回路)、トランジスタなどを挙げることができる。熱硬化性組成物11は半導体素子を封止するために特に好適に使用できる。 The thermosetting composition 11 can be used for sealing electronic components. Examples of the electronic component include a sensor, a MEMS (Micro Electro Mechanical Systems), a SAW (Surface Acoustic Wave) chip, a semiconductor element, a capacitor, and a resistor. Examples of the sensor include a pressure sensor and a vibration sensor. Examples of the semiconductor element include a semiconductor chip, an IC (integrated circuit), and a transistor. The thermosetting composition 11 can be particularly preferably used for sealing a semiconductor element.
 (装置の製造方法)
 図2に示すように、装置の製造方法は、熱硬化性組成物11を電子部品21上に配置する工程を含む。図3に示すように、装置の製造方法は、電子部品21および電子部品21を覆う熱硬化性組成物11を含む複合体2を形成する工程をさらに含む。装置の製造方法は、複合体2を加熱することにより熱硬化性組成物11の硬化を起こす工程をさらに含む。
(Device manufacturing method)
As shown in FIG. 2, the device manufacturing method includes a step of disposing the thermosetting composition 11 on the electronic component 21. As shown in FIG. 3, the device manufacturing method further includes a step of forming the electronic component 21 and the composite 2 including the thermosetting composition 11 covering the electronic component 21. The device manufacturing method further includes a step of causing the thermosetting composition 11 to cure by heating the composite 2.
 熱硬化性組成物11を電子部品21上に配置する工程の前に、熱硬化性組成物11から第1セパレータ12を剥離する工程を装置の製造方法はさらに含む。 The device manufacturing method further includes a step of peeling the first separator 12 from the thermosetting composition 11 before the step of disposing the thermosetting composition 11 on the electronic component 21.
 熱硬化性組成物11を電子部品21上に配置する工程は、具体的には、熱硬化性組成物11と熱硬化性組成物11の第2面上に設けられた第2セパレータ13とを含むシートを電子部品21上に配置する工程である。 The step of disposing the thermosetting composition 11 on the electronic component 21 specifically includes the thermosetting composition 11 and the second separator 13 provided on the second surface of the thermosetting composition 11. This is a step of disposing the containing sheet on the electronic component 21.
 複合体2を形成する工程は、熱硬化性組成物11の軟化を起こすステップを含む。熱硬化性組成物11の軟化を起こすステップでは、好ましくは40℃以上、より好ましくは50℃以上、さらに好ましくは60℃以上で熱硬化性組成物11を加熱する。熱硬化性組成物11の軟化を起こすステップでは、好ましくは150℃以下、より好ましくは100℃以下、さらに好ましくは90℃以下で熱硬化性組成物11を加熱する。複合体2を形成する工程は、電子部品21を熱硬化性組成物11で覆うステップをさらに含む。電子部品21を熱硬化性組成物11で覆うステップは、具体的には、減圧雰囲気下で電子部品21を熱硬化性組成物11に埋め込むステップである。減圧雰囲気は、たとえば0.1kPa~5kPaの雰囲気、0.1Pa~100Paの雰囲気などである。 The process of forming the composite 2 includes a step of causing the thermosetting composition 11 to soften. In the step of causing softening of the thermosetting composition 11, the thermosetting composition 11 is preferably heated at 40 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher. In the step of causing softening of the thermosetting composition 11, the thermosetting composition 11 is preferably heated at 150 ° C. or lower, more preferably 100 ° C. or lower, and further preferably 90 ° C. or lower. The process of forming the composite 2 further includes a step of covering the electronic component 21 with the thermosetting composition 11. Specifically, the step of covering the electronic component 21 with the thermosetting composition 11 is a step of embedding the electronic component 21 in the thermosetting composition 11 under a reduced pressure atmosphere. The reduced pressure atmosphere is, for example, an atmosphere of 0.1 kPa to 5 kPa, an atmosphere of 0.1 Pa to 100 Pa, or the like.
 熱硬化性組成物11の硬化を起こす工程では、好ましくは100℃以上、より好ましくは120℃以上で複合体2を加熱する。熱硬化性組成物11の硬化を起こす工程では、好ましくは200℃以下、より好ましくは180℃以下で複合体2を加熱する。 In the step of curing the thermosetting composition 11, the composite 2 is preferably heated at 100 ° C. or higher, more preferably 120 ° C. or higher. In the step of causing the thermosetting composition 11 to cure, the composite 2 is preferably heated at 200 ° C. or lower, more preferably 180 ° C. or lower.
 図4に示すように、熱硬化性組成物11の硬化を起こす工程後の複合体2は、電子部品21と電子部品21を覆う硬化後の熱硬化性組成物31とを含む。熱硬化性組成物11の硬化を起こす工程の後に、装置の製造方法は配線を形成する工程などを含む。 As shown in FIG. 4, the composite 2 after the step of causing the thermosetting composition 11 to cure includes an electronic component 21 and a cured thermosetting composition 31 that covers the electronic component 21. After the step of causing the thermosetting composition 11 to harden, the device manufacturing method includes a step of forming a wiring.
 以下では、半導体装置の製造方法の一例を代表的に説明する。 Hereinafter, an example of a method for manufacturing a semiconductor device will be representatively described.
 図5に示すように、積層体101は、仮固定体141と、仮固定体141上に配置された熱硬化性組成物11と、熱硬化性組成物11上に配置された第2セパレータ13とを含む。下側加熱板161と上側加熱板162との間に積層体101は配置されている。仮固定体141は、支持板142と、支持板142上に配置された粘着剤層143と、粘着剤層143に固定された半導体チップ121とを含む。粘着剤層143の材料として熱発泡性粘着剤などの熱剥離性粘着剤などを挙げることができる。 As shown in FIG. 5, the laminated body 101 includes a temporary fixing body 141, a thermosetting composition 11 disposed on the temporary fixing body 141, and a second separator 13 disposed on the thermosetting composition 11. Including. The laminate 101 is disposed between the lower heating plate 161 and the upper heating plate 162. The temporarily fixed body 141 includes a support plate 142, an adhesive layer 143 disposed on the support plate 142, and a semiconductor chip 121 fixed to the adhesive layer 143. Examples of the material of the pressure-sensitive adhesive layer 143 include a heat-peelable pressure-sensitive adhesive such as a heat-foamable pressure-sensitive adhesive.
 図6に示すように、下側加熱板161と上側加熱板162とを用いて平行平板方式で積層体101を減圧雰囲気下で熱プレスすることにより、チップ複合体102を形成する。チップ複合体102は、半導体チップ121と、半導体チップ121を覆う熱硬化性組成物11とを含む。チップ複合体102は粘着剤層143と接する。チップ複合体102は第2セパレータ13と接する。 As shown in FIG. 6, the chip composite 102 is formed by heat-pressing the laminated body 101 in a reduced pressure atmosphere by a parallel plate method using a lower heating plate 161 and an upper heating plate 162. The chip composite 102 includes a semiconductor chip 121 and the thermosetting composition 11 that covers the semiconductor chip 121. The chip composite 102 is in contact with the adhesive layer 143. The chip composite 102 is in contact with the second separator 13.
 チップ複合体102から第2セパレータ13を剥離する。熱硬化性組成物11の硬化を起こす。粘着剤層143を加熱し、粘着剤層143からチップ複合体102を剥離する。図7に示すように、配線171などを形成する。配線171などを形成した後にチップ複合体102のダイシングをなす。以上の手順により、半導体装置を得る。 The second separator 13 is peeled from the chip composite 102. Curing of the thermosetting composition 11 occurs. The pressure-sensitive adhesive layer 143 is heated, and the chip composite 102 is peeled from the pressure-sensitive adhesive layer 143. As shown in FIG. 7, wirings 171 and the like are formed. After the wiring 171 is formed, the chip composite 102 is diced. The semiconductor device is obtained by the above procedure.
 半導体装置の製造方法についてもうひとつの例を説明する。 Another example of a semiconductor device manufacturing method will be described.
 図8に示すように、積層構造体201は、実装ウェハ241と、実装ウェハ241上に配置された熱硬化性組成物11と、熱硬化性組成物11上に配置された第2セパレータ13とを含む。下側加熱板261と上側加熱板262との間に積層構造体201は配置されている。実装ウェハ241は、半導体ウェハ242と、半導体チップ221と、半導体ウェハ242と半導体チップ221の間に挟まれたアンダーフィル材243とを含む。半導体ウェハ242は電極を有する。 As shown in FIG. 8, the laminated structure 201 includes a mounting wafer 241, a thermosetting composition 11 disposed on the mounting wafer 241, and a second separator 13 disposed on the thermosetting composition 11. including. The laminated structure 201 is disposed between the lower heating plate 261 and the upper heating plate 262. The mounting wafer 241 includes a semiconductor wafer 242, a semiconductor chip 221, and an underfill material 243 sandwiched between the semiconductor wafer 242 and the semiconductor chip 221. The semiconductor wafer 242 has electrodes.
 図9に示すように、下側加熱板261と上側加熱板262とを用いて平行平板方式で積層構造体201を熱プレスすることにより、ウェハ複合体202を形成する。ウェハ複合体202は、半導体ウェハ242と、半導体チップ221と、半導体ウェハ242と半導体チップ221の間に挟まれたアンダーフィル材243と、半導体チップ221を覆う熱硬化性組成物11とを含む。ウェハ複合体202は第2セパレータ13と接する。 As shown in FIG. 9, a wafer composite 202 is formed by hot-pressing the laminated structure 201 by a parallel plate method using a lower heating plate 261 and an upper heating plate 262. The wafer composite 202 includes a semiconductor wafer 242, a semiconductor chip 221, an underfill material 243 sandwiched between the semiconductor wafer 242 and the semiconductor chip 221, and the thermosetting composition 11 that covers the semiconductor chip 221. Wafer composite 202 is in contact with second separator 13.
 ウェハ複合体202から第2セパレータ13を剥離する。熱硬化性組成物11の硬化を起こす。図10に示すように、ウェハ複合体202を研削する。図11に示すように、配線271などを形成する。配線271などを形成した後にウェハ複合体202のダイシングをなす。以上の手順により、半導体装置を得る。 The second separator 13 is peeled from the wafer composite 202. Curing of the thermosetting composition 11 occurs. As shown in FIG. 10, the wafer composite 202 is ground. As shown in FIG. 11, wirings 271 and the like are formed. After forming the wiring 271 and the like, the wafer composite 202 is diced. The semiconductor device is obtained by the above procedure.
 (変形例1)
 変形例1では、熱硬化性組成物11は複数の層を有する多層構造をなす。
(Modification 1)
In Modification 1, the thermosetting composition 11 has a multilayer structure having a plurality of layers.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified.
 [樹脂シートの作製]
 樹脂シートを作製するために使用した成分について説明する。
 エポキシ樹脂1:日本化薬社製のEPPN-501HY(エポキン当量162g/eq.~172g/eq.軟化点51℃~57℃のエポキシ樹脂)
 エポキシ樹脂2:三菱化学社製のjER828(エポキン当量184g/eq.~194g/eq.の25℃で液状のビスフェノールA型エポキシ樹脂)
 エポキシ樹脂3:DIC社製のHP7200(エポキン当量254g/eq.~264g/eq.、軟化点56℃~66℃のジシクロペンタジエン型エポキシ樹脂)
 フェノール樹脂:群栄化学社製のLVR-8210DL(水酸基当量104g/eq.、軟化点60℃のノボラック型フェノール樹脂)
 フィラー:電気化学工業社製のFB-9454FC(溶融球状シリカ)
 シリコーン系粒子:東レダウコーニング社製のEP-2601(エポキシ基を有する、平均粒径2μmの球状シリコーンエラストマー粒子)
 カーボンブラック:三菱化学社製の#20
 触媒:四国化成工業社製の2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
 シランカップリング剤:信越化学社製のKBM-403(3-グリシドキシプロピルトリメトキシシラン)
[Production of resin sheet]
The components used for producing the resin sheet will be described.
Epoxy resin 1: EPPN-501HY (Epokin equivalent 162 g / eq. To 172 g / eq. Epoxy resin having a softening point of 51 ° C. to 57 ° C.) manufactured by Nippon Kayaku Co., Ltd.
Epoxy resin 2: jER828 (Epkin equivalent 184 g / eq. To 194 g / eq., Bisphenol A type epoxy resin liquid at 25 ° C.)
Epoxy resin 3: HP7200 (dicyclopentadiene type epoxy resin having an epkin equivalent of 254 g / eq. To 264 g / eq., Softening point of 56 ° C. to 66 ° C.) manufactured by DIC
Phenol resin: LVR-8210DL manufactured by Gunei Chemical Co., Ltd. (a novolak type phenol resin having a hydroxyl group equivalent of 104 g / eq. And a softening point of 60 ° C.)
Filler: FB-9454FC (fused spherical silica) manufactured by Denki Kagaku Kogyo Co., Ltd.
Silicone particles: EP-2601 manufactured by Toray Dow Corning (spherical silicone elastomer particles having an epoxy group and an average particle diameter of 2 μm)
Carbon black: # 20 manufactured by Mitsubishi Chemical
Catalyst: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
Silane coupling agent: KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
 [樹脂シートの作製]
 表1の記載にしたがい各成分を配合し、ロール混練機により60~120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混合物を調製した。平板プレス法で混合物をシート状に成形することにより、厚み1mmの樹脂シートを調整した。
[Production of resin sheet]
Each component was blended according to the description in Table 1, and melt kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a mixture. A resin sheet having a thickness of 1 mm was prepared by forming the mixture into a sheet by a flat plate pressing method.
 [評価]
 以下の評価をおこなった。結果を表1に示す。
[Evaluation]
The following evaluations were made. The results are shown in Table 1.
 (粘度)
 樹脂シートをくり抜くことにより直径25mmの円形状のサンプルを得た。粘弾性測定装置ARES(レオメトリックス・サイエンティフィック社製)を用いてサンプルの溶融粘度を測定した。具体的には、プレート径25mmのパラレルプレートでサンプルを挟み、昇温速度10℃/min、ひずみ10%、周波数1Hzで溶融粘度を測定した。50℃~150℃における溶融粘度の最低値を最低溶融粘度とした。
(viscosity)
A circular sample having a diameter of 25 mm was obtained by hollowing out the resin sheet. The melt viscosity of the sample was measured using a viscoelasticity measuring device ARES (manufactured by Rheometrics Scientific). Specifically, the sample was sandwiched between parallel plates having a plate diameter of 25 mm, and the melt viscosity was measured at a heating rate of 10 ° C./min, a strain of 10%, and a frequency of 1 Hz. The lowest melt viscosity at 50 ° C. to 150 ° C. was defined as the minimum melt viscosity.
 (凹凸・ピンホール)
 8インチのミラーウエハと、ミラーウエハ上に等間隔に貼り付けられた150個の接着シート付シリコンチップ―厚み500μm、7mm角―とを有する「チップ付きウエハ」を準備した。直径8インチ、厚み1000μmの円盤状樹脂を樹脂シートから切り出した。円盤状樹脂を「チップ付きウエハ」上に積層することにより積層体を形成した。平板プレス装置で積層体をプレスすることにより、ミラーウエハと、ミラーウエハに固定された150個の接着シート付シリコンチップと、150個の接着シート付シリコンチップを覆う厚み700μmの保護樹脂とを備える構造物を得た。熱風循環式乾燥機を用いて180℃で2時間 構造物を加熱することにより保護樹脂を硬化させた。直径1mm以上の大きさの凹凸または直径0.5mm以上のピンホールの少なくともどちらかが硬化後の保護樹脂の表面(ひょうめん)にある場合は×と判定した。直径1mm以上の大きさの凹凸および直径0.5mm以上のピンホールの両者がない場合は○と判定した。
(Uneven / Pinhole)
A “wafer with chips” having an 8-inch mirror wafer and 150 silicon chips with an adhesive sheet affixed on the mirror wafer at equal intervals—thickness 500 μm, 7 mm square—was prepared. A disc-shaped resin having a diameter of 8 inches and a thickness of 1000 μm was cut out from the resin sheet. A laminated body was formed by laminating a disk-shaped resin on a “wafer with chips”. By pressing the laminated body with a flat plate pressing apparatus, a mirror wafer, 150 silicon chips with adhesive sheet fixed to the mirror wafer, and a protective resin with a thickness of 700 μm covering 150 silicon chips with adhesive sheet are provided. A structure was obtained. The protective resin was cured by heating the structure at 180 ° C. for 2 hours using a hot air circulating dryer. When at least one of the unevenness having a diameter of 1 mm or more and the pinhole having a diameter of 0.5 mm or more is on the surface of the protective resin after curing, it was determined as x. In the case where neither the unevenness having a diameter of 1 mm or more and the pinhole having a diameter of 0.5 mm or more were present, it was judged as “good”.
 (内部ボイド・未充填領域)
 熱風循環式乾燥機を用いて180℃で2時間 構造物を加熱することにより保護樹脂を硬化させた。加熱後の構造物について内部ボイドと未充填領域―内部空間―とを超音波映像装置(日立ファインテック社製のFS200II)で観察した。25MHzのプローブを使用し、反射モードで観察した。0.5mm以上の内部ボイドまたは0.5mm以上の未充填領域の少なくともどちらかがある場合は×と判定した。0.5mm以上のボイドおよび0.5mm以上の未充填領域の両者がない場合は○と判定した。
(Internal void / unfilled area)
The protective resin was cured by heating the structure at 180 ° C. for 2 hours using a hot air circulating dryer. With respect to the heated structure, the internal voids and the unfilled region-internal space- were observed with an ultrasonic imaging device (FS200II manufactured by Hitachi Finetech). Observation was performed in the reflection mode using a 25 MHz probe. When there was at least either an internal void of 0.5 mm or more or an unfilled region of 0.5 mm or more, it was determined as x. When there was neither a void of 0.5 mm or more and an unfilled region of 0.5 mm or more, it was determined as ◯.
 (フローマーク)
 熱風循環式乾燥機を用いて180℃で2時間 構造物を加熱することにより保護樹脂を硬化させた。硬化後の保護樹脂の表面(ひょうめん)を目視で観察した。模様を認める場合は×と判定した。模様を認めない場合は○と判定した。
(Flow mark)
The protective resin was cured by heating the structure at 180 ° C. for 2 hours using a hot air circulating dryer. The surface (hymen) of the protective resin after curing was visually observed. When a pattern was recognized, it determined with x. When the pattern was not recognized, it was judged as “good”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
    1    シート
   11    熱硬化性組成物
   12    第1セパレータ
   13    第2セパレータ
   21    電子部品
    2    複合体
   31    硬化後の熱硬化性組成物
DESCRIPTION OF SYMBOLS 1 Sheet | seat 11 Thermosetting composition 12 1st separator 13 2nd separator 21 Electronic component 2 Composite 31 Thermosetting composition after hardening
   101  積層体
   141  仮固定体
   142  支持板
   143  粘着剤層
   121  半導体チップ
   161  下側加熱板
   162  上側加熱板
   102  チップ複合体
   171  配線
DESCRIPTION OF SYMBOLS 101 Laminated body 141 Temporary fixing body 142 Support plate 143 Adhesive layer 121 Semiconductor chip 161 Lower side heating plate 162 Upper side heating plate 102 Chip complex 171 Wiring
   201  積層構造体
   241  実装ウェハ
   242  半導体ウェハ
   243  アンダーフィル材
   221  半導体チップ
   261  下側加熱板
   262  上側加熱板
   202  ウェハ複合体
   271  配線
201 Laminated Structure 241 Mounting Wafer 242 Semiconductor Wafer 243 Underfill Material 221 Semiconductor Chip 261 Lower Heating Plate 262 Upper Heating Plate 202 Wafer Composite 271 Wiring

Claims (8)

  1.  フェノール樹脂と無機充填剤とシリコーン系粒子とを含む、シート状の熱硬化性組成物。 A sheet-like thermosetting composition containing a phenol resin, an inorganic filler, and silicone-based particles.
  2.  エポキシ樹脂をさらに含む請求項1に記載の熱硬化性組成物。 The thermosetting composition according to claim 1, further comprising an epoxy resin.
  3.  前記熱硬化性組成物の重量から前記無機充填剤の合計重量を減じることにより求められた第1重量を100%としたとき、前記シリコーン系粒子の合計重量が0.5%~50%である請求項1または2に記載の熱硬化性組成物。 When the first weight obtained by subtracting the total weight of the inorganic filler from the weight of the thermosetting composition is 100%, the total weight of the silicone-based particles is 0.5% to 50%. The thermosetting composition according to claim 1 or 2.
  4.  前記シリコーン系粒子がエポキシ基を有する請求項1~3のいずれかに記載の熱硬化性組成物。 The thermosetting composition according to any one of claims 1 to 3, wherein the silicone-based particles have an epoxy group.
  5.  最低溶融粘度が100Pa・s~10000Pa・sである請求項1~4のいずれかに記載の熱硬化性組成物。 The thermosetting composition according to any one of claims 1 to 4, wherein the minimum melt viscosity is 100 Pa · s to 10,000 Pa · s.
  6.  電子部品を封止するための請求項1~5のいずれかに記載の熱硬化性組成物。 The thermosetting composition according to any one of claims 1 to 5, for sealing an electronic component.
  7.  請求項1~6のいずれかに記載の熱硬化性組成物を含み、
     前記熱硬化性組成物は、第1面と前記第1面に対向した第2面とで両面が定義され、
     前記第1面上に設けられた第1セパレータと、
     前記第2面上に設けられた第2セパレータとをさらに含むシート。
    Comprising the thermosetting composition according to any one of claims 1 to 6,
    Both sides of the thermosetting composition are defined by a first surface and a second surface facing the first surface,
    A first separator provided on the first surface;
    A sheet further comprising a second separator provided on the second surface.
  8.  請求項1~6のいずれかに記載の熱硬化性組成物を電子部品上に配置する工程と、
     前記電子部品および前記電子部品を覆う前記熱硬化性組成物を含む複合体を形成する工程と、
     前記複合体を加熱することにより前記熱硬化性組成物の硬化を起こす工程とを含み、
     前記複合体を形成する工程は、前記熱硬化性組成物の軟化を起こすステップを含む装置の製造方法。
    Disposing the thermosetting composition according to any one of claims 1 to 6 on an electronic component;
    Forming a composite comprising the electronic component and the thermosetting composition covering the electronic component;
    Causing the thermosetting composition to cure by heating the composite,
    The method of forming the composite includes a step of causing softening of the thermosetting composition.
PCT/JP2016/077116 2015-09-28 2016-09-14 Thermosetting composition, sheet, and method for manufacturing device WO2017056994A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201802323SA SG11201802323SA (en) 2015-09-28 2016-09-14 Thermally curable composition and sheet/device manufacturing method
CN201680052778.4A CN108026354A (en) 2015-09-28 2016-09-14 The manufacture method of heat-curable composition and piece and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015189313A JP2017066174A (en) 2015-09-28 2015-09-28 Thermosetting composition and sheet, and method for manufacturing device
JP2015-189313 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017056994A1 true WO2017056994A1 (en) 2017-04-06

Family

ID=58423727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077116 WO2017056994A1 (en) 2015-09-28 2016-09-14 Thermosetting composition, sheet, and method for manufacturing device

Country Status (5)

Country Link
JP (1) JP2017066174A (en)
CN (1) CN108026354A (en)
SG (1) SG11201802323SA (en)
TW (1) TW201728659A (en)
WO (1) WO2017056994A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241617A (en) * 2001-02-14 2002-08-28 Nitto Denko Corp Thermosetting resin composition and semiconductor device
JP2013151642A (en) * 2011-12-27 2013-08-08 Hitachi Chemical Co Ltd Liquid resin composition for electronic component, method of producing the liquid resin composition, and electronic component device
JP2015030745A (en) * 2013-07-31 2015-02-16 住友ベークライト株式会社 Resin composition, semiconductor device, multilayer circuit board, and electronic component
WO2015079708A1 (en) * 2013-11-29 2015-06-04 ナミックス株式会社 Epoxy resin composition, semiconductor sealing agent, and semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097014A (en) * 2007-09-27 2009-05-07 Hitachi Chem Co Ltd Liquid resin composition for sealing, electronic component device and wafer level chip size package
WO2013073606A1 (en) * 2011-11-15 2013-05-23 株式会社日本触媒 Silane-containing composition, curable resin composition, and sealing material
JP2015137299A (en) * 2014-01-21 2015-07-30 住友ベークライト株式会社 Resin composition, adhesive sheet, adhesive sheet integrated with dicing tape, adhesive sheet integrated with back grind tape, adhesive sheet integrated with back grind tape also functioning as dicing tape, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241617A (en) * 2001-02-14 2002-08-28 Nitto Denko Corp Thermosetting resin composition and semiconductor device
JP2013151642A (en) * 2011-12-27 2013-08-08 Hitachi Chemical Co Ltd Liquid resin composition for electronic component, method of producing the liquid resin composition, and electronic component device
JP2015030745A (en) * 2013-07-31 2015-02-16 住友ベークライト株式会社 Resin composition, semiconductor device, multilayer circuit board, and electronic component
WO2015079708A1 (en) * 2013-11-29 2015-06-04 ナミックス株式会社 Epoxy resin composition, semiconductor sealing agent, and semiconductor device

Also Published As

Publication number Publication date
TW201728659A (en) 2017-08-16
JP2017066174A (en) 2017-04-06
SG11201802323SA (en) 2018-04-27
CN108026354A (en) 2018-05-11

Similar Documents

Publication Publication Date Title
JP6320239B2 (en) Semiconductor chip sealing thermosetting resin sheet and semiconductor package manufacturing method
US20120296010A1 (en) Encapsulating sheet and electronic device
JP6431340B2 (en) Manufacturing method of sealing thermosetting resin sheet and hollow package
JP2009091389A (en) Resin composition sheet for sealing hollow device, and hollow device sealed using sheet thereof
JP6119950B2 (en) Hollow structure electronic components
JP5735036B2 (en) Electronic component device manufacturing method and laminated sheet
TW201532151A (en) Production method for semiconductor package
JP6467689B2 (en) Hollow structure electronic components
TWI543312B (en) Method for manufacturing parts for laminated bodies and power semiconductor modules
KR102486893B1 (en) Resin composition, cured product, encapsulation film and encapsulation structure
WO2014203830A1 (en) Electronic device sealing method, electronic device package production method, and sealing sheet
WO2016181761A1 (en) Sealing resin sheet
WO2016189998A1 (en) Sealing resin sheet for substrate having electronic component built therein and method for manufacturing substrate having electronic component built therein
EP4053213B1 (en) Resin composition, cured product, composite molded body and semiconductor device
TWI754103B (en) Manufacturing method of mounting structure and laminated sheet used therefor
JP2016096308A (en) Semiconductor device manufacturing method
WO2017203622A1 (en) Sealing structure, method for manufacturing same, and sealing material
WO2017056994A1 (en) Thermosetting composition, sheet, and method for manufacturing device
WO2014188826A1 (en) Method for manufacturing electronic-component device
JP2008177432A (en) Heat curing resin sheet for sealing, electronic component device, and method of manufacturing electronic component device
JP2005247953A (en) Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same
WO2014188824A1 (en) Method for manufacturing electronic-component device
JP6834265B2 (en) Manufacturing method of sealing structure, sealing material and cured product
JP2016094575A (en) Encapsulation sheet with separator, and manufacturing method of semiconductor device
JP2022151865A (en) Laminated structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201802323S

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851168

Country of ref document: EP

Kind code of ref document: A1