WO2017056702A1 - 油圧シリンダ駆動装置 - Google Patents

油圧シリンダ駆動装置 Download PDF

Info

Publication number
WO2017056702A1
WO2017056702A1 PCT/JP2016/072738 JP2016072738W WO2017056702A1 WO 2017056702 A1 WO2017056702 A1 WO 2017056702A1 JP 2016072738 W JP2016072738 W JP 2016072738W WO 2017056702 A1 WO2017056702 A1 WO 2017056702A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
motor
variable displacement
displacement pump
hydraulic cylinder
Prior art date
Application number
PCT/JP2016/072738
Other languages
English (en)
French (fr)
Inventor
義和 本間
雅仁 山口
紳剛 渡辺
Original Assignee
ボッシュ・レックスロス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ・レックスロス株式会社 filed Critical ボッシュ・レックスロス株式会社
Priority to KR1020187008460A priority Critical patent/KR20180043350A/ko
Priority to JP2017542984A priority patent/JPWO2017056702A1/ja
Priority to CN201680056289.6A priority patent/CN108350914A/zh
Priority to EP16850879.4A priority patent/EP3358202A4/en
Publication of WO2017056702A1 publication Critical patent/WO2017056702A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/785Compensation of the difference in flow rate in closed fluid circuits using differential actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a hydraulic cylinder driving device for operating an operated device.
  • a hydraulic cylinder driving device for operating the operated device there is one that operates the operated device while supplying hydraulic pressure to the rod-side pressure chamber and the cap-side pressure chamber of the hydraulic cylinder provided with the piston rod.
  • a boom of a work machine such as a construction machine or an unloader device is undulated using such a hydraulic cylinder driving device.
  • a boom is pivotally supported with respect to a boom support part, a work part such as a bucket is provided on the front end side of the boom, a balance weight is attached to a rear end side, and the work part and the balance The weights can move up and down with respect to the boom support portion.
  • the boom hoisting operation is driven by a hydraulic cylinder.
  • the hydraulic cylinder When the boom is raised, the hydraulic cylinder operates in the rod forward direction. At this time, the boom raising speed is controlled by controlling the amount of hydraulic oil supplied to the cap-side pressure chamber of the hydraulic cylinder and the amount of hydraulic oil discharged from the rod-side pressure chamber. On the other hand, when the boom descends, the hydraulic cylinder operates in the rod retracting direction. At this time, the lowering speed of the boom is controlled by controlling the amount of hydraulic oil supplied to the rod-side pressure chamber of the hydraulic cylinder and the amount of hydraulic oil discharged from the cap-side pressure chamber.
  • Non-Patent Document 1 discloses an example of a hydraulic circuit applied to such a hydraulic cylinder driving device.
  • a hydraulic circuit supplies a hydraulic pump that discharges hydraulic oil, and supplies hydraulic oil discharged by the hydraulic pump to the rod-side pressure chamber or cap-side pressure chamber of the hydraulic cylinder, or the rod-side pressure chamber or cap-side. And a plurality of valves for discharging from the pressure chamber.
  • FIG. 5 shows an example of a hydraulic circuit 200 provided with an oil cooler 230.
  • the hydraulic circuit 200 includes a hydraulic cylinder 240 having a piston rod 243 that can move forward and backward in the cylinder tube 241, a hydraulic pump 220 that is driven by an electric motor 250 and discharges hydraulic oil, and discharges the hydraulic oil to a rod side pressure.
  • a direction switching valve 260 that leads to the chamber 245 or the cap-side pressure chamber 247.
  • the first control oil passage 224 that communicates the direction switching valve 260 and the cap side pressure chamber 247 and the second control oil passage 226 that communicates the direction switching valve 260 and the rod side pressure chamber 245 each have a flow rate.
  • Control valves 270 and 280 and one-way valves 272 and 282 are provided.
  • An oil cooler 230 is provided in the oil discharge passage 228 that guides the hydraulic oil discharged through the direction switching valve 260 to the tank 234.
  • a relief valve 232 is provided between the discharge side oil passage 222 and the discharge oil passage 228 of the hydraulic pump 220.
  • the direction switching valve 260 causes the discharge-side oil passage 222 of the hydraulic pump 220 and the second control oil passage 226 to communicate with each other.
  • the exhaust oil passage 228 is communicated. Accordingly, the hydraulic oil is supplied to the rod side pressure chamber 245 through the one-way valve 282, and the hydraulic oil in the cap side pressure chamber 247 is controlled in flow rate by the flow rate control valve 270, while the first control oil passage. 224 and drain oil passage 228 are returned to tank 234.
  • the hydraulic oil discharged from the hydraulic cylinder 240 and reduced in flow rate by the flow rate control valves 270 and 280 is at a high temperature.
  • Such high-temperature hydraulic oil is cooled by the oil cooler 230 and returned to the tank 234, and the energy generated by the hydraulic cylinder driving device is released as thermal energy, so that the energy efficiency is lowered.
  • such a hydraulic cylinder driving device is desired to be simplified because a large oil cooler 230 is required and a large number of valves are used.
  • an object of the present invention is to provide a new and improved hydraulic cylinder drive device that can simplify the device configuration and improve energy efficiency. Is to provide.
  • a hydraulic cylinder having a piston rod that operates an actuated device, and an electric motor that operates with electric power outside the apparatus and supplies electric power to the outside of the apparatus
  • a motor generator that functions as a generator that functions as a hydraulic pump that is connected to the motor generator and that supplies hydraulic pressure to the cap-side pressure chamber of the hydraulic cylinder and that is supplied by the hydraulic pressure supplied from the cap-side pressure chamber
  • the first variable displacement pump motor that functions as a power device for the hydraulic cylinder, and a hydraulic pump that is connected to the motor generator and supplies hydraulic pressure to the rod-side pressure chamber of the hydraulic cylinder and is supplied from the rod-side pressure chamber
  • a second variable displacement pump motor that functions as a power device for the motor generator. It is subjected.
  • the first variable displacement pump motor and the second variable displacement pump motor may be connected to the same drive shaft, and the motor generator may be connected to the drive shaft.
  • the motor generator may be inverter controlled.
  • a motor generator is connected to the first drive shaft of the first variable displacement pump motor and the second motor shaft is connected to the second drive shaft of the second variable displacement pump motor. And a motor generator.
  • At least one of the first motor generator and the second motor generator may be inverter-controlled.
  • the actuated device may be a boom drive device of a work machine.
  • the device configuration can be simplified and the energy efficiency can be improved.
  • FIG. 1 is a circuit diagram showing a configuration of a hydraulic cylinder driving device according to a first embodiment of the present invention. It is sectional drawing which shows an overcenter type variable displacement pump motor. It is a circuit diagram which shows the structure of the hydraulic cylinder drive device concerning the 2nd Embodiment of this invention. It is a circuit diagram which shows the structure of the conventional hydraulic cylinder drive device.
  • FIG. 1 is a schematic diagram showing a boom drive device 100.
  • the boom drive device 100 is mounted on a work machine such as a construction machine or an unloader device.
  • the boom drive device 100 includes a boom support part 110, a boom 120, a working part 130, an arm 140, and a hydraulic cylinder 40.
  • the boom 120 is pivotably supported.
  • the hydraulic cylinder 40 has a cylinder tube attached to the boom support part 110 and a piston rod attached to the boom 120. The hoisting operation of the boom 120 is controlled by the hydraulic cylinder 40.
  • the arm 140 is supported at the tip of the boom 120 so as to be rotatable.
  • a working unit 130 is provided at the lower end of the arm 140.
  • a balance weight 126 is provided at the rear end of the boom 120. As a result, the working unit 130 and the balance weight 126 can move up and down with respect to the upper part of the boom support unit 110 as the boom 120 moves up and down.
  • the hoisting operation of the boom 120 is performed by driving control of the hydraulic cylinder 40.
  • the balance weight 126 is a weight that can rotate the tip of the boom 120 upward when the boom drive device 100 is in an unloaded state, that is, when a heavy object is not loaded on the working unit 130. have.
  • the hydraulic cylinder driving device performs control for supplying hydraulic oil to the hydraulic cylinder 40 or discharging hydraulic oil from the hydraulic cylinder 40 in order to raise or lower the tip of the boom 120, and 120 undulations are controlled.
  • FIG. 2 is a circuit diagram showing a configuration of a hydraulic circuit of the hydraulic cylinder driving device 10.
  • the hydraulic cylinder drive device 10 includes a first variable displacement pump motor 20, a second variable displacement pump motor 30, a motor generator 50, and a hydraulic cylinder 40.
  • the hydraulic cylinder 40 is attached to the boom 120 and the boom support part 110 of the boom drive device 100 shown in FIG. 1, and includes a cylinder tube 41 and a piston rod 43 that can move forward and backward in the cylinder tube 41. .
  • the cylinder tube 41 is attached to the support part 110, and the piston rod 43 is attached to the boom 120.
  • the inside of the cylinder tube 41 is defined by a piston rod 43 into a rod side pressure chamber 45 and a cap side pressure chamber 47.
  • the cap-side pressure chamber 47 communicates with the first control oil passage 22 connected to the first variable displacement pump motor 20, and the rod-side pressure chamber 45 is connected to the second variable displacement pump motor 30. It communicates with the control oil passage 32.
  • the first control oil passage 22 and the second control oil passage 32 are provided with pressure detectors 28 and 38 for measuring the pressure in each oil passage.
  • the first variable displacement pump motor 20 functions as a hydraulic pump that supplies hydraulic oil to the cap side pressure chamber 47 of the hydraulic cylinder 40 and the drive shaft 52 by the hydraulic oil discharged from the cap side pressure chamber 47. It has a function as a hydraulic motor for rotational driving.
  • the second variable displacement pump motor 30 has a function as a hydraulic pump that supplies hydraulic oil to the rod-side pressure chamber 45 of the hydraulic cylinder 40 and a drive shaft driven by the hydraulic oil discharged from the rod-side pressure chamber 45. And a function as a hydraulic motor for rotationally driving 52.
  • the first variable displacement pump motor 20 and the second variable displacement pump motor 30 are connected to the same drive shaft 52. Therefore, when one variable displacement pump motor functions as a hydraulic pump and the other variable displacement pump motor functions as a hydraulic motor, the rotational drive energy of the drive shaft 52 by the hydraulic motor is energy for driving the hydraulic pump. Used as
  • FIG. 3 is a cross-sectional view showing an example of a variable displacement pump motor. Note that the first variable displacement pump motor 20 and the second variable displacement pump motor 30 may basically have the same configuration.
  • the variable displacement pump motor shown in FIG. 3 is a swash plate type variable displacement piston pump motor.
  • the variable displacement pump motor includes a cover 161, a pump housing 168, and a drive shaft 170 that is pivotally supported by the cover 161 and the pump housing 168.
  • the cover 161 is supplied with the hydraulic fluid that is sucked when the variable displacement pump motor functions as a hydraulic pump, and the first supply and discharge through which the hydraulic fluid discharged when the variable displacement pump motor functions as a hydraulic motor flows.
  • a passage 163 is provided.
  • the cover 161 is supplied with hydraulic fluid discharged when the variable displacement pump motor functions as a hydraulic pump, and with second hydraulic fluid introduced when the variable displacement pump motor functions as a hydraulic motor.
  • a supply / discharge passage 165 is provided.
  • the first supply / discharge passage 163 communicates with a tank (not shown) in which hydraulic oil is stored.
  • the second supply / discharge passage 165 communicates with the pressure chamber of the hydraulic cylinder 40.
  • the second supply / discharge passage 165 communicates with the cap-side pressure chamber 47.
  • the second supply / discharge passage 165 communicates with the rod side pressure chamber 45.
  • the cylinder block 180 is connected to the drive shaft 170, and the cylinder block 180 rotates integrally with the drive shaft 170.
  • a port plate 190 is provided on one end side of the cylinder block 180, and a swash plate 175 is provided on the other end side.
  • a surface on one end side of the cylinder block 180 is in sliding contact with the port plate 190.
  • a plurality of cylinders 182 are defined in the cylinder block 180 along the axial direction of the drive shaft 170.
  • a piston 185 is inserted into each cylinder 182 so as to be movable in the axial direction, and a volume chamber 188 is defined by the cylinder 182 and the piston 185.
  • the volume chamber 188 can communicate with the first supply / discharge passage 163 and the second supply / discharge passage 165 formed in the cover 161 via hydraulic ports 192 and 194 provided in the port plate 190.
  • the end of the piston 185 protruding from the cylinder 182 is in sliding contact with the swash plate 175.
  • the piston 185 rotates around the drive shaft 170 while sliding on the swash plate 175.
  • the piston 185 reciprocates in the cylinder 182 with this rotation, and the volume chamber 188 expands and contracts.
  • the first supply / discharge passage 163 of the cover 161 communicates with the volume chamber 188 in the region where the volume chamber 188 expands, and the second supply in the region where the volume chamber 188 contracts.
  • the swash plate 175 is inclined so that the exhaust passage 165 communicates with the volume chamber 188.
  • the hydraulic oil stored in the tank is sucked into the volume chamber 188 via the first supply / discharge passage 163 and pressurized in the volume chamber 188 as the variable displacement pump motor rotates. It is discharged through the second supply / discharge passage 165.
  • the pump discharge flow rate can be adjusted by controlling the amount of tilting.
  • variable displacement pump motor when the variable displacement pump motor functions as a hydraulic motor, the first supply / discharge passage 163 communicates with the volume chamber 188 in the region where the volume chamber 188 contracts, and the second supply / discharge in the region where the volume chamber 188 expands.
  • the swash plate 175 is inclined so that the passage 165 communicates with the volume chamber 188.
  • the variable displacement pump motor is rotationally driven by the hydraulic pressure discharged from the pressure chamber of the hydraulic cylinder 40, and an output torque is generated on the drive shaft 170.
  • the inclination (tilt amount) of the swash plate 175 can be adjusted by a hydraulic actuator 195.
  • a hydraulic actuator 195 In particular, in this embodiment, an over-center type variable displacement pump motor is used, and the swash plate 175 is configured to be tiltable in both directions as well as in one direction.
  • the hydraulic actuator 195 is configured by a hydraulic circuit including a direction switching valve or the like, and is configured to increase the pressure of the hydraulic oil supplied to one of the two pressure chambers by increasing the pressure.
  • the plate 175 can be tilted in either direction. Further, the amount of tilting can be reduced to zero by supplying hydraulic oil to the two pressure chambers with a predetermined balance. Thereby, the function as a hydraulic pump or a hydraulic motor of a variable displacement pump motor can be stopped.
  • the hydraulic actuator 195 for adjusting the amount of tilt is controlled by an electronic control device (not shown).
  • the electronic control unit switches the direction based on the operating direction of the boom, the hydraulic pressures P1 and P2 measured by the pressure detectors 28 and 38 provided in the first control oil passage 22 and the second control oil passage 32, and the like.
  • the valve and the like are controlled, and the tilt direction and tilt amount of the swash plate 175 are adjusted as appropriate.
  • the motor generator 50 is operated by electric power supplied from an electric power source 70 external to the hydraulic cylinder driving device 10 and functions as an electric motor that drives the drive shaft 52 to rotate.
  • the motor generator 50 is rotated by the rotational driving force of the drive shaft 52 by the first variable displacement pump motor 20 or the second variable displacement pump motor 30 functioning as a hydraulic motor, so that the hydraulic cylinder drive device 10 It functions as a generator that supplies power to the outside.
  • the motor generator 50 is composed of, for example, a three-phase AC motor.
  • the motor generator 50 generates a rotational driving force applied to the drive shaft 52.
  • the generated rotational driving force is output according to the required driving force of the first variable displacement pump motor 20 and the second variable displacement pump motor 30.
  • the motor generator 50 is rotated by the rotational torque of the drive shaft 52 to generate regenerative power.
  • the generated regenerative power is supplied to a power load device (not shown). For example, it is used as electric power in a plant in which the boom drive device 100 is installed.
  • the regenerative power may be stored in a storage battery, a power storage device, or the like.
  • the first variable displacement pump motor 20 functions as a hydraulic pump
  • the second variable displacement pump motor 30 functions as a hydraulic motor. That is, hydraulic fluid is supplied to the cap-side pressure chamber 47 of the hydraulic cylinder 40, while hydraulic fluid is discharged from the rod-side pressure chamber 45.
  • the electronic control unit performs the first control based on the boom speed set externally and the measured values of the pressure detectors 28 and 38 provided in the first control oil passage 22 and the second control oil passage 32. The amount of tilt of the first variable displacement pump motor 20 and the second variable displacement pump motor 30 is controlled.
  • the electronic control unit monitors the hydraulic pressures P1 and P2 in the first control oil passage 22 and the second control oil passage 32 so that the forward speed of the piston rod 43 becomes a desired speed.
  • the amount of tilt of the first variable displacement pump motor 20 and the second variable displacement pump motor 30 is controlled.
  • the second variable displacement pump motor 30 functions as a hydraulic motor that rotationally drives the drive shaft 52 with the hydraulic oil discharged from the rod-side pressure chamber 45, and generates a rotational driving force of the drive shaft 52. Therefore, the rotational driving force of the drive shaft 52 by the second variable displacement pump motor 30 can be used for the discharge of hydraulic oil by the first variable displacement pump motor 20, and the electric power of the motor generator 50 is set small. be able to.
  • the second variable displacement pump motor 30 exceeds the rotational driving force required for discharging the hydraulic oil by the first variable displacement pump motor 20, the second variable displacement pump motor The excess of the rotational driving force of the drive shaft 52 by 30 is converted into electric power by the motor generator 50. The generated power is supplied to a power load device (not shown).
  • the first variable displacement pump motor 20 functions as a hydraulic motor
  • the second variable displacement pump motor 30 functions as a hydraulic pump.
  • hydraulic oil is supplied to the rod-side pressure chamber 45 of the hydraulic cylinder 40, while hydraulic oil is discharged from the cap-side pressure chamber 47.
  • the electronic control unit like the time when the boom 120 is raised, the boom speed set externally and the pressure detectors 28 provided in the first control oil path 22 and the second control oil path 32, Based on the measured value of 38, the tilt amounts of the first variable displacement pump motor 20 and the second variable displacement pump motor 30 are controlled.
  • the electronic control unit monitors the hydraulic pressures P1 and P2 in the first control oil passage 22 and the second control oil passage 32 so that the reverse speed of the piston rod 43 becomes a desired speed.
  • the amount of tilt of the first variable displacement pump motor 20 and the second variable displacement pump motor 30 is controlled.
  • the first variable displacement pump motor 20 functions as a hydraulic motor that rotationally drives the drive shaft 52 with the hydraulic oil discharged from the cap-side pressure chamber 47, and generates the rotational driving force of the drive shaft 52. Therefore, the rotational driving force of the drive shaft 52 by the first variable displacement pump motor 20 can be used for the discharge of hydraulic oil by the second variable displacement pump motor 30, and the electric power of the motor generator 50 is set small. be able to.
  • the first variable displacement pump motor 20 exceeds the rotational driving force necessary for discharging the hydraulic oil by the second variable displacement pump motor 30, the first variable displacement pump motor
  • the surplus of the rotational driving force of the drive shaft 52 by 20 is converted into electric power by the motor generator 50.
  • the generated power is supplied to a power load device (not shown).
  • the hydraulic cylinder drive device 10 functions as a hydraulic pump that supplies hydraulic oil to the cap-side pressure chamber 47 of the hydraulic cylinder 40 and operates to be discharged from the cap-side pressure chamber 47.
  • the first variable displacement pump motor 20 that functions as a power unit of the motor generator 50 by oil and a hydraulic pump that supplies hydraulic oil to the rod-side pressure chamber 45 of the hydraulic cylinder 40 and from the rod-side pressure chamber 45
  • a second variable displacement pump motor 30 that functions as a power unit for the motor generator 50 by the discharged hydraulic oil.
  • Rotational drive for causing one variable displacement pump motor to function as a hydraulic pump is assisted by the rotational drive force of the other variable displacement pump motor functioning as a hydraulic motor.
  • the electric energy of the motor generator 50 which rotationally drives the drive shaft 52 can be reduced.
  • the motor generator 50 regenerates the surplus rotational driving force. Power generation is performed. Therefore, energy efficiency is improved.
  • the hydraulic cylinder driving device 10 does not include a direction switching valve, a flow rate control valve, an oil cooler, or the like, but has a simple configuration, can reduce costs, and can improve energy efficiency. It is done.
  • the hydraulic cylinder driving apparatus according to the present embodiment is the hydraulic pressure according to the first embodiment in that the first variable displacement pump motor and the second variable displacement pump motor are driven and controlled by independent motor generators. Different from the cylinder drive.
  • FIG. 4 is a circuit diagram showing a configuration of a hydraulic circuit of the hydraulic cylinder driving device 10A according to the present embodiment.
  • the hydraulic cylinder drive device 10A includes a first variable displacement pump motor 20, a second variable displacement pump motor 30, a first motor generator 50a, a second motor generator 50b, and a hydraulic cylinder 40.
  • the first variable displacement pump motor 20, the second variable displacement pump motor 30, and the hydraulic cylinder 40 may have the same configuration as that of the hydraulic cylinder drive device 10 according to the first embodiment.
  • the first variable displacement pump motor 20 is driven by the first motor generator 50a
  • the second variable displacement pump motor 30 is driven by the second motor generator 50b.
  • the drive shaft 52a of the first variable displacement pump motor 20 and the drive shaft 52b of the second variable displacement pump motor 30 are independent of each other.
  • the first motor generator 50 a and the second motor generator 50 b are electrically connected to the power source 70.
  • Each of the first motor generator 50a and the second motor generator 50b may have the same configuration as that of the hydraulic cylinder driving device 10 according to the first embodiment.
  • the first variable displacement pump motor 20 when the piston rod 43 is moved in the forward direction, the first variable displacement pump motor 20 is caused to function as a hydraulic pump, and the second variable displacement pump motor 30 is caused to function as a hydraulic motor.
  • the first variable displacement pump motor 20 when moving the piston rod 43 in the backward direction, the first variable displacement pump motor 20 is caused to function as a hydraulic motor, and the second variable displacement pump motor 30 is caused to function as a hydraulic pump.
  • the tilt amount of the variable displacement pump motor that functions as a hydraulic pump is controlled by the boom operation direction, the boom speed, and pressure detectors 28 and 38 provided in the first control oil path 22 and the second control oil path 32. This is performed based on the measured hydraulic pressures P1, P2, and the like. That is, the electronic control unit (not shown) controls the tilt amounts of the first variable displacement pump motor 20 and the second variable displacement pump motor 30 so that the forward speed or the reverse speed of the piston rod 43 becomes a desired speed. To do. At this time, the variable displacement pump motor that functions as a hydraulic motor is driven by the hydraulic oil discharged from the pressure chamber of the hydraulic cylinder 40, and the motor generator generates regenerative power by the rotational driving force of the drive shaft by the variable displacement pump motor. Done. Thereby, the rotational driving force of the drive shaft by the variable displacement pump motor functioning as a hydraulic motor is converted into electric power and supplied to a power load device (not shown).
  • the hydraulic cylinder driving device 10A according to the present embodiment is similar to the hydraulic cylinder driving device 10 according to the first embodiment, and the first variable displacement pump functions as a hydraulic pump and a hydraulic motor, respectively.
  • a motor 20 and a second variable displacement pump motor 30 are provided. Regenerative power generation is performed by the motor generator by the rotational driving force of the variable displacement pump motor that functions as a hydraulic motor. Therefore, energy efficiency is improved.
  • the hydraulic cylinder drive device 10A according to the present embodiment does not include a direction switching valve, a flow rate control valve, or the like, but has a simple configuration, can reduce costs, and can improve energy efficiency.
  • the hydraulic cylinder driving devices 10 and 10A are used in the boom driving device 100, but the present invention is not limited to such an example. Any other actuated device that can act on the hydraulic cylinder in the tension and compression direction, such as the hydraulic cylinder drive used for the hoisting operation of the arm that supports the bucket of the excavator Applicable.

Abstract

油圧シリンダ駆動装置は、被作動機器を作動するピストンロッドを備えた油圧シリンダと、装置外部の電力により作動する電動機として機能するとともに装置外部に電力を供給する発電機として機能する電動発電機と、前記電動発電機に連結され、前記油圧シリンダのキャップ側圧力室に油圧を供給する油圧ポンプとして機能するとともに、前記キャップ側圧力室から供給される油圧により前記電動発電機の動力装置として機能する第1の可変容量ポンプモータと、前記電動発電機に連結され、前記油圧シリンダのロッド側圧力室に油圧を供給する油圧ポンプとして機能するとともに、前記ロッド側圧力室から供給される油圧により前記電動発電機の動力装置として機能する第2の可変容量ポンプモータと、を備える。

Description

油圧シリンダ駆動装置
 本発明は、被作動機器を作動させるための油圧シリンダ駆動装置に関する。
 被作動機器を作動させるための油圧シリンダ駆動装置として、ピストンロッドを備えた油圧シリンダのロッド側圧力室及びキャップ側圧力室にそれぞれ油圧を供給しながら被作動機器を作動させるものがある。例えば、建設機械やアンローダ装置等の作業機械のブームは、そのような油圧シリンダ駆動装置を用いて起伏動作が行われる。作業機械では、例えば、ブーム支持部に対してブームが起伏自在に枢支され、当該ブームの先端側にバケット等の作業部分が設けられ、後端側にバランスウェイトが取り付けられ、作業部分及びバランスウェイトがブーム支持部を支点として互いに上下移動可能になっている。かかる作業機械において、ブームの起伏動作は油圧シリンダによって駆動される。
 ブームが上昇する際には、油圧シリンダはロッド前進方向に作動する。このとき、油圧シリンダのキャップ側圧力室への作動油の供給量とロッド側圧力室からの作動油の排出量とを制御することによって、ブームの上昇速度が制御される。一方、ブームが下降する際には、油圧シリンダはロッド後退方向に作動する。このとき、油圧シリンダのロッド側圧力室への作動油の供給量とキャップ側圧力室からの作動油の排出量とを制御することによって、ブームの下降速度が制御される。
 非特許文献1には、このような油圧シリンダ駆動装置に適用される油圧回路の一例が開示されている。かかる油圧回路は、作動油を吐出する油圧ポンプと、油圧ポンプにより吐出される作動油を油圧シリンダのロッド側圧力室又はキャップ側圧力室に対して供給し、あるいは、ロッド側圧力室又はキャップ側圧力室から排出する複数の弁とを備える。
不二越研究グループ著、「知りたい油圧/基礎編」、第8版、株式会社ジャパンマシニスト社、1989年9月20日、P.315
 ところで、上記のような油圧シリンダ駆動装置では、タンクに排出される作動油が高温になり得るため、作動油をタンクに戻すための排出油路にオイルクーラを備えた油圧シリンダ駆動装置がある。図5は、オイルクーラ230を備えた油圧回路200の例を示す。かかる油圧回路200は、シリンダチューブ241内を進退動可能なピストンロッド243を有する油圧シリンダ240と、電動機250により駆動されて作動油を吐出する油圧ポンプ220と、吐出された作動油をロッド側圧力室245又はキャップ側圧力室247へと導く方向切換弁260とを備える。
 方向切換弁260とキャップ側圧力室247とを連通する第1の制御油路224、及び、方向切換弁260とロッド側圧力室245とを連通する第2の制御油路226には、それぞれ流量制御弁270,280及び一方向弁272,282が備えられる。また、方向切換弁260を介して排出される作動油をタンク234に導く排出油路228には、オイルクーラ230が備えられる。油圧ポンプ220の吐出側油路222と排出油路228との間にはリリーフ弁232が備えられる。
 かかる油圧シリンダ駆動装置では、油圧シリンダ240をロッド前進方向に作動させる場合、方向切換弁260により、油圧ポンプ220の吐出側油路222と第1の制御油路224とを連通させ、第2の制御油路226と排出油路228とを連通させる。これにより、作動油は一方向弁272を通ってキャップ側圧力室247に供給されるとともに、ロッド側圧力室245内の作動油は流量制御弁280により流量制御されながら、第2の制御油路226及び排出油路228を通ってタンク234に戻される。
 また、油圧シリンダ240をロッド後退方向に作動させる場合、方向切換弁260により、油圧ポンプ220の吐出側油路222と第2の制御油路226とを連通させ、第1の制御油路224と排出油路228とを連通させる。これにより、作動油は一方向弁282を通ってロッド側圧力室245に供給されるとともに、キャップ側圧力室247内の作動油は流量制御弁270により流量制御されながら、第1の制御油路224及び排出油路228を通ってタンク234に戻される。
 このとき、油圧シリンダ240から排出され、流量制御弁270,280により流量を絞られた作動油は高温になっている。かかる高温の作動油は、オイルクーラ230で冷却されてタンク234に戻されるものであり、油圧シリンダ駆動装置で発生したエネルギは熱エネルギとして放出されるため、エネルギ効率が低くなる。また、かかる油圧シリンダ駆動装置は、大型のオイルクーラ230が必要になることや使用する弁の数が多いことから、簡略化されることが望まれる。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、装置構成を簡略化できるとともに、エネルギ効率を向上可能な、新規かつ改良された油圧シリンダ駆動装置を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、被作動機器を作動するピストンロッドを備えた油圧シリンダと、装置外部の電力により作動する電動機として機能するとともに装置外部に電力を供給する発電機として機能する電動発電機と、電動発電機に連結され、油圧シリンダのキャップ側圧力室に油圧を供給する油圧ポンプとして機能するとともに、キャップ側圧力室から供給される油圧により電動発電機の動力装置として機能する第1の可変容量ポンプモータと、電動発電機に連結され、油圧シリンダのロッド側圧力室に油圧を供給する油圧ポンプとして機能するとともに、ロッド側圧力室から供給される油圧により電動発電機の動力装置として機能する第2の可変容量ポンプモータと、を備えた、油圧シリンダ駆動装置が提供される。
 第1の可変容量ポンプモータ及び第2の可変容量ポンプモータは同一の駆動軸に接続され、電動発電機が駆動軸に連結されてもよい。
 電動発電機が、インバータ制御されてもよい。
 電動発電機が、第1の可変容量ポンプモータの第1の駆動軸に連結された第1の電動発電機と、第2の可変容量ポンプモータの第2の駆動軸に連結された第2の電動発電機と、を含んでもよい。
 第1の電動発電機及び第2の電動発電機のうちの少なくとも一方が、インバータ制御されてもよい。
 被作動機器が作業機械のブーム駆動装置であってもよい。
 以上説明したように本発明によれば、装置構成を簡略化できるとともに、エネルギ効率の向上を図ることができる。
本発明にかかる油圧シリンダ駆動装置を適用可能なブーム駆動装置を示す説明図である。 本発明の第1の実施の形態にかかる油圧シリンダ駆動装置の構成を示す回路図である。 オーバーセンター型可変容量ポンプモータを示す断面図である。 本発明の第2の実施の形態にかかる油圧シリンダ駆動装置の構成を示す回路図である。 従来の油圧シリンダ駆動装置の構成を示す回路図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 <1.第1の実施の形態>
 (1-1.ブーム駆動装置)
 まず、本実施形態にかかる油圧シリンダ駆動装置を適用可能なブーム駆動装置について簡単に説明する。ブーム駆動装置は、被作動機器の一例である。図1は、ブーム駆動装置100を示す模式図である。ブーム駆動装置100は、例えば、建設機械やアンローダ装置等の作業機械に搭載される。
 ブーム駆動装置100は、ブーム支持部110と、ブーム120と、作業部130と、アーム140と、油圧シリンダ40とを備える。ブーム支持部110上には、ブーム120が起伏自在に枢支されている。油圧シリンダ40は、シリンダチューブがブーム支持部110に取り付けられ、ピストンロッドがブーム120に取り付けられる。ブーム120の起伏動作は、油圧シリンダ40によって制御されるようになっている。
 ブーム120の先端には、アーム140が旋回自在に支持されている。アーム140の下端には、作業部130が設けられている。ブーム120の後端にはバランスウェイト126が設けられている。これにより、作業部130とバランスウェイト126とは、ブーム120の起伏動作に伴って、ブーム支持部110の上部を支点として、互いに上下移動可能になっている。ブーム120の起伏動作は、油圧シリンダ40の駆動制御により行われる。
 かかるブーム駆動装置100において、バランスウェイト126は、ブーム駆動装置100が無負荷の状態、すなわち、作業部130に重量物が積載されていない状態では、ブーム120の先端を上方に回動させ得る重量を有している。本実施形態にかかる油圧シリンダ駆動装置は、ブーム120の先端を上昇させ又は下降させるために、油圧シリンダ40に作動油を供給し、あるいは、油圧シリンダ40から作動油を排出する制御を行い、ブーム120の起伏動作を制御する。
 (1-2.油圧シリンダ駆動装置)
 次に、本発明の第1の実施の形態にかかる油圧シリンダ駆動装置10の構成の一例について説明する。図2は、油圧シリンダ駆動装置10の油圧回路の構成を示す回路図である。油圧シリンダ駆動装置10は、第1の可変容量ポンプモータ20と、第2の可変容量ポンプモータ30と、電動発電機50と、油圧シリンダ40とを備える。
 (1-2-1.油圧シリンダ)
 油圧シリンダ40は、図1に示したブーム駆動装置100のブーム120及びブーム支持部110に取り付けられたものであり、シリンダチューブ41と、シリンダチューブ41内を進退移動可能なピストンロッド43とを備える。シリンダチューブ41が支持部110に取り付けられ、ピストンロッド43がブーム120に取り付けられる。シリンダチューブ41内は、ピストンロッド43によってロッド側圧力室45とキャップ側圧力室47とに画成される。
 キャップ側圧力室47は第1の可変容量ポンプモータ20に接続された第1の制御油路22に連通し、ロッド側圧力室45は第2の可変容量ポンプモータ30に接続された第2の制御油路32に連通する。第1の制御油路22及び第2の制御油路32には、それぞれの油路内の圧力を計測する圧力検出器28,38が設けられている。
 (1-2-2.可変容量ポンプモータ)
 第1の可変容量ポンプモータ20は、油圧シリンダ40のキャップ側圧力室47に対して作動油を供給する油圧ポンプとしての機能と、キャップ側圧力室47から排出される作動油によって駆動軸52を回転駆動する油圧モータとしての機能とを有する。また、第2の可変容量ポンプモータ30は、油圧シリンダ40のロッド側圧力室45に対して作動油を供給する油圧ポンプとしての機能と、ロッド側圧力室45から排出される作動油によって駆動軸52を回転駆動する油圧モータとしての機能とを有する。
 本実施形態にかかる油圧シリンダ駆動装置において、第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30は同一の駆動軸52に連結されている。したがって、一方の可変容量ポンプモータが油圧ポンプとして機能し、他方の可変容量ポンプモータが油圧モータとして機能する場合に、油圧モータによる駆動軸52の回転駆動エネルギが、油圧ポンプを駆動させるためのエネルギとして用いられる。
 したがって、油圧ポンプとしての可変容量ポンプモータの駆動に必要なエネルギが、油圧モータとしての可変容量ポンプモータの回転駆動エネルギよりも大きい場合には、電動発電機50を駆動させる電力消費量を低減することができる。また、油圧ポンプとしての可変容量ポンプモータの駆動に必要なエネルギが、油圧モータとしての可変容量ポンプモータの回転駆動エネルギよりも小さい場合には、余剰の回転駆動エネルギにより電動発電機50を回転させ、回生電力を発生させることができる。
 第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30の構成例を簡単に説明する。図3は、可変容量ポンプモータの一例を示す断面図である。なお、第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30は、基本的に同一の構成であってよい。
 図3に示した可変容量ポンプモータは、斜板式可変容量型のピストンポンプモータである。可変容量ポンプモータは、カバー161と、ポンプハウジング168と、カバー161及びポンプハウジング168に軸支される駆動軸170とを備える。カバー161には、可変容量ポンプモータが油圧ポンプとして機能する場合に吸入される作動油が流れるとともに、可変容量ポンプモータが油圧モータとして機能する場合に排出される作動油が流れる第1の給排通路163が設けられる。また、カバー161には、可変容量ポンプモータが油圧ポンプとして機能する場合に吐出される作動油が流れるとともに、可変容量ポンプモータが油圧モータとして機能する場合に導入される作動油が流れる第2の給排通路165が設けられる。
 第1の給排通路163は、作動油が貯留された図示しないタンクに連通する。第2の給排通路165は、油圧シリンダ40の圧力室に連通する。第1の可変容量ポンプモータ20の場合には、第2の給排通路165はキャップ側圧力室47に連通する。第2の可変容量ポンプモータ30の場合には、第2の給排通路165はロッド側圧力室45に連通する。
 駆動軸170にはシリンダブロック180が連結され、シリンダブロック180は駆動軸170と一体に回転する。シリンダブロック180の一端側にはポートプレート190が設けられ、他端側には斜板175が設けられる。シリンダブロック180の一端側の面は、ポートプレート190に摺接する。シリンダブロック180には、駆動軸170の軸方向に沿って複数のシリンダ182が画成されている。各シリンダ182にはピストン185が軸方向移動可能に挿入されており、シリンダ182とピストン185とにより容積室188が画成される。容積室188は、ポートプレート190に設けられた油圧ポート192,194を介してカバー161に形成された第1の給排通路163及び第2の給排通路165と連通可能になっている。
 シリンダ182から突出するピストン185の端部は、斜板175に摺接する。ピストン185は、駆動軸170とともにシリンダブロック180が回転したときに、斜板175に摺接しながら、駆動軸170を中心に回転する。斜板175が駆動軸170に直交する面に対して傾いている状態では、この回転に伴い、ピストン185がシリンダ182内を往復動し、容積室188が拡縮する。
 可変容量ポンプモータを油圧ポンプとして機能させる場合、容積室188が拡張する領域においてカバー161の第1の給排通路163が容積室188に連通し、容積室188が収縮する領域において第2の給排通路165が容積室188に連通するよう、斜板175が傾けられる。これにより、可変容量ポンプモータの回転に伴い、タンクに貯留された作動油が第1の給排通路163を介して容積室188に吸入されるとともに、容積室188内で加圧された後、第2の給排通路165を介して吐出される。ポンプ吐出流量は、傾転量を制御することによって調節し得る。
 また、可変容量ポンプモータを油圧モータとして機能させる場合、容積室188が収縮する領域において第1の給排通路163が容積室188に連通し、容積室188が拡大する領域において第2の給排通路165が容積室188に連通するよう、斜板175が傾けられる。これにより、油圧シリンダ40の圧力室から排出される油圧によって可変容量ポンプモータが回転駆動され、駆動軸170に出力トルクが発生する。
 斜板175の傾き(傾転量)は、油圧アクチュエータ195によって調節可能になっている。特に、本実施形態では、オーバーセンター型の可変容量ポンプモータが用いられ、斜板175は、一方向だけでなく両方向に傾斜可能に構成されている。かかる油圧アクチュエータ195は、方向切換弁等を備えた油圧回路により構成され、二つの圧力室のうちのいずれか一方の圧力室に供給される作動油の圧力を選択的に大きくすることにより、斜板175をいずれか一方向に傾斜させることができる。また、二つの圧力室に対して所定のバランスで作動油を供給することにより、傾転量をゼロにすることができる。これにより、可変容量ポンプモータの油圧ポンプ又は油圧モータとしての機能を停止させることができる。
 傾転量を調節する油圧アクチュエータ195は、図示しない電子制御装置により制御される。電子制御装置は、ブームの作動方向、第1の制御油路22及び第2の制御油路32に設けられた圧力検出器28,38により計測される油圧P1,P2等に基づいて、方向切換弁等を制御し、斜板175の傾き方向、傾き量を適宜調節する。
 (1-2-3.電動発電機)
 電動発電機50は、油圧シリンダ駆動装置10の外部の電力源70から供給される電力により作動し、駆動軸52を回転駆動させる電動機として機能する。また、電動発電機50は、油圧モータとして機能する第1の可変容量ポンプモータ20又は第2の可変容量ポンプモータ30による、駆動軸52の回転駆動力により回転されて、油圧シリンダ駆動装置10の外部に電力を供給する発電機として機能する。
 電動発電機50は、例えば三相交流式のモータにより構成される。電動発電機50は、駆動軸52に付与する回転駆動力を発生させる。発生する回転駆動力は、第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30の必要駆動力に応じて出力される。また、電動発電機50は、駆動軸52の回転トルクによって回転し、回生電力を発生する。発生した回生電力は、図示しない電力負荷機器に供給される。例えば、ブーム駆動装置100が設置されたプラント内の電力として使用される。回生電力は、蓄電池や蓄電装置等に蓄電されてもよい。
 (1-3.使用例)
 以下、ブーム駆動装置100を駆動する油圧シリンダ駆動装置10の使用例を説明する。
 (1-3-1.ブーム上昇時)
 ブーム駆動装置100のブーム120の先端を上昇させる際には、第1の可変容量ポンプモータ20が油圧ポンプとして機能し、第2の可変容量ポンプモータ30が油圧モータとして機能する。すなわち、油圧シリンダ40のキャップ側圧力室47に作動油が供給される一方、ロッド側圧力室45から作動油が排出される。その際に、電子制御装置は、外部で設定されるブーム速度及び第1の制御油路22及び第2の制御油路32に設けられた圧力検出器28,38の計測値に基づいて、第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30の傾転量を制御する。
 具体的に、電子制御装置は、第1の制御油路22及び第2の制御油路32内の油圧P1,P2を監視しながら、ピストンロッド43の前進速度が所望の速度となるように、第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30の傾転量を制御する。
 このとき、第2の可変容量ポンプモータ30はロッド側圧力室45から排出される作動油によって駆動軸52を回転駆動させる油圧モータとして機能し、駆動軸52の回転駆動力を発生する。したがって、第2の可変容量ポンプモータ30による駆動軸52の回転駆動力を、第1の可変容量ポンプモータ20による作動油の吐出に利用することができ、電動発電機50の電力を小さく設定することができる。
 また、第2の可変容量ポンプモータ30による駆動軸52の回転駆動力が、第1の可変容量ポンプモータ20による作動油の吐出に必要な回転駆動力を上回る場合、第2の可変容量ポンプモータ30による駆動軸52の回転駆動力の余剰分が、電動発電機50により電力に変換される。発電された電力は、図示しない電力負荷機器に供給される。
 (1-3-2.ブーム下降時)
 ブーム駆動装置100のブーム120の先端を下降させる際には、第1の可変容量ポンプモータ20が油圧モータとして機能し、第2の可変容量ポンプモータ30が油圧ポンプとして機能する。すなわち、油圧シリンダ40のロッド側圧力室45に作動油が供給される一方、キャップ側圧力室47から作動油が排出される。その際に、電子制御装置は、ブーム120の上昇時と同様に、外部で設定されるブーム速度及び第1の制御油路22及び第2の制御油路32に設けられた圧力検出器28,38の計測値に基づいて、第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30の傾転量を制御する。
 具体的に、電子制御装置は、第1の制御油路22及び第2の制御油路32内の油圧P1,P2を監視しながら、ピストンロッド43の後退速度が所望の速度となるように、第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30の傾転量を制御する。
 このとき、第1の可変容量ポンプモータ20はキャップ側圧力室47から排出される作動油によって駆動軸52を回転駆動させる油圧モータとして機能し、駆動軸52の回転駆動力を発生する。したがって、第1の可変容量ポンプモータ20による駆動軸52の回転駆動力を、第2の可変容量ポンプモータ30による作動油の吐出に利用することができ、電動発電機50の電力を小さく設定することができる。
 また、第1の可変容量ポンプモータ20による駆動軸52の回転駆動力が、第2の可変容量ポンプモータ30による作動油の吐出に必要な回転駆動力を上回る場合、第1の可変容量ポンプモータ20による駆動軸52の回転駆動力の余剰分が、電動発電機50により電力に変換される。発電された電力は、図示しない電力負荷機器に供給される。
 以上説明したように、本実施形態にかかる油圧シリンダ駆動装置10は、油圧シリンダ40のキャップ側圧力室47に作動油を供給する油圧ポンプとして機能するとともに、キャップ側圧力室47から排出される作動油により電動発電機50の動力装置として機能する第1の可変容量ポンプモータ20と、油圧シリンダ40のロッド側圧力室45に作動油を供給する油圧ポンプとして機能するとともに、ロッド側圧力室45から排出される作動油により電動発電機50の動力装置として機能する第2の可変容量ポンプモータ30と、を備える。
 そして、一方の可変容量ポンプモータを油圧ポンプとして機能させるための回転駆動が、油圧モータとして機能する他方の可変容量ポンプモータの回転駆動力によりアシストされる。これにより、駆動軸52を回転駆動させる電動発電機50の電力量を少なくすることができる。さらに、油圧モータとして機能する可変容量ポンプモータの回転駆動力が、油圧ポンプとして機能する可変容量ポンプモータに必要な回転駆動力を上回る場合には、余剰の回転駆動力によって電動発電機50で回生発電が行われる。したがって、エネルギ効率が向上する。
 また、本実施形態にかかる油圧シリンダ駆動装置10は、方向切換弁や流量制御弁、オイルクーラ等を備えるものではなく、簡易な構成を備え、コストを低下し得るとともに、エネルギ効率の向上が図られる。
 <2.第2の実施の形態>
 次に、本発明の第2の実施の形態にかかる油圧シリンダ駆動装置について説明する。本実施形態にかかる油圧シリンダ駆動装置は、第1の可変容量ポンプモータ及び第2の可変容量ポンプモータをそれぞれ独立した電動発電機により駆動制御される点で、第1の実施の形態にかかる油圧シリンダ駆動装置と異なっている。
 図4は、本実施形態にかかる油圧シリンダ駆動装置10Aの油圧回路の構成を示す回路図である。油圧シリンダ駆動装置10Aは、第1の可変容量ポンプモータ20と、第2の可変容量ポンプモータ30と、第1の電動発電機50aと、第2の電動発電機50bと、油圧シリンダ40とを備える。第1の可変容量ポンプモータ20、第2の可変容量ポンプモータ30、油圧シリンダ40は、それぞれ第1の実施の形態にかかる油圧シリンダ駆動装置10のものと同様の構成とし得る。
 本実施形態では、第1の可変容量ポンプモータ20が第1の電動発電機50aにより駆動され、第2の可変容量ポンプモータ30が第2の電動発電機50bにより駆動される。本実施形態にかかる油圧シリンダ駆動装置10Aにおいては、第1の可変容量ポンプモータ20の駆動軸52aと第2の可変容量ポンプモータ30の駆動軸52bとは互いに独立している。第1の電動発電機50a及び第2の電動発電機50bは、電力源70に電気的に接続されている。第1の電動発電機50a及び第2の電動発電機50bは、それぞれ第1の実施の形態にかかる油圧シリンダ駆動装置10のものと同様の構成とし得る。
 本実施形態においても、ピストンロッド43を前進方向に移動させる場合には、第1の可変容量ポンプモータ20を油圧ポンプとして機能させ、第2の可変容量ポンプモータ30を油圧モータとして機能させる。一方、ピストンロッド43を後退方向に移動させる場合には、第1の可変容量ポンプモータ20を油圧モータとして機能させ、第2の可変容量ポンプモータ30を油圧ポンプとして機能させる。
 油圧ポンプとして機能させる可変容量ポンプモータの傾転量の制御は、ブーム作動方向、ブーム速度、第1の制御油路22及び第2の制御油路32に設けられた圧力検出器28,38により計測される油圧P1,P2等に基づいて行われる。すなわち、図示しない電子制御装置は、ピストンロッド43の前進速度あるいは後退速度が所望の速度となるように、第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30の傾転量を制御する。このとき、油圧モータとして機能させる可変容量ポンプモータは、油圧シリンダ40の圧力室から排出される作動油により駆動され、当該可変容量ポンプモータによる駆動軸の回転駆動力によって電動発電機では回生発電が行われる。これにより、油圧モータとして機能する可変容量ポンプモータによる駆動軸の回転駆動力が電力に変換され、図示しない電力負荷機器に供給される。
 以上説明したように、本実施形態にかかる油圧シリンダ駆動装置10Aは、第1の実施の形態にかかる油圧シリンダ駆動装置10と同様に、それぞれ油圧ポンプ及び油圧モータとして機能する第1の可変容量ポンプモータ20及び第2の可変容量ポンプモータ30を備える。油圧モータとして機能する可変容量ポンプモータの回転駆動力によって電動発電機で回生発電が行われる。したがって、エネルギ効率が向上する。また、本実施形態にかかる油圧シリンダ駆動装置10Aは、方向切換弁や流量制御弁等を備えるものではなく、簡易な構成を備え、コストを低下し得るとともに、エネルギ効率の向上が図られる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記の実施の形態においては、油圧シリンダ駆動装置10,10Aがブーム駆動装置100に用いられていたが、本発明はかかる例に限られない。油圧ショベルのバケットを支持するアームの起伏動作に用いられる油圧シリンダ駆動装置等、油圧シリンダに対して引張方向の力及び圧縮方向の力が作用し得るものであれば、他の被作動機器にも適用し得る。
 また、上記の各実施の形態において、電動発電機50,50a,50bを制御するインバータ回路を備えてもよい。電動発電機50,50a,50bがインバータ制御可能であれば、油圧制御の応答性が向上し、油圧シリンダ40の油圧の変化速度が速い領域における油圧シリンダ40の動作を向上させることができる。また、油圧シリンダ駆動装置10,10Aが間欠運転される場合には、システムの停止時に電動発電機50,50a,50bを停止することで、さらなる必要エネルギの低減を図ることができる。
 

Claims (6)

  1.  被作動機器を作動するピストンロッドを備えた油圧シリンダと、
     装置外部の電力により作動する電動機として機能するとともに装置外部に電力を供給する発電機として機能する電動発電機と、
     前記電動発電機に連結され、前記油圧シリンダのキャップ側圧力室に油圧を供給する油圧ポンプとして機能するとともに、前記キャップ側圧力室から供給される油圧により前記電動発電機の動力装置として機能する第1の可変容量ポンプモータと、
     前記電動発電機に連結され、前記油圧シリンダのロッド側圧力室に油圧を供給する油圧ポンプとして機能するとともに、前記ロッド側圧力室から供給される油圧により前記電動発電機の動力装置として機能する第2の可変容量ポンプモータと、
     を備えた、油圧シリンダ駆動装置。
  2.  前記第1の可変容量ポンプモータ及び前記第2の可変容量ポンプモータは同一の駆動軸に接続され、前記電動発電機が前記駆動軸に連結される、請求項1に記載の油圧シリンダ駆動装置。
  3.  前記電動発電機が、インバータ制御される、請求項2に記載の油圧シリンダ駆動装置。
  4.  前記電動発電機が、前記第1の可変容量ポンプモータの第1の駆動軸に連結された第1の電動発電機と、前記第2の可変容量ポンプモータの第2の駆動軸に連結された第2の電動発電機と、を含む、請求項1に記載の油圧シリンダ駆動装置。
  5.  前記第1の電動発電機及び前記第2の電動発電機のうちの少なくとも一方が、インバータ制御される、請求項4に記載の油圧シリンダ駆動装置。
  6.  前記被作動機器が作業機械のブーム駆動装置である、請求項1~5のいずれか1項に記載の油圧シリンダ駆動装置。
     
PCT/JP2016/072738 2015-09-28 2016-08-03 油圧シリンダ駆動装置 WO2017056702A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187008460A KR20180043350A (ko) 2015-09-28 2016-08-03 유압 실린더 구동 장치
JP2017542984A JPWO2017056702A1 (ja) 2015-09-28 2016-08-03 油圧シリンダ駆動装置
CN201680056289.6A CN108350914A (zh) 2015-09-28 2016-08-03 液压缸驱动装置
EP16850879.4A EP3358202A4 (en) 2015-09-28 2016-08-03 Hydraulic cylinder drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-190291 2015-09-28
JP2015190291 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017056702A1 true WO2017056702A1 (ja) 2017-04-06

Family

ID=58423157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072738 WO2017056702A1 (ja) 2015-09-28 2016-08-03 油圧シリンダ駆動装置

Country Status (5)

Country Link
EP (1) EP3358202A4 (ja)
JP (1) JPWO2017056702A1 (ja)
KR (1) KR20180043350A (ja)
CN (1) CN108350914A (ja)
WO (1) WO2017056702A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468358A (zh) * 2018-03-15 2018-08-31 福建工程学院 分布式液压驱动的挖掘机及其动力系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120001A1 (de) * 2018-08-16 2020-02-20 Moog Italiana S.R.L. Digitales Pumpenachsensteuerungssystem
KR102145392B1 (ko) * 2019-07-05 2020-08-18 주식회사 예성리테일 공유압 실린더의 공압 및 유압 제어장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090704A (ja) * 1999-09-21 2001-04-03 Tokimec Inc 駆動装置
JP2002039110A (ja) * 2000-07-27 2002-02-06 Kobelco Contstruction Machinery Ltd 油圧シリンダ回路
JP2002349505A (ja) * 2001-05-25 2002-12-04 Kobelco Contstruction Machinery Ltd 油圧アクチュエータ回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600650C2 (de) * 1996-01-10 2003-05-28 Trinova Gmbh Antrieb für einen hydraulischen doppelwirkenden Aktuator
EP2479351A4 (en) * 2009-09-15 2017-07-05 Sumitomo Heavy Industries, LTD. Hybrid construction machine
CN101956405A (zh) * 2010-07-15 2011-01-26 吉林大学 一种工程机械动臂下降的重力势能回收装置
JP5858818B2 (ja) * 2012-02-17 2016-02-10 日立建機株式会社 建設機械
DE102012006981B4 (de) * 2012-04-05 2019-02-21 Schuler Pressen Gmbh Hydraulische Presse
CN103671306A (zh) * 2013-11-21 2014-03-26 中国石油化工股份有限公司 液压动力装置及其势能转化与操作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090704A (ja) * 1999-09-21 2001-04-03 Tokimec Inc 駆動装置
JP2002039110A (ja) * 2000-07-27 2002-02-06 Kobelco Contstruction Machinery Ltd 油圧シリンダ回路
JP2002349505A (ja) * 2001-05-25 2002-12-04 Kobelco Contstruction Machinery Ltd 油圧アクチュエータ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358202A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468358A (zh) * 2018-03-15 2018-08-31 福建工程学院 分布式液压驱动的挖掘机及其动力系统

Also Published As

Publication number Publication date
JPWO2017056702A1 (ja) 2018-06-14
EP3358202A4 (en) 2018-10-10
EP3358202A1 (en) 2018-08-08
CN108350914A (zh) 2018-07-31
KR20180043350A (ko) 2018-04-27

Similar Documents

Publication Publication Date Title
JP5683123B2 (ja) 油圧掘削機用の駆動装置
US8720197B2 (en) Flow management system for hydraulic work machine
US10519990B2 (en) Hydraulic apparatus
JP6084972B2 (ja) エネルギを回収し、油圧システムにかかる負荷を平準化するためのシステム及び方法
US9476437B2 (en) Boom driving device
JP4454122B2 (ja) 油圧閉回路
JP6155159B2 (ja) ハイブリッド建設機械の制御システム
WO2017056702A1 (ja) 油圧シリンダ駆動装置
JP4999404B2 (ja) 油圧制御装置
CN108978773B (zh) 一种挖掘机用多元混合动力系统
JP5280993B2 (ja) アシスト回生装置
US20160122980A1 (en) Construction machine energy regeneration apparatus
JP2009127643A (ja) 建設機械のブーム駆動回路
CN108517904B (zh) 一种液电混合驱动的液压挖掘机
CN106223380B (zh) 一种液压混合动力挖掘机系统
JP2018087634A (ja) 建設機械用液圧システム
JP2001012418A (ja) ハイブリッド作業機械
JP2004100810A (ja) 圧力変換装置
JP2004176893A (ja) 差動シリンダ用油圧回路および油圧ユニット装置
JP6149068B2 (ja) ハイブリッド作業機の制御システム
JP2001012406A (ja) 作業機械用液圧回路およびハイブリッド作業機械
JP2014105621A (ja) 油圧装置
KR20110074434A (ko) 에너지 절감형 하이브리드 윈치 구동 시스템
RU116460U1 (ru) Обратимый гидропривод изменения вылета стрелы грузоподъемного механизма
JP2010223371A (ja) 油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542984

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187008460

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE