WO2017051857A1 - 発電システムの作動油タンク及び該作動油タンクへの作動油封入方法 - Google Patents

発電システムの作動油タンク及び該作動油タンクへの作動油封入方法 Download PDF

Info

Publication number
WO2017051857A1
WO2017051857A1 PCT/JP2016/077985 JP2016077985W WO2017051857A1 WO 2017051857 A1 WO2017051857 A1 WO 2017051857A1 JP 2016077985 W JP2016077985 W JP 2016077985W WO 2017051857 A1 WO2017051857 A1 WO 2017051857A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic oil
power generation
oil tank
generation system
wall surface
Prior art date
Application number
PCT/JP2016/077985
Other languages
English (en)
French (fr)
Inventor
二橋 謙介
浅野 伸
善友 野田
祥 小野寺
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201680054048.8A priority Critical patent/CN108026941B/zh
Priority to JP2017541580A priority patent/JP6475347B2/ja
Priority to US15/760,168 priority patent/US10724551B2/en
Publication of WO2017051857A1 publication Critical patent/WO2017051857A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/045Compensating for variations in viscosity or temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a hydraulic oil tank of a power generation system that generates power using ocean current energy, tidal energy, or wind energy, and a method of enclosing the hydraulic oil in the hydraulic oil tank.
  • the ocean current power generation system that generates power using ocean current energy
  • the tidal power generation system that generates power using tidal energy
  • the wind power generation system that generates power using wind energy, respectively, generate power inside the pod.
  • the machine, the hydraulic drive train, and the hydraulic oil tank are disposed, and the rotor blades are disposed outside the pot.
  • FIG. 9A is a layout diagram of the ocean current power generation system
  • FIG. 9B is a schematic enlarged view of the ocean current power generation system.
  • the ocean current power generation system 100 is configured as a floating body having a certain buoyancy, and is suspended in the sea within a predetermined range by being connected to a mooring line 110 extending from the seabed. Therefore, the ocean current power generation system 100 is swung by the ocean current.
  • the ocean current power generation system 100 includes a generator 102, a hydraulic drive train 103 and a hydraulic oil tank 104 disposed inside the pod 101, and a rotor blade 105 disposed outside the pot 101. ing.
  • the rotary blade 105 is connected to the generator 102 via the hydraulic drive train 103, and the hydraulic drive train 103 increases the rotational speed of the rotary blade 105 to the rotational speed of the generator 102.
  • the hydraulic oil tank 104 is a tank that stores hydraulic oil used in the hydraulic drive train 103 and is connected to the hydraulic drive train 103.
  • the hydraulic drive train 103 sucks up and circulates the hydraulic oil in the hydraulic oil tank 104 by a built-in pump.
  • the ocean current power generation system 100 generates power by rotating the rotor blades 105 by ocean current energy and rotating the generator 102 via the hydraulic drive train 103.
  • FIGS. 10A to 10C are schematic diagrams for explaining the problem of the hydraulic oil tank 104.
  • the heat generated from the hydraulic drive train 103 and the hydraulic oil tank 104 may cause the inside of the pod 101 to become high temperature, leading to equipment failure. If a cooling system for cooling the hydraulic drive train 103 and the hydraulic oil tank 104 is additionally provided, the temperature rise in the pod 101 can be suppressed. However, the system becomes heavier, the cost is increased, and the maintainability is reduced due to an increase in the number of components.
  • the technical problem also applies to tidal power generation systems and offshore and airborne wind power generation systems that are substantially the same as the ocean current power generation system except for the means for attaching the power generation system (the mooring cable 110). Are common.
  • the inside can be filled with hydraulic oil, deformation can be prevented without changing the thickness of the tank, and cooling can be performed without adding a cooling system. It is an object of the present invention to provide a hydraulic oil tank for a power generation system and a method for enclosing the hydraulic oil in the hydraulic oil tank.
  • the hydraulic oil tank of the power generation system according to the first invention for solving the above problem is A hydraulic oil tank that is disposed in the pod of the power generation system and stores hydraulic oil, A first inner space which is attached to the tank wall surface from the inside and has a first inner space communicating with the outside through a first opening penetrating the wall surface; Stretchable part, A second inner space that is attached to the wall surface from the outside and communicates with the interior of the wall surface by a second opening penetrating the wall surface; And a second expansion / contraction part.
  • the hydraulic oil tank of the power generation system according to the second invention that solves the above problem is as follows.
  • the first elastic part and the second elastic part are rubber bags having the first opening and the second opening, respectively.
  • the hydraulic oil tank of the power generation system according to the third invention for solving the above-mentioned problem is
  • the second expansion / contraction part has a tube shape disposed on a side surface part of the wall surface, and serves as one end as the second opening part that penetrates the side surface part, and as a third opening part that penetrates the side surface part. The other end is attached to a position shifted in the vertical direction.
  • the hydraulic oil tank of the power generation system according to the fourth invention for solving the above-described problem is In the hydraulic oil tank of the power generation system according to the second invention, the second expansion / contraction part is disposed as a part of the side surface of the wall surface, and the second opening is formed so as to extend over the entire circumference of the side surface.
  • the hydraulic oil tank of the power generation system according to the fifth invention for solving the above-described problem is In the hydraulic oil tank of the power generation system according to the fourth invention, A weight is provided in the upper part of the tank ceiling.
  • the hydraulic oil tank of the power generation system according to the sixth invention for solving the above-described problem is In the hydraulic oil tank of the power generation system according to the first invention, The first elastic part and the second elastic part are bellows having the first opening and the second opening, respectively.
  • the hydraulic oil tank of the power generation system according to the seventh invention that solves the above problem is
  • the second expansion / contraction part has a tube shape disposed on a side surface part of the wall surface, and serves as one end as the second opening part that penetrates the side surface part, and as a third opening part that penetrates the side surface part. The other end is attached to a position shifted in the vertical direction.
  • the hydraulic oil tank of the power generation system according to the eighth invention that solves the above problem is
  • the second expansion / contraction part is disposed as a part of the side surface of the wall surface, and the second opening is formed so as to extend over the entire circumference of the side surface.
  • the hydraulic oil tank of the power generation system according to the ninth invention for solving the above-described problems is In the hydraulic oil tank of the power generation system according to the eighth aspect of the invention, A weight is provided in the upper part of the tank ceiling.
  • the hydraulic oil tank of the power generation system according to the tenth invention for solving the above problem is
  • the first expansion / contraction section includes an air chamber serving as the first internal space communicating with the outside through the first opening, and an oil chamber communicating with the inside of the wall surface through a fifth opening penetrating the wall surface.
  • the second expansion / contraction part includes an oil chamber serving as the second internal space communicating with the inside of the wall surface through the second opening and an air chamber communicating with the outside through a sixth opening penetrating the wall surface. It is the 2nd cylinder divided by 2 pistons, It is characterized by the above-mentioned.
  • the hydraulic oil tank of the power generation system according to the eleventh invention for solving the above problem is In the hydraulic oil tank of the power generation system according to any one of the first to tenth inventions, The bottom surface of the tank is in close contact with the wall surface of the pod, or the bottom surface of the tank is a part of the wall surface of the pod.
  • a part including the bottom surface of the tank is a diameter-expanded part having a diameter larger than that of the other part.
  • the hydraulic oil tank of the power generation system according to the thirteenth invention for solving the above-mentioned problem is In the hydraulic oil tank of the power generation system according to the twelfth aspect of the present invention, A pipe as a hydraulic oil circulation path is connected to the enlarged diameter portion.
  • the hydraulic oil sealing method according to the fourteenth aspect of the invention for solving the above problems is as follows: The hydraulic oil is sealed in a state where the second expansion / contraction part of the hydraulic oil tank of the power generation system according to any one of the second to fifth inventions is crushed from the outside or evacuated. To do.
  • the inside can be filled with the hydraulic oil, and deformation can be prevented without changing the thickness of the tank. . Moreover, it can cool without adding a cooling system.
  • FIG. 6C is a schematic cross-sectional view illustrating the actual expansion and contraction of the rubber bag when only the rubber bag for lowering the oil temperature is provided.
  • (A) is the schematic explaining the hydraulic-oil tank of the electric power generation system which concerns on Example 2 of this invention (one part is made into sectional drawing).
  • (B) is a model figure at the time of making the rocking
  • (A) is a layout view of the power generation system, and (b) is a schematic enlarged view of the power generation system. It is a schematic diagram explaining the subject of the hydraulic oil tank of the conventional electric power generation system.
  • the hydraulic oil tank of the power generation system according to the present invention is arranged in a pod (refer to the pod 101 in FIGS. 9 and 10) in a swinging power generation system such as an ocean current power generation system, a tidal power generation system, or a wind power generation system.
  • a swinging power generation system such as an ocean current power generation system, a tidal power generation system, or a wind power generation system.
  • This is a hydraulic oil tank that is provided and accumulates hydraulic oil.
  • a hydraulic oil tank of a power generation system according to the present invention and a method of enclosing the hydraulic oil in the hydraulic oil tank will be described in each embodiment with reference to the drawings.
  • the hydraulic oil tank (hydraulic oil tank 10) of the power generation system includes a tank wall surface 11, an oil temperature rising rubber bag 12, and an oil temperature falling rubber bag. 13 and the tank wall surface 11 is filled with hydraulic oil.
  • the hydraulic oil tank 10 communicates with the hydraulic drive train (see the hydraulic drive train 103 in FIGS. 9 and 10; the same applies hereinafter) through the suction pipe and the return pipe. The temperature of the hydraulic oil in the hydraulic oil tank 10 rises due to circulation to the hydraulic drive train.
  • the elastic rubber bag 12 for rising oil temperature (first expansion / contraction part) is attached to the tank wall surface 11 from the inside, and the opening 12-1 (first opening) penetrating the tank wall surface 11 A space (first internal space) communicates with the outside of the tank wall surface 11.
  • the elastic rubber bag 13 for lowering oil temperature (second expansion / contraction part) is attached to the tank wall surface 11 from the outside, and an opening 13-1 (second opening) penetrating the tank wall surface 11 is used.
  • the internal space (second internal space) communicates with the inside of the tank wall surface 11.
  • FIG. 1 shows a state in which the oil temperature rising rubber bag 12 is disposed on the ceiling of the tank wall surface 11 and the oil temperature lowering rubber bag 13 is disposed on the side surface of the tank wall surface 11.
  • the arrangement positions of the rubber bags 12 and 13 on the tank wall surface 11 need not be limited to this.
  • the oil bag changes when the oil temperature drops mainly as shown by the one-dot chain line in FIG.
  • the pressure is kept constant.
  • the rubber bag for oil temperature rise 12 is slightly inflated as shown by the one-dot chain line in FIG. 1 (although it is smaller than the change in the rubber bag for oil temperature drop 13). Assist in absorption.
  • the hydraulic oil tank 10 can be deformed when the temperature of the hydraulic oil changes without increasing the thickness of the tank wall surface 11. It is possible to prevent the system weight and cost.
  • the oil temperature rise rubber bag 12 and the oil temperature fall rubber bag 13 are joined to the hydraulic oil tank 10.
  • the rubber bag 13 for oil temperature lowering is in a state in which the air in the rubber bag is discharged by crushing the bag from the outside or evacuating it. In that state, hydraulic oil is sealed. As a result, the hydraulic oil can be sealed in the hydraulic oil tank 10 without causing air accumulation in the rubber bag 13 for lowering the oil temperature.
  • FIG. 2A is a schematic cross-sectional view for explaining the setting of the expansion / contraction amount of the rubber bag when only the rubber bag 12 for increasing the oil temperature is provided as an example.
  • the temperature of the hydraulic oil changes due to driving or stopping of the power generation system (for example, as in the figure). Swing in the range of 0 ° C to 60 ° C).
  • a two-dot chain line indicates a state where the rubber bag 12 is contracted when the oil temperature rises, that is, when the oil volume expands
  • a one-dot chain line indicates a state where the rubber bag 12 expands when the oil temperature decreases, that is, when the oil volume contracts.
  • FIG. 2B is a schematic cross-sectional view for explaining the expansion and contraction of an actual rubber bag when only the rubber bag for oil temperature rise 12 is provided as an example.
  • the expansion / contraction amount cannot actually be set accurately.
  • the rubber bag 12 is limited while the temperature of the hydraulic oil is decreased and the volume is contracted. May expand to a point where it cannot expand further.
  • FIG.2 (c) represents a mode that the rubber bag 13 expanded
  • the hydraulic oil tank 10 can easily fill the tank with the hydraulic oil without paying attention to the volume increase / decrease due to the temperature change of the hydraulic oil when the hydraulic oil is sealed in the tank. As a result, the gas phase in the tank that causes sloshing can be eliminated.
  • the hydraulic oil tank 10 is not limited to the case where the rubber bags 12 and 13 are provided.
  • modified examples of the hydraulic oil tank 10 hydroaulic oil tanks 10a and 10b will be described with reference to FIGS.
  • the hydraulic oil tank 10a shown in FIG. 3 includes an oil temperature rising bellows 12a and an oil temperature falling bellows 13a.
  • the tank wall surface 11 is filled with hydraulic oil.
  • the retractable oil temperature rising bellows 12a (first stretchable portion) is attached to the tank wall surface 11 from the inside, and the opening 12a-1 (first opening portion) penetrating the tank wall surface 11 allows the bellows of the bellows.
  • An internal space (first internal space) communicates with the outside of the tank wall surface 11.
  • the retractable bellows 13a (second stretchable portion) for oil temperature drop is attached to the tank wall surface 11 from the outside, and the opening 13a-1 (second opening) penetrating the tank wall surface 11
  • An internal space (second internal space) of the bellows communicates with the inside of the tank wall surface 11.
  • the oil bellows 12a contracts mainly due to the oil temperature increase and the oil volume change is absorbed, and the pressure in the hydraulic oil tank 10a is kept constant.
  • the oil temperature drop bellows 13a slightly expands (although it is smaller than the change in the oil temperature rise bellows 12a), thereby assisting in absorbing the oil volume change.
  • the oil bellows 13a contracts mainly due to the oil temperature drop, so that the oil volume change is absorbed and the pressure in the hydraulic oil tank 10 is kept constant.
  • the oil temperature rising bellows 12a slightly expands (although it is smaller than the change in the oil temperature dropping bellows 13a), thereby assisting in absorbing the oil volume change.
  • the hydraulic oil tank 10b shown in FIG. 4 is attached to the tank wall surface 11 from the inside, and has a cylindrical body 12b-1 (first expansion / contraction part) having a first piston 12b-2 inside, and an outside on the tank wall surface 11.
  • a cylindrical body 13b-1 (second expansion / contraction part) having a second piston 13b-2 is disposed inside.
  • the tank wall surface 11 is filled with hydraulic oil, and in the drawing, the hydraulic oil is contracted as an example.
  • the cylinder 12b-1 is one end of the cylinder 12b-1, and is an end surface 12b-3 formed in the tank wall surface 11, a hole 12b-4 (first opening) formed in the end surface 12b-3, and the cylinder 12b. -1 is provided with an end surface 12b-5 which is the other end, and a hole 12b-6 (fifth opening) formed in the end surface 12b-5.
  • the first piston 12b-2 is provided in close contact with the inner peripheral surface of the cylindrical body 12b-1 so as to be movable in the axial direction. The first piston 12b-2 allows the inside of the cylinder 12b-1 to communicate with the air chamber (first internal space) communicating with the outside through the hole 12b-4 and the inside of the tank wall surface 11 with the hole 12b-6. It is divided into the oil chamber filled with.
  • the cylinder 13b-1 is one end of the cylinder 13b-1, which is an end surface 13b-3 formed on the tank wall surface 11, a hole 13b-4 (second opening) formed in the end surface 13b-3, and the cylinder 13b.
  • -1 includes an end face 13b-5 which is the other end of the -1 and a hole 13b-6 (sixth opening) formed in the end face 13b-5.
  • the second piston 13b-2 is provided in close contact with the inner peripheral surface of the cylindrical body 13b-1 so as to be movable in the axial direction. By the second piston 13b-2, the inside of the cylindrical body 13b-1 is communicated with the outside through the hole 13b-6 and the oil chamber filled with the hydraulic fluid through the hole 13b-4 and communicated with the inside of the tank wall surface 11. A second internal space). However, in FIG. 4, as an example, the second piston 13 b-2 is in contact with the end face 13 b-3, and it appears that there is no oil chamber.
  • the first piston 12b-2 is in contact with the end face 12b-3, and the second piston 13b-2 is in contact with the end face 13b-3.
  • the air chamber of the cylinder 13b-1 contracts (that is, the oil chamber expands) to absorb the oil volume change in the hydraulic oil tank 10b, and the hydraulic oil tank 10b
  • the pressure is kept constant.
  • the air chamber of the cylinder 12b-1 expands (that is, the oil chamber contracts), thereby absorbing the oil volume change in the hydraulic oil tank 10b and the hydraulic oil tank 10b.
  • the pressure inside is kept constant.
  • FIG. 5A is a schematic diagram for explaining the hydraulic oil tank (hydraulic oil tank 20) of the power generation system according to the present embodiment (a part is a sectional view for clarity).
  • the hydraulic oil tank 20 includes a rubber wall 22 for oil temperature rise and a rubber bag 23 for oil temperature drop on a tank wall surface 21, and the tank wall surface 21 is filled with hydraulic oil.
  • the solid line double arrow in Fig.5 (a) represents a mode that the hydraulic oil tank 20 is rocking
  • the oil temperature rising rubber bag 22 is the same as the oil temperature rising rubber bag 12 of the first embodiment, and in particular, here, the tank wall 21 is disposed on the ceiling 21c.
  • the oil temperature lowering rubber bag 23 corresponds to the oil temperature lowering rubber bag 13 of the first embodiment, but in this embodiment, a part of the wall of the side wall 21d (the rubber wall) of the tank wall surface 21. ), And an opening (not shown) corresponding to the opening 13-1 of the first embodiment is formed so as to extend over the entire circumference of the side surface 21d. It is designed to withstand the discharge pressure of the pump in the train.
  • the hydraulic oil tank 20 is provided with a weight 24 on the upper surface of the ceiling 21c.
  • the weight 24 communicates with the outside of the rubber bag 22 for increasing the oil temperature so that the rubber bag 22 for increasing the oil temperature communicates with the outside of the rubber wall 21.
  • An opening is provided at a position corresponding to the portion.
  • the weight 24 is provided such that the relationship between the height h1 from the bottom surface 21e of the tank wall surface 21 to the rubber bag 23 for oil temperature drop and the height h2 of the center of gravity of the tank is h2> h1. .
  • the hydraulic oil tank 20 includes the rubber bag 22 for oil temperature rise and the rubber bag 23 for oil temperature drop, and the rubber bag 12 for oil temperature rise and the rubber bag for oil temperature drop in the first embodiment. 13, and in the unlikely event that the pod (see the pod 101 in FIGS. 10 and 11) swings in a state where a gas phase is mixed in the hydraulic oil tank 20, the rubber bag for oil temperature drop Owing to the swing attenuation effect of the oil temperature rise rubber bag 22 (and the oil temperature rise rubber bag 22) and the weight 24, the liquid level in the tank is prevented from shaking and sloshing can be prevented. This point will be described in detail with reference to the swing part model diagram of FIG.
  • the swinging part of the hydraulic oil tank 20 in FIG. 5A can be handled as a general one-degree-of-freedom vibration system.
  • the mass of the weight 24 and the rocking portion of the tank (above the rubber bag 23 for oil temperature drop) is m [kg]
  • the height from the rubber bag 23 for oil temperature drop to the height of the center of gravity of the tank is h3 [ m]
  • the rigidity determined from the material and shape of the rubber bag 23 for oil temperature drop is k [Nm / rad] and the damping coefficient is c [Nm ⁇ sec / rad]
  • the hydraulic oil tank 20 is connected to the hydraulic drive train by a suction pipe 21a and a return pipe 21b as a hydraulic oil circulation path connected to the tank wall surface 21 (this point will be described in the first embodiment). The same applies to Example 1). As shown by a solid line arrow in FIG. 5A, the hydraulic oil in the hydraulic oil tank 20 is sucked into the hydraulic drive train from the suction pipe 21a and returns to the hydraulic oil tank 20 from the return pipe 21b. The suction pipe 21a and the return pipe 21b are attached below (the pod wall surface 25 side) below the rubber bag 23 for oil temperature drop.
  • the bottom surface 21 e of the hydraulic oil tank 20 is in close contact with the inside of the pod wall surface 25, or the bottom surface 21 e is a part of the inside of the pod wall surface 25. This point will be described in detail with reference to FIGS.
  • FIG. 6 is a perspective view for explaining the arrangement of the hydraulic oil tank 20.
  • the pod wall surface 25 is curved, but the bottom surface 21 e of the hydraulic oil tank 20 has a shape corresponding to this curve and is in close contact with the inside of the pod wall surface 25.
  • the contact portion of the side surface 21d with the inside of the pod wall surface 25 is shaped to correspond to this curve, and the bottom surface 21e is a part of the inside of the pod wall surface 25.
  • the outside of the pod wall 25 is in contact with seawater or the atmosphere, and when the hydraulic oil in the hydraulic oil tank 20 rises in temperature by circulation to the hydraulic drive train and returns to the hydraulic oil tank 20, the bottom surface 21e moves to the seawater or the atmosphere. Heat can be radiated efficiently, and the hydraulic oil tank 20 and the hydraulic oil can be effectively cooled. Since the suction pipe 21a and the return pipe 21b are attached to the lower side (pod wall surface 25) side of the hydraulic oil tank 20 as described above, the portion of the hydraulic oil in the hydraulic oil tank 20 that is further cooled. Is circulated through the piping to the hydraulic drive train.
  • the cooled hydraulic fluid is circulated to the hydraulic drive train, so that the hydraulic oil tank 20 and the hydraulic drive train that cause equipment failure, as well as the temperature and abnormal rise of each system device in the pod are increased. Prevents temperature and improves reliability. Moreover, since it is not necessary to additionally install a new cooling device by utilizing heat exchange with seawater or the atmosphere via the pod wall surface 25, the system can be reduced in weight and cost.
  • FIG. 7 is a perspective view illustrating the hydraulic oil tank 20a.
  • the hydraulic oil tank 20 a has an enlarged diameter portion 21 f below the tank wall surface 21, that is, a part including a contact portion with the inside of the pod wall surface 25.
  • the enlarged diameter portion 21f is a portion in which the side surface 21d is enlarged in the radial direction as compared with the other portions.
  • the enlarged diameter portion 21f only needs to be enlarged and is not limited to the illustrated shape.
  • the bottom surface 21h of the enlarged diameter portion 21f has a shape corresponding to this curve and is in close contact with the inside of the pod wall surface 25.
  • the contact portion of the side surface 21g of the enlarged diameter portion 21f with the inside of the pod wall surface 25 is shaped to correspond to this curve, and the bottom surface 21h is a part of the inside of the pod wall surface 25.
  • suction pipe 21a and the return pipe 21b are connected to the diameter-expanded portion 21f, so that, as described above, the portion of the hydraulic oil in the hydraulic oil tank 20a that is further cooled circulates through the pipe to the hydraulic drive train. Is done.
  • the hydraulic oil tank 20a can further improve the cooling performance by increasing the contact area between the bottom surface and the pod wall surface 25.
  • the oil temperature rising rubber bag 22 and the oil temperature lowering rubber bag 23 described in this embodiment are the same as the bellows 12a and 13a for the oil temperature rising in the first embodiment. It is good also as a shape. Furthermore, the description regarding the cooling using FIGS. 6 and 7 in the above description can be applied to other embodiments.
  • FIG. 8 is a schematic cross-sectional view of the hydraulic oil tank (hydraulic oil tank 30) of the power generation system according to the present embodiment.
  • FIG. 8 shows an intermediate process when the hydraulic oil is sealed, and the suction pipe and the return pipe are omitted as in the first embodiment.
  • the hydraulic oil tank 30 includes a rubber wall 32 for increasing the oil temperature and a rubber bag 33 for decreasing the oil temperature on the tank wall surface 31.
  • the oil temperature rise rubber bag 32 is the same as the oil temperature rise rubber bag 12 in the first embodiment.
  • the oil temperature lowering rubber bag 33 corresponds to the oil temperature lowering rubber bag 13 of the first embodiment.
  • the rubber bag 33 has a tube shape and is arranged on the side surface 31d of the tank wall 31.
  • the hydraulic oil tank 30 includes the rubber bag 32 for rising oil temperature and the rubber bag 33 for lowering oil temperature, and the rubber bag 12 for rising oil temperature and the rubber bag 13 for lowering oil temperature in the first embodiment.
  • the hydraulic oil enters from the first end portion 33a and the second end portion.
  • the gas phase contained in the rubber bag 33 for lowering the oil temperature is easily discharged from the second end portion 33b.
  • the inside of the rubber bag 33 for oil temperature drop can be easily filled with hydraulic oil without causing air accumulation.
  • the hydraulic oil tank 30 does not have a gas phase inside (including the inside of the rubber bag 33 for oil temperature drop), sloshing of the hydraulic oil can be prevented even if there is a swing.
  • the oil temperature rising rubber bag 32 and the oil temperature lowering rubber bag 33 described in this embodiment are used as the bellows 12a and 13a corresponding to the oil temperature rising bellows 12a and the oil temperature lowering bellows 13a in the first embodiment. It is good also as a shape.
  • the present invention is suitable as a hydraulic oil tank for a power generation system and a method for enclosing the hydraulic oil in the hydraulic oil tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Power Engineering (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

発電システム(100)のポッド(101)内に配設され、作動油を溜める作動油タンクであって、タンク壁面(11)に内側から取り付けられており、壁面(11)を貫通する開口部(12‐1)により外部と連通する第1内部空間を有し、該第1内部空間と壁面(11)内部とを伸縮自在に仕切る、油温上昇時用ゴム袋(12)と、壁面(11)に外側から取り付けられており、壁面(11)を貫通する開口部(13‐1)により壁面(11)内部と連通する第2内部空間を有し、該第2内部空間と壁面(11)内部とを伸縮自在に仕切る、油温降下時用ゴム袋(13)とを備える。

Description

発電システムの作動油タンク及び該作動油タンクへの作動油封入方法
 本発明は、海流エネルギー、潮力エネルギー、あるいは、風力エネルギーを利用して発電を行う発電システムの作動油タンク及び該作動油タンクへの作動油封入方法に関するものである。
 海流エネルギーを利用して発電を行う海流発電システム、潮力エネルギーを利用して発電を行う潮力発電システム、及び、風力エネルギーを利用して発電を行う風力発電システムは、それぞれ、ポッド内部に発電機、油圧ドライブトレイン、及び、作動油タンクが配設され、ポット外部に回転翼が配設された構成となっている。
 一例として、海流発電システムを図9に示す。なお、図9(a)は海流発電システムの配置図であり、図9(b)は海流発電システムの模式的拡大図である。
 図9(a)に示すように、海流発電システム100は、ある一定の浮力を持った浮体として構成され、海底から延びる係留索110と繋がれることによって、所定範囲で海中を浮遊する。したがって、海流発電システム100は海流により揺動する。
 また、海流発電システム100は、図9(b)に示すように、ポッド101内部に発電機102、油圧ドライブトレイン103及び作動油タンク104が、ポット101外部に回転翼105が、それぞれ配設されている。回転翼105は、油圧ドライブトレイン103を介して発電機102に接続され、油圧ドライブトレイン103は、回転翼105の回転数を発電機102の回転数まで増速させる。また、作動油タンク104は、油圧ドライブトレイン103に使用される作動油を溜めるタンクであり、油圧ドライブトレイン103に繋がっている。油圧ドライブトレイン103は、内蔵されるポンプによって作動油タンク104内の作動油を吸い上げ循環させる。
 これにより、海流発電システム100は、海流エネルギーによって回転翼105を回転し、油圧ドライブトレイン103を介して発電機102を回転させることにより、発電を行う。
特開平7-151102号公報
 作動油タンク104は、下記[1]~[3]の技術的課題がある。なお、下記図10(a)~(c)は、作動油タンク104の課題を説明する模式図である。なお、図10(a)(b)中において、太矢印は作動油の流れを示しており、「仕事」とは、油圧ドライブトレイン103内で上述の如く回転数を増速させるための仕事を意味している。
 [1]既に説明したように、海流発電システム100は海中に設置するため、海流によって揺動する。これにより、図10(a)に一点鎖線両矢印で示すように、作動油タンク104内部の作動油の液面も揺れ、作動油が気泡を噛み込むこと(スロッシング事象)で、油圧ドライブトレイン103のポンプやバルブでのキャビテーションを誘発し、所望の性能が出せなくなってしまう。
 [2]上記[1]を防ぐために、作動油タンク104内を作動油で満たすことで、作動油タンク104内の気相を無くすと、図10(b)に複数の小矢印で示すように、温度変化により作動油が膨張(あるいは収縮)することで、タンク内圧力が変化し、作動油タンク104が変形して破損を招く。作動油タンク104の変形を防ぐには、タンクの板厚を厚くする必要があり、システムの重量化やコストアップとなってしまう。
 [3]上記[1]又は[2]と並行して、油圧ドライブトレイン103及び作動油タンク104からの発熱により、ポッド101内が高温となり、機器の故障が誘引される虞がある。油圧ドライブトレイン103や作動油タンク104を冷却する冷却システムを追設すればポッド101内の温度上昇を抑制できるが、システムの重量化やコストアップ、構成機器増加によるメンテナンス性低下を招いてしまう。
 なお、発電システムの取り付け手段(上記係留索110)以外の構成は海流発電システムと略同様の、潮力発電システム、及び、洋上式や空中浮体式などの風力発電システムにおいても、上記技術的課題は共通する。
 本発明では、上記技術的課題に鑑み、内部を作動油で満たされた状態とし、タンクの板厚を変えずに変形を防ぐことができ、また、冷却システムを追設せずに冷却を行うことができる、発電システムの作動油タンク及び該作動油タンクへの作動油封入方法を提供することを目的とする。
 上記課題を解決する第1の発明に係る発電システムの作動油タンクは、
 発電システムのポッド内に配設され、作動油を溜める作動油タンクであって、
 タンク壁面に内側から取り付けられており、該壁面を貫通する第1開口部により外部と連通する第1内部空間を有し、該第1内部空間と該壁面内部とを伸縮自在に仕切る、第1伸縮部と、
 前記壁面に外側から取り付けられており、該壁面を貫通する第2開口部により該壁面内部と連通する第2内部空間を有し、該第2内部空間と該壁面内部とを伸縮自在に仕切る、第2伸縮部とを備える
 ことを特徴とする。
 上記課題を解決する第2の発明に係る発電システムの作動油タンクは、
 上記第1の発明に係る発電システムの作動油タンクにおいて、
 前記第1伸縮部及び前記第2伸縮部は、それぞれ前記第1開口部、前記第2開口部を有するゴム袋である
 ことを特徴とする。
 上記課題を解決する第3の発明に係る発電システムの作動油タンクは、
 上記第2の発明に係る発電システムの作動油タンクにおいて、
 前記第2伸縮部は、前記壁面の側面部に配設されたチューブ状であり、該側面部を貫通する前記第2開口部としての一端と、該側面部を貫通する第3開口部としての他端とが、鉛直方向にずれた位置に取り付けられている
 ことを特徴とする。
 上記課題を解決する第4の発明に係る発電システムの作動油タンクは、
 上記第2の発明に係る発電システムの作動油タンクにおいて、
 前記第2伸縮部は、前記壁面の側面部の一部として配設され、前記第2開口部が前記側面部の全周に亘るようにして形成されている
 ことを特徴とする。
 上記課題を解決する第5の発明に係る発電システムの作動油タンクは、
 上記第4の発明に係る発電システムの作動油タンクにおいて、
 タンク天井の上部に錘が設けられていることを特徴とする。
 上記課題を解決する第6の発明に係る発電システムの作動油タンクは、
 上記第1の発明に係る発電システムの作動油タンクにおいて、
 前記第1伸縮部及び前記第2伸縮部は、それぞれ前記第1開口部、前記第2開口部を有する蛇腹である
 ことを特徴とする。
 上記課題を解決する第7の発明に係る発電システムの作動油タンクは、
 上記第6の発明に係る発電システムの作動油タンクにおいて、
 前記第2伸縮部は、前記壁面の側面部に配設されたチューブ状であり、該側面部を貫通する前記第2開口部としての一端と、該側面部を貫通する第3開口部としての他端とが、鉛直方向にずれた位置に取り付けられている
 ことを特徴とする。
 上記課題を解決する第8の発明に係る発電システムの作動油タンクは、
 上記第6の発明に係る発電システムの作動油タンクにおいて、
 前記第2伸縮部は、前記壁面の側面部の一部として配設され、前記第2開口部が前記側面部の全周に亘るようにして形成されている
 ことを特徴とする。
 上記課題を解決する第9の発明に係る発電システムの作動油タンクは、
 上記第8の発明に係る発電システムの作動油タンクにおいて、
 タンク天井の上部に錘が設けられていることを特徴とする。
 上記課題を解決する第10の発明に係る発電システムの作動油タンクは、
 上記第1の発明に係る発電システムの作動油タンクにおいて、
 前記第1伸縮部は、前記第1開口部により外部と連通する前記第1内部空間としての空気室と、前記壁面を貫通する第5開口部により前記壁面内部と連通する油室とが、第1ピストンで区切られた、第1筒体であり、
 前記第2伸縮部は、前記第2開口部により前記壁面内部と連通する前記第2内部空間としての油室と、前記壁面を貫通する第6開口部により外部と連通する空気室とが、第2ピストンで区切られた、第2筒体である
 ことを特徴とする。
 上記課題を解決する第11の発明に係る発電システムの作動油タンクは、
 上記第1から10のいずれか1つの発明に係る発電システムの作動油タンクにおいて、
 タンク底面が前記ポッドの壁面に密着している、又は、該タンク底面が前記ポッドの壁面の一部である
 ことを特徴とする。
 上記課題を解決する第12の発明に係る発電システムの作動油タンクは、
 上記第11の発明に係る発電システムの作動油タンクにおいて、
 前記タンク底面を含む一部が、他部に比べ拡径されている拡径部である
 ことを特徴とする。
 上記課題を解決する第13の発明に係る発電システムの作動油タンクは、
 上記第12の発明に係る発電システムの作動油タンクにおいて、
 前記拡径部に作動油の循環経路としての配管が接続されている
 ことを特徴とする。
 上記課題を解決する第14の発明に係る作動油封入方法は、
 上記第2から5のいずれか1つの発明に係る発電システムの作動油タンクの前記第2伸縮部を、外側から潰した状態、又は、真空引きした状態において、作動油を封入する
 ことを特徴とする。
 本発明に係る発電システムの作動油タンク及び該作動油タンクへの作動油封入方法によれば、内部を作動油で満たされた状態とし、タンクの板厚を変えずに変形を防ぐことができる。また、冷却システムを追設せずに冷却を行うことができる。
本発明の実施例1に係る発電システムの作動油タンクの概略的断面図である。 (a)は、一例として油温上昇時用ゴム袋のみしか設けない場合のゴム袋の伸縮量の設定を説明する概略的断面図、(b)は、油温上昇時用ゴム袋のみしか設けない場合の実際のゴム袋の伸縮を説明する概略的断面図、(c)は、油温降下時用ゴム袋のみしか設けない場合の実際のゴム袋の伸縮を説明する概略的断面図である。 本発明の実施例1に係る発電システムの作動油タンクの変形例を説明する概略的断面図である。 本発明の実施例1に係る発電システムの作動油タンクの他の変形例を説明する概略的断面図である。 (a)は、本発明の実施例2に係る発電システムの作動油タンクを説明する概略図である(一部を断面図としている)。(b)は、本発明の実施例2に係る発電システムの作動油タンクの揺動部を、1自由度の振動系とした場合のモデル図である。 本発明の実施例2に係る発電システムの作動油タンクの配置を説明する斜視図である。 本発明の実施例2に係る発電システムの作動油タンクの変形例の配置を説明する斜視図である。 本発明の実施例3に係る発電システムの作動油タンクの概略的断面図である。 (a)は発電システムの配置図であり、(b)は発電システムの模式的拡大図である。 従来の発電システムの作動油タンクの課題を説明する模式図である。
 本発明に係る発電システムの作動油タンクは、海流発電システム、潮力発電システム、あるいは、風力発電システム等の、揺動する発電システムにおける、ポッド(図9,10のポッド101参照)内に配設され、作動油を溜める作動油タンクである。以下、本発明に係る発電システムの作動油タンク及び該作動油タンクへの作動油封入方法を各実施例にて図面を用いて説明する。
[実施例1]
 図1の概略図に示すように、本実施例に係る発電システムの作動油タンク(作動油タンク10)は、タンク壁面11に、油温上昇時用ゴム袋12及び油温降下時用ゴム袋13を備え、タンク壁面11内は作動油で満たされている。また、本実施例では図示を省略するが、作動油タンク10は、吸込み配管及び戻り配管によって、内部が油圧ドライブトレイン(図9,10における油圧ドライブトレイン103参照。以下同様。)と連通し、作動油タンク10内の作動油が油圧ドライブトレインへの循環により温度上昇する。
 伸縮自在の油温上昇時用ゴム袋12(第1伸縮部)は、タンク壁面11に内側から取り付けられており、タンク壁面11を貫通する開口部12‐1(第1開口部)により、内部空間(第1内部空間)がタンク壁面11の外部と連通している。また、伸縮自在の油温降下時用ゴム袋13(第2伸縮部)は、タンク壁面11に外側から取り付けられており、タンク壁面11を貫通する開口部13‐1(第2開口部)により、内部空間(第2内部空間)がタンク壁面11の内部と連通している。
 なお、図1では、油温上昇時用ゴム袋12がタンク壁面11のうち天井に、また、油温降下時用ゴム袋13がタンク壁面11のうち側面に配設されている状態を示しているが、ゴム袋12,13のタンク壁面11における配設位置はこれに限定する必要は無い。
 これにより、作動油が油温上昇により膨張した場合、主として、油温上昇時用ゴム袋12が図1の二点鎖線で示すように収縮することで油体積変化を吸収し、作動油タンク10内の圧力が一定に保たれる。なお、このとき、油温降下時用ゴム袋13は(油温上昇時用ゴム袋12の変化に比べて小さいが)図1の二点鎖線に示すように若干膨張することで、油体積変化の吸収を補助する。
 また、作動油が油温降下により収縮した場合、主として、油温降下時用ゴム袋13が図1の一点鎖線で示すように収縮することで油体積変化を吸収し、作動油タンク10内の圧力が一定に保たれる。なお、このとき、油温上昇時用ゴム袋12は(油温降下時用ゴム袋13の変化に比べて小さいが)図1の一点鎖線に示すように若干膨張することで、油体積変化の吸収を補助する。
 よって、作動油タンク10は、内部が作動油で満たされた状態としても、ゴム袋12,13を設けることで、タンク壁面11の板厚を厚くせずに作動油の温度変化時の変形を防ぐことができ、システム軽量化やコストダウンを図ることができる。
 ここで、本実施例に係る発電システムの作動油タンクへの作動油封入方法について説明する。まず、作動油タンク10に、油温上昇時用ゴム袋12及び油温下降時用ゴム袋13を接合する。油温下降時用ゴム袋13は、袋を外側から潰す、又は、真空引きすることによって、ゴム袋内の空気を排出した状態とする。その状態において、作動油を封入する。これにより、油温下降時用ゴム袋13内に空気だまりを生じさせることなく、作動油タンク10に作動油を封入することができる。
 ところで、仮にゴム袋を一つのみしか設けない場合には、作動油タンクに作動油を封入する際に、作動油の温度変化による体積増減に留意してゴム袋圧縮量の調整を行わなければならなくなる。
 図2(a)は、一例として油温上昇時用ゴム袋12のみしか設けない場合のゴム袋の伸縮量の設定を説明する概略的断面図である。図2(a)に示すように、作動油タンクへの作動油封入時に例えば20℃であったとしても、発電システムの駆動や停止等によって作動油の温度が変化する(例えば図中のように0℃~60℃の範囲で振れる)。また、図中の二点鎖線は油温上昇すなわち油体積膨張時にゴム袋12が収縮した状態、一点鎖線は油温降下時すなわち油体積収縮時にゴム袋12が膨張した状態をそれぞれ示している。
 発電システム使用環境では、油温が上昇あるいは降下し、作動油タンク内の油量が初期量から増減する。一方で、図2(a)に示すように、作動油タンクに作動油を流し入れ封入させる際に、作動油の温度変化による体積増減量を見込んで、一つのみしか設けられていないゴム袋の伸縮量を設定しておくことは、機器構成上容易ではない。
 図2(b)は、一例として油温上昇時用ゴム袋12のみしか設けない場合の実際のゴム袋の伸縮を説明する概略的断面図である。上述の説明により、実際には伸縮量の設定が正確にできず、例えば図2(b)に示すように、作動油の温度が低下し体積が収縮している間に、ゴム袋12が限界まで膨張し、それ以上膨張不可の状態になることがあり得る。
 また、上述では、油温上昇時用ゴム袋12のみしか設けない場合を説明したが、図2(c)に示すように、油温降下時用ゴム袋13のみしか設けない場合も同様である。すなわち図2(c)は、作動油の温度が上昇し体積が上昇している間に、ゴム袋13が限界まで膨張し、それ以上膨張不可の状態になった様子を表している。
 一方、作動油タンク10は、タンクへの作動油封入時において、作動油の温度変化による体積増減に留意せずに、容易にタンク内を作動油で満たすことができる。その結果、スロッシングの原因となるタンク内の気相を排除できる。
 ところで、作動油タンク10は、ゴム袋12,13を備える場合のみに限定されるものではない。以下、作動油タンク10の変形例(作動油タンク10a,10b)を、図3,4を用いて示す。
 図3に示す作動油タンク10aは、油温上昇時用蛇腹12a及び油温降下時用蛇腹13aを備えている。また、タンク壁面11内は作動油で満たされている。
 伸縮自在の油温上昇時用蛇腹12a(第1伸縮部)は、タンク壁面11に内側から取り付けられており、タンク壁面11を貫通する開口部12a‐1(第1開口部)により、蛇腹の内部空間(第1内部空間)がタンク壁面11の外部と連通している。また、伸縮自在の油温降下時用蛇腹13a(第2伸縮部)は、タンク壁面11に外側から取り付けられており、タンク壁面11を貫通する開口部13a‐1(第2開口部)により、蛇腹の内部空間(第2内部空間)がタンク壁面11の内部と連通している。
 これにより、作動油が油温上昇により膨張した場合、主として、油温上昇時用蛇腹12aが収縮することで油体積変化を吸収し、作動油タンク10a内の圧力が一定に保たれる。なお、このとき、油温降下時用蛇腹13aは(油温上昇時用蛇腹12aの変化に比べて小さいが)若干膨張することで、油体積変化の吸収を補助する。
 また、作動油が油温降下により収縮した場合、主として、油温降下時用蛇腹13aが収縮することで油体積変化を吸収し、作動油タンク10内の圧力が一定に保たれる。なお、このとき、油温上昇時用蛇腹12aは(油温降下時用蛇腹13aの変化に比べて小さいが)若干膨張することで、油体積変化の吸収を補助する。
 また、図4に示す作動油タンク10bは、タンク壁面11に内側から取り付けられ、内部に第1ピストン12b‐2を有する筒体12b‐1(第1伸縮部)、及び、タンク壁面11に外側から取り付けられ、内部に第2ピストン13b‐2を有する筒体13b‐1(第2伸縮部)が配設されている。なお、タンク壁面11内は作動油で満たされており、図中では、一例として作動油が収縮している状態を表している。
 筒体12b‐1は、筒体12b‐1の一端でありタンク壁面11に形成された端面12b‐3、端面12b‐3に形成された孔12b‐4(第1開口部)、筒体12b‐1の他端である端面12b‐5、及び、端面12b‐5に形成された孔12b‐6(第5開口部)を備えている。第1ピストン12b‐2は、筒体12b‐1の内周面に密接し軸方向に移動自在に設けられている。第1ピストン12b‐2によって、筒体12b‐1の内部は、孔12b‐4により外部と連通する空気室(第1内部空間)と、孔12b‐6によりタンク壁面11内部と連通し作動油によって満たされる油室とに仕切られる。
 筒体13b‐1は、筒体13b‐1の一端でありタンク壁面11に形成された端面13b‐3、端面13b‐3に形成された孔13b‐4(第2開口部)、筒体13b‐1の他端である端面13b‐5、及び、端面13b‐5に形成された孔13b‐6(第6開口部)を備えている。第2ピストン13b‐2は、筒体13b‐1の内周面に密接し軸方向に移動自在に設けられている。第2ピストン13b‐2によって、筒体13b‐1の内部は、孔13b‐6により外部と連通する空気室と、孔13b‐4によりタンク壁面11内部と連通し作動油によって満たされる油室(第2内部空間)とに仕切られる。ただし、図4中では、一例として、第2ピストン13b‐2が端面13b‐3に接し、油室が無いように見える状態を表している。
 作動油封入直後においては、第1ピストン12b‐2は端面12b‐3に接しており、第2ピストン13b‐2は端面13b‐3に接している。作動油が温度上昇により膨張した場合、筒体13b‐1の空気室が収縮(すなわち油室が膨張)することで、作動油タンク10b内の油体積変化を吸収し、作動油タンク10b内の圧力が一定に保たれる。また、作動油が温度降下により収縮した場合、筒体12b‐1の空気室が膨張(すなわち油室が収縮)することで、作動油タンク10b内の油体積変化を吸収し、作動油タンク10b内の圧力が一定に保たれる。
[実施例2]
 図5(a)は、本実施例に係る発電システムの作動油タンク(作動油タンク20)を説明する概略図である(明りょう化のため一部を断面図としている)。作動油タンク20は、タンク壁面21に、油温上昇時用ゴム袋22及び油温降下時用ゴム袋23を備え、タンク壁面21内は作動油で満たされている。なお、図5(a)中の実線両矢印は、(発電システムが海流、潮力又は風力によって揺れることにより)作動油タンク20が揺動している様子を表している。
 油温上昇時用ゴム袋22は、実施例1の油温上昇時用ゴム袋12と同様であり、特にここではタンク壁面21のうち天井21cに配設されている。油温降下時用ゴム袋23は、実施例1の油温降下時用ゴム袋13に対応するものであるが、本実施例では、タンク壁面21のうち側面21dの壁の一部(ゴム壁)として配設され、実施例1の開口部13‐1に相当する開口部(図示略)が側面21dの全周に亘るように形成されており、さらに、タンク上部の支持とポンプ(油圧ドライブトレイン内のポンプ)の吐出圧に耐え得る仕様となっている。
 また、作動油タンク20は、天井21cの上面に錘24が配設されている。ただし、図5(a)中に示すように、油温上昇時用ゴム袋22がゴム壁21の外部と連通するように、錘24は、油温上昇時用ゴム袋22の外部と連通する部分に対応する位置に開口部を有する。また、錘24は、タンク壁面21の底面21eから油温降下時用ゴム袋23までの高さh1と、タンク重心の高さh2との関係が、h2>h1となるように備えられている。
 このようにして、作動油タンク20は、油温上昇時用ゴム袋22及び油温降下時用ゴム袋23が、実施例1における油温上昇時用ゴム袋12及び油温降下時用ゴム袋13と同様に作用するだけでなく、万一、作動油タンク20に気相が混入した状態でポッド(図10,11におけるポッド101参照)が揺動した場合に、油温降下時用ゴム袋23(さらに油温上昇時用ゴム袋22)及び錘24による揺動減衰効果により、タンク内の液面の揺れが抑制され、スロッシングを防止できる。この点について図5(b)の揺動部モデル図を用いて詳述する。
 図5(b)に示すように、図5(a)の作動油タンク20の揺動部分は、一般的な1自由度の振動系として扱うことができる。具体的には、錘24とタンクの揺動部分(油温降下時用ゴム袋23から上方)の質量をm[kg]、油温降下時用ゴム袋23からタンク重心の高さまでをh3[m]、油温降下時用ゴム袋23の材料や形状から決定される剛性をk[Nm/rad]、減衰係数をc[Nm・sec/rad]とすると、減衰比ζはζ=(c/2)・(k・m・h3 21/2と示すことができる。そして、本実施例では、減衰比ζ=0.5以上とすることで、揺動を抑えることを可能としている。
 また、作動油タンク20は、タンク壁面21に接続した、作動油の循環経路としての吸込み配管21a及び戻り配管21bによって、内部が油圧ドライブトレインと連通している(実施例1ではこの点について説明を省略したが、実施例1も同様である)。図5(a)中に実線片矢印で示すように、作動油タンク20内の作動油は、吸込み配管21aから油圧ドライブトレインに吸い込まれ、戻り配管21bから作動油タンク20に戻ってくる。吸込み配管21a及び戻り配管21bは、油温降下時用ゴム袋23よりも下方(ポッド壁面25側)に取り付けられている。
 このように、吸込み配管21a及び戻り配管21bを、油温降下時用ゴム袋23よりも下方に取り付けることで、吸込み配管21a及び戻り配管21bがより揺動し難くなる。また、万一、作動油タンク20内の作動油に気泡が混入したとしても、気泡は下方に留まりづらいため、配管21a,21b内を流通する作動油に気泡が混入する可能性が低くなる。
 さらに、作動油タンク20の底面21eは、ポッド壁面25の内側に密着させるか、あるいは、底面21eをポッド壁面25の内側の一部とする。この点につき、図6,7を用いて詳述する。
 図6は、作動油タンク20の配置を説明する斜視図である。図6に示すように、ポッド壁面25は湾曲しているが、作動油タンク20の底面21eは、この湾曲に対応した形状とし、ポッド壁面25の内側に密着させる。あるいは、側面21dのポッド壁面25内側との接触部分をこの湾曲に対応した形状とし、底面21eをポッド壁面25の内側の一部とする。
 ポッド壁面25の外側は海水又は大気と接しており、作動油タンク20内の作動油が油圧ドライブトレインへの循環により昇温し作動油タンク20に戻った際、底面21eから海水又は大気側へ効率よく放熱することができ、効果的に作動油タンク20及び作動油を冷却することができる。なお、吸込み配管21a及び戻り配管21bは、既に説明したように作動油タンク20の下方(ポッド壁面25)側に取り付けられているため、作動油タンク20内の作動油の中でもより冷却された部分が、配管を通して油圧ドライブトレインへ循環される。
 このようにして、冷却された作動油が油圧ドライブトレインへ循環されることで、機器故障の原因となる作動油タンク20及び油圧ドライブトレインを始め、ポッド内のシステム各機器の高温化や異常昇温を防止し、信頼性が向上する。また、ポッド壁面25を介した海水又は大気との熱交換を利用することで、新たな冷却装置を追設することが不要であるため、システムの軽量化およびコストダウンに繋がる。
 図7は、作動油タンク20aを説明する斜視図である。図7に示すように、作動油タンク20aは、タンク壁面21の下方、すなわち、ポッド壁面25の内側との接触部分を含む一部に拡径部21fを有している。拡径部21fは、他部に比べ側面21dが径方向に拡大された部分である。なお、拡径部21fはあくまで拡径されていればよく、図示した形状に限定されるものではない。
 ただし、上述した側面21d及び底面21eと同様に、拡径部21fの底面21hは、この湾曲に対応した形状とし、ポッド壁面25の内側に密着させる。あるいは、拡径部21fの側面21gのポッド壁面25内側との接触部分をこの湾曲に対応した形状とし、底面21hをポッド壁面25の内側の一部とする。
 また、吸込み配管21a及び戻り配管21bは、拡径部21fに接続されることで、上述した如く、作動油タンク20a内の作動油の中でもより冷却された部分が、配管を通して油圧ドライブトレインへ循環される。
 このようにして、作動油タンク20aは、底面とポッド壁面25の接触面積をより大きくすることで、冷却性能を更に向上させることができるものである。
 なお、本実施例で説明した油温上昇時用ゴム袋22及び油温降下時用ゴム袋23を、実施例1における油温上昇時用蛇腹12a及び油温降下時用蛇腹13aに対応する蛇腹状としてもよい。さらに、上述において図6,7を用いた冷却に関する説明は、他の実施例でも適用可能である。
[実施例3]
 図8は、本実施例に係る発電システムの作動油タンク(作動油タンク30)の概略的断面図である。なお、図8は作動油封入時の途中経過を示しており、また、実施例1同様、吸込み配管及び戻り配管については省略している。
 作動油タンク30は、タンク壁面31に、油温上昇時用ゴム袋32及び油温降下時用ゴム袋33を備えている。油温上昇時用ゴム袋32については実施例1における油温上昇時用ゴム袋12と同様である。
 油温降下時用ゴム袋33は、実施例1の油温降下時用ゴム袋13に対応するものであるが、本実施例では、チューブ状となっており、タンク壁面31の側面31dに配設され、側面31dを貫通する第1端部33a(第2開口部)及び第2端部33b(第3開口部)を有し、第2端部の方が第1端部33aよりも鉛直方向において高い位置に取り付けられ、タンク壁面31の内部と連通している。
 これにより、作動油タンク30は、油温上昇時用ゴム袋32及び油温降下時用ゴム袋33が、実施例1における油温上昇時用ゴム袋12及び油温降下時用ゴム袋13と同様に作用するだけでなく、作動油封入時に、作動油の液面が上昇するとともに、油温降下時用ゴム袋33内部は、第1端部33aから作動油が浸入し、第2端部33bから気相が排出されていくことで、油温降下時用ゴム袋33内部に含まれている気相が第2端部33bから排出されやすくなり、油温降下時用ゴム袋33内部の空気だまりを生じさせることなく、容易に油温降下時用ゴム袋33内を作動油で満たすことができる。
 したがって、作動油タンク30は、内部(油温降下時用ゴム袋33内を含む)に気相が無いため、例え揺動があったとしても作動油のスロッシングを防ぐことができる。なお、本実施例で説明した油温上昇時用ゴム袋32及び油温降下時用ゴム袋33を、実施例1における油温上昇時用蛇腹12a及び油温降下時用蛇腹13aに対応する蛇腹状としてもよい。
 本発明は、発電システムの作動油タンク及び該作動油タンクへの作動油封入方法として好適である。
10,10a,10b,20,20a,30 作動油タンク
11,21,31 タンク壁面
12,22,32 油温上昇時用ゴム袋
12‐1 開口部
12a 油温上昇時用蛇腹
12a‐1 開口部
12b‐1 筒体
12b‐2 第1ピストン
12b‐3,12b‐5 端面
12b‐4,12b‐6 孔
13,23,33 油温降下時用ゴム袋
13‐1 開口部
13a 油温降下時用蛇腹
13a‐1 開口部
13b‐1 筒体
13b‐2 第2ピストン
13b‐3,13b‐5 端面
13b‐4,13b‐6 孔
21a 吸込み配管
21b 戻り配管
21c 天井
21d,31d 側面
21e 底面
21f 拡径部
21g (拡径部21fの)側面
21h (拡径部21fの)底面
24 錘
25 ポッド壁面
33a 第1端部
33b 第2端部
100 海流発電システム
101 ポッド
102 発電機
103 油圧ドライブトレイン
104 (従来の)作動油タンク
105 回転翼
110 係留索

Claims (14)

  1.  発電システムのポッド内に配設され、作動油を溜める作動油タンクであって、
     タンク壁面に内側から取り付けられており、該壁面を貫通する第1開口部により外部と連通する第1内部空間を有し、該第1内部空間と該壁面内部とを伸縮自在に仕切る、第1伸縮部と、
     前記壁面に外側から取り付けられており、該壁面を貫通する第2開口部により該壁面内部と連通する第2内部空間を有し、該第2内部空間と該壁面内部とを伸縮自在に仕切る、第2伸縮部とを備える
     ことを特徴とする、発電システムの作動油タンク。
  2.  前記第1伸縮部及び前記第2伸縮部は、それぞれ前記第1開口部、前記第2開口部を有するゴム袋である
     ことを特徴とする、請求項1に記載の発電システムの作動油タンク。
  3.  前記第2伸縮部は、前記壁面の側面部に配設されたチューブ状であり、該側面部を貫通する前記第2開口部としての一端と、該側面部を貫通する第3開口部としての他端とが、鉛直方向にずれた位置に取り付けられている
     ことを特徴とする、請求項2に記載の発電システムの作動油タンク。
  4.  前記第2伸縮部は、前記壁面の側面部の一部として配設され、前記第2開口部が前記側面部の全周に亘るようにして形成されている
     ことを特徴とする、請求項2に記載の発電システムの作動油タンク。
  5.  タンク天井の上部に錘が設けられている
     ことを特徴とする、請求項4に記載の発電システムの作動油タンク。
  6.  前記第1伸縮部及び前記第2伸縮部は、それぞれ前記第1開口部、前記第2開口部を有する蛇腹である
     ことを特徴とする、請求項1に記載の発電システムの作動油タンク。
  7.  前記第2伸縮部は、前記壁面の側面部に配設されたチューブ状であり、該側面部を貫通する前記第2開口部としての一端と、該側面部を貫通する第3開口部としての他端とが、鉛直方向にずれた位置に取り付けられている
     ことを特徴とする、請求項6に記載の発電システムの作動油タンク。
  8.  前記第2伸縮部は、前記壁面の側面部の一部として配設され、前記第2開口部が前記側面部の全周に亘るようにして形成されている
     ことを特徴とする、請求項6に記載の発電システムの作動油タンク。
  9.  タンク天井の上部に錘が設けられている
     ことを特徴とする、請求項8に記載の発電システムの作動油タンク。
  10.  前記第1伸縮部は、前記第1開口部により外部と連通する前記第1内部空間としての空気室と、前記壁面を貫通する第5開口部により前記壁面内部と連通する油室とが、第1ピストンで区切られた、第1筒体であり、
     前記第2伸縮部は、前記第2開口部により前記壁面内部と連通する前記第2内部空間としての油室と、前記壁面を貫通する第6開口部により外部と連通する空気室とが、第2ピストンで区切られた、第2筒体である
     ことを特徴とする、請求項1に記載の発電システムの作動油タンク。
  11.  タンク底面が前記ポッドの壁面に密着している、又は、該タンク底面が前記ポッドの壁面の一部である
     ことを特徴とする、請求項1から10のいずれか1項に記載の発電システムの作動油タンク。
  12.  前記タンク底面を含む一部が、他部に比べ拡径されている拡径部である
     ことを特徴とする、請求項11に記載の発電システムの作動油タンク。
  13.  前記拡径部に作動油の循環経路としての配管が接続されている
     ことを特徴とする、請求項12に記載の発電システムの作動油タンク。
  14.  請求項2から5のいずれか1項に記載の発電システムの作動油タンクの前記第2伸縮部を、外側から潰した状態、又は、真空引きした状態において、作動油を封入する
     ことを特徴とする作動油封入方法。
PCT/JP2016/077985 2015-09-25 2016-09-23 発電システムの作動油タンク及び該作動油タンクへの作動油封入方法 WO2017051857A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680054048.8A CN108026941B (zh) 2015-09-25 2016-09-23 发电系统的工作油罐及工作油向该工作油罐的封入方法
JP2017541580A JP6475347B2 (ja) 2015-09-25 2016-09-23 発電システムの作動油タンク及び該作動油タンクへの作動油封入方法
US15/760,168 US10724551B2 (en) 2015-09-25 2016-09-23 Hydraulic oil tank for power generation system and method for sealing hydraulic oil in said hydraulic oil tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015187625 2015-09-25
JP2015-187625 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051857A1 true WO2017051857A1 (ja) 2017-03-30

Family

ID=58386074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077985 WO2017051857A1 (ja) 2015-09-25 2016-09-23 発電システムの作動油タンク及び該作動油タンクへの作動油封入方法

Country Status (5)

Country Link
US (1) US10724551B2 (ja)
JP (1) JP6475347B2 (ja)
CN (1) CN108026941B (ja)
TW (1) TW201727052A (ja)
WO (1) WO2017051857A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111259488A (zh) * 2020-01-09 2020-06-09 北京空天技术研究所 一种控制高速飞行器燃油温升的输油热管理一体化系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201727052A (zh) * 2015-09-25 2017-08-01 Mitsubishi Heavy Ind Ltd 發電系統的液壓油槽及對該液壓油槽的液壓油密封方法
JP6935870B2 (ja) * 2018-08-02 2021-09-15 国立大学法人 東京大学 波力発電システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076479A (en) * 1960-11-02 1963-02-05 Ottung Kai Expansion means for self-contained liquid circulating systems
JPS4722390U (ja) * 1971-03-31 1972-11-13
US4527580A (en) * 1983-11-25 1985-07-09 Sundstrand Corporation Volume control device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003659A (en) * 1958-09-11 1961-10-10 Clark Equipment Co Collapsible reservoir
CN85202372U (zh) * 1985-06-13 1986-07-16 沈汉石 液压系统中消除气穴的装置
JPH06307495A (ja) 1993-04-20 1994-11-01 Tokico Ltd 制振装置
JPH07151102A (ja) 1993-12-02 1995-06-13 Nec Kyushu Ltd 油圧タンク
US5979481A (en) * 1998-02-17 1999-11-09 Ayresman; Loren Apparatus and method for vapor reduction for a fuel storage tank
JP4573565B2 (ja) 2004-04-16 2010-11-04 株式会社タカコ 流体溜めタンクおよび流体圧機器
TWM362921U (en) 2008-11-03 2009-08-11 Wen-Rui Zheng Buoy energy storing device
TWM358210U (en) 2009-01-22 2009-06-01 Chun-Kwan Yu A hydraulic power device
CN201412469Y (zh) 2009-05-13 2010-02-24 岳双喜 敞开气室型电力液压推动器
TWI549864B (zh) 2010-08-16 2016-09-21 克托智慧財產企業有限公司 海浪能源轉換裝置
CN102568762A (zh) 2010-12-07 2012-07-11 周玉春 膨胀保护装置
CN103112599B (zh) 2013-01-28 2015-01-14 南京航空航天大学 气囊型飞机辅助燃油系统气压转输燃油试验系统与方法
TWI495785B (zh) 2013-05-29 2015-08-11 Univ Chaoyang Technology 握壓推動流體之發電裝置
CN203892196U (zh) * 2014-04-18 2014-10-22 柳州富达机械有限公司 压缩机分离油罐
TW201727052A (zh) 2015-09-25 2017-08-01 Mitsubishi Heavy Ind Ltd 發電系統的液壓油槽及對該液壓油槽的液壓油密封方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076479A (en) * 1960-11-02 1963-02-05 Ottung Kai Expansion means for self-contained liquid circulating systems
JPS4722390U (ja) * 1971-03-31 1972-11-13
US4527580A (en) * 1983-11-25 1985-07-09 Sundstrand Corporation Volume control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111259488A (zh) * 2020-01-09 2020-06-09 北京空天技术研究所 一种控制高速飞行器燃油温升的输油热管理一体化系统
CN111259488B (zh) * 2020-01-09 2023-07-11 北京空天技术研究所 一种控制高速飞行器燃油温升的输油热管理一体化系统

Also Published As

Publication number Publication date
CN108026941A (zh) 2018-05-11
JPWO2017051857A1 (ja) 2018-07-05
CN108026941B (zh) 2020-01-21
JP6475347B2 (ja) 2019-02-27
US20180266444A1 (en) 2018-09-20
TW201727052A (zh) 2017-08-01
US10724551B2 (en) 2020-07-28

Similar Documents

Publication Publication Date Title
US8601805B2 (en) Power generating apparatus of renewable energy type
JP6475347B2 (ja) 発電システムの作動油タンク及び該作動油タンクへの作動油封入方法
EP3029313B1 (en) Strake for a wind turbine tower
WO2020000666A1 (zh) 阻尼器以及具有该阻尼器的承载围护结构
US11279452B2 (en) Motion absorbing system and method for a structure
EP2342476B1 (en) Flywheel
JP4405393B2 (ja) 中空のロータブレード又は水中翼に生じる静圧状態の好ましくない変動を打ち消す方法及びロータブレード又は水中翼
BRPI1004764A2 (pt) conversor de energia de ondas
AU2006236092A1 (en) Systems and methods for damping a displacement of a wind turbine tower
MX2010004264A (es) Propulsor con anillo de aletas para un sistema de generacion de energia con corriente de agua.
WO2019192184A1 (zh) 一种反共振频率可调的液压式动力反共振隔振器
JP2006500510A5 (ja)
CN104454296A (zh) 一种全自动水下浮力发电系统
CN109296564B (zh) 具有一体支撑凸缘的泵外壳
JP6321382B2 (ja) 風力発電装置
JP5358020B2 (ja) 再生エネルギー型発電装置
CN115217881B (zh) 一种液态阻尼器及风力发电机
KR101726605B1 (ko) 반잠수식 유수 발전장치
WO2024122092A1 (ja) 風力発電装置
CN108131414A (zh) 海上安装缓冲装置
WO2009093920A1 (en) Apparatus for extracting energy from the movement of structures
CN118545217A (zh) 海上稳定平台及海上风电平台
JP6832177B2 (ja) 水流発電装置
RU2332324C1 (ru) Патрубок сдвиговой комбинированный
OA17018A (en) Subsystems for a water current power generation system.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760168

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017541580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848645

Country of ref document: EP

Kind code of ref document: A1