WO2017050104A1 - 动力驱动系统及具有其的车辆 - Google Patents

动力驱动系统及具有其的车辆 Download PDF

Info

Publication number
WO2017050104A1
WO2017050104A1 PCT/CN2016/097699 CN2016097699W WO2017050104A1 WO 2017050104 A1 WO2017050104 A1 WO 2017050104A1 CN 2016097699 W CN2016097699 W CN 2016097699W WO 2017050104 A1 WO2017050104 A1 WO 2017050104A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
planet
ring gear
differential
power
Prior art date
Application number
PCT/CN2016/097699
Other languages
English (en)
French (fr)
Inventor
凌和平
翟震
郑峰
徐友彬
罗永孟
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017050104A1 publication Critical patent/WO2017050104A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • F16H48/11Differential gearings with gears having orbital motion with orbital spur gears having intermeshing planet gears

Definitions

  • the present invention relates to a power drive system and a vehicle having the same.
  • the differential includes a driven gear of the final drive (main reduction drive gear), a planetary gear, a center wheel, etc., and the planetary gear is mounted on the stator through the square shaft and the sleeve.
  • the sub-plate of the moving gear is meshed with the center wheel, and the rotating and moving functions are realized by the rotating pair and the plane moving pair.
  • the center wheel is connected to the left and right shafts through the angular positioning pin and the cylindrical pair or spline to achieve the output rotation. The purpose of the moment.
  • the differential cancels the original left and right housings of the differential, the planetary gear shaft and the like, and the square shaft and the sleeve are directly used to mount the planetary gears on the auxiliary plate of the driven gear of the final drive, effectively
  • the number of parts of the differential is reduced, the structure is simplified, and the weight is reduced.
  • this differential utilizes a symmetrical bevel gear structure to achieve the inter-wheel differential, but only a partial innovation for the conventional symmetrical bevel gear differential does not really solve the excessive axial size of the differential structure.
  • the present invention aims to solve at least one of the above technical problems in the prior art to some extent.
  • the present invention proposes a power drive system in which the differential of the power drive system utilizes the principle of planetary differential to achieve a differential function, which is compact and simple.
  • the invention also proposes a vehicle having the power transmission system.
  • a power drive system includes: a differential, the differential including: a first planet carrier, a first planet gear, and a first ring gear, the first planet gear being disposed at the first a planet carrier, the first planet gear meshes with the first ring gear; a second planet carrier, a second planet gear and a second ring gear, the second planet gear being disposed on the second planet carrier, The second planet gear meshes with the second ring gear and the second planet gear also meshes with the first planet gear; wherein the first ring gear and the second ring gear constitute the difference Two power output ends of the speed gear, the first planet carrier and the second planet carrier constitute a power input end of the differential, and a revolution radius of the first planet gear and the second planet gear Differentiating; a power output shaft, the power output shaft being disposed in linkage with the power input end of the differential; a plurality of input shafts, one of the plurality of input shafts being disposed to selectively The power output shaft is linked, and the remaining ones of
  • the differential of the power drive system according to the embodiment of the present invention realizes the differential function by using the principle of planetary differential, and is compact and simple.
  • the power drive system according to an embodiment of the present invention may further have the following additional technical features:
  • the power take-off shaft is coaxially fixed with the first planet carrier and the second planet carrier.
  • the power drive system further includes: a first output portion and a second output portion, the first output portion is interlocked with the first ring gear, and the second output portion and the second portion The ring gear is linked.
  • the first output portion is a left side gear
  • the second output portion is a right side gear
  • the first ring gear is provided with a first external tooth
  • the first The second ring gear is provided with a second external tooth
  • the first external tooth meshes with the left side gear
  • the second external tooth meshes with the right side gear
  • the power drive system further includes an engine configured to selectively engage at least one of the plurality of input shafts.
  • the power take-off shaft is provided with an idler driven gear
  • the idler driven gear is linked with the one of the plurality of input shafts
  • the system also includes a synchronizer configured to synchronize the power take off shaft with the idler driven gear.
  • the synchronizer is disposed on the power take-off shaft and is configured to engage the idler driven gear.
  • the power output shaft is fixedly provided with a fixed driven gear
  • the fixed driven gear is interlocked with the remaining ones of the plurality of input shafts.
  • the power take-off shaft is provided with an idler driven gear and is fixedly provided with a fixed driven gear
  • the power drive system further includes a synchronizer, the synchronizer is arranged for synchronization
  • the power output shaft and the idler driven gear; each input shaft is fixedly provided with a fixed driving gear, and the empty sleeve driven gear and the fixed driven gear respectively mesh with corresponding fixed driving gears.
  • an end surface of the first ring gear toward the second ring gear is in the same plane as an end surface of the second ring gear toward the first ring gear.
  • each of the first ring gear and the second ring gear includes: a body flat plate portion and an annular side wall portion disposed at an outer peripheral edge of the main body flat plate portion, a plurality of teeth are disposed on an inner wall surface of the annular side wall portion, a cavity is defined between the main body flat portion and the annular side wall portion, a cavity of the first ring gear and a second ring gear
  • the cavities face each other to constitute an installation space, and the first planet carrier and the first planet gear and the second planet carrier and the second planet gear are housed in the installation space.
  • the first planet gear and the second planet gear are different in thickness in the axial direction.
  • the teeth of the thinner planet gears of the first planetary gear and the second planetary gear and the thicker planetary gears of the first planetary gear and the second planetary gear are fully meshed, and the teeth of the thicker planets extend axially to one side beyond the teeth of the thinner planet wheels or the teeth of the thicker planet wheels extend axially to the sides. Exceeding the teeth of the thinner planet wheels.
  • the radius of revolution of the thicker planet wheels is less than the radius of revolution of the thinner planet wheels.
  • the revolution axis of the first planet gear coincides with the revolution axis of the second planet gear.
  • the first planet gear and the second planet gear are both cylindrical gears.
  • each of the first planet gears is configured with a first planetary axle, and two ends of the first planetary axle are respectively coupled to the first planet carrier and the second planet carrier, each The second planet gears are provided with a second planetary axle, and the two ends of the second planetary axle are connected to the first planet carrier and the second planet carrier, respectively.
  • the power drive system further includes: a first output portion and a second output portion, the first output portion is interlocked with the first ring gear, and the second output portion and the second portion a ring gear linkage; and a second motor generator and a third motor generator, wherein the second motor generator is interlocked with the first output portion, and the third motor generator is interlocked with the second output portion.
  • the plurality of input shafts include a first input shaft, a second input shaft, and a third input shaft, and the third input shaft is sleeved on the second input shaft, the Two input shafts are sleeved on the first input shaft, and the engine is connected to the first input shaft, the second input shaft and the third input shaft via a three-clutch.
  • the first ring gear is linked with the left front wheel
  • the second ring gear is linked with the right front wheel
  • the power drive system further includes: a fourth motor generator and a fifth motor generator
  • the fourth motor generator is associated with the left rear wheel
  • the fifth motor generator is coupled with the right rear wheel
  • the anti-skid synchronizer is configured to selectively synchronize the left rear wheel And a right rear wheel such that the left rear wheel and the right rear wheel rotate in synchronization.
  • a vehicle according to an embodiment of the present invention includes the power drive system in the above embodiment.
  • FIG. 1 is an exploded view of a viewing angle of a differential according to an embodiment of the present invention
  • FIG. 2 is an exploded view of another perspective of a differential according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a planar principle of a differential according to an embodiment of the present invention.
  • Figure 4 is a perspective view of the assembly of the differential according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing the positions of a first ring gear and a second ring gear in an embodiment of the present invention
  • Figure 6 is a schematic view showing the positions of a first ring gear and a second ring gear in another embodiment of the present invention.
  • Figure 7 is a schematic view showing the position of a first ring gear and a second ring gear in still another embodiment of the present invention.
  • Figure 8 is a partial schematic view of a differential according to an embodiment of the present invention.
  • Figure 9 is a perspective view of a first planet gear and a second planet gear in accordance with an embodiment of the present invention.
  • Figure 10 is a schematic diagram of the meshing principle of the first planetary gear and the second planetary gear according to an embodiment of the present invention.
  • Figure 11 is a perspective view of a first ring gear or a second ring gear in accordance with an embodiment of the present invention.
  • Figure 12 is a perspective view of a first ring gear or a second ring gear in accordance with another embodiment of the present invention.
  • Figure 13 is a schematic illustration of a power drive system in accordance with one embodiment of the present invention.
  • Figure 14 is a schematic illustration of a power drive system in accordance with yet another embodiment of the present invention.
  • FIG. 15 is a schematic illustration of a power drive system in accordance with another embodiment of the present invention.
  • Figure 16 is a schematic illustration of a power drive system in accordance with still another embodiment of the present invention.
  • FIG. 17 is a schematic illustration of a power drive system in accordance with still another embodiment of the present invention.
  • Figure 18 is a schematic illustration of a power drive system in accordance with still another embodiment of the present invention.
  • Figure 19 is a schematic illustration of a power drive system in accordance with still another embodiment of the present invention.
  • Figure 20 is a schematic illustration of a power drive system in accordance with still another embodiment of the present invention.
  • Figure 21 is a schematic illustration of a power drive system in accordance with still another embodiment of the present invention.
  • Figure 22 is a schematic illustration of a power drive system in accordance with still another embodiment of the present invention.
  • FIG. 23 is a schematic diagram of a vehicle in accordance with an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one; can be Mechanical connections can also be electrical connections or can communicate with each other; they can be directly connected or indirectly connected via an intermediate medium, which can be the internal communication of two components or the interaction of two components. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • a power drive system 1000 according to an embodiment of the present invention, which can be applied to a vehicle, will be described in detail below with reference to the accompanying drawings.
  • a power drive system 1000 mainly includes a differential 100, a transmission 104, and a first motor generator 401.
  • the transmission 104 is coupled to the differential 100 and the first motor generator. Between machines 401.
  • differential 100 The specific structure of the differential 100 will first be described in detail below in accordance with the illustrated embodiment, and other configurations for the power drive system 1000 will be described after the construction of the differential 100 is described in detail.
  • a differential 100 according to an embodiment of the present invention will be described in detail below with reference to FIGS. 1-12.
  • the differential 100 can be used for inter-wheel differential or inter-axle differential for the example of inter-wheel differential.
  • the differential 100 enables the left and right drive wheels to roll at different angular velocities when the vehicle is turning or traveling on uneven roads to ensure a pure rolling motion between the drive wheels on both sides and the ground.
  • a differential 100 may include a first planet carrier 11, a first planet gear 12 and a first ring gear 13, and a second planet carrier 21, a second planet gear. 22 and the second ring gear 23.
  • both the first planet carrier 11 and the second planet carrier 21 can be constructed as a circular plate-like structure, which can reduce the axial dimension of the differential 100 to some extent.
  • the first planet carrier 11 and the second planet carrier 21 may be of a split structure, that is, the first planet carrier 11 and the second planet carrier 21 are separated from each other, and since the individual small parts are relatively easy to form, the first will be The separate processing of the carrier 11 and the second carrier 21 can simplify the manufacturing process and improve the machining accuracy.
  • the first planet gears 12 are disposed on the first planet carrier 11, for example, each of the first planet gears 12 is provided with a first planet gear axle 14 (FIG. 9).
  • first planet gear axle 14 As shown, both ends of the first planetary axle 14 are rotatably supported on the first planet carrier 11 and the second planet carrier 21, respectively, such that both ends of the first planet axle 14 are rotatable by bearings
  • the ground support is supported in the shaft holes corresponding to each other on the first carrier 11 and the second carrier 21, and the first planetary gear 12 can be fixed to the corresponding first planetary shaft 14.
  • the two ends of the first planetary axle 14 The first carrier 11 and the second carrier 21 may also be fixedly connected.
  • the two ends of the first planetary axle 14 are respectively welded to the shaft holes corresponding to the first carrier 11 and the second carrier 21, respectively.
  • the first planetary gear 12 is rotatably sleeved on the corresponding first planetary axle 14, for example, the first planetary gear 12 is rotatably fitted on the first planetary axle 14 via a bearing.
  • the purpose of connecting the first planet carrier 11 and the second planet carrier 21 can be achieved by the first planetary axle 14 such that the first planet carrier 11 and the second planet carrier 21 maintain the same speed and the same direction (ie, the first The carrier 11 and the second carrier 21 are interlocked).
  • the first planet carrier 11 and the second planet carrier 21 can support/fix the first planetary axle 14 well, preventing the first planetary axle 14 from being disconnected from the single planet carrier and causing the differential. 100 is invalid.
  • the first planet gear 12 meshes with the first ring gear 13, in particular in the form of an internal engagement, ie the first planet gear 12 is located inside the first ring gear 13 and meshes with the teeth on the first ring gear 13.
  • the first planet gears 12 may be plural and distributed inside the first ring gear 13 at circumferentially equiangular intervals, for example, the first planet gears 12 may be three, and any two adjacent first planet wheels 12 The angle between the intervals is 120°.
  • each of the second planet gears 22 is configured with a second planet gear axle 24
  • the two ends of the second planetary axle 24 can be rotatably supported by the bearing in the shaft holes corresponding to the first planet carrier 11 and the second planet carrier 21, and the second planetary gear 22 can be fixed to Corresponding to the second planetary axle 24.
  • the two ends of the second planetary axle 24 may also be fixedly coupled to the first planet carrier 11 and the second planet carrier 21, for example, the two ends of the second planetary axle 24 are respectively coupled to the first planet carrier 11 and The second planetary carrier 21 is welded and fixed to the corresponding axial hole.
  • the second planetary gear 22 is rotatably sleeved on the corresponding second planetary axle 24, for example, the second planetary gear 22 is rotatably fitted through the bearing.
  • the purpose of connecting the first planet carrier 11 and the second planet carrier 21 can be achieved by the second planetary gear shaft 24, so that the first planet carrier 11 and the second planet carrier 21 maintain the same speed and the same direction.
  • the first planet carrier 11 and the second planet carrier 21 can support/fix the second planetary axle 24 well, preventing the second planetary axle 24 from being disconnected from the single planet carrier, resulting in a differential. 100 is invalid.
  • the first planet carrier 11 and the second planet carrier 21 may also be passed through the intermediate member.
  • Directly fixed connection that is, the same speed and co-directional movement of the first planet carrier 11 and the second planet carrier 21 in the above embodiment may be achieved by the first planetary axle 14 and the second planetary axle 24, and The embodiment can achieve the same speed and the same direction movement of the first planet carrier 11 and the second planet carrier 21 directly by providing the intermediate member.
  • the intermediate member may be located between the first planet carrier 11 and the second planet carrier 21 and welded to the first planet carrier 11 and the second planet carrier 21, respectively.
  • the second planet gear 22 meshes with the second ring gear 23, in particular in the form of internal engagement, ie the second planet gear 22 is located inside the second ring gear 23 and meshes with the teeth on the second ring gear 23.
  • the second planetary gears 22 may be plural and distributed inside the second ring gear 23 at circumferentially equiangular intervals.
  • the second planet gears 22 can be three, and any two adjacent second rows The angle between the star wheels 22 is 120°.
  • FIG. 3 is a schematic diagram of the plane principle of the differential 100 according to an embodiment of the present invention, wherein the meshing relationship between the first planet gear 12 and the second planet gear 22 is schematically illustrated and The meshing relationship between the first planetary gear 12 and the first ring gear 13, the second planetary gear 22 and the second ring gear 23, as shown in Fig. 3, and at the same time shows the above three meshing relationships, the relative positions of the components The relationship is merely illustrative and does not represent or imply the actual spatial arrangement of the components.
  • first planet gear 12 and the second planet gear 22 are multiple, the plurality of first planet gears 12 and the plurality of second planet gears 22 are respectively engaged.
  • first planetary gear 12 and the second planetary gear 22 are both three, and the first first planetary gear 12 can be associated with the corresponding first second planetary gear.
  • the second first planet gear 12 can mesh with the corresponding second second planet gear 22, and the third first planet gear 12 can mesh with the corresponding third second planet gear 22, so that there are many
  • the first planetary gear 12 and the second planetary gear 22, which are meshed with each other, are more stable when the differential 100 transmits power, and the power is transmitted between the plurality of sets of the first planetary gear 12 and the second planetary gear 22 that are meshed with each other. ,reliable.
  • the plurality of first planetary gears 12 and the plurality of second planetary gears 22 are alternately arranged in the circumferential direction, and are arbitrarily adjacent.
  • the first planet gear 12 and the second planet gear 22 mesh. That is, in this embodiment, the plurality of first planetary gears 12 and the plurality of second planetary gears 22 are alternately arranged in the circumferential direction and form an annular shape, and each of the first planetary gears 12 has two adjacent ones thereof.
  • the two planet gears 22 mesh, and similarly, each of the second planet gears 22 meshes with its two adjacent first planet gears 12.
  • the revolution axis of the first planet gear 12 coincides with the revolution axis of the second planet gear 22, that is, the first planet gear 12 and the second planet gear 22 have the same revolution axis O.
  • the first planet gear 12 is in meshing engagement with the second planet gear 22.
  • the first planetary gear 12 it not only meshes with the first ring gear 13, but also meshes with the second planetary gear 22, and for the second planetary gear 22, it not only meshes with the second ring gear 23, At the same time, it also meshes with the first planet gear 12.
  • the first ring gear 13 and the second ring gear 23 may constitute two power output ends of the differential 100, and the first carrier 11 and the second carrier 21 correspond to the power of the differential 100.
  • the input end for example, the first carrier 11 and the second carrier 21 can be rigidly connected together, so that the power output from the external power source can be input from the first carrier 11 and the second carrier 21, and the difference is passed.
  • the differential action of the speed transmitter 100 can be output from the first ring gear 13 and the second ring gear 23, respectively.
  • first planet carrier 11 and the second planet carrier 21 can be connected to a power source such as an engine, a motor, etc., and the first ring gear 13 and the second ring gear 23 can be connected to the corresponding half shaft through a gear transmission structure, and the half shaft is re Connected to the corresponding wheel, but not limited to this.
  • the differential 100 is applied to the inter-wheel differential, and the first ring gear 13 and the second ring gear 23 constitute a power output end of the differential 100, and the first carrier 11 and the second carrier 21 constitute a differential.
  • the power input of 100 is a simple explanation
  • the working principle of the differential 100 wherein the first ring gear 13 can be connected to the left half shaft through the external teeth, the left half shaft can be connected to the left side wheel, and the second ring gear 23 can be connected to the right half shaft through the external teeth.
  • the right half shaft can be connected to the right side wheel, and the power output from the power source such as the engine and/or the motor can be output to the first carrier 11 and the second carrier 21 by the deceleration of the final drive.
  • the differential 100 does not function as a differential, and the first carrier 11 and the second carrier 21 are at the same speed.
  • the first ring gear 13 and the second ring gear 23 rotate at the same speed and in the same direction, and the first planetary gear 12 and the second planetary gear 22 only revolve and do not rotate.
  • the left and right wheels are theoretically different in rotational speed, and the rotational speeds of the first ring gear 13 and the second ring gear 23 are also different, that is, there is a difference in rotational speed.
  • the first planetary gear 12 and the second planetary gear 22 also rotate while revolving, and the rotation of the first planetary gear 12 and the second planetary gear 22 causes one of the first ring gear 13 and the second ring gear 23 to increase speed, Another deceleration, the difference between the speed-increasing ring gear and the decelerating ring gear is the difference between the left and right wheels, thus achieving differential action.
  • the differential 100 utilizes the planetary differential principle to have higher space utilization and smaller axial dimensions in structure and connection form, and is more advantageous in production and assembly.
  • a structural form can not only avoid the dimensional defects in the axial direction and the radial direction of the bevel gear, but also can better utilize the hollow space inside the main reduction driven gear, thereby achieving better space utilization and greatly facilitating the difference.
  • the overall arrangement of the speedometer 100 assembly and the limitation on the weight, as well as higher reliability and better transmission efficiency, are beneficial to improve the reliability of the power transmission chain and the power output fluency during cornering. This is more practical than a symmetrical bevel gear differential.
  • the revolution radius of the first planet gear 12 and the second planet gear 22 are different, that is, as shown in FIG. 3, the revolution radius of the first planet gear 12 refers to the revolution of the first planet gear 12 about the revolution axis O.
  • the radius R1 the revolution radius of the second planet gear 22 refers to the radius R2 of the second planet gear 22 revolving around the revolution axis O, as shown in Fig. 3, R1 ⁇ R2, such as R2 > R1. That is, the revolution trajectories of the first planetary gear 12 and the second planetary gear 22 are staggered in the radial direction.
  • the revolution radius of the first planet gear 12 is relatively small, and the revolution radius of the second planet gear 22 is relatively large.
  • the inner diameter of the first ring gear 13 and the inner diameter of the second ring gear 23 are also different, and the planet with a small revolution radius is different.
  • the inner ring of the corresponding ring gear of the wheel (for example, the first planetary gear 12) has a small inner diameter, that is, a small ring gear (such as the first ring gear 13) having a relatively small radius, and a planetary wheel with a larger revolution radius (for example, the second planet)
  • the corresponding ring gear of the wheel 22) has a larger radial dimension, that is, a large ring gear having a larger radius (such as the second ring gear 23), which causes the large ring gear 23 and the small ring gear 13 to be staggered in the radial direction, avoiding the teeth.
  • the motion interference occurs between the ring and the moving parts such as the planetary gears, thereby effectively reducing the axial gap between the first ring gear 12 and the second ring gear 22.
  • the axial gap is D.
  • the axial dimension of the differential 100 is made smaller and the structure is more compact.
  • first ring gear 13 and the second ring gear 23 will be described in detail below in conjunction with specific embodiments.
  • the first ring gear 13 faces the end face B1 of the second ring gear 23 (refer to FIG. 2).
  • the second ring gear 23 faces the end surface B2 (see FIG. 1) of the first ring gear 13 in the same plane B3 (see FIG. 5).
  • the end face B1 and the end face B2 are simultaneously in the plane B3, that is, coincide with B3, respectively, whereby the first ring gear 13 and the second ring gear 23 are in the axial direction.
  • the gap D is zero (as shown in FIG. 5), which can greatly reduce the axial dimension of the differential 100, making the differential 100 smaller in size and more compact in structure, facilitating the arrangement of the entire powertrain system.
  • one of the first ring gear 13 and the second ring gear 23 having a relatively small radius, such as the small ring gear 13, is at least partially embedded in a ring gear having a larger radius.
  • the gap D of the first ring gear 13 and the second ring gear 23 in the axial direction can be understood as negative, whereby the axial dimension of the differential 100 can also be reduced, and at the same time A ring gear 13 and a second ring gear 23 can better protect the components in the two ring gears.
  • the first ring gear 13 and the second ring gear 23 may be spaced apart in the axial direction and maintain a certain gap D. It can be understood that the zero gap D in the embodiment of FIG. 5 and the negative gap D in the embodiment of FIG. 7 are superior to the positive gap in the embodiment of FIG. 6 from the perspective of reducing the axial dimension of the differential 100. D.
  • the first ring gear 13 and the second ring gear 23 both include the main body flat plate portion 161 and the annular side wall portion 162, and the above FIG. 3 (
  • the gap D in connection with Figs. 1 - 2, 5 - 7) refers to the distance between the annular side wall portion 162 of the first ring gear 13 and the annular side wall portion 162 of the second ring gear 23.
  • each of the first ring gear 13 and the second ring gear 23 further includes an annular flange portion 163, an annular flange The portion 163 extends from the end surface of the annular side wall portion 162 in a direction away from the main body flat portion 161.
  • the inner diameter of the annular flange portion 163 may be substantially equal to the outer diameter of the annular side wall portion 162, such that the ring The flange portion 163 corresponds to the outwardly projecting annular side wall portion 162 (i.e., the outer peripheral surface of the first ring gear 13 or the second ring gear 23) in the radial direction.
  • the outer diameter of the annular flange portion 163 may be substantially equal to the outer diameter of the annular side wall portion 162, and the inner diameter of the annular flange portion 163 may be larger than the inner diameter of the annular side wall portion 162, that is, The thickness of the annular flange portion 163 is thinner than the thickness of the annular side wall portion 162.
  • the gap D between the two ring gears is referred to between the annular side wall portions 162 of the two ring gears. gap.
  • the gap D between the two ring gears refers to the gap between the annular flange portions 163 of the two ring gears.
  • each of the first ring gear 13 and the second ring gear 23 includes: a main body flat portion 161 and is disposed at The annular side wall portion 162 of the outer peripheral edge of the main body flat portion 161, the main body flat portion 161 and the annular side wall portion 162 may be integrally formed members.
  • the inner wall surface of the annular side wall portion 162 is provided with a plurality of gear teeth, wherein as shown in Fig.
  • a ring gear having a relatively small radius such as the annular side wall portion 162 of the first ring gear 13 is at least
  • a ring gear i.e., a large ring gear
  • the gear structure in FIGS. 11-12 can also be employed, for example.
  • the large ring gear adopts the ring gear structure of FIG. 11 or FIG. 12, that is, the large ring gear has the annular flange portion 163, and the small ring gear can adopt the common ring gear structure of the embodiment of FIG. 1 to FIG. 3 (without the annular flange). Portion 163), at this time, the annular side wall portion 162 of the small ring gear can be at least partially embedded in the annular flange portion of the large ring gear.
  • both the small ring gear and the large ring gear may adopt the ring gear structure of FIGS. 11 and 12, in which case the annular ring portion 163 of the small ring gear may be at least partially embedded in the annular flange portion of the large ring gear, but not Limited to this.
  • a cavity A1, A2 is defined between the body flat portion 161 and the annular side wall portion 162 (see FIG. 3).
  • a cavity A1 is defined between the main body flat portion 161 of the first ring gear 13 and the annular side wall portion 162
  • a cavity is defined between the main body flat portion 161 of the second ring gear 23 and the annular side wall portion 162.
  • the cavity A1 in the first ring gear 13 and the cavity A2 in the second ring gear 23 face each other to constitute an installation space A (see FIG.
  • the embodiment in which the end face B1 of the first ring gear 13 and the end face B2 of the second ring gear 23 are flush or the small ring gear 13 having a small fit is at least partially embedded in the large ring gear 23 of a larger size can make the installation space A is relatively closed, and external debris is not easily entered into the installation space A to affect the moving parts, thereby ensuring stable operation of the differential 100.
  • the thickness of the first planetary gear 12 and the second planetary gear 22 in the axial direction are different (see FIG. 10), which contributes to the reduction of the axial dimension of the differential 100.
  • the thinner planet wheels, such as the teeth of the second planet gear 22, are fully meshed with the thicker planet wheels, such as the teeth of the first planet gear 12, and the teeth of the thicker planet wheels extend axially beyond one side beyond The teeth of the thinner planet wheels, or the teeth of the thicker planet wheels, extend axially outwards beyond the teeth of the thinner planet wheels.
  • the teeth of the thicker planet wheel extend axially beyond one side of the teeth of the thinner planet wheel, for example as shown in Figures 9 and 10, the thicker first planet The wheel 12 extends to the left beyond the thinner second planet gear 22, and the right side of the thicker first planet gear 12 and the right side of the thinner second planet gear 22 may be substantially flush, such that Conducive to the control of the axial dimension of the differential 100.
  • the thicker planetary gear such as the first planetary gear 12 has a smaller revolution radius than the thinner planetary gear.
  • the revolution radius of the planet gear 22 Since the revolution radius of the first planetary gear 12 and the second planetary gear 22 are different, for embodiments in which the planetary wheel thickness is different, the thicker planetary gear such as the first planetary gear 12 has a smaller revolution radius than the thinner planetary gear. The revolution radius of the planet gear 22.
  • the thicker planetary gears such as the first planetary gear 12 corresponding to the ring gear are smaller radial ring small ring gears such as the first ring gear 13, and the thinner planetary gears such as the second planetary gear 22 corresponding to the ring gear are A large ring gear having a relatively large radial dimension such as the second ring gear 23, the outer diameter (outer surface) of the large ring gear 23 is larger than the outer diameter (outer surface) of the small ring gear 13.
  • the thickness of the first planet gear 12 is greater than the thickness of the second planet gear 22 such that the first ring gear 13 corresponding to the thicker first planet gear 12 is a small ring gear, and the second gear corresponding to the thinner second planet gear 22
  • the ring 23 is a large ring gear, and the revolution radius of the first planet gear 12 is smaller than the revolution radius of the second planet gear 22.
  • the planetary wheel with a smaller revolution radius meshes with a ring gear having a relatively small radius.
  • the planetary wheel with a smaller revolution radius is a relatively thicker planetary gear, and a part of the planetary gear is The inner teeth of one of the ring gears having a relatively small radius are engaged, and the other portion is meshed with the planet wheels having a larger revolution radius, that is, the thinner planet wheels.
  • the inner diameter of the large ring gear 23 is larger than the outer diameter of the small ring gear 13, where the inner diameter of the large ring gear 23 refers to the radial dimension of the addendum circle of the inner teeth of the large ring gear 23, in other words, large The diameter of the addendum circle of the internal teeth of the ring gear 23 is larger than the outer diameter of the small ring gear 13.
  • the small ring gear 13 can be integrally or at least partially embedded in the large ring gear 23, that is, the axial gap D described above is reduced to a negative number (ie, the small ring gear 13 is embedded in the large ring gear 23), thereby the two ring gears and the two types.
  • Planetary gears do not interfere with motion or slip, which increases the stability of the differential 100, while also making the interior space relatively more enclosed, protecting the internal planet carrier and planet gears.
  • the power input end and the power output end of the differential 100 will be described in detail below in conjunction with specific embodiments.
  • the differential 100 further includes a differential input shaft 31, 32 and a differential output shaft 41, 42.
  • the differential input shafts 31, 32 are respectively coupled to the first carrier 11 and the first The two planet carriers 21 are connected.
  • the differential input shaft 31 is connected to the right side of the first carrier 11, and the differential input shaft 32 is connected to the left side of the second carrier 21.
  • the differential output shafts 41, 42 are connected to the first ring gear 13 and the second ring gear 23, respectively.
  • the right side of the first ring gear 13 is connected to the differential output shaft 41
  • the second A differential output shaft 42 is coupled to the left side of the ring gear 23.
  • the differential input shafts 31, 32, the differential output shafts 41, 42, the first ring gear 13 and the second ring gear 23 are coaxially arranged.
  • the differential input shaft includes: a first differential input shaft 31 and a second differential input shaft 32.
  • the first differential input shaft 31 is connected to the first carrier 11, and the second difference is The speed input shaft 32 is coupled to the second planet carrier 21.
  • the differential output shaft may include a first differential output shaft 41 and a second differential output shaft 42, the first differential output shaft 41 being coupled to the first ring gear 13, and the second differential output shaft 42 It is connected to the second ring gear 23.
  • the first differential input shaft 31 and the second differential input shaft 32 and the first differential output shaft 41 and the second differential output shaft 42 may each be a hollow shaft structure.
  • the first differential output shaft 41 is coaxially sleeved on the first differential input shaft 31, and the second differential output shaft 42 is coaxially nested on the second differential input.
  • the differential 100 is thus more compact and smaller in size.
  • the differential input shaft and the differential output shaft are one of the embodiments.
  • the differential 100 is externally powered by the external teeth of the ring gear.
  • the first planetary gear 12 and the second planetary gear 22 are both spur gears, and the differential 100 using the spur gear is more compact in structure than the conventional symmetrical bevel gear differential, in particular It has higher space utilization in structure and connection form, smaller axial dimension, and is more advantageous in production and assembly.
  • a plurality of first planetary axles 14 and a plurality of second planetary axles 24 are disposed between the first planet carrier 11 and the second planet carrier 21, and the first planetary gears 12 are A plurality of and correspondingly connected to the first planetary axle 14, the second planetary gear 22 is plural and correspondingly connected to the second planetary axle 24.
  • the thickness of the first planet gear 12 is greater than the thickness of the second planet gear 22, and the teeth of the thinner second planet gear 22 are fully meshed with the teeth of the thicker first planet gear 12, the thicker first planet gear The teeth of 12 can extend beyond the thinner second planet gear 22 to the left.
  • the first ring gear 13 corresponding to the thicker first planet gear 12 is a small ring gear
  • the second ring gear 23 corresponding to the thin second planet gear 22 is a large ring gear
  • the end faces B2 of the ring 23 can be in the same plane, so that the axial gap D of the small ring gear 13 and the large ring gear 23 is zero, so that the mounting cavity A in the two ring gears is relatively closed.
  • the differential 100 adopts a planetary gear in the form of a spur gear, which has higher space utilization ratio in structure and connection form, smaller axial dimension, and has advantages in production and assembly.
  • the compact differential 100 also realizes the space and size avoidance of the planetary gear mechanisms on both sides by changing the displacement of one of the planetary gears and the ring gear (ie, the revolution radius of the planetary gears is different), which greatly saves the structural design.
  • the axial gap of the other set of planet gears and ring gears in space is avoided, so that the axial size of the compact differential 100 is smaller and more compact.
  • the differential 100 according to an embodiment of the present invention has been described in detail above, and the remaining structure of the power drive system 1000 will be described in detail below.
  • the transmission 104 can include a plurality of input shafts 101, 102 and a power take off shaft 103.
  • the power take off shaft 103 of the transmission 104 may be one, but is not limited thereto.
  • the power output shaft 103 is disposed in linkage with the power input end of the differential 100, that is, the power output shaft 103 is disposed to interlock with the first carrier 11 and the second carrier 21.
  • One of the plurality of input shafts 101, 102 is arranged to be selectively engageable with the power take-off shaft 103.
  • one of the input shafts such as the first input shaft 101 (the second input shaft 102 in FIG. 14) can be linked with the power output shaft 103 while the one of the input shafts is the first input shaft.
  • the 101 can also be disconnected from the power output shaft 103.
  • the remaining input shafts are all arranged in conjunction with the power output shaft 103. That is, when the input shafts are operated, the power output shaft 103 also follows the action, or the power output shaft 103 operates, and the input shafts also operate.
  • the first motor generator 401 is disposed in linkage with the one input shaft, such as the first input shaft 101, that is, the input shaft that is linked with the first motor generator 401 is selectively linked with the power output shaft 103. Input shaft.
  • the power take-off shaft 103 is provided with an idler driven gear 108, and the idler driven gear 108 is coupled with one of the input shafts.
  • the synchronizer 109 is configured to synchronize the power output shaft 103 with the air.
  • the set of driven gears 108 It can be understood that the synchronizer 109 synchronizes the idler driven gear 108 and the power output shaft 103 when the synchronizer 109 is in the engaged state, so that the power from the first motor generator 401 can be engaged by the synchronizer 109.
  • the power output shaft 103 is output to the differential 100, and when the synchronizer 109 is in the open state, the first motor generator 401 is equivalent to being disconnected from the power output shaft 103.
  • the synchronizer 109 functions as a power switch of the first motor generator 401, and can control the output and disconnection of the power of the first motor generator 401.
  • the synchronizer 109 is disposed on the power take-off shaft 103 and is configured to engage the idler driven gear 108. Thereby, the structure is simple and easy to implement.
  • the power output shaft 103 is fixedly provided with a fixed driven gear 107, and the fixed driven gear 107 is interlocked with the remaining input shafts, that is, the input shaft 101 in the above-described embodiment of FIG. 13 or the input shaft 102 in the embodiment of FIG. 14 is removed. .
  • the power output shaft 103 is fixedly fixedly provided with a fixed driven gear 107
  • the empty sleeve has an idler driven gear 108
  • the input shaft is correspondingly fixedly provided with a fixed driving gear.
  • 105, 106, the idler driven gear 108 and the fixed driven gear 107 are respectively meshed with the corresponding fixed driving gears.
  • the total number of idler driven gears 108 and fixed driven gears 107 is the same as the number of fixed drive gears.
  • the number of the idler driven gear 108 and the fixed driven gear 107 is one, and correspondingly, the number of the fixed driving gears is two, the idler driven gear 108 and one fixed driving gear. Engagement constitutes a pair of gear pairs, and the fixed driven gear 107 meshes with another fixed drive gear to form another pair of gear pairs.
  • the transmission speed ratios of the two pairs of gear pairs are different, so the transmission 104 in this embodiment has two transmission gears of different speed ratios, so that the structure of the power drive system 1000 is relatively simple and compact, and can also satisfy the vehicle. The requirement of normal driving speed ratio.
  • the plurality of input shafts include a first input shaft 101 and a second input shaft 102
  • the first input shaft 101 can be a solid shaft
  • the second input shaft 102 can be a hollow shaft
  • the sleeve 102 is disposed on the first input shaft 101.
  • the second input shaft 102 is coaxially sleeved on the first input shaft 101.
  • the axial length of the first input shaft 101 is greater than the axial length of the second input shaft 102.
  • One end of an input shaft 101 such as a right end, may extend from the interior of the second input shaft 102.
  • Each input shaft may be fixedly provided with only one fixed driving gear, that is, the fixed driving gear includes a first fixed driving gear 106 and a second fixed driving gear 105, and the first fixed driving gear 106 is fixedly disposed on the first input shaft 101.
  • the second fixed driving gear 105 is fixedly disposed on the second input shaft 102.
  • the idler driven gear 108 meshes with the first fixed drive gear 106
  • the fixed driven gear 107 meshes with the second fixed drive gear 105.
  • the first motor generator 401 is interlocked with the first input shaft 101, for example, the first motor generator 401 is interlocked with the first fixed driving gear 106 through a gear structure.
  • the first motor generator 401 can be driven by the gear 402 and the gear 403 and the first fixed driving gear 106.
  • the gear ratio required by the first motor generator 401 can be obtained by appropriately designing the number of teeth of the gear.
  • the idler driven gear 108 meshes with the second fixed drive gear 105, and is fixedly driven.
  • the gear 107 meshes with the first fixed drive gear 106.
  • the first motor generator 401 is interlocked with the second input shaft 102, for example, the first motor generator 401 is coupled to the second fixed driving gear 105 through a gear structure.
  • the first motor generator 401 can be driven by the gear 402, the gear 403, the gear 404, the gear 405, and the second fixed driving gear 105.
  • the gear 404 and the gear 405 can be fixed on the same shaft 406, and the gear is properly designed. The number of teeth can obtain the required transmission ratio of the first motor generator 401.
  • the powertrain system 1000 can also include an engine 301 that is configured to selectively engage at least one of the plurality of input shafts.
  • the input shaft is two and a dual clutch 204 is disposed between the engine 301 and the two input shafts.
  • the dual clutch 204 includes a first engagement portion 201, a second engagement portion 202, and a third engagement portion 203, wherein the first engagement portion 201 and the second engagement portion 202 can be two driven discs of the dual clutch 204, the third engagement
  • the portion 203 can be a housing of the dual clutch 204, at least one of the two driven disks can selectively engage the housing, that is, at least one of the first engagement portion 201 and the second engagement portion 202 can be selectively
  • the third joint portion 203 is joined to the ground.
  • the two driven disks can also be completely disconnected from the housing, that is, both the first engaging portion 201 and the second engaging portion 202 are in an open state with the third engaging portion 203.
  • the engine 301 is coupled to the third engaging portion 203, the first input shaft 101 is coupled to the first engaging portion 201, and the second input shaft 102 is coupled to the second engaging portion 202.
  • the power generated by the engine 301 can be selectively output to the first input shaft 101 and the second input shaft 102 through the dual clutch 204.
  • the power take-off shaft 103 is coaxially fixed with the first carrier 11 and the second carrier 21, thereby making the connection portion of the transmission 104 and the differential 100 more compact, that is, directly outputting power.
  • the shaft 103 is coaxially fixed with the two planet carriers to at least reduce the volume of the power drive system 1000 to a certain extent.
  • the power drive system 1000 further includes a first output portion 601 and a second output portion 602.
  • the first output portion 601 is associated with the first ring gear 13, and the second output portion 602 is interlocked with the second ring gear 23.
  • the first output portion 601 is a left side gear
  • the second output portion 602 is a right side gear
  • the first ring gear 13 is provided with a first outer tooth 603, and the second ring gear 23 is provided with a second outer tooth 604.
  • the first outer teeth 603 mesh with the left side gear 601, and the second outer teeth 604 mesh with the right side gear 602, whereby the power transmitted through the differential 100 can finally pass through the left side gear 601 and the right side gear 602. Output to the wheels on the left and right sides.
  • the second motor generator 501 is disposed to be coupled with the first output portion 601
  • the third motor generator 502 is disposed to be coupled with the second output portion 602, such as the second motor power generation.
  • a gear 503 may be disposed on the motor shaft of the machine 501. The gear 503 is meshed with the left side gear 601, and the motor shaft of the third motor generator 502 is provided with a gear 504, and the gear 504 is meshed with the right side gear 602.
  • the second motor generator 501 and the third motor generator 502 are symmetrically distributed about the differential 100, such that the center of gravity of the power drive system 1000 can be centered or closer to the center position.
  • the power drive system 1000 in this embodiment is in the embodiment of Figures 13-20.
  • the input shaft includes a first input shaft 101, a second input shaft 102, and a third input shaft 1003.
  • the third input shaft 1003 can be a hollow shaft and sleeved on the second input shaft 102, the second input.
  • the shaft 102 can also be a hollow shaft and sleeved on the first input shaft 101, and the three input shafts can be coaxially arranged.
  • the engine 301 is coupled to the first input shaft 101, the second input shaft 102, and the third input shaft 1003 via a three clutch 205.
  • the three clutch 205 has a first driven disc 206, a second driven disc 207, a third driven disc 208, and a housing 209, and the housing 209 is selectively engageable with the first driven disc 206, the second At least one of the driven disc 207 and the third driven disc 208 is engaged, the first input shaft 101 is coupled to the first driven disc 206, and the second input shaft 102 is coupled to the second driven disc 207.
  • the third input shaft 1003 Connected to the third driven disk 208, the engine 301 is coupled to the housing 209.
  • the first driven disk 206, the second driven disk 207, and the third driven disk 208 are distributed in the axial direction.
  • the first driven disk 206, the second driven disk 207, and the third driven disk 208 are distributed in the radial direction.
  • the first engaging portion 201 is engaged with the third engaging portion 203
  • the second engaging portion 202 is disconnected from the third engaging portion 203
  • the synchronizer 109 is in an engaged state, at which time the power generated by the engine 301 passes through the first input shaft 101,
  • the power take-off shaft 103 is then output to the differential 100, and the differential 100 distributes the power to the drive wheels on both sides.
  • the second engaging portion 202 is engaged with the third engaging portion 203, the first engaging portion 201 is disconnected from the third engaging portion 203, and the synchronizer 109 is in an open state, at which time the power generated by the engine 301 passes through the second input shaft. 102.
  • the power output shaft 103 is output to the differential 100, and the differential 100 distributes the power to the drive wheels on both sides.
  • the dual clutch 204 is completely disconnected, the synchronizer 109 is in the engaged state, and the power generated by the first motor generator 401 is output to the differential 100 through the first input shaft 101 and the power output shaft 103, and the differential 100 is received by the differential 100. Assign power to the drive wheels on both sides.
  • the first engaging portion 201 is engaged with the third engaging portion 203, the second engaging portion 202 is disconnected from the third engaging portion 203, and the synchronizer 109 is in an open state, at which time the power generated by the engine 301 passes through the first input shaft.
  • the 101 is output to the first motor generator 401, and drives the first motor generator 401 to generate electric power as an electric motor to realize a parking power generation function.
  • the main difference between the embodiment of FIG. 14 and the embodiment of FIG. 13 is that the first motor generator 401 and the second input shaft 102 are interlocked in the embodiment of FIG. 14, and the first motor generator 401 and the first input shaft are in the embodiment of FIG. 101 linkage, the rest will not go into details.
  • the first ring gear 13 is interlocked with the left front wheel 910a, such as the first ring gear 13 passing through the first outer teeth 603 and the left side gear 601 and the left front wheel.
  • the second ring gear 23 is interlocked with the right front wheel 910b.
  • the second ring gear 23 is interlocked with the right front wheel 910b by the second outer teeth 604 and the right side gear 602.
  • Fourth electric The generator 901 is coupled to the left rear wheel 910c through a gear structure.
  • the fourth motor generator 901 is coupled to the left rear wheel 910c via the gears W1, W2, W3, and W4, wherein the gear W1 is coaxially connected to the fourth motor generator 901.
  • the gear W1 meshes with the gear W2, the gear W2 is coaxially coupled to the gear W3, the gear W3 meshes with the gear W4, the gear W4 is fixedly disposed on the left half shaft 904, and the left rear axle 910 is provided with the left rear wheel 910c.
  • the fifth motor generator 902 is interlocked with the right rear wheel 910d through a gear structure, such as the fifth motor generator 902 is coupled with the right rear wheel 910d through the gears X1, X2, X3, X4, wherein the gear X1 and the fifth motor generator
  • the machine 902 is coaxially connected, the gear X1 is meshed with the gear X2, the gear X2 is coaxially connected with the gear X3, the gear X3 is meshed with the gear X4, the gear X4 is fixedly disposed on the right half shaft 905, and the right half shaft 905 is disposed with the right rear Wheel 910d.
  • the anti-skid synchronizer 903 is provided for the synchronizing gear W4 and the gear X4, for example, the anti-skid synchronizer 903 is disposed on the gear W4 and is used to engage the gear X4.
  • the anti-skid synchronizer 903 is provided for synchronizing the gear W1 with the gear X1, for example, the anti-skid synchronizer 903 is disposed on the gear W1 and for engaging the gear X1.
  • the anti-skid synchronizer 903 is provided for the synchronizing gear W2 and the gear X2, for example, the anti-skid synchronizer 903 is disposed on the gear W2 and is used to engage the gear X2.
  • the anti-skid synchronizer 903 is configured to synchronize the left and right half shafts 904, 905, such as the anti-skid synchronizer 903, on the left half shaft 904 and for engaging the right half shaft 905, this embodiment
  • the fourth fourth motor generator 901 and the fifth motor generator 902 are both wheel motors.
  • the anti-skid synchronizer 903 is arranged to selectively synchronize the left rear wheel 910c and the right rear wheel 910d, in other words, when the anti-slip synchronizer 903 is in the engaged state, the left rear wheel 910c and the right rear wheel 910d will rotate synchronously, ie At the same speed and in the same direction, the left rear wheel 910c and the right rear wheel 910d do not rotate at a differential speed.
  • the fourth motor generator 901 can separately drive the left rear wheel 910c
  • the fifth motor generator 902 can separately drive the right rear wheel 910d, and the two rear wheels are independent of each other and do not interfere with each other. In order to achieve the differential rotation function of the wheel.
  • the combined technical solution may be a superposition of two or more technical solutions, a superposition of two or more technical features or a superposition of two or more technical solutions and technical features, thereby enabling The technical solutions and/or technical features interact and support each other functionally, and the combined solution has a superior technical effect.
  • first ring gear 13 facing the end surface of the second ring gear 23 and the second ring gear 23 facing the end surface of the first ring gear 13 on the same plane, and the first ring gear 13 and the first
  • a person skilled in the art may use a scheme in which the thickness of the first planet gear 12 is greater than the thickness of the second planet gear 22
  • the first ring gear 13 is a small ring gear
  • the second ring gear 23 is a large ring gear
  • the revolution radius of the first planet gear 12 is smaller than the revolution radius of the second planet gear 22, thereby forming a differential speed.
  • the structure of the device 100 is more compact, smaller, and more convenient to be placed inside the engine compartment of the vehicle.
  • a person skilled in the art can approach the first ring gear 13 toward the end surface of the second ring gear 23 and the second ring gear 23 on the same plane toward the end surface of the first ring gear 13 and the thinner planet gear and
  • the combination of the meshing relationship of the thick planetary gears makes the axial clearance of the two ring gears of the differential 100 zero, so that the two ring gears can define a relatively closed installation space, and fully complete the components in the installation space. Protection, increasing its service life and reducing costs, on the other hand, can further reduce the axial dimension of the differential 100, allowing the differential 100 to have a smaller volume.
  • the differential 100 can effectively save space and reduce weight.
  • the planetary gear differential 100 is compared to a conventional bevel gear differential.
  • the weight can be reduced by about 30%, and the axial dimension is reduced by about 70%, which not only reduces the friction of the bearing, but also realizes the torque distribution of the left and right wheels, makes the load distribution of the differential 100 more reasonable, and the differential 100 is more rigid.
  • the transmission efficiency is also improved.
  • the conventional bevel gear transmission efficiency of 6-level accuracy and 7-level accuracy is about 0.97 to 0.98
  • the efficiency of the spur gear transmission of 6-level precision and 7-level precision is about 0.98 ⁇ 0.99
  • the differential 100 according to the embodiment of the present invention has many advantages such as light weight, small size, low cost, high transmission efficiency, low noise, low heat generation, and high life.
  • the differential 100 according to the embodiment of the present invention can omit the sun gear, the elimination of the sun gear can have the following advantages:
  • the sun gear should be canceled instead of using the ring gear to achieve the differential speed, because the number of teeth of the ring gear can be set more than the sun gear, and the pitch circle is larger (the pitch circle refers to the node at the gear meshing transmission).
  • a pair of tangent circles are tangential, so that the load and the withstand torque can be distributed more evenly, which is advantageous for the improvement of the life of the differential 100.
  • there is no sun wheel and the lubrication and cooling of the differential 100 can be better realized. That is to say, since the sun gear is eliminated, a cavity can be formed inside the ring gear, and the ring gear meshes with the planetary gear to belong to the inner mesh.
  • the lubricating oil can be stored in the ring gear, and the cooling and lubrication effect is greatly improved.
  • the sun gear is eliminated, the components are reduced, the quality and cost of the differential 100 are reduced, and the differential 100 is further reduced in size and weight.
  • the power drive system 1000 having the differential 100 according to an embodiment of the present invention is mainly in space.
  • the upper and the driving mode have obvious advantages.
  • the power driving system 1000 is particularly suitable for a new energy vehicle. Since the powertrain of the new energy vehicle is generally arranged in the engine compartment, the powertrain not only has a transmission. The engine, and at the same time, has at least one electric motor. Since the engine compartment space is limited, the use of the compact differential 100 according to an embodiment of the present invention can provide an advantage in space and is more convenient to arrange.
  • the axial dimension of the differential 100 according to the embodiment of the present invention is greatly reduced, the axial space is better arranged, and the differential 100 has two ring gears as power.
  • the output can better achieve a power connection to the two motors (as described above for connecting the motor through the external gear of the ring gear), which is difficult to achieve on conventional conical differentials.
  • the vehicle 10000 includes the power drive system 1000 in the above embodiment, and the power drive system 1000 can be used for a front drive, and of course, for a rear drive.
  • the present invention is not particularly limited thereto. It should be understood that other configurations of the vehicle 10000, such as the brake system, the travel system, the steering system, and the like, according to embodiments of the present invention are known in the art and are well known to those skilled in the art, and therefore will not be described herein. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Retarders (AREA)

Abstract

一种动力驱动系统,包括:差速器(100),差速器包括:第一和第二行星架(11、22)、第一和第二行星轮(12、22)、第一和第二齿圈(13、23),第一和第二行星轮分别设置在第一和第二行星架上,第一和第二行星轮分别与第一和第二齿圈啮合,且第二行星轮还与第一行星轮啮合,且第一行星轮与第二行星轮的公转半径(R1、R2)不同;动力输出轴(103),动力输出轴设置成与差速器的动力输入端联动;多个输入轴(101、102),多个输入轴中的一个输入轴设置成可选择性地与动力输出轴联动,多个输入轴中的其余输入轴设置成与动力输出轴联动;第一电动发电机(401),第一电动发电机设置成与多个输入轴中的所述一个输入轴联动。

Description

动力驱动系统及具有其的车辆 技术领域
本发明涉及一种动力驱动系统以及具有该动力驱动系统的车辆。
背景技术
发明人所了解的一种差速器技术中,差速器包括主减速器的从动齿轮(主减从动齿轮)、行星齿轮、中心轮等,行星齿轮通过方轴、轴套安装在从动齿轮的副板上,且与中心轮啮合,用转动副和平面移动副实现其转动和移动功能,中心轮通过角向定位销和圆柱副或花键与左右两半轴连接,达到输出转矩的目的。这种差速器取消了原有的差速器左右壳体、行星齿轮轴等构件,改用方轴和轴套直接将行星轮安装在主减速器的从动齿轮的副板上,有效地减少了差速器的零件数目,简化了结构、减轻了重量。
但是,这种差速器利用了对称式锥齿轮结构实现轮间差速,只是针对传统的对称式锥齿轮差速器的部分创新,并不能真正解决这种差速器结构轴向尺寸过大、壳体及锥齿轮质量大以及可靠性相对偏差的缺点。
发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。
为此,本发明提出了一种动力驱动系统,该动力驱动系统的差速器利用行星差速原理实现差速功能,结构紧凑、简单。
本发明还提出了一种具有该动力传动系统的车辆。
根据本发明实施例的动力驱动系统,包括:差速器,所述差速器包括:第一行星架、第一行星轮和第一齿圈,所述第一行星轮设置在所述第一行星架上,所述第一行星轮与所述第一齿圈啮合;第二行星架、第二行星轮和第二齿圈,所述第二行星轮设置在所述第二行星架上,所述第二行星轮与所述第二齿圈啮合且所述第二行星轮还与所述第一行星轮啮合;其中,所述第一齿圈和所述第二齿圈构成所述差速器的两个动力输出端,所述第一行星架和所述第二行星架构成所述差速器的动力输入端,且所述第一行星轮与所述第二行星轮的公转半径不同;动力输出轴,所述动力输出轴设置成与所述差速器的所述动力输入端联动;多个输入轴,所述多个输入轴中的一个输入轴设置成可选择性地与所述动力输出轴联动,所述多个输入轴中的其余所述输入轴设置成与所述动力输出轴联动;第一电动发电 机,所述第一电动发电机设置成与所述多个输入轴中的所述一个输入轴联动。
根据本发明实施例的动力驱动系统的差速器利用行星差速原理实现差速功能,结构紧凑、简单。
另外,根据本发明实施例的动力驱动系统还可以具有如下附加技术特征:
根据本发明的一些实施例,所述动力输出轴与所述第一行星架、所述第二行星架同轴固定。
根据本发明的一些实施例,动力驱动系统还包括:第一输出部和第二输出部,所述第一输出部与所述第一齿圈联动,所述第二输出部与所述第二齿圈联动。
根据本发明的一些实施例,所述第一输出部为左半轴齿轮,所述第二输出部为右半轴齿轮;以及所述第一齿圈上设置有第一外齿,所述第二齿圈上设置有第二外齿,所述第一外齿与所述左半轴齿轮啮合,所述第二外齿与所述右半轴齿轮啮合。
根据本发明的一些实施例,动力驱动系统还包括:发动机,所述发动机设置成可选择性地接合所述多个输入轴中的至少一个。
根据本发明的一些实施例,所述动力输出轴上空套设置有空套从动齿轮,所述空套从动齿轮与所述多个输入轴中的所述一个输入轴联动,所述动力驱动系统还包括同步器,所述同步器设置成用于同步所述动力输出轴与所述空套从动齿轮。
根据本发明的一些实施例,所述同步器设置在所述动力输出轴上且用于接合所述空套从动齿轮。
根据本发明的一些实施例,所述动力输出轴上固定设置有固定从动齿轮,所述固定从动齿轮与所述多个输入轴中的所述其余输入轴联动。
根据本发明的一些实施例,所述动力输出轴上空套设置有空套从动齿轮以及固定设置有固定从动齿轮,所述动力驱动系统还包括同步器,所述同步器设置成用于同步所述动力输出轴与所述空套从动齿轮;每个输入轴上固定设置有固定主动齿轮,所述空套从动齿轮和所述固定从动齿轮分别与对应的固定主动齿轮啮合。
根据本发明的一些实施例,所述第一齿圈朝向所述第二齿圈的端面与所述第二齿圈朝向所述第一齿圈的端面处在同一平面内。
根据本发明的一些实施例,所述第一齿圈和所述第二齿圈中的每一个均包括:主体平板部和设置在所述主体平板部的外周沿的环形侧壁部,所述环形侧壁部的内壁面上设置有多个齿,所述主体平板部与所述环形侧壁部之间限定出空腔,所述第一齿圈的空腔和所述第二齿圈的空腔朝向彼此以构成安装空间,所述第一行星架和所述第一行星轮以及所述第二行星架和所述第二行星轮收纳在所述安装空间内。
根据本发明的一些实施例,所述第一行星轮与所述第二行星轮在轴向上的厚度不同。
根据本发明的一些实施例,所述第一行星轮和所述第二行星轮中较薄的行星轮的轮齿与所述第一行星轮和所述第二行星轮中较厚的行星轮的轮齿完全啮合,且较厚的行星轮的轮齿在轴向上向一侧延伸超出较薄的行星轮的轮齿或者较厚的行星轮的轮齿在轴向上分别向两侧延伸超出较薄的行星轮的轮齿。
根据本发明的一些实施例,较厚的行星轮的公转半径小于较薄的行星轮的公转半径。
根据本发明的一些实施例,所述第一行星轮的公转轴线与所述第二行星轮的公转轴线重合。
根据本发明的一些实施例,所述第一行星轮和第二行星轮均为圆柱齿轮。
根据本发明的一些实施例,每个第一行星轮配置有第一行星轮轴,所述第一行星轮轴的两个端部分别与所述第一行星架和所述第二行星架相连,每个第二行星轮配置有第二行星轮轴,所述第二行星轮轴的两个端部分别与所述第一行星架和所述第二行星架相连。
根据本发明的一些实施例,动力驱动系统还包括:第一输出部和第二输出部,所述第一输出部与所述第一齿圈联动,所述第二输出部与所述第二齿圈联动;以及第二电动发电机和第三电动发电机,所述第二电动发电机与所述第一输出部联动,所述第三电动发电机与所述第二输出部联动。
根据本发明的一些实施例,所述多个输入轴包括第一输入轴、第二输入轴和第三输入轴,所述第三输入轴套设在所述第二输入轴上,所述第二输入轴套设在所述第一输入轴上,所述发动机与所述第一输入轴、所述第二输入轴和所述第三输入轴之间通过三离合器相连。
根据本发明的一些实施例,所述第一齿圈与左前轮联动,所述第二齿圈与右前轮联动;所述动力驱动系统还包括:第四电动发电机和第五电动发电机,所述第四电动发电机与左后轮联动,所述第五电动发电机与右后轮联动;以及防滑同步器,所述防滑同步器设置成可选择性地同步所述左后轮和右后轮,从而使得所述左后轮和所述右后轮同步旋转。
根据本发明实施例的车辆,包括上述实施例中的动力驱动系统。
附图说明
图1是根据本发明实施例的差速器的一个视角的爆炸图;
图2是根据本发明实施例的差速器的另一视角的爆炸图;
图3是根据本发明实施例的差速器的平面原理简图;
图4是根据本发明实施例的差速器的装配后的立体图;
图5是本本发明一个实施例中的第一齿圈和第二齿圈的位置示意图;
图6是本发明另一个实施例中的第一齿圈和第二齿圈的位置示意图;
图7是本发明又一个实施例中第一齿圈和第二齿圈的位置示意图;
图8是根据本发明实施例的差速器的局部示意图;
图9是根据本发明实施例的第一行星轮和第二行星轮的立体图;
图10是根据本发明实施例的第一行星轮和第二行星轮的啮合原理简图;
图11是根据本发明实施例的第一齿圈或第二齿圈的立体图;
图12是根据本发明另一个实施例的第一齿圈或第二齿圈的立体图;
图13是根据本发明一个实施例的动力驱动系统的示意图;
图14是根据本发明又一个实施例的动力驱动系统的示意图;
图15是根据本发明另一个实施例的动力驱动系统的示意图;
图16是根据本发明再一个实施例的动力驱动系统的示意图;
图17是根据本发明再一个实施例的动力驱动系统的示意图;
图18是根据本发明再一个实施例的动力驱动系统的示意图;
图19是根据本发明再一个实施例的动力驱动系统的示意图;
图20是根据本发明再一个实施例的动力驱动系统的示意图;
图21是根据本发明再一个实施例的动力驱动系统的示意图;
图22是根据本发明再一个实施例的动力驱动系统的示意图;
图23是根据本发明实施例的车辆的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是 机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面将参照附图详细描述根据本发明实施例的动力驱动系统1000,该动力驱动系统1000可应用于车辆中。
如图13-图18所示,根据本发明一些实施例的动力驱动系统1000主要包括差速器100、变速器104和第一电动发电机401,变速器104连接在差速器100与第一电动发电机401之间。
下面首先根据图示实施例对差速器100的具体结构进行详细描述,对于动力驱动系统1000的其它构造将在详细介绍差速器100构造之后描述。
下面结合图1-图12对根据本发明实施例的差速器100进行详细描述,该差速器100可以用于轮间差速或轴间差速,以用于轮间差速为例,该差速器100能够使左右驱动车轮在车辆转弯行驶或在不平路面行驶时以不同的角速度滚动,以保证两侧驱动轮与地面间作纯滚动运动。
如图1和图2所示,根据本发明一些实施例的差速器100可以包括第一行星架11、第一行星轮12和第一齿圈13以及第二行星架21、第二行星轮22和第二齿圈23。
结合图1和图2的实施例,第一行星架11和第二行星架21均可以构造为圆形的板状结构,这样可以在一定程度上减少差速器100的轴向尺寸。在一些实施例中,第一行星架11和第二行星架21可为分体式结构,即第一行星架11与第二行星架21相互分离,由于单独小部件成型相对容易,因此将第一行星架11和第二行星架21分别单独加工可以简化制造工艺、提高加工精度。
如图3并结合图1、图2和图9所示,第一行星轮12设置在第一行星架11上,例如,每个第一行星轮12配置有一个第一行星轮轴14(图9所示),第一行星轮轴14的两个端部分别可转动地支承在第一行星架11和第二行星架21上,如第一行星轮轴14的两个端部可通过轴承而可转动地支承在第一行星架11和第二行星架21上彼此对应的轴孔内,此时第一行星轮12可固定于对应的第一行星轮轴14上。当然,第一行星轮轴14的两个端部与 第一行星架11和第二行星架21也可以是固定连接的,例如第一行星轮轴14的两个端部分别与第一行星架11和第二行星架21上彼此对应的轴孔焊接固定,此时第一行星轮12可转动地套设在对应的第一行星轮轴14上,例如第一行星轮12可通过轴承而可转动地套装在第一行星轮轴14上。由此,通过第一行星轮轴14可以实现连接第一行星架11和第二行星架21的目的,从而使得第一行星架11和第二行星架21保持同速、同向运动(即第一行星架11和第二行星架21联动)。而且采用这种连接方式,第一行星架11和第二行星架21可以很好地对第一行星轮轴14进行支承/固定,防止第一行星轮轴14与单个行星架脱离连接而导致差速器100失效。
第一行星轮12与第一齿圈13啮合,具体可为内啮合形式,即第一行星轮12位于第一齿圈13的内侧并与第一齿圈13上的齿啮合。第一行星轮12可为多个,并且沿周向等角间距分布在第一齿圈13内侧,例如,第一行星轮12可为三个,并且任意相邻的两个第一行星轮12之间间隔角度为120°。
类似地,如图3并结合图1、图2和图9所示,第二行星轮22设置在第二行星架21上,例如,每个第二行星轮22配置有一个第二行星轮轴24,如第二行星轮轴24的两个端部可通过轴承而可转动地支承在第一行星架11和第二行星架21上彼此对应的轴孔内,此时第二行星轮22可固定于对应的第二行星轮轴24上。当然,第二行星轮轴24的两个端部与第一行星架11和第二行星架21也可以是固定连接的,例如第二行星轮轴24的两个端部分别与第一行星架11和第二行星架21上彼此对应的轴孔焊接固定,此时第二行星轮22可转动地套设在对应的第二行星轮轴24上,例如第二行星轮22可通过轴承而可转动地套装在第二行星轮轴24上。由此,通过第二行星轮轴24可以实现连接第一行星架11和第二行星架21的目的,从而使得第一行星架11和第二行星架21保持同速、同向运动。而且采用这种连接方式,第一行星架11和第二行星架21可以很好地对第二行星轮轴24进行支承/固定,防止第二行星轮轴24与单个行星架脱离连接而导致差速器100失效。
此外,在本发明的另一些实施例中,为了保持第一行星架11和第二行星架21能够同速、同向运动,也可以通过中间部件将第一行星架11和第二行星架21直接固定连接,也就是说,上面实施例中第一行星架11和第二行星架21的同速、同向运动可以是通过第一行星轮轴14和第二行星轮轴24来实现的,而该实施例可以直接通过设置中间部件实现第一行星架11和第二行星架21的同速、同向运动。例如该中间部件可以位于第一行星架11和第二行星架21之间并且分别与第一行星架11和第二行星架21焊接固定。
第二行星轮22与第二齿圈23啮合,具体可为内啮合形式,即第二行星轮22位于第二齿圈23的内侧并与第二齿圈23上的齿啮合。第二行星轮22可为多个,并且沿周向等角间距分布在第二齿圈23内侧。例如,第二行星轮22可为三个,并且任意相邻的两个第二行 星轮22之间间隔角度为120°。
其中,需要说明的是,图3为根据本发明实施例的差速器100的平面原理简图,其中示意性地示出了第一行星轮12与第二行星轮22之间的啮合关系以及第一行星轮12与第一齿圈13、第二行星轮22与第二齿圈23的啮合关系,由于图3为平面图,并且同时示出了上述三种啮合关系,因此各部件的相对位置关系仅是示意性的,并不表示或暗示各部件的实际空间布置位置。
在第一行星轮12和第二行星轮22均为多个的实施例中,多个第一行星轮12和多个第二行星轮22分别对应地啮合。例如,如图1、图2和图8所示,第一行星轮12和第二行星轮22均为三个,则第一个第一行星轮12可与对应的第一个第二行星轮22啮合,第二个第一行星轮12可与对应的第二个第二行星轮22啮合,第三个第一行星轮12可与对应的第三个第二行星轮22啮合,这样存在多组彼此啮合的第一行星轮12和第二行星轮22,在差速器100传输动力时,动力在多组彼此对应啮合的第一行星轮12与第二行星轮22之间传递将更加稳定、可靠。
此外,在第一行星轮12和第二行星轮22均为多个的另一个实施例,多个第一行星轮12和多个第二行星轮22沿周向交替布置,并且任意相邻的第一行星轮12和第二行星轮22啮合。也就是说,在该实施例中,多个第一行星轮12和多个第二行星轮22沿周向交替布置并形成一个环形,每一个第一行星轮12都与其相邻的两个第二行星轮22啮合,同样地,每一个第二行星轮22都与其相邻的两个第一行星轮12啮合。
其中,参照图3的实施例,第一行星轮12的公转轴线与第二行星轮22的公转轴线重合,即第一行星轮12与第二行星轮22具有相同的公转轴线O。
如图1-图3、图8-图10所示的实施例中,第一行星轮12与第二行星轮22啮合配合。换言之,对于第一行星轮12而言,其不仅与第一齿圈13啮合,同时还与第二行星轮22啮合,对于第二行星轮22而言,其不仅与第二齿圈23啮合,同时还与第一行星轮12啮合。
如图3所示,第一齿圈13和第二齿圈23可以构成差速器100的两个动力输出端,第一行星架11和第二行星架21则对应构成差速器100的动力输入端(例如,此时第一行星架11和第二行星架21可以刚性地连接在一起),这样外部动力源输出的动力可从第一行星架11和第二行星架21输入,经过差速器100的差速作用后可分别从第一齿圈13和第二齿圈23输出。此时,第一行星架11和第二行星架21可连接诸如发动机、电机等动力源,第一齿圈13和第二齿圈23可通过齿轮传动结构与对应的半轴相连,半轴再与对应的车轮相连,但不限于此。
下面以该差速器100应用于轮间差速,第一齿圈13和第二齿圈23构成差速器100的动力输出端,第一行星架11和第二行星架21构成差速器100的动力输入端为例简单说明 差速器100的工作原理,其中此时第一齿圈13可通过外齿与左半轴相连,左半轴可与左侧车轮相连,第二齿圈23可通过外齿与右半轴相连,右半轴可与右侧车轮相连,动力源如发动机和/或电机输出的动力可通过主减速器的减速作用后输出至第一行星架11和第二行星架21。若此时车辆行驶在平整的路面且没有转弯,左侧车轮和右侧车轮理论上转速相同,此时差速器100不起差速作用,第一行星架11和第二行星架21同速、同向转动,第一齿圈13和第二齿圈23同速、同向转动,第一行星轮12和第二行星轮22只公转、不自转。若此时车辆行驶在不平整的路面或者车辆转弯行驶,左侧车轮和右侧车轮理论上转速不同,第一齿圈13和第二齿圈23的转速也不同,即存在转速差,此时第一行星轮12和第二行星轮22在公转的同时也自转,第一行星轮12和第二行星轮22的自转会使得第一齿圈13和第二齿圈23中的一个增速、另一个减速,增速的齿圈与减速的齿圈的转速差即为左右车轮的转速差,从而实现差速作用。
由此,根据本发明实施例的差速器100利用行星差速原理,在结构和连接形式上空间利用率更高,轴向尺寸更小,并且在生产和装配上更具有优势。这样的结构形式不但可以避免锥形齿轮轴向以及径向上的尺寸缺陷,附加地还可以更好地利用主减从动齿轮内部中空的空间,实现更好地空间利用率,极大地方便了差速器100总成的整车布置以及对重量大小的限制,同时也具备了更高的可靠性和更佳的传动效率,有利于提高动力传动链的可靠性和过弯时的动力输出流畅性,这相对于对称式锥齿轮差速器而言更具有实用性。
在一些实施例中,第一行星轮12与第二行星轮22的公转半径不同,即参见图3所示,第一行星轮12的公转半径指的是第一行星轮12绕公转轴线O公转的半径R1,第二行星轮22的公转半径指的是第二行星轮22绕公转轴线O公转的半径R2,参见图3所示,R1≠R2,如R2>R1。即,第一行星轮12和第二行星轮22的公转轨迹在径向上是错开的。在本发明的示例中,第一行星轮12的公转半径相对较小,第二行星轮22的公转半径相对较大。
由于第一行星轮12和第二行星轮22的公转半径不同,因此在一些实施例中,第一齿圈13的内径尺寸和第二齿圈23的内径尺寸也是不同的,公转半径小的行星轮(例如第一行星轮12)对应的齿圈的内径尺寸较小,即对应半径相对较小的小齿圈(如第一齿圈13),公转半径较大的行星轮(例如第二行星轮22)对应的齿圈的径向尺寸较大,即对应半径较大的大齿圈(如第二齿圈23),这使得大齿圈23和小齿圈13在径向上错开,避免齿圈与行星轮等运动部件之间发生运动干涉,从而有效减小第一齿圈12和第二齿圈22的轴向间隙。例如参照图3、图5-图6,该轴向间隙即为D,通过减少轴向间隙D,从而使得差速器100的轴向尺寸更小,结构更紧凑。
下面对第一齿圈13和第二齿圈23的构造结合具体的实施例进行详细描述。
参照图5并结合图1和图2所示,第一齿圈13朝向第二齿圈23的端面B1(参照图2) 与第二齿圈23朝向第一齿圈13的端面B2(参照图1)处在同一平面B3(参照图5)内。换言之,该实施例中,如图5所示,端面B1、端面B2同时处在平面B3内,即与分别与B3重合,由此第一齿圈13与第二齿圈23在轴向上的间隙D为零(如图5所示),这样可以大大减少差速器100的轴向尺寸,使差速器100的体积更小巧、结构更紧凑,方便整个动力传动系统的布置。
在另一个实施例中,如图7所示,第一齿圈13和第二齿圈23中半径相对较小的一个齿圈如小齿圈13至少部分地嵌入半径尺寸较大的一个齿圈如大齿圈23内,此时第一齿圈13和第二齿圈23在轴向上的间隙D可以理解为负,由此同样可以减小差速器100的轴向尺寸,同时通过第一齿圈13和第二齿圈23可以更好地保护两齿圈内的零部件。
参照图6所示的实施例,第一齿圈13与第二齿圈23在轴向上也可以间隔开并保持一定的间隙D。可以理解的是,单从缩小差速器100轴向尺寸这一角度而言,图5实施例中的零间隙D以及图7实施例中的负间隙D优于图6实施例中的正间隙D。
需要说明的是,在图1-图3、图5-图7的实施例,第一齿圈13和第二齿圈23都包括主体平板部161和环形侧壁部162,而上述图3(结合图1-图2、图5-图7)的间隙D指的是第一齿圈13的环形侧壁部162和第二齿圈23的环形侧壁部162之间的距离。
而在本发明的另一些实施例中,如参见图11和图12的实施例中,第一齿圈13和第二齿圈23中的每一个还进一步包括环形凸缘部163,环形凸缘部163从环形侧壁部162的端面向远离主体平板部161的方向延伸,在图11的实施例中,环形凸缘部163的内径可与环形侧壁部162的外径大体相等,这样环形凸缘部163在径向上相当于向外突出环形侧壁部162(即第一齿圈13或第二齿圈23的外周面)。而在图12的实施例中,环形凸缘部163外径可与环形侧壁部162的外径大体相等,而环形凸缘部163的内径可以大于环形侧壁部162的内径,也就是说,环形凸缘部163的厚度比环形侧壁部162的厚度要薄一些。
但是,需要说明,在图1-图3、图5-图7实施例的齿圈结构中,其两个齿圈之间的间隙D指代两个齿圈的环形侧壁部162之间的间隙。而图11和图12实施例中的齿圈结构,其两个齿圈之间的间隙D指代两个齿圈的环形凸缘部163之间的间隙。
对于小齿圈嵌入大齿圈的实施例,如图1-图2且结合图3所示,第一齿圈13和第二齿圈23中的每一个均包括:主体平板部161和设置在主体平板部161的外周沿的环形侧壁部162,主体平板部161与环形侧壁部162可以是一体成型部件。环形侧壁部162的内壁面上设置有多个轮齿,其中参见图4所示,半径相对较小的一个齿圈(即小齿圈)如第一齿圈13的环形侧壁部162至少部分地嵌入半径相对较大的一个齿圈(即大齿圈)如第二齿圈23的环形侧壁部162内。
当然,对于小齿圈嵌入大齿圈的实施例,也可以采用图11-图12中的齿轮结构,例如 大齿圈采用图11或图12中的齿圈结构,即大齿圈具有环形凸缘部163,而小齿圈则可采用图1-图3实施例的普通齿圈结构(没有环形凸缘部163),此时小齿圈的环形侧壁部162可以至少部分地嵌入大齿圈的环形凸缘部内。或者,小齿圈和大齿圈都可以采用图11和图12中的齿圈结构,此时小齿圈的环形凸缘部163可以至少部分地嵌入大齿圈的环形凸缘部内,但不限于此。
此外,可以理解的是,上述虽然给出了几种小齿圈嵌入大齿圈的实施例,但是这并非是对本发明保护范围的一种限制,本领域技术人员在阅读了说明书上述内容之后,充分了解齿圈的嵌入原理,可以对上述小齿圈和/或大齿圈在结构上做出相似的修改,这同样落入本发明的保护范围之内。
参见图3所示,主体平板部161与环形侧壁部162之间限定出空腔A1、A2(参见图3)。具体来讲,第一齿圈13的主体平板部161与环形侧壁部162之间限定出空腔A1,第二齿圈23的主体平板部161与环形侧壁部162之间限定出空腔A2,第一齿圈13内的空腔A1与第二齿圈23内的空腔A2朝向彼此以构成安装空间A(参见图3),其中第一行星架11和第一行星轮12以及第二行星架21和第二行星轮22收纳在安装空间A内,这样第一齿圈13和第二齿圈23充当外部壳体的功用,能够保护收纳在其中的行星架和行星轮,提高寿命。而且配合第一齿圈13的端面B1和第二齿圈23的端面B2平齐或者配合尺寸较小的小齿圈13至少部分嵌入尺寸较大的大齿圈23的实施方式,可以使得安装空间A相对较为封闭,外部杂物不易进入到安装空间A内而影响运动部件,保证了差速器100的稳定工作。
下面对第一行星轮12与第二行星轮22的啮合关系结合具体实施例进行详细描述。
在本发明的实施例中,第一行星轮12与第二行星轮22在轴向上的厚度不同(参见图10),这样对差速器100轴向尺寸的缩小有一定帮助。较薄的行星轮如第二行星轮22的轮齿与较厚的行星轮如第一行星轮12的轮齿完全啮合,且较厚的行星轮的轮齿在轴向上向一侧延伸超出较薄的行星轮的轮齿,或者较厚的行星轮的轮齿在轴向上分别向两侧延伸超出较薄的行星轮的轮齿。在本发明的示例中,较厚的行星轮的轮齿在轴向上只向一侧延伸超出较薄的行星轮的轮齿,例如结合图9和图10所示,较厚的第一行星轮12向左侧延伸超出较薄的第二行星轮22,较厚的第一行星轮12的右侧面与较薄的第二行星轮22的右侧面可以基本是平齐的,这样有利于对差速器100轴向尺寸的控制。
由于第一行星轮12和第二行星轮22的公转半径不同,对于行星轮厚度不同的实施例,较厚的行星轮如第一行星轮12的公转半径要小于较薄的行星轮如第二行星轮22的公转半径。并且,较厚的行星轮如第一行星轮12对应的齿圈为径向尺寸较小的小齿圈如第一齿圈13,较薄的行星轮如第二行星轮22对应的齿圈为径向尺寸相对较大的大齿圈如第二齿圈23,大齿圈23的外径(外表面)大于小齿圈13的外径(外表面)。例如在本发明的示例中, 第一行星轮12的厚度大于第二行星轮22的厚度,从而较厚的第一行星轮12对应的第一齿圈13为小齿圈,较薄的第二行星轮22对应的第二齿圈23为大齿圈,并且第一行星轮12的公转半径小于第二行星轮22的公转半径。
此外,需要说明的是,公转半径较小的行星轮与半径相对较小的一个齿圈啮合,此时,公转半径较小的行星轮是厚度相对较厚的行星轮,该行星轮的一部分与半径相对较小的一个齿圈的内齿啮合,其另一部分与公转半径较大的行星轮即较薄的行星轮啮合。
在一些实施例中,大齿圈23的内径大于小齿圈13的外径,这里的大齿圈23的内径指的是大齿圈23内齿的齿顶圆的径向尺寸,换言之,大齿圈23的内齿的齿顶圆的直径要大于小齿圈13的外径。这样小齿圈13可以整体或者至少一部分嵌入大齿圈23内,即上述的轴向间隙D缩小为负数(即小齿圈13嵌入大齿圈23内),由此两个齿圈及两种行星齿轮不会发生运动干涉或滑擦,这样增加了差速器100的稳定性,同时也可使内部空间相对更加封闭,保护内部的行星架和行星轮等部件。
下面对差速器100的动力输入端和动力输出端结合具体实施例进行详细描述。
结合图1-图3所示,差速器100还包括差速器输入轴31、32和差速器输出轴41、42,差速器输入轴31、32分别与第一行星架11和第二行星架21相连,如在图3的示例中,第一行星架11的右侧连接有差速器输入轴31,第二行星架21的左侧连接有差速器输入轴32。差速器输出轴41、42分别与第一齿圈13和第二齿圈23相连,如在图3的示例中,第一齿圈13的右侧连接有差速器输出轴41,第二齿圈23的左侧连接有差速器输出轴42。差速器输入轴31、32、差速器输出轴41、42、第一齿圈13和第二齿圈23可同轴布置。
如图3所示,差速器输入轴包括:第一差速器输入轴31和第二差速器输入轴32,第一差速器输入轴31与第一行星架11相连,第二差速器输入轴32与第二行星架21相连。差速器输出轴可以包括:第一差速器输出轴41和第二差速器输出轴42,第一差速器输出轴41与第一齿圈13相连,第二差速器输出轴42与第二齿圈23相连。第一差速器输入轴31和第二差速器输入轴32以及第一差速器输出轴41和第二差速器输出轴42均可为空心轴结构。在一些实施例中,第一差速器输出轴41同轴地套设在第一差速器输入轴31上,第二差速器输出轴42同轴地套设在第二差速器输入轴32上,由此差速器100结构更加紧凑、体积更小。
上述差速器输入轴、差速器输出轴是其中一种实施方式,在图13-图22的动力驱动系统的实施例中,差速器100是通过齿圈的外齿对外输出动力的。
根据本发明的一些实施例,第一行星轮12和第二行星轮22均为圆柱齿轮,相比传统对称式锥齿轮差速器,利用圆柱齿轮的差速器100结构更加紧凑,具体而言,其在结构和连接形式上空间利用率更高,轴向尺寸更小,并且在生产和装配上更具有优势。
下面参照图1-3和9中实施例示出的差速器100的具体结构作简单描述。参照图1-图3并结合图9所示,第一行星架11和第二行星架21之间设置有多个第一行星轮轴14和多个第二行星轮轴24,第一行星轮12为多个且对应连接在第一行星轮轴14上,第二行星轮22为多个且对应连接在第二行星轮轴24上。第一行星轮12的厚度比第二行星轮22的厚度大,较薄的第二行星轮22的轮齿与较厚的第一行星轮12的轮齿完全啮合,较厚的第一行星轮12的轮齿可向左侧延伸超出较薄的第二行星轮22。较厚的第一行星轮12对应的第一齿圈13为小齿圈,较薄的第二行星轮22对应的第二齿圈23为大齿圈,小齿圈13的端面B1与大齿圈23的端面B2可处在同一平面内,从而使得小齿圈13和大齿圈23的轴向间隙D为零,使两齿圈内的安装空腔A相对更加封闭。
综上,根据本发明实施例的差速器100,采用圆柱齿轮形式的行星轮,其在结构和连接形式上空间利用率更高,轴向尺寸更小,并且在生产和装配上更具有优势。该紧凑型差速器100还通过使一侧行星轮及齿圈的变位实现两侧行星轮机构空间及尺寸上的避让(即行星轮的公转半径不同),这样的结构设计极大节省了空间上为避让相对应的另一组行星轮及齿圈的轴向间隙,使得该紧凑型差速器100的轴向尺寸更小且更为紧凑。
上面已详细介绍根据本发明实施例的差速器100,下面将对动力驱动系统1000的其余结构进行详细说明。
参照图13-图22所示,变速器104可以包括多个输入轴101、102和动力输出轴103。在一些实施例中,变速器104的动力输出轴103可以是一个,但不限于此。动力输出轴103设置成与差速器100的动力输入端联动,即动力输出轴103设置成与第一行星架11和第二行星架21联动。
多个输入轴101、102中的一个输入轴设置成可选择性地与动力输出轴103联动。换言之,如图13所示,该其中一个输入轴如第一输入轴101(图14中为第二输入轴102)能够与动力输出轴103进行联动,同时该其中一个输入轴如第一输入轴101也能与动力输出轴103断开。对于其余的输入轴,则均设置成与动力输出轴103联动,即这些输入轴动作则动力输出轴103也跟随动作、或者动力输出轴103动作则这些输入轴也随之动作。
如图13所示,第一电动发电机401设置成与该其中一个输入轴如第一输入轴101联动,即和第一电动发电机401进行联动的输入轴为与动力输出轴103选择性联动的输入轴。
在一些实施例中,动力输出轴103上空套设置有空套从动齿轮108,空套从动齿轮108与上述的其中一个输入轴联动,同步器109设置成用于同步动力输出轴103与空套从动齿轮108。可以理解的是,在同步器109处于接合状态时,同步器109同步空套从动齿轮108和动力输出轴103,这样来自第一电动发电机401的动力能够在同步器109的接合作用下 从动力输出轴103输出至差速器100,而在同步器109处于断开状态时,第一电动发电机401相当于与动力输出轴103断开。由此,同步器109充当第一电动发电机401的动力开关,能够控制第一电动发电机401动力的输出与断开。
在一些实施方式中,同步器109设置在动力输出轴103上且用于接合空套从动齿轮108。由此,结构简单,易于实现。
对于其余输入轴与动力输出轴103的传动方式,可以通过齿轮传动方式实现。例如,动力输出轴103上固定设置有固定从动齿轮107,固定从动齿轮107与其余的输入轴联动,即除去上述图13实施例中的输入轴101或者图14实施例中的输入轴102。
例如参见图13和图14的具体实施例,动力输出轴103上同时固定设置有固定从动齿轮107,且空套有空套从动齿轮108,而输入轴上对应地固定设置有固定主动齿轮105、106,空套从动齿轮108和固定从动齿轮107分别与对应的固定主动齿轮啮合。如,空套从动齿轮108与固定从动齿轮107的总数与固定主动齿轮的数量相同。
参见图13-图14的示例,空套从动齿轮108和固定从动齿轮107的数量均为一个,对应地,固定主动齿轮的数量为两个,空套从动齿轮108与一个固定主动齿轮啮合构成一对齿轮副,固定从动齿轮107与另一个固定主动齿轮啮合构成另一对齿轮副。可以理解,该两对齿轮副的传动速比不同,因此该实施例中的变速器104具有两个不同速比的传动挡位,这样动力驱动系统1000的结构相对简单、紧凑,并且也能够满足车辆正常行驶对传动速比的要求。
如图13-图22所示,多个输入轴包括第一输入轴101和第二输入轴102,第一输入轴101可以是实心轴,第二输入轴102可以是空心轴,第二输入轴102套设在第一输入轴101上,如第二输入轴102同轴地套在第一输入轴101上,第一输入轴101的轴向长度大于第二输入轴102的轴向长度,第一输入轴101的一端如右端可从第二输入轴102内部延伸出。
每个输入轴可以只固定设置有一个固定主动齿轮,也就是说,固定主动齿轮包括第一固定主动齿轮106和第二固定主动齿轮105,第一固定主动齿轮106固定设置在第一输入轴101上,第二固定主动齿轮105固定设置在第二输入轴102上。
在图13、图15-图18的示例中,空套从动齿轮108与第一固定主动齿轮106啮合,固定从动齿轮107与第二固定主动齿轮105啮合。同时第一电动发电机401与第一输入轴101联动,如第一电动发电机401通过齿轮结构与第一固定主动齿轮106联动。具体可为第一电动发电机401通过齿轮402、齿轮403与第一固定主动齿轮106传动,通过合理地设计上述齿轮的齿数可以获得第一电动发电机401所需的传动速比。
而在图14的示例中,空套从动齿轮108与第二固定主动齿轮105啮合,固定从动 齿轮107与第一固定主动齿轮106啮合。同时第一电动发电机401与第二输入轴102联动,如第一电动发电机401通过齿轮结构与第二固定主动齿轮105联动。具体可为第一电动发电机401通过齿轮402、齿轮403、齿轮404、齿轮405与第二固定主动齿轮105传动,其中齿轮404和齿轮405可以固定在同一轴406上,通过合理地设计上述齿轮的齿数可以获得第一电动发电机401所需的传动速比。
动力驱动系统1000还可以包括发动机301,发动机301设置成可选择性地与多个输入轴中的至少一个接合。在一些实施例中,输入轴是两个,并且发动机301与两个输入轴之间设置有双离合器204。双离合器204包括:第一接合部分201、第二接合部分202和第三接合部分203,其中第一接合部分201和第二接合部分202可以是双离合器204的两个从动盘,第三接合部分203可以是双离合器204的壳体,两个从动盘中的至少一个可选择性地接合壳体,也就是说,第一接合部分201和第二接合部分202中的至少一个可以选择性地接合第三接合部分203。当然,两个从动盘也可以与壳体全部断开,即第一接合部分201和第二接合部分202均与第三接合部分203处于断开状态。
参见图13-图22,发动机301与第三接合部分203相连,第一输入轴101与第一接合部分201相连,第二输入轴102与第二接合部分202相连。这样,发动机301产生的动力可通过双离合器204而选择性地输出至第一输入轴101、第二输入轴102。
在本发明的一些实施例中,动力输出轴103与第一行星架11和第二行星架21同轴固定,由此使得变速器104与差速器100的连接部分更加紧凑,即直接将动力输出轴103与两个行星架同轴固定,从而至少能够在一定程度上减小动力驱动系统1000的体积。
在一些实施例中,如图13-图22所示,动力驱动系统1000还包括第一输出部601和第二输出部602,第一输出部601与第一齿圈13联动,第二输出部602与第二齿圈23联动。第一输出部601为左半轴齿轮,第二输出部602为右半轴齿轮,同时第一齿圈13上设置有第一外齿603,第二齿圈23上设置有第二外齿604,第一外齿603与左半轴齿轮601啮合,第二外齿604与右半轴齿轮602啮合,由此经差速器100的动力最终可通过左半轴齿轮601和右半轴齿轮602输出至左右两侧的车轮。
其中,如图19和图20所示,第二电动发电机501设置成可与第一输出部601联动,第三电动发电机502设置成可与第二输出部602联动,如第二电动发电机501的电机轴上可设置有齿轮503,齿轮503与左半轴齿轮601啮合,同时第三电动发电机502的电机轴上设置有齿轮504,齿轮504与右半轴齿轮602啮合。
参见图19-图20所示,第二电动发电机501和第三电动发电机502关于差速器100左右对称分布,这样可以使得动力驱动系统1000的重心处在中心位置或更靠近中心位置。
参见图21和图22的实施例,该实施例中的动力驱动系统1000与图13-图20实施例中 的动力驱动系统1000的一个主要区别在于:输入轴的数量。该些实施例中,输入轴包括第一输入轴101、第二输入轴102和第三输入轴1003,第三输入轴1003可以是空心轴且套设在第二输入轴102上,第二输入轴102也可以是空心轴且套设在第一输入轴101上,三个输入轴可以是同轴布置的。发动机301与第一输入轴101、第二输入轴102和第三输入轴1003之间通过三离合器205相连。具体而言,三离合器205具有第一从动盘206、第二从动盘207、第三从动盘208和壳体209,壳体209可选择性地与第一从动盘206、第二从动盘207、第三从动盘208中的至少一个接合,第一输入轴101与第一从动盘206连接,第二输入轴102与第二从动盘207连接,第三输入轴1003与第三从动盘208连接,发动机301与壳体209连接。图21的实施例中,第一从动盘206、第二从动盘207、第三从动盘208沿轴向分布。图22的实施例中,第一从动盘206、第二从动盘207、第三从动盘208沿径向分布。
下面结合图13简单描述根据本发明实施例的动力驱动系统1000的典型工况。
例如,第一接合部分201与第三接合部分203接合,第二接合部分202与第三接合部分203断开,同步器109处于接合状态,此时发动机301产生的动力通过第一输入轴101、动力输出轴103后输出至差速器100,由差速器100将动力分配给两侧的驱动轮。
又如,第二接合部分202与第三接合部分203接合,第一接合部分201与第三接合部分203断开,同步器109处于断开状态,此时发动机301产生的动力通过第二输入轴102、动力输出轴103后输出至差速器100,由差速器100将动力分配给两侧的驱动轮。
再如,双离合器204全部断开,同步器109处于接合状态,第一电动发电机401产生的动力通过第一输入轴101、动力输出轴103后输出至差速器100,由差速器100将动力分配给两侧的驱动轮。
再如,第一接合部分201与第三接合部分203接合,第二接合部分202与第三接合部分203断开,同步器109处于断开状态,此时发动机301产生的动力通过第一输入轴101输出至第一电动发电机401,驱动第一电动发电机401作为电动机进行发电,实现驻车发电功能。
图14实施例与图13实施例的主要区别在于图14实施例中第一电动发电机401与第二输入轴102联动,而图13实施例则为第一电动发电机401与第一输入轴101联动,对于其余部分则不再赘述。
对于图15-图18的实施例,与图13实施例相比,区别在于增加了后驱差速锁。
参照图15-图17并结合图1-图12所示,第一齿圈13与左前轮910a联动,如第一齿圈13通过第一外齿603和左半轴齿轮601与左前轮910a联动,第二齿圈23与右前轮910b联动,如第二齿圈23通过第二外齿604和右半轴齿轮602与右前轮910b联动。第四电动 发电机901通过齿轮结构与左后轮910c联动,如第四电动发电机901通过齿轮W1、W2、W3、W4与左后轮910c联动,其中齿轮W1与第四电动发电机901同轴相连,齿轮W1与齿轮W2啮合,齿轮W2与齿轮W3同轴相连,齿轮W3与齿轮W4啮合,齿轮W4可固定设置于左半轴904上,左半轴904上设置有左后轮910c。类似地,第五电动发电机902通过齿轮结构与右后轮910d联动,如第五电动发电机902通过齿轮X1、X2、X3、X4与右后轮910d联动,其中齿轮X1与第五电动发电机902同轴相连,齿轮X1与齿轮X2啮合,齿轮X2与齿轮X3同轴相连,齿轮X3与齿轮X4啮合,齿轮X4可固定设置于右半轴905上,右半轴905上设置有右后轮910d。
在图15的示例中,防滑同步器903设置成用于同步齿轮W4与齿轮X4,例如防滑同步器903设置在齿轮W4上且用于接合齿轮X4。在图16的示例中,防滑同步器903设置成用于同步齿轮W1与齿轮X1,例如防滑同步器903设置在齿轮W1上且用于接合齿轮X1。在图17的示例中,防滑同步器903设置成用于同步齿轮W2与齿轮X2,例如防滑同步器903设置在齿轮W2上且用于接合齿轮X2。
在图18的示例中,防滑同步器903设置成用于同步左半轴904与右半轴905,如防滑同步器903设置在左半轴904上且用于接合右半轴905,该实施例中第四电动发电机901和第五电动发电机902均为轮边电机。
综上,防滑同步器903设置成可选择性地同步左后轮910c和右后轮910d,换言之,在防滑同步器903处于接合状态时,左后轮910c和右后轮910d将同步旋转,即同速、同向旋转,此时左后轮910c和右后轮910d不会差速转动。而在防滑同步器903处于断开状态时,第四电动发电机901可单独驱动左后轮910c,第五电动发电机902可单独驱动右后轮910d,两个后轮相互独立、互不干涉,从而实现车轮的差速转动功能。
此外,对于上述各实施例中描述的技术方案和/或技术特征,在不相互冲突、不相互矛盾的情况下,本领域技术人员能够将上述实施例中的技术方案和/或技术特征进行相互组合,组合后的技术方案可以是两个或两个以上技术方案的叠加、两个或两个以上技术特征的叠加或者两个或两个以上的技术方案与技术特征的叠加,由此能够实现各技术方案和/或技术特征彼此在功能上的相互作用和支持,并且组合后的方案具有更优越的技术效果。
例如,本领域技术人员可将第一齿圈13朝向第二齿圈23的端面与第二齿圈23朝向第一齿圈13的端面处在同一平面上的方案与第一齿圈13和第二齿圈23的构造的方案组合,由此使得差速器100两齿圈的轴向间隙为零,从而两齿圈能够限定出相对封闭的安装空间,对安装空间内的部件进行充分保护,增加其使用寿命,并降低成本,同时还能有效减少差速器100的轴向尺寸。
又如,本领域技术人员可将第一行星轮12的厚度大于第二行星轮22的厚度的方案与 第一齿圈13为小齿圈、第二齿圈23为大齿圈的方案以及第一行星轮12的公转半径小于第二行星轮22的公转半径的方案进行组合,由此形成的差速器100的结构更加紧凑,体积更小,更便于布置在车辆的发动机舱内部。
再如,本领域技术人员可将第一齿圈13朝向第二齿圈23的端面与第二齿圈23朝向第一齿圈13的端面处在同一平面上的方案与较薄行星轮以及较厚行星轮的啮合关系的方案组合,由此一方面使得差速器100两齿圈的轴向间隙为零,从而两齿圈能够限定出相对封闭的安装空间,对安装空间内的部件进行充分保护,增加其使用寿命,并降低成本,另一方面还能更进一步减少差速器100的轴向尺寸,使差速器100具有更小的体积。
当然,应当理解的是,上述的示例说明仅是示意性的,对于技术方案和/或技术特征的组合,本领域技术人员能够在不冲突的情况下进行自由组合,并且组合后的方案具备更优越的技术效果,本发明仅作了上述多个示例的简单说明,在此不再一一穷举。
另外,可以理解的是,上述组合后的技术方案同样落入本发明的保护范围之内。
整体而言,根据本发明实施例的差速器100,能够有效节省空间,且降低了重量,具体而言,这种行星齿轮式差速器100相比传统锥齿轮式差速器而言,重量可以减少大约30%,同时轴向尺寸大约减少70%,不仅能够降低轴承的摩擦力,而且能够实现左右车轮的扭矩分配,使差速器100的载荷分布更加合理,差速器100刚性更好,此外由于采用圆柱齿轮,传动效率也得到一定提高,例如6级精度和7级精度的传统圆锥齿轮传动效率约为0.97~0.98,而6级精度和7级精度的圆柱齿轮传动效率约为0.98~0.99,此外采用圆柱齿轮,还降低了差速器100的工作噪音,同时降低了发热量,大大提高了差速器100的寿命。简言之,根据本发明实施例的差速器100具有轻量化、小尺寸、成本低、传动效率高、噪音低、发热小、寿命高等诸多优点。
同时,由于根据本发明实施例的差速器100可以省去太阳轮,而省去太阳轮可以具有如下优点:
从力学上分析,应当取消太阳轮而是利用齿圈实现差速,因为齿圈的齿数相比太阳轮可以设置的更多,同时节圆较大(节圆指的是齿轮啮合传动时在节点处相切的一对圆),从而可以更均衡的分布载荷和承受力矩,这对差速器100的寿命的提高是有好处的。同时没有太阳轮,可以更好的实现差速器100的润滑和冷却,也就是说,由于取消了太阳轮,因此齿圈里面可以形成空腔,而齿圈与行星轮啮合是属于内啮合的关系(太阳轮与行星轮属于外啮合),齿圈内可以储藏润滑油,由此冷却和润滑效果会大大提高。另外,由于取消太阳轮,减少了零部件,降低了差速器100的质量和成本,使差速器100变得更加小型化、轻量化。
而对于具有根据本发明实施例的差速器100的动力驱动系统1000而言,其主要在空间 上以及驱动方式上具有较明显的优势,以空间优势为例,该动力驱动系统1000特别适用于新能源车辆,由于新能源车辆的动力总成一般布置在发动机舱内,动力总成不仅具有变速器、发动机、同时还具有至少一个电机,由于发动机舱空间有限,因此采用根据本发明实施例的紧凑型差速器100能够在空间上获得优势,更加便于布置。又如,以驱动方式上的优势为例,由于根据本发明实施例的差速器100的轴向尺寸大大减少,因此轴向空间更好布置,而且差速器100具有两个齿圈作为动力输出端可以更好地实现与两个电机的动力连接(如上面介绍的通过齿圈的外齿连接电机),而这在传统圆锥差速器上是难以实现的。
下面简单描述根据本发明实施例的车辆10000,如图23所示,该车辆10000包括上述实施例中的动力驱动系统1000,该动力驱动系统1000可以用于前驱,当然也可以用于后驱,本发明对此不作特殊限定。应当理解的是,根据本发明实施例的车辆10000的其它构造例如制动系统、行驶系统、转向系统等均已为现有技术,且为本领域技术人员所熟知,因此这里不再一一赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种动力驱动系统,其特征在于,包括:
    差速器,所述差速器包括:
    第一行星架、第一行星轮和第一齿圈,所述第一行星轮设置在所述第一行星架上,所述第一行星轮与所述第一齿圈啮合;
    第二行星架、第二行星轮和第二齿圈,所述第二行星轮设置在所述第二行星架上,所述第二行星轮与所述第二齿圈啮合且所述第二行星轮还与所述第一行星轮啮合;
    其中,所述第一齿圈和所述第二齿圈构成所述差速器的两个动力输出端,所述第一行星架和所述第二行星架构成所述差速器的动力输入端,且所述第一行星轮与所述第二行星轮的公转半径不同;
    动力输出轴,所述动力输出轴设置成与所述差速器的所述动力输入端联动;
    多个输入轴,所述多个输入轴中的一个输入轴设置成可选择性地与所述动力输出轴联动,所述多个输入轴中的其余所述输入轴设置成与所述动力输出轴联动;
    第一电动发电机,所述第一电动发电机设置成与所述多个输入轴中的所述一个输入轴联动。
  2. 根据权利要求1所述的差速器,其特征在于,所述第一齿圈朝向所述第二齿圈的端面与所述第二齿圈朝向所述第一齿圈的端面处在同一平面内。
  3. 根据权利要求1或2所述的差速器,其特征在于,所述第一齿圈和所述第二齿圈中的每一个均包括:
    主体平板部和设置在所述主体平板部的外周沿的环形侧壁部,所述环形侧壁部的内壁面上设置有多个齿,所述主体平板部与所述环形侧壁部之间限定出空腔,所述第一齿圈的空腔和所述第二齿圈的空腔朝向彼此以构成安装空间,所述第一行星架和所述第一行星轮以及所述第二行星架和所述第二行星轮收纳在所述安装空间内。
  4. 根据权利要求1-3中任一项所述的差速器,其特征在于,所述第一行星轮与所述第二行星轮在轴向上的厚度不同。
  5. 根据权利要求4所述的差速器,其特征在于,所述第一行星轮和所述第二行星轮中较薄的行星轮的轮齿与所述第一行星轮和所述第二行星轮中较厚的行星轮的轮齿完全啮合,且较厚的行星轮的轮齿在轴向上向一侧延伸超出较薄的行星轮的轮齿或者较厚的行星轮的轮齿在轴向上分别向两侧延伸超出较薄的行星轮的轮齿。
  6. 根据权利要求4或5所述的差速器,其特征在于,较厚的行星轮的公转半径小于较薄的行星轮的公转半径。
  7. 根据权利要求1-6中任一项所述的差速器,其特征在于,所述第一行星轮的公转轴线与所述第二行星轮的公转轴线重合。
  8. 根据权利要求1-7中任一项所述的差速器,其特征在于,每个第一行星轮配置有第一行星轮轴,所述第一行星轮轴的两个端部分别与所述第一行星架和所述第二行星架相连,每个第二行星轮配置有第二行星轮轴,所述第二行星轮轴的两个端部分别与所述第一行星架和所述第二行星架相连。
  9. 根据权利要求1-8中任一项所述的动力驱动系统,其特征在于,所述动力输出轴与所述第一行星架、所述第二行星架同轴固定。
  10. 根据权利要求1-9中任一项所述的动力驱动系统,其特征在于,还包括:第一输出部和第二输出部,所述第一输出部与所述第一齿圈联动,所述第二输出部与所述第二齿圈联动。
  11. 根据权利要求10所述的动力驱动系统,其特征在于,所述第一输出部为左半轴齿轮,所述第二输出部为右半轴齿轮;以及
    所述第一齿圈上设置有第一外齿,所述第二齿圈上设置有第二外齿,所述第一外齿与所述左半轴齿轮啮合,所述第二外齿与所述右半轴齿轮啮合。
  12. 根据权利要求1-11中任一项所述的动力驱动系统,其特征在于,还包括:发动机,所述发动机设置成可选择性地接合所述多个输入轴中的至少一个。
  13. 根据权利要求1-12中任一项所述的动力驱动系统,其特征在于,所述动力输出轴上空套设置有空套从动齿轮,所述空套从动齿轮与所述多个输入轴中的所述一个输入轴联动,所述动力驱动系统还包括同步器,所述同步器设置成用于同步所述动力输出轴与所述空套从动齿轮。
  14. 根据权利要求13所述的动力驱动系统,其特征在于,所述同步器设置在所述动力输出轴上且用于接合所述空套从动齿轮。
  15. 根据权利要求13或14所述的动力驱动系统,其特征在于,所述动力输出轴上固定设置有固定从动齿轮,所述固定从动齿轮与所述多个输入轴中的所述其余输入轴联动。
  16. 根据权利要求1-12中任一项所述的动力驱动系统,其特征在于,所述动力输出轴上空套设置有空套从动齿轮以及固定设置有固定从动齿轮,所述动力驱动系统还包括同步器,所述同步器设置成用于同步所述动力输出轴与所述空套从动齿轮;
    每个输入轴上固定设置有固定主动齿轮,所述空套从动齿轮和所述固定从动齿轮分别与对应的固定主动齿轮啮合。
  17. 根据权利要求1-16中任一项所述的动力驱动系统,其特征在于,还包括:
    第一输出部和第二输出部,所述第一输出部与所述第一齿圈联动,所述第二输出部与 所述第二齿圈联动;以及
    第二电动发电机和第三电动发电机,所述第二电动发电机与所述第一输出部联动,所述第三电动发电机与所述第二输出部联动。
  18. 根据权利要求1-17中任一项所述的动力驱动系统,其特征在于,所述多个输入轴包括第一输入轴、第二输入轴和第三输入轴,所述第三输入轴套设在所述第二输入轴上,所述第二输入轴套设在所述第一输入轴上,所述发动机与所述第一输入轴、所述第二输入轴和所述第三输入轴之间通过三离合器相连。
  19. 根据权利要求1-18中任一项所述的动力驱动系统,其特征在于,所述第一齿圈与左前轮联动,所述第二齿圈与右前轮联动;
    所述动力驱动系统还包括:
    第四电动发电机和第五电动发电机,所述第四电动发电机与左后轮联动,所述第五电动发电机与右后轮联动;以及
    防滑同步器,所述防滑同步器设置成可选择性地同步所述左后轮和右后轮,从而使得所述左后轮和所述右后轮同步旋转。
  20. 一种车辆,其特征在于,包括根据权利要求1-19中任一项所述的动力驱动系统。
PCT/CN2016/097699 2015-09-25 2016-08-31 动力驱动系统及具有其的车辆 WO2017050104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510621422.5 2015-09-25
CN201510621422.5A CN106553526B (zh) 2015-09-25 2015-09-25 动力驱动系统及具有其的车辆

Publications (1)

Publication Number Publication Date
WO2017050104A1 true WO2017050104A1 (zh) 2017-03-30

Family

ID=58385644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097699 WO2017050104A1 (zh) 2015-09-25 2016-08-31 动力驱动系统及具有其的车辆

Country Status (2)

Country Link
CN (1) CN106553526B (zh)
WO (1) WO2017050104A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054051A (zh) * 2017-05-15 2017-08-18 中恒天汽车集团汽车技术有限公司 一种混合动力驱动系统、汽车底盘及汽车
CN109891130A (zh) * 2017-10-31 2019-06-14 罗灿 非锥齿轮差速器
CN110978999A (zh) * 2019-12-29 2020-04-10 格特拉克(江西)传动系统有限公司 一种两档同轴式电驱动系统
CN112440719A (zh) * 2019-08-30 2021-03-05 比亚迪股份有限公司 混合动力装置和车辆
CN113829867A (zh) * 2021-09-23 2021-12-24 华为数字能源技术有限公司 一种混合动力驱动系统及汽车
DE102021126052A1 (de) 2021-10-07 2023-04-13 Bayerische Motoren Werke Aktiengesellschaft Stirnraddifferentialgetriebe für ein Kraftfahrzeug sowie Antriebsstrang für ein Kraftfahrzeug

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555846B (zh) * 2015-09-25 2020-03-31 比亚迪股份有限公司 动力驱动系统及具有其的车辆
CN207809033U (zh) * 2017-12-29 2018-09-04 比亚迪股份有限公司 混合动力驱动系统及车辆
CN108263201B (zh) * 2018-01-19 2020-07-31 重庆大学 双行星排动力耦合传动系统
CN108215766B (zh) * 2018-01-19 2020-07-31 重庆大学 双行星排式多模混合动力传动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1817674A (zh) * 2006-03-20 2006-08-16 北京理工大学 采用轮毂电机的混合动力总成
CN101734137A (zh) * 2008-11-18 2010-06-16 刘长印 一种混合动力四轮车底盘动力传动系统结构
CN102678871A (zh) * 2012-05-09 2012-09-19 北京汽车新能源汽车有限公司 一种用于电动车的三离合变速器装置及电动车
CN103144528A (zh) * 2013-02-20 2013-06-12 上海中科深江电动车辆有限公司 应用于混合动力汽车的双离合变速器及其使用方法
DE102012216404A1 (de) * 2012-09-14 2014-03-20 Schaeffler Technologies AG & Co. KG Stirnraddifferentialgetriebe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492510A (en) * 1994-10-21 1996-02-20 Zexel Torsen Inc. Differential with extended planet gears having multiple meshing portions
CN106555846B (zh) * 2015-09-25 2020-03-31 比亚迪股份有限公司 动力驱动系统及具有其的车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1817674A (zh) * 2006-03-20 2006-08-16 北京理工大学 采用轮毂电机的混合动力总成
CN101734137A (zh) * 2008-11-18 2010-06-16 刘长印 一种混合动力四轮车底盘动力传动系统结构
CN102678871A (zh) * 2012-05-09 2012-09-19 北京汽车新能源汽车有限公司 一种用于电动车的三离合变速器装置及电动车
DE102012216404A1 (de) * 2012-09-14 2014-03-20 Schaeffler Technologies AG & Co. KG Stirnraddifferentialgetriebe
CN103144528A (zh) * 2013-02-20 2013-06-12 上海中科深江电动车辆有限公司 应用于混合动力汽车的双离合变速器及其使用方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054051A (zh) * 2017-05-15 2017-08-18 中恒天汽车集团汽车技术有限公司 一种混合动力驱动系统、汽车底盘及汽车
CN107054051B (zh) * 2017-05-15 2023-08-15 中恒天汽车集团汽车技术有限公司 一种混合动力驱动系统、汽车底盘及汽车
CN109891130A (zh) * 2017-10-31 2019-06-14 罗灿 非锥齿轮差速器
CN109891130B (zh) * 2017-10-31 2022-09-09 罗灿 非锥齿轮差速器
CN112440719A (zh) * 2019-08-30 2021-03-05 比亚迪股份有限公司 混合动力装置和车辆
CN112440719B (zh) * 2019-08-30 2022-05-13 比亚迪股份有限公司 混合动力装置和车辆
CN110978999A (zh) * 2019-12-29 2020-04-10 格特拉克(江西)传动系统有限公司 一种两档同轴式电驱动系统
CN110978999B (zh) * 2019-12-29 2023-11-10 麦格纳动力总成(江西)有限公司 一种两档同轴式电驱动系统
CN113829867A (zh) * 2021-09-23 2021-12-24 华为数字能源技术有限公司 一种混合动力驱动系统及汽车
DE102021126052A1 (de) 2021-10-07 2023-04-13 Bayerische Motoren Werke Aktiengesellschaft Stirnraddifferentialgetriebe für ein Kraftfahrzeug sowie Antriebsstrang für ein Kraftfahrzeug

Also Published As

Publication number Publication date
CN106553526A (zh) 2017-04-05
CN106553526B (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2017050104A1 (zh) 动力驱动系统及具有其的车辆
WO2017050102A1 (zh) 动力驱动系统及具有其的车辆
WO2017050101A1 (zh) 动力驱动系统及具有其的车辆
EP3353446B1 (en) Differential, power transmission system and vehicle
CN106553535B (zh) 动力驱动系统及具有其的车辆
CN106555858B (zh) 动力驱动系统及具有其的车辆
WO2018121291A1 (zh) 差速器以及车辆
CN106553528B (zh) 动力驱动系统及具有其的车辆
WO2017050159A1 (en) Differential, power transmission system and vehicle
CN106553536B (zh) 动力驱动系统及具有其的车辆
CN106555853B (zh) 动力驱动系统及具有其的车辆
CN106553538B (zh) 动力驱动系统及具有其的车辆
CN106555846B (zh) 动力驱动系统及具有其的车辆
CN106555849B (zh) 动力驱动系统及具有其的车辆
CN106553532B (zh) 动力驱动系统及具有其的车辆
CN106555854B (zh) 动力驱动系统及具有其的车辆
CN106555855B (zh) 差速器、动力传动系统及车辆
CN108237907B (zh) 动力驱动系统以及车辆
CN106555856B (zh) 动力驱动系统及具有其的车辆
CN106553531B (zh) 动力驱动系统及具有其的车辆
CN106555848B (zh) 动力驱动系统及具有其的车辆
CN106555847B (zh) 动力驱动系统及具有其的车辆
CN106553533B (zh) 动力驱动系统及具有其的车辆
CN108240448B (zh) 差速器以及车辆
CN108240452B (zh) 差速器以及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847986

Country of ref document: EP

Kind code of ref document: A1