WO2017049880A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2017049880A1
WO2017049880A1 PCT/CN2016/075569 CN2016075569W WO2017049880A1 WO 2017049880 A1 WO2017049880 A1 WO 2017049880A1 CN 2016075569 W CN2016075569 W CN 2016075569W WO 2017049880 A1 WO2017049880 A1 WO 2017049880A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens assembly
light
metal layer
circuit board
optical
Prior art date
Application number
PCT/CN2016/075569
Other languages
English (en)
French (fr)
Inventor
黄永亮
刘旭霞
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2017049880A1 publication Critical patent/WO2017049880A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms

Definitions

  • the present invention relates to the field of optical communications, and in particular, to an optical module.
  • An optical module that realizes a photoelectric conversion function is a core device in the field of optical communication.
  • An optical transmitter/optical receiver is used as an active device, and its illuminating/receiving light requires a circuit board to supply power thereto, and the optical transmitter/light receiving is limited due to the connection manner of the circuit board and the optical transmitter/light receiver.
  • the direction of the light-emitting/receiving light of the device is often inconsistent with the direction of the light entering and exiting the optical fiber. Therefore, it is necessary to change the direction of propagation of the light emitted by the light emitter/light receiver so that the direction of light propagation coincides with the direction of light entering and exiting the fiber.
  • the light emitted/received by the light emitter/light receiver has a small spot diameter and a small diameter of the optical fiber. It is necessary to ensure that the direction of light propagation is stable, so as to ensure that the light emitted by the light emitter enters the light of the optical fiber or the optical fiber. Received by the optical receiver.
  • the fiber optic aperture that is adapted to the optical module is relatively thin, usually only 9 micrometers, so the accuracy of the light propagation path in the optical module is relatively strict.
  • One of the most common packaging methods used on optical modules is to attach the light emitter/light receiver directly to the board, then place the lens assembly over the light emitter/light receiver and secure it with glue.
  • the initial state of the glue is liquid, coated between the lens assembly and the circuit board, the tension of the glue surface exerts a certain force on the lens assembly, so that the actual mounting position of the lens assembly and the preset mounting position exist.
  • a certain offset around 5 microns. For an optical module, this offset causes the actual propagation path of the light to deviate significantly from the set path so that light cannot enter the fiber or the light cannot be received.
  • the present invention adopts the following technique. Program.
  • Embodiments of the present invention provide an optical module including a circuit board, a light emitter/light receiver, and a lens assembly, the light emitter/light receiver being located on a surface of the circuit board; and the lens assembly being disposed on the light emitter/ Above the light receiver, the lens assembly changes the direction of propagation of the light; the edge of the lens assembly has a first metal layer, the surface of the circuit board has a second metal layer, and the first metal layer and the second metal layer are soldered, such that The lens assembly is attached to the circuit board.
  • the lens component is disposed above the light emitter/light receiver, and the direction of propagation of the light changes after passing through the lens component.
  • the first metal layer on the edge of the lens component is The second metal layer on the surface of the circuit board is soldered, and the welding reduces the offset between the actual mounting position and the preset mounting position. Compared with the prior art, the light propagation direction is not changed. ⁇ Ensure that the direction of light propagation is stable, reducing the offset between the actual propagation path of the light and the set path.
  • FIG. 1 is a schematic structural diagram of an optical module according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the structure of an optical module according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a lens assembly according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a circuit board according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of an optical module according to an embodiment of the present invention.
  • an optical module provided by an embodiment of the present invention includes a circuit board 1 , a light emitter 2 , and a lens assembly 3 .
  • the optical fiber 4 is inserted into the lens assembly 3 , and the light emitted by the light emitter 2 is changed by the lens assembly 3 . After the optical path, enter the optical fiber 4.
  • Light emitter 2 bit On the surface of the circuit board 1, the light emitter 2 is fixedly connected to the circuit board 1 by a patch process, and the lens assembly 3 is disposed above the light emitter 2, and the light emitted by the light emitter 2 passes through the lens assembly 3. Its direction of transmission has changed.
  • the optical module not only has a light emitting function but also has a light receiving function.
  • the structure for realizing the light receiving function in the optical module is similar to that of the above-described light emitting structure, except that the position of the light emitter in the light emitting structure is placed in the photodetector.
  • the optical transmitter may be an optical receiver.
  • the optical module may include only a light emitter, or only a light receiver, or a light emitter and a light receiver.
  • the light emitter may be an edge-emitting laser such as a Fabry-Perot type laser (FP laser) or a surface-emitting laser such as a vertical cavity surface laser (VCSEL laser).
  • FP laser Fabry-Perot type laser
  • VCSEL laser vertical cavity surface laser
  • the light receiver may be a PIN type photodetector, an avalanche photodiode, or a photo resistor.
  • the light outgoing direction of the lens assembly 3 coincides with the light incident direction of the optical fiber 4. After the light emitted from the light emitter changes its propagation direction via the lens unit 3, it is transmitted from the light outgoing direction of the lens unit 3, thereby entering the optical fiber 4.
  • the light incident direction of the lens unit 3 coincides with the light exiting direction of the optical fiber 4. After the light emitted from the optical fiber changes its propagation direction through the lens assembly 3, it is transmitted from the light entering direction of the lens assembly to enter the optical receiver.
  • the optical module includes a circuit board 1 and a lens assembly 3, and the optical fiber 4 is inserted into the lens assembly 3.
  • the outer surface of the lens assembly 3 has a first metal layer having a second metal layer 10 on the surface of the circuit board 1, and the lens assembly 3 is overlaid on the second metal layer 10.
  • the lens assembly 3 is made of a light transmissive material, and a common light transmissive material includes a resin and a glass.
  • the lens assembly 3 has a light reflecting surface, and light is reflected by the reflecting surface, and its propagation direction becomes the light outgoing direction of the lens assembly 3.
  • the edge of the lens assembly 3 has a first metal layer, and a common first metal layer is a copper layer or a gold layer.
  • FIG. 4 is a schematic structural diagram of a circuit board according to an embodiment of the present invention.
  • the surface of the circuit board 1 has a light emitter 2 and a second metal layer 10, the second metal layer 10 is patterned around the light emitter 2, and the pattern formed by the second metal layer 10 and the bottom surface of the lens assembly 3 The shape is the same.
  • the common second metal layer 10 is a copper layer or a gold layer.
  • the lens assembly 3 is mounted on the surface of the circuit board 1, the lens assembly 3 is disposed above the light emitter/light receiver, and the first metal layer at the edge of the lens assembly 3 and the second metal layer 10 on the surface of the circuit board pass The soldering method is fixed, and the lens assembly 3 is fixed to the circuit board 1.
  • the first metal layer is located on the outer side surface of the lens assembly 3.
  • the bottom surface of the lens assembly 3 faces the surface of the circuit board.
  • the outer side surface of the lens assembly 3 is perpendicular to the surface of the circuit board 1.
  • the first metal layer does not completely cover the outer side surface of the lens assembly 3.
  • the first metal layer is from the outer side of the lens assembly. From the boundary line with the bottom surface, the outer side surface of the lens assembly 3 is covered in a direction away from the surface of the circuit board 1.
  • the bottom surface of the lens assembly 3 may be in direct contact with the surface of the circuit board 1, or may not be in direct contact with the surface of the circuit board 1.
  • the first metal layer is located on the bottom surface of the lens assembly 3.
  • the bottom surface of the lens unit 3 faces the surface of the circuit board 1, and the outer side surface of the lens unit 3 is perpendicular to the surface of the circuit board 1. After the soldering is completed, the first metal layer is located between the bottom surface of the lens assembly 3 and the second metal layer.
  • the first metal layer may completely cover the bottom surface of the lens assembly 3 or may not completely cover the bottom surface of the lens assembly 3.
  • a sealant is applied at the joint of the first metal layer and the second metal layer 10, which is equivalent to applying a sealant on the periphery of the position where the lens assembly 3 is in contact with the circuit board 1.
  • the second metal layer 10 and the first metal layer are fixed together by soldering, there is still a gap between the second metal layer 10 and the first metal layer, and the second metal layer 10 and the first metal layer are passed through the sealant.
  • a sealant is applied between the joints to seal the gap between the two to prevent external moisture, air or impurities from entering between the lens assembly 3 and the circuit board 1 to affect the working performance of the internal components.
  • the lens assembly 3 includes a cavity region 8 and an optical zone. After the lens assembly 3 is mated with the circuit board 1, the cavity region 8 of the lens assembly 3 forms a cavity with the circuit board 1, and the light emitter/light receiver is located in the cavity formed by the lens assembly 3 and the circuit board 1. The light emitted by the light emitter/light receiver enters the optical zone from the cavity region 8 of the lens assembly 3, and the optical zone has a light reflecting surface 5 that changes the direction of light propagation so that the direction of light propagation and the lens assembly 3 The direction in which the light is emitted or the direction in which the light is received is the same.
  • the lens assembly 3 may further include an optical fiber connection region 9 that does not change the direction of propagation of the light, the optical fiber 4 is mounted on the optical fiber connection region 9 of the lens assembly 3, and the light emitted through the optical region of the lens assembly 3 is The fiber connection region 9 of the lens assembly 3 enters the fiber 4, or the light that is introduced by the fiber 4 enters the cavity region 8 through the optical zone of the lens assembly 3.
  • the outer side of the lens assembly 3 is connected to a first metal layer.
  • the connection between the first metal layer and the lens assembly 3 is usually carried out by a titanium platinum plating process. Specifically, the first metal layer surrounds the cavity region 8 of the lens assembly 3. Since the optical region of the lens assembly 3 needs to achieve light propagation, the first metal layer does not completely surround the optical region of the lens assembly 3 to avoid light propagation. Make an impact.
  • the first metal layer on the outer side of the lens assembly 3 and the second metal layer 10 on the surface of the circuit board 1 are fixed by laser welding.
  • the mounting and fixing positions of the circuit board 1, the light emitter/light receiver, and the lens assembly 3 are pre-designed according to product realization requirements.
  • the board surface is preset with the light emitter/photoreceiver mounting location, and the second metal layer on the board surface is placed around the light emitter/light receiver mounting location.
  • the cavity/area 8 of the lens assembly 3 is used to cover the light emitter/light receiver, so that the light emitter/light receiver is located in the lens assembly 3.
  • the first metal layer on the outer side of the lens assembly is in contact with the second metal layer on the surface of the circuit board, and the first metal layer and the second metal layer are soldered and fixed by laser welding.
  • the lens assembly 3 is disposed above the light emitter/light receiver, and the light emitted by the light emitter/light receiver passes through the lens assembly 3, and the propagation direction thereof changes.
  • the first metal layer at the edge of the lens assembly 3 and the second metal layer on the surface of the circuit board 1 are soldered, and the lens assembly 3 is fixed on the surface of the circuit board 1. The fixing of the lens assembly 3 realizes the light emitter. / The optical receiver is stable in the direction of propagation.
  • the light spot emitted by the light emitter/light receiver is actively small, the diameter is usually between, and the diameter of the fiber is also extremely small, which makes the light emitter/light receiver, the lens assembly 3, and the optical fiber 4 It is necessary to have a high-precision positional relationship in order to efficiently couple light into the optical fiber 4.
  • the final fixed position of the lens assembly 3 deviates from the pre-designed fixed position.
  • the lens assembly 3 is fixedly connected to the circuit board 1 by laser welding, and the resulting positional deviation therebetween. This degree of displacement is sufficient to couple light into the fiber with high efficiency.
  • the laser welding forms a solder joint on the first metal layer of the lens assembly 3 and the second metal layer of the circuit board.
  • the second metal layers are joined together, and the same causes displacement of the lens assembly 3 on the surface of the circuit board 1.
  • each solder joint forms a solder joint.
  • the displacement caused by a single solder joint can be corrected by other solder joints, further reducing the displacement of the lens assembly 3 that is ultimately fixed to the board 1.
  • the first metal layer and the second metal layer are laser welded, and the number of solder joints formed by the soldering ranges from 2 to 10.
  • the preferred number of solder joints is from 4 to 8.
  • the optical zone of the lens assembly 3 has a reflecting surface, and the light emitted by the light emitter/photoreceiver enters the optical fiber 4 after changing the direction of propagation through the reflecting surface.
  • the optical zone of the lens assembly 3 further includes a concentrating surface, and the light passing through the reflecting surface is concentrated by the condensing surface and enters the optical fiber 4.
  • the optical zone of the lens assembly 3 further includes a through hole 6 that communicates the exterior of the lens assembly 3 with the cavity region 8 of the lens assembly 3, when the lens assembly 3 and the circuit
  • the plate 1 is fixedly connected by laser welding, and the high temperature generated by the laser welding causes the air in the cavity formed by the lens assembly 3 and the circuit board 1 to expand, and the through hole 6 can discharge the expanded air to prevent the expanded air from causing the lens assembly 3
  • the surface of the circuit board 1 is detached or causes a relative displacement between the lens assembly 3 and the circuit board 1.
  • the lens assembly 3 further has a recess 7, and the recess 7 facilitates assembly of the optical module and adsorption of the lens assembly.
  • the VCSEL light emitter/light receiver is mounted on the surface of the circuit board 1 with the light exiting direction perpendicular to the surface of the circuit board 1, and the light emitted by the light emitter/light receiver Reflected by the reflective surface, the direction of propagation becomes the light exiting direction of the lens assembly 3.
  • a condensing surface is disposed in the lens assembly 3, and the light converges after passing through the condensing surface.
  • FIG. 5 is a cross-sectional view of an optical module according to an embodiment of the present invention. As shown in Fig. 5, the outer side of the lens unit 3 has a first metal layer 11, and the surface of the circuit board 1 has a second metal layer 10, and the first metal layer 11 and the second metal layer 10 are joined by soldering.

Abstract

一种光模块,属于光通信领域。该光模块包括电路板(1)、光发射器(2)/光接收器以及透镜组件(3),光发射器(2)/光接收器位于电路板(1)的表面;透镜组件(3)罩设在光发射器(2)/光接收器的上方,透镜组件(3)改变光的传播方向;透镜组件(3)的边缘具有第一金属层(11),电路板(1)的表面具有第二金属层(10),第一金属层(11)与第二金属层(10)以焊接的方式连接,使得透镜组件(3)固定在电路板(1)上。光经过透镜组件(3)后,其传播方向发生改变。此外,焊接减小了实际安装位置与预设的安装位置之间的偏移量。

Description

说明书 发明名称:一种光模块
[0001] 相关申请的交叉引用
[0002] 本申请要求于 2015年 9月 24日提交中国专利局、 申请号为 201510613776.5、 发明 名称为"一种光模块"的中国专利申请的优先权, 其全部内容通过引用结合在本申 请中。
技术领域
[0003] 本发明涉及光通信领域, 尤其涉及一种光模块。
背景技术
[0004] 实现光电转换功能的光模块是光通信领域中的核心器件。
[0005] 光发射器 /光接收器作为有源器件, 其发光 /接收光需要电路板为其供电, 由于 电路板与光发射器 /光接收器的连接方式限制, 使得光发射器 /光接收器的发光 /接 收光方向与光纤的进出光方向往往不一致, 因此需要通过改变光发射器 /光接收 器发出的光的传播方向, 使光的传播方向与光纤的进出光方向一致, 同吋, 光 发射器 /光接收器发出 /接收的光, 其光斑直径较小, 光纤的直径也较小, 需要确 保光的传播方向稳定, 才能保证光发射器发出的光进入光纤或光纤传来的光被 光接收器接收。
[0006] 与光模块适配的光纤孔径较细, 通常仅有 9微米, 因此对光模块中光线传播路 径的精度要求较为严格。 应用在光模块上最常用的一种封装方式是直接将光发 射器 /光接收器贴在电路板上, 然后将透镜组件罩设在光发射器 /光接收器的上方 , 并通过胶水固定在电路板上。 由于胶水的初始状态为液体, 涂覆在透镜组件 与电路板之间, 胶水表面的张力会对透镜组件施加一定的作用力, 使得透镜组 件的实际安装位置与预设的安装位置之间会存在一定的偏移量, 在 5微米左右。 对于光模块而言, 这个偏移量会导致光线实际的传播路径严重偏离设定路径, 以致于光不能射入光纤中或光无法被接收。
技术问题
[0007] 本发明为了降低光线实际传播路径与设定路径之间的偏移量, 采用了如下技术 方案。
问题的解决方案
技术解决方案
[0008] 本发明实施例提供一种光模块, 包括电路板、 光发射器 /光接收器以及透镜组 件, 光发射器 /光接收器位于电路板的表面; 透镜组件罩设在光发射器 /光接收器 的上方, 透镜组件改变光的传播方向; 透镜组件的边缘具有第一金属层, 电路 板的表面具有第二金属层, 第一金属层与第二金属层以焊接的方式连接, 使得 透镜组件固定在电路板上。
发明的有益效果
有益效果
[0009] 本发明实施例提供的光模块, 透镜组件罩设在光发射器 /光接收器的上方, 光 经过透镜组件后, 其传播方向发生改变, 此外, 透镜组件边缘的第一金属层与 电路板表面的第二金属层以焊接的方式连接, 焊接减小了实际安装位置与预设 的安装位置之间的偏移量, 与现有技术相比, 不仅改变了光的传播方向, 同吋 确保光的传播方向稳定, 降低光线实际传播路径与设定路径之间的偏移量。 对附图的简要说明
附图说明
[0010] 图 1为本发明实施例提供的一种光模块结构示意图;
[0011] 图 2为本发明实施例提供的光模块结构立体图;
[0012] 图 3为本发明实施例中透镜组件的结构示意图;
[0013] 图 4为本发明实施例中电路板结构示意图;
[0014] 图 5为本发明实施例提供的光模块截面图。
本发明的实施方式
[0015] 图 1为本发明实施例提供的一种光模块结构示意图。 如图 1所示, 本发明实施例 提供的光模块包括电路板 1、 光发射器 2以及透镜组件 3, 光纤 4插入透镜组件 3中 , 由光发射器 2发出的光, 经透镜组件 3改变光路后, 进入光纤 4。 光发射器 2位 于电路板 1的表面, 光发射器 2—般采用贴片工艺与电路板 1实现固定连接, 透镜 组件 3罩设在光发射器 2的上方, 光发射器 2发出的光经过透镜组件 3, 其传播方 向发生改变。
[0016] 光模块中不仅具有光发射功能, 还具有光接收功能。 光模块中实现光接收功能 的结构与上述光发射的结构很相似, 不同点在于光发射结构中的光发射器的位 置放置的是光探测器。 由于光路可逆, 上述本发明实施例提供的技术方案中, 光发射器可以是光接收器。
[0017] 在具体实施例中, 光模块中可以仅包括光发射器, 或者仅包括光接收器, 或者 同吋包括光发射器及光接收器。
[0018] 光发射器可以是边发光型激光器, 如法布里-珀罗型激光器 (FP激光器) , 也 可以是面发光型激光器, 如垂直腔面激光器 (VCSEL激光器) 。
[0019] 光接收器可以是 PIN型光探测器, 也可以是雪崩光电二极管, 也可以是光敏电 阻。
[0020] 透镜组件 3的出光方向与光纤 4的进光方向一致。 光发射器发出的光经透镜组件 3改变其传播方向后, 由透镜组件 3的出光方向传出, 从而进入光纤 4。
[0021] 也可以是, 透镜组件 3的进光方向与光纤 4的出光方向一致。 光纤传出的光经透 镜组件 3改变其传播方向后, 由透镜组件的进光方向传出, 从而进入光接收器。
[0022] 图 2为本发明实施例提供的光模块结构立体图。 如图 2所示, 光模块包括电路板 1及透镜组件 3, 透镜组件 3中插入光纤 4。 透镜组件 3的外表面具有第一金属层, 在电路板 1的表面具有第二金属层 10, 透镜组件 3覆盖在第二金属层 10上。
[0023] 透镜组件 3由透光材料制成, 常见的透光材料包括树脂、 玻璃。
[0024] 透镜组件 3具有反光面, 光经反光面反射, 其传播方向变为透镜组件 3的出光方 向。
[0025] 透镜组件 3的边缘具有第一金属层, 常见的第一金属层为铜层或金层。
[0026] 图 4为本发明实施例中电路板结构示意图。 如图 4所示, 电路板 1的表面具有光 发射器 2及第二金属层 10, 第二金属层 10围绕光发射器 2形成图案, 第二金属层 1 0形成的图案与透镜组件 3底面的形状相同。 常见的第二金属层 10为铜层或金层 [0027] 透镜组件 3安装在电路板 1表面吋, 透镜组件 3罩设在光发射器 /光接收器的上方 , 透镜组件 3边缘的第一金属层与电路板表面的第二金属层 10通过焊接的方式固 定, 实现透镜组件 3固定在电路板 1上。
[0028] 具体地, 如图 2所示, 第一金属层位于透镜组件 3的外侧面。 透镜组件 3的底面 朝向电路板的表面, 透镜组件 3的外侧面与电路板 1的表面垂直, 第一金属层并 没有完全覆盖透镜组件 3的外侧面, 第一金属层自透镜组件的外侧面与底面交界 线起, 向背离电路板 1表面的方向覆盖透镜组件 3的外侧面。
[0029] 焊接完成后, 透镜组件 3的底面可以与电路板 1的表面直接接触, 也可以不与电 路板 1的表面直接接触。
[0030] 也可以是, 第一金属层位于透镜组件 3的底面。 透镜组件 3的底面朝向电路板 1 的表面, 透镜组件 3的外侧面与电路板 1的表面垂直。 焊接完成后, 第一金属层 位于透镜组件 3的底面与第二金属层之间。 第一金属层可以完全覆盖透镜组件 3 的底面, 也可以不完全覆盖透镜组件 3的底面。
[0031] 在第一金属层和第二金属层 10的连接处涂覆密封胶, 相当于在透镜组件 3与电 路板 1接触位置的外围涂覆密封胶。 虽然第二金属层 10和第一金属层之间通过焊 接固定在一起, 但第二金属层 10和第一金属层之间仍然存在间隙, 通过密封胶 将第二金属层 10和第一金属层之间的连接处涂覆密封胶, 将二者之间的间隙均 密封起来, 防止外部的水汽、 空气或杂质等进入透镜组件 3与电路板 1之间而影 响内部元件的工作性能。
[0032] 如图 1及图 3所示, 透镜组件 3包括空腔区 8及光学区。 透镜组件 3与电路板 1配合 固定后, 透镜组件 3的空腔区 8与电路板 1形成空腔, 光发射器 /光接收器位于透镜 组件 3与电路板 1形成的空腔中。 光发射器 /光接收器发出的光由透镜组件 3的空腔 区 8进入光学区, 光学区具有光反射面 5, 光反射面 5改变光的传播方向, 使光的 传播方向与透镜组件 3发出光的方向或接收光的方向一致。
[0033] 透镜组件 3还可以包括光纤连接区 9, 光纤连接区 9不改变光的传播方向, 光纤 4 安装在透镜组件 3的光纤连接区 9, 经透镜组件 3的光学区出射的光, 由透镜组件 3的光纤连接区 9进入光纤 4, 或者由光纤 4传入的光, 经透镜组件 3的光学区进入 空腔区 8。 [0034] 透镜组件 3的外侧面连接有第一金属层。 第一金属层与透镜组件 3之间通常采用 钛铂金镀层工艺实现连接。 具体地, 第一金属层包围透镜组件 3的空腔区 8, 由 于透镜组件 3的光学区需要实现光的传播, 第一金属层不会完全包围透镜组件 3 的光学区, 以免对光的传播造成影响。
[0035] 透镜组件 3外侧面的第一金属层与电路板 1表面的第二金属层 10通过激光焊实现 固定。
[0036] 电路板 1、 光发射器 /光接收器以及透镜组件 3的安装固定位置根据产品实现需 要进行了预先设计。 如图 4所示, 电路板表面预设光发射器 /光接收器安装位置, 电路板表面的第二金属层铺设在光发射器 /光接收器安装位置的周围。 安装过程 中, 光发射器 /光接收器安装在电路板表面后, 使用透镜组件 3的空腔区 8罩扣光 发射器 /光接收器, 使光发射器 /光接收器位于透镜组件 3的空腔区 8与电路板 1形 成的空腔中, 透镜组件外侧面的第一金属层与电路板表面的第二金属层接触, 使用激光焊将第一金属层与第二金属层焊接固定。
[0037] 本发明实施例提供的光模块, 透镜组件 3罩设在光发射器 /光接收器的上方, 光 发射器 /光接收器发出的光经过透镜组件 3后, 其传播方向发生改变, 此外, 透镜 组件 3边缘的第一金属层与电路板 1表面的第二金属层以焊接的方式连接, 实现 了透镜组件 3固定在电路板 1的表面, 透镜组件 3的固定实现了光发射器 /光接收器 传播方向的稳定。
[0038] 光发射器 /光接收器发出的光的光斑面积极小, 其直径通常在之间, 光纤的直 径也极小, 这使得光发射器 /光接收器、 透镜组件 3以及光纤 4之间需要具备高精 度位置关系, 才能实现光高效率地耦合进光纤 4。
[0039] 在与光纤直径处于同一数量级的视角下, 在实现透镜组件 3与电路板 1表面之间 的固定连接过程中, 透镜组件 3最终的固定位置与预先设计的固定位置存在偏差 。 透镜组件 3采用激光焊接的方式与电路板 1实现固定连接, 其产生的位置偏移 在之间。 这种程度的位移能够满足光高效率的耦合进光纤。
[0040] 激光焊接会在透镜组件 3的第一金属层以及电路板的第二金属层形成焊点, 焊 点形成的过程中, 不仅会将透镜组件 3的第一金属层以及电路板 1的第二金属层 连接在一起, 同吋也会使透镜组件 3在电路板 1表面发生距离的位移。 [0041] 在完成透镜组件 3与电路板 1的固定连接过程中, 需要在多个透镜组件 3与电路 板 1的结合位置处进行激光焊接, 每次激光焊接都会形成一个焊点。 单个焊点造 成的位移可以通过其他焊点进行纠正, 进一步降低透镜组件 3最终固定在电路板 1上的位移。 第一金属层与第二金属层采用激光焊接, 焊接形成的焊点数量范围 为 2至 10。 优选的焊点数量为 4个至 8个。
[0042] 透镜组件 3的光学区具有反射面, 光发射器 /光接收器发出的光经过反射面改变 传播方向后进入光纤 4。 具体地, 透镜组件 3的光学区还包括聚光面, 经过反射 面后的光由聚光面会聚后进入光纤 4。
[0043] 具体地, 如图 3所示, 透镜组件 3的光学区还包括通孔 6, 通孔 6将透镜组件 3的 外部与透镜组件 3的空腔区 8连通, 当透镜组件 3与电路板 1采用激光焊接进行固 定连接吋, 激光焊接产生的高温使得透镜组件 3与电路板 1形成的空腔中的空气 膨胀, 通孔 6可以将膨胀的空气排出, 以免膨胀的空气致使透镜组件 3从电路板 1 表面脱落或致使透镜组件 3与电路板 1之间发生相对移位。
[0044] 具体地, 如图 3所示, 透镜组件 3还具有凹槽 7, 凹槽 7便于光模块装配吋, 吸附 透镜组件。
[0045] 具体地, 如图 1所示, VCSEL光发射器 /光接收器贴装于电路板 1的表面, 其出 光方向垂直于电路板 1的表面, 光发射器 /光接收器发出的光经反光面反射, 其传 播方向变为透镜组件 3的出光方向, 在透镜组件 3的出光方向上, 透镜组件 3中设 置聚光面, 光经过聚光面后会聚。
[0046] 图 5为本发明实施例提供的光模块截面图。 如图 5所示, 透镜组件 3的外侧具有 第一金属层 11, 电路板 1的表面具有第二金属层 10, 第一金属层 11与第二金属层 10通过焊接方式连接。

Claims

权利要求书
一种光模块, 其特征在于, 包括电路板、 光发射器 /光接收器以及透 镜组件,
所述光发射器 /光接收器位于所述电路板的表面; 所述透镜组件罩设在所述光发射器 /光接收器的上方, 所述透镜组件 改变光的传播方向;
所述透镜组件的边缘具有第一金属层, 所述电路板的表面具有第二金 属层, 所述第一金属层与所述第二金属层以焊接的方式连接, 使得所 述透镜组件固定在所述电路板上。
如权利要求 1所述的光模块, 其特征在于, 所述第一金属层位于所述 透镜组件的外侧面。
如权利要求 2所述的光模块, 其特征在于, 所述第二金属层外边界围 设的面积大于透镜组件底面的面积。
如权利要求 3所述的光模块, 其特征在于, 所述透镜组件的底面与所 述电路板的表面接触。
如权利要求 1所述的光模块, 其特征在于, 所述第一金属层位于所述 透镜组件的底面。
如权利要求 4或 5所述的光模块, 其特征在于, 所述透镜组件包括空腔 区及光学区, 所述空腔区与所述电路板形成腔体, 所述光发射器 /光 接收器位于所述腔体中, 所述光学区具有光反射面。
如权利要求 6所述的光模块, 其特征在于, 所述透镜组件的光学区还 包括通孔, 所述通孔将所述透镜组件的外部与透镜组件的空腔区连通
[权利要求 8] 如权利要求 7所述的光模块, 其特征在于, 所述第一金属层与所述第 二金属层采用激光焊接, 焊接形成的焊点数量范围为 2至 10。
[权利要求 9] 如权利要求 1至 5中任一项所述的光模块, 其特征在于, 所述第一金属 层与所述第二金属层的连接处涂设有密封胶。
PCT/CN2016/075569 2015-09-24 2016-03-04 一种光模块 WO2017049880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510613776.5 2015-09-24
CN201510613776.5A CN105137554A (zh) 2015-09-24 2015-09-24 一种光模块

Publications (1)

Publication Number Publication Date
WO2017049880A1 true WO2017049880A1 (zh) 2017-03-30

Family

ID=54722956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075569 WO2017049880A1 (zh) 2015-09-24 2016-03-04 一种光模块

Country Status (2)

Country Link
CN (1) CN105137554A (zh)
WO (1) WO2017049880A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137554A (zh) * 2015-09-24 2015-12-09 青岛海信宽带多媒体技术有限公司 一种光模块
CN109683218B (zh) * 2018-01-25 2022-02-15 苏州旭创科技有限公司 光学元件、光学组件、光模块及其制造方法
CN109298497A (zh) * 2018-10-30 2019-02-01 菲尼萨光电通讯(上海)有限公司 一种适用于液冷系统的光模块结构
CN112911824A (zh) * 2019-12-04 2021-06-04 菲尼萨公司 用于光纤印刷电路板组件的表面安装技术

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120219257A1 (en) * 2011-02-28 2012-08-30 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Lens device attachment to printed circuit board
US20130202256A1 (en) * 2012-02-03 2013-08-08 Universal Microelectronics Co., Ltd. Optical interconnnection transceiver module
CN103270444A (zh) * 2010-12-24 2013-08-28 株式会社自动网络技术研究所 光学组件
CN203705698U (zh) * 2014-02-14 2014-07-09 青岛海信宽带多媒体技术有限公司 光组件
CN203941321U (zh) * 2014-07-02 2014-11-12 苏州旭创科技有限公司 光学组件
CN105137554A (zh) * 2015-09-24 2015-12-09 青岛海信宽带多媒体技术有限公司 一种光模块
CN105259622A (zh) * 2015-09-24 2016-01-20 青岛海信宽带多媒体技术有限公司 光模块的装配方法及光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270444A (zh) * 2010-12-24 2013-08-28 株式会社自动网络技术研究所 光学组件
US20120219257A1 (en) * 2011-02-28 2012-08-30 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Lens device attachment to printed circuit board
US20130202256A1 (en) * 2012-02-03 2013-08-08 Universal Microelectronics Co., Ltd. Optical interconnnection transceiver module
CN203705698U (zh) * 2014-02-14 2014-07-09 青岛海信宽带多媒体技术有限公司 光组件
CN203941321U (zh) * 2014-07-02 2014-11-12 苏州旭创科技有限公司 光学组件
CN105137554A (zh) * 2015-09-24 2015-12-09 青岛海信宽带多媒体技术有限公司 一种光模块
CN105259622A (zh) * 2015-09-24 2016-01-20 青岛海信宽带多媒体技术有限公司 光模块的装配方法及光模块

Also Published As

Publication number Publication date
CN105137554A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
US6526206B2 (en) Alignment apertures in an optically transparent substrate
US9335474B2 (en) Optical devices and methods of fabricating the same
WO2018036161A1 (zh) 一种用于光栅耦合的激光器结构及封装方法
US10018794B2 (en) Optical module and manufacturing method thereof
WO2017049880A1 (zh) 一种光模块
JP3179743B2 (ja) フォトニクス装置の製造方法
KR20170012339A (ko) 광전 디바이스로의 광파이버 서브조립체의 비전 기반 피동 정렬
WO2010108399A1 (zh) 侧向耦合光纤构件及其加工方法
US20110235980A1 (en) Optical module with optical axis bent perpendicularly within package
US8162547B2 (en) Optical subassembly manufacturing method
US8861903B2 (en) Method of manufacturing optical waveguide device and optical waveguide device
JPH1123914A (ja) 光素子と光ファイバとの固定構造
US10381799B2 (en) Optical module
JP2007073711A (ja) 気密封止パッケージおよび光サブモジュール
JP4828015B2 (ja) 光モジュール作製方法
JP2005017684A (ja) 光モジュールおよびその製造方法
JP3907051B2 (ja) 光モジュール及びその製造方法
JP2004233687A (ja) 光導波路基板および光モジュール
JPH04221912A (ja) 並列伝送光モジュール
JP2000111775A (ja) フィルタチップ保持装置
TW200530555A (en) Etalon positioning using solder balls
JPH03192208A (ja) 光モジュール
JP2011066402A (ja) 光送信モジュールとその製造方法
KR101551932B1 (ko) 수동 정렬을 위한 광학 소자 및 정렬 방법
JPH09152526A (ja) 光通信用光源レーザモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847765

Country of ref document: EP

Kind code of ref document: A1