WO2017049841A1 - 膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法 - Google Patents

膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法 Download PDF

Info

Publication number
WO2017049841A1
WO2017049841A1 PCT/CN2016/073623 CN2016073623W WO2017049841A1 WO 2017049841 A1 WO2017049841 A1 WO 2017049841A1 CN 2016073623 W CN2016073623 W CN 2016073623W WO 2017049841 A1 WO2017049841 A1 WO 2017049841A1
Authority
WO
WIPO (PCT)
Prior art keywords
film thickness
vapor deposition
compensation value
evaporation
computer
Prior art date
Application number
PCT/CN2016/073623
Other languages
English (en)
French (fr)
Inventor
付文悦
陈立强
孙俊民
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/312,766 priority Critical patent/US20170298501A1/en
Priority to EP16794201.0A priority patent/EP3354767A4/en
Publication of WO2017049841A1 publication Critical patent/WO2017049841A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer

Definitions

  • Embodiments of the present invention relate to a film thickness control system, a film thickness control method, an evaporation device, and an evaporation method.
  • an OLED (Organic Light-Emitting Diode) panel generally includes a substrate and an organic luminescent material layer disposed on the substrate.
  • the organic light-emitting layer may be formed by an evaporation process.
  • the evaporation process of the organic light-emitting material layer may include: heating the organic light-emitting material with a heat source, and then evaporating the heated organic light-emitting material to a predetermined position on the substrate (in the evaporation)
  • a mask can be used in the process to control the positional area to be evaporated, so that the organic light-emitting material can be evaporated onto the substrate at a certain rate.
  • Embodiments of the present invention provide a film thickness control system, a film thickness control method, an evaporation device, and an evaporation method to accurately control a film thickness of an organic material layer when vaporizing an organic material.
  • At least one embodiment of the present invention provides a film thickness control system for an evaporation apparatus, comprising: a moving device, a film thickness measuring instrument, and a computer, the film thickness measuring instrument being mounted on the mobile device, and Connecting the computer for acquiring a coordinate point of a substrate to be measured from a computer to be measured, and transmitting the measured actual film thickness of the position to be measured to a computer, wherein the computer is used for the actual film thickness Calculating a new compensation value according to the actual film thickness, the predetermined film thickness, and the current compensation value without exceeding an error range of the preset film thickness, and transmitting the new compensation value to the vapor deposition device for use as a compensation steam Plated reference.
  • At least one embodiment of the present invention also discloses a film thickness control method, comprising: measuring a film thickness of a predetermined coordinate on a substrate to be tested by using a film thickness measuring instrument, and feeding back the actual film thickness to a computer; When the computer determines that the actual film thickness exceeds the error range of the preset film thickness, calculates a new compensation value according to the actual film thickness, the preset film thickness, and the current compensation value, and feeds back the new compensation value to the vapor deposition device; The vapor deposition device compensates the vapor deposition organic material at a predetermined coordinate according to the new compensation value.
  • At least one embodiment of the present invention also discloses an evaporation apparatus comprising the above film thickness control system and an evaporation chamber, the moving device and the film thickness measuring device of the film thickness control system being disposed in the Said in the evaporation chamber.
  • At least one embodiment of the present invention also discloses an evaporation method, comprising: performing a first evaporation in an evaporation chamber of an evaporation device by using a first compensation value to form a first surface on a substrate by presetting a predetermined organic material a film; measuring an actual film thickness at a predetermined position of the substrate in the vapor deposition chamber, and calculating a second compensation according to the actual film thickness and a predetermined film thickness at the preset position And performing a second evaporation in the evaporation chamber using the second compensation value to form the second film on the first film by the predetermined organic material.
  • FIG. 1a is a structural block diagram of a film thickness control system according to an embodiment of the present invention.
  • FIG. 1b is a schematic structural view of a moving device and a film thickness measuring device of a film thickness control system according to an embodiment of the present invention
  • 1c is a schematic structural view of a moving device and a film thickness measuring instrument of another film thickness control system according to an embodiment of the present invention
  • FIG. 2 is a schematic view of measuring a substrate to be tested by using a moving device and a film thickness measuring instrument of the film thickness control system of FIG. 1;
  • FIG. 3 is a flow chart of a film thickness control method according to an embodiment of the present invention.
  • FIG. 4 is a top plan view of a substrate to be tested in an embodiment of the present invention.
  • Figure 5 is a top plan view of a vapor deposition device according to an embodiment of the present invention.
  • 6a and 6b are schematic diagrams showing steps S61 and S63 in the vapor deposition method according to an embodiment of the present invention.
  • the crystal plate In the process of vaporizing the organic light-emitting material layer, the crystal plate is usually used to monitor the evaporation rate of the organic light-emitting material; however, the crystal plate reflects the real-time rate of evaporation of the organic light-emitting material to the crystal oscillator, and does not reflect, for example, the internal structure of the cavity. Changes (such as deformation of the internal structure of the cavity caused by external forces and other factors), sensitive evaporation materials, internal changes in the heating source, and uneven heating of the crucible affect the evaporation process.
  • the compensation value (ie, the tooling value) is a parameter for controlling the film thickness by the vapor deposition device. Due to the continuous consumption of organic light-emitting materials and changes in chemical properties during the vapor deposition process, as well as changes in the internal environment of the vapor deposition chamber of the vapor deposition apparatus, a coating test is required before the vapor deposition of the organic light-emitting material layer.
  • the coating process of the main vapor deposition of the organic light-emitting material layer is performed using the compensation value to achieve control of the film thickness of the organic light-emitting material layer.
  • the inventors of the present application have noticed that in the evaporation process of the currently used organic light-emitting material layer, although the compensation value obtained by the coating test can be corrected by parameters, even the same evaporation is performed on the same substrate.
  • the actual value to be compensated for the process will also change, that is, the actual value to be compensated may be inconsistent with the compensation value obtained by the above coating test, which leads to the currently used evaporation process.
  • the film thickness of the organic light-emitting material layer cannot be precisely controlled.
  • At least one embodiment of the present invention discloses a film thickness control system, a film thickness control method, an evaporation device, and an evaporation method.
  • the embodiment of the present invention passes In the process of forming the same organic material layer, the actual film thickness at the preset position is monitored in the evaporation chamber of the evaporation device and the compensation value is adjusted according to the monitoring result, so that the organic material of the OLED panel can be more accurately controlled.
  • the vapor deposition film is thick.
  • a film thickness control system for an evaporation device provided by at least one embodiment of the present invention, as shown in FIGS. 1a to 1c, includes: a moving device, a film thickness measuring instrument 3, and a computer (not shown in FIGS. 1b and 1c) ).
  • the moving device is used to move the film thickness measuring instrument 3 to the position to be measured of the substrate to be tested (not shown).
  • the film thickness measuring instrument 3 is mounted on the mobile device, for example, the film thickness measuring instrument 3 can be movably mounted on the mobile device; and the film thickness measuring instrument 3 is connected to the computer for acquiring the substrate to be tested from the computer The coordinate point of the position is measured, and the measured actual film thickness of the position to be measured is sent to the computer.
  • the computer is used to calculate a new compensation according to the actual film thickness, the preset film thickness and the current compensation value when the actual film thickness does not exceed the error range of the preset film thickness (for example, 3% to 5% of the preset film thickness)
  • the value is sent to the evaporation device for use as a compensation evaporation reference.
  • the film to be tested is provided with a film formed by a single evaporation process, and the current compensation value is a compensation value used in an evaporation process for vapor deposition of the film, and the new compensation value is used as a compensation evaporation reference. This new offset value is used as the compensation value for the next evaporation process.
  • the above computer may be a computing controller that implements a series of functions such as data processing, data acquisition, signal control, signal transmission and reception, etc., as long as the computer can implement the above functions in the embodiments of the present invention.
  • the film thickness control system in the evaporation process of the organic material layer (for example, the organic light-emitting material layer), the film thickness control system is disposed in the vapor deposition chamber of the vapor deposition device, and passes through the evaporation chamber.
  • the film thickness measuring device compares the measured actual film thickness with the preset film thickness to calculate a new compensation value, and causes the vapor deposition device to perform offset evaporation at a new compensation value, so that an organic material layer can pass multiple compensation values.
  • the multiple evaporation process is formed, so that the vapor deposition film thickness of the organic material (for example, organic light-emitting material) of the OLED panel can be more precisely controlled.
  • the system compensates for the evaporation of the position where the vapor deposition is not up to the lower limit of the preset film thickness error range (ie, the thickness of the preset film thickness is 95% to 97%), so that the organic material in the OLED panel (for example) Organic film of organic light-emitting material) The thickness is uniform.
  • the OLED panel may further include an organic material layer such as an electron transport layer, an electron injection layer, a hole transport layer, and a hole injection layer.
  • the film thickness control system provided by the embodiments of the present invention can be used to control the film thickness of the organic light emitting material layer in the OLED panel, and can also be used to control the film thickness of the organic material layer in the OLED panel.
  • the mobile device may include an X-direction moving device configured to move the film thickness measuring device in the X direction, and a Y-direction moving device configured to move the film thickness measuring device in the Y direction, the Y direction Intersect with the X direction.
  • the X direction and the Y direction may coincide with the direction of the coordinate axis of the coordinate system in which the coordinate point of the substrate to be measured is to be measured, to facilitate data processing. Since a Cartesian coordinate system is usually employed, for example, the X direction and the Y direction may be perpendicular.
  • the film thickness measuring instrument may be movably disposed on the X-direction moving device; or the film thickness measuring instrument may be fixedly disposed on the X-direction moving device, and moved in the X direction or in the Y direction by the X-direction moving device itself
  • the device drives the X-direction moving device to move in the X direction to move the film thickness measuring instrument in the X direction.
  • both the X-direction moving device and the Y-direction moving device can be realized by a lead screw.
  • Embodiments of the invention include, but are not limited to, the embodiments.
  • the mobile device 01 may include: an X-axis screw 1, a first Y-axis screw 21, and a second Y. Axle screw 22 and servo motor.
  • the X-axis screw 1 extends in the X direction
  • both the first Y-axis screw 21 and the second Y-axis screw 22 extend in the Y direction, and the X direction intersects the Y direction.
  • the X-axis screw 1 may be perpendicular to the first Y-axis screw 21 and the second Y-axis screw 22; both ends of the X-axis screw 1 are movably mounted on the first Y-axis, respectively
  • the film thickness measuring instrument 3 is movably mounted on the X-axis screw 1
  • the servo motor is connected to the computer for controlling the first Y according to a computer command
  • the shaft screw 21 and the second Y-axis screw 22 drive the X-axis screw 1 to move in the Y direction, and control the X-axis screw 1 to drive the film thickness measuring instrument 3 to move in the X direction.
  • the positioning accuracy of moving the film thickness gauge to a preset position can be improved by using the moving device shown in FIG. 1b.
  • Servo motor is a high precision operation that can be controlled by an external signal (such as a signal from a computer)
  • the main function of the moving system is to drive the actuator movement by turning.
  • the servo motor controls the movement of the lead screws accordingly by bearings (not shown in Fig. 1c) respectively disposed at the ends of the X-axis screw, the first Y-axis screw and the second Y-axis screw. .
  • the mobile device may further include a guide rail 11 for controlling the first Y-axis lead screw 21 and the second Y-axis lead screw 22 to drive the guide rail 11 to move in the Y direction.
  • the film thickness measuring instrument 3 can slide along the guide rail 11, thereby facilitating the smooth movement of the film thickness measuring instrument 3 in the X direction.
  • the number of the guide rails 11 may be at least one, and FIG. 1c is described by taking only two guide rails as an example.
  • the device of FIG. 1b is located below the mask 5 during measurement, and the substrate 4 to be tested is located above the mask 5.
  • the computer (not shown in FIG. 2) controls the film thickness measuring device 3 to move.
  • the film thickness measuring instrument 3 monitors the film thickness by the polarizing lens 31 and the analyzer lens 32 which are included.
  • the polarized light emitted from the polarizing lens 31 is incident on a predetermined coordinate position, the polarized light is reflected on the surface of the sample, and the polarization lens 32 measures the polarization state (amplitude and phase) of the reflected light; the polarizing lens 31 can be known.
  • the film thickness measuring instrument 3 can also employ other thickness measuring devices commonly used in the art.
  • At least one embodiment of the present invention also provides a method of controlling film thickness using the above film thickness control system, as shown in FIG. 3, the method comprising the following steps.
  • step S310 the actual film thickness of the predetermined coordinates on the substrate to be tested is measured by using a film thickness measuring instrument, and the actual film thickness is fed back to the computer.
  • step S320 the computer determines whether the actual film thickness exceeds the error range of the preset film thickness. If not, the process ends, otherwise step S330 is performed.
  • Step S330 when the actual film thickness exceeds the preset film thickness error range, the computer calculates a new compensation value according to the actual film thickness, the preset film thickness and the current compensation value, and feeds back the new compensation value (ie, the new tooling value). To the evaporation device.
  • step S340 the vapor deposition device compensates the vapor deposition organic material (for example, an organic material such as an organic light-emitting material, an electron transport material, an electron injecting material, a hole transporting material, or a hole injecting material) to the predetermined coordinates according to the new compensation value.
  • the process returns to step S310, and steps S310 to S340 are repeatedly performed until the actual film thickness reaches a predetermined film thickness, that is, until the actual film thickness does not exceed the error range of the predetermined film thickness, for example, does not exceed 3% of the preset film thickness. ⁇ 5%.
  • step S310 the actual film thickness of the predetermined coordinates on the substrate to be tested may be measured by using a film thickness measuring instrument in the vapor deposition chamber of the vapor deposition device. In this way, it is advantageous to continue to vaporize the organic material on the basis of the previous evaporation after calculating the new compensation value.
  • step S310 the mobile device controls the mobile device to move the film thickness measuring instrument 3 to a predetermined coordinate.
  • the initial compensation value may be a compensation value obtained by a coating test.
  • the substrate 4 to be tested may include a plurality of panels 41 (these panels) In a subsequent step, it will be cut into a single panel.
  • the predetermined coordinates may be the coordinates of the center of each panel on the substrate to be tested (as indicated by the dots in FIG. 4).
  • the mechanical zero of the moving device of the above film thickness control system corresponds to the center of the substrate to be tested, and is also the center of the XY coordinate system, the center of each panel can be easily found by the coordinates of the center of each panel and the mechanical zero of the mobile device.
  • At least one embodiment of the present invention also provides an evaporation apparatus 100, as shown in FIG. 5, the vapor deposition apparatus 100 includes the film thickness control system provided by any of the above embodiments (only the film thickness is shown in FIG. 5).
  • the vapor deposition chamber 110 has an evaporation region 111 (shown by a broken line in FIG. 5) corresponding to the above-described substrate to be tested (not shown) and a non-vapor deposition region 112.
  • the film thickness control system is located in the non-vapor deposition zone 112 outside the vapor deposition zone 111 during each evaporation to avoid the effect on the evaporation of the organic material layer;
  • the film thickness measuring instrument 3 of the film thickness control system is moved by the moving device 01 to the position to be measured of the substrate to be tested in the vapor deposition zone 111 to measure the actual film thickness at the position; if the actual film thickness is measured If the film thickness measuring instrument 3 is removed from the vapor deposition zone 111 (i.e., moved to the non-vapor deposition zone 112), the next vapor deposition is performed based on the new compensation value based on the previous vapor deposition.
  • the vapor deposition device may further include a structure such as a heat source, and details are not described herein.
  • At least one embodiment of the present invention also provides an evaporation method, as shown in Figures 6a and 6b,
  • the vapor deposition method includes the following steps S61 to S63.
  • Step S61 performing first evaporation in the evaporation chamber of the evaporation device using the first compensation value to form the first film 61 on the substrate 60 by using a predetermined organic material.
  • the vapor deposition device provided by the above embodiment of the present invention can be used, and details are not described herein again.
  • Step S62 measuring the actual film thickness at the preset position of the substrate 60 in the vapor deposition chamber, and calculating a second compensation value according to the actual film thickness and the predetermined film thickness at the preset position.
  • Step S63 performing second evaporation in the evaporation chamber using the second compensation value to form the second film 62 on the first film 61 through the predetermined organic material.
  • the first film 61 and the second film 62 as a whole can be used as a desired organic a luminescent material layer; if the actual film thickness at the above-mentioned preset position after forming the second film 62 does not meet the design requirements, the third compensation value is calculated and the third compensation value is used to continue steaming on the basis of the second film plating.
  • the method provided by the embodiments of the present invention can also be used to fabricate other organic material layers in the OLED panel, such as an electron transport layer, an electron injection layer, a hole transport layer, and a hole injection layer.
  • the film thickness control system, the film thickness control method, the vapor deposition device, and the evaporation method provided by the embodiments of the present invention are measured inside the evaporation chamber of the evaporation device by using a film thickness measuring instrument in an evaporation process of the organic material layer.
  • the actual film thickness, the measured actual film thickness is compared with the preset film thickness to calculate the new compensation value, and the vapor deposition device is compensated for evaporation according to the new compensation value, which can be adjusted during the process of forming the same organic material layer.
  • the compensation value enables more precise control of the vapor deposition film thickness of the OLED organic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种用于蒸镀装置(100)的膜厚控制系统,包括:移动装置(01)、膜厚测量仪(3)及计算机,其中,膜厚测量仪(3)安装在移动装置(01)上,并连接计算机,用于从计算机获取待测基板(4)的要测量位置的坐标点,并将测得的要测量位置的实际膜厚发送至计算机,计算机用于在实际膜厚不超出预设膜厚的误差范围时根据实际膜厚、预设膜厚及当前补偿值计算新补偿值,并将新补偿值发送至蒸镀装置(100)用作补偿蒸镀参考。以及一种膜厚控制方法、蒸镀装置(100)和蒸镀方法。

Description

膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法 技术领域
本发明实施例涉及一种膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法。
背景技术
在显示技术领域中,OLED(Organic Light-Emitting Diode)面板通常包括基板和设置于该基板上的有机发光材料层。有机发光层可以采用蒸镀工艺制作,例如,有机发光材料层的蒸镀工艺可以包括:利用加热源加热有机发光材料,然后将加热后的有机发光材料蒸发到基板上的预定位置(在蒸镀过程中可以利用掩膜板来控制要蒸镀的位置区域),从而有机发光材料可以按照一定的速率蒸发到基板上。
发明内容
本发明实施例提供一种膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法,以在蒸镀有机材料时精确地控制有机材料层的膜厚。
本发明的至少一个实施例提供了一种用于蒸镀装置的膜厚控制系统,其包括:移动装置、膜厚测量仪及计算机,所述膜厚测量仪安装在所述移动装置上,并连接所述计算机,用于从计算机获取待测基板的要测量位置的坐标点,并将测得的所述要测量位置的实际膜厚发送至计算机,所述计算机用于在所述实际膜厚不超出预设膜厚的误差范围时根据所述实际膜厚、所述预设膜厚及当前补偿值计算新补偿值,并将所述新补偿值发送至所述蒸镀装置用作补偿蒸镀参考。
本发明的至少一个实施例还公开了一种膜厚控制方法,该方法包括:采用膜厚测量仪测量待测基板上预定坐标的实际膜厚,并将所述实际膜厚反馈至计算机;当所述计算机判断出实际膜厚超出预设膜厚的误差范围时,根据所述实际膜厚、预设膜厚及当前补偿值计算新补偿值,并将新补偿值反馈至蒸镀装置;以及蒸镀装置根据新的补偿值对预定坐标处补偿蒸镀有机材料。
本发明的至少一个实施例还公开了一种蒸镀装置,其包括上述膜厚控制系统以及蒸镀腔体,所述膜厚控制系统的所述移动装置和所述膜厚测量仪设置于所述蒸镀腔体中。
本发明的至少一个实施例还公开了一种蒸镀方法,其包括:利用第一补偿值在蒸镀装置的蒸镀腔体内进行第一蒸镀,以通过预设有机材料在基板上形成第一薄膜;在所述蒸镀腔体内测量在所述基板的预设位置处的实际膜厚,并根据所述实际膜厚以及在所述预设位置处的预设膜厚计算出第二补偿值;以及利用所述第二补偿值在所述蒸镀腔体内进行第二蒸镀,以通过所述预设有机材料在所述第一薄膜上形成所述第二薄膜。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1a是本发明实施例的一种膜厚控制系统的结构框图;
图1b是本发明实施例提供的一种膜厚控制系统的移动装置和膜厚测量仪的结构示意图;
图1c是本发明实施例提供的另一种膜厚控制系统的移动装置和膜厚测量仪的结构示意图;
图2是采用图1中膜厚控制系统的移动装置和膜厚测量仪测量待测基板的示意图;
图3是本发明实施例的一种膜厚控制方法流程图;
图4是本发明实施例中待测基板的俯视示意图;
图5是本发明实施例的蒸镀装置的俯视示意图;
图6a和图6b为本发明实施例提供的蒸镀方法中步骤S61和步骤S63的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在蒸镀有机发光材料层的工艺中,通常采用晶振片监测有机发光材料的蒸镀速率;但晶振片反映的是有机发光材料蒸发到晶振片的实时速率,并不能反映出例如腔体内部结构变化(例如因外力等因素造成的腔体内部结构发生的形变)、敏感型蒸发材料、加热源内部变化、坩埚受热不均等因素对蒸镀工艺造成的影响。
补偿值(即tooling值)是利用蒸镀装置控制膜厚的参数。由于在蒸镀过程中有机发光材料的不断消耗和化学性质的变化、以及蒸镀装置的蒸镀腔体内部环境的变化,在正式蒸镀有机发光材料层之前需要进行镀膜测试。通过镀膜测试可得出补偿值,补偿值=显示膜厚/实际膜厚,其中,显示膜厚是通过蒸镀希望得到的有机发光材料层的膜厚,也称为预设膜厚;之后可利用该补偿值进行正式蒸镀有机发光材料层的镀膜工艺,以实现对有机发光材料层的膜厚的控制。
在研究中,本申请的发明人注意到,在目前常用的有机发光材料层的蒸镀工艺中,虽然可通过镀膜测试得到的补偿值进行参数修正,但即使在同一基板上进行相同的蒸镀工艺,实际应补偿的值也会发生变化,即实际应补偿的值可能与上述镀膜测试得到的补偿值不一致,这导致目前常用的蒸镀工艺 无法精确控制有机发光材料层的膜厚。
本发明的至少一个实施例公开了一种膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法。与上述目前常用的通过一次蒸镀工艺形成有机发光材料层且在正式蒸镀该有机发光材料层蒸镀工艺中保持通过镀膜测试得到的补偿值不变的方式相比,本发明实施例通过在形成同一个有机材料层的过程中,在蒸镀装置的蒸镀腔体中对预设位置处的实际膜厚进行监测并根据监测结果调整补偿值,可以更加精确地控制OLED面板的有机材料的蒸镀膜厚。
本发明的至少一个实施例提供的用于蒸镀装置的膜厚控制系统如图1a至图1c所示,包括:移动装置、膜厚测量仪3及计算机(图1b和图1c中未示出)。移动装置用于将膜厚测量仪3移动到待测基板(图中未示出)的要测量位置处。膜厚测量仪3安装在移动装置上,例如,膜厚测量仪3可以可移动地安装在移动装置上;并且,膜厚测量仪3连接所述计算机,用于从计算机获取待测基板的要测量位置的坐标点,并将测得的所述要测量位置的实际膜厚发送至计算机。计算机用于在实际膜厚不超出预设膜厚的误差范围时(例如不超过预设膜厚的3%~5%)根据所述实际膜厚、预设膜厚及当前补偿值计算新补偿值,并将所述新补偿值发送至蒸镀装置用作补偿蒸镀参考。
上述待测基板上设置有通过一次蒸镀工艺形成的薄膜,上述的当前补偿值为用于蒸镀该薄膜的蒸镀工艺中采用的补偿值,上述将新补偿值用作补偿蒸镀参考是指将该新补偿值用作下一次蒸镀工艺的补偿值。
上述计算机可以是实现集数据处理,数据采集,信号控制,信号发送接收等一系列功能的计算控制器,只要该计算机能够实现本发明实施例中的上述功能即可。
采用本发明实施例提供的膜厚控制系统,在有机材料层(例如有机发光材料层)的蒸镀工艺中,膜厚控制系统设置于蒸镀装置的蒸镀腔体内,在蒸镀腔体内通过膜厚测量仪将测量的实际膜厚与预设膜厚进行对比以计算新补偿值,并使蒸镀装置按新的补偿值进行补偿蒸镀,使得一个有机材料层可利用多个补偿值通过多次蒸镀工艺形成,从而可更加精确地控制OLED面板的有机材料(例如有机发光材料)的蒸镀膜厚。该系统对于蒸镀未达到预设膜厚误差范围下限(即预设膜厚的95%~97%的厚度)的位置按新补偿值进行补偿蒸镀,从而使OLED面板中的有机材料(例如有机发光材料)的整体膜 厚达到均匀。
OLED面板中除了包括阴极、阳极、有机发光材料层之外,还可以包括电子传输层、电子注入层、空穴传输层、空穴注入层等有机材料层。本发明实施例提供的膜厚控制系统可以用于控制OLED面板中的有机发光材料层的膜厚,也可以用于控制OLED面板中的上述有机材料层的膜厚。
例如,移动装置可以包括X方向移动装置和Y方向移动装置,X方向移动装置配置为使膜厚测量仪沿X方向移动,Y方向移动装置配置为使膜厚测量仪沿Y方向移动,Y方向与X方向相交。例如,X方向与Y方向可以与待测基板的要测量位置的坐标点所在的坐标系的坐标轴的方向一致,以便于数据处理。由于通常采用直角坐标系,因此,例如,X方向与Y方向可以垂直。
例如,膜厚测量仪可以可移动地设置在X方向移动装置上;或者膜厚测量仪可固定地设置在X方向移动装置上,并且通过X方向移动装置本身向X方向移动或通过Y方向移动装置带动X方向移动装置向X方向移动,以实现膜厚测量仪向X方向移动。
例如,X方向移动装置和Y方向移动装置都可以通过丝杠实现。本发明实施例包括但不限于此实施方式。
在本发明的至少一个实施例中,如图1b和图1c所示,移动装置01(图1c中未标出)可以包括:X轴丝杠1、第一Y轴丝杠21、第二Y轴丝杠22和伺服电机。
如图1b所示,X轴丝杠1沿X方向延伸,第一Y轴丝杠21和第二Y轴丝杆22都沿Y方向延伸,X方向与Y方向相交。例如,所述X轴丝杠1可以垂直于第一Y轴丝杠21和所述第二Y轴丝杠22;X轴丝杠1的两端分别可移动地安装在所述第一Y轴丝杠21和所述第二Y轴丝杠22上,膜厚测量仪3可移动地安装在X轴丝杠1上,伺服电机连接所述计算机,用于根据计算机指令控制所述第一Y轴丝杠21和第二Y轴丝杠22驱动X轴丝杠1沿Y方向移动,并控制所述X轴丝杠1驱动所述膜厚测量仪3沿X方向移动。采用图1b所示的移动装置可以提高将膜厚测量仪移动到预设位置的定位精度。
伺服电机是可通过外部信号(例如来自计算机的信号)控制的高精度运 动系统,主要功能是通过转动带动执行元件运动。如图1c所示,伺服电机通过分别设置于X轴丝杆、第一Y轴丝杠和第二Y轴丝杠端部的轴承(图1c中未标出)相应地控制这些丝杠的运动。
例如,如图1c所示,移动装置还可以包括导轨11,所述伺服电机还用于控制第一Y轴丝杠21和第二Y轴丝杠22驱动导轨11沿所述Y方向移动。这样,膜厚测量仪3可沿导轨11滑动,从而有利于使膜厚测量仪3可平稳地沿X方向移动。导轨11的数量可以为至少一个,图1c仅以两个导轨为例进行说明。
如图2所示,在测量时将图1b中装置位于掩膜板5的下方,待测基板4位于掩膜板5的上方,计算机(图2中未示出)控制膜厚测量仪3移动到待测基板4的预设坐标位置下方,膜厚测量仪3通过其包括的起偏镜头31和检偏镜头32监测膜厚。起偏镜头31发射出的偏振光入射到预设坐标位置处,该偏振光在样品表面被反射,检偏镜头32测量得到反射光的偏振态(幅度和相位);通过起偏镜头31可获知入射光的偏振态,从而通过计算入射光和反射光的幅度和相位差可拟合出材料的属性,得到实际膜厚。当然,膜厚测量仪3也可以采用本领域常用的其它厚度测量装置。
本发明的至少一个实施例还提供了一种利用上述膜厚控制系统控制膜厚的方法,如图3所示,该方法包括以下步骤。
步骤S310,采用膜厚测量仪测量待测基板上预定坐标的实际膜厚,并将实际膜厚反馈至计算机。
步骤S320,计算机判断实际膜厚是否超出预设膜厚的误差范围,若未超出,则结束整个流程,否则执行步骤S330。
步骤S330,实际膜厚超出预设膜厚误差范围时,计算机根据所述实际膜厚、预设膜厚及当前补偿值计算新补偿值,并将新的补偿值(即新的tooling值)反馈至蒸镀装置。
步骤S340,蒸镀装置根据新的补偿值对预定坐标处补偿蒸镀有机材料(例如有机发光材料、电子传输材料、电子注入材料、空穴传输材料或空穴注入材料等有机材料)。补偿蒸镀后返回步骤S310,反复执行步骤S310~S340,直到实际膜厚达到预设膜厚,即直至实际膜厚不超出预设膜厚的误差范围,例如不超过预设膜厚的3%~5%。
在步骤S310中,可以在蒸镀装置的蒸镀腔体内采用膜厚测量仪测量待测基板上预定坐标的实际膜厚。这样,有利于在计算出新补偿值之后在之前蒸镀的基础上继续蒸镀有机材料,
步骤S310中,由所述计算机控制所述移动装置将所述膜厚测量仪3移动到预定坐标。
例如,在步骤S320中,可以通过以下公式计算新补偿值,即:Ai=Ai-1×Ti/C,其中i=1,2,……,N,A0为初始补偿值,Ai为新的补偿值,Ai-1为当前补偿值,Ti为第i次测试膜厚的厚度,C为预设膜厚。
例如,初始补偿值可以为通过镀膜测试得到的补偿值。
由于显示面板中心区域显示质量的好坏确定了整个显示面板的显示质量,因此,在至少一个实施例中,例如,如图4所示,上述待测基板4可以包括多个面板41(这些面板在后续步骤中会被切割成单个面板),上述预定坐标可以为该待测基板上每个面板中心(如图4中的圆点所示)的坐标。
由于上述膜厚控制系统的移动装置的机械零点对应待测基板的中心,也是XY坐标系的中心,从而通过每个面板中心的坐标并且移动装置的机械零点可以容易地找到每个面板的中心。
本发明的至少一个实施例还提供一种蒸镀装置100,如图5所示,该蒸镀装置100包括上述任一实施例提供的膜厚控制系统(图5中只示出了该膜厚控制系统的膜厚测量仪3和移动装置01);该蒸镀装置100还包括蒸镀腔体110,膜厚控制系统的移动装置01和膜厚测量仪3设置于蒸镀腔体110中。
例如,蒸镀腔体110具有对应上述待测基板(图中未示出)的蒸镀区111(如图5中的虚线所示)和非蒸镀区112。在制作有机材料层的过程中,膜厚控制系统在进行每次蒸镀时位于蒸镀区111之外的非蒸镀区112中,以避免对有机材料层的蒸镀造成影响;当完成一次蒸镀时,膜厚控制系统的膜厚测量仪3被移动装置01移动到蒸镀区111中待测基板的要测量位置处,以测量该位置的实际膜厚;若测量得到的实际膜厚不满足要求,则在将膜厚测量仪3移出蒸镀区111(即移到非蒸镀区112中)之后,在之前蒸镀的基础上根据新的补偿值进行下一次蒸镀。
当然,蒸镀装置还可以包括加热源等结构,这里不作赘述。
本发明的至少一个实施例还提供了一种蒸镀方法,如图6a和图6b所示, 该蒸镀方法包括以下步骤S61至步骤S63。
步骤S61:利用第一补偿值在蒸镀装置的蒸镀腔体内进行第一蒸镀,以通过预设有机材料在基板60上形成第一薄膜61。
在该步骤中,可采用本发明上述实施例提供的蒸镀装置,这里不再赘述。
步骤S62:在蒸镀腔体内测量在基板60的预设位置处的实际膜厚,并根据该实际膜厚以及在该预设位置处的预设膜厚计算出第二补偿值。
在该步骤中,第二补偿值可根据上述步骤S320中的公式得出,即,第二补偿值=第一补偿值×步骤S62中测试得出的实际膜厚/预设膜厚。
步骤S63:利用第二补偿值在蒸镀腔体内进行第二蒸镀,以通过上述预设有机材料在第一薄膜61上形成所述第二薄膜62。
以形成有机发光材料层为例,如果在形成第二薄膜62后,在上述预设位置处的实际膜厚符合设计要求,则第一薄膜61和第二薄膜62整体上可作为希望得到的有机发光材料层;如果在形成第二薄膜62后在上述预设位置处的实际膜厚不符合设计要求,则计算出第三补偿值并利用第三补偿值在第二薄膜的基础上继续进行蒸镀。
当然,本发明实施例提供的方法也可以用于制作OLED面板中的其他有机材料层,例如电子传输层、电子注入层、空穴传输层和空穴注入层。
本发明实施例提供的膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法,通过在有机材料层的蒸镀工艺中采用膜厚测量仪在蒸镀装置的蒸镀腔体内部测量实际膜厚,将测量的实际膜厚与预设膜厚进行对比以计算新补偿值,并使蒸镀装置按新的补偿值进行补偿蒸镀,可在形成同一个有机材料层的过程中调整补偿值,从而可更加精确地控制OLED有机材料的蒸镀膜厚。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2015年9月21日递交的中国专利申请第201510605228.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种用于蒸镀装置的膜厚控制系统,包括:移动装置、膜厚测量仪及计算机,其中,
    所述膜厚测量仪安装在所述移动装置上,并连接所述计算机,用于从所述计算机获取待测基板的要测量位置的坐标点,并将测得的所述要测量位置的实际膜厚发送至所述计算机,
    所述计算机用于在所述实际膜厚不超出预设膜厚的误差范围时根据所述实际膜厚、所述预设膜厚及当前补偿值计算新补偿值,并将所述新补偿值发送至所述蒸镀装置用作补偿蒸镀参考。
  2. 根据权利要求1所述的膜厚控制系统,其中,所述膜厚测量仪可移动地安装在所述移动装置上。
  3. 根据权利要求1或2所述的膜厚控制系统,其中,所述移动装置包括X方向移动装置和Y方向移动装置,所述X方向移动装置配置为使所述膜厚测量仪沿X方向移动,所述Y方向移动装置配置为使所述膜厚测量仪沿Y方向移动,所述Y方向与所述X方向相交。
  4. 如权利要求1或2所述的膜厚控制系统,其中,所述移动装置包括:X轴丝杠、第一Y轴丝杠、第二Y轴丝杠和伺服电机,所述X轴丝杠垂直于所述第一Y轴丝杠和所述第二Y轴丝杠,所述X轴丝杠的两端分别可移动地安装在所述第一Y轴丝杠和所述第二Y轴丝杠上,所述膜厚测量仪可移动地安装在所述X轴丝杠上,所述伺服电机连接所述计算机,用于根据计算机指令控制所述第一Y轴丝杠和第二Y轴丝杠驱动X轴丝杠沿Y方向移动,并控制所述X轴丝杠驱动所述膜厚测量仪沿X方向移动。
  5. 根据权利要求4所述的膜厚控制系统,其中,所述移动装置还包括导轨,所述伺服电机还用于控制所述第一Y轴丝杠和第二Y轴丝杠驱动所述导轨沿所述Y方向移动。
  6. 一种膜厚控制方法,包括:
    采用膜厚测量仪测量待测基板上预定坐标的实际膜厚,并将所述实际膜厚反馈至计算机;
    当所述计算机判断出所述实际膜厚超出预设膜厚的误差范围时,根据所 述实际膜厚、所述预设膜厚及当前补偿值计算新补偿值,并将所述新补偿值反馈至蒸镀装置;以及
    所述蒸镀装置根据所述新补偿值对预定坐标处补偿蒸镀有机材料。
  7. 根据权利要求6所述的膜厚控制方法,其中,所述有机材料为有机发光材料。
  8. 根据权利要求6或7所述的膜厚控制方法,其中,反复执行以上步骤直到所述实际膜厚达到预定要求。
  9. 根据权利要求6~8任一项所述的方法,其中,在蒸镀装置的蒸镀腔体内采用所述膜厚测量仪测量所述待测基板上预定坐标的实际膜厚。
  10. 如权利要求6~9任一项所述的膜厚控制方法,其中,由所述计算机控制所述移动装置将所述膜厚测量仪移动到所述预定坐标。
  11. 如权利要求6~10任一项所述的膜厚控制方法,其中,根据Ai=Ai- 1×Ti/C计算所述新补偿值,其中i=1,2,……,N,A0为初始补偿值,Ai为新补偿值,Ai-1为当前补偿值,Ti为第i次测试的膜厚,C为所述预设膜厚。
  12. 如权利要求6~11中任一项所述的膜厚控制方法,其中,所述待测基板包括多个面板,所述预定坐标为所述待测基板上每个面板中心的坐标。
  13. 一种蒸镀装置,包括:
    根据权利要求1~5任一项所述的膜厚控制系统,以及
    蒸镀腔体,其中,所述膜厚控制系统的所述移动装置和所述膜厚测量仪设置于所述蒸镀腔体中。
  14. 一种蒸镀方法,包括:
    利用第一补偿值在蒸镀装置的蒸镀腔体内进行第一蒸镀,以通过预设有机材料在基板上形成第一薄膜;
    在所述蒸镀腔体内测量在所述基板的预设位置处的实际膜厚,并根据所述实际膜厚以及在所述预设位置处的预设膜厚计算出第二补偿值;以及
    利用所述第二补偿值在所述蒸镀腔体内进行第二蒸镀,以通过所述预设有机材料在所述第一薄膜上形成所述第二薄膜。
PCT/CN2016/073623 2015-09-21 2016-02-05 膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法 WO2017049841A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/312,766 US20170298501A1 (en) 2015-09-21 2016-02-05 Film Thickness Control System, Film Thickness Control Method, Evaporation Device and Evaporation Method
EP16794201.0A EP3354767A4 (en) 2015-09-21 2016-02-05 FILM THICKNESS CONTROL SYSTEM, FILM THICKNESS CONTROL METHOD, STEAM SEPARATION DEVICE AND STEAM SEPARATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510605228.8 2015-09-21
CN201510605228.8A CN105088172B (zh) 2015-09-21 2015-09-21 膜厚控制系统及膜厚控制方法

Publications (1)

Publication Number Publication Date
WO2017049841A1 true WO2017049841A1 (zh) 2017-03-30

Family

ID=54569484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073623 WO2017049841A1 (zh) 2015-09-21 2016-02-05 膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法

Country Status (4)

Country Link
US (1) US20170298501A1 (zh)
EP (1) EP3354767A4 (zh)
CN (1) CN105088172B (zh)
WO (1) WO2017049841A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088172B (zh) * 2015-09-21 2017-12-01 京东方科技集团股份有限公司 膜厚控制系统及膜厚控制方法
CN106854756A (zh) * 2015-12-09 2017-06-16 上海新微技术研发中心有限公司 一种物理气相沉积方法
CN110714194B (zh) * 2018-07-12 2024-04-12 中国科学院福建物质结构研究所 一种机械臂全自动浸泡式制备薄膜的装置
CN109468608A (zh) * 2018-12-25 2019-03-15 苏州方昇光电股份有限公司 线性蒸镀设备及其蒸镀线源控制方法
CN112212782B (zh) * 2019-06-25 2023-01-17 合肥欣奕华智能机器股份有限公司 一种玻璃基板检测方法、装置及系统
CN110438463A (zh) * 2019-07-29 2019-11-12 光驰科技(上海)有限公司 一种解决镀膜产品横向均匀性的方法及其镀膜装置
CN111446383B (zh) * 2020-04-08 2022-12-09 京东方科技集团股份有限公司 膜厚补偿方法、系统及存储介质
CN111926367B (zh) * 2020-08-25 2021-10-22 一汽解放青岛汽车有限公司 电泳工艺参数确定方法、装置、系统、设备和介质
CN113186496B (zh) * 2021-05-07 2023-01-17 辽宁分子流科技有限公司 一种智能蒸发镀膜方法
CN116590683B (zh) * 2023-05-05 2023-12-26 北京创思镀膜有限公司 一种光学薄膜及其制备方法、光学薄膜元件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104377A1 (en) * 2005-08-29 2009-04-23 Yoshida Hidehiro Vapor deposition head apparatus and method of coating by vapor deposition
CN101718540A (zh) * 2008-12-30 2010-06-02 四川虹欧显示器件有限公司 用于平板显示面板的涂敷膜厚测量装置和方法
CN102243065A (zh) * 2011-04-13 2011-11-16 浙江大学 一种基于背向补偿的透明基底薄膜厚度测量系统
CN102671835A (zh) * 2011-03-16 2012-09-19 东京毅力科创株式会社 涂敷膜形成方法和涂敷膜形成装置
US20140014917A1 (en) * 2012-07-10 2014-01-16 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
CN105088172A (zh) * 2015-09-21 2015-11-25 京东方科技集团股份有限公司 膜厚控制系统及膜厚控制方法
CN204918752U (zh) * 2015-09-21 2015-12-30 京东方科技集团股份有限公司 膜厚控制系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2014014A (en) * 1933-06-28 1935-09-10 Cardinal Products Inc Lighter
US4834021A (en) * 1987-12-14 1989-05-30 Rca Licensing Corporation Apparatus for controlling the distribution of evaporated material onto a surface
JP2832115B2 (ja) * 1992-09-25 1998-12-02 株式会社テック 薄膜製造装置
KR0165470B1 (ko) * 1995-11-08 1999-02-01 김광호 반도체 소자의 박막형성 프로그램의 자동보정 시스템
KR100251279B1 (ko) * 1997-12-26 2000-04-15 윤종용 반도체 제조용 증착설비의 막두께 조절방법
AU2001251378A1 (en) * 2000-04-06 2001-10-23 Solid Terrain Modeling Hi-accuracy three-dimensional topographic modeling apparatus
JP2002373843A (ja) * 2001-06-14 2002-12-26 Nec Corp 塗布装置及び塗布膜厚制御方法
US7828929B2 (en) * 2004-12-30 2010-11-09 Research Electro-Optics, Inc. Methods and devices for monitoring and controlling thin film processing
KR100803046B1 (ko) * 2007-03-28 2008-02-18 에스엔유 프리시젼 주식회사 비전 검사 시스템 및 이것을 이용한 피검사체의 검사 방법
EP2305594B1 (en) * 2008-07-23 2015-04-08 Daifuku Co., Ltd. Learning device and learning method in article conveyance facility
CN202753608U (zh) * 2010-05-28 2013-02-27 任德坚 流体薄膜监控装置
KR102084707B1 (ko) * 2012-12-03 2020-04-16 삼성디스플레이 주식회사 증착원, 이를 포함한 증착 장치 및 증착 방법
KR20140080816A (ko) * 2012-12-18 2014-07-01 삼성디스플레이 주식회사 증착 장치 및 증착 방법
US9700908B2 (en) * 2012-12-27 2017-07-11 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
WO2014105557A1 (en) * 2012-12-27 2014-07-03 First Solar, Inc. Method and system for in-line real-time measurements of layers of multilayered front contacts of photovoltaic devices and calculation of opto-electronic properties and layer thicknesses thereof
US11141752B2 (en) * 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
CN103160798A (zh) * 2013-02-26 2013-06-19 上海和辉光电有限公司 侦测蒸发源的装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104377A1 (en) * 2005-08-29 2009-04-23 Yoshida Hidehiro Vapor deposition head apparatus and method of coating by vapor deposition
CN101718540A (zh) * 2008-12-30 2010-06-02 四川虹欧显示器件有限公司 用于平板显示面板的涂敷膜厚测量装置和方法
CN102671835A (zh) * 2011-03-16 2012-09-19 东京毅力科创株式会社 涂敷膜形成方法和涂敷膜形成装置
CN102243065A (zh) * 2011-04-13 2011-11-16 浙江大学 一种基于背向补偿的透明基底薄膜厚度测量系统
US20140014917A1 (en) * 2012-07-10 2014-01-16 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
CN105088172A (zh) * 2015-09-21 2015-11-25 京东方科技集团股份有限公司 膜厚控制系统及膜厚控制方法
CN204918752U (zh) * 2015-09-21 2015-12-30 京东方科技集团股份有限公司 膜厚控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3354767A4 *

Also Published As

Publication number Publication date
CN105088172A (zh) 2015-11-25
CN105088172B (zh) 2017-12-01
US20170298501A1 (en) 2017-10-19
EP3354767A4 (en) 2019-05-15
EP3354767A1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2017049841A1 (zh) 膜厚控制系统、膜厚控制方法、蒸镀装置和蒸镀方法
TWI752163B (zh) 用於製造電子產品的層的方法與設備
KR100716704B1 (ko) 퇴적 두께 측정 방법, 재료층의 형성 방법, 퇴적 두께 측정장치 및 재료층의 형성 장치
US20070231460A1 (en) Film formation method
US20120103255A1 (en) Alignment method, alignment apparatus, and organic el element manufacturing apparatus
KR20100028836A (ko) 증착장치 및 이를 이용한 증착방법
US20120114839A1 (en) Vacuum vapor deposition system
US20120114837A1 (en) Film formation apparatus and film formation method
KR20160064938A (ko) 광학 위치 맞춤 보상 장치, 부착도 검출 장치, 증착 시스템 및 그 증착 방법
US20120114838A1 (en) Film formation apparatus
US20120114833A1 (en) Film formation apparatus and film formation method
JP2012112034A (ja) 真空蒸着装置
US9064740B2 (en) Measurement device and method for vapour deposition applications
JP2014515789A5 (zh)
JP2005281858A (ja) 堆積厚測定方法、材料層の形成方法、堆積厚測定装置および材料層の形成装置
JP2022128476A (ja) リフト装置
US20140168624A1 (en) Exposure apparatus, method of controlling the same, and alignment method for exposure
CN208104523U (zh) 载台机构和蒸镀设备
US6319323B1 (en) System and method for adjusting a working distance to correspond with the work surface
KR101593682B1 (ko) 증착두께 측정장치
CN204918752U (zh) 膜厚控制系统
CN207197407U (zh) 一种用于测量X‑Ray钻孔机的钻孔精度的治具
JP2009221496A (ja) 薄膜形成装置及び薄膜の製造方法
KR20150063727A (ko) 기판의 얼라인 장치 및 방법
CN108950484B (zh) 蒸镀装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15312766

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016794201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016794201

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16794201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE