WO2017047782A1 - 直動回転駆動装置 - Google Patents

直動回転駆動装置 Download PDF

Info

Publication number
WO2017047782A1
WO2017047782A1 PCT/JP2016/077536 JP2016077536W WO2017047782A1 WO 2017047782 A1 WO2017047782 A1 WO 2017047782A1 JP 2016077536 W JP2016077536 W JP 2016077536W WO 2017047782 A1 WO2017047782 A1 WO 2017047782A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive
magnetic
phase
sensor substrate
pattern
Prior art date
Application number
PCT/JP2016/077536
Other languages
English (en)
French (fr)
Inventor
博徳 黒沢
聡一 渡部
克也 森山
英吉 有賀
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to US15/759,849 priority Critical patent/US20190049230A1/en
Priority to CN201680053948.0A priority patent/CN108028593A/zh
Publication of WO2017047782A1 publication Critical patent/WO2017047782A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/90Two-dimensional encoders, i.e. having one or two codes extending in two directions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the linear motion rotation scale includes a linear motion scale at a position facing the linear motion detector, and includes a rotation case at a position facing the rotation detector.
  • the rotational linear motion scale of Patent Document 1 is an integral body in which the linear motion scale and the rotational scale are arranged in the axial direction.
  • the linear motion scale usually has a length corresponding to the linear motion distance of the output shaft.
  • the rotation scale has a length corresponding to the linear movement distance of the output shaft so that the state facing the rotation detector can be maintained even when the output shaft linearly moves. Therefore, the rotation / linear motion scale in which the linear motion scale and the rotation scale are integrated in the axial direction is enlarged in the axial direction.
  • the magnetic scale attached to the output shaft is increased in size, the weight thereof increases, so that there is a problem that inertia when the output shaft is linearly moved or rotated is increased.
  • the first magnetic detection element and the second magnetic detection element include: Arranged to face the magnetized pattern, the magnetic scale, Serial linear motor unit, the rotary motor portion and the bearing is characterized in that it is arranged coaxially.
  • the first magnetic detection element is a magnetoresistive element, and an A-phase first magnetoresistive pattern and a B-phase first magnetoresistive that detect linear motion of the magnetic scale with a phase difference of 90 ° from each other.
  • the A-phase first magnetoresistive pattern and the B-phase first magnetoresistive pattern are stacked on the sensor substrate, and the A-phase second magnetoresistive pattern and the B-phase second magnetoresistive pattern are stacked.
  • the magnetoresistive pattern may be laminated on the sensor substrate.
  • the width of the first magnetic detection element in the direction corresponding to the axis of the magnetic scale on the sensor substrate is compared with the height in the direction corresponding to the axial direction of the magnetic scale on the sensor substrate.
  • the width of the second magnetic detection element in the direction corresponding to the axis of the magnetic scale on the sensor substrate is compared with the height in the direction corresponding to the axial direction of the magnetic scale on the sensor substrate. It is desirable to be short. That is, the magnetization pattern for detecting the change of the magnetic field by the first magnetic detection element and the second magnetic detection element is provided on the circumferential surface of the magnetic scale.
  • the gap between the magnetic scale (magnetization pattern) and the sensor substrate changes in the circumferential direction of the magnetic scale. Therefore, by laminating the A-phase first magnetoresistive pattern and the B-phase first magnetoresistive pattern constituting the first magnetic sensing element on the sensor substrate, it corresponds to the circumferential direction of the magnetic scale in the first magnetic sensing element. If the width in the direction to be reduced is suppressed, it is possible to suppress the influence of the magnetic intensity portion caused by the gap fluctuation between the magnetic scale and the sensor substrate on the output from the first magnetic detection element.
  • the center in the width direction of the first magnetic detection element and the center in the width direction of the second magnetic detection element face the vertex of the curvature of the magnetic scale. In this way, a sine wave with less distortion can be obtained for the output from the first magnetic detection element and the output from the second magnetic detection element.
  • the linear motor unit and the rotary motor unit may be arranged at different positions in the axial direction.
  • the rotary motor unit when the rotary motor unit is configured on the outer peripheral side of the linear motor unit and the linear motor unit and the rotary motor unit are coaxially arranged at the same position in the axial direction, or on the outer peripheral side of the rotary motor unit.
  • the linear motor unit is configured and the linear motor unit and the rotary motor unit are coaxially arranged at the same position in the axial direction, it is easy to make the device smaller in the radial direction.
  • the magnetic scale of the linear rotation position detector can be reduced in the axial direction. Since it becomes easy to suppress the weight of a magnetic scale to this, the inertia resulting from the magnetic scale attached to the output shaft when linearly rotating or rotating an output shaft can be suppressed.
  • the linear motion rotation drive device 1 includes a linear motion rotation detector 7 for detecting the linear motion position and the rotational position of the output shaft 2.
  • the linear rotation detector 7 includes a cylindrical magnetic scale 8 that is coaxially fixed to the output shaft 2 and a magnetic sensor 9 that faces the magnetic scale 8 from a direction orthogonal to the axis L.
  • the magnetic scale 8, the linear motor unit 3, the rotary motor unit 4, and the ball spline bearing 5 of the linear motion rotation detector 7 are arranged coaxially in this order from one side of the axial direction X to the other side. Yes.
  • the axial direction is X
  • the axis is ⁇ .
  • the linear motor unit 3 includes a mover 11 and a stator 12.
  • the mover 11 includes an output shaft 2 and a plurality of permanent magnets 13 fixed to the outer peripheral surface of the output shaft 2.
  • Each permanent magnet 13 has an annular shape, and an N pole and an S pole are magnetized in the axial direction X.
  • the plurality of permanent magnets 13 face each other with the adjacent permanent magnets 13 facing the same pole. In this example, ten permanent magnets 13 are fixed to the output shaft 2.
  • Each coil unit 19 has four side surfaces around the axis ⁇ . As shown in FIG. 1, one of the four side surfaces is a substrate fixing surface 19a. As shown in FIG. 3, the start end 17 a and the end end 17 b of each coil 17 in the coil unit 19 are exposed (protruded) from the substrate fixing surface 19 a. Each coil unit 19 is connected in a posture in which the substrate fixing surface 19a is directed in the same direction.
  • the wiring substrate 16 is fixed to a flat surface (substrate fixing surface of the coil array 15) formed by arranging the substrate fixing surfaces 19 a of the coil units 19 in the axial direction X.
  • the wiring board 16 is connected to the start end 17 a and the end end 17 b of each coil 17 of each coil unit 19.
  • FIG. 5B shows the left side of the upper stage, in the case where the first magnetoresistive element 41 is formed in two layers on the substrate surface 40a, the magnetic scale 8 when viewed from the axial direction X, and the first magnetoresistive element 41.
  • FIG. 5B is an explanatory diagram of the positional relationship between the sensor substrate 40 and the upper middle diagram of FIG. 5B shows the arrangement of the magnetoresistive pattern when the first magnetoresistive element 41 is formed in two layers on the substrate surface 40a.
  • FIG. 5B is an explanatory diagram, and the diagram on the right side of the upper stage of FIG. 5B schematically illustrates a cross section of the first magnetoresistive element 41 along the line XX in the center diagram of the upper stage of FIG. FIG. FIG.
  • FIG. 5 (c) shows the magnetic scale 8 when viewed from the axial direction X and the first magnetoresistive element 41 when the first magnetoresistive element 41 and the second magnetoresistive element 42 are stacked.
  • FIG. 5C is an explanatory diagram of the positional relationship between the second magnetoresistive element 42 and the sensor substrate 40, and the diagram on the right side of FIG. 5C shows the arrangement of the first magnetoresistive element 41 and the second magnetoresistive element 42 on the substrate surface 40a. It is explanatory drawing of.
  • FIG. 6 is an explanatory diagram of a circuit formed by the magnetoresistive elements 41 and 42.
  • the first magnetoresistive element 41 detects a rotating magnetic field using the saturation sensitivity region of the magnetoresistive element. In other words, the first magnetoresistive element 41 detects a rotating magnetic field in which the direction in the in-plane direction changes at the boundary portion by applying a magnetic field intensity at which the resistance value is saturated while applying a current to a magnetoresistive pattern described later. .
  • the + a phase first magnetoresistive pattern SIN + and the + b phase first magnetoresistive pattern COS + are located on the sensor substrate 40 at positions where the same wavelength obtained from the magnetic scale 8 can be detected with a phase difference of 90 °. Is formed. Further, the first magnetoresistive pattern SIN- of the -a phase and the first magnetoresistive pattern COS- of the -b phase detect the same wavelength obtained from the magnetic scale 8 on the sensor substrate 40 with a phase difference of 90 °. It is formed in a possible position.
  • the first magnetoresistive pattern COS ⁇ of the phase can be formed as a single layer on the substrate surface 40a in such an arrangement that the first magnetoresistive patterns SIN +, SIN ⁇ , COS +, and COS ⁇ do not overlap each other.
  • the first magnetoresistive element 41 and the second magnetoresistive element 42 have the same center in the width direction (direction corresponding to the axis around the magnetic scale 8). Therefore, in the stacked first magnetoresistive element 41 and second magnetoresistive element 42, the width W in the direction corresponding to the axial direction ⁇ of the magnetic scale 8 is the first width in the direction corresponding to the axial direction X of the magnetic scale 8. It is shorter than the height H of the magnetoresistive element 41. Further, the center in the width direction of the laminated first magnetoresistive element 41 and second magnetoresistive element 42 is opposed to the apex of the curvature of the magnetized pattern 37 provided on the circumferential surface of the cylindrical magnetic scale 8. Placed in position. Therefore, it is possible to suppress the influence of the magnetic strength portion due to the gap fluctuation caused by the curvature between the magnetic scale 8 and the sensor substrate 40 for the outputs of the first magnetoresistive element 41 and the second magnetoresistive element 42.
  • the output is performed from each of the first magnetoresistive element 41 and the second magnetoresistive element 42.
  • the quality of the analog signal is improved. That is, an output close to an ideal sine wave can be obtained as an analog signal.
  • the magnetic scale 8 is reduced in diameter (reduced in diameter). )it can. Therefore, the linear motion rotation detector 7 can be reduced in size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Linear Motors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】出力軸を直動或いは回転させる際に出力軸に取り付けた磁気スケールに起因するイナーシャを抑制できる直動回転駆動装置を提供すること。 【解決手段】直動回転駆動装置1は、出力軸2、リニアモータ部3、回転モータ部4、ボールスプライン軸受5、磁気スケール8、直動検出用の第1磁気検出素子41、および、回転検出用の第2磁気検出素子42を有する。磁気スケール8は、軸線L回りの円周面に、軸線L方向にS極とN極とが交互に配列され、かつ、軸線L回りにS極とN極とが交互に着磁された格子状の着磁パターン37を備える。第1磁気検出素子41および第2磁気検出素子42は、着磁パターン37に対向して配置される。同一の着磁パターン37に対向させた第1磁気検出素子41と第2磁気検出素子42とにより直動位置と回動位置を検出できるので、直動回転検出器7が軸線L方向に大型化せず、重量が増加しない。

Description

直動回転駆動装置
 本発明は、出力軸の直動位置および回転位置を検出する直動回転検出器を備える直動回転駆動装置に関する。
 出力軸を直動および回転させるモータ部と、出力軸の直動位置および回転位置を検出する直動回転検出器を有する直動回転駆動装置は特許文献1に記載されている。特許文献1では、直動回転検出器は、出力軸に同軸に固定された直動回転スケールと、直動回転スケールに対向して出力軸の直動位置を検出する直動検出器と、直動回転スケールに対向して出力軸の回転位置を検出する回転検出器とを備える。
 特許文献1では、直動検出器と回転検出器とは、軸線方向の異なる位置に配置されている。従って、直動回転スケールは、直動検出器と対向する位置に直動スケールを備え、回転検出器と対向する位置に回転スケースを備える。換言すれば、特許文献1の回転直動スケールは、直動スケールと回転スケールを軸線方向に配列して一体としたものである。
特開2011-239661号公報
 直動スケールは、通常、出力軸の直動距離に対応する長さを備える。また、回転スケールは、出力軸が直動した場合でも回転検出器と対向した状態を維持できるように、出力軸の直動距離に対応する長さを備える。従って、直動スケールと回転スケールを軸線方向に配列して一体とした回転直動スケールは、軸線方向で大型化する。ここで、出力軸に取り付けられる磁気スケールが大型化すると、その重量が増加するので、出力軸を直動或いは回転させる際のイナーシャが大きくなるという問題がある。
 以上の問題点に鑑みて、本発明の課題は、出力軸を直動或いは回転させる際に出力軸に取り付けた磁気スケールに起因するイナーシャを抑制できる直動回転駆動装置を提供することにある。
 上記課題を解決するために、本発明の直動回転駆動装置は、出力軸と、前記出力軸を軸線に沿って移動させるリニアモータ部と、前記出力軸を軸線回りに回転させるための回転モータ部と、前記出力軸を軸線方向に移動可能に支持するとともに前記回転モータ部の駆動力を前記出力軸に伝達する軸受と、前記出力軸に同軸に固定された筒状の磁気スケールと、直動検出用の第1磁気検出素子と、回転検出用の第2磁気検出素子と、を有し、前記磁気スケールは、前記軸線回りの円周面に、前記軸線方向にS極とN極とが交互に配列され、かつ、前記軸線回りにS極とN極とが交互に着磁された格子状の着磁パターンを備え、前記第1磁気検出素子および前記第2磁気検出素子は、前記着磁パターンに対向して配置され、前記磁気スケール、前記リニアモータ部、前記回転モータ部および軸受は同軸に配置されていることを特徴とする。
 本発明によれば、磁気スケールが、軸線回りの周面に、軸線方向にS極とN極とが交互に配列され、かつ、軸線回りにS極とN極とが交互に着磁された格子状の着磁パターンを備える。ここで、格子状の着磁パターンは、S極とN極とが軸線方向で交互に配列されて軸線方向に延びるトラックを周方向に並列に複数備えるものである。また、格子状の着磁パターンは、S極とN極とが周方向で交互に配列されて周方向に延びるトラックを軸線方向に並列に複数備えるものである。従って、軸線方向に延びる複数列のトラックが軸線方向に移動したときの磁界の変化を直動位置検出用の第1磁気検出素子によって検出することにより直動位置を検出できる。また、周方向に延びる複数列のトラックが軸線回りに回転したときの磁界の変化を回転位置検出用の第2磁気検出素子によって検出することにより回転位置を検出できる。すなわち、本発明では、同一の着磁パターンに対向させた第1磁気検出素子と第2磁気検出素子とにより直動位置と回動位置を検出できる。従って、直動スケールと回転スケールとを軸線方向に配列する必要がなく、磁気スケールの軸線方向の長さ寸法を、出力軸の直動距離に対応する長さ寸法に抑えることができる。これにより、磁気スケールの重量が増加することを抑制できるので、出力軸を直動或いは回転させる際のイナーシャを抑制できる。また、磁気スケール、リニアモータ部、回転モータ部が出力軸と同軸に配置されているので、出力軸を直動、回転させる際に、出力軸が振動することを抑制できる。
 本発明において、前記第1磁気検出素子を備える第1センサ基板と、前記第2磁気検出素子を備える第2センサ基板と、を有し、前記第1センサ基板と前記第2センサ基板とは、前記軸線方向の同じ位置に配置されているものとすることができる。すなわち、第1磁気検出素子と第2磁気検出素子は一つの磁気スケールに設けられた同一の着磁パターンに対向して配置されるので、第1磁気検出素子が実装された第1センサ基板と第2磁気検出素子が実装された第2センサ基板とを軸線方向の異なる位置に配置する必要がなく、これら2つのセンサ基板を軸線方向における同じ位置に配置できる。よって、直動回転検出器が軸線方向に大型化することを抑制できる。
 本発明において、前記第1磁気検出素子および前記第2磁気検出素子を備えるセンサ基板を有するものとすることができる。すなわち、第1磁気検出素子と第2磁気検出素子は一つの磁気スケールに設けられた同一の着磁パターンに対向して配置されるので、第1磁気検出素子と第2磁気検出素子を1枚のセンサ基板に備えることが可能となる。ここで、第1磁気検出素子と第2磁気検出素子を1枚のセンサ基板に実装すれば、直動回転検出器を、より、小型化できる。
 この場合において、前記第1磁気検出素子は、磁気抵抗素子であり、互いに90°の位相差で前記磁気スケールの直動を検出するA相の第1磁気抵抗パターンおよびB相の第1磁気抵抗パターンを備え、前記第2磁気検出素子は、磁気抵抗素子であり、互いに90°の位相差で前記磁気スケールの回転を検出するA相の第2磁気抵抗パターンおよびB相の第2磁気抵抗パターンを備え、前記A相の第1磁気抵抗パターンと前記B相の第1磁気抵抗パターンとは前記センサ基板上で積層されており、前記A相の第2磁気抵抗パターンと前記B相の第2磁気抵抗パターンとは前記センサ基板上で積層されているものとすることができる。第1磁気検出素子を構成するA相の第1磁気抵抗パターンおよびB相の第1磁気抵抗パターンをセンサ基板上で積層すれば、センサ基板上における第1磁気抵抗素子を各磁気抵抗パターンを積層せずにセンサ基板上形成した場合と比較して、これらの実装面積を小さくすることができる。また、第2磁気検出素子を構成する第2磁気抵抗パターンと第2磁気抵抗パターンをセンサ基板上で積層すれば、センサ基板上における第2磁気抵抗素子を各磁気抵抗パターンを積層せずにセンサ基板上に形成した場合と比較して、これらの小さくすることができる。この結果、センサ基板を小さくできるので、直動回転検出器を小型化することが容易となる。
 本発明において、前記第1磁気検出素子は、前記センサ基板上における前記磁気スケールの軸線回りに対応する方向の幅が、前記センサ基板上における前記磁気スケールの軸線方向に対応する方向の高さと比較して短く、前記第2磁気検出素子は、前記センサ基板上における前記磁気スケールの軸線回りに対応する方向の幅が、前記センサ基板上における前記磁気スケールの軸線方向に対応する方向の高さと比較して短いことが望ましい。すなわち、第1磁気検出素子および第2磁気検出素子が磁界の変化を検出する着磁パターンは、磁気スケールの円周面に設けられている。従って、センサ基板を軸線と平行な姿勢として磁気スケールの円周面と対向させたときに、磁気スケール(着磁パターン)とセンサ基板との間のギャップは磁気スケールの周方向で変化する。よって、第1磁気検出素子を構成するA相の第1磁気抵抗パターンおよびB相の第1磁気抵抗パターンをセンサ基板上で積層することにより、第1磁気検出素子における磁気スケールの周方向に対応する方向の幅を短く抑えれば、第1磁気検出素子からの出力について、磁気スケールとセンサ基板との間のギャップ変動に起因する磁気強度部分の影響を抑制できる。また、第2磁気検出素子を構成するA相の第2磁気抵抗パターンおよびB相の第2磁気抵抗パターンをセンサ基板上で積層することにより、第2磁気検出素子における磁気スケールの周方向に対応する方向の幅を短く抑えれば、第2磁気検出素子からの出力について、磁気スケールとセンサ基板との間のギャップ変動に起因する磁気強度部分の影響を抑制できる。さらに、第1磁気検出素子および第2磁気検出素子のそれぞれで磁気スケールの周方向に対応する方向の幅を短く抑えれば、磁気スケールの細径化が可能となる。
 この場合において、前記第1磁気検出素子の幅方向の中心および前記第2磁気検出素子の幅方向の中心は、前記磁気スケールの曲率の頂点と対向することが望ましい。このようにすれば、第1磁気検出素子からの出力および第2磁気検出素子からの出力について、歪みの少ない正弦波を得ることができる。
 本発明において、前記第1磁気検出素子と前記第2磁気検出素子とは、前記センサ基板上で積層されていることが望ましい。このようにすれば、第1磁気検出素子と第2磁気検出素子とを積層せずにセンサ基板上に形成した場合と比較して、これらの実装面積を小さくすることができる。この結果、センサ基板を小さくできるので、直動回転検出器を小型化することが容易となる。
 本発明において、前記リニアモータ部と前記回転モータ部とは、前記軸線方向の異なる位置に配置されているものとすることができる。このようにすれば、リニアモータ部の外周側に回転モータ部を構成してリニアモータ部と回転モータ部とを軸線方向の同じ位置に同軸に配置する場合、或いは、回転モータ部の外周側にリニアモータ部を構成してリニアモータ部と回転モータ部とを軸線方向の同じ位置に同軸に配置する場合と比較して、装置を径方向で小さくすることが容易となる。
 本発明によれば、直動回転位置検出器の磁気スケールを軸線方向で小型化できる。これに磁気スケールの重量を抑制することが容易となるので、出力軸を直動或いは回転させる際に出力軸に取り付けた磁気スケールに起因するイナーシャを抑制できる。
本発明の直動回転検出器を備えた直動回転駆動装置の外観斜視図である。 図1の直動回転駆動装置を軸線を含む面で切断した断面図である。 図1の直動回転駆動装置の分解斜視図である。 直動回転検出器の説明図である。 直動回転検出器の磁気センサの説明図である。 磁気センサの磁気抵抗素子が構成する回路の説明図である。 変形例の磁気センサの説明図である。 変形例の直動回転検出器の説明図である。
 図面を参照して、本発明の実施の形態を説明する。
(直動回転駆動装置)
 図1は本発明の直動回転検出器を備えた直動回転駆動装置の外観斜視図である。図2は図1の直動回転駆動装置を軸線を含む面で切断した断面図である。図3は図1の直動回転駆動装置の分解斜視図である。図1に示すように、直動回転駆動装置1は、出力軸2と、出力軸2を軸線Lに沿って移動させるリニアモータ部3と、出力軸2を軸線回りθに回転させる回転モータ部4と、ボールスプライン軸受(軸受)5を備える。ボールスプライン軸受5は、出力軸2を軸線方向Xに移動可能に支持するとともに回転モータ部4の駆動力を出力軸2に伝達する。
 また、直動回転駆動装置1は、出力軸2の直動位置および回転位置を検出するための直動回転検出器7を備える。直動回転検出器7は、出力軸2に同軸に固定された筒状の磁気スケール8と、軸線Lと直交する方向から磁気スケール8に対向する磁気センサ9を備える。
 直動回転検出器7の磁気スケール8、リニアモータ部3、回転モータ部4、および、ボールスプライン軸受5は、軸線方向Xの一方側から他方側に向って、この順番で同軸に配置されている。なお、以下の説明では、軸線方向をXとし、軸線回りをθとする。
(リニアモータ部)
 図2に示すように、リニアモータ部3は可動子11と固定子12とを有する。可動子11は出力軸2と出力軸2の外周面に固定した複数の永久磁石13を備える。各永久磁石13は、環状であり、軸線方向XにN極とS極とが着磁されている。複数の永久磁石13は、隣り合う永久磁石13同士が互いに同一の極を向けて対向する。本例では出力軸2に10個の永久磁石13が固定されている。
 固定子12は可動子11の外周側に位置する。図1、2に示すように、固定子12は、同軸に配列した複数のコイル17を備える筒状のコイル配列体15と、コイル配列体15に固定された配線基板16を備える。
 図2、3に示すように、コイル配列体15は、軸線方向Xで隣り合う3つのコイル17を樹脂18により一体に被い固めた筒状のコイルユニット19を、複数、備える。各コイルユニット19は軸線方向Xで同軸に連結され、これによりコイル配列体15が構成されている。本例では、コイル配列体15は7つのコイルユニット19を備える。従って、コイル配列体15は21個のコイル17を備える。
 各コイルユニット19を軸線方向Xから見た場合の輪郭形状は矩形である。また、各コイルユニット19は、輪郭形状を構成する矩形の各辺の長さよりも軸線方向Xの高さ寸法が短い偏平形状である。各コイルユニット19の軸線方向Xの長さ寸法は、可動子11に固定された各永久磁石13の軸線方向Xの長さ寸法の2倍程度である。
 各コイルユニット19は軸線回りθに4つの側面を備える。図1に示すように、4つの側面のうちの一つの側面は基板固定面19aとなっている。図3に示すように、基板固定面19aからはコイルユニット19内の各コイル17の始端17aと終端17bが外側に露出(突出)している。各コイルユニット19は基板固定面19aを同一方向に向けた姿勢で連結される。配線基板16は、各コイルユニット19の基板固定面19aが軸線方向Xに並ぶことにより形成された平坦面(コイル配列体15の基板固定面)に固定される。配線基板16には各コイルユニット19の各コイル17の始端17aおよび終端17bが接続される。
 ここで、リニアモータ部3は3相モータであり、各コイルユニット19の3つのコイル17は、リニアモータ部3を駆動する際に、それぞれU相のコイル17(U)、V相のコイル17(V)、W相のコイル17(W)として機能する。リニアモータ部3では給電するコイル17を軸線方向Xに移動させながら可動子11を軸線方向Xに移動させる。
(回転モータ部)
 回転モータ部4は可動子21と固定子22とを有する。可動子21は出力軸2が貫通する中空のナットシャフト23を備える。図3に示すように、ナットシャフト23は、小径筒部23aと、小径筒部23aよりも大径の大径筒部23bを備える。大径筒部23bは小径筒部23aのボールスプライン軸受5の側に連続して設けられている。また、可動子21は、ナットシャフト23の小径筒部23aの外周面に固定された筒状のヨーク24と、ヨーク24の外周面に固定された筒状の永久磁石25を備える。永久磁石25は、筒状であり、軸線回りθ(周方向)にN極とS極が交互に複数着磁されている。
 固定子22は永久磁石25の外周側に位置する。固定子22は、永久磁石25を外周側から囲む筒状のヨーク26と、ヨーク26の内周面に固定された複数のコイル27を備える。各コイル27は、その中空部を軸線Lと直交する半径方向に向けた姿勢でヨーク26に固定されている。複数のコイル27は軸線回りθに配列されている。本例では、固定子22は6つのコイル27を備える。ヨーク26はケース28により外周側から保持されている。ケース28を軸線方向Xから見た場合の輪郭形状は正方形である
 コイル27への給電によりナットシャフト23は軸線回りθに回転する。ここで、ナットシャフト23の大径筒部23bの内周側には、ボールスプライン軸受5を構成するボールナット31が配置されている。なお、図2において、ボールスプライン軸受5を構成するボールおよび出力軸2に設けられたスプラインは省略されている。ナットシャフト23の回転は、ボールナット31を介して出力軸2に伝達される。従って、回転モータ部4が駆動されると出力軸2は回転する。ナットシャフト23の大径筒部23bは、軸受ケース32により覆われている。軸受ケース32を軸線方向Xから見た場合の輪郭形状は正方形である。本形態の回転モータ部4を用いれば、可動子21が軸線方向Xに移動せずとも、出力軸2だけが軸線方向Xに移動可能なため、回転モータ部4の小型化を図ることが可能である。
(直動回転検出器)
 図4は直動回転検出器7の説明図である。図4に示すように、磁気スケール8は円筒状である。図1乃至3に示すように、磁気スケール8は、その中心孔に出力軸2を貫通させた状態で出力軸2に同軸に固定されている。磁気スケール8は、出力軸2と一体に軸線方向Xに直動するとともに軸線回りθに回転する。
 磁気スケール8は、出力軸2への固定部となる筒部材35と、筒部材35の外周側に固定された環状の永久磁石36を備える。永久磁石36は、軸線回りθの円周面に、軸線方向XにS極とN極とが交互に配列され、かつ、軸線回りθにS極とN極とが交互に着磁された格子状の着磁パターン37を備える。ここで、格子状の着磁パターン37は、軸線方向XにS極とN極とが交互に配列されて軸線方向Xに延びる軸方向トラック37aを軸線回りθに並列に複数備えるものである。また、格子状の着磁パターン37は、軸線回りθにS極とN極とが交互に配列されて軸線回りθに延びる周方向トラック37bを軸線方向Xに並列に複数備えるものである。
 磁気センサ9は、軸線Lと平行な姿勢で軸線Lと直交する方向から磁気スケール8に対向するセンサ基板40を備える。また、磁気センサ9は、センサ基板40において磁気スケール8に対向する基板表面40aに形成された直動位置検出用の第1磁気抵抗素子(第1磁気検出素子)41と回転位置検出用の第2磁気抵抗素子(第2磁気検出素子)42を備える。
(第1磁気抵抗素子)
 図5は磁気センサ9の説明図である。図5(a)の上段の左側の図は基板表面40aに第1磁気抵抗素子41を単層で形成した場合において、軸線方向Xから見た場合の磁気スケール8と、第1磁気抵抗素子41およびセンサ基板40の位置関係の説明図であり、図5(a)の上段の右側の図は、基板表面40aに第1磁気抵抗素子41を単層で形成した場合における磁気抵抗パターンの配置の説明図である。図5(a)の下段の左側の図は基板表面40aに第2磁気抵抗素子42を単層で形成した場合において、軸線方向Xから見た場合の磁気スケール8と、第2磁気抵抗素子42およびセンサ基板40の位置関係の説明図であり、図5(a)の下段の右側の図は、基板表面40aに第2磁気抵抗素子42を単層で形成した場合における磁気抵抗パターンの配置の説明図である。
 図5(b)の上段の左側の図は基板表面40aに第1磁気抵抗素子41を2層で形成した場合において、軸線方向Xから見た場合の磁気スケール8と、第1磁気抵抗素子41およびセンサ基板40の位置関係の説明図であり、図5(b)の上段の中央の図は、基板表面40aに第1磁気抵抗素子41を2層で形成した場合における磁気抵抗パターンの配置の説明図であり、図5(b)の上段の右側の図は、図5(b)の上段の中央の図のX-X線における第1磁気抵抗素子41の断面を模式的に示した説明図である。図5(b)の下段の左側の図は基板表面40aに第2磁気抵抗素子42を2層で形成した場合において、軸線方向Xから見た場合の磁気スケール8と、第2磁気抵抗素子42およびセンサ基板40の位置関係の説明図であり、図5(b)の下段の中央の図は、基板表面40aに第2磁気抵抗素子42を2層で形成した場合における磁気抵抗パターンの配置の説明図であり、図5(b)の下段の右側の図は、図5(b)の下段の中央の図のY-Y線における第2磁気抵抗素子42の断面を模式的に示した説明図である。図5(c)の左側の図は、第1磁気抵抗素子41と第2磁気抵抗素子42とを積層した場合において、軸線方向Xから見た場合の磁気スケール8と、第1磁気抵抗素子41、第2磁気抵抗素子42およびセンサ基板40の位置関係の説明図であり、図5(c)の右側の図は、基板表面40aにおける第1磁気抵抗素子41と第2磁気抵抗素子42の配置の説明図である。図6は各磁気抵抗素子41、42が構成する回路の説明図である。
 第1磁気抵抗素子41は、その感磁方向を軸線方向Xに向けている。従って、第1磁気抵抗素子41は、磁気スケール8の着磁パターン37を、S極とN極とが交互に配列されて軸線方向Xに延びる軸方向トラック37aを軸線回りθに複数列備えるものとして、磁気スケール8が移動したときの磁界の変化を検出する。ここで、第1磁気抵抗素子41は、複数の軸方向トラック37aにおいて、軸線回りθで隣り合う2つの軸方向トラック37aの境界部分(N極とS極とが隣り合う部分)で発生する回転磁界を検出する。また、第1磁気抵抗素子41は磁気抵抗素子の飽和感度領域を利用して回転磁界を検出する。すなわち、第1磁気抵抗素子41は、後述する磁気抵抗パターンに電流を流し、かつ、抵抗値が飽和する磁界強度を印加して、境界部分で面内方向の向きが変化する回転磁界を検出する。
 第1磁気抵抗素子41は、互いに90°の位相差で磁気スケール8の直動を検出するA相の第1磁気抵抗パターンSINおよびB相の第1磁気抵抗パターンCOSを備える。換言すれば、センサ基板40は、磁気スケール8から得られる同一の波長を90°の位相差で検出可能な位置にA相の第1磁気抵抗パターンSINとB相の第1磁気抵抗パターンCOSを備える。
 また、A相の第1磁気抵抗パターンSINは、180°の位相差をもって磁気スケール8の直動を検出する+a相の第1磁気抵抗パターンSIN+と-a相の第1磁気抵抗パターンSIN-とを備える。同様に、B相の第1磁気抵抗パターンCOSは、180°の位相差をもって磁気スケール8の直動を検出する+b相の第1磁気抵抗パターンCOS+と-b相の第1磁気抵抗パターンCOS-とを備える。すなわち、+a相の第1磁気抵抗パターンSIN+と+b相の第1磁気抵抗パターンCOS+は、センサ基板40上において、磁気スケール8から得られる同一の波長を90°の位相差で検出可能な位置に形成されている。また、-a相の第1磁気抵抗パターンSIN-と-b相の第1磁気抵抗パターンCOS-は、センサ基板40上において、磁気スケール8から得られる同一の波長を90°の位相差で検出可能な位置に形成されている。
 図5(a)の上段の右側の図に示すように、+a相の第1磁気抵抗パターンSIN+、+b相の第1磁気抵抗パターンCOS+、-a相の第1磁気抵抗パターンSIN-、-b相の第1磁気抵抗パターンCOS-は、基板表面40a上において、各第1磁気抵抗パターンSIN+、SIN-、COS+、COS-が互いに重ならない配置に、単層で、形成することができる。
 これに対して、本例では、A相の第1磁気抵抗パターンSIN(SIN+、SINー)とB相の第1磁気抵抗パターンCOS(COS+、COS-)をセンサ基板40上で2層に重ねている。
 より具体的には、図5(b)の上段の中央および右側の図に示すように、センサ基板40の基板表面40aに+b相の第1磁気抵抗パターンCOS+を形成し、その上に+a相の第1磁気抵抗パターンSIN+を積層している。また、センサ基板40の基板表面40a上に-a相の第1磁気抵抗パターンSIN-を形成し、その上に-b相の第1磁気抵抗パターンCOS-を積層している。なお、+a相の第1磁気抵抗パターンSIN+と、+b相の第1磁気抵抗パターンCOS+の積層関係は逆でもよい。また、-a相の第1磁気抵抗パターンSIN-と-b相の第1磁気抵抗パターンCOS-の積層関係は逆でもよい。
 第1磁気抵抗素子41を構成するA相の第1磁気抵抗パターンSINとB層の第1磁気抵抗パターンCOSをセンサ基板40上で積層すれば、センサ基板40上におけるA相の第1磁気抵抗パターンSINとB層の第1磁気抵抗パターンCOSの配置の自由度が増す。従って、A相の第1磁気抵抗パターンSIN(SIN+、SINー)とB相の第1磁気抵抗パターンCOS(COS+、COS-)を積層せずにセンサ基板40上に形成した場合と比較して、第1磁気抵抗素子41を小さくできる。
 本例では、第1磁気抵抗素子41を構成するA相の第1磁気抵抗パターンSINとB層の第1磁気抵抗パターンCOSをセンサ基板40上で積層することにより、磁気スケール8の軸線回りθに対応する方向の第1磁気抵抗素子41の幅W1を、磁気スケール8の軸線方向Xに対応する方向の第1磁気抵抗素子41の高さH1(図5(b)上段参照)と比較して短くしている。また、本例では、第1磁気抵抗素子41の幅方向の中心を、円筒状の磁気スケール8の円周面に設けられた着磁パターン37の曲率の頂点と対向する位置に配置している。
 ここで、第1磁気抵抗素子41が磁界の変化を検出する着磁パターン37は、円筒状の磁気スケール8の円周面に設けられている。従って、センサ基板40を軸線Lと平行な姿勢として磁気スケール8の円周面に対向させたときに、第1磁気抵抗パターンとセンサ基板40との間のギャップGは軸線回りθ(周方向)で変化する。従って、磁気スケール8の軸線回りθに対応する方向の第1磁気抵抗素子41の幅W1を短くすることにより、第1磁気抵抗素子41からの出力について、磁気スケール8とセンサ基板40との間の曲率に伴うギャップ変動に起因する磁気強度部分の影響を抑制できる。
 なお、センサ基板40はガラス或いはシリコンからなる。基板表面40aに設けられる1層目の各磁気抵抗パターンSIN-、COS+は、半導体プロセスによって基板表面40aに強磁性体NiFe等の磁性体膜を積層することによって形成される。また、1層目の各磁気抵抗パターンSIN-、COS+に重ねられる2層目の各磁気抵抗パターンCOS-、SIN+は、1層目の各磁気抵抗パターン上にSiO2等の無機絶縁層を形成し、この無機絶縁層の上に、強磁性体NiFe等の磁性体膜を積層することによって形成される。
 ここで、図6は、第1磁気抵抗素子41の各磁気抵抗パターンSIN+、SIN-、COS+、COS-が構成する回路図である。+a相の第1磁気抵抗パターンSIN+および-a相の第1磁気抵抗パターンSIN-は、図6(a)に示すように、ブリッジ回路を構成しており、いずれも一方端が電源端子(Vcc)に接続され、他方端がグランド端子(GND)に接続されている。また、+a相の第1磁気抵抗パターンSIN+の中点位置には、+a相が出力される端子+aが設けられ、-a相の第1磁気抵抗パターンSIN-の中点位置には、-a相が出力される端子-aが設けられる。従って、端子+a、端子-aからの出力を減算器に入力すれば歪の少ない正弦波の差動出力を得ることができる。    
 同様に、+b相の磁気抵抗パターンCOS+および-b相の磁気抵抗パターンCOS-は、図6(b)に示すように、ブリッジ回路を構成しており、いずれも一方端が電源端子(Vcc)に接続され、他方端がグランド端子(GND)に接続されている。+b相の磁気抵抗パターンCOS+の中点位置には、+b相が出力される端子+bが設けられ、-b相の磁気抵抗パターンCOS-の中点位置には、-b相が出力される端子-bが設けられる。従って、端子+b、端子-bからの出力を減算器に入力すれば歪の少ない正弦波の差動出力を得ることができる。
(第2磁気抵抗素子)
 第2磁気抵抗素子42は、その感磁方向を軸線回りθ(周方向)に向けている。従って、第2磁気抵抗素子42は、磁気スケール8の着磁パターン37を、軸線回りθにS極とN極とが交互に配列されて軸線回りθに延びる周方向トラック37bを軸線方向Xに複数列備えるものとして、磁気スケール8が回転したときの磁界の変化を検出する。また、第2磁気抵抗素子42は、複数の周方向トラック37bにおいて、軸線方向Xで隣り合う2つの周方向トラック37bの境界部分(N極とS極とが隣り合う部分)で発生する回転磁界を検出する。また、第2磁気抵抗素子42は磁気抵抗素子の飽和感度領域を利用して回転磁界を検出する。すなわち、第2磁気抵抗素子42は、後述する磁気抵抗パターンに電流を流し、かつ、抵抗値が飽和する磁界強度を印加して、境界部分で面内方向の向きが変化する回転磁界を検出する。
 第2磁気抵抗素子42は、互いに90°の位相差で磁気スケール8の回転を検出するA相の第2磁気抵抗パターンSINおよびB相の第2磁気抵抗パターンCOSを備える。換言すれば、センサ基板40は、磁気スケール8から得られる同一の波長を90°の位相差で検出可能な位置にA相の第2磁気抵抗パターンSINとB相の第2磁気抵抗パターンCOSを備える。
 また、A相の第2磁気抵抗パターンSINは、180°の位相差をもって磁気スケール8の回転を検出する+a相の第2磁気抵抗パターンSIN+と-a相の第2磁気抵抗パターンSIN-とを備える。同様に、B相の第2磁気抵抗パターンCOSは、180°の位相差をもって磁気スケール8の回転を検出する+b相の第2磁気抵抗パターンCOS+と-b相の第2磁気抵抗パターンCOS-とを備える。すなわち、+a相の第2磁気抵抗パターンSIN+と+b相の第2磁気抵抗パターンCOS+は、センサ基板40上において、磁気スケール8から得られる同一の波長を90°の位相差で検出可能な位置に形成されている。また、-a相の第2磁気抵抗パターンSIN-と-b相の第2磁気抵抗パターンCOS-は、センサ基板40上において、磁気スケール8から得られる同一の波長を90°の位相差で検出可能な位置に形成されている。
 図5(a)の下段の右側の図に示すように、+a相の第2磁気抵抗パターンSIN+、+b相の第2磁気抵抗パターンCOS+、-a相の第2磁気抵抗パターンSIN-、-b相の第2磁気抵抗パターンCOS-は、基板表面40a上において、各第2磁気抵抗パターンSIN+、SIN-、COS+、COS-が互いに重ならない配置に、単層で、形成することができる。なお、+a相の第2磁気抵抗パターンSIN+、+b相の第2磁気抵抗パターンCOS+、-a相の第2磁気抵抗パターンSIN-、-b相の第2磁気抵抗パターンCOS-を基板表面40aに単層で形成した場合の各磁気抵抗パターンの配置関係は、+a相の第1磁気抵抗パターンSIN+、+b相の第1磁気抵抗パターンCOS+、-a相の第1磁気抵抗パターンSIN-、-b相の第1磁気抵抗パターンCOS-を基板表面40aに単層で形成した場合の各磁気抵抗パターン(図5(a)の上段の右側の図参照)を面内方向で90°回転させた場合と同様の配置関係である。
 これに対して、本例では、A相の第2磁気抵抗パターンSIN(SIN+、SINー)とB相の第2磁気抵抗パターンCOS(COS+、COS-)をセンサ基板40上で2層に重ねている。
 より具体的には、図5(b)の下段の中央および右側の図に示すように、センサ基板40の基板表面40a上に-a相の第2磁気抵抗パターンSIN-を形成し、その上に+b相の第2磁気抵抗パターンCOS+を積層している。また、センサ基板40の基板表面40a上に-b相の第2磁気抵抗パターンCOS-を形成し、その上に+a相の第2磁気抵抗パターンSIN+を積層している。なお、-a相の第2磁気抵抗パターンSIN-と、+b相の第2磁気抵抗パターンCOS+の積層関係は逆でもよい。また、+a相の第2磁気抵抗パターンSIN+と-b相の第2磁気抵抗パターンCOS-の積層関係は逆でもよい。
 第2磁気抵抗素子42を構成するA相の第2磁気抵抗パターンSINとB層の第2磁気抵抗パターンCOSをセンサ基板40上で積層すれば、センサ基板40上におけるA相の第2磁気抵抗パターンSINとB層の第2磁気抵抗パターンCOSの配置の自由度が増す。従って、A相の第2磁気抵抗パターンSIN(SIN+、SINー)とB相の第2磁気抵抗パターンCOS(COS+、COS-)を積層せずにセンサ基板40上に形成した場合と比較して、第2磁気抵抗素子42を小さくできる。これにより、センサ基板40の小型化が可能となるので、直動回転検出器7を小さくすることが可能となる。
 本例では、第2磁気抵抗素子42を構成するA相の第2磁気抵抗パターンSINとB層の第2磁気抵抗パターンCOSをセンサ基板40上で積層することにより、磁気スケール8の軸線回りθに対応する方向の第2磁気抵抗素子42の幅W2を、磁気スケール8の軸線方向Xに対応する方向の第2磁気抵抗素子42の高さH2(図5(b)下段参照)と比較して短くしている。また、本例では、第2磁気抵抗素子42の幅方向の中心を、円筒状の磁気スケール8の円周面に設けられた着磁パターン37の曲率の頂点と対向する位置に配置している。
 ここで、第2磁気抵抗素子42が磁界の変化を検出する着磁パターン37は、円筒状の磁気スケール8の円周面に設けられている。従って、センサ基板40を軸線Lと平行な姿勢として磁気スケール8の円周面に対向させたときに、第2磁気抵抗パターンとセンサ基板40との間のギャップGは軸線回りθ(周方向)で変化する。従って、磁気スケール8の軸線回りθに対応する方向の第2磁気抵抗素子42の幅W2を短くすることにより、第2磁気抵抗素子42からの出力について、磁気スケール8とセンサ基板40との間の曲率に伴うギャップ変動に起因する磁気強度部分の影響を抑制できる。
 なお、第2磁気抵抗素子42についても、第1磁気抵抗素子41と同様に、基板表面40aに設けられる1層目の各磁気抵抗パターンSIN-、COS-は、半導体プロセスによって基板表面40aに強磁性体NiFe等の磁性体膜を積層することによって形成される。また、1層目の各磁気抵抗パターンSIN-、COS-に重ねられる2層目の各磁気抵抗パターンCOS+、SIN+は、1層目の各磁気抵抗パターン上にSiO2等の無機絶縁層を形成し、この無機絶縁層の上に、強磁性体NiFe等の磁性体膜を積層することによって形成される。
 また、第2磁気抵抗素子42は、第1磁気抵抗素子41と同様の回路構成を備える。第2磁気抵抗素子42の回路構成は、図6に示すものと同様なので、その詳細な説明は省略する。
(第1磁気抵抗素子および第2磁気抵抗素子)
 ここで、本例では、図5(c)に示すように、更に、第1磁気抵抗素子41と第2磁気抵抗素子42とをセンサ基板40上で積層している。すなわち、センサ基板40上では、第1磁気抵抗素子41を構成するA相の第1磁気抵抗パターンSINとB層の第1磁気抵抗パターンCOSとを2層に重ね、その上又は下に、第2磁気抵抗素子42を構成するA相の第2磁気抵抗パターンとB層の第2磁気抵抗パターンCOSを2層に重ねている。従って、本例では、センサ基板40上における、第1磁気抵抗素子41および第2磁気抵抗素子42の形成面積を小さくできる。これにより、センサ基板40を小さくできるので、直動回転検出器7を小さくすることが可能となる。
 また、積層に際しては、第1磁気抵抗素子41と第2磁気抵抗素子42とは、それぞれの幅方向(磁気スケール8の軸線回りθに対応する方向)の中心を一致させている。よって、積層された第1磁気抵抗素子41および第2磁気抵抗素子42において、磁気スケール8の軸線回りθに対応する方向の幅Wは、磁気スケール8の軸線方向Xに対応する方向の第1磁気抵抗素子41の高さHと比較して短い。さらに、積層された第1磁気抵抗素子41および第2磁気抵抗素子42の幅方向の中心を、円筒状の磁気スケール8の円周面に設けられた着磁パターン37の曲率の頂点と対向する位置に配置している。従って、第1磁気抵抗素子41と第2磁気抵抗素子42のそれぞれの出力について、磁気スケール8とセンサ基板40との間の曲率に伴うギャップ変動に起因する磁気強度部分の影響を抑制できる。
(作用効果)
 本例によれば、同一の着磁パターン37に対向させた第1磁気抵抗素子41と第2磁気抵抗素子42とにより出力軸2(磁気スケール8)の直動位置と回動位置を検出できる。従って、直動スケールと回転スケールとを軸線L方向に配列する必要がなく、磁気スケール8の軸線L方向の長さ寸法を、出力軸2の直動距離に対応する長さ寸法に抑えることができる。これにより、磁気スケール8の重量が増加することを抑制できるので、出力軸2を直動或いは回転させる際のイナーシャを抑制できる。また、磁気スケール8、リニアモータ部3、回転モータ部4が出力軸2と同軸に配置されているので、出力軸2を直動、回転させる際に、出力軸2が振動することを抑制できる。
 また、本例では、第1磁気抵抗素子41と第2磁気抵抗素子42は一つの磁気スケール8に設けられた同一の着磁パターン37に対向して配置されるので、第1磁気抵抗素子41と第2磁気抵抗素子42を1枚のセンサ基板40に備えることが可能となる。従って、直動回転検出器7を小型化できる。
 さらに、本例では、リニアモータ部3と回転モータ部4とは、軸線L方向の異なる位置に配置されているので、リニアモータ部の外周側に回転モータ部を構成してリニアモータ部と回転モータ部とを軸線方向の同じ位置に同軸に配置する場合、或いは、回転モータ部の外周側にリニアモータ部を構成してリニアモータ部と回転モータ部とを軸線方向の同じ位置に同軸に配置する場合と比較して、直動回転駆動装置1を径方向で小さくできる。
 また、本例では、第1磁気抵抗素子41を構成するA相の第1磁気抵抗パターンSINとB層の第1磁気抵抗パターンCOSをセンサ基板40上で積層しているので、センサ基板40上におけるA相の第1磁気抵抗パターンSINとB層の第1磁気抵抗パターンCOSの配置の自由度が増す。同様に、第2磁気抵抗素子42を構成するA相の第2磁気抵抗パターンSINとB層の第2磁気抵抗パターンCOSをセンサ基板40上で積層しているので、センサ基板40上におけるA相の第2磁気抵抗パターンSINとB層の第2磁気抵抗パターンCOSの配置の自由度が増す。さらに、本例では、第1磁気抵抗素子41と第2磁気抵抗素子42とをセンサ基板40上で積層している。従って、各磁気抵抗素子41、42において、A相の磁気抵抗パターンSIN(SIN+、SINー)とB相の磁気抵抗パターンCOS(COS+、COS-)を積層せずにセンサ基板40上に形成した場合や、第1磁気抵抗素子41と第2磁気抵抗素子42を積層せずにセンサ基板40上に形成した場合と比較して、磁気センサ9を小さくできる。
 さらに、本例では、第1磁気抵抗素子41を構成するA相の第1磁気抵抗パターンSINとB層の第1磁気抵抗パターンCOSをセンサ基板40上で積層することにより、磁気スケール8の軸線回りθに対応する方向の第1磁気抵抗素子41の幅W1を、磁気スケール8の軸線方向Xに対応する方向の第1磁気抵抗素子41の高さH1と比較して短くしている。そして、第1磁気抵抗素子41の幅方向の中心を、円筒状の磁気スケール8の円周面に設けられた着磁パターン37の曲率の頂点と対向する位置に配置している。また、第2磁気抵抗素子42を構成するA相の第2磁気抵抗パターンSINとB層の第2磁気抵抗パターンCOSをセンサ基板40上で積層することにより、磁気スケール8の軸線回りθに対応する方向の第2磁気抵抗素子42の幅W2を、磁気スケール8の軸線方向Xに対応する方向の第2磁気抵抗素子42の高さH2と比較して短くしている。そして、第2磁気抵抗素子42の幅方向の中心を、円筒状の磁気スケール8の円周面に設けられた着磁パターン37の曲率の頂点と対向する位置に配置している。従って、第1磁気抵抗素子41と第2磁気抵抗素子42のそれぞれの出力について、磁気スケール8とセンサ基板40との間の曲率に伴うギャップ変動に起因する磁気強度部分の影響を抑制できる。
 ここで、磁気スケール8とセンサ基板40との間の曲率に伴うギャップ変動に起因する磁気強度部分の影響を抑制すれば、第1磁気抵抗素子41と第2磁気抵抗素子42のそれぞれから出力されるアナロク信号の品位が向上する。すなわち、アナロク信号として、理想的な正弦波に近い出力を得ることができる。また、第1磁気抵抗素子41と第2磁気抵抗素子42のそれぞれについて、磁気スケール8の軸線回りθに対応する方向の幅W1、W2を小さくすれば、磁気スケール8を細径化(小径化)できる。よって、直動回転検出器7を小型化できる。
(変形例)
 なお、センサ基板40上において、第1磁気抵抗素子41の+a相の第1磁気抵抗パターンSIN+、-a相の第1磁気抵抗パターンSIN-、+b相の第1磁気抵抗パターンCOS+、および、-b相の第1磁気抵抗パターンCOS-と、第2磁気抵抗素子42の+a相の第2磁気抵抗パターンSIN+、-a相の第2磁気抵抗パターンSIN-、+b相の第2磁気抵抗パターンCOS+、および、-b相の第2磁気抵抗パターンCOS-とを積層してもよい。
 図7は、第1磁気抵抗素子41を構成する各磁気抵抗パターンSIN+、SIN-、COS+、COS-と、第2磁気抵抗素子42を構成する各磁気抵抗パターンSIN+、SIN-、COS+、COS-を積層した場合の磁気センサ9の説明図である。図7(a)は、軸線方向Xから見た場合の磁気スケール8と、第1磁気抵抗素子41、第2磁気抵抗素子42およびセンサ基板40の位置関係の説明図であり、図7(b)は基板表面40aにおける第1磁気抵抗素子41および第2磁気抵抗素子42の配置の説明図であり、図7(c)は図7(b)のZ-Z線における第1磁気抵抗素子41および第2磁気抵抗素子4
2の断面を模式的に示した説明図である。
 図7に示すように、第1磁気抵抗素子41を構成する各磁気抵抗パターンSIN+、SIN-、COS+、COS-と、第2磁気抵抗素子42を構成する各磁気抵抗パターンSIN+、SIN-、COS+、COS-を全て積層すれば、センサ基板40上における第1磁気抵抗素子41および第2磁気抵抗素子42の形成面積をより小さくできるので、直動回転検出器7を小さくすることができる。また、このようにすれば、磁気スケール8の軸線回りθに対応する方向で第1磁気抵抗素子41および第2磁気抵抗素子42の幅を小さくすることができるので、第1磁気抵抗素子41からの出力および第2磁気抵抗素子42からの出力について、磁気スケール8とセンサ基板40との間のギャップGに起因する磁気強度部分の影響を抑制できる。なお、磁気抵抗パターンを積層する順番は任意とすることができる。
(その他の実施の形態)
 第1磁気抵抗素子41と第2磁気抵抗素子42を異なるセンサ基板に形成してもよい。図8は磁気センサ9が2つのセンサ基板を備える変形例の直動回転検出器7である。この場合には、第1磁気抵抗素子41を備えた第1センサ基板51と、第2磁気抵抗素子42を備えた第2センサ基板52を軸線方向Xの同じ位置に配置して、第1磁気抵抗素子41と第2磁気抵抗素子42を軸線Lと直交する方向から磁気スケール8(着磁パターン37)に対向させることができる。この場合においても、各センサ基板51、52上において、各磁気抵抗素子41、42を構成する磁気抵抗パターンSIN+、SIN-、COS+、COS-を積層して、各磁気抵抗素子41、42を小さく形成して、第1センサ基板51および第2センサ基板52を小型化することができる。
 ここで、上記の例では、磁気センサ9は磁気抵抗素子(第1磁気抵抗素子41と第2磁気抵抗素子42)を備えるが、磁気抵抗素子に替えてホール素子を用いることもできる。
 また、直動回転検出器7は、直動回転駆動装置1とは異なる駆動機構を備える直動回転駆動装置に搭載することが可能である。例えば、出力軸を直動させるリニアモータ部と、回転軸を回転駆動させる回転モータ部と、出力軸と回転軸とを連結する連結部と、回転モータを直動方向に沿って移動自在に支持する回転モータ用キャリッジを備え、回転モータの駆動によって出力軸を回転させると共に、リニアモータ部の駆動による出力軸の直動に回転モータを追随させて移動させる構成の回転直動駆動装置に搭載できる。
 また、回転モータ部として、出力軸2の外周面に永久磁石を固定し、固定子側のコイルと対向配置させた構成を採用しても良い。この場合、出力軸2の軸線方向Xへの移動に伴って、出力軸2の外周面に固定した永久磁石も軸線方向Xに移動する。
1・・・直動回転駆動装置
2・・・出力軸
3・・・リニアモータ部
4・・・回転モータ部
5・・・ボールスプライン軸受(軸受)
7・・・直動回転検出器
8・・・磁気スケール
37・・・着磁パターン
40・51・52・・・センサ基板
41・・・第1磁気抵抗素子(第1磁気検出素子)
42・・・第2磁気抵抗素子(第2磁気検出素子)
SIN+、SIN-、COS+、COS-・・・磁気抵抗パターン
L・・・軸線

Claims (8)

  1.  出力軸と、
     前記出力軸を軸線に沿って移動させるリニアモータ部と、
     前記出力軸を軸線回りに回転させるための回転モータ部と、
     前記出力軸を軸線方向に移動可能に支持するとともに前記回転モータ部の駆動力を前記
    出力軸に伝達する軸受と、
     前記出力軸に同軸に固定された筒状の磁気スケールと、
     直動検出用の第1磁気検出素子と、
     回転検出用の第2磁気検出素子と、を有し、
     前記磁気スケールは、前記軸線回りの円周面に、前記軸線方向にS極とN極とが交互に配列され、かつ、前記軸線回りにS極とN極とが交互に着磁された格子状の着磁パターンを備え、
     前記第1磁気検出素子および前記第2磁気検出素子は、前記着磁パターンに対向して配置され、
     前記磁気スケール、前記リニアモータ部、前記回転モータ部および軸受は同軸に配置されていることを特徴とする直動回転駆動装置。
  2.  請求項1において、
     前記第1磁気検出素子を備える第1センサ基板と、
     前記第2磁気検出素子を備える第2センサ基板と、を有し、
     前記第1センサ基板と前記第2センサ基板とは、前記軸線方向の同じ位置に配置されていることを特徴とする直動回転駆動装置。
  3.  請求項1において、
     前記第1磁気検出素子および前記第2磁気検出素子を備えるセンサ基板を有することを特徴とする直動回転駆動装置。
  4.  請求項3において、
     前記第1磁気検出素子は、磁気抵抗素子であり、互いに90°の位相差で前記磁気スケールの直動を検出するA相の第1磁気抵抗パターンおよびB相の第1磁気抵抗パターンを備え、
     前記第2磁気検出素子は、磁気抵抗素子であり、互いに90°の位相差で前記磁気スケールの回転を検出するA相の第2磁気抵抗パターンおよびB相の第2磁気抵抗パターンを備え、
     前記A相の第1磁気抵抗パターンと前記B相の第1磁気抵抗パターンとは前記センサ基板上で積層されており、
     前記A相の第2磁気抵抗パターンと前記B相の第2磁気抵抗パターンとは前記センサ基板上で積層されていることを特徴とする直動回転駆動装置。
  5.  請求項4において、
     前記第1磁気検出素子は、前記センサ基板上における前記磁気スケールの軸線回りに対応する方向の幅が、前記センサ基板上における前記磁気スケールの軸線方向に対応する方向の高さと比較して短く、
     前記第2磁気検出素子は、前記センサ基板上における前記磁気スケールの軸線回りに対応する方向の幅が、前記センサ基板上における前記磁気スケールの軸線方向に対応する方向の高さと比較して短いことを特徴とする直動回転検出器。
  6.  請求項5において、
     前記センサ基板上における前記第1磁気検出素子の幅方向の中心および前記第2磁気検出素子の幅方向の中心は、前記磁気スケールの曲率の頂点と対向することを特徴とする直動回転検出器。
  7.  請求項3ないし6のうちのいずれかの項において、
     前記第1磁気検出素子と前記第2磁気検出素子とは、前記センサ基板上で積層されていることを特徴とする直動回転駆動装置。
  8.  請求項1において、
     前記リニアモータ部と前記回転モータ部とは、前記軸線方向の異なる位置に配置されていることを特徴とする直動回転駆動装置。
PCT/JP2016/077536 2015-09-18 2016-09-16 直動回転駆動装置 WO2017047782A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/759,849 US20190049230A1 (en) 2015-09-18 2016-09-16 Linear motion and rotation drive apparatus
CN201680053948.0A CN108028593A (zh) 2015-09-18 2016-09-16 直动旋转驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185559A JP2017060361A (ja) 2015-09-18 2015-09-18 直動回転駆動装置
JP2015-185559 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047782A1 true WO2017047782A1 (ja) 2017-03-23

Family

ID=58289491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077536 WO2017047782A1 (ja) 2015-09-18 2016-09-16 直動回転駆動装置

Country Status (4)

Country Link
US (1) US20190049230A1 (ja)
JP (1) JP2017060361A (ja)
CN (1) CN108028593A (ja)
WO (1) WO2017047782A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450926B1 (en) * 2016-06-02 2022-02-23 Koganei Corporation Position detecting device and actuator
CN110793420A (zh) * 2019-10-23 2020-02-14 山东理工大学 基于螺旋测微原理的高精度位置定位装置
EP4235108B1 (en) * 2022-02-25 2024-07-17 Melexis Technologies SA Magnetic position sensor system with high accuracy
CN115014183B (zh) * 2022-07-20 2023-07-04 中国科学院长春光学精密机械与物理研究所 轴承跳动测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102465A1 (ja) * 2006-03-06 2007-09-13 Nidec Sankyo Corporation 磁気センサ装置、および磁気式エンコーダ装置および磁気スケールの製造方法
JP2010063315A (ja) * 2008-09-05 2010-03-18 Yaskawa Electric Corp 回転直動位置検出装置および回転直動位置検出方法
WO2010038750A1 (ja) * 2008-09-30 2010-04-08 Thk株式会社 直線・回転複合アクチュエータ
JP2012085527A (ja) * 2005-10-21 2012-04-26 Yaskawa Electric Corp 直動回転アクチュエータおよびシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122045A (ja) * 1994-10-19 1996-05-17 Nippon Thompson Co Ltd 物品計測装置
DE102007032867B4 (de) * 2007-07-13 2009-12-24 Infineon Technologies Ag Magnetoresistive Magnetfeldsensorstrukturen und Herstellungsverfahren
US8004277B2 (en) * 2008-12-30 2011-08-23 Honeywell International Inc. Rotary position sensing apparatus
GB201204066D0 (en) * 2012-03-08 2012-04-18 Renishaw Plc Magnetic encoder apparatus
JP6015776B2 (ja) * 2013-01-10 2016-11-02 村田機械株式会社 変位センサ及び変位の検出方法
DE112014004145T5 (de) * 2013-09-10 2016-06-09 Ksr Ip Holdings Llc Integrierter Bremssteuerungssensor
US20160054149A1 (en) * 2014-08-20 2016-02-25 Zedi Canada Inc. System and method for tracking linear position and rotation of a piston

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085527A (ja) * 2005-10-21 2012-04-26 Yaskawa Electric Corp 直動回転アクチュエータおよびシステム
WO2007102465A1 (ja) * 2006-03-06 2007-09-13 Nidec Sankyo Corporation 磁気センサ装置、および磁気式エンコーダ装置および磁気スケールの製造方法
JP2010063315A (ja) * 2008-09-05 2010-03-18 Yaskawa Electric Corp 回転直動位置検出装置および回転直動位置検出方法
WO2010038750A1 (ja) * 2008-09-30 2010-04-08 Thk株式会社 直線・回転複合アクチュエータ

Also Published As

Publication number Publication date
CN108028593A (zh) 2018-05-11
US20190049230A1 (en) 2019-02-14
JP2017060361A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP4273363B2 (ja) 回転角度検出装置、回転機、及び回転角度検出法
JP5287635B2 (ja) 回転角センサ、モータ、回転角検出装置、及び電動パワーステアリング装置
KR101597639B1 (ko) 앱솔루트 인코더 장치 및 모터
WO2017047782A1 (ja) 直動回転駆動装置
JP5780744B2 (ja) ロータリエンコーダ
WO2017209271A1 (ja) 直動回転検出器、直動回転検出器ユニットおよび直動回転駆動装置
JP2006208025A (ja) 磁気センサ
JP5759867B2 (ja) 磁気エンコーダ
JP5201493B2 (ja) 位置検出装置及び直線駆動装置
JP4900838B2 (ja) 位置検出装置及び直線駆動装置
WO2017047781A1 (ja) 直動回転検出器
JP6081258B2 (ja) 実装基板
WO2017065307A1 (ja) 直動回転検出器
WO2017047783A1 (ja) リニアモータ
JP2015061411A (ja) 直動−回転アクチュエータとその制御方法
WO2014155888A1 (ja) 磁気センサ装置
JP5920386B2 (ja) 回転角センサ用磁石および回転角センサ
JP2008141908A (ja) ブラシレスモータおよびそれを備えた電動パワーステアリング装置
JP2016142713A (ja) トルク操舵角センサ
JP2015114208A5 (ja)
JP2015061412A (ja) 直動−回転アクチュエータとその駆動方法
JP2005172441A (ja) 角度および角速度一体型検出装置
JP2010210288A (ja) エンコーダ
JP2015175760A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846653

Country of ref document: EP

Kind code of ref document: A1