WO2017047662A1 - 蓄電デバイス電極用バインダー - Google Patents
蓄電デバイス電極用バインダー Download PDFInfo
- Publication number
- WO2017047662A1 WO2017047662A1 PCT/JP2016/077166 JP2016077166W WO2017047662A1 WO 2017047662 A1 WO2017047662 A1 WO 2017047662A1 JP 2016077166 W JP2016077166 W JP 2016077166W WO 2017047662 A1 WO2017047662 A1 WO 2017047662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyvinyl acetal
- acetal resin
- weight
- mol
- storage device
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/38—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F16/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F16/38—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/28—Condensation with aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/14—Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention When the present invention is used as a binder for an electrode of an electricity storage device, it has excellent adhesion, can improve the flexibility of the obtained electrode, and has a high durability against an electrolytic solution. About.
- an electricity storage device that can maintain a good adhesion between active materials in a long-term cycle, and can produce a high-capacity storage battery with low irreversible capacity, low resistance, and excellent output characteristics.
- the present invention relates to an electrode binder.
- the present invention also relates to a composition for an electricity storage device electrode using the binder for an electricity storage device electrode, an electricity storage device electrode, and an electricity storage device.
- An electrode of a lithium secondary battery is usually a thin film obtained by kneading an active material and a binder together with a solvent, dispersing the active material into a slurry, applying the slurry on a current collector by a doctor blade method or the like, and drying the slurry. It is formed by forming.
- fluorine-based resins represented by polyvinylidene fluoride (PVDF) are most widely used as binders for electrodes (negative electrodes) of lithium secondary batteries.
- PVDF polyvinylidene fluoride
- a fluorine-based resin is used as a binder, there is a problem that the binder is swollen by the electrolytic solution, peeling occurs at the electrode interface in a long-term cycle, and battery characteristics are deteriorated.
- the present invention When the present invention is used as a binder for an electrode of an electricity storage device, it has excellent adhesion, can improve the flexibility of the obtained electrode, and has a high durability against an electrolytic solution.
- the purpose is to provide.
- an electricity storage device that can maintain a good adhesion between active materials in a long-term cycle, and can produce a high-capacity storage battery with low irreversible capacity, low resistance, and excellent output characteristics. It aims at providing the binder for electrodes. Moreover, it aims at providing the composition for electrical storage device electrodes, electrical storage device electrode, and electrical storage device using the binder for electrical storage devices electrodes.
- This invention is a binder used for the electrode of an electrical storage device, Comprising:
- the said binder contains polyvinyl acetal type resin,
- the said polyvinyl acetal type resin has a hydroxyl-containing structural unit represented by following formula (1).
- the binder for an electricity storage device electrode is such that the proportion of the hydroxyl group-containing structural unit having a chain length of 1 is 25% by weight or less with respect to the entire hydroxyl group-containing structural unit, and the hydroxyl group content is 30 to 60 mol%.
- the binder for an electricity storage device electrode has a hydroxyl group-containing constitutional unit represented by the formula (1), the ratio of the hydroxyl group-containing constitutional unit having a chain length of 1 and the amount of hydroxyl groups are predetermined.
- a polyvinyl acetal-based resin that is in the range of, it can be made difficult to swell by the electrolyte solution, maintains good adhesion between the active materials in a long-term cycle, the irreversible capacity of the obtained storage battery is small, And it discovered that a high capacity
- the binder for an electricity storage device electrode of the present invention contains a polyvinyl acetal resin.
- a polyvinyl acetal resin as a resin component of a binder (binder)
- an attractive interaction works between the polyvinyl acetal resin and the active material, and the active material is fixed with a small amount of the binder. be able to.
- the polyvinyl acetal resin also has an attractive interaction with the conductive auxiliary agent, and the distance between the active material and the conductive auxiliary agent can be kept within a certain range.
- the dispersibility of an active material is improved significantly by making the distance of an active material and a conductive support agent moderate.
- the adhesiveness with the current collector can be remarkably improved.
- the active material is excellent in dispersibility and adhesiveness, and a sufficient effect can be exhibited even when the amount of the binder added is small.
- the binder for electrical storage device electrodes of the present invention may be composed of a resin component, and may further contain a dispersion medium.
- the lower limit of the amount of hydroxyl groups in the polyvinyl acetal resin is 30 mol%, and the upper limit is 60 mol%.
- the amount of the hydroxyl group is 30 mol% or more, it is possible to suppress the resin component from eluting into the electrolytic solution when the electrode is immersed in the electrolytic solution with sufficient resistance to the electrolytic solution.
- productivity can be improved and the viscosity of the slurry prepared by dissolving the polyvinyl acetal resin is not excessively high, and the active material is sufficiently dispersed.
- the stability of the slurry produced by dispersing the polyvinyl acetal resin in the form of fine particles can be improved, the occurrence of coalescence between the particles can be suppressed, and the active material can be sufficiently dispersed.
- the preferable lower limit of the hydroxyl group content is 35 mol%, and the preferable upper limit is 55 mol%.
- the proportion of the hydroxyl group-containing structural unit having a chain length of 1 is 25% by weight or less based on the entire hydroxyl group-containing structural unit.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 is 25% by weight or less, the resistance to the electrolytic solution can be sufficiently increased, the resin component is not swollen by the electrolytic solution, and the battery characteristics are improved. Can be improved.
- a preferable upper limit of the proportion of the hydroxyl group-containing structural unit having a chain length of 1 is 23% by weight, and a more preferable upper limit is 18% by weight.
- the lower limit of the proportion of the hydroxyl group-containing structural unit having a chain length of 1 is not particularly limited, but a preferred lower limit is 5% by weight.
- the “chain length” of the hydroxyl group-containing constitutional unit means the number of consecutive hydroxyl group-containing constitutional units. That is, “the chain length is 1” means that the hydroxyl group-containing structural unit is not continuous, and “the hydroxyl group-containing structural unit having a chain length of 1” is a hydroxyl group-containing structural unit, and other hydroxyl groups It means what is not adjacent to the containing structural unit.
- the ratio of the hydroxyl group-containing structural unit can be calculated, for example, by dissolving a polyvinyl acetal resin in deuterated dimethyl sulfoxide so as to have a concentration of 1% by weight and measuring proton NMR or carbon NMR.
- a polyvinyl acetal resin in order to make the ratio of the hydroxyl group-containing structural unit having a chain length of 1 within the above range, it is necessary to appropriately adjust the degree of acetalization, and the degree of acetalization is too low or too high. Similarly, the amount of hydroxyl groups may be too low or too high.
- the degree of acetalization is preferably 40 to 70 mol%, and the amount of hydroxyl groups is preferably 30 to 60 mol%.
- a polyvinyl acetal resin is dissolved in an alcohol under acidic conditions and heated to desorb and recombine the acetal ring to form a hydroxyl group having a chain length of 1. A method for adjusting the proportion of the constituent units is effective.
- the proportion of the hydroxyl group-containing structural unit having a chain length of 1 in the polyvinyl acetal resin so as to be within the appropriate range, it is preferable to adjust the reaction time and the acid concentration.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the resin is set low, it is preferable to lengthen the reaction time and to increase the acid concentration.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the polyvinyl acetal resin is set high, it is preferable to shorten the reaction time and to reduce the acid concentration.
- a preferred reaction time is 0.1 to 10 hours, and a preferred acid concentration is 0.5 mM to 0.3 M.
- the degree of acetalization of the polyvinyl acetal resin is preferably in the range of 40 to 70 mol% in terms of the total acetalization degree, regardless of whether a single aldehyde or a mixed aldehyde is used.
- the degree of acetalization is 40 mol% or more, the flexibility of the resin can be improved, and the adhesive force to the current collector can be sufficiently exhibited.
- the degree of acetalization is 70 mol% or less, resistance to the electrolytic solution can be improved, and when the electrode is immersed in the electrolytic solution, the resin component can be prevented from being eluted in the electrolytic solution. . More preferably, it is 45 to 65 mol%.
- the polyvinyl acetal resin preferably has a structural unit represented by the following formula (2).
- R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
- the alkyl group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, Examples include decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, and eicosyl group.
- the binding properties between the active materials and between the active material and the current collector can be made more excellent, and the swelling resistance to the electrolytic solution can be made higher.
- To propyl groups are preferred.
- the minimum with preferable content of the structural unit represented by the said Formula (2) in the said polyvinyl acetal type-resin is 0.3 mol%.
- the effect which improves the tolerance with respect to electrolyte solution can fully be exhibited as content of the structural unit represented by the said Formula (2) is 0.3 mol% or more.
- the flexibility of the resin becomes good, and the occurrence of cracks and cracks can be suppressed.
- the more preferable lower limit of the content of the structural unit represented by the formula (2) is 0.4 mol%, the more preferable lower limit is 0.5 mol%, the preferable upper limit is 5 mol%, and the more preferable upper limit is 3 mol%.
- a more preferred upper limit is 2 mol%.
- the content of the structural unit represented by the above formula (2) can be calculated by the following method. Specifically, polyvinyl acetal resin is dissolved in deuterated dimethyl sulfoxide so that the concentration is 1% by weight, proton NMR is measured at a measurement temperature of 150 ° C., and a peak (A) appearing near 4.8 ppm is obtained. It is calculated by the following equation using integral values of a peak (B) appearing near 4.2 ppm, a peak (C) appearing near 1.0 to 1.8 ppm, and a peak (D) appearing near 0.9 ppm. be able to.
- Content (mol%) of the structural unit represented by the formula (1) ⁇ (AB ⁇ 2) / [(C ⁇ 4D / 3) / 2] ⁇ ⁇ 100
- the content of the structural unit represented by the formula (2) in the polyvinyl acetal resin is preferably set high when the amount of hydroxyl groups in the polyvinyl acetal resin is high.
- the binder resin is likely to be hardened by intermolecular hydrogen bonding, so that cracks and cracks are likely to occur, but the inclusion of the structural unit represented by the above formula (2) By increasing the amount, the flexibility of the resin becomes good and the occurrence of cracks and cracks can be suppressed.
- the content of the structural unit represented by the formula (2) in the polyvinyl acetal resin is preferably set low.
- the amount of hydroxyl groups in the polyvinyl acetal resin is low, the flexibility of the resin is sufficiently exhibited even in the range where the content of the structural unit represented by the above formula (2) is low, and the occurrence of cracks and cracks is suppressed.
- the resistance to the electrolytic solution can be increased.
- a method for producing a polyvinyl acetal resin having a structural unit represented by the above formula (2) in the polyvinyl acetal resin for example, a modified polyvinyl alcohol having a structural unit represented by the above formula (2) A structural unit represented by the formula (2) by reacting a raw material with a compound having reactivity to a functional group of a polyvinyl alcohol raw material when producing a polyvinyl acetal resin by reacting an aldehyde with an aldehyde.
- a geminal diol compound having two hydroxyl groups per carbon atom with respect to one hydroxyl group of the polyvinyl acetal resin is used.
- examples thereof include a method of dehydration condensation, a method of adding an aldehyde compound to one hydroxyl group of the polyvinyl acetal resin, and the like.
- a method of adding an aldehyde compound to one hydroxyl group of the polyvinyl acetal resin is preferable because the productivity and the content of the structural unit represented by the formula (2) can be easily adjusted.
- an aldehyde compound for example, after dissolving the polyvinyl acetal resin in isopropyl alcohol adjusted to an acidic condition, under a high temperature condition of about 70 to 80 ° C.
- Examples include a method of reacting an aldehyde.
- it is preferable to adjust the reaction time and the acid concentration When the content of the structural unit represented by the above formula (2) in the polyvinyl acetal resin is set low, it is preferable to increase the reaction time and to increase the acid concentration.
- the reaction time is preferably shortened and the acid concentration is preferably lowered.
- the preferred reaction time is 0.1 to 10 hours, and the preferred acid concentration is 0.5 mM to 0.3 M.
- the said polyvinyl acetal type resin has a preferable minimum of the amount of acetyl groups of 0.2 mol%, and a preferable upper limit of 20 mol%.
- the amount of acetyl groups in the polyvinyl acetal-based resin is 0.2 mol% or more, flexibility can be improved and adhesion to aluminum foil can be sufficiently enhanced.
- the amount of acetyl groups is 20 mol% or less, it is possible to prevent the resin component from eluting into the electrolytic solution when the electrode is immersed in the electrolytic solution with sufficient resistance to the electrolytic solution.
- a more preferable lower limit of the amount of the acetyl group is 1 mol%.
- the preferable lower limit of the polymerization degree of the polyvinyl acetal resin is 250, and the preferable upper limit is 4000.
- the polymerization degree is 250 or more, the resistance to the electrolytic solution is sufficient, elution of the electrode into the electrolytic solution can be prevented, and the occurrence of a short circuit can be suppressed.
- the polymerization degree is 4000 or less, the adhesive force with the active material can be improved, and the discharge capacity of the lithium secondary battery can be improved.
- the minimum with said more preferable polymerization degree is 280, and a more preferable upper limit is 3500.
- the method for acetalization is not particularly limited, and a conventionally known method can be used. Examples thereof include a method of adding various aldehydes to an aqueous solution of polyvinyl alcohol in the presence of an acid catalyst such as hydrochloric acid.
- the aldehyde used for the acetalization is not particularly limited.
- formaldehyde including paraformaldehyde
- acetaldehyde including paraacetaldehyde
- propionaldehyde butyraldehyde
- amylaldehyde hexylaldehyde
- heptylaldehyde 2-ethylhexylaldehyde
- Examples include cyclohexyl aldehyde, furfural, glyoxal, glutaraldehyde, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde and the like.
- acetaldehyde or butyraldehyde is preferable in terms of
- the polyvinyl alcohol may be a saponified copolymer obtained by copolymerizing a vinyl ester and an ⁇ -olefin. Furthermore, it is good also as polyvinyl alcohol which copolymerizes an ethylenically unsaturated monomer and contains the component originating in an ethylenically unsaturated monomer. Also used is a terminal polyvinyl alcohol obtained by copolymerizing a vinyl ester monomer such as vinyl acetate with an ⁇ -olefin in the presence of a thiol compound such as thiol acetic acid or mercaptopropionic acid, and saponifying it. be able to.
- the ⁇ -olefin is not particularly limited, and examples thereof include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, hexylene, cyclohexylene, cyclohexylethylene, and cyclohexylpropylene.
- the polyvinyl acetal resin preferably has an ionic functional group.
- the ionic functional group is at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a sulfinic acid group, a sulfenic acid group, a phosphoric acid group, a phosphonic acid group, an amino group, and a salt thereof.
- Functional groups are preferred. Of these, carboxyl groups, sulfonic acid groups, and salts thereof are more preferable, and sulfonic acid groups and salts thereof are particularly preferable.
- the dispersibility of the polyvinyl acetal resin in the composition for a lithium secondary battery electrode is improved, and the dispersibility of the active material and the conductive auxiliary agent is particularly excellent.
- as said salt sodium salt, potassium salt, etc. are mentioned.
- the content of ionic functional groups in the polyvinyl acetal resin is preferably 0.01 to 1 mmol / g.
- the content of the ionic functional group is 0.01 mmol / g or more, the dispersibility of the fine particles in the composition for a lithium secondary battery electrode, and the dispersion of the active material and the conductive auxiliary agent when used as an electrode Can be improved.
- it is 1 mmol / g or less, the durability of the binder in the battery can be improved, and the discharge capacity of the lithium secondary battery can be improved.
- a more preferable content of the ionic functional group in the polyvinyl acetal resin is 0.02 to 0.5 mmol / g.
- the content of the ionic functional group can be measured by using NMR.
- the presence form of the ionic functional group may be directly present in the polyvinyl acetal resin structure, or may be present in the graft chain of a polyvinyl acetal resin containing a graft chain (hereinafter also simply referred to as a graft copolymer). You may do it. Especially, since it can make the active material and the dispersibility of a conductive support agent excellent in the tolerance with respect to electrolyte solution and an electrode, it is preferable to exist directly in a polyvinyl acetal type resin structure.
- the ionic functional group When the ionic functional group is present directly in the polyvinyl acetal resin structure, it is a chain molecular structure in which the ionic functional group is bonded to carbon constituting the main chain of the polyvinyl acetal resin, or an acetal bond A molecular structure in which an ionic functional group is bonded via an acetal bond is preferable, and a molecular structure in which an ionic functional group is bonded via an acetal bond is particularly preferable.
- the presence of the ionic functional group in the above structure improves the dispersibility of the polyvinyl acetal resin in the composition for a lithium secondary battery electrode, and improves the dispersibility of the active material and the conductive assistant when used as an electrode. In addition to being able to be particularly excellent, since deterioration of the binder when the battery is made is suppressed, a decrease in the discharge capacity of the lithium secondary battery can be suppressed.
- the method for producing the polyvinyl acetal resin having the ionic functional group directly in the polyvinyl acetal resin structure is not particularly limited.
- the modified polyvinyl alcohol raw material having the ionic functional group is reacted with an aldehyde.
- Examples include a method for acetalization, a method for producing a polyvinyl acetal resin, and a method for reacting it with a compound having another functional group and an ionic functional group that are reactive to the functional group of the polyvinyl acetal resin. .
- the acetal bond and the ionic functional group are preferably connected by a chain or cyclic alkyl group or an aromatic ring.
- it is preferably connected by an alkylene group having 1 or more carbon atoms, a cyclic alkylene group having 5 or more carbon atoms, an aryl group having 6 or more carbon atoms, or the like, in particular, an alkylene group having 1 or more carbon atoms or an aromatic group. It is preferable that they are connected by a ring.
- the resistance to the electrolytic solution and the dispersibility of the active material and the conductive additive when used as an electrode can be improved, and the deterioration of the binder when used as a battery is suppressed, so that the lithium secondary A decrease in the discharge capacity of the battery can be suppressed.
- the aromatic ring include aromatic rings such as a benzene ring and a pyridine ring, and condensed polycyclic aromatic groups such as a naphthalene ring and an anthracene ring.
- the polyvinyl acetal resin When the polyvinyl acetal resin has an ionic functional group via an acetal bond, the polyvinyl acetal resin is a structural unit having an acetyl group represented by the following formula (3), the following formula (4 And a structural unit having an acetal group containing an ionic functional group represented by the following formula (5).
- the dispersibility of the polyvinyl acetal resin, the dispersibility of the active material and the conductive additive can be made particularly excellent, and the adhesive strength to the current collector and the resistance to the electrolyte solution are also particularly excellent. Therefore, a reduction in the discharge capacity of the lithium secondary battery can be particularly suppressed.
- R 2 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
- R 3 represents an alkylene group having 1 to 20 carbon atoms or an aromatic ring, and X represents an ion. Represents a functional group.
- the content of the acetal bond having an ionic functional group in the polyvinyl acetal resin is preferably adjusted so that the content of the ionic functional group in the polyvinyl acetal resin is within the appropriate range.
- the content of the ionic functional group in the polyvinyl acetal resin is preferably about 0.1 to 10 mol%, and when two ionic functional groups are introduced by one acetal bond, the acetal having an ionic functional group
- the bond content is preferably about 0.05 to 5 mol%.
- the content of the acetal bond having an ionic functional group in the polyvinyl acetal resin is preferably 0.5 to 20 mol%.
- the dispersibility of the polyvinyl acetal resin in the composition for a lithium secondary battery electrode is improved, and the resistance to the electrolyte and the electrode
- the dispersibility of the active material and the conductive additive can be made excellent, and further, the deterioration of the binder when the battery is made is suppressed, so that the reduction in the discharge capacity of the lithium secondary battery is suppressed. be able to.
- a method for producing a polyvinyl acetal resin having an ionic functional group through an acetal bond in the polyvinyl acetal resin structure is not particularly limited.
- an aldehyde having the ionic functional group is previously added to a polyvinyl alcohol raw material.
- Method of acetalization after reaction Method of acetalization by mixing aldehyde raw material with aldehyde having ionic functional group when acetalizing polyvinyl alcohol, After production of polyvinyl acetal resin, ionic functionality Examples include a method of reacting an aldehyde having a group.
- aldehyde having an ionic functional group examples include an aldehyde having a sulfonic acid group, an aldehyde having an amino group, an aldehyde having a phosphate group, and an aldehyde having a carboxyl group.
- disodium 4-formylbenzene-1,3-disulfonate sodium 4-formylbenzenesulfonate, sodium 2-formylbenzenesulfonate, 3-pyridinecarbaldehyde hydrochloride, 4-diethylaminobenzaldehyde hydrochloride 4-dimethylaminobenzaldehyde hydrochloride, betaine aldehyde chloride, (2-hydroxy-3-oxopropoxy) phosphoric acid, 5-phosphate pyridoxal, terephthalaldehyde acid, isophthalaldehyde acid and the like.
- the polyvinyl acetal resin has an ionic functional group through an acetal bond, the ionic functional group is a sulfonic acid group or a salt thereof, and the acetal bond and the ionic functional group are connected by a benzene ring. It is particularly preferable. Since the polyvinyl acetal resin has such a molecular structure, the dispersibility of the polyvinyl acetal resin in the composition for a lithium secondary battery electrode, the dispersibility of the active material and the conductive assistant when used as an electrode, the battery The durability of the binder can be made particularly excellent.
- the polyvinyl acetal resin When the polyvinyl acetal resin has a chain molecular structure in which an ionic functional group is bonded to carbon constituting the main chain of the polymer, it preferably has a structural unit represented by the following general formula (6).
- the polyvinyl acetal resin has a structural unit represented by the following general formula (6), the dispersibility of the polyvinyl acetal resin in the composition for a lithium secondary battery electrode and the durability of the binder when used as a battery are particularly high. It can be excellent.
- C represents a carbon atom of the polymer main chain
- R 4 represents a hydrogen atom or a methyl group
- R 5 represents an alkylene group having 1 or more carbon atoms
- R 6 represents an ionic functional group.
- R 4 is particularly preferably a hydrogen atom.
- R 5 include a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a sec-butylene group, and a tert-butylene group. Of these, R 5 is preferably a methylene group.
- R 5 may be a structure substituted with a substituent having a hetero atom. Examples of the substituent include an ester group, an ether group, a sulfide group, an amide group, an amine group, a sulfoxide group, a ketone group, and a hydroxyl group.
- a method for producing a polyvinyl acetal resin in which an ionic functional group is directly present in the polyvinyl acetal resin structure is not particularly limited.
- an acetal is obtained by reacting an aldehyde with the modified polyvinyl alcohol raw material having the ionic functional group. And a method of reacting with a compound having another functional group reactive with the functional group of the polyvinyl acetal resin and a compound having an ionic functional group.
- the modified polyvinyl alcohol having an ionic functional group for example, after copolymerizing a vinyl ester monomer such as vinyl acetate and a monomer having a structure represented by the following general formula (7), The method of saponifying the ester site
- R 7 represents a hydrogen atom or a methyl group
- R 8 represents an alkylene group having 1 or more carbon atoms
- R 9 represents an ionic functional group.
- the monomer having the structure represented by the general formula (7) is not particularly limited, and examples thereof include a carboxyl group such as 3-butenoic acid, 4-pentenoic acid, 5-hexenoic acid, and 9-decenoic acid, and a polymerizable functional group.
- Sulfonic acid groups such as allylsulfonic acid, 2-methyl-2-propene-1-sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 3- (methacryloyloxy) propanesulfonic acid, and polymerizable functional groups
- those having an amino group and a polymerizable functional group such as N, N-diethylallylamine, and salts thereof.
- the dispersibility of the polyvinyl acetal resin in the composition for the lithium secondary battery electrode is improved, and the resistance to the electrolytic solution and the active material and conductivity when the electrode is used. It is preferable because the dispersibility of the auxiliary agent can be made excellent, and further, since the deterioration of the binder when the battery is made can be suppressed, the decrease in the discharge capacity of the lithium secondary battery can be suppressed.
- R 7 is particularly preferably a hydrogen atom.
- R 8 include a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a sec-butylene group, and a tert-butylene group. Among these, R 8 is preferably a methylene group.
- R 8 may be a structure substituted with a substituent having a hetero atom. Examples of the substituent include an ester group, an ether group, a sulfide group, an amide group, an amine group, a sulfoxide group, a ketone group, and a hydroxyl group.
- the content of the structural unit represented by the general formula (6) in the polyvinyl acetal resin is preferably adjusted so that the content of the ionic functional group in the polyvinyl acetal resin is within the appropriate range.
- the general formula ( It is preferable that the content of the structural unit shown in 6) is about 0.05 to 5 mol%, and when two ionic functional groups are introduced according to the general formula (6), the above general formula
- the content of the structural unit shown in (6) is preferably about 0.025 to 2.5 mol%.
- the dispersibility of the polyvinyl acetal resin in the composition for a lithium secondary battery electrode is improved, and the resistance to the electrolyte and the electrode
- the dispersibility of the active material and the conductive additive can be made excellent, and further, the deterioration of the binder when the battery is made is suppressed, so that the reduction in the discharge capacity of the lithium secondary battery is suppressed. be able to.
- the polyvinyl acetal resin is preferably in the form of fine particles.
- the polyvinyl acetal resin is in the form of fine particles, it can be partially adhered (point contact) without covering the entire surface of the active material and the conductive additive.
- the contact between the electrolytic solution and the active material is improved, and even when a large current is applied when a lithium battery is used, the lithium ion conduction is sufficiently maintained, and the decrease in battery capacity can be suppressed. The advantage that it can be obtained.
- the volume average particle size of the fine particle-shaped polyvinyl acetal resin is preferably 10 to 500 nm.
- the volume average particle diameter is 500 nm or less, the dispersibility of the active material and the conductive additive in the electrode can be improved, and the discharge capacity of the lithium secondary battery can be improved.
- the thickness is 10 nm or more, since the binder does not cover all surfaces of the active material and the conductive auxiliary agent and the contact property between the electrolytic solution and the active material can be improved, a lithium battery is used at a large current. In this case, the lithium ion is sufficiently conducted, and the battery capacity can be improved.
- a more preferable volume average particle diameter of the fine particle-shaped polyvinyl acetal resin is 15 to 300 nm, and a more preferable volume average particle diameter is 15 to 200 nm.
- the volume average particle size of the fine particle-shaped polyvinyl acetal resin can be measured using a laser diffraction / scattering particle size distribution measuring device, a transmission electron microscope, a scanning electron microscope, or the like.
- the upper limit of the CV value of the volume average particle diameter of the fine particle-shaped polyvinyl acetal resin is preferably 40%.
- the preferable upper limit of the CV value is 35%, the more preferable upper limit is 32%, and the more preferable upper limit is 30%.
- the CV value is a numerical value indicated by a percentage (%) of a value obtained by dividing the standard deviation by the volume average particle diameter.
- the binder for an electricity storage device electrode of the present invention preferably contains a dispersion containing the polyvinyl acetal resin and a dispersion medium.
- a dispersion medium an aqueous medium is preferably used.
- an aqueous medium may be only water and in addition to the said water, you may add solvents other than water.
- a solvent having solubility in water and high volatility is preferable, and examples thereof include alcohols such as isopropyl alcohol, normal propyl alcohol, ethanol, and methanol.
- the said solvent may be used independently and may use 2 or more types together.
- a preferable upper limit of the amount of the solvent other than water is 30 parts by weight with respect to 100 parts by weight of water, and a more preferable upper limit is 20 parts by weight.
- content of the said polyvinyl acetal type resin in the binder for electrical storage device electrodes of this invention is not specifically limited, A preferable minimum is 2 weight% and a preferable upper limit is 60 weight%.
- the content of the polyvinyl acetal resin is 2% by weight or more, the amount of the polyvinyl acetal resin relative to the active material when the binder is mixed with the active material to form a composition for an electricity storage device electrode is sufficient.
- the adhesive strength to the current collector can be improved, and if it is 60% by weight or less, the stability of the polyvinyl acetal resin in an aqueous medium can be improved, and the coalescence of particles can be suppressed.
- the dispersibility of the active material can be improved, and the discharge capacity of an electricity storage device such as a lithium secondary battery can be improved. More preferably, it is 5 to 50% by weight.
- the binder for an electricity storage device electrode of the present invention is a binder used for an electrode of an electricity storage device.
- the electricity storage device include a lithium secondary battery, an electric double layer capacitor, and a lithium ion capacitor. Especially, it can be used especially suitably for a lithium secondary battery and a lithium ion capacitor.
- the method for producing the binder for an electricity storage device electrode of the present invention is not particularly limited.
- the polyvinyl acetal resin is converted into tetrahydrofuran, acetone, toluene, methyl ethyl ketone, ethyl acetate.
- an organic solvent in which polyvinyl acetal resin such as methanol, ethanol, butanol, isopropyl alcohol is dissolved and then a poor solvent such as water is added little by little, and the organic solvent is removed by heating and / or reducing pressure.
- a method for producing fine particles by precipitating a polyvinyl acetal resin adding a solution in which the polyvinyl acetal resin is dissolved in a large amount of water, and then heating and / or reducing pressure as necessary to remove the organic solvent, Polyvinyl acetal resin is deposited and fine
- a method of preparing a child a method in which a polyvinyl acetal resin is heated at a temperature equal to or higher than the glass transition temperature of the polyvinyl acetal resin and kneaded with a kneader or the like, and water is added little by little under heat and pressure. .
- the polyvinyl acetal resin is precipitated after dissolving the polyvinyl acetal resin in an organic solvent.
- a method of producing fine particles is preferred.
- a fine particle-shaped polyvinyl acetal resin may be prepared and dried, and then dispersed in an aqueous medium.
- the solvent used in the preparation of the fine particle-shaped polyvinyl acetal resin is directly used as the aqueous medium. May be.
- composition for electrical storage device electrodes can be set as the composition for electrical storage device electrodes by adding an active material to the binder for electrical storage device electrodes of this invention.
- a binder for an electricity storage device electrode of the present invention and a composition for an electricity storage device electrode containing an active material are also one aspect of the present invention.
- content of the said polyvinyl acetal type-resin in the composition for electrical storage device electrodes of this invention is not specifically limited, A preferable minimum is 0.1 weight part with respect to 100 weight part of active materials, and a preferable upper limit is 12 weight part. is there.
- the content of the polyvinyl acetal resin is 0.1 parts by weight or more, the adhesive force to the current collector can be improved, and when the content is 12 parts by weight or less, the discharge capacity of the lithium secondary battery is improved. Can be made. More preferably, it is 0.3 to 5 parts by weight.
- the composition for an electricity storage device electrode of the present invention contains an active material.
- the composition for an electricity storage device electrode of the present invention may be used for either a positive electrode or a negative electrode, or may be used for both a positive electrode and a negative electrode.
- the active material includes a positive electrode active material and a negative electrode active material.
- the positive electrode active material examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, and Ni—Mn—Al lithium composite oxide.
- an iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing.
- These compounds may be partially element-substituted.
- these may be used independently and may use 2 or more types together.
- the material conventionally used as a negative electrode active material of a lithium secondary battery can be used, for example, natural graphite (graphite), artificial graphite, amorphous carbon, carbon black, silicon, Or what added the different element to these components is mentioned.
- graphite and silicon are preferable, and spherical natural graphite and silicon are particularly preferable.
- the composition for electrical storage device electrodes of this invention contains a conductive support agent.
- the conductive auxiliary agent is used to increase the output of the electricity storage device, and when used for the positive electrode, an appropriate one can be used depending on the use for the negative electrode.
- Examples of the conductive aid include graphite, acetylene black, carbon black, ketjen black, and vapor grown carbon fiber. Of these, acetylene black is preferable.
- the composition for an electricity storage device electrode of the present invention if necessary, a flame retardant aid, a thickener, an antifoaming agent, Additives such as leveling agents and adhesion promoters may be added.
- a flame retardant aid e.g., a flame retardant aid, a thickener, an antifoaming agent, Additives such as leveling agents and adhesion promoters may be added.
- a thickener e.g., when coating the electrical storage device electrode composition on a current collector, it is preferable to add a thickener since the coating film can be made uniform.
- the method for producing the composition for an electricity storage device electrode of the present invention is not particularly limited.
- the active material, the conductive additive, the polyvinyl acetal resin, the aqueous medium, and various additives to be added as necessary are ball milled. And a method of mixing using various mixers such as a blender mill and a three-roller.
- the composition for an electricity storage device electrode of the present invention is applied on a conductive substrate and dried to form an electricity storage device electrode.
- An electricity storage device electrode obtained using such an electricity storage device electrode composition is also one aspect of the present invention.
- an application method for applying the composition for an electricity storage device electrode of the present invention to a conductive substrate various application methods such as an extrusion coater, a reverse roller, a doctor blade, an applicator and the like can be employed.
- the electrical storage device containing an electrical storage device electrode is also one of this invention.
- the electricity storage device electrode when used as a binder for an electrode of an electricity storage device, the electricity storage device electrode is excellent in adhesiveness, can improve the flexibility of the obtained electrode, and has high durability against an electrolytic solution. Binders can be provided.
- an electricity storage device that can maintain a good adhesion between active materials in a long-term cycle, and can produce a high-capacity storage battery with low irreversible capacity, low resistance, and excellent output characteristics.
- An electrode binder can be provided.
- the composition for electrical storage device electrodes, the electrical storage device electrode, and the electrical storage device using this electrical storage device electrode binder can be provided.
- a dispersion (content of polyvinyl acetal resin fine particles 1 content: 20% by weight) in which acetal resin fine particles 1 are dispersed was prepared.
- the degree of butyralization was 58.3 mol%
- the amount of hydroxyl group was 37.6 mol%
- the amount of acetyl group was 1.2 mol%
- the ions contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of the acetal bond having an ionic functional group in the formula (5), R 3 is a benzene ring and X is sodium sulfonate
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 9.7% with respect to the entire hydroxyl group-containing structural unit. Furthermore, it was 100 nm when the volume average particle diameter of the obtained polyvinyl acetal type resin fine particle 1 was measured with the transmission electron microscope.
- a dispersion in which the acetal resin fine particles 2 are also dispersed (polyvinyl acetal resin fine particles 2 content: 20% by weight) was prepared.
- polyvinyl acetal resin fine particles 2 content 20% by weight
- the degree of butyralization was 47.1 mol%
- the amount of hydroxyl group was 48.9 mol%
- the amount of acetyl group was 1 mol%
- the ionic functionality contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of an acetal bond having an ionic functional group (in formula (5), R 3 is a benzene ring and X is sodium sulfonate) was 3 mol%.
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 10.2% with respect to the whole hydroxyl group containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 2 was measured by a transmission electron microscope, it was 90 nm.
- a dispersion (content of the polyvinyl acetal resin fine particles 3 content: 20% by weight) in which the acetal resin fine particles 3 are dispersed was prepared.
- the degree of butyralization was 61.6 mol%
- the hydroxyl group amount was 34 mol%
- the acetyl group amount was 1.4 mol%
- the ionic functionality contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring and X is sodium sulfonate
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 12.5% with respect to the whole hydroxyl group containing structural unit. Furthermore, it was 110 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 3 was measured with the transmission electron microscope.
- a dispersion (content of the polyvinyl acetal resin fine particles 4 content: 20% by weight) in which the acetal resin fine particles 4 are dispersed was prepared.
- the degree of butyralization was 63.6 mol%
- the amount of hydroxyl group was 31.9 mol%
- the amount of acetyl group was 1.5 mol%
- the ions contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of the acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring and X is sodium sulfonate
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 17.9% with respect to the whole hydroxyl group containing structural unit. Furthermore, it was 110 nm when the volume average particle diameter of the obtained polyvinyl acetal type resin fine particle 4 was measured with the transmission electron microscope.
- a dispersion (content of polyvinyl acetal resin fine particles 5: 20% by weight) in which the acetal resin fine particles 5 are dispersed was prepared.
- the degree of butyralization was 69.5 mol%
- the amount of hydroxyl group was 26.1 mol%
- the amount of acetyl group was 1.5 mol%
- the ions contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of the acetal bond having an ionic functional group in the formula (5), R 3 is a benzene ring and X is sodium sulfonate
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 30.5% with respect to the entire hydroxyl group-containing structural unit. Furthermore, it was 140 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 5 was measured with the transmission electron microscope.
- a dispersion (content of polyvinyl acetal resin fine particles 6: 20% by weight) in which the acetal resin fine particles 6 are dispersed was prepared.
- the degree of butyralization was 64.4 mol%
- the hydroxyl group amount was 31 mol%
- the acetyl group amount was 1.6 mol%
- the ionic functional group contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring and X is sodium sulfonate
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 22.7% with respect to the entire hydroxyl group-containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 6 was measured with a transmission electron microscope, it was 130 nm.
- a polyvinyl acetal resin (polymerization degree 1000, butyralization degree 73.4 mol%, hydroxyl group content 24.8 mol%, acetyl group content 1.8 mol%) 20 parts by weight is dissolved in 80 parts by weight of isopropanol, and 1 part by weight of sodium 2-formylbenzenesulfonate and 0.05 part by weight of 12M concentrated hydrochloric acid are added to the solution to adjust the acid concentration in the reaction system to 0.12M.
- the reaction was carried out at 70 ° C. for 4 hours.
- a dispersion (content of polyvinyl acetal resin fine particles 7: 20% by weight) in which the acetal resin fine particles 7 are dispersed was prepared.
- the degree of butyralization was 73.1 mol%
- the amount of hydroxyl group was 22.4 mol%
- the amount of acetyl group was 1.6 mol%
- the ions contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of the acetal bond having an ionic functional group in the formula (5), R 3 is a benzene ring and X is sodium sulfonate
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 33.6% with respect to the entire hydroxyl group-containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 7 was measured with a transmission electron microscope, it was 150 nm.
- a dispersion in which the acetal resin fine particles 8 are also dispersed (content of the polyvinyl acetal resin fine particles 8: 20% by weight) was prepared.
- content of the polyvinyl acetal resin fine particles 8 20% by weight
- the degree of butyralization was 47.4 mol%
- the hydroxyl group content was 50.7 mol%
- the acetyl group content was 1 mol%
- the ionic functional group contained in the polyvinyl acetal resin The amount of the group was 0.07 mmol / g
- the content of an acetal bond having an ionic functional group (in formula (5), R 3 is a benzene ring and X is sodium sulfonate) was 0.9 mol%.
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 10.4% with respect to the whole hydroxyl group containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 8 was measured with a transmission electron microscope, it was 600 nm.
- a dispersion (content of the polyvinyl acetal resin fine particles 9: 20% by weight) in which the acetal resin fine particles 9 are dispersed was prepared.
- the degree of butyralization was 47.1 mol%
- the amount of hydroxyl group was 50.4 mol%
- the amount of acetyl group was 1 mol%
- the ionic functionality contained in the polyvinyl acetal resin was 0.1 mmol / g
- the content of an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring and X is sodium sulfonate
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 10.4% with respect to the whole hydroxyl group containing structural unit.
- the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 9 was measured by a transmission electron microscope and found to be 480 nm.
- a dispersion (content of polyvinyl acetal resin fine particles 10 content: 20% by weight) in which acetal resin fine particles 10 are dispersed was prepared.
- the degree of butyralization was 47.1 mol%
- the amount of hydroxyl group was 37.9 mol%
- the amount of acetyl group was 1 mol%
- the ionic functionality contained in the polyvinyl acetal resin was 1.8 mmol / g
- the content of an acetal bond having an ionic functional group in formula (5), R 3 was a benzene ring and X was sodium sulfonate
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 10.9% with respect to the entire hydroxyl group-containing structural unit. Furthermore, it was 9 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 10 was measured with the transmission electron microscope.
- a dispersion in which the acetal resin fine particles 11 are also dispersed (content of the polyvinyl acetal resin fine particles 11: 20% by weight) was produced.
- the degree of butyralization was 47.1 mol%
- the amount of hydroxyl group was 50 mol%
- the amount of acetyl group was 1 mol%
- the ionic functional group contained in the polyvinyl acetal resin was 0.1 mmol / g
- the content of an acetal bond having an ionic functional group (in formula (5), R 3 is a benzene ring and X is sodium sulfonate) was 1.9 mol%.
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 10.4% with respect to the whole hydroxyl group containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 11 was measured with a transmission electron microscope, it was 240 nm.
- a polyvinyl acetal resin (degree of polymerization 1000, degree of butyralization 35.5 mol%, hydroxyl content 63.3 mol%, acetyl group content 1.2 mol%) 20 parts by weight is dissolved in 80 parts by weight of isopropanol, and 1 part by weight of sodium 2-formylbenzenesulfonate and 0.05 part by weight of 12M concentrated hydrochloric acid are added to the solution to adjust the acid concentration in the reaction system to 0.12M.
- the reaction was carried out at 70 ° C. for 4 hours.
- a dispersion (content of polyvinyl acetal resin fine particles 12: 20% by weight) in which the acetal resin fine particles 12 are dispersed was prepared.
- the degree of butyralization was 34 mol%
- the amount of hydroxyl group was 62 mol%
- the amount of acetyl group was 1 mol%
- the amount of ionic functional groups contained in the polyvinyl acetal resin was The content of 0.2 mmol / g, acetal bond having an ionic functional group (in formula (5), R 3 is a benzene ring, X is sodium sulfonate) was 3 mol%.
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 27.3% with respect to the whole hydroxyl group containing structural unit. Furthermore, it was 100 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 12 was measured with the transmission electron microscope.
- a polyvinyl acetal resin (polymerization degree 1100, butyralization degree 70.2 mol%, hydroxyl group amount 27.6 mol%, acetyl group amount 2.2 mol%) 20 parts by weight is dissolved in 80 parts by weight of isopropanol, 2.3 parts by weight of sodium 2-formylbenzenesulfonate and 0.05 part by weight of 12M concentrated hydrochloric acid are added to the solution, and the acid concentration in the reaction system is 0.12M.
- the reaction was performed at 70 ° C. for 4 hours.
- the degree of butyralization was 68.8 mol%
- the amount of hydroxyl group was 25 mol%
- the amount of acetyl group was 2 mol%
- the ionic functional group contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of an acetal bond having an ionic functional group in formula (5), R 3 was a benzene ring and X was sodium sulfonate
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 18.6% with respect to the entire hydroxyl group-containing structural unit. Furthermore, it was 90 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 13 was measured with the transmission electron microscope.
- a dispersion (content of the polyvinyl acetal resin fine particles 14 content: 20% by weight) in which the acetal resin fine particles 14 are dispersed was prepared.
- the degree of butyralization was 32.5 mol%
- the hydroxyl group content was 65 mol%
- the acetyl group content was 0.8 mol%
- the ionic functionality contained in the polyvinyl acetal resin was 0.2 mmol / g
- the content of an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring and X is sodium sulfonate
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 14.6% with respect to the whole hydroxyl group containing structural unit. Furthermore, it was 90 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 13 was measured with the transmission electron microscope.
- a dispersion (content of polyvinyl acetal resin fine particles 15 content: 20% by weight) in which polyvinyl acetal resin fine particles 15 are dispersed was prepared.
- the content of the structural unit represented by the formula (2) was 0.3 mol%
- the degree of butyralization was 51.7 mol%
- the hydroxyl group amount was 45 mol%
- an amount of ionic functional groups contained in the polyvinyl acetal resin is 0.2 mmol / g
- an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring
- the content of X was sodium sulfonate was 2.8 mol%.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 9.8% with respect to the entire hydroxyl group-containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 15 was measured with a transmission electron microscope, it was 90 nm.
- the solution is concentrated until the solid content becomes 20% by weight, and the polyvinyl acetal resin 16 (hereinafter referred to as “fine particle”) is formed.
- a dispersion in which the polyvinyl acetal resin fine particles 16 are also dispersed (content of the polyvinyl acetal resin fine particles 16: 20% by weight) was prepared.
- the obtained polyvinyl acetal resin was measured by NMR. As a result, the content of the structural unit represented by the formula (2) was 5 mol%, the degree of butyralization was 46.4 mol%, the amount of hydroxyl group was 45 mol%, and the acetyl group.
- the amount of ionic functional groups contained in the polyvinyl acetal resin is 0.1 mmol / g, an acetal bond having an ionic functional group (in formula (5), R 3 is a benzene ring, X is a sulfonic acid)
- the content of (sodium) was 1.6 mol%.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 14.5% with respect to the entire hydroxyl group-containing structural unit. Furthermore, it was 300 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 16 was measured with the transmission electron microscope.
- a dispersion in which the polyvinyl acetal resin fine particles 17 are also dispersed (content of the polyvinyl acetal resin fine particles 17: 20% by weight) was prepared.
- the obtained polyvinyl acetal resin was measured by NMR.
- the content of the structural unit represented by the formula (2) was 2 mol%
- the degree of butyralization was 47.4 mol%
- the amount of hydroxyl group was 45 mol%
- the acetyl group was prepared.
- the amount of the ionic functional group contained in the polyvinyl acetal resin is 0.6 mmol / g, the acetal bond having the ionic functional group (in formula (5), R 3 is a benzene ring, X is The content of sodium sulfonate) was 4.5 mol%. Moreover, the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 12.4% with respect to the entire hydroxyl group-containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 17 was measured by a transmission electron microscope, it was 30 nm.
- a dispersion in which polyvinyl acetal resin fine particles 18 are also dispersed was prepared.
- the content of the structural unit represented by the formula (2) was 0.2 mol%
- the degree of butyralization was 51.7 mol%
- the hydroxyl group amount was 36 mol%
- the amount of acetyl groups is 0.1 mol%
- the amount of ionic functional groups contained in the polyvinyl acetal resin is 1 mmol / g
- an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring
- X is The content of (carboxyl group) was 12 mol%.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 25.4% with respect to the entire hydroxyl group-containing structural unit. Furthermore, it was 450 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 18 was measured with the transmission electron microscope.
- a dispersion (content of polyvinyl acetal resin fine particles 19: 20% by weight) in which polyvinyl acetal resin fine particles 19 are dispersed was prepared.
- the content of the structural unit represented by the formula (2) was 7 mol%
- the degree of butyralization was 38 mol%
- the hydroxyl amount was 45 mol%
- the acetyl group amount was 7 Mol%
- the amount of ionic functional group contained in the polyvinyl acetal resin is 0.2 mmol / g
- an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring, X is sodium sulfonate
- the content of was 3 mol%.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 19.2% with respect to the entire hydroxyl group-containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 19 was measured with a transmission electron microscope, it was 90 nm.
- the solution is concentrated until the solid content becomes 20% by weight, and the polyvinyl acetal resin 20 (hereinafter referred to as the fine particle shape)
- the polyvinyl acetal resin 20 (hereinafter referred to as the fine particle shape)
- a dispersion in which the polyvinyl acetal resin fine particles 20 are also dispersed (content of the polyvinyl acetal resin fine particles 20: 20% by weight) was produced.
- the content of the structural unit represented by the formula (2) was 2 mol%
- the degree of butyralization was 66.8 mol%
- the hydroxyl group amount was 25 mol%
- the amount of ionic functional groups contained in the polyvinyl acetal resin is 0.3 mmol / g
- an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring, X is a sulfonic acid
- the content of (sodium) was 4.2 mol%.
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 19.7% with respect to the whole hydroxyl group containing structural unit. Furthermore, it was 90 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 20 was measured with the transmission electron microscope.
- a dispersion in which the polyvinyl acetal resin fine particles 21 are also dispersed was prepared.
- the content of the structural unit represented by the formula (2) was 2 mol%
- the degree of butyralization was 30.5 mol%
- the hydroxyl group amount was 65 mol%
- the amount of the ionic functional group contained in the polyvinyl acetal resin is 0.1 mmol / g
- the acetal bond having the ionic functional group in formula (5), R 3 is a benzene ring, and X is The content of sodium sulfonate) was 1.7 mol%.
- the ratio of the hydroxyl group containing structural unit whose chain length is 1 in the obtained polyvinyl acetal type resin was 24.1% with respect to the whole hydroxyl group containing structural unit. Furthermore, it was 90 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 21 was measured with the transmission electron microscope.
- a dispersion in which the polyvinyl acetal resin fine particles 22 are also dispersed was prepared.
- the content of the structural unit represented by the formula (2) was 2 mol%
- the degree of butyralization was 37.5 mol%
- the hydroxyl group amount was 45 mol%
- the amount of ionic functional groups contained in the polyvinyl acetal resin is 1.8 mmol / g
- an acetal bond having an ionic functional group (in formula (5), R 3 is a benzene ring
- X is The content of sodium sulfonate) was 14 mol%.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 11.9% with respect to the entire hydroxyl group-containing structural unit. Furthermore, it was 9 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 22 was measured with the transmission electron microscope.
- a polyvinyl acetal resin (polymerization degree 800, butyralization degree 50.5 mol%, hydroxyl group amount 47.7 mol%, acetyl group amount 1.8 mol%) 20 parts by weight is dissolved in 80 parts by weight of isopropanol, and 0.25 parts by weight of sodium 2-formylbenzenesulfonate and 0.05 parts by weight of 12M concentrated hydrochloric acid are added to the solution to adjust the acid concentration in the reaction system to 0.12M.
- the reaction was performed at 70 ° C. for 4 hours.
- a dispersion (content of polyvinyl acetal resin fine particles 23: 20% by weight) in which polyvinyl acetal resin fine particles 23 are dispersed was prepared.
- the content of the structural unit represented by the formula (2) was 2 mol%
- the degree of butyralization was 50.8 mol%
- the hydroxyl group amount was 45 mol%
- the amount of the ionic functional group contained in the polyvinyl acetal resin is 0.05 mmol / g
- the acetal bond having the ionic functional group in formula (5), R 3 is a benzene ring, and X is The content of sodium sulfonate) was 0.7 mol%.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 22.9% with respect to the entire hydroxyl group-containing structural unit. Furthermore, it was 700 nm when the volume average particle diameter of the obtained polyvinyl acetal resin fine particle 23 was measured with the transmission electron microscope.
- a dispersion (content of polyvinyl acetal resin fine particles 24: 20% by weight) in which polyvinyl acetal resin fine particles 24) are dispersed was prepared.
- the content of the structural unit represented by the formula (2) was 0.2 mol%
- the degree of butyralization was 51.7 mol%
- the hydroxyl group amount was 45 mol%
- the amount of acetyl groups is 0.2 mol%
- the amount of ionic functional groups contained in the polyvinyl acetal resin is 0.18 mmol / g
- an acetal bond having an ionic functional group in formula (5), R 3 is a benzene ring
- the content of X was sodium sulfonate was 2.9 mol%.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 17.4% with respect to the entire hydroxyl group-containing structural unit. Furthermore, when the volume average particle diameter of the obtained polyvinyl acetal resin fine particles 24 was measured with a transmission electron microscope, it was 200 nm.
- Polyvinyl acetal resin (polymerization degree 1100, butyralization degree 52 mol%, hydroxyl group amount 47.8 mol%, acetyl group amount 0.2 mol%) 20 weight in a reaction vessel equipped with a thermometer, a stirrer and a cooling tube Is dissolved in 80 parts by weight of isopropanol, 1 part by weight of sodium 2-formylbenzenesulfonate and 0.05 part by weight of 12M concentrated hydrochloric acid are added to the solution to adjust the acid concentration in the reaction system to 0.12M, and 70 ° C. For 4 hours.
- the content of the structural unit represented by the formula (2) was 0.3 mol%, the degree of butyralization was 51.7 mol%, the hydroxyl group amount was 45 mol%, An acetyl group amount of 0.2 mol%, an amount of ionic functional groups contained in the polyvinyl acetal resin is 0.2 mmol / g, an acetal bond having an ionic functional group (in formula (5), R 3 is a benzene ring, The content of X was sodium sulfonate was 2.8 mol%. Moreover, the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 9.8% with respect to the entire hydroxyl group-containing structural unit.
- a polyvinyl acetal resin (polymerization degree 1000, acetalization degree 48.1 mol%, hydroxyl group content 50.7 mol%, acetyl group content 1.2 mol%) 20 parts by weight is dissolved in 80 parts by weight of isopropanol, 1 part by weight of butyraldehyde and 0.1 part by weight of 12M concentrated hydrochloric acid are added to the solution to adjust the acid concentration in the reaction system to 0.14M, and 1 at 73 ° C.
- the reaction solution was cooled, the resin was purified by a reprecipitation method, and finally dried to prepare a polyvinyl acetal resin 26.
- the content of the structural unit represented by the formula (2) (R 1 is a propyl group in the formula (2)) was 0.3 mol%, and acetalized. Degree 47.8 mol%, hydroxyl group amount 50.7 mol%, acetyl group amount 1.2 mol%, the amount of ionic functional group contained in the polyvinyl acetal resin is 0 mmol / g, an acetal bond having an ionic functional group The content of was 0 mol%.
- the ratio of the hydroxyl group-containing structural unit having a chain length of 1 in the obtained polyvinyl acetal resin was 27.7% with respect to the entire hydroxyl group-containing structural unit.
- Example 1 Preparation of composition for positive electrode of lithium secondary battery 90 parts by weight of water was added to 10 parts by weight of the dispersion of the polyvinyl acetal resin fine particles 1 obtained as a binder to prepare a 2% by weight polyvinyl acetal resin solution.
- Examples 2 to 19, Comparative Examples 1 to 8 A lithium secondary battery positive electrode composition was prepared in the same manner as in Example 1 except that the polyvinyl acetal resin fine particle dispersions shown in Tables 2 to 5 were used and the amount or type of the polyvinyl acetal resin fine particles was changed. Obtained.
- Example 20 Comparative Example 9
- Example 1 except that a solution prepared by adding 98 parts by weight of N-methylpyrrolidone to 2 parts by weight of the polyvinyl acetal resin shown in Tables 2 to 5 was used instead of the dispersion of fine particles of the polyvinyl acetal resin. In the same manner, a lithium secondary battery positive electrode composition was obtained.
- Example 21 preparation of composition for negative electrode of lithium secondary battery
- 90 parts by weight of water was added to 10 parts by weight of the dispersion of the polyvinyl acetal resin fine particles 1 obtained as a binder to prepare a 2% by weight polyvinyl acetal resin solution.
- 1 part by weight of carboxymethylcellulose (manufactured by Aldrich) as a thickener was added and mixed to obtain a composition for a negative electrode of a lithium secondary battery.
- Examples 22 to 39 Comparative Examples 10 to 17
- a lithium secondary battery negative electrode composition was prepared in the same manner as in Example 21 except that the polyvinyl acetal resin fine particle dispersions shown in Tables 2 to 5 were used and the amount or type of the polyvinyl acetal resin fine particles was changed. Obtained.
- Example 40 Comparative Example 18
- Example 40 Example except that a solution prepared by adding 98 parts by weight of N-methylpyrrolidone to 2 parts by weight of the polyvinyl acetal resin shown in Tables 2 to 5 was used instead of the dispersion of fine particles of the polyvinyl acetal resin.
- a composition for a lithium secondary battery negative electrode was obtained.
- Example 41 preparation of composition for negative electrode of lithium secondary battery
- 90 parts by weight of water was added to 10 parts by weight of the dispersion of the polyvinyl acetal resin fine particles 1 obtained as a binder to prepare a 2% by weight polyvinyl acetal resin solution.
- 45 parts by weight of spherical natural graphite manufactured by Nippon Graphite Industries Co., Ltd., CGB-20
- 5 parts by weight of silicon SiO, manufactured by Osaka Titanium Technologies Co., Ltd.
- acetylene as a conductive assistant
- Example 42 to 59 Comparative Examples 19 to 26
- a lithium secondary battery negative electrode composition was prepared in the same manner as in Example 41 except that the polyvinyl acetal resin fine particle dispersions shown in Tables 2 to 5 were used and the amount or type of the polyvinyl acetal resin fine particles was changed. Obtained.
- Example 60 Comparative Example 27
- Example 60 Example 60, Comparative Example 27
- Example 60 Example 60 except that a solution prepared by adding 98 parts by weight of N-methylpyrrolidone to 2 parts by weight of the polyvinyl acetal resin shown in Tables 2 to 5 was used instead of the dispersion of fine particles of the polyvinyl acetal resin.
- a lithium secondary battery negative electrode composition was obtained.
- the weight (a) of the film was measured by weighing the film obtained by drying the obtained test piece at 110 ° C. for 2 hours. Next, a mixed solution of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) was used as the electrolytic solution, and the obtained film was immersed in the electrolytic solution at 25 ° C. for 3 days. Thereafter, the film was taken out and immediately the surface electrolyte solution was wiped off and then weighed to measure the weight (b). Thereafter, the film was immersed in 500 g of pure water for 2 days to completely remove the electrolyte inside the film, dried at 110 ° C. for 2 hours, and weighed to measure the weight (c). From each weight, the dissolution rate and swelling rate of the binder were calculated by the following equations.
- the conditions at the time of being immersed in electrolyte solution were changed into 50 degreeC for 1 day, and the dissolution rate and swelling rate of the binder at the time of 1 day progress were calculated at 50 degreeC by the same method.
- dissolve in electrolyte solution so that the value of a dissolution rate is high
- resin is easy to swell with electrolyte solution, so that a swelling rate is high.
- the electricity storage device electrode when used as a binder for an electrode of an electricity storage device, the electricity storage device electrode is excellent in adhesiveness, can improve the flexibility of the obtained electrode, and has high durability against an electrolytic solution. Binders can be provided. In addition, because of its excellent resistance to electrolytes, it maintains good adhesion between active materials in a long-term cycle, and the resulting storage battery has low irreversible capacity, low resistance, and high capacity storage battery with excellent output characteristics
- the binder for electrical storage device electrodes which can produce is provided. Furthermore, the composition for electrical storage device electrodes, the electrical storage device electrode, and the electrical storage device using this electrical storage device electrode binder can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
このように、繰り返し充放電が可能な二次電池としては、従来、鉛電池、ニッケル-カドミウム電池等が主流となっている。しかしながらこれらの電池は、充放電特性は優れているが、電池重量やエネルギー密度の点では、携帯型電子機器の移動用電源として充分満足できる特性を有しているとはいえない。
リチウム二次電池の電極は、通常、活物質とバインダーを溶媒と共に混練し、活物質を分散させてスラリーとした後、このスラリーをドクターブレード法等によって集電体上に塗布し乾燥して薄膜化することにより形成されている。
しかしながら、フッ素系樹脂をバインダーとして用いた場合、電解液によってバインダーが膨潤してしまい、長期サイクルにおいて電極界面で剥離が生じ、電池特性が低下してしまうという問題があった。
また、特許文献1では、負極活物質として黒鉛層間距離(d002)が0.345~0.370nmの低結晶炭素と、バインダーとしてスチレン-ブタジエン共重合体(SBR)、増粘剤としてカルボキシメチルセルロースを用いることで良好な負極が得られ、出力特性に優れた電池を得られることが示されている。
しかしながら、SBRをバインダーとして用いた場合も、電解液によってバインダーが膨潤してしまうため、フッ素系樹脂を用いた場合と同様に長期サイクルにおいて電極界面で剥離が生じ、電池特性が低下してしまうという問題があった。
本発明では、バインダー(結着剤)の樹脂成分としてポリビニルアセタール系樹脂を用いることで、ポリビニルアセタール系樹脂と活物質とに引力的相互作用が働き、少量のバインダー量で活物質を固定化することができる。
また、該ポリビニルアセタール系樹脂は導電助剤とも引力的相互作用を及ぼし、活物質、導電助剤間距離をある一定範囲にとどめることができる。このように活物質と導電助剤との距離を程よいものとすることで、活物質の分散性が大幅に改善される。
更に、PVDF等の樹脂を用いる場合と比較して、集電体との接着性を著しく向上させることができる。加えて、カルボキシメチルセルロースを用いる場合と比較して、活物質の分散性、接着性に優れ、バインダーの添加量が少ない場合でも充分な効果を発揮することができる。
また、本発明では、バインダー樹脂の樹脂成分としてポリビニルアセタール系樹脂を用いることにより、電極とした際の柔軟性を充分なものとすることができ、また、電解液によって膨潤しにくいものとすることができる。
なお、本発明の蓄電デバイス電極用バインダーは、樹脂成分からなるものであってもよく、更に分散媒を含むものであってもよい。
上記水酸基量の好ましい下限は35モル%、好ましい上限は55モル%である。
上記連鎖長が1の水酸基含有構成単位の割合の好ましい上限は23重量%、より好ましい上限は18重量%である。
また、上記連鎖長が1の水酸基含有構成単位の割合の下限は特に限定されないが、好ましい下限は5重量%である。
なお、上記水酸基含有構成単位の「連鎖長」とは、水酸基含有構成単位が連続している数を意味する。すなわち、「連鎖長が1」とは、水酸基含有構成単位が連続していないことを意味し、「連鎖長が1の水酸基含有構成単位」とは、水酸基含有構成単位であって、他の水酸基含有構成単位と隣接していないものを意味する。
上記ポリビニルアセタール系樹脂において、連鎖長が1の水酸基含有構成単位の割合を上記範囲とするためには、アセタール化度を適宜調整することが必要であり、アセタール化度は低すぎても高すぎても良くなく、また、同様に水酸基量も低すぎても高すぎてもよくない。適正な範囲の連鎖長が1の水酸基含有構成単位の割合とするためには、アセタール化度は40~70モル%とすることが好ましく、水酸基量は30~60モル%とすることまた、連鎖長が1の水酸基含有構成単位の割合を調製するためには、ポリビニルアセタール樹脂を酸性条件下のアルコールに溶解させて加熱することでアセタール環の脱離と再結合を行い連鎖長が1の水酸基含有構成単位の割合を調整する方法が有効であり、具体的にはポリビニルアセタール系樹脂を酸性に調整したイソプロピルアルコールに溶解させた後、70~80℃程度の高温条件で反応させる方法等が挙げられる。また、上記ポリビニルアセタール系樹脂中の連鎖長が1の水酸基含有構成単位の割合を上記適性範囲となるように調整するためには、上記反応時間や酸濃度を調整することが好ましく、ポリビニルアセタール系樹脂中の連鎖長が1の水酸基含有構成単位の割合を低く設定する場合には、反応時間を長くすることが好ましく、また、酸濃度を高くすることが好ましい。ポリビニルアセタール系樹脂中の連鎖長が1の水酸基含有構成単位の割合を高く設定する場合には、反応時間を短くすることが好ましく、また、酸濃度を低くすることが好ましい。好ましい反応時間は0.1~10時間、好ましい酸濃度は、0.5mM~0.3Mである。
上記式(2)で表される構成単位を有することで、電解液に対する耐性を良好なものとして、電解液によって樹脂成分が膨潤したり、樹脂成分が電解液中に溶出したりすることを抑制することができる。
上記R1としては、活物質同士及び活物質と集電体との結着性をより優れたものとすることができるとともに、電解液に対する耐膨潤性をより高いものとすることができるという観点からプロピル基が好ましい。
上記式(2)で表される構成単位の含有量のより好ましい下限は0.4モル%、更に好ましい下限は0.5モル%、好ましい上限は5モル%、より好ましい上限は3モル%、更に好ましい上限は2モル%である。
具体的には、ポリビニルアセタール系樹脂を重水素化ジメチルスルホキシドに濃度が1重量%となるように溶解させ、測定温度150℃でプロトンNMRを測定し、4.8ppm付近に現れるピーク(A)と、4.2ppm付近に現れるピーク(B)と、1.0~1.8ppm付近に現れるピーク(C)と、0.9ppm付近に現れるピーク(D)の積分値を用いて次式により算出することができる。
式(1)で表される構成単位の含有量(モル%)={(A-B/2)/[(C-4D/3)/2]}×100
一方、上記ポリビニルアセタール系樹脂の水酸基量が低い場合には、ポリビニルアセタール系樹脂中の上記式(2)で表される構成単位の含有量は、低く設定することが好ましい。
ポリビニルアセタール系樹脂の水酸基量が低い場合には、上記式(2)で表される構成単位の含有量が低い範囲においても樹脂の柔軟性は充分に発揮され、クラックや割れの発生を抑制することができるとともに、電解液に対する耐性も高いものとすることができる。
なお、上記塩としては、ナトリウム塩、カリウム塩等が挙げられる。
上記イオン性官能基がポリビニルアセタール系樹脂構造中に直接存在している場合は、ポリビニルアセタール系樹脂の主鎖を構成する炭素にイオン性官能基が結合した鎖状分子構造であるか、アセタール結合を介してイオン性官能基が結合した分子構造であることが好ましく、アセタール結合を介してイオン性官能基が結合した分子構造であることが特に好ましい。
イオン性官能基が上記の構造で存在することで、リチウム二次電池電極用組成物中においてポリビニルアセタール系樹脂の分散性が向上し、電極とした際の活物質及び導電助剤の分散性を特に優れたものとすることができるとともに、電池とした際のバインダーの劣化が抑制されることからリチウム二次電池の放電容量の低下を抑制することができる。
これにより、電解液に対する耐性及び電極とした際の活物質及び導電助剤の分散性を優れたものとすることができるとともに、電池とした際のバインダーの劣化が抑制されることからリチウム二次電池の放電容量の低下を抑制することができる。
上記芳香族環としては、ベンゼン環、ピリジン環等の芳香族環や、ナフタレン環、アントラセン環等の縮合多環芳香族基等が挙げられる。
これにより、ポリビニルアセタール系樹脂の分散性、活物質及び導電助剤の分散性を特に優れたものとすることができるとともに、集電体に対する接着力及び電解液に対する耐性も特に優れたものとすることができることから、リチウム二次電池の放電容量の低下を特に抑制することができる。
ポリビニルアセタール系樹脂中のイオン性官能基の含有量を上記範囲内とすることで、リチウム二次電池電極用組成物中においてポリビニルアセタール系樹脂の分散性が向上するとともに、電解液に対する耐性及び電極とした際の活物質及び導電助剤の分散性を優れたものとすることができ、さらに電池とした際のバインダーの劣化が抑制されることからリチウム二次電池の放電容量の低下を抑制することができる。
上記R5としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基等が挙げられる。なかでも、上記R5はメチレン基であることが好ましい。
上記R5は、ヘテロ原子を有する置換基によって置換された構造であってもよい。上記置換基としては、エステル基、エーテル基、スルフィド基、アミド基、アミン基、スルホキシド基、ケトン基、水酸基等が挙げられる。
なかでも、アリルスルホン酸及びその塩を用いた場合、リチウム二次電池電極用組成物中においてポリビニルアセタール系樹脂の分散性が向上するとともに、電解液に対する耐性及び電極とした際の活物質及び導電助剤の分散性を優れたものとすることができ、さらに電池とした際のバインダーの劣化が抑制されることからリチウム二次電池の放電容量の低下を抑制することができるため好適である。特に、アリルスルホン酸ナトリウムを用いることが好ましい。
これらのモノマーは、単独で用いてもよく、2種以上を併用してもよい。
上記R8としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基等が挙げられる。なかでも、上記R8はメチレン基であることが好ましい。
上記R8は、ヘテロ原子を有する置換基によって置換された構造であってもよい。上記置換基としては、エステル基、エーテル基、スルフィド基、アミド基、アミン基、スルホキシド基、ケトン基、水酸基等が挙げられる。
ポリビニルアセタール系樹脂中のイオン性官能基の含有量を上記範囲内とすることで、リチウム二次電池電極用組成物中においてポリビニルアセタール系樹脂の分散性が向上するとともに、電解液に対する耐性及び電極とした際の活物質及び導電助剤の分散性を優れたものとすることができ、さらに電池とした際のバインダーの劣化が抑制されることからリチウム二次電池の放電容量の低下を抑制することができる。
上記ポリビニルアセタール系樹脂が微粒子形状であることによって、活物質及び導電助剤の表面を全て覆うことなく、部分的に接着(点接触)することが可能となる。その結果、電解液と活物質との接触が良好となり、リチウム電池を使用した場合に大電流が付可されても、リチウムイオンの電導が充分に保たれ、電池容量の低下を抑制することができるという利点が得られる。
なお、上記微粒子形状のポリビニルアセタール系樹脂の体積平均粒子径は、レーザー回折/散乱式粒子径分布測定装置や透過型電子顕微鏡、走査型電子顕微鏡等を用いて測定することができる。
上記CV値の好ましい上限は35%、より好ましい上限は32%、更に好ましい上限は30%である。なお、CV値は、標準偏差を体積平均粒子径で割った値の百分率(%)で示される数値である。
上記分散媒としては水性媒体が好ましく用いられる。
上記分散媒として水性媒体を用いることで、電極に残留する溶媒を限りなく減らすことができ、リチウム二次電池を作製することが可能となる。
なお、本発明の蓄電デバイス電極用バインダーでは、水性媒体は水のみであってもよく、上記水に加えて、水以外の溶媒を添加してもよい。
上記水以外の溶媒としては、水への溶解性を有しており、なおかつ揮発性の高いものがよく、例えば、イソプロピルアルコール、ノルマルプロピルアルコール、エタノール、メタノール等のアルコール類が挙げられる。上記溶媒は単独で用いてもよく、2種以上を併用してもよい。上記水以外の溶媒添加量の好ましい上限は水100重量部に対して30重量部であり、より好ましい上限は20重量部である。
上記蓄電デバイスとしては、リチウム二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等が挙げられる。なかでも、リチウム二次電池、リチウムイオンキャパシタに特に好適に使用することができる。
なかでも、得られるポリビニルアセタール系樹脂の体積平均粒子径が小さく、粒子径分布が狭い微粒子を得ることができるため、上記ポリビニルアセタール系樹脂を有機溶剤に溶解した後にポリビニルアセタール系樹脂を析出させて微粒子を作製する方法が好ましい。なお、上記製造方法では、微粒子形状のポリビニルアセタール系樹脂を作製し、乾燥した後に水性媒体に分散させてもよく、微粒子形状のポリビニルアセタール系樹脂の作製時に使用した溶媒をそのまま水性媒体として使用してもよい。
本発明の蓄電デバイス電極用組成物は、正極、負極のいずれの電極に使用してもよく、また、正極及び負極の両方に使用してもよい。従って、活物質としては、正極活物質、負極活物質がある。
なお、これらは単独で用いてもよく、2種以上を併用してもよい。
上記導電助剤は、蓄電デバイスを高出力化するために用いられるものであり、正極に使用する場合、負極に使用する場合に応じて適当なものを使用することができる。
上記導電助剤としては、例えば、黒鉛、アセチレンブラック、 カーボンブラック、ケッチェンブラック、気相成長炭素繊維等が挙げられる。なかでも、アセチレンブラックが好ましい。
本発明の蓄電デバイス電極用組成物を導電性基体に塗布する際の塗布方法としては、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーターなどをはじめ、各種の塗布方法を採用することができる。
また、蓄電デバイス電極を含有する蓄電デバイスもまた本発明の1つである。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度58.6モル%、水酸基量40モル%、アセチル基量1.4モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加えて反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.14Mとして、81℃にて8時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂1(以下、ポリビニルアセタール系樹脂微粒子1ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子1の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度58.3モル%、水酸基量37.6モル%、アセチル基量1.2モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は2.9モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して9.7%であった。更に、得られたポリビニルアセタール系樹脂微粒子1の体積平均粒子径を透過型電子顕微鏡により測定したところ、100nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度47.8モル%、水酸基量51モル%、アセチル基量1.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、78℃にて6時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂2(以下、ポリビニルアセタール系樹脂微粒子2ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子2の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度47.1モル%、水酸基量48.9モル%、アセチル基量1モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は3モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して10.2%であった。更に、得られたポリビニルアセタール系樹脂微粒子2の体積平均粒子径を透過型電子顕微鏡により測定したところ、90nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度63.2モル%、水酸基量35モル%、アセチル基量1.8モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、78℃にて4時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂3(以下、ポリビニルアセタール系樹脂微粒子3ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子3の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度61.6モル%、水酸基量34モル%、アセチル基量1.4モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は3モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して12.5%であった。更に、得られたポリビニルアセタール系樹脂微粒子3の体積平均粒子径を透過型電子顕微鏡により測定したところ、110nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度64.4モル%、水酸基量33.8モル%、アセチル基量1.8モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸0.5重量部を添加し反応系内の酸濃度を0.21Mとして、75℃にて4時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂4(以下、ポリビニルアセタール系樹脂微粒子4ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子4の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度63.6モル%、水酸基量31.9モル%、アセチル基量1.5モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は3モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して17.9%であった。更に、得られたポリビニルアセタール系樹脂微粒子4の体積平均粒子径を透過型電子顕微鏡により測定したところ、110nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度70モル%、水酸基量28.2モル%、アセチル基量1.8モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸0.1重量部を添加し反応系内の酸濃度を0.14Mとして、73℃にて1時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂5(以下、ポリビニルアセタール系樹脂微粒子5ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子5の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度69.5モル%、水酸基量26.1モル%、アセチル基量1.5モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は2.9モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して30.5%であった。更に、得られたポリビニルアセタール系樹脂微粒子5の体積平均粒子径を透過型電子顕微鏡により測定したところ、140nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度65モル%、水酸基量33.2モル%、アセチル基量1.8モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸0.3重量部を添加し反応系内の酸濃度を0.17Mとして、74℃にて3時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂6(以下、ポリビニルアセタール系樹脂微粒子6ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子6の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度64.4モル%、水酸基量31モル%、アセチル基量1.6モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は3モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して22.7%であった。更に、得られたポリビニルアセタール系樹脂微粒子6の体積平均粒子径を透過型電子顕微鏡により測定したところ、130nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度73.4モル%、水酸基量24.8モル%、アセチル基量1.8モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸0.1重量部を添加し反応系内の酸濃度を0.14Mとして、72℃にて1時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂7(以下、ポリビニルアセタール系樹脂微粒子7ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子7の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度73.1モル%、水酸基量22.4モル%、アセチル基量1.6モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は2.9モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して33.6%であった。更に、得られたポリビニルアセタール系樹脂微粒子7の体積平均粒子径を透過型電子顕微鏡により測定したところ、150nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度47.8モル%、水酸基量51モル%、アセチル基量1.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを0.3重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、78℃にて6時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂8(以下、ポリビニルアセタール系樹脂微粒子8ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子8の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度47.4モル%、水酸基量50.7モル%、アセチル基量1モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.07mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は0.9モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して10.4%であった。更に、得られたポリビニルアセタール系樹脂微粒子8の体積平均粒子径を透過型電子顕微鏡により測定したところ、600nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度47.8モル%、水酸基量51モル%、アセチル基量1.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを0.5重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、78℃にて6時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂9(以下、ポリビニルアセタール系樹脂微粒子9ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子9の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度47.1モル%、水酸基量50.4モル%、アセチル基量1モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.1mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は1.5モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して10.4%であった。更に、得られたポリビニルアセタール系樹脂微粒子9の体積平均粒子径を透過型電子顕微鏡により測定したところ、480nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度47.8モル%、水酸基量51モル%、アセチル基量1.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に4-ホルミルベンゼン-1,3-ジスルホン酸二ナトリウムを6重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、78℃にて6時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂10(以下、ポリビニルアセタール系樹脂微粒子10ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子10の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度47.1モル%、水酸基量37.9モル%、アセチル基量1モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は1.8mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は14モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して10.9%であった。更に、得られたポリビニルアセタール系樹脂微粒子10の体積平均粒子径を透過型電子顕微鏡により測定したところ、9nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度47.8モル%、水酸基量51モル%、アセチル基量1.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを0.6重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、78℃にて6時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂11(以下、ポリビニルアセタール系樹脂微粒子11ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子11の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度47.1モル%、水酸基量50モル%、アセチル基量1モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.1mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は1.9モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して10.4%であった。更に、得られたポリビニルアセタール系樹脂微粒子11の体積平均粒子径を透過型電子顕微鏡により測定したところ、240nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、ブチラール化度35.5モル%、水酸基量63.3モル%、アセチル基量1.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、73℃にて1時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂12(以下、ポリビニルアセタール系樹脂微粒子12ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子12の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度34モル%、水酸基量62モル%、アセチル基量1モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は3モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して27.3%であった。更に、得られたポリビニルアセタール系樹脂微粒子12の体積平均粒子径を透過型電子顕微鏡により測定したところ、100nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1100、ブチラール化度70.2モル%、水酸基量27.6モル%、アセチル基量2.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを2.3重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸0.3重量部を添加し反応系内の酸濃度を0.14Mとして、72℃にて1時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂13(以下、ポリビニルアセタール系樹脂微粒子13ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子13の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度68.8モル%、水酸基量25モル%、アセチル基量2モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は4.2モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して18.6%であった。更に、得られたポリビニルアセタール系樹脂微粒子13の体積平均粒子径を透過型電子顕微鏡により測定したところ、90nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1100、ブチラール化度33.1モル%、水酸基量65.6モル%、アセチル基量1.3モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを2重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、12Mの濃塩酸0.6重量部を添加し反応系内の酸濃度を0.21Mとして、73℃にて1時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状のポリビニルアセタール系樹脂14(以下、ポリビニルアセタール系樹脂微粒子14ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子14の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、ブチラール化度32.5モル%、水酸基量65モル%、アセチル基量0.8モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は1.7モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して14.6%であった。更に、得られたポリビニルアセタール系樹脂微粒子13の体積平均粒子径を透過型電子顕微鏡により測定したところ、90nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1100、ブチラール化度52モル%、水酸基量47.8モル%、アセチル基量0.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド0.2重量部と12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.15Mとして、82℃にて6時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂15(以下、ポリビニルアセタール系樹脂微粒子15ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子15の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量0.3モル%、ブチラール化度51.7モル%、水酸基量45モル%、アセチル基量0.2モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は2.8モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して9.8%であった。更に、得られたポリビニルアセタール系樹脂微粒子15の体積平均粒子径を透過型電子顕微鏡により測定したところ、90nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1100、ブチラール化度45.6モル%、水酸基量52.1モル%、アセチル基量2.3モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを0.5重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド3重量部と12Mの濃塩酸0.05重量部を添加し反応系内の酸濃度を0.12Mとして、70℃にて0.3時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂16(以下、ポリビニルアセタール系樹脂微粒子16ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子16の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量5モル%、ブチラール化度46.4モル%、水酸基量45モル%、アセチル基量2モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.1mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は1.6モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して14.5%であった。更に、得られたポリビニルアセタール系樹脂微粒子16の体積平均粒子径を透過型電子顕微鏡により測定したところ、300nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1100、ブチラール化度46.8モル%、水酸基量51.8モル%、アセチル基量1.4モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に4-ホルミルベンゼン-1,3-ジスルホン酸二ナトリウムを2重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド1重量部と12Mの濃塩酸0.5重量部を添加し反応系内の酸濃度を0.21Mとして、75℃にて4時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂17(以下、ポリビニルアセタール系樹脂微粒子17ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子17の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量2モル%、ブチラール化度47.4モル%、水酸基量45モル%、アセチル基量1.1モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.6mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は4.5モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して12.4%であった。更に、得られたポリビニルアセタール系樹脂微粒子17の体積平均粒子径を透過型電子顕微鏡により測定したところ、30nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度800、ブチラール化度52モル%、水酸基量47.9モル%、アセチル基量0.1モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液にテレフタルアルデヒド酸を2重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド0.1重量部と12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、82℃にて7時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂18(以下、ポリビニルアセタール系樹脂微粒子18ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子18の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量0.2モル%、ブチラール化度51.7モル%、水酸基量36モル%、アセチル基量0.1モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は1mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがカルボキシル基)の含有量は12モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して25.4%であった。更に、得られたポリビニルアセタール系樹脂微粒子18の体積平均粒子径を透過型電子顕微鏡により測定したところ、450nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1700、ブチラール化度37モル%、水酸基量55モル%、アセチル基量8モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド3.5重量部と12Mの濃塩酸0.05重量部を添加し反応系内の酸濃度を0.12Mとして、70℃にて0.3時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂19(以下、ポリビニルアセタール系樹脂微粒子19ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子19の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量7モル%、ブチラール化度38モル%、水酸基量45モル%、アセチル基量7モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は3モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して19.2%であった。更に、得られたポリビニルアセタール系樹脂微粒子19の体積平均粒子径を透過型電子顕微鏡により測定したところ、90nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1700、ブチラール化度66.6モル%、水酸基量31モル%、アセチル基量2.4モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド0.9重量部と12Mの濃塩酸0.5重量部を添加し反応系内の酸濃度を0.21Mとして、75℃にて4時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂20(以下、ポリビニルアセタール系樹脂微粒子20ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子20の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量2モル%、ブチラール化度66.8モル%、水酸基量25モル%、アセチル基量2モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.3mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は4.2モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して19.7%であった。更に、得られたポリビニルアセタール系樹脂微粒子20の体積平均粒子径を透過型電子顕微鏡により測定したところ、90nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1700、ブチラール化度30.3モル%、水酸基量68.7モル%、アセチル基量1モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド1.5重量部と12Mの濃塩酸0.5重量部を添加し反応系内の酸濃度を0.21Mとして、75℃にて4時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂21(以下、ポリビニルアセタール系樹脂微粒子21ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子21の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量2モル%、ブチラール化度30.5モル%、水酸基量65モル%、アセチル基量0.8モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.1mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は1.7モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して24.1%であった。更に、得られたポリビニルアセタール系樹脂微粒子21の体積平均粒子径を透過型電子顕微鏡により測定したところ、90nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1700、ブチラール化度37.2モル%、水酸基量61モル%、アセチル基量1.8モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に4-ホルミルベンゼン-1,3-ジスルホン酸二ナトリウムを6重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド1重量部と12Mの濃塩酸0.5重量部を添加し反応系内の酸濃度を0.21Mとして、75℃にて4時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂22(以下、ポリビニルアセタール系樹脂微粒子22ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子22の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量2モル%、ブチラール化度37.5モル%、水酸基量45モル%、アセチル基量1.5モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は1.8mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は14モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して11.9%であった。更に、得られたポリビニルアセタール系樹脂微粒子22の体積平均粒子径を透過型電子顕微鏡により測定したところ、9nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度800、ブチラール化度50.5モル%、水酸基量47.7モル%、アセチル基量1.8モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを0.25重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド1重量部と12Mの濃塩酸0.5重量部を添加し反応系内の酸濃度を0.21Mとして、75℃にて4時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂23(以下、ポリビニルアセタール系樹脂微粒子23ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子23の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量2モル%、ブチラール化度50.8モル%、水酸基量45モル%、アセチル基量1.5モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.05mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は0.7モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して22.9%であった。更に、得られたポリビニルアセタール系樹脂微粒子23の体積平均粒子径を透過型電子顕微鏡により測定したところ、700nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1100、ブチラール化度52モル%、水酸基量47.8モル%、アセチル基量0.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド1重量部と12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.29Mとして、82℃にて6時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させて樹脂を回収した。次に、得られた樹脂を再度イソプロパノール80重量部に溶解させ、水200重量部を滴下添加した。次いで液温を30℃に保ち、減圧しながら撹拌を行うことでイソプロパノール及び水を揮発させた後、固形分が20重量%となるまで濃縮し、微粒子形状であるポリビニルアセタール系樹脂24(以下、ポリビニルアセタール系樹脂微粒子24ともいう)が分散した分散体(ポリビニルアセタール系樹脂微粒子24の含有量:20重量%)を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量0.2モル%、ブチラール化度51.7モル%、水酸基量45モル%、アセチル基量0.2モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.18mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は2.9モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して17.4%であった。更に、得られたポリビニルアセタール系樹脂微粒子24の体積平均粒子径を透過型電子顕微鏡により測定したところ、200nmであった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1100、ブチラール化度52モル%、水酸基量47.8モル%、アセチル基量0.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液に2-ホルミルベンゼンスルホン酸ナトリウムを1重量部、12Mの濃塩酸を0.05重量部加え反応系内の酸濃度を0.12Mとして、70℃にて4時間反応させた。次いで、ブチルアルデヒド0.2重量部と12Mの濃塩酸1重量部を添加し反応系内の酸濃度を0.15Mとして、82℃にて6時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させてポリビニルアセタール系樹脂25を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位の含有量0.3モル%、ブチラール化度51.7モル%、水酸基量45モル%、アセチル基量0.2モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0.2mmol/g、イオン性官能基を有するアセタール結合(式(5)中、R3がベンゼン環、Xがスルホン酸ナトリウム)の含有量は2.8モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して9.8%であった。
温度計、攪拌機、冷却管を備えた反応容器内に、ポリビニルアセタール系樹脂(重合度1000、アセタール化度48.1モル%、水酸基量50.7モル%、アセチル基量1.2モル%)20重量部をイソプロパノール80重量部に溶解させ、溶解液にブチルアルデヒド1重量部と12Mの濃塩酸0.1重量部を添加し反応系内の酸濃度を0.14Mとして、73℃にて1時間反応を行った後、反応液を冷却し、再沈法にて樹脂の精製を行い、最後に乾燥させてポリビニルアセタール系樹脂26を作製した。
なお、得られたポリビニルアセタール系樹脂をNMRにより測定したところ、式(2)で表される構成単位(式(2)中、R1がプロピル基)の含有量0.3モル%、アセタール化度47.8モル%、水酸基量50.7モル%、アセチル基量1.2モル%、ポリビニルアセタール系樹脂に含まれるイオン性官能基の量は0mmol/g、イオン性官能基を有するアセタール結合の含有量は0モル%であった。また、得られたポリビニルアセタール系樹脂における連鎖長が1の水酸基含有構成単位の割合は水酸基含有構成単位全体に対して27.7%であった。
(リチウム二次電池正極用組成物の調製)
バインダーとして得られたポリビニルアセタール系樹脂微粒子1の分散体10重量部に、水90重量部を加えて、2重量%のポリビニルアセタール系樹脂溶液を調製した。この溶液100重量部に対して、正極活物質としてコバルト酸リチウム(日本化学工業社製、品名:セルシードC-5)50重量部、導電助剤としてアセチレンブラック(電気化学工業社製、デンカブラック)を1重量部、増粘剤としてカルボキシメチルセルロース(アルドリッチ社製)を1重量部加えて混合し、リチウム二次電池正極用組成物を得た。
表2~5に示すポリビニルアセタール系樹脂微粒子の分散体を用いて、ポリビニルアセタール系樹脂微粒子の量又は種類を変更したこと以外は実施例1と同様にして、リチウム二次電池正極用組成物を得た。
ポリビニルアセタール系樹脂からなる微粒子の分散液に代えて、表2~5に示すポリビニルアセタール系樹脂2重量部にN-メチルピロリドン98重量部を加えて調整した溶液を用いたこと以外は実施例1と同様にして、リチウム二次電池正極用組成物を得た。
(リチウム二次電池負極用組成物の調製)
バインダーとして得られたポリビニルアセタール系樹脂微粒子1の分散体10重量部に、水90重量部を加えて、2重量%のポリビニルアセタール系樹脂溶液を調製した。この溶液100重量部に対して、負極活物質として球状天然黒鉛(日本黒鉛工業社製、CGB-20)50重量部、導電助剤としてアセチレンブラック(電気化学工業社製、デンカブラック)を1重量部、増粘剤としてカルボキシメチルセルロース(アルドリッチ社製)を1重量部加えて混合し、リチウム二次電池負極用組成物を得た。
表2~5に示すポリビニルアセタール系樹脂微粒子の分散体を用いて、ポリビニルアセタール系樹脂微粒子の量又は種類を変更したこと以外は実施例21と同様にして、リチウム二次電池負極用組成物を得た。
ポリビニルアセタール系樹脂からなる微粒子の分散液に代えて、表2~5に示すポリビニルアセタール系樹脂を2重量部にN-メチルピロリドン98重量部を加えて調整した溶液を用いたこと以外は実施例21と同様にして、リチウム二次電池負極用組成物を得た。
(リチウム二次電池負極用組成物の調製)
バインダーとして得られたポリビニルアセタール系樹脂微粒子1の分散体10重量部に、水90重量部を加えて、2重量%のポリビニルアセタール系樹脂溶液を調製した。この溶液100重量部に対して、負極活物質として球状天然黒鉛(日本黒鉛工業社製、CGB-20)45重量部及びシリコン(SiO、大阪チタニウムテクノロジーズ社製)5重量部、導電助剤としてアセチレンブラック(電気化学工業社製、デンカブラック)を1重量部、増粘剤としてカルボキシメチルセルロース(アルドリッチ社製)を1重量部加えて混合し、リチウム二次電池負極用組成物を得た。
表2~5に示すポリビニルアセタール系樹脂微粒子の分散体を用いて、ポリビニルアセタール系樹脂微粒子の量又は種類を変更したこと以外は実施例41と同様にして、リチウム二次電池負極用組成物を得た。
ポリビニルアセタール系樹脂からなる微粒子の分散液に代えて、表2~5に示すポリビニルアセタール系樹脂を2重量部にN-メチルピロリドン98重量部を加えて調整した溶液を用いたこと以外は実施例41と同様にして、リチウム二次電池負極用組成物を得た。
実施例及び比較例で得られたリチウム二次電池電極用組成物(正極用、負極用)について以下の評価を行った。結果を表2~5に示した。
(1)接着性
実施例1~20、比較例1~9で得られたリチウム二次電池正極用組成物については、アルミ箔に対する接着性を評価し、実施例21~60、比較例10~27で得られたリチウム二次電池負極用組成物については、銅箔に対する接着性を評価した。
アルミ箔(厚み15μm)の上に、乾燥後の膜厚が40μmとなるようにリチウム二次電池電極用組成物を塗工、乾燥し、アルミ箔上に電極がシート状に形成された試験片を得た。
このサンプルを縦10cm、横5cmに切り出し、アルミ箔側を厚み2mmのアクリル板に両面テープで貼り付けた。試験片の電極表面に幅18mmのテープ(商品名:セロテープ(登録商標)No.252(積水化学工業社製)(JIS Z1522規定))を貼り付け、90°方向に300mm/minの速度でテープを剥離したときの剥離力(N)をAUTOGRAPH(島津製作所社製、「AGS-J」)を用いて計測した。
上記「(1-1)アルミ箔に対する接着性」において、アルミ箔を銅箔(厚み15μm)に変更した以外は全く同じ方法にて剥離力を計測した。
得られたリチウム二次電池電極用組成物10重量部と水90重量部を混合、希釈した後、超音波分散機(エスエヌディ社製、「US-303」)にて10分間撹拌した。その後レーザー回折式粒度分布計(堀場製作所社製、LA-910)を用いて粒度分布測定を行い、平均分散径を測定した。
(バインダー樹脂シートの作製)
離型処理されたポリエチレンテレフタレート(PET)フィルム上に、乾燥後の膜厚が50μmとなるように実施例及び比較例で用いられたポリビニルアセタール系樹脂分散体又は樹脂溶液を塗工、乾燥してバインダー樹脂シートを作製した。
得られたバインダー樹脂シートを30×50mmに切り出し、試験片を作製した。
次に、電解液としてエチレンカーボネートとジエチルカーボネートとの混合溶液(体積比1:1)を用い、得られたフィルムを電解液に25℃で3日間浸漬させた。その後、フィルムを取り出し、直ちに表面の電解液をふき取って除去した後、計量することにより、重量(b)を計測した。
その後、該フィルムを純水500gに2日間浸漬させてフィルム内部の電解液を完全に除去し、110℃で2時間乾燥させた後、計量することにより、重量(c)を計測した。
各重量から、バインダーの溶解率及び膨潤率を次式により算出した。
溶解率(%)=[(a-c)/a]×100
膨潤率(%)=(b/c)×100
また、電解液に浸漬する際の条件を50℃で1日間に変更し、同様の方法により50℃で1日間経過時のバインダーの溶解率及び膨潤率を算出した。
なお、溶解率の値が高いほど電解液に樹脂が溶解しやすいことを意味し、膨潤率が高いほど樹脂が電解液によって膨潤しやすいことを意味する。
実施例1~20、比較例1~9で得られたリチウム二次電池正極用組成物については、アルミ箔を用いて作製した電極の柔軟性を評価し、実施例21~60、比較例10~27で得られたリチウム二次電池負極用組成物については、銅箔を用いて作製した電極の柔軟性を評価した。
アルミ箔(厚み15μm)の上に、乾燥後の膜厚が40μmとなるようにリチウム二次電池電極用組成物を塗工、乾燥し、アルミ箔上に電極がシート状に形成された試験片を得た。
このサンプルを縦50cm、横2cmに切り出し、直径2mmのガラス棒に巻き付けて1日放置した後、サンプルの巻き付けを解いて電極のクラックや割れの発生を以下の基準で評価した。
◎:クラックや割れは全く確認されなかった
○:クラックや割れが僅かに確認されたが、活物質の剥がれは全く確認されなかった
△:クラックや割れが確認され、部分的な活物質の剥がれも確認された
×:全面的にクラックや割れが確認され、大部分の活物質の剥がれも確認された
上記「(4-1)アルミ箔を用いた柔軟性」において、アルミ箔を銅箔(厚み15μm)に変更した以外は全く同じ方法にて柔軟性を評価した。
(5-1)実施例1~20、比較例1~9
(a)二次電池の作製
実施例1~20、比較例1~9で得られたリチウム二次電池正極用組成物を厚さ15μmのアルミ箔に均一に塗布、乾燥し、これをφ16mmに打ち抜いて正極を得た。
電解液としてLiPF6(1M)を含有するエチレンカーボネートとジエチルカーボネートとの混合溶媒(体積比1:1)を用いた。
2極式コインセル(商品名:HSフラットセル(宝泉社製))に、正極を、電極層面が上向きになるように入れた。次いで、直径24mmに打ち抜いた厚さ25μmの多孔質ポリプロピレン製セパレータを置いた後、空気が入らないように電解液を注入した。その後、対極となるリチウム金属板を更に置き、上部蓋をネジで閉めて密閉することにより二次電池を得た。
得られた二次電池について、(東洋システム社製、評価用充放電試験装置TOSCAT-3100)を用いて放電容量評価、及び、充放電サイクル評価を行った。
この放電容量評価、充放電サイクル評価は電圧範囲2.8~4.2V、評価温度は25℃で行った。なお、充放電サイクル評価は、初回の放電容量に対する50サイクル目の放電容量の割合より算出した。
実施例21~60、比較例10~27で得られたリチウム二次電池負極用組成物を厚さ15μmの銅箔に均一に塗布、乾燥し、これをφ16mmに打ち抜いて負極を得た。
得られた負極を用いた以外は、(5-1)と同じ方法にて密閉型の二次電池を得た後、放電容量評価、及び、充放電サイクル評価を行った。なお、この放電容量評価、充放電サイクル評価は電圧範囲0.03~3.0V、評価温度は25℃で行った。充放電サイクル評価は、初回の放電容量に対する50サイクル目の放電容量の割合より算出した。
Claims (10)
- ポリビニルアセタール系樹脂は、式(2)で表される構成単位の含有量が0.3~5モル%であることを特徴とする請求項1又は2記載の蓄電デバイス電極用バインダー。
- ポリビニルアセタール系樹脂は、イオン性官能基を有することを特徴とする請求項1、2又は3記載の蓄電デバイス電極用バインダー。
- ポリビニルアセタール系樹脂と水性媒体とを含む分散体を含有し、前記ポリビニルアセタール系樹脂は微粒子形状であることを特徴とする請求項1、2、3、4又は5記載の蓄電デバイス電極用バインダー。
- ポリビニルアセタール系樹脂は、体積平均粒子径が10~500nmであることを特徴とする請求項6記載の蓄電デバイス電極用バインダー。
- 請求項1、2、3、4、5、6又は7記載の蓄電デバイス電極用バインダー、及び、活物質を含有する蓄電デバイス電極用組成物であって、
前記活物質100重量部に対して、ポリビニルアセタール系樹脂を0.1~12重量部含有することを特徴とする蓄電デバイス電極用組成物。 - 請求項8記載の蓄電デバイス電極用組成物を含有することを特徴とする蓄電デバイス電極。
- 請求項9記載の蓄電デバイス電極を含有することを特徴とする蓄電デバイス。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680008435.8A CN107210445B (zh) | 2015-09-17 | 2016-09-14 | 蓄电器件电极用粘合剂 |
JP2016560852A JP6114891B1 (ja) | 2015-09-17 | 2016-09-14 | 蓄電デバイス電極用バインダー |
US15/746,535 US10472441B2 (en) | 2015-09-17 | 2016-09-14 | Binder for power storage device electrode |
EP16846533.4A EP3352268A4 (en) | 2015-09-17 | 2016-09-14 | BINDER FOR ELECTRODE OF ELECTRICITY STORAGE DEVICE |
KR1020177023113A KR20180056589A (ko) | 2015-09-17 | 2016-09-14 | 축전 디바이스 전극용 바인더 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015184206 | 2015-09-17 | ||
JP2015-184207 | 2015-09-17 | ||
JP2015-184206 | 2015-09-17 | ||
JP2015184207 | 2015-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047662A1 true WO2017047662A1 (ja) | 2017-03-23 |
Family
ID=58288902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077166 WO2017047662A1 (ja) | 2015-09-17 | 2016-09-14 | 蓄電デバイス電極用バインダー |
Country Status (7)
Country | Link |
---|---|
US (1) | US10472441B2 (ja) |
EP (1) | EP3352268A4 (ja) |
JP (1) | JP6114891B1 (ja) |
KR (1) | KR20180056589A (ja) |
CN (1) | CN107210445B (ja) |
TW (1) | TWI687445B (ja) |
WO (1) | WO2017047662A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018206675A (ja) * | 2017-06-07 | 2018-12-27 | 積水化学工業株式会社 | 蓄電デバイス電極用スラリー |
JP2018206658A (ja) * | 2017-06-07 | 2018-12-27 | 積水化学工業株式会社 | 蓄電デバイス負極用バインダー |
WO2019065869A1 (ja) * | 2017-09-28 | 2019-04-04 | 積水化学工業株式会社 | 二次電池電極用組成物 |
JPWO2021182362A1 (ja) * | 2020-03-09 | 2021-09-16 | ||
WO2022210046A1 (ja) * | 2021-03-31 | 2022-10-06 | 積水化学工業株式会社 | 二次電池電極用樹脂組成物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7047453B2 (ja) * | 2018-02-22 | 2022-04-05 | トヨタ自動車株式会社 | リチウムイオン二次電池およびその製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09249845A (ja) * | 1996-03-18 | 1997-09-22 | Toshiba Corp | 黒色着色組成物 |
JP2002283699A (ja) * | 2001-03-22 | 2002-10-03 | Konica Corp | インクジェット記録媒体 |
JP2013155366A (ja) * | 2012-01-04 | 2013-08-15 | Jnc Corp | 熱拡散性樹脂組成物および該組成物を含むワニス |
JP2014189681A (ja) * | 2013-03-27 | 2014-10-06 | Sekisui Chem Co Ltd | 変性ポリビニルアセタール樹脂 |
JP2015088487A (ja) * | 2013-09-27 | 2015-05-07 | 積水化学工業株式会社 | リチウム二次電池電極用組成物 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0319613A1 (en) * | 1987-12-07 | 1989-06-14 | METHANOL CHEMIE NEDERLAND V.o.F. | A process for preparing polymers and their use as stabilizers for aqueous formaldehyde solutions |
US5907008A (en) * | 1996-03-18 | 1999-05-25 | Kabushiki Kaisha Toshiba | Black coloring composition, high heat resistance light-shielding component, array substrate, liquid crystal and method of manufacturing array substrate |
CN1717375A (zh) * | 2003-05-19 | 2006-01-04 | 松下电器产业株式会社 | 陶瓷生坯基板、层合陶瓷制品和它们的制备方法 |
WO2004101465A1 (ja) * | 2003-05-19 | 2004-11-25 | Matsushita Electric Industrial Co., Ltd. | セラミックグリーンシートと積層セラミック物品及びその製造方法 |
JP5401035B2 (ja) | 2007-12-25 | 2014-01-29 | 日立ビークルエナジー株式会社 | リチウムイオン二次電池 |
JP4778034B2 (ja) * | 2008-01-30 | 2011-09-21 | パナソニック株式会社 | 非水系二次電池の製造方法 |
EP2623524B1 (en) * | 2010-09-27 | 2017-01-11 | Sekisui Chemical Co., Ltd. | Method for producing modified polyvinyl acetal |
US20120189770A1 (en) * | 2011-01-20 | 2012-07-26 | Moshe Nakash | Preparing lithographic printing plates by ablation imaging |
JP5873368B2 (ja) * | 2011-11-07 | 2016-03-01 | 積水化学工業株式会社 | 無機質焼結体製造用バインダー |
JP5827580B2 (ja) * | 2012-02-28 | 2015-12-02 | 積水化学工業株式会社 | リチウム二次電池電極用組成物 |
KR20150063963A (ko) * | 2012-09-28 | 2015-06-10 | 세키스이가가쿠 고교가부시키가이샤 | 수계 분산액용 폴리비닐아세탈 미립자 |
JP6255260B2 (ja) * | 2014-01-30 | 2017-12-27 | 積水化学工業株式会社 | リチウム二次電池電極用組成物 |
EP3125340B1 (en) * | 2014-03-27 | 2018-10-17 | Sekisui Chemical Co., Ltd. | Binder for power storage device electrode |
JP6403970B2 (ja) * | 2014-03-31 | 2018-10-10 | 積水化学工業株式会社 | ポリビニルアセタール樹脂 |
JP5979177B2 (ja) * | 2014-05-14 | 2016-08-24 | トヨタ自動車株式会社 | 正極ペースト及びその製造方法 |
JP2016192267A (ja) * | 2015-03-31 | 2016-11-10 | 株式会社大阪ソーダ | 電池電極用バインダー、およびそれを用いた電極ならびに電池 |
JP6565274B2 (ja) * | 2015-03-31 | 2019-08-28 | 三菱ケミカル株式会社 | ポリビニルアセタール系樹脂の製造方法 |
-
2016
- 2016-09-14 JP JP2016560852A patent/JP6114891B1/ja active Active
- 2016-09-14 CN CN201680008435.8A patent/CN107210445B/zh active Active
- 2016-09-14 US US15/746,535 patent/US10472441B2/en active Active
- 2016-09-14 WO PCT/JP2016/077166 patent/WO2017047662A1/ja active Application Filing
- 2016-09-14 KR KR1020177023113A patent/KR20180056589A/ko not_active Application Discontinuation
- 2016-09-14 TW TW105130098A patent/TWI687445B/zh active
- 2016-09-14 EP EP16846533.4A patent/EP3352268A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09249845A (ja) * | 1996-03-18 | 1997-09-22 | Toshiba Corp | 黒色着色組成物 |
JP2002283699A (ja) * | 2001-03-22 | 2002-10-03 | Konica Corp | インクジェット記録媒体 |
JP2013155366A (ja) * | 2012-01-04 | 2013-08-15 | Jnc Corp | 熱拡散性樹脂組成物および該組成物を含むワニス |
JP2014189681A (ja) * | 2013-03-27 | 2014-10-06 | Sekisui Chem Co Ltd | 変性ポリビニルアセタール樹脂 |
JP2015088487A (ja) * | 2013-09-27 | 2015-05-07 | 積水化学工業株式会社 | リチウム二次電池電極用組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3352268A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018206675A (ja) * | 2017-06-07 | 2018-12-27 | 積水化学工業株式会社 | 蓄電デバイス電極用スラリー |
JP2018206658A (ja) * | 2017-06-07 | 2018-12-27 | 積水化学工業株式会社 | 蓄電デバイス負極用バインダー |
WO2019065869A1 (ja) * | 2017-09-28 | 2019-04-04 | 積水化学工業株式会社 | 二次電池電極用組成物 |
JPWO2019065869A1 (ja) * | 2017-09-28 | 2019-11-14 | 積水化学工業株式会社 | 二次電池電極用組成物 |
US11239467B2 (en) | 2017-09-28 | 2022-02-01 | Sekisui Chemical Co., Ltd. | Composition for secondary battery electrode |
JPWO2021182362A1 (ja) * | 2020-03-09 | 2021-09-16 | ||
WO2021182362A1 (ja) * | 2020-03-09 | 2021-09-16 | 御国色素株式会社 | 導電材分散液並びにこれを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池の製造方法 |
JP7374414B2 (ja) | 2020-03-09 | 2023-11-08 | 御国色素株式会社 | 導電材分散液並びにこれを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池の製造方法 |
WO2022210046A1 (ja) * | 2021-03-31 | 2022-10-06 | 積水化学工業株式会社 | 二次電池電極用樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
TWI687445B (zh) | 2020-03-11 |
US20180201709A1 (en) | 2018-07-19 |
TW201720847A (zh) | 2017-06-16 |
CN107210445B (zh) | 2021-03-16 |
CN107210445A (zh) | 2017-09-26 |
KR20180056589A (ko) | 2018-05-29 |
JP6114891B1 (ja) | 2017-04-12 |
US10472441B2 (en) | 2019-11-12 |
EP3352268A1 (en) | 2018-07-25 |
EP3352268A4 (en) | 2019-02-20 |
JPWO2017047662A1 (ja) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6114821B2 (ja) | 蓄電デバイス電極用バインダー | |
JP6114891B1 (ja) | 蓄電デバイス電極用バインダー | |
JP6126757B1 (ja) | 蓄電デバイス電極用バインダー | |
JP5827581B2 (ja) | リチウム二次電池電極用組成物 | |
JP6345357B1 (ja) | 蓄電デバイス電極用バインダー | |
JP6927756B2 (ja) | 蓄電デバイス電極用スラリー | |
JP2018160400A (ja) | 蓄電デバイス電極用バインダー | |
JP2018206658A (ja) | 蓄電デバイス負極用バインダー | |
JP2017183241A (ja) | 蓄電デバイス電極用バインダー | |
WO2018180073A1 (ja) | 蓄電デバイス電極用バインダー | |
JP2018005989A (ja) | 蓄電デバイス電極用組成物 | |
JP6357603B1 (ja) | 蓄電デバイス電極用バインダー | |
JP6876478B2 (ja) | 蓄電デバイス電極用バインダー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016560852 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846533 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177023113 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15746535 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016846533 Country of ref document: EP |