WO2017047546A1 - マルチコプターの制御方法、マルチコプター用コントローラおよびマルチコプター玩具 - Google Patents

マルチコプターの制御方法、マルチコプター用コントローラおよびマルチコプター玩具 Download PDF

Info

Publication number
WO2017047546A1
WO2017047546A1 PCT/JP2016/076796 JP2016076796W WO2017047546A1 WO 2017047546 A1 WO2017047546 A1 WO 2017047546A1 JP 2016076796 W JP2016076796 W JP 2016076796W WO 2017047546 A1 WO2017047546 A1 WO 2017047546A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicopter
control signal
yaw
control
roll
Prior art date
Application number
PCT/JP2016/076796
Other languages
English (en)
French (fr)
Inventor
博義 石川
Original Assignee
京商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015182066A external-priority patent/JP5997338B1/ja
Priority claimed from JP2015191641A external-priority patent/JP5997342B1/ja
Priority claimed from JP2016128478A external-priority patent/JP6114862B1/ja
Application filed by 京商株式会社 filed Critical 京商株式会社
Publication of WO2017047546A1 publication Critical patent/WO2017047546A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0033Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by having the operator tracking the vehicle either by direct line of sight or via one or more cameras located remotely from the vehicle
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H30/00Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
    • A63H30/02Electrical arrangements
    • A63H30/04Electrical arrangements using wireless transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U40/00On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration
    • B64U40/10On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration for adjusting control surfaces or rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the present invention relates to a multicopter control method, a multicopter controller, and a multicopter toy applied when manipulating the multicopter.
  • a multicopter that performs unmanned flight with a plurality of rotor blades can fly in various postures by controlling the output (for example, the number of revolutions) of each rotor blade. For example, in a quadcopter having four rotor blades, the attitude is controlled by the respective output balances of the two front and left rotor blades and the rear left and right rotor blades around the airframe.
  • the aircraft body When such a multicopter is flying, the aircraft body is tilted forward by increasing the output of the rear rotor blade relative to the front rotor blade, and the axes of the plurality of rotor blades are tilted forward together with the aircraft body in the direction of travel. Has gained a driving force.
  • the pitch direction is controlled by adjusting the output balance between the front two rotor blades and the rear two rotor blades, and the flying attitude in the front-rear direction is controlled.
  • the roll direction is controlled by adjusting the output balance between the left two rotor blades and the right two rotor blades, and the flight posture in the left-right direction is controlled.
  • the yaw direction is controlled by adjusting the output balance between the two front left and right rear rotor blades and the two right front and left rear rotor blades, and the flying attitude in the rotational direction is controlled.
  • the operator operates the controller to select various flight postures and fly the multicopter in a desired direction.
  • a general controller for a multicopter is a stick controller having two movable sticks. For example, the operator moves the left stick back and forth to control ascent and descent, and moves left and right to control left and right yaw. In addition, the right stick is moved back and forth to control forward and backward, and left and right to control the left and right rolls.
  • Patent Document 1 discloses a technology that uses a terminal having a touch screen as a multicopter controller. The pilot selects the flight position of the multicopter by tilting the touch screen or touching the touch screen with a finger.
  • Patent Document 2 discloses a drone including an integrated battery, a load support body, two arms, each arm having two rollers, a control module, a payload module, and a skid.
  • This unmanned aircraft can be reconfigured to operate as an unmanned aerial vehicle, unmanned ground vehicle, unmanned (water) boat, or unmanned submersible depending on the type of arm to which it is attached.
  • each propeller is slightly tilted with respect to the tip at a pitch angle slightly offset downward from the horizontal. This prevents the rear end of the control module from entering the field of view behind and below the payload during hovering. Further, since the body flies in a horizontal state during forward flight in cruise flight, it is possible to fly forward while minimizing wind resistance.
  • the multicopter In the control of the multicopter, it is necessary to control four channels corresponding to the top, bottom, front, back, yaw and pitch of the multicopter using a control signal transmitted from a controller operated by a pilot.
  • the pilot must control these flight attitudes instantaneously according to the situation in order to maneuver the multicopter as desired. For example, if the multicopter is to be turned while flying forward, the pilot needs to control the pitch and synchronize the yaw and roll controls to draw the desired arc. Such an operation is very complicated and takes a lot of time to learn.
  • the flight is automatically controlled so as to fly on the path of the turn radius calculated from the operation amount performed by the operator.
  • the turn radius is set from the tilt amount, and the posture is automatically set so as not to deviate from the path of the circle that becomes the turn radius. Controlled.
  • Such control is easy for the pilot, but lacks the pleasure of manipulating the multicopter.
  • the conventional multi-copter toy is not configured so that the user (operator) can easily adjust the flight characteristics. For this reason, there is a problem that the flight characteristics cannot be set according to the operator's preference or the adjustment according to the power performance cannot be performed, and the preference is lacking.
  • An object of the present invention is to provide a multicopter control method capable of obtaining the joy of manipulating while reducing the complexity of maneuvering of the multicopter.
  • the present invention provides a first control signal for controlling a yaw or a roll of the multicopter from a controller operated by a pilot toward a multicopter that is unmannedly flying by a plurality of rotor blades, and
  • a second control signal for controlling the pitch of the multicopter is transmitted to control the multicopter.
  • the first region is set according to the first operation amount as control according to the first operation amount included in the first control signal at that time.
  • the first operation amount is the first region, one of the roll and the yaw is selected according to the first operation amount, and the first operation amount is When it is the second region, it includes selecting the other of the roll or the yaw according to the first operation amount.
  • the present invention also provides a first control signal for controlling a yaw or a roll of the multicopter from a controller operated by a pilot to a multicopter that unmannedly flies by a plurality of rotor blades, and a pitch of the multicopter
  • a second control signal for controlling the multi-copter by transmitting a second control signal when the first control signal is transmitted from the controller, either the yaw or the roll is selected as control according to the first operation amount included in the first control signal at that time.
  • the yaw control is selected by the first control signal, the yaw rotation is controlled depending on whether the multicopter is moved forward by controlling the pitch by the second control signal. Including performing control to reverse the direction.
  • the present invention also provides a first control signal for controlling a yaw or a roll of the multicopter from a controller operated by a pilot to a multicopter that unmannedly flies by a plurality of rotor blades, and a pitch of the multicopter
  • a second control signal for controlling the multi-copter by transmitting a second control signal when the first control signal is transmitted from the controller, control is performed from the first operation amount by a predetermined function as control according to the first operation amount included in the first control signal at that time. Adjusting each control amount of the yaw and the roll according to the first operation amount according to the value.
  • the present invention also provides a first control signal for controlling a yaw or a roll of the multicopter from a controller operated by a pilot to a multicopter that unmannedly flies by a plurality of rotor blades, and a pitch of the multicopter
  • a second control signal for controlling the multi-copter by transmitting a second control signal when the first control signal is transmitted from the controller, the control amounts of the yaw and the roll are adjusted as control according to the first operation amount included in the first control signal at that time. Including doing.
  • the pitch is controlled by the second control signal and the multicopter is moved forward and backward. , And controlling so that the rotation direction of the yaw is reversed and the rotation direction of the roll is not reversed.
  • the present invention controls a first control signal for controlling a yaw of the multicopter and a pitch of the multicopter from a controller operated by a pilot toward a multicopter that is unmannedly flying by a plurality of rotor blades.
  • a second control signal for controlling the multicopter when the yaw is controlled by the first control signal and the pitch is controlled by the second control signal, the rotation direction of the yaw is reversed between the case where the multicopter is advanced and the case where the multicopter is moved backward. Including performing control.
  • the present invention is a controller for manipulating a multicopter that performs unmanned flight with a plurality of rotor blades.
  • the controller is provided in the main body casing, the wheel section provided in the main body casing and rotated and operated, the trigger section provided in the main body casing and operated to advance and retreat with a finger, and the main body casing.
  • a reciprocating switch unit, and a transmission unit provided in the main body casing.
  • the transmission unit controls a pitch of the multicopter according to an operation of the trigger unit, a first control signal for controlling either a yaw or a roll of the multicopter according to an operation of the wheel unit.
  • a third control signal for controlling the height of the multicopter in response to the operation of the reciprocating switch unit.
  • the first control signal is either a yaw control signal for controlling the yaw or a roll control signal for controlling the roll in accordance with an operation of the wheel unit.
  • the transmission unit transmits either the yaw control signal or the roll control signal according to the operation amount of the trigger unit at that time.
  • the present invention is a controller for manipulating a multicopter that performs unmanned flight with a plurality of rotor blades.
  • the controller is provided in the main body casing, the wheel section provided in the main body casing and rotated and operated, the trigger section provided in the main body casing and operated to advance and retreat with a finger, and the main body casing.
  • a reciprocating switch unit, and a transmission unit provided in the main body casing.
  • the transmission unit controls a pitch of the multicopter according to an operation of the trigger unit, a first control signal for controlling either a yaw or a roll of the multicopter according to an operation of the wheel unit.
  • a third control signal for controlling the height of the multicopter in response to the operation of the reciprocating switch unit.
  • the reciprocating switch unit has a function of being held in a neutral position without being operated.
  • the transmitter is configured to control the multicopter to a predetermined height when the time from the operation of the reciprocating switch unit in a predetermined direction to the return to the neutral position is within a predetermined time.
  • the third control signal is transmitted.
  • the present invention also provides a first control signal for controlling a yaw or a roll of the multicopter from a controller operated by a pilot to a multicopter that is unmannedly flying by a plurality of rotor blades, and a pitch of the multicopter.
  • a method of controlling the multicopter by transmitting a second control signal for controlling and a third control signal for controlling the height of the multicopter.
  • the first control signal is transmitted from the controller, the first operation amount included in the first control signal is determined according to the second operation amount included in the second control signal at that time.
  • the control includes selecting either the yaw or the roll.
  • the present invention is a multicopter toy that performs unmanned flight.
  • the multi-copter toy includes an airframe, a plurality of rotary wing units attached to the airframe, a joint frame attached to the airframe, and a clamp that fixes the joint frame to the airframe at a predetermined angle.
  • Each of the plurality of rotary blade units includes a motor and a rotary blade rotated by the motor.
  • Two of the plurality of rotor blade units are connected to both ends of the joint frame. At least one of the plurality of rotor units is attached to the airframe so as to be adjustable in angle.
  • the present invention is a multicopter toy that performs unmanned flight.
  • This multi-copter toy includes a fuselage, a plurality of rotary wing units attached to the fuselage, and a control board having a sensor provided in the fuselage and used for posture control.
  • Each of the plurality of rotary blade units includes a motor and a rotary blade rotated by the motor.
  • At least one of the plurality of rotor units is attached to the airframe so as to be adjustable in angle.
  • the control board is attached to the machine body so that the angle can be adjusted.
  • (A) And (b) is a schematic diagram which illustrates the controller for multicopters concerning embodiment. It is a block diagram which illustrates the composition of a controller. It is a block diagram which illustrates the composition of a multicopter.
  • (A)-(d) is a schematic diagram which illustrates the attitude
  • (A) And (b) is a schematic diagram which illustrates the control of a raise / lower of a multicopter.
  • (A)-(c) is a schematic diagram which illustrates the control of advance and reverse of a multicopter.
  • A) And (b) is a schematic diagram which illustrates the left-right control of a multicopter.
  • (A)-(c) is a schematic diagram which illustrates the turn control of a multicopter.
  • (A)-(d) is the schematic diagram illustrated about the turn of a multicopter.
  • (A)-(c) is a schematic diagram explaining the control of a turn.
  • (A) And (b) is a figure illustrated about determination of the angular velocity of the yaw of a multicopter.
  • (A)-(c) is a figure which illustrates about control of the yaw and roll of a multicopter.
  • (A) And (b) is a figure which illustrates roll correction
  • (A) And (b) is a figure explaining the example of control switching.
  • (A)-(c) is a figure explaining the example (the 1) of the switch of a roll and a yaw according to the amount of wheel operation.
  • (A) And (b) is a figure explaining the example (the 2) of the change of the roll and yaw according to the amount of wheel operation.
  • (A)-(d) is a schematic diagram which illustrates the control of the yaw in the forward and backward of the multicopter. It is a perspective view which illustrates the multicopter toy concerning an embodiment.
  • (A) And (b) is an expansion perspective view of a clamp part.
  • (A) And (b) is a schematic diagram which illustrates the flight attitude
  • (A) And (b) is a schematic diagram illustrated about angle adjustment of a control board. It is a schematic diagram which illustrates a reference
  • (A)-(c) is a schematic diagram illustrated about adjustment of the inclination-angle of a rotary blade unit.
  • (A) And (b) is a schematic diagram illustrated about the gravity center balance adjustment of a multicopter toy. It is a perspective view which shows the example of angle adjustment of the rotary blade unit by a servo mechanism.
  • FIG. 1A and 1B are schematic views illustrating a multicopter controller according to an embodiment.
  • FIG. 1A shows how the multicopter 100 is operated
  • FIG. 1B shows a multicopter controller (hereinafter simply referred to as “controller”) 1.
  • the multicopter 100 is an unmanned air vehicle in which a plurality of rotor blades 120 are provided on a fuselage 110.
  • a quadcopter having four rotor blades 120 may take off and land, hover, forward and backward flight, and left and right flight depending on the output balance of two rotor blades 120 on the left and right of the fuselage 110 and two rotor blades 120 on the left and right.
  • Various flight postures such as rotation, turn, etc. can be taken.
  • Such a multicopter 100 is controlled by the operation of the controller 1 by the operator 200. That is, when the operator 200 operates the controller 1, the control signal CS is transmitted to the multicopter 100 by wireless communication.
  • the multicopter 100 is provided with a receiving unit 20, and the control unit CS is received by the receiving unit 20 of the multicopter 100, so that the multicopter 100 is controlled to the flight posture instructed by the pilot 200.
  • the controller 1 includes a main body housing 10, a wheel unit 11, a trigger unit 12, a reciprocating switch unit 13, and a transmission unit 14.
  • the controller 1 is a so-called wheel type controller.
  • Such a controller 1 allows the operator 200 to operate the multicopter 100 as if it were a radio-controlled vehicle.
  • the main body housing 10 of the controller 1 is provided with a grip portion 10G for supporting the main body housing 10 by the operator 200 holding it with one hand. Normally, the grip part 10G is gripped with the left hand, and the wheel part 11 is operated with the right hand. In addition, it can also be set as the specification which grips the grip part 10G with a right hand and operates the wheel part 11 with a left hand by reversing the arrangement
  • the wheel unit 11 is, for example, a cylindrical rotation switch, and is provided so that the operator 200 can rotate left and right.
  • the operator 200 can control the rotation system of the multicopter 100 by selecting the rotation operation of the wheel unit 11. In the present embodiment, it is configured such that either the yaw or the roll of the multicopter 100 can be controlled in accordance with the rotation operation of the wheel unit 11.
  • the wheel unit 11 may be provided with a function of returning to the neutral position by a spring action when the wheel unit 11 is not operated (for example, when the hand is released).
  • the left rotation operation amount is referred to as M11
  • the right rotation operation amount is referred to as M12.
  • Trigger unit 12 is a lever type switch that can be moved forward and backward with a finger.
  • the pilot 200 can move the trigger portion 12 forward and backward with a finger (for example, an index finger) of a hand gripping the grip portion 10G.
  • the trigger unit 12 may be provided with a function of returning to the neutral position by a spring action in a state where the trigger unit 12 is not operated (for example, a state where the hand is released).
  • M21 the operation amount when pulled forward
  • M22 the operation amount when pressed first
  • the reciprocating switch unit 13 is a switch that can be reciprocated in one direction and the other direction.
  • the reciprocating switch unit 13 is disposed, for example, above the grip unit 10G, and can be operated with a finger (for example, a thumb) of a hand holding the grip unit 10G.
  • the reciprocating switch unit 13 may be a type operated with reference to an intermediate position or a type operated with reference to a predetermined reference position (for example, the uppermost or lowermost position). Further, the reciprocating switch unit 13 may be provided with a function of returning to the neutral position by a spring action when the reciprocating switch unit 13 is not operated (for example, when the hand is released).
  • An operation amount in one direction of the reciprocating switch unit 13 is referred to as M31, and an operation amount in the other direction is referred to as M32.
  • the transmission unit 14 is a part that transmits a control signal CS corresponding to the operation of the pilot 200 to the multicopter 100 by wireless communication.
  • the control signal CS is transmitted to the multicopter 100, for example, by radio waves emitted from an antenna, for example.
  • the control signal CS transmitted from the transmission unit 14 includes a first control signal CS1, a second control signal CS2, and a third control signal CS3.
  • the first control signal CS ⁇ b> 1 is a signal for controlling either the yaw or the roll of the multicopter 100 according to the operation of the wheel unit 11.
  • the second control signal CS ⁇ b> 2 is a signal for controlling the pitch of the multicopter 100 according to the operation of the trigger unit 12.
  • the third control signal CS ⁇ b> 3 is a signal for controlling the height of the multicopter 100 according to the operation of the reciprocating switch unit 13.
  • the first control signal CS1 includes either a yaw control signal CSY for controlling the yaw of the multicopter 100 or a roll control signal CSR for controlling the roll according to the operation of the wheel unit 11.
  • either the yaw control signal CSY or the roll control signal CSR is selected and transmitted according to the operation amounts M21 and M22 of the trigger unit 12. That is, when the wheel unit 11 is operated by the operator 200, the transmission unit 14 transmits either the yaw control signal CSY or the roll control signal CSR according to the operation amounts M21 and M22 of the trigger unit 12 at that time. .
  • the transmission unit 14 responds to the operation amounts M11 and M12 of the wheel unit 11.
  • the roll control signal CSR is transmitted.
  • the transmission unit 14 performs yaw according to the operation amounts M11 and M12 of the wheel unit 11.
  • a control signal CSY is transmitted. Accordingly, the roll of the multicopter 100 can be controlled by the wheel unit 11 when the trigger unit 12 is not operated, and the yaw of the multicopter 100 can be controlled by the wheel unit 11 when the trigger unit 12 is operated. .
  • the first area, the second area, and the third area are provided according to the operation amount (for example, the operation amount M21) of the trigger unit 12, and the transmission unit 14 has the first operation amount of the trigger unit 12.
  • Control signal CS is transmitted according to which of the region, the second region, and the third region.
  • the transmission unit 14 transmits the roll control signal CSR, and when the operation amount M21 of the trigger unit 12 is the second region, the yaw control signal CSY is transmitted.
  • the operation amount M21 of the trigger unit 12 is the third region, the second control signal CS2 and the yaw control signal CSY are transmitted. Thereby, different control can be performed according to the operation amount (for example, pulling amount) of the trigger unit 12.
  • a control amount of yaw included in the yaw control signal CSY from the transmission unit 14 a value calculated by a predetermined function from the rotation angle of the wheel unit 11 may be used. By setting this function, the relationship between the rotation angle of the wheel unit 11 and the control amount of yaw is determined.
  • the transmission unit 14 transmits a roll correction signal for correcting the control amount of the roll of the multicopter 100 while transmitting the second control signal CS2 and the yaw control signal CSY, and the multicopter 100 generated by yaw and roll. It is also possible to compensate for this speed change. At this time, the controller 1 receives information on the speed transmitted from the multicopter 100 and applies feedback when compensating for the speed change. Details of the roll correction signal will be described later.
  • the transmission unit 14 determines that the multicopter 100 is operated when the time from the operation of the reciprocating switch unit 13 in a predetermined direction to the return to the neutral position is within a predetermined time.
  • the third control signal CS3 for controlling the signal to a predetermined height may be transmitted. Details of this operation will be described later.
  • the operator 200 controls the speed in the traveling direction of the multicopter 100 by the pulling condition of the trigger unit 12, and controls the left / right turn of the multicopter 100 by the left / right rotation operation of the wheel unit 11. Can do. That is, even the flying multicopter 100 can enjoy the maneuvering as if it were a radio-controlled car.
  • the operator 200 can switch and control either yaw or roll operation according to the operation amount of the trigger unit 12. That is, the operator 200 can switch the operation target (switching between yaw and roll) in the wheel unit 11 according to the operation of the trigger unit 12 with respect to the operation of the rotation system of the multicopter 100. Thereby, the attitude control of the multicopter 100 is simplified, and the complexity of the maneuvering is reduced.
  • FIG. 2 is a block diagram illustrating the configuration of the controller.
  • FIG. 3 is a block diagram illustrating the configuration of the multicopter.
  • a transmission unit 14 inside the main body housing 10 of the controller 1, there are a transmission unit 14, a central processing unit (CPU) 15, variable resistance units (VR) 111, 121 and 131, an analog / digital conversion unit (A / D) 112, 122 and 132 are provided.
  • the controller 1 is also provided with a battery, a power switch, an adjustment trigger, an indicator, a display panel, etc. (not shown).
  • the resistance value of the variable resistance unit 111 changes according to the operation amounts M11 and M12 by the rotation operation. This resistance value is converted into a digital signal by the analog-digital converter 112 and sent to the CPU 15.
  • the resistance value of the variable resistance unit 121 changes according to the operation amounts M21 and M22 due to the advance / retreat operation. This resistance value is converted into a digital signal by the analog-digital converter 122 and sent to the CPU 15.
  • the resistance value of the variable resistance unit 131 changes according to the operation amounts M31 and M32 due to the reciprocating operation. This resistance value is converted into a digital signal by the analog-digital converter 132 and sent to the CPU 15.
  • the CPU 15 controls each part according to a predetermined program and performs signal processing. For example, the CPU 15 combines the digital signals sent from the analog / digital conversion units 112, 122, and 132 to generate the control signal CS.
  • the transmission unit 14 modulates the control signal CS processed by the CPU 15 and transmits it to the multicopter 100 by radio waves.
  • the transmission unit 14 transmits the modulated control signal CS using, for example, a 2.4 GHz band radio wave, a short-range wireless communication standard, and infrared rays.
  • the airframe 110 of the multicopter 100 includes a receiving unit 20, a central processing unit (CPU) 25, sensors 26, 27 and 28, motor drivers (M / D) 231, 232, 233, and 234 is provided.
  • the body 110 is also provided with a battery, a power switch, an indicator, and the like (not shown).
  • a camera (not shown) may be mounted on the body 110.
  • the receiving unit 20 receives the radio wave transmitted from the transmitting unit 14 of the controller 1 and demodulates it to the control signal CS.
  • the demodulated control signal CS is sent to the CPU 25.
  • the sensor 26 is, for example, a 6-axis gyro sensor.
  • the sensor 27 is, for example, a barometric pressure sensor.
  • the sensor 28 is an ultrasonic sensor, for example.
  • the detection signals of the sensors 26, 27, and 28 are sent to the CPU 25 and used for calculation of attitude control (for example, autonomous control) of the multicopter 100.
  • the sensors 26, 27 and 28 are not limited to the above.
  • the CPU 25 uses the control signal CS sent from the receiver 20 and the detection signals sent from the sensors 26, 27 and 28 to control values (motor control signals) for controlling the outputs of the motors M1, M2, M3 and M4. ) Is calculated.
  • the motor control signal calculated by the CPU 25 is sent to motor drivers (M / D) 231, 232, 233 and 234.
  • Each motor driver (M / D) 231, 232, 233 and 234 receives signals (current, voltage and frequency) given to each motor M 1, M 2, M 3 and M 4 connected to each based on a motor control signal sent from the CPU 25. At least one of).
  • the multicopter 100 performs autonomous control of posture based on detection signals of the sensors 26, 27, and 28.
  • either the yaw control signal CSY or the roll control signal CSR of the first control signal CS1 according to the operation amounts M21, M22 of the trigger unit 12 is transmitted by the transmission unit 14. Will be sent.
  • the yaw control signal CSY and the roll control signal CSR are selected by a program process of the CPU 15, and the selected yaw control signal CSY or roll control signal CSR is combined with other signals to obtain a control signal CS.
  • the transmission unit 14 transmits one of the yaw control signal CSY and the roll control signal CSR selected according to the operation amounts M21 and M22 of the trigger unit 12 as a signal included in the first control signal CS1 of the control signal CS. become.
  • the CPU 15 performs a process of including in the control signal CS an identification signal indicating which of the yaw control signal CSY and the roll control signal CSR is associated with the operation amounts M11 and M12 of the wheel unit 11. Thereby, even if it is the operation amount M11 and M12 of the same wheel part 11, it can be discriminate
  • control signal CS does not include the identification signal, and includes the first control signal CS1 corresponding to the operation amounts M11 and M12 of the wheel unit 11 in the control signal CS and transmits the control signal CS to the multicopter 100.
  • the control signal CS may be determined whether to control the yaw or the roll.
  • the transmission unit 14 of the controller 1 only needs to have a function of transmitting the first control signal CS1 corresponding to the operation amount of the wheel unit 11 without distinguishing between the yaw control signal CSY and the roll control signal CSR. .
  • the CPU 25 of the multicopter 100 determines whether the wheel unit 11 included in the first control signal CS1 corresponds to the operation amounts M21 and M22 of the trigger unit 12 included in the second control signal CS2 included in the received control signal CS. It is determined whether the yaw is controlled or the roll is controlled by a signal corresponding to the operation amounts M11 and M12.
  • the CPU 15 performs a process of including in the control signal CS an identification signal indicating which of the yaw control signal CSY and the roll control signal CSR is to be associated according to the operation amounts M11 and M12 of the wheel unit 11. Thereby, it is possible to determine whether to control the yaw or the roll as a control target according to the operation amounts M11 and M12 of the wheel unit 11.
  • control signal CS does not include the identification signal, and includes the first control signal CS1 corresponding to the operation amounts M11 and M12 of the wheel unit 11 in the control signal CS and transmits the control signal CS to the multicopter 100. Whether the yaw is controlled or the roll is controlled by a program executed by the CPU 25 may be determined according to the operation amounts M11 and M12.
  • the control amounts of the yaw and roll according to the operation amounts M11 and M12 of the wheel unit 11 may be adjusted.
  • an identification signal indicating the respective control amounts of yaw and roll may be included in the control signal CS, or the yaw and roll are determined by a program executed by the CPU 25 of the multicopter 100 without including the identification signal in the control signal CS. Each control amount may be adjusted.
  • the yaw rotation direction may be reversed between when the multicopter 100 is moved forward and when it is moved backward. . Further, this control may be performed by a program executed by the CPU 25 of the multicopter 100.
  • FIGS. 4 (a) to 4 (d) are schematic views illustrating the attitude of the multicopter.
  • the posture of the multicopter 100 is represented by the schematic diagrams shown in FIGS. 4 (a) to 4 (d). That is, as shown in FIG. 4A, the airframe 110 of the multicopter 100 is represented by a pentagon with an acute front, and the plurality of rotor blades 120 are represented by two-dot chain lines.
  • the front-rear direction of the multicopter 100 is defined as an X-axis direction
  • the left-right direction is defined as a Y-axis direction
  • the vertical direction is defined as a Z-axis direction.
  • the pitch of the multicopter 100 is rotation about the Y axis
  • yaw is rotation about the Z axis
  • the roll is rotation about the X axis.
  • the front part 110a of the airframe 110 is shown in black.
  • the multicopter 100 is viewed from behind along the X axis, it is represented by the schematic diagram shown in FIG.
  • the schematic diagram shown in FIG. When representing the state in which the airframe 110 is viewed from the side along the Y-axis, it is represented by the schematic diagram shown in FIG.
  • FIGS. 5A and 5B are schematic views illustrating the control of the rise and fall of the multicopter.
  • the reciprocating switch unit 13 of the controller 1 shown in FIG. 5A is operated to send the third control signal CS3 from the transmission unit 14 to the multicopter 100.
  • the amount of ascent of the multicopter 100 is determined according to the operation amount M31 in which the reciprocating switch unit 13 is pushed up, and the amount of descent is determined according to the operation amount M32 in which the reciprocating switch unit 13 is pushed down.
  • the reciprocating switch unit 13 may be controlled by an operation (hereinafter referred to as “click operation”) in which the time required for operating the reciprocating switch unit 13 in one direction from the neutral position and returning to the neutral position is within a predetermined time.
  • a predetermined height may be raised every time the reciprocating switch unit 13 is clicked upward once, or a predetermined height may be lowered every time the reciprocating switch unit 13 is clicked downward once.
  • the reciprocating switch unit 13 when the reciprocating switch unit 13 is clicked once, for example, while the multicopter 100 is landing, it may be automatically taken off to a predetermined height and hovered.
  • the reciprocating switch unit 13 when the multicopter 100 is flying or hovering, the reciprocating switch unit 13 may be automatically landed by clicking once, for example, downward.
  • the selection position of the reciprocating switch unit 13 may be switched stepwise.
  • the height of the multicopter 100 is set to a height corresponding to the selected position of the reciprocating switch unit 13. For example, when the reciprocating switch unit 13 is set to the lowest position, the multicopter 100 is landed (zero height), and when the reciprocating switch unit 13 is set to the first position from the bottom, the multicopter 100 is set to a preset number. It rises to a height of 1 and is maintained at that height. Further, when the reciprocating switch unit 13 is set to the second stage position from the bottom, the multicopter 100 is raised to the preset second height and maintained at that height. In this manner, the operator 200 does not need to control the height of the multicopter 100 by automatically maintaining the preset height according to the selected position of the reciprocating switch unit 13, and moves forward, backward, and turns. You can concentrate on the operation of.
  • FIGS. 6A to 6C are schematic views illustrating the control of the forward and backward movements of the multicopter.
  • the trigger unit 12 of the controller 1 shown in FIG. 6A is operated to send the second control signal CS2 from the transmitter 14 to the multicopter 100.
  • the multicopter 100 when the trigger portion 12 is pulled forward, the multicopter 100 is pitched so as to lower the front portion 110a and moves forward as shown in FIG. 6 (b). On the other hand, when the trigger part 12 is pushed, as shown in FIG.6 (c), the multicopter 100 pitches so that the front part 110a may go up, and it reverse
  • the forward movement amount (pitch angle) of the multicopter 100 is determined according to the operation amount M21 obtained by pulling the trigger portion 12, and the backward movement amount (pitch angle) is determined according to the operation amount M22 when the trigger portion 12 is pressed. Is done. As the manipulated variables M21 and M22 increase, the pitch angle increases, and the forward and backward speeds of the multicopter 100 increase.
  • FIGS. 7A and 7B are schematic views illustrating the left and right control of the multicopter.
  • the first control signal CS1 roll control signal CSR
  • the transmission unit 14 is sent from the transmission unit 14 to the multicopter 100 by operating the wheel unit 11 of the controller 1 shown in FIG. .
  • the multicopter 100 rolls left or right and moves in the left-right direction as shown in FIG. 7B. To do. That is, when the wheel unit 11 is rotated to the left, the multicopter 100 rolls to the left and proceeds to the left. On the other hand, when the wheel unit 11 is rotated to the right, the multicopter 100 rolls downward to the right and proceeds in the right direction.
  • the amount of the multicopter 100 that moves to the left and right is determined according to the operation amounts M11 and M12 that rotate the wheel unit 11. As the operation amounts M11 and M12 increase, the roll angle increases and the moving speed of the multicopter 100 in the left-right direction increases.
  • FIGS. 8A to 8C are schematic views illustrating the multicopter turn control.
  • the first control signal CS1 (yaw control signal CSY) and the second control are operated by operating both the wheel unit 11 and the trigger unit 12 of the controller 1 shown in FIG.
  • the signal CS2 is sent from the transmission unit 14 to the multicopter 100.
  • the multicopter 100 is pitched so as to lower the front portion 110a and moves forward. Then, when the wheel portion 11 is rotated to the left or right in the forward flight state, the multicopter 100 is yaw-rotated to either the left or right as shown in FIG.
  • the CPU 25 of the multicopter 100 performs a program process for automatically generating a roll in accordance with the yaw.
  • a roll is generated together with the yaw by the operation of the wheel unit 11, whereby the multicopter 100 is turned to draw an arc while banking.
  • the amount of yaw (yaw angle) of the multicopter 100 is determined according to the operation amounts M11 and M12 obtained by rotating the wheel unit 11. As the manipulated variables M11 and M12 increase, the yaw angle increases and the multicopter 100 turns sharply. On the other hand, the yaw angle becomes smaller as the operation amounts M11 and M12 are smaller, and the multicopter 100 turns slowly.
  • FIGS. 9A to 9D are schematic views illustrating the turn of the multicopter.
  • FIGS. 9A to 9D show a state in which the multicopter 100 turns leftward from a state where it is flying forward.
  • a pitch corresponding to the operation amount M21 is generated by pulling the trigger portion 12 of the controller 1, and the multicopter 100 flies forward.
  • the wheel portion 11 is rotated to the left as shown in FIG.
  • the trigger unit 12 since the trigger unit 12 is in an operated state, yaw corresponding to the operation amount M11 of the wheel unit 11 is generated, and the multicopter 100 rotates counterclockwise around the Z axis.
  • the roll angle is calculated according to the generated yaw angle by the program processing by the CPU 25 of the multicopter 100, and the multicopter 100 also generates a roll. As a result, the multicopter 100 starts to turn left.
  • the operation amount M11 for rotating the wheel portion 11 of the controller 1 is adjusted. For example, as shown in FIG. 9C, when the operation amount M11 of the wheel unit 11 is increased, the yaw angle and the roll angle of the multicopter 100 are increased, and the turning radius is decreased.
  • FIGS. 10A to 10C are schematic diagrams for explaining the control of the turn.
  • the turn of the multicopter 100 includes rotation about the Y axis (pitch angle ⁇ p), rotation about the Z axis (yaw angle ⁇ y), and rotation about the X axis (roll angle ⁇ r). It is executed by each control.
  • the pitch angle ⁇ p corresponding to the operation amount M21 is generated in the multicopter 100 by pulling the trigger portion 12 of the controller 1.
  • the yaw angle ⁇ y corresponding to the operation amount M11 is generated in the multicopter 100 by rotating the wheel unit 11 while the trigger unit 12 is pulled.
  • the rotation angle of the wheel portion 11 is ⁇ w
  • the angular velocity of the yaw is Vz.
  • FIGS. 11A and 11B are diagrams illustrating the determination of the angular velocity of the multicopter yaw.
  • FIG. 11A shows a function f1 indicating the relationship between the rotation angle ⁇ w of the wheel portion 11 and the angular velocity Vz of the yaw.
  • the angular velocity Vz of the yaw of the multicopter 100 is set corresponding to the rotation angle ⁇ w of the wheel unit 11.
  • the function f1 shown in FIG. 11A is a linear function of the rotation angle ⁇ w of the wheel unit 11, but may be another function such as a quadratic function.
  • the turn characteristic can be changed according to the characteristic of the function f1.
  • FIG. 11B shows a function f2 indicating the relationship among the rotation angle ⁇ w of the wheel unit 11, the flight speed Vx of the multicopter 100, and the yaw angular speed Vz.
  • the angular velocity Vz of the yaw of the multicopter 100 is set corresponding to the rotation angle ⁇ w of the wheel unit 11 and the flight speed Vx of the multicopter 100.
  • the turn characteristic can be changed according to the characteristic of the function f2.
  • FIGS. 12A to 12C are diagrams illustrating the control of the multicopter yaw and roll.
  • the multicopter 100 When the multicopter 100 is turned, the generation of yaw (yaw angle ⁇ y) as shown in FIG. 12A and the generation of roll as shown in FIG. 12B (roll angle ⁇ r) are linked.
  • FIG. 12C shows a function f3 indicating the relationship between yaw and roll.
  • the roll angle ⁇ r of the multicopter 100 is set corresponding to the yaw angle ⁇ y.
  • the yaw angle ⁇ y and the roll angle ⁇ r are in a proportional relationship.
  • the roll angle ⁇ r set based on the function f3 is also small.
  • the yaw angle ⁇ y increases because the turning radius is small. For this reason, the roll angle ⁇ r set based on the function f3 also increases.
  • the operator 200 can perform a desired turn by simply rotating the wheel unit 11 left and right during the flight of the multicopter 100.
  • Roll correction control Next, the roll correction control during the turn will be described.
  • a roll is generated together with the yaw.
  • the roll angle ⁇ r during the turn is determined by, for example, the function f3 of the yaw angle ⁇ y.
  • the airframe 110 is tilted to generate a speed difference in a speed component in a predetermined direction. Therefore, the roll angle ⁇ r may be corrected according to this speed difference.
  • the roll correction signal for correcting the roll during the turn may be transmitted from the transmission unit 14 of the controller 1 to the multicopter 100, or may be calculated by the CPU 25 of the multicopter 100.
  • a roll correction signal is transmitted from the transmission unit 14 of the controller 1
  • a function of transmitting information related to the speed detected by the multicopter 100 to the controller 1 and a function of receiving this information by the controller 1 are provided.
  • the controller 1 receives information on the speed transmitted from the multicopter 100, and the controller 1 performs feedback to transmit the roll correction signal from the transmitter 14.
  • FIGS. 13A and 13B are diagrams illustrating roll correction. As shown in FIG. 13A, while the multicopter 100 is turning, the speed component of the multicopter 100 is detected every predetermined sampling time. Here, the speed in the traveling direction (turn tangent direction) D1 of the airframe 110 sampled at time t during the turn is defined as a first speed V1.
  • the speed component in the traveling direction D1 at the previous time t is defined as the second speed V2.
  • the second speed V2 becomes slower than the first speed V1.
  • FIG. 13B shows a function f4 indicating the relationship between the deceleration change amount ⁇ and the corrected roll angle ⁇ r2.
  • A is a predetermined coefficient. That is, when the change amount ⁇ of deceleration is zero (when there is no speed difference between the first speed V1 and the second speed V2), the roll angle remains ⁇ r. On the other hand, the roll angle is corrected so as to decrease as the change amount ⁇ increases. Thereby, it can suppress that a speed change generate
  • the multicopter 100 may stall. Therefore, by performing the roll correction control as described above, a rapid speed change is suppressed, and it becomes possible to avoid a stall.
  • the CPU 25 of the multicopter 100 determines the pitch angle ⁇ p and the yaw angle ⁇ y based on the control signal CS instructed from the controller 1, determines the roll angle ⁇ r from the yaw angle ⁇ y, and controls the output of each rotor blade 120.
  • the turn may not be executed with the same arc even with the same operation amount. Therefore, it is necessary for the pilot 200 to control the operation amount of the wheel unit 11 and the trigger unit 12 and draw a desired turn while constantly watching the flight state of the multicopter 100. As a result, the pilot 200 can enjoy the pleasure of maneuvering that cannot be obtained by automatic control.
  • FIGS. 14A and 14B are diagrams illustrating an example of control switching based on the trigger operation amount.
  • the first region R1, the second region R2, and the third region R3 are set in advance according to the operation amount of the trigger unit 12.
  • the first region R1 is a region slightly pulled from the neutral position of the trigger portion 12.
  • region R2 is an area
  • the third region R3 is a region where the trigger portion 12 is pulled larger than the second region R2.
  • FIG. 14B shows the valid and invalid states of the control signal corresponding to each area.
  • “ ⁇ ” marks are valid, and “X” marks are invalid.
  • “Valid” means that a signal for control is transmitted from the transmission unit 14 or a signal for control is calculated by the CPU 25, and “invalid” means that a signal for control is transmitted This means that the CPU 25 does not calculate a signal to be transmitted or controlled from the unit 14.
  • the second control signal CS2 for controlling the pitch and the yaw control signal CSY for controlling the yaw are invalid, and the roll for controlling the roll Only the control signal CSR is valid. That is, when the trigger unit 12 is not operated or the pulling amount is small, pitch and yaw are not generated, and only the roll can be controlled. Therefore, the multicopter 100 can be rolled and moved in the left-right direction by rotating the wheel portion 11. That is, when the operation amount of the trigger unit 12 is the first region R1, the rotation operation of the wheel unit 11 is used for roll control.
  • the yaw control signal CSY is valid and the roll control signal CSR is invalid.
  • the second control signal CS2 for controlling the pitch is determined to be valid or invalid depending on the specification.
  • the multicopter 100 can generate yaw and can be rotated around the Z axis. That is, when the operation amount of the trigger unit 12 is the second region R2 and the second control signal CS2 is invalid, the rotation operation of the wheel unit 11 is used for yaw control.
  • the second control signal CS2 is valid, a pitch is generated according to the amount by which the trigger unit 12 is pulled. Therefore, a slight pitch is generated according to the amount pulled by the trigger unit 12, and the multicopter 100 moves forward, and yaw is generated according to the rotation operation of the wheel unit 11 and rotates around the Z axis. It will be.
  • the multicopter 100 moves about the Z axis according to the rotation operation of the wheel unit 11 while moving slowly forward. Will rotate.
  • the operation amount of the trigger unit 12 is the third region R3, the second control signal CS2, the yaw control signal CSY, and the roll control signal CSR for controlling the pitch are all valid. That is, a pitch is generated according to the operation amount of the trigger unit 12, and yaw and roll are generated according to the operation amount of the wheel unit 11. Therefore, when the operation amount of the trigger unit 12 is the third region R3, the multicopter 100 moves forward according to the operation amount of the trigger unit 12, and generates yaw and roll according to the rotation operation of the wheel unit 11. You will turn while banking.
  • the region in which the trigger portion 12 is pulled forward from the neutral position is divided into the first region R1, the second region R2, and the third region R3.
  • the region that has been pushed first from the neutral position is divided. Also good.
  • FIGS. 15A to 15C are diagrams illustrating an example (part 1) of switching between roll and yaw according to the wheel operation amount. For convenience of explanation, only the wheel portion 11 is schematically shown in FIG.
  • the areas A and B are set in advance according to the operation amount of the wheel unit 11.
  • the region A is a region slightly rotated from the neutral position CP of the wheel unit 11.
  • the region B is a region where the wheel part 11 is rotated more than the region A.
  • the region A when the wheel unit 11 is rotated clockwise from the neutral position CP is defined as region A (R)
  • the region A when the wheel unit 11 is rotated counterclockwise is defined as region A (L).
  • a region B when the wheel unit 11 is rotated right from the neutral position CP is a region B (R)
  • a region B when the wheel unit 11 is rotated left is a region B (L).
  • roll control is selected as the control of the multicopter 100.
  • a roll corresponding to the operation amount of the wheel unit 11 is generated in the multicopter 100.
  • the multicopter 100 rolls to the right as shown in the right diagram of FIG.
  • the multicopter 100 rolls to the left as shown in the left diagram of FIG.
  • yaw control is selected as the control of the multicopter 100.
  • yaw corresponding to the operation amount of the wheel unit 11 is generated in the multicopter 100.
  • the multicopter 100 rotates clockwise around the Z axis as indicated by an arrow YR in FIG.
  • the multicopter 100 rotates counterclockwise around the Z axis as indicated by an arrow YL in FIG.
  • control When such control is applied, for example, by rotating the wheel unit 11 while the multicopter 100 is hovering without operating the trigger unit 12, the operator 200 controls the roll control and yaw according to the rotation angle of the wheel unit 11. Control can be freely selected.
  • the operator 200 rotates the wheel portion 11 within the range of the region A when the multicopter 100 is to be rolled.
  • the region A (R) it moves to the right by the roll amount corresponding to the operation amount of the wheel unit 11, and in the region A (L), it moves to the left by the roll amount corresponding to the operation amount of the wheel unit 11.
  • the hovering multicopter 100 rolls to the left and right according to the rotation angle of the wheel portion 11 and moves.
  • the operator 200 wants to rotate the multicopter 100 around the Z axis
  • the operator rotates the wheel portion 11 within the range of the region B.
  • the region B (R) the right rotation is performed at the angular velocity of the yaw corresponding to the operation amount of the wheel unit 11
  • the region B (L) the left rotation is performed at the angular velocity of the yaw corresponding to the operation amount of the wheel unit 11.
  • the hovering multicopter 100 rotates left and right (rotates about the Z axis) in accordance with the rotation angle of the wheel portion 11.
  • control of the yaw and the roll according to the operation amount of the wheel unit 11 adjustment (balance adjustment) of each control amount of the yaw and the roll may be performed. Further, when the wheel unit 11 is within the range of the region A, only the roll is controlled, and yaw is not generated. When the wheel unit 11 is within the range of the region B, control is performed so that both roll and yaw are generated. Also good.
  • the roll is mainly controlled when the rotation angle of the wheel portion 11 is the region A, and the yaw is mainly controlled when the rotation angle is the region B.
  • the yaw is mainly controlled when the rotation angle is the region A, In the case of the area B, the roll may be mainly controlled.
  • FIGS. 16A and 16B are diagrams illustrating an example (part 2) of switching between roll and yaw according to the wheel operation amount.
  • the control amounts of roll and yaw are adjusted in advance by a predetermined function or table according to the rotation angle ⁇ w of the wheel unit 11.
  • a case where the wheel unit 11 is rotated clockwise from the neutral position CP will be described, but the same applies to the case where the wheel unit 11 is rotated counterclockwise from the neutral position CP except that the rotation direction is changed.
  • FIG. 16B shows an example of functions f (R) and f (Y) of the control amounts of the roll and yaw according to the rotation angle ⁇ w.
  • the horizontal axis represents the rotation angle ⁇ w (deg)
  • the vertical axis represents the roll and yaw control amounts (the roll control amount is the roll angle
  • the yaw control amount is the yaw angular velocity).
  • the roll angle and the yaw angular velocity are determined by the function in accordance with the rotation angle ⁇ w.
  • the function f (R) indicates the control amount of the roll corresponding to the rotation angle ⁇ w.
  • the function f (Y) indicates the control amount of yaw corresponding to the rotation angle ⁇ w. From the rotation angle .theta.w 0 of the wheel unit 11 to the theta 1 roll angle increases in proportion to the rotation angle .theta.w. From ⁇ 1 to ⁇ 4 , the roll angle is constant. Further, it is less than theta 2 occurs only roll, yaw is not generated. Yaw is generated when the rotation angle ⁇ w is 2 or more theta. From ⁇ 2 to ⁇ 3 , the angular velocity of the yaw increases according to the rotation angle ⁇ w. yaw angular velocity exceeds ⁇ 3 is reduced. When the rotation angle ⁇ w is theta 4 above, the roll angle in order to prevent lateral flow of the multirotor 100 rises again.
  • first switching control switching according to the operation amount of the trigger unit 12
  • second switching control switching according to the amount of operation of the wheel unit 11
  • the second switching control when the trigger unit 12 is in the first region R1, and to select the first switching control when the trigger unit 12 is outside the first region R1. Further, for example, the second switching control may be selected regardless of the operation amount of the trigger unit 12.
  • the selection of the first switching control and the second switching control may be arbitrarily switched by the operator 200 by a switch or the like (not shown), and the operation amount of the trigger unit 12, the flight speed of the multicopter 100, etc. It may be configured to automatically switch according to a predetermined condition.
  • the operator 200 may be able to select individual selection of the first switching control and the second switching control and automatic switching using a switch or the like (not shown).
  • FIGS. 17A to 17D are schematic views illustrating the yaw control in the forward and backward of the multicopter. In this control, the yaw rotation direction is reversed between when the multicopter 100 is moved forward and when it is moved backward. In FIGS. 17A to 17D, the case where the wheel portion 11 is rotated to the right is taken as an example.
  • the multicopter 100 moves forward according to the operation amount M21. Lean forward and fly forward.
  • the multicopter 100 turns to the right according to the operation amount M11 (see FIG. 17B).
  • the multicopter 100 generates a right-rotation yaw around the Z-axis and a roll that tilts rightward in the forward direction. That is, both the yaw and the roll rotate to the right in accordance with the rotation direction of the wheel portion 11 (here, the right rotation).
  • the multicopter 100 tilts backward according to the operation amount M12 and makes a backward flight.
  • the multicopter 100 when the wheel 11 is rotated to the right while the multicopter 100 is flying backwards, and the yaw of the right rotation (the same direction as the rotation direction of the wheel 11) is generated around the Z axis, the multicopter 100 is shown in FIG. As shown by a two-dot chain line arrow, the driver 200 turns to the left as viewed from the operator 200. This is because the pitch of the multicopter 100 is reversed between forward and backward, so that the turn direction is reversed between forward and reverse even if yaw rotation is performed in the same direction.
  • the rotation direction of the yaw control signal CSY included in the first control signal CS1 transmitted from the controller 1 may be switched according to the forward and backward movements.
  • the yaw direction may be switched by a program executed by the CPU 25 of the multicopter 100.
  • the yaw control when the multicopter 100 moves forward and backward may be applied in addition to the first switching control described above, or may be applied in addition to the second switching control.
  • control method of the multicopter 100 according to the present embodiment can be realized by a stick-type controller.
  • the stick controller has two movable sticks. Therefore, the control method of the multicopter 100 according to the present embodiment can be applied by making one of the two movable sticks correspond to the wheel unit 11 and the other one to correspond to the trigger unit 12. .
  • a quad copter having four rotor blades 120 has been described as an example, but the present invention can be applied to a multicopter 100 having rotor blades 120 other than four.
  • a plurality of sets of characteristics of the functions f1 to f4 may be prepared and switched according to the preference of the operator 200. Thereby, the setting of the turn characteristic of the multicopter 100 can be performed.
  • FIG. 18 is a perspective view illustrating a multicopter toy according to the embodiment.
  • the multicopter toy 1000 according to the present embodiment is a toy that unmannedly flies by a remote operation of a pilot.
  • the multicopter toy 1000 includes a body 110 and a plurality of rotary wing units 20U attached to the body 110.
  • Each of the plurality of rotary blade units 20 ⁇ / b> U includes a motor 21 and a rotary blade 23 that is rotated by the motor 21.
  • the multi-copter toy 1000 shown in FIG. 18 is a so-called quad-copter type having four rotary blade units 20U.
  • the rotary blade unit 20U is provided on each of the front left and right and the rear left and right.
  • flight postures such as forward, backward, ascending, descending, left / right rotation, and left / right turn.
  • a gear 22 is provided between the motor 21 and the rotary blade 23 in the rotary blade unit 20 ⁇ / b> U, and the rotation of the motor 21 is transmitted to the rotary blade 23 via the gear 22.
  • the rotary blade 23 may be configured to rotate directly by the motor 21 without the gear 22 being interposed.
  • the rotor unit 20U is provided with a hub 24.
  • the rotary blade unit 20U is connected to the joint frame 30 via the hub 24.
  • the joint frame 30 is a cylindrical frame and is arranged so as to extend in the left-right direction of the airframe 110.
  • the rotary blade unit 20 ⁇ / b> U is attached to both ends of the joint frame 30 via the hub 24.
  • the hub 24 and the joint frame 30 may be fixed by screws or may be fixed by fitting.
  • the joint frame 30 is fixed to the body 110 by the clamp 40.
  • the joint frame 30 can be rotated about the axis, and after setting the desired angle, the rotation angle of the joint frame 30 can be fixed by tightening the clamp 40.
  • the two rotary blade units 20U at both ends rotate together with the joint frame 30, and the angle of the rotary blade unit 20U with respect to the airframe 110 is adjusted.
  • the joint frames 30 are provided before and after the airframe 110 and are fixed by the clamps 40, respectively.
  • Two front blade units 20U are attached to both ends of the front joint frame 30, and two rear blade units 20U are attached to both ends of the rear joint frame 30.
  • Rotation of each joint frame 30 may be independent or linked. If each joint frame 30 rotates independently, each of the front and rear rotor units 20U can be adjusted to different angles with respect to the fuselage 110. If each joint frame 30 rotates in conjunction with each other, the angle of the other rotary blade unit 20U is also adjusted in accordance with the angle of one of the front and rear rotary blade units 20U.
  • two rotary blade units 20 ⁇ / b> U are provided in one joint frame 30, but two joint frames 30 are provided on the same axis, and the rotary blade unit 20 ⁇ / b> U is provided at the end of each joint frame 30.
  • the structure which attaches may be sufficient.
  • segmented the joint frame 30 between the two clamps 40 which fix the one joint frame 30 shown in FIG. 18 to the body 110 may be sufficient.
  • the rotary blade unit 20U can be independently rotated for each joint frame 30.
  • the machine body 110 is provided with a control board 50.
  • the control board 50 includes a receiving unit that receives a control signal transmitted from the controller of the operator, a calculation unit that calculates the output of each motor 21 based on the control signal, and a sensor that detects the attitude of the airframe 110 (for example, a gyro sensor). , Barometric pressure sensor, ultrasonic sensor).
  • the control board 50 may be attached to the airframe 110 so that the angle can be adjusted.
  • a battery BT is attached under the machine body 110. Further, a skid 115 serving as a leg for landing may be provided below the body 110.
  • the clamp 40 includes an upper clamp portion 41 and a lower clamp portion 42.
  • Each of the upper clamp part 41 and the lower clamp part 42 is provided with a recess for sandwiching the joint frame 30.
  • the lower clamp part 42 is fixed to the airframe 110.
  • the upper clamp part 41 is fixed to the lower clamp part 42 with, for example, screws 45. With the upper clamp part 41 removed, the joint frame 30 is placed in the recess of the lower clamp part 42, and the upper clamp part 41 is placed over the joint frame 30 and fixed with the lower clamp part 42 and the screw 45. . Thereby, the joint frame 30 is clamped between the lower clamp part 42 and the upper clamp part 41.
  • irregularities having a predetermined pitch are applied to the concave inner surfaces 40a of the upper clamp portion 41 and the lower clamp portion 42, respectively.
  • Similar unevenness is also applied to the surface 30a of the joint frame 30 in contact with the clamp 40.
  • the angle of the joint frame 30 is adjusted at an uneven pitch around the axis. Therefore, the joint frame 30 can be rotated at an accurate angle according to this pitch, and the angle of the rotary blade unit 20U with respect to the fuselage 110 can also be adjusted accurately.
  • the rotary wing unit 20U is attached to the fuselage 110 so that the angle of the rotary wing unit 20U can be adjusted. Can be set and adjusted according to the power performance.
  • FIGS. 20A and 20B are schematic views illustrating the flight posture by adjusting the rotation angle of the rotor unit.
  • FIG. 20A illustrates the flight posture when the rotation angle of the rotary wing unit 20U is not adjusted.
  • the rotary axis z23 of the rotary blade 23 coincides with the axis (normal axis z10) in the airframe 110.
  • the multi-copter toy 1000 In order to fly the multicopter toy 1000 forward F in this state, the multi-copter toy 1000 is tilted downward (tilted forward) in front of the airframe 110. If the normal axis z10 is inclined by the angle ⁇ 1 with respect to the vertical axis z1 due to this inclination, the rotation axis z23 of the rotary blade 23 is also inclined by the angle ⁇ 1. As the rotation axis z23 of the rotary wing 23 is inclined, the multicopter toy 1000 obtains a propulsive force forward F and flies forward F.
  • FIG. 20B illustrates the flight posture when the angle of the rotary wing unit 20U is adjusted.
  • the rotary axis z23 of the rotary blade 23 does not coincide with the normal axis z10 of the airframe 110.
  • the rotary axis z ⁇ b> 23 of the rotary vane 23 is inclined by the angle ⁇ ⁇ b> 1 with respect to the normal axis z ⁇ b> 10 of the fuselage 110 by rotating the rotary vane unit 20 ⁇ / b> U with respect to the fuselage 110.
  • the multicopter toy 1000 will fly with forward thrust. That is, since the rotation axis z23 of the rotor blade 23 is inclined at an angle ⁇ 1 in advance, a propulsive force corresponding to the angle ⁇ 1 is generated, and the airframe 110 can be caused to fly forward F without tilting forward.
  • the aircraft 110 can be caused to fly forward F without tilting forward, and the aircraft 110 is tilted forward. In comparison, the air resistance received at the front surface can be reduced.
  • the body 110 is tilted forward.
  • the forward tilt of the fuselage 110 can be reduced as compared with the case where the angle of the rotary wing unit 20U is not adjusted, it is possible to reduce air resistance due to flight.
  • the pilot can adjust the angle of the rotary wing unit 20U according to the normal flight speed of the multicopter toy 1000 and the preference. For example, when the normal flight speed of the multicopter toy 1000 is relatively high, the forward tilt of the fuselage 110 at the normal flight speed is suppressed by increasing the rotation angle of the rotary wing unit 20U, and the air By reducing the resistance, a smoother flight can be realized.
  • FIGS. 21A and 21B are schematic views illustrating the angle adjustment of the control board.
  • FIG. 21A shows a state in which the control board 50 is tilted with respect to the airframe 110.
  • the control board 50 may be inclined with respect to the airframe 110 by the angle ⁇ 1.
  • the control board 50 is provided with a gyro sensor or the like used for attitude control.
  • the angle of the control board 50 is adjusted in accordance with the angle adjustment of the rotary blade unit 20U, whereby the horizontal position by the gyro sensor is adjusted.
  • the rotation axis z23 of the rotary blade 23 can be set to be perpendicular to the position reference.
  • FIG. 21 (b) shows a state where the multicopter toy 1000 is lifted (hovered).
  • the rotary blade unit 20U and the control board 50 are inclined by the angle ⁇ 1 with respect to the airframe 110.
  • the reference of the horizontal position by the gyro sensor is the surface 50a of the control board 50 (the surface on which the gyro sensor is mounted). Therefore, when the multicopter toy 1000 is floated and autonomously controlled to be horizontal, control is performed so that the surface 50a of the control board 50 inclined by the angle ⁇ 1 is horizontal.
  • the airframe 110 is inclined at an angle ⁇ 1 when the surface 50a of the control board 50 is set as a horizontal reference. Further, since the rotation axis z23 of the rotary blade 23 is perpendicular to the surface 50a of the control board 50, no propulsive force acts in any direction. Therefore, the multicopter toy 1000 is kept in a floating state (hovering).
  • FIG. 22 is a schematic view illustrating a reference setting button.
  • a button 55 for setting a reference angle for the horizontal direction of the multicopter toy 1000 is provided.
  • the button 55 is provided on the control board 50, for example. When this button 55 is pressed, the control board 50 sets the position of the multicopter toy 1000 at that time as a reference for the angle with respect to the horizontal direction.
  • the multicopter toy is arranged so that the rotary axis z23 is vertical (the rotary blade 23 is horizontal). 1000 is held, and the button 55 is pressed in this state.
  • the control board 50 changes the setting so that the detected value of the gyro sensor when the button 55 is pressed is the origin. This detection value is stored in a nonvolatile memory or the like.
  • the state in which the body 110 is inclined by the angle ⁇ 1 serves as a reference for the horizontal position of the multicopter toy 1000.
  • the floating state (hovering) of the multicopter toy 1000 can be maintained without tilting the control board 50 even when the rotor unit 20U is rotated. Can do.
  • FIG. 23 is a schematic view illustrating the adjustment of the attachment width of the rotary blade unit.
  • the rotor unit 20U is attached to both ends of the joint frame 30. That is, the rotary blade unit 20 ⁇ / b> U is attached to the joint frame 30 via the hub 24. If the mounting position of the hub 24 and the joint frame 30 can be adjusted in the direction along the axis of the joint frame 30 (axial direction), the two rotary blade units 20U attached to both ends of the joint frame 30 are provided.
  • the width (interval T1 to T2) can be adjusted.
  • the hub 24 and the joint frame 30 are fixed with screws. By loosening this screw, the axial mounting position of the joint frame 30 of the hub 24 is adjusted, and the screw is tightened after the adjustment. As a result, the interval (T1 to T2) between the two rotor blade units 20U attached to both ends of the joint frame 30, that is, the interval (width) between the two rotor blades 23 can be increased or decreased.
  • only one of the two joint frames 30 is adjusted for the attachment position of the rotary blade unit 20U and the joint frame 30, but can be adjusted in both the two joint frames 30. It may be.
  • the distance (width) between the two rotor blades 23 the flight characteristics of the multicopter toy 1000 can be adjusted.
  • the stability of the multicopter toy 1000 in flight improves.
  • the agility of the multicopter toy 1000 is improved as the distance (width) between the two rotor blades 23 is reduced.
  • the operator can set the flight characteristics of the multi-copter toy 1000 according to his / her preference as if the distance (tread) between the left and right tires of the automobile is adjusted.
  • the distance between the two rotary blades 23 is adjusted when the size (rotational diameter) of the rotary blade 23 is changed. be able to. For example, in the case of changing to a large rotor blade 23, interference between the two rotor blades 23 can be prevented by increasing the interval between the two rotor blade units 20U.
  • 24A to 24C are schematic views illustrating the adjustment of the inclination angle of the rotary blade unit.
  • 24A to 24C are schematic views of the multicopter toy 1000 viewed from the front.
  • FIG. 24A illustrates the flight posture when the inclination angle of the rotary wing unit 20U is not adjusted.
  • the rotary axis z23 of the rotary blade 23 is perpendicular to the axis of the joint frame 30.
  • FIGS. 24B and 24C illustrate the flight attitude when the tilt angle of the rotary wing unit 20U is adjusted.
  • each of the two rotary blade units 20U attached to both ends of the joint frame 30 is inclined at an angle ⁇ 2 with respect to an axis perpendicular to the axis of the joint frame 30 (frame vertical axis z35). is doing. That is, when viewed from the front of the multicopter toy 1000, the rotation axis z23 of the left rotor blade 23 is inclined clockwise by an angle ⁇ 2 with respect to the frame vertical axis z35, and the rotation axis z23 of the right rotor blade 23 is the frame vertical axis.
  • the angle ⁇ 2 is inclined counterclockwise with respect to z35.
  • each of the two rotary blade units 20U is inclined at an angle ⁇ 3 with respect to the frame vertical axis z35. That is, when viewed from the front of the multicopter toy 1000, the rotation axis z23 of the left rotary blade 23 is inclined counterclockwise by the angle ⁇ 3 with respect to the frame vertical axis z35, and the rotation axis z23 of the right rotary blade 23 is the frame vertical axis.
  • the angle ⁇ 3 is inclined clockwise with respect to z35.
  • connection portion between the end of the joint frame 30 and the hub 24 may be a hemispherical connection (ball joint BJ).
  • ball joint BJ hemispherical connection
  • each rotary blade unit 20U can be independently adjusted with respect to the joint frame 30 at various angles.
  • the flight characteristics of the multicopter toy 1000 can be adjusted by adjusting the tilt angle of the rotary wing unit 20U.
  • the tilt angle of the rotary wing unit 20U For example, as shown in FIG. 24B, when the left and right rotary blade units 20U are inclined, the spread of wind power by the rotary blades 23 becomes large, and the left and right turn characteristics of the multicopter toy 1000 are stabilized.
  • the left and right rotary blade units 20U are inclined as shown in FIG. 24 (c)
  • the spread of wind force by the rotary blades 23 is reduced, and the left and right turn characteristics are agile. That is, the operator can set the flight characteristics of the multicopter toy 1000 according to his / her preference as if he / she adjusted the camber of the automobile.
  • FIGS. 25A and 25B are schematic views illustrating the center-of-gravity balance adjustment of the multicopter toy.
  • FIGS. 25A and 25B show a state where the rotation angles of the rotary blade unit 20U are reversed by 180 degrees. That is, the rotary blade unit 20U shown in FIG. 25B is rotated 180 degrees around the axis of the joint frame 30 with respect to the rotary blade unit 20U shown in FIG. 25 (a) and 25 (b), in order to make the direction of the ascent and descent of the multicopter toy 1000 the same, when the rotary blade unit 20U is rotated 180 degrees, the rotary blade 23 It is necessary to reverse the pitch.
  • the rotating surface S23 of the rotor blade 23 is below the center of gravity CG of the fuselage 110.
  • the rotating surface S 23 of the rotor blade 23 is above the center of gravity CG of the fuselage 110.
  • the center of gravity CG is the center of gravity in a state where members such as the control board 50, the battery BT, and the skid 115 are attached to the body 110.
  • the flight angle of the multi-copter toy 1000 is adjusted by changing the rotational angle of the rotary wing unit 20U by 180 degrees and changing the positional relationship between the rotary surface S23 of the rotary wing 23 and the center of gravity CG of the fuselage 110. can do.
  • FIG. 25 (a) when the rotation surface S23 of the rotor blade 23 is below the center of gravity CG of the airframe 110, the flight stability of the multicopter toy 1000 is reduced, but the agility is improved.
  • FIG. 25B when the rotation surface S23 of the rotor blade 23 is above the center of gravity CG of the fuselage 110, the flight characteristics of the multicopter toy 1000 are improved, but the agility is reduced. That is, the pilot can set the flight characteristics of the multicopter toy 1000 according to his / her preference by changing the positional relationship between the center of gravity CG of the fuselage 110 and the rotation surface S23 of the rotor blade 23.
  • FIG. 26 is a perspective view showing an example of angle adjustment of the rotary blade unit by the servo mechanism.
  • the servo mechanism 60 attached to the airframe 110 is remotely operated by a control signal transmitted from the operator's controller.
  • the drive of the servo mechanism 60 is transmitted to the joint frame 30. That is, the rotation of the joint frame 30 is remotely operated by the servo mechanism 60.
  • Servo mechanism 60 is connected to joint frame 30 through a transmission mechanism such as a link, belt, or wire. Thereby, the drive of the servo mechanism 60 is transmitted to the joint frame 30, and the joint frame 30 can be rotated around the axis at a desired angle. Note that the rotation of the two joint frames 30 may be linked by one servo mechanism 60.
  • the operator can rotate the rotor unit 20U during the flight of the multicopter toy 1000. That is, the operator can adjust the rotation angle of the rotary wing unit 20U according to his / her preference while operating the multicopter toy 1000.
  • the embodiment it is possible to easily adjust the flight characteristics of the multicopter toy 1000, and it is possible to provide the multicopter toy 1000 having a high preference for the operator.
  • this embodiment and its application example were demonstrated above, this invention is not limited to these examples.
  • the quad copter having four rotor blades 120 has been described as an example, but the present invention can be applied to a multi-copter toy 1000 having rotor blades 23 other than four.
  • joint frame 30a ... surface 40 ... clamp 40a ... recess inner surface 41 ... upper clamp portion 42 ... lower clamp Part 45 ... Screw 50 ... Control board 50a ... Surface 55 ... Button 60 ... Servo mechanism BJ ... Ball joint BT ... Battery CG ... Center of gravity S23 ... Rotating plane z1 ... Vertical axis z10 ... Normal axis z23 ... Rotating axis z35 ... Frame vertical axis

Abstract

本発明は、操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、マルチコプターのヨーまたはロールを制御するための第1制御信号、およびマルチコプターのピッチを制御するための第2制御信号を送信してマルチコプターを制御する方法である。この方法は、コントローラから第1制御信号が送信された場合、その際の第1制御信号に含まれる第1操作量に応じた制御として、第1操作量に応じて第1領域および第2領域を設けておき、第1操作量が第1領域であった場合、第1操作量に応じてロールまたはヨーの一方を選択し、第1操作量が第2領域であった場合、第1操作量に応じてロールまたはヨーの他方を選択することを含む。

Description

マルチコプターの制御方法、マルチコプター用コントローラおよびマルチコプター玩具
 本発明は、マルチコプターを操縦する際に適用されるマルチコプターの制御方法、マルチコプター用コントローラおよびマルチコプター玩具に関する。
 複数の回転翼によって無人飛行するマルチコプターは、それぞれの回転翼の出力(例えば、回転数)を制御することによって様々な姿勢によって飛行を行うことができる。例えば、4つの回転翼を有するクワッドコプターにおいては、機体を中心として前方左右の2つの回転翼および後方左右の2つの回転翼のそれぞれの出力バランスによって姿勢が制御される。
 このようなマルチコプターが飛行する場合、前方の回転翼に対して後方の回転翼の出力を高くすることで機体を前傾させて、機体とともに複数の回転翼の軸を前方に傾けて進行方向への推進力を得ている。
 具体的には、前方2つの回転翼と後方2つの回転翼との出力バランスを調整することでピッチ方向の制御が行われ、前後方向への飛行体勢が制御される。また、左側2つの回転翼と右側2つの回転翼との出力バランスを調整することでロール方向の制御が行われ、左右方向への飛行姿勢が制御される。さらに、左前および右後ろの2つの回転翼と右前および左後ろの2つの回転翼との出力バランスを調整することでヨー方向の制御が行われ、回転方向の飛行体勢が制御される。このようなマルチコプターを飛行させる場合、操縦者はコントローラを操作して様々な飛行姿勢を選択し、所望の方向へマルチコプターを飛行させていく。
 マルチコプターのコントローラとして一般的なのは、2つの可動スティックを備えたスティック型コントローラである。例えば、操縦者は、左側スティックを前後に動かして上昇、下降を制御し、左右に動かして左右ヨーを制御する。また、右側スティックを前後に動かして前進、後退を制御し、左右に動かして左右ロールを制御する。
 特許文献1では、マルチコプターのコントローラとして、タッチスクリーンを有する端末を利用する技術が開示されている。操縦者はタッチスクリーンを傾けたり、タッチスクリーンを指で触れたりすることでマルチコプターの飛行姿勢を選択するようにしている。
 特許文献2には、一体型バッテリ、負荷支持ボディ、2つのアーム、2つのローラを持つ各アーム、制御モジュール、ペイロードモジュール、スキッドを含む無人機が開示される。この無人機では、取り付けられるアームのタイプによって無人航空機、無人地上車両、無人(水)上艇、無人潜水艇として動作するよう再構成可能になっている。
 また、この無人機においては、各プロペラが水平からわずかに下方にオフセットしたピッチ角度で、先端部に対してわずかに傾けられている。これにより、ホバリングの際に制御モジュールの後端部がペイロードの後方および下方の視界に入り込むことを防止している。さらに、巡航飛行での前進飛行の際、ボディが水平状態で飛行するため、風の抵抗を最小に抑えながら前進飛行することができる。
特開2012-198883号公報 特表2013-531573号公報
 マルチコプターの制御では、操縦者が操作するコントローラから送信される制御信号を用いてマルチコプターの上下、前後、ヨーおよびピッチのそれぞれに対応した4チャンネルの制御が必要である。操縦者は、マルチコプターを思い通りに操縦するため、これらの飛行姿勢を状況に応じて瞬時にコントロールしなければならない。例えば、マルチコプターを前方に飛行させながらターンさせたい場合、操縦者はピッチを制御するとともに、目的の弧を描くようにヨーおよびロールのコントロールを同期させる必要がある。このような操作は非常に複雑であり、習得には多くの時間を要する。
 一方、特許文献1に記載されるように、タッチスクリーンを有する端末を利用して容易にターンを描く飛行を行うモードでは、ターンの瞬間曲率半径の円を描くようにマルチコプターのピッチ、ロールおよびヨーが演算され、所望の曲線経路を辿るように姿勢が自動的に制御される。
 しかしながら、このように所望の曲線経路を辿るような姿勢制御では、操縦者が行った操作量から演算されるターン半径の経路上を飛行するように自動的に制御されてしまう。つまり、マルチコプターの飛行中に操縦者がタッチスクリーン端末を所定の方向に傾けると、その傾斜量からターン半径を設定し、そのターン半径になる円の経路上を外れないように姿勢が自動的に制御される。このような制御は操縦者にとって楽ではあるものの、マルチコプターを操るという醍醐味に欠ける。
 また、従来のマルチコプター玩具においては、ユーザ(操縦者)が飛行特性を簡単に調整することができる構成にはなっていない。このため、操縦者の好みに合わせて飛行特性をセッティングしたり、動力性能に応じた調整を行ったりすることができず、趣向性に欠けるという問題がある。
 本発明は、マルチコプターの操縦の複雑さを軽減しつつ、操るという醍醐味を得ることができるマルチコプターの制御方法を提供することを目的とする。
 上記課題を解決するため、本発明は、操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法である。この方法は、前記コントローラから前記第1制御信号が送信された場合、その際の前記第1制御信号に含まれる第1操作量に応じた制御として、前記第1操作量に応じて第1領域および第2領域を設けておき、前記第1操作量が前記第1領域であった場合、前記第1操作量に応じて前記ロールまたは前記ヨーの一方を選択し、前記第1操作量が前記第2領域であった場合、前記第1操作量に応じて前記ロールまたは前記ヨーの他方を選択することを含む。
 また、本発明は、操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法である。この方法は、前記コントローラから前記第1制御信号が送信された場合、その際の前記第1制御信号に含まれる第1操作量に応じた制御として前記ヨーまたは前記ロールのいずれかを選択する。この方法は、前記第1制御信号によって前記ヨーの制御が選択されている場合、前記第2制御信号によって前記ピッチを制御して前記マルチコプターを前進させる場合と後進させる場合とで前記ヨーの回転方向を反対にする制御を行うことを含む。
 また、本発明は、操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法である。この方法は、前記コントローラから前記第1制御信号が送信された場合、その際の前記第1制御信号に含まれる第1操作量に応じた制御として前記第1操作量から所定の関数によって演算された値によって前記第1操作量に応じた前記ヨーおよび前記ロールのそれぞれの制御量を調整することを含む。
 また、本発明は、操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法である。この方法は、前記コントローラから前記第1制御信号が送信された場合、その際の前記第1制御信号に含まれる第1操作量に応じた制御として前記ヨーおよび前記ロールのそれぞれの制御量を調整することを含む。この方法は、前記第1制御信号によって前記ヨーおよび前記ロールのそれぞれの制御量を調整する場合、前記第2制御信号によって前記ピッチを制御して前記マルチコプターを前進させる場合と後進させる場合とで、前記ヨーの回転方向を反対にし、前記ロールの回転方向は反対にしないよう制御を行うことを含む。
 また、本発明は、操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法である。この方法は、前記第1制御信号によって前記ヨーを制御し、前記第2制御信号によって前記ピッチを制御する場合、前記マルチコプターを前進させる場合と後進させる場合とで前記ヨーの回転方向を反対にする制御を行うことを含む。
 また、本発明は、複数の回転翼によって無人飛行するマルチコプターを操縦するためのコントローラである。このコントローラは、本体筐体と、前記本体筐体に設けられ、回転操作されるホイール部と、前記本体筐体に設けられ、指で進退操作されるトリガー部と、前記本体筐体に設けられた往復スイッチ部と、前記本体筐体に設けられた送信部と、を備える。前記送信部は、前記ホイール部の操作に応じて前記マルチコプターのヨーまたはロールのいずれかを制御するための第1制御信号、前記トリガー部の操作に応じて前記マルチコプターのピッチを制御するための第2制御信号、および前記往復スイッチ部の操作に応じて前記マルチコプターの高さを制御するための第3制御信号を送信する。前記第1制御信号は、前記ホイール部の操作に応じて前記ヨーを制御するためのヨー制御信号および前記ロールを制御するためのロール制御信号のいずれかである。前記送信部は、前記ホイール部が操作された場合、その際の前記トリガー部の操作量に応じて前記ヨー制御信号および前記ロール制御信号のいずれかを送信する。
 また、本発明は、複数の回転翼によって無人飛行するマルチコプターを操縦するためのコントローラである。このコントローラは、本体筐体と、前記本体筐体に設けられ、回転操作されるホイール部と、前記本体筐体に設けられ、指で進退操作されるトリガー部と、前記本体筐体に設けられた往復スイッチ部と、前記本体筐体に設けられた送信部と、を備える。前記送信部は、前記ホイール部の操作に応じて前記マルチコプターのヨーまたはロールのいずれかを制御するための第1制御信号、前記トリガー部の操作に応じて前記マルチコプターのピッチを制御するための第2制御信号、および前記往復スイッチ部の操作に応じて前記マルチコプターの高さを制御するための第3制御信号を送信する。前記往復スイッチ部は操作しない状態で中立位置に保持される機能を有する。前記送信部は、前記往復スイッチ部の所定方向への操作から前記中立位置への復帰までの時間が所定時間以内であった場合に、前記マルチコプターを予め定められた高さに制御するための前記第3制御信号を送信する。
 また、本発明は、操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、前記マルチコプターのピッチを制御するための第2制御信号、および前記マルチコプターの高さを制御するための第3制御信号を送信して前記マルチコプターを制御する方法である。この方法は、前記コントローラから前記第1制御信号が送信された場合、その際の前記第2制御信号に含まれる第2操作量に応じて前記第1制御信号に含まれる第1操作量に応じた制御として前記ヨーまたは前記ロールのいずれかを選択することを含む。
 また、本発明は、無人飛行するマルチコプター玩具である。このマルチコプター玩具は、機体と、前記機体に取り付けられた複数の回転翼ユニットと、前記機体に取り付けられるジョイントフレームと、前記ジョイントフレームを前記機体に所定の角度で固定するクランプと、を備える。前記複数の回転翼ユニットのそれぞれは、モータと、前記モータによって回転する回転翼と、を有する。前記複数の回転翼ユニットのうちの2つの回転翼ユニットは前記ジョイントフレームの両端部に接続される。前記複数の回転翼ユニットの少なくとも1つは、前記機体に対して角度調整可能に取り付けられる。
 また、本発明は、無人飛行するマルチコプター玩具である。このマルチコプター玩具は、機体と、前記機体に取り付けられた複数の回転翼ユニットと、前記機体に設けられ、姿勢の制御に用いられるセンサを有する制御基板と、を備える。前記複数の回転翼ユニットのそれぞれは、モータと、前記モータによって回転する回転翼と、を有する。前記複数の回転翼ユニットの少なくとも1つは、前記機体に対して角度調整可能に取り付けられる。前記制御基板は、前記機体に対して角度調整可能に取り付けられる。
(a)および(b)は、実施形態に係るマルチコプター用コントローラを例示する模式図である。 コントローラの構成を例示するブロック図である。 マルチコプターの構成を例示するブロック図である。 (a)~(d)は、マルチコプターの姿勢を例示する模式図である。 (a)および(b)は、マルチコプターの上昇および下降の制御を例示する模式図である。 (a)~(c)は、マルチコプターの前進および後退の制御を例示する模式図である。 (a)および(b)は、マルチコプターの左右制御を例示する模式図である。 (a)~(c)は、マルチコプターのターン制御を例示する模式図である。 (a)~(d)は、マルチコプターのターンについて例示する模式図である。 (a)~(c)は、ターンの制御を説明する模式図である。 (a)および(b)は、マルチコプターのヨーの角速度の決定について例示する図である。 (a)~(c)は、マルチコプターのヨーおよびロールの制御について例示する図である。 (a)および(b)は、ロール補正を例示する図である。 (a)および(b)は、制御切り替えの例を説明する図である。 (a)~(c)は、ホイール操作量に応じたロールおよびヨーの切り替えの例(その1)について説明する図である。 (a)および(b)は、ホイール操作量に応じたロールおよびヨーの切り替えの例(その2)について説明する図である。 (a)~(d)は、マルチコプターの前進および後退でのヨーの制御を例示する模式図である。 実施形態に係るマルチコプター玩具を例示する斜視図である。 (a)および(b)は、クランプ部分の拡大斜視図である。 (a)および(b)は、回転翼ユニットの回転角度調整による飛行姿勢を例示する模式図である。 (a)および(b)は、制御基板の角度調整について例示する模式図である。 基準設定ボタンを例示する模式図である。 回転翼ユニットの取り付け幅の調整について例示する模式図である。 (a)~(c)は、回転翼ユニットの傾斜角度の調整について例示する模式図である。 (a)および(b)は、マルチコプター玩具の重心バランス調整について例示する模式図である。 サーボ機構による回転翼ユニットの角度調整の例を示す斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
(マルチコプター用コントローラの構成)
 図1(a)および(b)は、実施形態に係るマルチコプター用コントローラを例示する模式図である。図1(a)にはマルチコプター100の操縦の様子が示され、図1(b)にはマルチコプター用コントローラ(以下、単に「コントローラ」と言う。)1が示される。
 図1(a)に示すように、マルチコプター100は、機体110に複数の回転翼120が設けられた無人飛行体である。例えば、4つの回転翼120を有するクワッドコプターは、機体110の前方左右に2つの回転翼120、および後方左右に2つの回転翼120の出力バランスによって、離着陸、ホバリング、前方および後方飛行、左右飛行、回転、ターンなどの各種の飛行姿勢をとることができる。
 このようなマルチコプター100は、操縦者200によるコントローラ1の操作によって制御される。すなわち、操縦者200がコントローラ1を操作すると、マルチコプター100に向けて無線通信で制御信号CSが送信される。マルチコプター100には受信部20が設けられており、この制御信号CSをマルチコプター100の受信部20で受信することにより、操縦者200の指示する飛行姿勢にマルチコプター100が制御される。
 図1(b)に示すように、本実施形態に係るコントローラ1は、本体筐体10と、ホイール部11、トリガー部12、往復スイッチ部13および送信部14を備える。このコントローラ1は、いわゆるホイール型コントローラである。このようなコントローラ1によって、操縦者200はマルチコプター100をラジオコントロール自動車のような感覚で操縦することができる。
 コントローラ1の本体筐体10には、操縦者200が片手で握ることで本体筐体10を支持するためのグリップ部10Gが設けられる。通常は左手でグリップ部10Gを握り、右手でホイール部11を操作する。なお、ホイール部11の配置を左右反転させることで、右手でグリップ部10Gを握り、左手でホイール部11を操作する仕様にすることもできる。
 ホイール部11は、例えば円筒型の回転スイッチであり、操縦者200によって左右に回転操作可能に設けられる。操縦者200はホイール部11の回転操作を選択することでマルチコプター100の回転系の制御を行うことができる。本実施形態においては、ホイール部11の回転操作に応じてマルチコプター100のヨーまたはロールのいずれかを制御できるよう構成される。
 ホイール部11には、操作していない状態(例えば、手を離した状態)でバネ作用によって中立位置に戻る機能が設けられていてもよい。ホイール部11の操作において、左回転の操作量をM11、右回転の操作量をM12と言うことにする。
 トリガー部12は指で進退操作可能なレバー型スイッチである。操縦者200は、グリップ部10Gを握る手の指(例えば、人差し指)でトリガー部12を進退操作することができる。トリガー部12には、操作していない状態(例えば、手を離した状態)でバネ作用によって中立位置に戻る機能が設けられていてもよい。トリガー部12の操作において、手前に引いた場合の操作量をM21、先に押した場合の操作量をM22と言うことにする。
 往復スイッチ部13は一方向および他方向に往復操作できるスイッチである。往復スイッチ部13は、例えばグリップ部10Gの上方に配置され、グリップ部10Gを握る手の指(例えば、親指)で操作できるようになっている。
 往復スイッチ部13は、中間位置を基準として操作するタイプであっても、所定の基準位置(例えば、最も上または下の位置)を基準として操作するタイプであってもよい。また、往復スイッチ部13には、往復スイッチ部13を操作していない状態(例えば、手を離した状態)でバネ作用により中立位置に戻る機能が設けられていてもよい。往復スイッチ部13の一方向への操作量をM31、他方向への操作量をM32と言うことにする。
 送信部14は、操縦者200の操作に応じた制御信号CSをマルチコプター100へ無線通信によって送信する部分である。制御信号CSは、例えばアンテナから放出される例えば電波によってマルチコプター100へ送信される。
 送信部14から送信される制御信号CSには、第1制御信号CS1、第2制御信号CS2および第3制御信号CS3が含まれる。第1制御信号CS1は、ホイール部11の操作に応じてマルチコプター100のヨーまたはロールのいずれかを制御するための信号である。第2制御信号CS2は、トリガー部12の操作に応じてマルチコプター100のピッチを制御するための信号である。第3制御信号CS3は、往復スイッチ部13の操作に応じてマルチコプター100の高さを制御するための信号である。
 このうち第1制御信号CS1は、ホイール部11の操作に応じてマルチコプター100のヨーを制御するためのヨー制御信号CSYおよびロールを制御するためのロール制御信号CSRのいずれかを含む。
 本実施形態に係るコントローラ1においては、このヨー制御信号CSYおよびロール制御信号CSRのいずれかを、トリガー部12の操作量M21、M22に応じて選択して送信する。すなわち、送信部14は、操縦者200によってホイール部11が操作された場合、その際のトリガー部12の操作量M21、M22に応じてヨー制御信号CSYおよびロール制御信号CSRのいずれかを送信する。
 一例として、送信部14は、ホイール部11が操作された際にトリガー部12が操作されていなかった場合(操作量M21、M22がゼロの場合)、ホイール部11の操作量M11、M12に応じてロール制御信号CSRを送信する。また、送信部14は、ホイール部11が操作された際にトリガー部12が操作されていた場合(操作量M21、M22がゼロでない場合)、ホイール部11の操作量M11、M12に応じてヨー制御信号CSYを送信する。これにより、トリガー部12を操作していない時はホイール部11によってマルチコプター100のロールを制御でき、トリガー部12を操作している時はホイール部11によってマルチコプター100のヨーを制御できることになる。
 他の一例として、トリガー部12の操作量(例えば、操作量M21)に応じて第1領域、第2領域および第3領域を設けておき、送信部14はトリガー部12の操作量が第1領域、第2領域および第3領域のどの領域かに応じて制御信号CSを送信する。
 例えば、トリガー部12の操作量M21が第1領域であった場合、送信部14はロール制御信号CSRを送信し、トリガー部12の操作量M21が第2領域であった場合、ヨー制御信号CSYを送信し、トリガー部12の操作量M21が第3領域であった場合、第2制御信号CS2およびヨー制御信号CSYを送信する。これにより、トリガー部12の操作量(例えば、引き量)によって異なる制御を行うことができる。
 ここで、送信部14からヨー制御信号CSYに含まれるヨーの制御量として、ホイール部11の回転角度から所定の関数によって演算された値を用いてもよい。この関数の設定によって、ホイール部11の回転角度とヨーの制御量との関係が決定される。
 また、送信部14は、第2制御信号CS2およびヨー制御信号CSYを送信する間、マルチコプター100のロールの制御量の補正を行うロール補正信号を送信して、ヨーおよびロールによって生じるマルチコプター100の速度変化を補償するようにしてもよい。この際、コントローラ1は、マルチコプター100から送信される速度に関する情報を受けて速度変化を補償する際にフィードバックをかける。ロール補正信号の詳細については後述する。
 また、往復スイッチ部13が中立位置を有する場合、送信部14は、往復スイッチ部13の所定方向への操作から中立位置への復帰までの時間が所定時間以内であった場合に、マルチコプター100を予め定められた高さに制御するための第3制御信号CS3を送信するようにしてもよい。この動作の詳細については後述する。
 このようなコントローラ1によって、操縦者200は、トリガー部12の引き具合等によってマルチコプター100の進行方向のスピードをコントロールし、ホイール部11の左右回転操作によってマルチコプター100の左右ターンをコントロールすることができる。すなわち、飛行するマルチコプター100であってもラジオコントロール自動車のような感覚で操縦を楽しむことができる。
 また、操縦者200は1つのホイール部11の操作であっても、トリガー部12の操作量に応じてヨーおよびロールのいずれかの操作を切り替えて制御することができる。つまり、操縦者200は、マルチコプター100の回転系の動作に関して、トリガー部12の操作に応じてホイール部11での操作対象の切り替え(ヨーとロールとの切り替え)を行うことができる。これにより、マルチコプター100の姿勢制御が簡素化され、操縦の複雑さが軽減される。
(コントローラおよびマルチコプターのブロック構成)
 図2は、コントローラの構成を例示するブロック図である。
 図3は、マルチコプターの構成を例示するブロック図である。
 図2に示すように、コントローラ1の本体筐体10の内部には、送信部14、中央演算部(CPU)15、可変抵抗部(VR)111、121および131、アナログデジタル変換部(A/D)112、122および132が設けられる。なお、コントローラ1には図示しないバッテリ、電源スイッチ、調整トリガー、インジケータ、表示パネルなども設けられる。
 ホイール部11を回転操作すると、この回転操作による操作量M11、M12に応じて可変抵抗部111の抵抗値が変化する。この抵抗値はアナログデジタル変換部112によってデジタル信号に変換され、CPU15に送られる。
 トリガー部12を進退操作すると、この進退操作による操作量M21、M22に応じて可変抵抗部121の抵抗値が変化する。この抵抗値はアナログデジタル変換部122によってデジタル信号に変換され、CPU15に送られる。
 往復スイッチ部13を往復操作すると、この往復操作による操作量M31、M32に応じて可変抵抗部131の抵抗値が変化する。この抵抗値はアナログデジタル変換部132によってデジタル信号に変換され、CPU15に送られる。
 CPU15は所定のプログラムに沿って各部を制御するとともに信号処理を行う。例えば、CPU15は、アナログデジタル変換部112、122および132から送られたデジタル信号を結合して制御信号CSを生成する。
 送信部14は、CPU15で処理された制御信号CSを変調して、電波によってマルチコプター100へ送信する。送信部14は、例えば2.4GHz帯の電波、近距離無線通信規格、赤外線を利用して、変調した制御信号CSを送信する。
 図3に示すように、マルチコプター100の機体110の内部には、受信部20、中央演算部(CPU)25、センサ26、27および28、モータドライバ(M/D)231、232、233および234が設けられる。なお、機体110には図示しないバッテリ、電源スイッチ、インジケータなども設けられる。機体110には図示しないカメラが搭載されていてもよい。
 受信部20は、コントローラ1の送信部14から送信された電波を受信して制御信号CSへ復調する。復調された制御信号CSはCPU25に送られる。センサ26は、例えば6軸のジャイロセンサである。センサ27は、例えば気圧センサである。センサ28は、例えば超音波センサである。センサ26、27および28の検出信号はCPU25に送られ、マルチコプター100の姿勢制御(例えば、自律制御)の演算に用いられる。なお、センサ26、27および28は上記に限定されない。
 CPU25は、受信部20から送られた制御信号CS、センサ26、27および28から送られた検出信号を用いて各モータM1、M2、M3およびM4の出力を制御するための値(モータ制御信号)を演算する。
 CPU25で演算されたモータ制御信号はモータドライバ(M/D)231、232、233および234に送られる。各モータドライバ(M/D)231、232、233および234は、CPU25から送られたモータ制御信号に基づきそれぞれに接続された各モータM1、M2、M3およびM4へ与える信号(電流、電圧および周波数の少なくともいずれか)を出力する。
 各モータM1、M2、M3およびM4の出力が調整されることで、各モータM1、M2、M3およびM4によって回転する回転翼120の出力のバランスが調整され、マルチコプター100の飛行姿勢が制御される。また、マルチコプター100は、各センサ26、27および28の検出信号に基づいて姿勢の自律制御が行われる。
 先に説明したように、本実施形態に係るコントローラ1では、トリガー部12の操作量M21、M22に応じて第1制御信号CS1のヨー制御信号CSYおよびロール制御信号CSRのいずれかが送信部14より送信される。このヨー制御信号CSYおよびロール制御信号CSRの選択をCPU15のプログラム処理によって行い、選択されたヨー制御信号CSYまたはロール制御信号CSRを他の信号と結合して制御信号CSとする。送信部14は制御信号CSの第1制御信号CS1に含まれる信号として、トリガー部12の操作量M21、M22に応じて選択されたヨー制御信号CSYおよびロール制御信号CSRのいずれかを送信することになる。
 この場合、CPU15は、ホイール部11の操作量M11、M12をヨー制御信号CSYおよびロール制御信号CSRのどちらを対応付けるのかを示す識別信号を制御信号CS内に含める処理を行う。これにより、同じホイール部11の操作量M11、M12であっても、制御対象としてヨーを制御するのか、ロールを制御するのかの判別を行うことができる。
 また、制御信号CSには上記の識別信号を含めず、ホイール部11の操作量M11、M12に応じた第1制御信号CS1を制御信号CSに含めてマルチコプター100に送信し、マルチコプター100のCPU25で実行されるプログラムによって、ヨーを制御するか、ロールを制御するかを判別してもよい。
 この場合、コントローラ1の送信部14は、ヨー制御信号CSYおよびロール制御信号CSRを区別せずにホイール部11の操作量に応じた第1制御信号CS1を送信する機能を有していればよい。
 そして、マルチコプター100のCPU25は、受信した制御信号CSに含まれる第2制御信号CS2に含まれるトリガー部12の操作量M21、M22に応じて、第1制御信号CS1に含まれるホイール部11の操作量M11、M12に応じた信号によってヨーを制御するか、ロールを制御するかの判別を行う。
 また、本実施形態に係るコントローラ1では、コントローラ1から第1制御信号CS1が送信された場合、その際の第1制御信号CS1に含まれるホイール部11の操作量M11、M12に応じた制御としてヨーまたはロールのいずれかを選択するようにしてもよい。
 この場合、CPU15は、ホイール部11の操作量M11、M12に応じてヨー制御信号CSYおよびロール制御信号CSRのどちらを対応付けるのかを示す識別信号を制御信号CS内に含める処理を行う。これにより、ホイール部11の操作量M11、M12に応じて制御対象としてヨーを制御するか、ロールを制御するかの判別を行うことができる。
 また、制御信号CSには上記の識別信号を含めず、ホイール部11の操作量M11、M12に応じた第1制御信号CS1を制御信号CSに含めてマルチコプター100に送信し、マルチコプター100のCPU25で実行されるプログラムによって、ヨーを制御するか、ロールを制御するか、操作量M11、M12に応じて判別してもよい。
 ホイール部11の操作量M11、M12に応じたヨーおよびロールの制御として、操作量M11、M12に応じたヨーおよびロールのそれぞれの制御量の調整を行ってもよい。この場合、ヨーおよびロールのそれぞれの制御量を示す識別信号を制御信号CSに含めてもよいし、制御信号CSに識別信号を含めずにマルチコプター100のCPU25で実行されるプログラムによってヨーおよびロールのそれぞれの制御量を調整してもよい。
 また、本実施形態に係るコントローラ1では、第1制御信号CS1によってヨーを制御する場合、マルチコプター100を前進させる場合と後進させる場合とでヨーの回転方向を反対にする制御を行ってもよい。また、この制御をマルチコプター100のCPU25で実行されるプログラムによって行ってもよい。
(マルチコプターの制御方法)
 次に、本実施形態に係るマルチコプター100の制御方法について説明する。
 図4(a)~(d)は、マルチコプターの姿勢を例示する模式図である。
 本実施形態に係るマルチコプター100の制御方法を説明するにあたり、図4(a)~(d)に示す模式図によってマルチコプター100の姿勢を表すものとする。すなわち、図4(a)に示すように、マルチコプター100の機体110を前方が鋭角となった五角形で表し、複数の回転翼120を二点鎖線で表す。また、マルチコプター100の前後方向をX軸方向、左右方向をY軸方向、上下方向をZ軸方向とする。したがって、マルチコプター100のピッチはY軸回りの回転となり、ヨーはZ軸回りの回転となり、ロールはX軸回りの回転となる。
 マルチコプター100をZ軸に沿って上方から見た様子を表す際には図4(b)に示す模式図で表すものとする。機体110の前方を示すために機体110の前方部110aを黒色で示す。マルチコプター100をX軸に沿って後方から見た様子を表す際には図4(c)に示す模式図で表すものとする。機体110をY軸に沿って側方から見た様子を表す際には図4(d)に示す模式図で表すものとする。
(上昇下降制御)
 図5(a)および(b)は、マルチコプターの上昇および下降の制御を例示する模式図である。
 マルチコプター100の上昇および下降を行うには、図5(a)に示すコントローラ1の往復スイッチ部13を操作して、第3制御信号CS3を送信部14からマルチコプター100に送る。
 例えば、往復スイッチ部13を上方に押し上げると、図5(b)に示すように、マルチコプター100は上昇する。一方、往復スイッチ部13を下方に押し下げると、図5(b)に示すように、マルチコプター100は下降する。
 マルチコプター100の上昇の量は、往復スイッチ部13を押し上げた操作量M31に応じて決定され、下降の量は、往復スイッチ部13を押し下げた操作量M32に応じて決定される。
 往復スイッチ部13が中立位置を有する場合、往復スイッチ部13を上方へ押し上げている間、マルチコプター100の上昇を続け、下方へ押し下げている間、マルチコプター100の下降を続けるように制御してもよい。往復スイッチ部13が中立位置に復帰することで上昇および下降の停止が行われる。
 また、往復スイッチ部13を中立位置から一方向へ操作し、中立位置へ復帰するまでの時間が所定時間以内になる操作(以下、「クリック操作」と言う。)によって制御してもよい。
 例えば、往復スイッチ部13を上方に1回クリック操作する毎に所定の高さ上昇させたり、下方に1回クリック操作する毎に所定の高さ下降させたりしてもよい。さらに、マルチコプター100が着陸している状態で、往復スイッチ部13を例えば上方に1回クリック操作すると、自動的に所定高さまで離陸してホバリングさせるようにしてもよい。また、マルチコプター100が飛行やホバリングしている状態で、往復スイッチ部13を例えば下方に1回クリック操作すると、自動的に着陸させるようにしてもよい。
 また、往復スイッチ部13の選択位置を段階的に切り替えられるようにしてもよい。この場合、往復スイッチ部13の選択位置に応じた高さにマルチコプター100の高さが設定される。例えば、往復スイッチ部13を一番下の位置にすると、マルチコプター100は着陸し(高さゼロ)、往復スイッチ部13を下から一段目の位置にすると、マルチコプター100は予め設定された第1の高さまで上昇してその高さで維持される。また、往復スイッチ部13を下から二段目の位置にすると、マルチコプター100は予め設定された第2の高さまで上昇してその高さで維持される。このように、往復スイッチ部13の選択位置によって自動的に予め設定された高さに維持されることで、操縦者200はマルチコプター100の高さコントロールをする必要がなく、前進、後退およびターンの動作に集中することができる。
(前進後退制御)
 図6(a)~(c)は、マルチコプターの前進および後退の制御を例示する模式図である。
 マルチコプター100の前進および後退を行うには、図6(a)に示すコントローラ1のトリガー部12を操作して、第2制御信号CS2を送信部14からマルチコプター100に送る。
 例えば、トリガー部12を手前に引くと、図6(b)に示すように、マルチコプター100は前方部110aを下げるようにピッチし、前進する。一方、トリガー部12を押すと、図6(c)に示すように、マルチコプター100は前方部110aが上がるようにピッチし、後退する。
 マルチコプター100の前進の量(ピッチ角度)は、トリガー部12を引いた操作量M21に応じて決定され、後退の量(ピッチ角度)は、トリガー部12を押した操作量M22に応じて決定される。操作量M21およびM22が多いほどピッチ角度が大きくなり、マルチコプター100の前進および後退の速度は速くなる。
(左右制御)
 図7(a)および(b)は、マルチコプターの左右制御を例示する模式図である。
 マルチコプター100の左右制御を行うには、図7(a)に示すコントローラ1のホイール部11を操作して、第1制御信号CS1(ロール制御信号CSR)を送信部14からマルチコプター100に送る。
 例えば、マルチコプター100がホバリングしている状態で、ホイール部11を左右いずれかに回転させると、図7(b)に示すように、マルチコプター100は左右いずれかにロールして左右方向に移動する。すなわち、ホイール部11を左に回転させるとマルチコプター100は左下がりにロールし、左方向へ進む。一方、ホイール部11を右に回転させるとマルチコプター100は右下がりにロールし、右方向へ進む。
 マルチコプター100の左右へ進む量(ロール角度)は、ホイール部11を回転した操作量M11、M12に応じて決定される。操作量M11、M12が多いほどロール角度が大きくなり、マルチコプター100の左右方向への移動速度は速くなる。
(ターン制御)
 図8(a)~(c)は、マルチコプターのターン制御を例示する模式図である。
 マルチコプター100のターン制御を行うには、図8(a)に示すコントローラ1のホイール部11およびトリガー部12の両方を操作して、第1制御信号CS1(ヨー制御信号CSY)および第2制御信号CS2を送信部14からマルチコプター100に送る。
 例えば、マルチコプター100がホバリングしている状態でトリガー部12を手前に引くと、図8(b)に示すように、マルチコプター100は前方部110aを下げるようにピッチし、前進する。そして、前進飛行している状態でホイール部11を左右いずれかに回転すると、図8(c)に示すように、マルチコプター100は左右いずれかにヨー回転する。
 つまり、ホイール部11を回転させる際、トリガー部12が操作されていない場合には、図7に示すようにホイール部11の回転に応じてロールを発生させるが、トリガー部12が操作されている場合には、ホイール部11の回転に応じてヨーを発生させるよう制御の切り替えを行う。
 なお、マルチコプター100のCPU25は、マルチコプター100の飛行中にヨーを発生させる場合、このヨーに応じてロールを自動的に発生させるプログラム処理を行っている。これにより、マルチコプター100が前進飛行している間はホイール部11の操作によってヨーとともにロールが発生し、これによってマルチコプター100はバンクしながら弧を描くようにターンすることになる。
 マルチコプター100のヨーの量(ヨー角度)は、ホイール部11を回転した操作量M11、M12に応じて決定される。操作量M11、M12が多いほどヨー角度が大きくなり、マルチコプター100は急旋回することになる。一方、操作量M11、M12が少ないほどヨー角度が小さくなり、マルチコプター100はゆっくりと旋回することになる。
 なお、図8では、マルチコプター100を前進飛行させながらターンする例を示したが、トリガー部12を先に押しながらホイール部11を回転させることで、マルチコプター100を後退飛行させながらターンすることも可能である。
 図9(a)~(d)は、マルチコプターのターンについて例示する模式図である。
 図9(a)~(d)には、マルチコプター100が前方に飛行している状態から左方向へターンする際の様子が表される。
 先ず、図9(a)に示すように、コントローラ1のトリガー部12を引くことで操作量M21に応じたピッチが発生し、マルチコプター100は前方へ飛行していく。
 次に、コントローラ1のトリガー部12を引いた状態(前方飛行の状態)で、図9(b)に示すように、ホイール部11を左に回転させる。この際、トリガー部12が操作された状態であるため、ホイール部11の操作量M11に応じたヨーが発生し、マルチコプター100はZ軸回りに左回転する。また、この際、マルチコプター100のCPU25によるプログラム処理で、発生したヨーの角度に応じてロールの角度が演算され、マルチコプター100にはロールも発生する。これによって、マルチコプター100は左へとターンを開始する。
 次に、コントローラ1のホイール部11を回転させる操作量M11を調整する。例えば、図9(c)に示すように、ホイール部11の操作量M11を増加させると、マルチコプター100のヨーの角度およびロールの角度が増加して、旋回の半径が小さくなる。
 そして、所望のターンを完了した際にはホイール部11の回転を戻す。これにより、図9(d)に示すようにマルチコプター100のターンが完了する。
(ターンの制御例)
 次に、ターンの制御例について説明する。
 図10(a)~(c)は、ターンの制御を説明する模式図である。
 図10(a)に示すように、マルチコプター100のターンは、Y軸回りの回転(ピッチ角度θp)、Z軸回りの回転(ヨー角度θy)、X軸回りの回転(ロール角度θr)のそれぞれの制御によって実行される。
 図10(b)に示すように、コントローラ1のトリガー部12を引くことで、マルチコプター100には操作量M21に応じたピッチ角度θpが発生する。さらに、図10(c)に示すように、トリガー部12を引いた状態で、ホイール部11を回転させることで、マルチコプター100には操作量M11に応じたヨー角度θyが発生する。ここで、ホイール部11の回転角はθwであり、ヨーの角速度はVzである。
 図11(a)および(b)は、マルチコプターのヨーの角速度の決定について例示する図である。
 図11(a)には、ホイール部11の回転角θwとヨーの角速度のVzとの関係を示す関数f1が表される。この関数f1を用いることで、マルチコプター100のヨーの角速度Vzは、ホイール部11の回転角θwに対応して設定される。なお、図11(a)に示す関数f1は、ホイール部11の回転角θwの1次関数になっているが、2次関数など他の関数であってもよい。関数f1の特性によって、ターン特性を変えることができる。
 図11(b)には、ホイール部11の回転角θwと、マルチコプター100の飛行速度Vxと、ヨーの角速度のVzとの関係を示す関数f2が表される。この関数f2を用いることで、マルチコプター100のヨーの角速度Vzは、ホイール部11の回転角θwおよびマルチコプター100の飛行速度Vxに対応して設定される。関数f2の特性によって、ターン特性を変えることができる。
(ヨーおよびロールの制御例)
 次に、ヨーおよびロールの制御例について説明する。
 図12(a)~(c)は、マルチコプターのヨーおよびロールの制御について例示する図である。
 マルチコプター100のターンを行う場合、図12(a)に示すようなヨーの発生(ヨー角度θy)と、図12(b)に示すようなロールの発生(ロール角度θr)とを連動させる。図12(c)には、ヨーとロールとの関係を示す関数f3が表される。関数f3を用いることで、マルチコプター100のロール角度θrは、ヨー角度θyに対応して設定される。この関数f3では、ヨー角度θyとロール角度θrとが比例関係になっている。
 例えば、図9(b)に示すターンの開始においては、マルチコプター100のヨー角度θyが小さいため、関数f3に基づき設定されるロール角度θrも小さくなっている。図9(c)に示すターンの途中においては、旋回半径が小さいことからヨー角度θyが大きくなる。このため、関数f3に基づき設定されるロール角度θrも大きくなる。
 このようなヨーおよびロール制御によって、操縦者200はマルチコプター100の飛行中にホイール部11を左右に回転させるだけで、所望のターンを行うことができるようになる。
(ロール補正制御)
 次に、ターン最中のロール補正制御について説明する。
 マルチコプター100のターンが始まると、ヨーとともにロールが発生する。ターン最中のロール角度θrは、先に説明したように、例えばヨー角度θyの関数f3によって決定される。この際、機体110が傾くことで所定方向の速度成分に速度差が発生する。そこで、この速度差に応じてロール角度θrの補正を行うようにしてもよい。
 ターン最中のロールの補正を行うためのロール補正信号は、コントローラ1の送信部14からマルチコプター100に向けて送信してもよいし、マルチコプター100のCPU25で演算してもよい。コントローラ1の送信部14からロール補正信号を送信する場合には、マルチコプター100で検出した速度に関する情報をコントローラ1へ送信する機能と、この情報をコントローラ1で受信する機能を設けておく。そして、マルチコプター100から送信された速度に関する情報をコントローラ1で受けて、コントローラ1でフィードバックをかけて送信部14からロール補正信号を送信すればよい。
 図13(a)および(b)は、ロール補正を例示する図である。
 図13(a)に示すように、マルチコプター100がターンしている間、所定のサンプリング時間毎にマルチコプター100の速度成分を検出する。ここで、ターン中の時刻tでサンプリングした機体110の進行方向(ターン接線方向)D1の速度を第1速度V1とする。
 ターン中の次の時刻t+1でサンプリングした機体110の速度のうち、先の時刻tでの進行方向D1の速度成分を第2速度V2とする。マルチコプター100のターンが進むことで、第1速度V1に対して第2速度V2は遅くなる。第1速度V1-第2速度V2を減速度αとする。減速度αはサンプリング時刻ごとに計算できるので、時刻tでの減速度をαt、時刻t+1での減速度をαt+1とする。時刻tと時刻t+1との減速度の変化量をβtとすると、βt=(αt+1)-(αt)となる。
 図13(b)には、減速度の変化量βと、補正後のロール角度θr2との関係を示す関数f4が表される。関数f4は、例えばθr2=-Aβt+θrである。なお、Aは所定の係数である。つまり、減速度の変化量βがゼロの場合(第1速度V1と第2速度V2との速度差がない場合)、ロール角度はθrのままである。一方、変化量βが大きくなるほどロール角度は小さくなるよう補正される。これにより、ターンによって急激に速度変化が発生することを抑制することができる。
 例えば、ターンの開始とともにホイール部11を急激に回転させて急旋回を試みようとした場合、マルチコプター100は失速してしまう可能性がある。そこで、上記のようなロール補正制御を行うことで、急激な速度変化が抑制され、失速を回避することが可能になる。
 上記に示した本実施形態に係るマルチコプター100の制御方法では、ターンを行うときに、操縦者200のターン操作から決められた半径の円上を辿るような自動的な制御ではなく、操縦者200のコントローラ1の操作量からピッチおよびヨーの量(角度)をマルチコプター100に送るだけである。
 マルチコプター100のCPU25は、コントローラ1から指示された制御信号CSに基づきピッチ角度θpおよびヨー角度θyを決定し、ヨー角度θyからロール角度θrを決定して各回転翼120の出力を制御する。
 したがって、様々な状況(気圧、風速、気流の乱れ等の外乱、モータ性能の個体差、バッテリ状態など)によっては同じ操作量であっても同じ弧でターンが実行されるとは限らない。したがって、操縦者200はマルチコプター100の飛行状態を常に見ながらホイール部11およびトリガー部12の操作量をコントロールして所望のターンを描くように操縦する必要がある。これにより、操縦者200は自動的な制御では得られない操縦の醍醐味を味わうことができる。
(トリガー操作量と制御切り替え)
 次に、トリガー部12の操作量と制御の切り替えの例について説明する。
 図14(a)および(b)は、トリガー操作量による制御切り替えの例を説明する図である。
 この制御切り替えの例では、図14(a)に示すように、予めトリガー部12の操作量に応じて第1領域R1、第2領域R2および第3領域R3を設定しておく。第1領域R1は、トリガー部12の中立位置から僅かに引いた領域である。第2領域R2は、トリガー部12を第1領域R1よりも大きく引いた領域である。第3領域R3は、トリガー部12を第2領域R2よりも大きく引いた領域である。
 図14(b)には、各領域に対応した制御信号の有効および無効の状態が示される。図14(b)において「○」印は有効、「×」印は無効を意味する。「有効」とは、制御するための信号が送信部14から送信される、または制御するための信号がCPU25で演算されることを意味し、「無効」とは、制御するための信号が送信部14から送信されない、または制御するための信号がCPU25で演算されないことを意味する。
 例えば、トリガー部12の操作量が第1領域R1の場合、ピッチを制御するための第2制御信号CS2およびヨーを制御するためのヨー制御信号CSYは無効であり、ロールを制御するためのロール制御信号CSRのみ有効となる。すなわち、トリガー部12が操作されていないか、または僅かな引き量の場合には、ピッチおよびヨーは発生せず、ロールのみ制御可能になる。したがって、ホイール部11を回転操作することでマルチコプター100をロールさせて左右方向に移動させることができる。つまり、トリガー部12の操作量が第1領域R1の場合、ホイール部11の回転操作はロール制御に利用される。
 次に、トリガー部12の操作量が第2領域R2の場合、ヨー制御信号CSYは有効であり、ロール制御信号CSRは無効となる。ピッチを制御するための第2制御信号CS2は、仕様によって有効および無効が決定される。
 例えば、第2制御信号CS2が無効になる仕様では、トリガー部12を引いてもピッチは発生せず、ヨーのみ制御可能になる。したがって、ホイール部11を回転操作することでマルチコプター100にヨーを発生させて、Z軸回りに回転させることができる。つまり、トリガー部12の操作量が第2領域R2であって第2制御信号CS2が無効の場合、ホイール部11の回転操作はヨー制御に利用される。
 一方、第2制御信号CS2が有効になる仕様では、トリガー部12を引いた量に応じてピッチが発生する。したがって、トリガー部12の引いた量に応じて僅かにピッチが発生し、マルチコプター100は前方に移動するとともに、ホイール部11の回転操作に応じてヨーが発生して、Z軸回りに回転することになる。つまり、トリガー部12の操作量が第2領域R2であって第2制御信号CS2が有効の場合、マルチコプター100は前方にゆっくりと移動しながらホイール部11の回転操作に応じてZ軸回りに回転することになる。
 次に、トリガー部12の操作量が第3領域R3の場合、ピッチを制御するための第2制御信号CS2、ヨー制御信号CSYおよびロール制御信号CSRが全て有効となる。すなわち、トリガー部12の操作量に応じてピッチが発生し、ホイール部11の操作量に応じてヨーおよびロールが発生する。したがって、トリガー部12の操作量が第3領域R3の場合、マルチコプター100はトリガー部12の操作量に応じて前方に移動しつつ、ホイール部11の回転操作に応じてヨーおよびロールが発生してバンクしながらターンしていくことになる。
 このように、トリガー部12の操作量が第1領域R1、第2領域R2および第3領域R3のいずれにあるかによって制御信号の有効および無効の状態を設定することで、1つのホイール部11での回転操作による制御対象を切り替えることが可能になる。したがって、操縦者200による複雑な操縦操作が軽減される。
 なお、上記の例ではトリガー部12を中立位置から手前に引いた領域を第1領域R1、第2領域R2および第3領域R3に分けたが、中立位置から先に押した領域を区分けしてもよい。また、手前および先にかかわらず、トリガー部12の可動範囲について領域を区分けしてもよい。
(ホイール操作量に応じたロールおよびヨーの切り替え制御)
 次に、ホイール部11の操作量に応じたロールおよびヨーの切り替えの例について説明する。
 図15(a)~(c)は、ホイール操作量に応じたロールおよびヨーの切り替えの例(その1)について説明する図である。なお、説明の便宜上、図15(a)にはホイール部11のみが模式的に示される。
 図15(a)に示すように、この切り替え制御の例では、予めホイール部11の操作量に応じて領域A、領域Bを設定しておく。領域Aは、ホイール部11の中立位置CPから僅かに回転させた領域である。領域Bは、ホイール部11を領域Aよりも大きく回転させた領域である。なお、ホイール部11を中立位置CPから右回転させた際の領域Aを領域A(R)、左回転させた際の領域Aを領域A(L)とする。また、ホイール部11を中立位置CPから右回転させた際の領域Bを領域B(R)、左回転させた際の領域Bを領域B(L)とする。
 ホイール部11の回転角度が領域Aの範囲内にある場合、マルチコプター100の制御として例えばロール制御が選択される。これにより、マルチコプター100には、ホイール部11の操作量に応じたロールが発生する。例えば、ホイール部11の回転角度が領域A(R)にある場合、図15(b)の右図に示すようにマルチコプター100は右へロールする。一方、ホイール部11の回転角度が領域A(L)にある場合、図15(b)の左図に示すようにマルチコプター100は左へロールする。
 ホイール部11の回転角度が領域Bの範囲内にある場合、マルチコプター100の制御として例えばヨー制御が選択される。これにより、マルチコプター100には、ホイール部11の操作量に応じたヨーが発生することになる。例えば、ホイール部11の回転角度が領域B(R)にある場合、図15(c)の矢印YRに示すようにマルチコプター100はZ軸回りに右回転する。一方、ホイール部11の回転角度が領域B(L)にある場合、図15(c)の矢印YLに示すように、マルチコプター100はZ軸回りに左回転する。
 このような制御を適用すると、例えばトリガー部12を操作せずマルチコプター100がホバリングしている状態でホイール部11を回転させることで、操縦者200はホイール部11の回転角度によってロール制御とヨー制御とを自在に選択することができる。
 すなわち、操縦者200はマルチコプター100をロールさせたい場合にホイール部11を領域Aの範囲内で回転させる。領域A(R)ではホイール部11の操作量に応じたロール量で右に移動し、領域A(L)ではホイール部11の操作量に応じたロール量で左に移動する。これにより、ホバリングしているマルチコプター100はホイール部11の回転角度に応じて左右にロールして移動する。
 また、操縦者200はマルチコプター100をZ軸回りに回転させたい場合にはホイール部11を領域Bの範囲内で回転させる。領域B(R)ではホイール部11の操作量に応じたヨーの角速度で右回転し、領域B(L)ではホイール部11の操作量に応じたヨーの角速度で左回転することになる。これにより、ホバリングしているマルチコプター100はホイール部11の回転角度に応じて左右に回転(Z軸回りに回転)する。
 なお、ホイール部11の操作量に応じたヨーおよびロールの制御として、ヨーおよびロールのそれぞれの制御量の調整(バランス調整)を行ってもよい。また、ホイール部11が領域Aの範囲内にある場合にはロールのみを制御し、ヨーは発生させず、領域Bの範囲内にある場合にはロールとヨーの両方を発生させるよう制御してもよい。
 図15(a)に示す例では領域A、Bの2つの領域を設定したが、3つ以上の領域を設定してもよい。各領域に対応してヨーおよびロールのそれぞれの制御量のバランスを変えるようにすればよい。また、上記では、ホイール部11の回転角度が領域Aの場合に主としてロールを制御し、領域Bの場合に主としてヨーを制御する例を示したが、領域Aの場合に主としてヨーを制御し、領域Bの場合に主としてロールを制御するようにしてもよい。
 図16(a)および(b)は、ホイール操作量に応じたロールおよびヨーの切り替えの例(その2)について説明する図である。なお、説明の便宜上、図16(a)にはホイール部11のみが模式的に示される。
 図16(a)に示すように、この切り替え制御の例では、予めホイール部11の回転角θwに応じてロールおよびヨーのそれぞれの制御量を所定の関数またはテーブルによって調整する。なお、ここではホイール部11を中立位置CPから右回転させる場合を説明するが、中立位置CPから左回転させる場合も回転方向が変わること以外同様である。
 図16(b)には、回転角θwに応じたロールおよびヨーのそれぞれの制御量の関数f(R)、f(Y)の例が示される。図16(b)において横軸は回転角θw(deg)、縦軸はロールおよびヨーの制御量(ロールの制御量はロール角度、ヨーの制御量はヨーの角速度)である。このように、回転角θwに応じてロール角度およびヨーの角速度が関数によって決定される。関数f(R)、f(Y)を変更することで、回転角θwに応じたロールおよびヨーのそれぞれのバランスを適宜設定することができる。
 関数f(R)は回転角θwに対応したロールの制御量を示す。関数f(Y)は回転角θwに対応したヨーの制御量を示す。ホイール部11の回転角θwが0からθまでは回転角θwに比例してロール角が増加する。θ以降、θまではロール角は一定である。また、θ未満ではロールのみ発生し、ヨーは発生しない。回転角θwがθ以上になるとヨーが発生する。θからθまでは回転角θwに応じてヨーの角速度が増加する。θを超えるとヨーの角速度は減少する。回転角θwがθ以上になると、マルチコプター100の横流れを防止するためにロール角が再び上昇する。
 このように、関数f(R)、f(Y)によって回転角θwに応じたロールおよびヨーのそれぞれの制御量を決定することで、ホイール部11の回転に連動したロールおよびヨーの所望の動作を実現できることになる。
 上記のように、本実施形態では、ホイール部11の回転動作の制御としてロールおよびヨーの制御の切り替えとして、トリガー部12の操作量に応じて切り替える場合(以下、「第1切り替え制御」とも言う。)と、ホイール部11の操作量に応じて切り替える場合(以下、「第2切り替え制御」とも言う。)とを例示した。第1切り替え制御および第2切り替え制御は、独立して行ってもよいし、また、所定の条件によっていずれかを選択して行ってもよい。
 例えば、トリガー部12が第1領域R1にある場合は第2切り替え制御を選択し、トリガー部12が第1領域R1以外にある場合は第1切り替え制御を選択することが考えられる。また、例えば、トリガー部12の操作量にかかわらず第2切り替え制御を選択するようにしてもよい。
 第1切り替え制御および第2切り替え制御の選択は、図示しないスイッチ等によって操縦者200の任意で切り替えられるようになっていてもよいし、トリガー部12の操作量やマルチコプター100の飛行速度等の所定の条件によって自動的に切り替えられるようになっていてもよい。操縦者200は、図示しないスイッチ等によって第1切り替え制御および第2切り替え制御の個別の選択と、自動的な切り替えとを選ぶことができるようになっていてもよい。
(前進および後退でのヨーの制御)
 次に、マルチコプター100の前進および後退でのヨーの制御の切り替えの例について説明する。
 図17(a)~(d)は、マルチコプターの前進および後退でのヨーの制御を例示する模式図である。
 この制御では、マルチコプター100を前進させる場合と後進させる場合とでヨーの回転方向を反対にしている。なお、図17(a)から(d)ではホイール部11を右回転させる場合を例とするが、左回転させる場合も回転方向以外は同様である。
 先ず、マルチコプター100を所定の高さに設定(離陸した状態)で図17(a)に示すようにトリガー部12を引くと(操作量M21)、マルチコプター100は操作量M21に応じて前方に傾き、前進飛行する。
 次に、前進飛行させながらホイール部11を右に回転させると(操作量M11)、マルチコプター100は操作量M11に応じて右に旋回する(図17(b)参照)。この際、マルチコプター100にはZ軸回りに右回転のヨーが発生するとともに、前進方向に向いて右側へ傾くロールが発生する。つまり、ホイール部11の回転方向(ここでは右回転)に合わせてヨーおよびロールともに右回転することになる。
 次に、図17(c)のように、トリガー部12を押すと(操作量M22)、マルチコプター100は操作量M12に応じて後方に傾き、後退飛行する。
 後退飛行させながらホイール部11を右に回転させると(操作量M11)、本実施形態に係る制御では、ヨーのみ前進の場合と逆に回転させる。すなわち、図17(d)に示す例では、マルチコプター100が後退飛行している状態でホイール部11を右回転させると、Z軸回りに左回転のヨーを発生させる。なお、この際、ロールの方向は前進の場合と同じ方向である。これにより、マルチコプター100は後進方向に左にターンすることになる。
 ここで、もし、マルチコプター100を後退飛行させている状態でホイール部11の回転方向と同じ方向のヨーを発生させると、操縦者200から見たマルチコプター100の動きがホイール部11の回転方向とは反対になる。
 例えば、マルチコプター100を後退飛行させながらホイール部11を右に回転させ、Z軸回りに右回転(ホイール部11の回転方向と同じ方向)のヨーが発生した場合、マルチコプター100は図17の二点鎖線矢印で示すように操縦者200から見て左側にターンすることになる。これは、マルチコプター100のピッチが前進と後退とで反対になるため、同じ方向にヨー回転させても前進と後進とでターン方向が逆になるためである。
 このような動きは操縦者200にとって違和感があり、操縦を分かりにくくする原因の一つとなる。そこで、本実施形態に係る制御のように、マルチコプター100を前進させる場合と後退させる場合とでヨーの回転方向を反対にする。これにより、マルチコプター100を前進させながら左右ターンする場合の操作感覚と、後退させながら左右ターンする場合の操作感覚とを合致させることができる。すなわち、マルチコプター100の前進および後退飛行させながらホイール部11を回転させた場合の動きが、ラジオコントロールカーを前進および後退走行させた場合の動きと同様になり、違和感なく自然な操縦を行うことができるようになる。
 このマルチコプター100の前進および後退でのヨー方向の切り替え制御は、コントローラ1から送信する第1制御信号CS1に含まれるヨー制御信号CSYの回転方向を前進および後退に応じて切り替えてもよいし、マルチコプター100のCPU25で実行されるプログラムによってヨー方向の切り替えを行ってもよい。また、このマルチコプター100の前進および後退でのヨーの制御は、先に説明した第1切り替え制御に加えて適用してもよいし、第2切り替え制御に加えて適用してもよい。
 以上説明したように、実施形態に係るコントローラ1およびマルチコプター100の制御方法によれば、マルチコプター100の操縦の複雑さを軽減しつつ、操るという醍醐味を得ることができる。
 なお、上記に本実施形態およびその適用例を説明したが、本発明はこれらの例に限定されるものではない。例えば、本実施形態に係るマルチコプター100の制御方法は、スティック型コントローラによっても実現することができる。スティック型コントローラは2つの可動スティックを備えている。したがって、2つの可動スティックのうちの1つをホイール部11に対応させ、他の1つをトリガー部12に対応させることで、本実施形態に係るマルチコプター100の制御方法を適用することができる。
 また、本実施形態では4つの回転翼120を有するクワッドコプターを例として説明したが、4つ以外の回転翼120を有するマルチコプター100であっても適用可能である。また、ターン制御において各種の関数f1~f4を使用する場合、関数f1~f4のそれぞれの特性を複数セット用意しておき、操縦者200の好みによって切り替えられるようにしてもよい。これにより、マルチコプター100のターン特性のセッティングを行うことができる。
(マルチコプター玩具の構成)
 図18は、実施形態に係るマルチコプター玩具を例示する斜視図である。
 本実施形態に係るマルチコプター玩具1000は、操縦者の遠隔操作によって無人飛行する玩具である。マルチコプター玩具1000は、機体110と、機体110に取り付けられた複数の回転翼ユニット20Uとを備える。複数の回転翼ユニット20Uのそれぞれは、モータ21と、モータ21によって回転する回転翼23とを有する。
 図18に示すマルチコプター玩具1000は、4つの回転翼ユニット20Uを備えた、いわゆるクワッドコプター型である。回転翼ユニット20Uは、前方左右および後方左右のそれぞれに設けられる。各回転翼ユニット20Uに設けられた回転翼23の出力のバランスによって、前方、後方、上昇、下降、左右回転および左右ターンといった飛行姿勢をとることができる。
 回転翼ユニット20Uにおけるモータ21と回転翼23との間にはギア22が設けられており、ギア22を介してモータ21の回転を回転翼23に伝達している。なお、回転翼23は、ギア22を介さずに直接モータ21によって回転するよう構成されていてもよい。回転翼ユニット20Uにはハブ24が設けられる。回転翼ユニット20Uは、ハブ24を介してジョイントフレーム30に接続される。
 ジョイントフレーム30は、円筒型のフレームであり、機体110の左右方向に渡るよう配置される。ジョイントフレーム30の両端部には、ハブ24を介して回転翼ユニット20Uが取り付けられる。ハブ24とジョイントフレーム30とはネジによって固定されていても、嵌合によって固定されていてもよい。
 ジョイントフレーム30は、クランプ40によって機体110に固定される。このクランプ40による固定を緩めると、ジョイントフレーム30を軸中心に回転させることができ、所望の角度に設定した後はクランプ40を締めることでジョイントフレーム30の回転角度を固定することができる。
 ジョイントフレーム30を軸中心に回転させることで、ジョイントフレーム30とともに両端部の2つの回転翼ユニット20Uが回転し、回転翼ユニット20Uの機体110に対する角度が調整されることになる。
 本実施形態では、機体110の前後にジョイントフレーム30が設けられ、それぞれクランプ40によって固定される。前側のジョイントフレーム30の両端部には前側2つの回転翼ユニット20Uが取り付けられ、後側のジョイントフレーム30の両端部には後側2つの回転翼ユニット20Uが取り付けられる。
 各ジョイントフレーム30の回転は独立していても、連動していてもよい。各ジョイントフレーム30が独立して回転するようになっていれば、前後の回転翼ユニット20Uのそれぞれは、機体110に対して別々な角度に調整可能である。また、各ジョイントフレーム30が連動して回転するようになっていれば、前後の一方の回転翼ユニット20Uの角度に合わせて他方の回転翼ユニット20Uの角度も調整される。
 また、図18に示す例では1つのジョイントフレーム30に2つの回転翼ユニット20Uが設けられているが、同軸上に2つのジョイントフレーム30を設け、各ジョイントフレーム30の端部に回転翼ユニット20Uを取り付ける構成であってもよい。例えば、図18に示す1つのジョイントフレーム30を機体110に固定する2つのクランプ40の間でジョイントフレーム30を分割した構成でもよい。これにより、各ジョイントフレーム30ごとに回転翼ユニット20Uを独立して回転させることができる。
 機体110には制御基板50が設けられる。制御基板50には、操縦者のコントローラから送信される制御信号を受信する受信部、制御信号に基づき各モータ21の出力を演算する演算部、機体110の姿勢を検出するセンサ(例えば、ジャイロセンサ、気圧センサ、超音波センサ)が設けられる。制御基板50は機体110に対して角度調整可能に取り付けられていてもよい。
 機体110の下にはバッテリBTが取り付けられる。また、機体110の下側には着地の際の脚となるスキッド115が設けられていてもよい。
 図19(a)および(b)は、クランプ部分の拡大斜視図である。
 図19(a)に示すように、クランプ40は上側クランプ部41と、下側クランプ部42とを有する。上側クランプ部41および下側クランプ部42のそれぞれには、ジョイントフレーム30を挟むための凹部が設けられる。
 下側クランプ部42は機体110に固定される。上側クランプ部41は下側クランプ部42に例えばネジ45によって固定される。上側クランプ部41を外した状態で、下側クランプ部42の凹部にジョイントフレーム30を載置し、ジョイントフレーム30の上から上側クランプ部41を被せて下側クランプ部42とネジ45によって固定する。これにより、ジョイントフレーム30は下側クランプ部42と上側クランプ部41との間で挟持されることになる。
 図19(a)に示すクランプ40においては、ネジ45を緩めることで締め付けが弱くなり、ジョイントフレーム30を軸回りに回転させることができる。ジョイントフレーム30は、軸回りに任意の角度で回転可能であり、ネジ45を締めることで、その角度に固定される。
 図19(b)に示すクランプ40においては、上側クランプ部41および下側クランプ部42のそれぞれの凹部内面40aに所定ピッチの凹凸(スプライン加工)が施される。また、ジョイントフレーム30のクランプ40と接する面30aにも同様な凹凸(スプライン加工)が施される。これによって、ジョイントフレーム30は軸回りに凹凸のピッチで角度調整される。したがって、ジョイントフレーム30をこのピッチに合わせて正確な角度で回転させることができ、機体110に対する回転翼ユニット20Uの角度も正確に調整することができる。
 このように、本実施形態に係るマルチコプター玩具1000においては、回転翼ユニット20Uが機体110に対して角度調整可能に取り付けられているため、マルチコプター玩具1000の飛行特性を操縦者の好みに合わせてセッティングしたり、動力性能に応じて調整したりすることができる。
(回転翼ユニットの回転角度調整)
 次に、具体的な回転翼ユニット20Uの回転角度調整(ジョイントフレーム30の軸回りの回転角度調整)について説明する。
 図20(a)および(b)は、回転翼ユニットの回転角度調整による飛行姿勢を例示する模式図である。
 図20(a)には、回転翼ユニット20Uの回転角度調整をしていない場合の飛行姿勢が例示される。回転翼ユニット20Uの回転角度調整をしていない場合、回転翼23の回転軸z23は、機体110における軸(法線軸z10)と一致している。この状態でマルチコプター玩具1000を前方Fに飛行させるには、機体110の前方の下に傾ける(前傾させる)ことになる。この傾斜によって法線軸z10が垂直軸z1に対して角度θ1傾斜したとすると、回転翼23の回転軸z23も角度θ1傾斜することになる。回転翼23の回転軸z23が傾斜することで、マルチコプター玩具1000は前方Fへの推進力を得て、前方Fへ飛行することになる。
 しかし、マルチコプター玩具1000の前方Fへの飛行の際、機体110の傾斜が大きくなるほど前面で受ける空気抵抗が増加する。この空気抵抗の増加が飛行スピードアップの妨げになる。
 図20(b)には、回転翼ユニット20Uの角度調整をした場合の飛行姿勢が例示される。回転翼ユニット20Uの角度調整をした場合、回転翼23の回転軸z23は、機体110の法線軸z10とは一致していない。図20(b)に示す例では、機体110に対して回転翼ユニット20Uを回転させることで、回転翼23の回転軸z23が機体110の法線軸z10に対して角度θ1傾斜している。
 この状態では、機体110が水平(法線軸z10と垂直軸z1とが一致)であってもマルチコプター玩具1000は前方Fへの推進力を得て飛行することになる。つまり、予め回転翼23の回転軸z23が角度θ1傾斜しているため、この角度θ1に応じた推進力が発生しており、機体110を前傾させることなく前方Fへ飛行させることができる。
 つまり、回転翼23の回転軸z23を角度θ1傾斜させた場合の推進力であれば、機体110を前傾させることなく前方Fへ飛行させることができ、機体110が前傾している場合に比べて前面で受ける空気抵抗を減らすことができる。
 なお、角度θ1の傾斜に応じた推進力よりも大きい推進力を得たい場合には機体110を前傾させることになる。しかし、この場合でも回転翼ユニット20Uの角度調整がされていない場合に比べて、機体110の前傾を少なくすることができるため、飛行による空気抵抗の低減が可能になる。
 操縦者は、マルチコプター玩具1000の通常の飛行スピードや、好みによって回転翼ユニット20Uの角度を調整することができる。例えば、マルチコプター玩具1000の通常の飛行スピードが比較的速い場合には、回転翼ユニット20Uの回転角度を大きくしておくことで、通常の飛行スピードでの機体110の前傾が抑制され、空気抵抗の低減によって、よりスムーズな飛行を実現できることになる。
(制御基板の角度調整)
 図21(a)および(b)は、制御基板の角度調整について例示する模式図である。
 図21(a)には、制御基板50を機体110に対して傾斜させた状態が示される。例えば、回転翼ユニット20Uを機体110に対して角度θ1傾斜させた場合、制御基板50も機体110に対して角度θ1傾斜させておくとよい。
 先に説明したように、制御基板50には姿勢制御を行う際に用いられるジャイロセンサなどが設けられている。マルチコプター玩具1000において制御基板50に設けられたジャイロセンサによって水平位置の基準を決めている場合、回転翼ユニット20Uの角度調整に合わせて制御基板50の角度を調整することで、ジャイロセンサによる水平位置の基準に対して回転翼23の回転軸z23を垂直に設定することができる。
 図21(b)には、マルチコプター玩具1000を浮上(ホバリング)させた状態が示される。この例では、機体110に対して回転翼ユニット20Uおよび制御基板50を角度θ1傾斜させている。ジャイロセンサによる水平位置の基準は、制御基板50の面50a(ジャイロセンサの搭載面)である。したがって、マルチコプター玩具1000を浮上させて水平になるよう自律制御した場合、角度θ1傾斜させた制御基板50の面50aが水平となるように維持する制御が行われる。
 制御基板50は機体110に対して傾斜しているため、制御基板50の面50aを水平の基準にすると、機体110は角度θ1傾斜することになる。また、回転翼23の回転軸z23は、制御基板50の面50aに対して垂直になっているため、いずれの方向にも推進力は働かない。したがって、マルチコプター玩具1000は浮上(ホバリング)した状態を維持することになる。
 図22は、基準設定ボタンを例示する模式図である。
 図22に示す例では、マルチコプター玩具1000の水平方向に対する角度の基準を設定するボタン55が設けられている。ボタン55は、例えば制御基板50に設けられる。このボタン55を押下した際、制御基板50はそのときのマルチコプター玩具1000の位置を水平方向に対する角度の基準とするよう設定を行う。
 例えば、回転翼ユニット20Uを回転させて回転翼23の回転軸z23を機体110に対して角度θ1傾斜させた場合、この回転軸z23が垂直(回転翼23が水平)になるようにマルチコプター玩具1000を保持しておき、この状態でボタン55を押下する。制御基板50は、ボタン55が押下された際のジャイロセンサの検出値を原点とするように設定を変更する。この検出値は不揮発性メモリ等に保存される。これによって、機体110が角度θ1傾斜した状態がマルチコプター玩具1000の水平位置の基準となる。このようなボタン55の押下による水平基準の設定によれば、回転翼ユニット20Uを回転させた場合でも、制御基板50を傾斜させることなく、マルチコプター玩具1000の浮上(ホバリング)状態を維持することができる。
(回転翼ユニットの取り付け幅の調整)
 図23は、回転翼ユニットの取り付け幅の調整について例示する模式図である。
 回転翼ユニット20Uは、ジョイントフレーム30の両端部に取り付けられる。すなわち、回転翼ユニット20Uは、ハブ24を介してジョイントフレーム30に取り付けられる。このハブ24とジョイントフレーム30との取り付け位置を、ジョイントフレーム30の軸に沿った方向(軸方向)に調整できるようにしておけば、ジョイントフレーム30の両端部に取り付けられる2つの回転翼ユニット20Uの幅(間隔T1~T2)を調整できるようになる。
 例えば、ハブ24とジョイントフレーム30との固定をネジによって行うようにしておく。このネジを緩めることで、ハブ24のジョイントフレーム30の軸方向の取り付け位置を調整し、調整後にネジを締める。これにより、ジョイントフレーム30の両端部に取り付けられる2つの回転翼ユニット20Uの間隔(T1~T2)、すなわち2つの回転翼23の間隔(幅)を拡げたり、狭くしたりすることができる。
 図23に示す例では、2つのジョイントフレーム30の一方のみ、回転翼ユニット20Uとジョイントフレーム30との取り付け位置の調整を行うようになっているが、2つのジョイントフレーム30の両方において調整できるようになっていてもよい。2つの回転翼23の間隔(幅)の調整によって、マルチコプター玩具1000の飛行特性を調整することができる。
 例えば、2つの回転翼23の間隔(幅)が拡がるほど、マルチコプター玩具1000の飛行における安定性が向上する。一方、2つの回転翼23の間隔(幅)が狭くなるほど、マルチコプター玩具1000の機敏性が向上する。操縦者は、自動車の左右のタイヤの間隔(トレッド)を調整するような感覚で、マルチコプター玩具1000の飛行特性を好みに合わせてセッティングすることができる。
 また、ジョイントフレーム30の軸方向に回転翼ユニット20Uの取り付け位置を調整できるようにしておくと、回転翼23の大きさ(回転径)を変更した場合に2つの回転翼23の間隔を調整することができる。例えば、大きな回転翼23に変更した場合、2つの回転翼ユニット20Uの間隔を拡げるようにすれば、2つの回転翼23が干渉することを防止することができる。
(回転翼ユニットの傾斜角度調整)
 次に、回転翼ユニット20Uの傾斜角度調整(ジョイントフレーム30の軸に対する角度調整)について説明する。
 図24(a)~(c)は、回転翼ユニットの傾斜角度の調整について例示する模式図である。
 図24(a)~(c)では、マルチコプター玩具1000の正面からみた模式図が表される。図24(a)には、回転翼ユニット20Uの傾斜角度調整をしていない場合の飛行姿勢が例示される。回転翼ユニット20Uの傾斜角度調整をしていない場合、回転翼23の回転軸z23は、ジョイントフレーム30の軸に対して垂直になっている。
 これに対し、図24(b)および(c)には、回転翼ユニット20Uの傾斜角度調整をした場合の飛行姿勢が例示される。図24(b)に示す例では、ジョイントフレーム30の両端部に取り付けられる2つの回転翼ユニット20Uのそれぞれが、ジョイントフレーム30の軸と垂直な軸(フレーム垂直軸z35)に対して角度θ2傾斜している。すなわち、マルチコプター玩具1000の正面からみて左側の回転翼23の回転軸z23は、フレーム垂直軸z35に対して右回りで角度θ2傾斜し、右側の回転翼23の回転軸z23は、フレーム垂直軸z35に対して左回りで角度θ2傾斜している。
 一方、図24(c)に示す例では、2つの回転翼ユニット20Uのそれぞれが、フレーム垂直軸z35に対して角度θ3傾斜している。すなわち、マルチコプター玩具1000の正面からみて左側の回転翼23の回転軸z23は、フレーム垂直軸z35に対して左回りで角度θ3傾斜し、右側の回転翼23の回転軸z23は、フレーム垂直軸z35に対して右回りで角度θ3傾斜している。
 このような傾斜調整を可能にするには、ジョイントフレーム30の端部とハブ24との接続部分を半球状の接続(ボールジョイントBJ)にしておけばよい。なお、このようなボールジョイントBJになっていることで、各回転翼ユニット20Uをジョイントフレーム30に対して独立して様々な角度で調整することができる。
 回転翼ユニット20Uの傾斜角度調整によって、マルチコプター玩具1000の飛行特性を調整することができる。例えば、図24(b)に示すように左右の回転翼ユニット20Uが傾斜していると、回転翼23による風力の拡がりが大きくなり、マルチコプター玩具1000の左右ターン特性が安定化する。一方、図24(c)に示すように左右の回転翼ユニット20Uが傾斜していると、回転翼23による風力の拡がりが小さくなり、左右ターン特性が俊敏になる。つまり、操縦者は、自動車のキャンバを調整するような感覚で、マルチコプター玩具1000の飛行特性を好みに合わせてセッティングすることができる。
(重心バランス調整)
 図25(a)および(b)は、マルチコプター玩具の重心バランス調整について例示する模式図である。
 図25(a)および(b)には、互いに回転翼ユニット20Uの回転角度を180度反転させた状態が示される。すなわち、図25(a)に示す回転翼ユニット20Uに対して、図25(b)に示す回転翼ユニット20Uは、ジョイントフレーム30の軸回りに180度回転した状態になっている。なお、図25(a)および(b)のそれぞれの態様において、マルチコプター玩具1000の上昇および下降の方向を同じにするためには、回転翼ユニット20Uを180度回転させた際に回転翼23のピッチを逆にしておく必要がある。
 図25(a)に示す例では、回転翼23の回転面S23が機体110の重心CGよりも下になる。一方、図25(b)に示す例では、回転翼23の回転面S23が機体110の重心CGよりも上になる。ここで、重心CGは、機体110に制御基板50、バッテリBT、スキッド115などの部材を取り付けた状態での重心である。
 このように、回転翼ユニット20Uの回転角度を180度変更して、回転翼23の回転面S23と機体110の重心CGとの位置関係を変更することで、マルチコプター玩具1000の飛行特性を調整することができる。例えば、図25(a)に示すように、回転翼23の回転面S23が機体110の重心CGよりも下になると、マルチコプター玩具1000の飛行安定性は低下するものの、機敏性が向上する。一方、図25(b)に示すように、回転翼23の回転面S23が機体110の重心CGよりも上になると、マルチコプター玩具1000の飛行特性は向上するものの、機敏性が低下する。つまり、操縦者は、機体110の重心CGと回転翼23の回転面S23との位置関係を変更することで、マルチコプター玩具1000の飛行特性を好みに合わせてセッティングすることができる。
(サーボ機構による角度調整)
 図26は、サーボ機構による回転翼ユニットの角度調整の例を示す斜視図である。
 機体110に取り付けられたサーボ機構60は、操縦者のコントローラから送信される制御信号によって遠隔操作される。サーボ機構60の駆動はジョイントフレーム30に伝達される。すなわち、サーボ機構60によってジョイントフレーム30の回転が遠隔操作される。
 サーボ機構60はリンクやベルト、ワイヤーなどの伝達機構を介してジョイントフレーム30と接続される。これにより、サーボ機構60の駆動がジョイントフレーム30に伝達され、ジョイントフレーム30を軸回りに所望の角度で回転させることができる。なお、1つのサーボ機構60によって2つのジョイントフレーム30の回転を連動させてもよい。
 このようなサーボ機構60を用いることで、操縦者はマルチコプター玩具1000の飛行中に回転翼ユニット20Uを回転させることができる。つまり、操縦者はマルチコプター玩具1000を操縦しつつ、状況に応じて回転翼ユニット20Uの回転角度を好みに応じて調整することが可能になる。
 以上説明したように、実施形態によれば、マルチコプター玩具1000の飛行特性を簡単に調整することができ、操縦者にとって趣向性の高いマルチコプター玩具1000を提供することが可能になる。
 なお、上記に本実施形態およびその適用例を説明したが、本発明はこれらの例に限定されるものではない。例えば、複数の回転翼ユニット20Uのうち少なくとも1つの回転角度を調整できるようになっていればよく、また、回転翼ユニット20Uの調整動作は回転や傾斜を別個に調整する場合のほか、回転および傾斜を融合して調整するようにしてもよい。また、本実施形態では4つの回転翼120を有するクワッドコプターを例として説明したが、4つ以外の回転翼23を有するマルチコプター玩具1000であっても適用可能である。
 また、前述の実施形態またはその適用例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に包含される。
1…コントローラ
10…本体筐体
10G…グリップ部
11…ホイール部
12…トリガー部
13…往復スイッチ部
14…送信部
15…CPU
20…受信部
25…CPU
26,27,28…センサ
100…マルチコプター
110…機体
110a…前方部
111,121,131…可変抵抗部
112,122,132…アナログデジタル変換部
120…回転翼
200…操縦者
231,232,233,234…モータドライバ
CS…制御信号
CS1…第1制御信号
CS2…第2制御信号
CS3…第3制御信号
CSR…ロール制御信号
CSY…ヨー制御信号
D1…進行方向
M1,M2,M3,M4…モータ
M11,M12,M21,M22,M31,M32…操作量
R1…第1領域
R2…第2領域
R3…第3領域
V1…第1速度
V2…第2速度
Vx…飛行速度
Vz…角速度
f1,f2,f3,f4…関数
α…減速度
β…変化量
θp…ピッチ角度
θr,θr2…ロール角度
θw…回転角
θy…ヨー角度
1000…マルチコプター玩具
110…機体
115…スキッド
20U…回転翼ユニット
21…モータ
22…ギア
23…回転翼
24…ハブ
30…ジョイントフレーム
30a…面
40…クランプ
40a…凹部内面
41…上側クランプ部
42…下側クランプ部
45…ネジ
50…制御基板
50a…面
55…ボタン
60…サーボ機構
BJ…ボールジョイント
BT…バッテリ
CG…重心
S23…回転面
z1…垂直軸
z10…法線軸
z23…回転軸
z35…フレーム垂直軸
 

Claims (22)

  1.  操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法であって、
     前記コントローラから前記第1制御信号が送信された場合、その際の前記第1制御信号に含まれる第1操作量に応じた制御として、前記第1操作量に応じて第1領域および第2領域を設けておき、
     前記第1操作量が前記第1領域であった場合、前記第1操作量に応じて前記ロールまたは前記ヨーの一方を選択し、
     前記第1操作量が前記第2領域であった場合、前記第1操作量に応じて前記ロールまたは前記ヨーの他方を選択することを特徴とするマルチコプターの制御方法。
  2.  操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法であって、
     前記コントローラから前記第1制御信号が送信された場合、その際の前記第1制御信号に含まれる第1操作量に応じた制御として前記ヨーまたは前記ロールのいずれかを選択し、
     前記第1制御信号によって前記ヨーの制御が選択されている場合、前記第2制御信号によって前記ピッチを制御して前記マルチコプターを前進させる場合と後進させる場合とで前記ヨーの回転方向を反対にする制御を行うことを特徴とするマルチコプターの制御方法。
  3.  操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法であって、
     前記コントローラから前記第1制御信号が送信された場合、その際の前記第1制御信号に含まれる第1操作量に応じた制御として前記第1操作量から所定の関数によって演算された値によって前記第1操作量に応じた前記ヨーおよび前記ロールのそれぞれの制御量を調整することを特徴とするマルチコプターの制御方法。
  4.  操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法であって、
     前記コントローラから前記第1制御信号が送信された場合、その際の前記第1制御信号に含まれる第1操作量に応じた制御として前記ヨーおよび前記ロールのそれぞれの制御量を調整し、
     前記第1制御信号によって前記ヨーおよび前記ロールのそれぞれの制御量を調整する場合、前記第2制御信号によって前記ピッチを制御して前記マルチコプターを前進させる場合と後進させる場合とで、前記ヨーの回転方向を反対にし、前記ロールの回転方向は反対にしないよう制御を行うことを特徴とするマルチコプターの制御方法。
  5.  操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーを制御するための第1制御信号、および前記マルチコプターのピッチを制御するための第2制御信号を送信して前記マルチコプターを制御する方法であって、
     前記第1制御信号によって前記ヨーを制御し、前記第2制御信号によって前記ピッチを制御する場合、前記マルチコプターを前進させる場合と後進させる場合とで前記ヨーの回転方向を反対にする制御を行うことを特徴とするマルチコプターの制御方法。
  6.  前記コントローラから前記マルチコプターに向けて前記マルチコプターの高さを制御するための第3制御信号を送信する場合、前記第3制御信号に含まれる値に応じて前記マルチコプターの高さを段階的に制御する、請求項1~5のいずれか1つに記載のマルチコプターの制御方法。
  7.  複数の回転翼によって無人飛行するマルチコプターを操縦するためのコントローラであって、
     本体筐体と、
     前記本体筐体に設けられ、回転操作されるホイール部と、
     前記本体筐体に設けられ、指で進退操作されるトリガー部と、
     前記本体筐体に設けられた往復スイッチ部と、
     前記本体筐体に設けられた送信部と、
     を備え、
     前記送信部は、前記ホイール部の操作に応じて前記マルチコプターのヨーまたはロールのいずれかを制御するための第1制御信号、前記トリガー部の操作に応じて前記マルチコプターのピッチを制御するための第2制御信号、および前記往復スイッチ部の操作に応じて前記マルチコプターの高さを制御するための第3制御信号を送信し、
     前記第1制御信号は、前記ホイール部の操作に応じて前記ヨーを制御するためのヨー制御信号および前記ロールを制御するためのロール制御信号のいずれかであり、
     前記送信部は、前記ホイール部が操作された場合、その際の前記トリガー部の操作量に応じて前記ヨー制御信号および前記ロール制御信号のいずれかを送信することを特徴とするマルチコプター用コントローラ。
  8.  前記トリガー部の操作量に応じて第1領域、第2領域および第3領域が設けられ、
     前記送信部は、
      前記トリガー部の操作量が前記第1領域であった場合、前記ロール制御信号を送信し、
      前記トリガー部の操作量が前記第2領域であった場合、前記ヨー制御信号を送信し、
      前記トリガー部の操作量が前記第3領域であった場合、前記第2制御信号および前記ヨー制御信号を送信する、請求項7記載のマルチコプター用コントローラ。
  9.  前記ヨー制御信号に含まれる前記ヨーの制御量は、前記ホイール部の回転角度から所定の関数によって演算された値である、請求項7または8に記載のマルチコプター用コントローラ。
  10.  前記送信部は、前記第2制御信号および前記ヨー制御信号を送信する間、第1サンプリング時刻での前記マルチコプターの進行方向の速度である第1速度と、前記第1サンプリング時刻から所定時間経過後の第2サンプリング時刻での前記マルチコプターの前記進行方向の速度成分である第2速度との差に応じて前記ロールの制御量の補正を行うロール補正信号を送信する、請求項7~9のいずれか1つに記載のマルチコプター用コントローラ。
  11.  複数の回転翼によって無人飛行するマルチコプターを操縦するためのコントローラであって、
     本体筐体と、
     前記本体筐体に設けられ、回転操作されるホイール部と、
     前記本体筐体に設けられ、指で進退操作されるトリガー部と、
     前記本体筐体に設けられた往復スイッチ部と、
     前記本体筐体に設けられた送信部と、
     を備え、
     前記送信部は、前記ホイール部の操作に応じて前記マルチコプターのヨーまたはロールのいずれかを制御するための第1制御信号、前記トリガー部の操作に応じて前記マルチコプターのピッチを制御するための第2制御信号、および前記往復スイッチ部の操作に応じて前記マルチコプターの高さを制御するための第3制御信号を送信し、
     前記往復スイッチ部は操作しない状態で中立位置に保持される機能を有し、
     前記送信部は、前記往復スイッチ部の所定方向への操作から前記中立位置への復帰までの時間が所定時間以内であった場合に、前記マルチコプターを予め定められた高さに制御するための前記第3制御信号を送信することを特徴とするマルチコプター用コントローラ。
  12.  操縦者が操作するコントローラから複数の回転翼によって無人飛行するマルチコプターに向けて、前記マルチコプターのヨーまたはロールを制御するための第1制御信号、前記マルチコプターのピッチを制御するための第2制御信号、および前記マルチコプターの高さを制御するための第3制御信号を送信して前記マルチコプターを制御する方法であって、
     前記コントローラから前記第1制御信号が送信された場合、その際の前記第2制御信号に含まれる第2操作量に応じて前記第1制御信号に含まれる第1操作量に応じた制御として前記ヨーまたは前記ロールのいずれかを選択することを特徴とするマルチコプターの制御方法。
  13.  前記第2操作量に応じて第1領域、第2領域および第3領域を設けておき、
     前記第2操作量が前記第1領域であった場合、前記第1操作量に応じて前記ロールを制御し、
     前記第2操作量が前記第2領域であった場合、前記第1操作量に応じて前記ヨーを制御し、
     前記第2操作量が前記第3領域であった場合、前記第2操作量に応じて前記ピッチを制御するとともに前記第1操作量に応じて前記ヨーを制御する、請求項12記載のマルチコプターの制御方法。
  14.  前記第1操作量に応じて前記ヨーを制御する場合、前記第1操作量から所定の関数によって演算された値によって制御する、請求項12または13に記載のマルチコプターの制御方法。
  15.  前記第1操作量に応じて前記ヨーを制御する場合、前記第1操作量に応じて前記ロールを制御する、請求項12~14のいずれか1つに記載のマルチコプターの制御方法。
  16.  前記第2操作量に応じて前記ピッチを制御するとともに前記第1操作量に応じて前記ヨーを制御する間、第1サンプリング時での前記マルチコプターの基準進行方向の速度成分である第1速度と、前記第1サンプリング時から所定時間経過後の第2サンプリング時での前記マルチコプターの前記基準進行方向の速度成分である第2速度との差に応じて前記ロールの量の補正を行う、請求項12~15のいずれか1つに記載のマルチコプターの制御方法。
  17.  前記第3制御信号が所定のパターンであった場合、前記マルチコプターを予め定められた高さに制御する、請求項12~16のいずれか1つに記載のマルチコプターの制御方法。
  18.  無人飛行するマルチコプター玩具であって、
     機体と、
     前記機体に取り付けられた複数の回転翼ユニットと、
     前記機体に取り付けられるジョイントフレームと、
     前記ジョイントフレームを前記機体に所定の角度で固定するクランプと、
     を備え、
     前記複数の回転翼ユニットのそれぞれは、モータと、前記モータによって回転する回転翼と、を有し、
     前記複数の回転翼ユニットのうちの2つの回転翼ユニットは前記ジョイントフレームの両端部に接続され、
     前記複数の回転翼ユニットの少なくとも1つは、前記機体に対して角度調整可能に取り付けられたことを特徴とするマルチコプター玩具。
  19.  前記ジョイントフレームは、前記機体に対して所定のピッチで角度調整可能に取り付けられる、請求項18記載のマルチコプター玩具。
  20.  コントローラから送られる制御信号に基づき駆動するサーボ機構をさらに備え、
     前記回転翼ユニットは前記サーボ機構によって回転可能に設けられた、請求項18または19に記載のマルチコプター玩具。
  21.  無人飛行するマルチコプター玩具であって、
     機体と、
     前記機体に取り付けられた複数の回転翼ユニットと、
     前記機体に設けられ、姿勢の制御に用いられるセンサを有する制御基板と、
     を備え、
     前記複数の回転翼ユニットのそれぞれは、モータと、前記モータによって回転する回転翼と、を有し、
     前記複数の回転翼ユニットの少なくとも1つは、前記機体に対して角度調整可能に取り付けられ、
     前記制御基板は、前記機体に対して角度調整可能に取り付けられたことを特徴とするマルチコプター玩具。
  22.  前記機体に設けられ、姿勢の制御に用いられるセンサを有する制御基板をさらに備え、
     前記制御基板は、前記機体の水平方向に対する角度の基準を設定する機能を有する、請求項18~21のいずれか1つに記載のマルチコプター玩具。
     
PCT/JP2016/076796 2015-09-15 2016-09-12 マルチコプターの制御方法、マルチコプター用コントローラおよびマルチコプター玩具 WO2017047546A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-182066 2015-09-15
JP2015182066A JP5997338B1 (ja) 2015-09-15 2015-09-15 マルチコプター用コントローラおよびマルチコプターの制御方法
JP2015191641A JP5997342B1 (ja) 2015-09-29 2015-09-29 マルチコプター玩具
JP2015-191641 2015-09-29
JP2016-128478 2016-06-29
JP2016128478A JP6114862B1 (ja) 2016-06-29 2016-06-29 マルチコプターの制御方法

Publications (1)

Publication Number Publication Date
WO2017047546A1 true WO2017047546A1 (ja) 2017-03-23

Family

ID=58288742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076796 WO2017047546A1 (ja) 2015-09-15 2016-09-12 マルチコプターの制御方法、マルチコプター用コントローラおよびマルチコプター玩具

Country Status (1)

Country Link
WO (1) WO2017047546A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112373686A (zh) * 2020-11-26 2021-02-19 尚良仲毅(沈阳)高新科技有限公司 一种无人机及其矢量角度控制方法
JP2021181309A (ja) * 2020-08-04 2021-11-25 株式会社A.L.I.Technologies 飛行体
USD1001009S1 (en) 2021-06-09 2023-10-10 Amax Group Usa, Llc Quadcopter
USD1003214S1 (en) 2021-06-09 2023-10-31 Amax Group Usa, Llc Quadcopter
USD1010004S1 (en) 2019-11-04 2024-01-02 Amax Group Usa, Llc Flying toy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148356A (ja) * 1993-11-26 1995-06-13 Toppan Printing Co Ltd 模型回転翼機
JP2006325708A (ja) * 2005-05-24 2006-12-07 Kyosho Corp エンジンカー用送信機
WO2014054697A1 (ja) * 2012-10-02 2014-04-10 学校法人日本大学 自動車の運動制御方法、自動車の運動制御装置及び自動車
WO2015066084A1 (en) * 2013-10-28 2015-05-07 Traxxas Lp Ground vehicle-link control for remote control aircraft
JP3197684U (ja) * 2015-03-12 2015-05-28 日本遠隔制御株式会社 マルチコプター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148356A (ja) * 1993-11-26 1995-06-13 Toppan Printing Co Ltd 模型回転翼機
JP2006325708A (ja) * 2005-05-24 2006-12-07 Kyosho Corp エンジンカー用送信機
WO2014054697A1 (ja) * 2012-10-02 2014-04-10 学校法人日本大学 自動車の運動制御方法、自動車の運動制御装置及び自動車
WO2015066084A1 (en) * 2013-10-28 2015-05-07 Traxxas Lp Ground vehicle-link control for remote control aircraft
JP3197684U (ja) * 2015-03-12 2015-05-28 日本遠隔制御株式会社 マルチコプター

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKITAKA IMAMURA: "Suiryoku Henko Kiko o Mochiiru Multi Rotor Helicopter no Shisei Seigyo ni Kansuru Kenkyu", THE UNIVERSITY OF TOKUSHIMA, 26 May 2015 (2015-05-26), pages 51 - 74, Retrieved from the Internet <URL:http://www.lib.tokushima-u.ac.jp> [retrieved on 20160411] *
KOJI KAWASAKI: "Dual Connected Bi-Copter with New Locomotion Feasibility That Can Fly at Arbitrary Tilt Angle", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 33, no. 4, 19 May 2015 (2015-05-19), pages 77 - 83 *
MULTICOPTER SHINKARON: "Rajikon Gijutsu The April issue", KABUSHIKI KAISHA DENPA JIKKENSHA, vol. 54, 11 March 2014 (2014-03-11), pages 16 - 39 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1010004S1 (en) 2019-11-04 2024-01-02 Amax Group Usa, Llc Flying toy
JP2021181309A (ja) * 2020-08-04 2021-11-25 株式会社A.L.I.Technologies 飛行体
JP7002801B2 (ja) 2020-08-04 2022-01-20 株式会社A.L.I.Technologies 飛行体
CN112373686A (zh) * 2020-11-26 2021-02-19 尚良仲毅(沈阳)高新科技有限公司 一种无人机及其矢量角度控制方法
CN112373686B (zh) * 2020-11-26 2022-07-08 尚良仲毅(沈阳)高新科技有限公司 一种无人机及其矢量角度控制方法
USD1001009S1 (en) 2021-06-09 2023-10-10 Amax Group Usa, Llc Quadcopter
USD1003214S1 (en) 2021-06-09 2023-10-31 Amax Group Usa, Llc Quadcopter

Similar Documents

Publication Publication Date Title
WO2017047546A1 (ja) マルチコプターの制御方法、マルチコプター用コントローラおよびマルチコプター玩具
US20180039271A1 (en) Fixed-wing drone, in particular of the flying-wing type, with assisted manual piloting and automatic piloting
KR101979133B1 (ko) 비행체 비행 기계장치 및 제어 방법
US7793890B2 (en) Control system for an aircraft
JP5997342B1 (ja) マルチコプター玩具
US20160031554A1 (en) Control system for an aircraft
US20170371352A1 (en) Method for dynamically converting the attitude of a rotary-wing drone
CN105917283A (zh) 用于远程控制航空器的地面交通工具链接控制
US20120187238A1 (en) Helicopter with remote control
EP3397552B1 (en) A multirotor aircraft
JP2008513296A (ja) 回転翼航空機
JP2009083798A (ja) 電動垂直離着陸機の制御方法
CN105116933B (zh) 一种无人飞行器及防止该无人飞行器脱离控制区域的方法
JP2008094277A (ja) 二重反転回転翼機
JP5997338B1 (ja) マルチコプター用コントローラおよびマルチコプターの制御方法
US20200301446A1 (en) Tilt-Wing Aircraft
US20170364093A1 (en) Drone comprising lift-producing wings
AU2004203464A1 (en) Toy radio-controlled helicopter
JP5698802B2 (ja) 遠隔操縦装置
JP6114862B1 (ja) マルチコプターの制御方法
JP2008094278A (ja) 二重反転回転翼機
JP2008093204A (ja) 二重反転回転翼機
JP2018002132A (ja) マルチコプターの制御方法
JP3185081B2 (ja) 無人ヘリコプタの姿勢制御装置
JP6370346B2 (ja) 回転翼型飛行体及びその遠隔制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846417

Country of ref document: EP

Kind code of ref document: A1