WO2017047245A1 - 炭化珪素エピタキシャル基板の製造方法 - Google Patents

炭化珪素エピタキシャル基板の製造方法 Download PDF

Info

Publication number
WO2017047245A1
WO2017047245A1 PCT/JP2016/072142 JP2016072142W WO2017047245A1 WO 2017047245 A1 WO2017047245 A1 WO 2017047245A1 JP 2016072142 W JP2016072142 W JP 2016072142W WO 2017047245 A1 WO2017047245 A1 WO 2017047245A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
gas
silicon carbide
single crystal
pressure
Prior art date
Application number
PCT/JP2016/072142
Other languages
English (en)
French (fr)
Inventor
勉 堀
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112016004163.2T priority Critical patent/DE112016004163T5/de
Priority to US15/743,950 priority patent/US10337119B2/en
Publication of WO2017047245A1 publication Critical patent/WO2017047245A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present disclosure relates to a method for manufacturing a silicon carbide epitaxial substrate.
  • This application claims priority based on Japanese Application No. 2015-180673 filed on Sep. 14, 2015, and incorporates all the description content described in the above Japanese application.
  • Patent Document 1 discloses a CVD (Chemical Vapor Deposition) method of a silicon carbide layer, a CVD apparatus, and a susceptor for a CVD apparatus.
  • CVD Chemical Vapor Deposition
  • a method for manufacturing a silicon carbide epitaxial substrate includes a step of heating a reaction chamber of a film forming apparatus to perform degassing, a gas containing silicon atoms, a gas containing carbon atoms, ammonia gas, and a carrier gas. And a step of epitaxially growing a silicon carbide layer on the surface of the silicon carbide single crystal substrate in the reaction chamber using hydrogen gas having a dew point of ⁇ 100 ° C. or less.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 2 is a partial cross-sectional schematic diagram showing the configuration of a film forming apparatus for executing the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 3 is a flowchart schematically showing a method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 4 is a schematic perspective view showing an example of a silicon carbide single crystal substrate.
  • FIG. 5 is a graph for explaining each step shown in FIG.
  • FIG. 6 is a diagram for describing a silicon carbide epitaxial substrate having a diameter of 100 mm formed by the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 7 is a diagram for illustrating a silicon carbide epitaxial substrate having a diameter of 150 mm formed by the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • a method for manufacturing a silicon carbide epitaxial substrate of a silicon carbide layer according to the present disclosure includes a step of heating a reaction chamber of a film forming apparatus to degas, a gas containing silicon atoms, a gas containing carbon atoms, and ammonia And a step of epitaxially growing a silicon carbide layer on the surface of the silicon carbide single crystal substrate in the reaction chamber using a gas and a hydrogen gas having a dew point of ⁇ 100 ° C. or less as a carrier gas.
  • a silicon carbide layer to which nitrogen (N) as an impurity is added is formed on the surface of the silicon carbide single crystal substrate by a gas containing silicon atoms, a gas containing carbon atoms, and a gas containing ammonia gas.
  • Nitrogen atoms are produced by the decomposition of ammonia.
  • ammonia is sensitive to water. When ammonia reacts with water, thermal decomposition of ammonia tends to be hindered.
  • degassing by heating the reaction chamber of the film forming apparatus, moisture adsorbed inside the reaction chamber can be released to the outside of the reaction chamber. Furthermore, since the dew point of the carrier gas is low, the amount of moisture contained in the gas per unit volume can be reduced.
  • the amount of moisture present in the reaction chamber can be reduced, so that ammonia is likely to be thermally decomposed. Therefore, a silicon carbide layer excellent in in-plane uniformity of doping density can be formed.
  • the method for manufacturing a silicon carbide epitaxial substrate according to the above (1) may further include a step of introducing an inert gas into the reaction chamber at room temperature and then discharging the inert gas from the reaction chamber.
  • the step of introducing and discharging the inert gas may be performed prior to the step of degassing.
  • Normal temperature may be defined as the temperature of the reaction chamber when the reaction chamber is not heated or cooled.
  • the inert gas may be an argon gas having a dew point of ⁇ 95 ° C. or less.
  • argon gas is introduced into the reaction chamber until the pressure in the reaction chamber becomes 2 ⁇ 10 4 Pa or higher, and then the pressure in the reaction chamber is 1 ⁇ 10 ⁇ 4 Pa or lower.
  • the reaction chamber may be evacuated until.
  • the degassing step includes heating the reaction chamber to a temperature of 1000 ° C. or higher, and the pressure in the reaction chamber is You may include the process of implementing vacuuming until it becomes 0.01 Pa or less.
  • the diameter of the silicon carbide single crystal substrate may be 100 mm or more.
  • the diameter of the silicon carbide single crystal substrate may be 150 mm or more.
  • a method for manufacturing a silicon carbide epitaxial substrate of a silicon carbide layer according to the present disclosure includes a step of introducing an inert gas into a reaction chamber of a film forming apparatus at room temperature and then discharging the inert gas from the reaction chamber. After the step of discharging the inert gas, the step of degassing by heating the reaction chamber, the gas containing silicon atoms, the gas containing carbon atoms, the ammonia gas, and the dew point of the carrier gas is ⁇ 100 And a step of epitaxially growing a silicon carbide layer on the surface of the silicon carbide single crystal substrate in the reaction chamber using hydrogen gas at a temperature not higher than ° C.
  • the inert gas is an argon gas having a dew point of ⁇ 95 ° C. or less.
  • argon gas is introduced into the reaction chamber until the pressure in the reaction chamber becomes 2 ⁇ 10 4 Pa or higher, and then the pressure in the reaction chamber is 1 ⁇ 10 ⁇ 4 Pa or lower.
  • the reaction chamber is evacuated until pressure is reached.
  • the step of degassing includes a step of heating the reaction chamber to a temperature of 1000 ° C. or higher and evacuating until the pressure of the reaction chamber becomes 0.01 Pa or lower.
  • the diameter of the silicon carbide single crystal substrate is 150 mm or more.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a silicon carbide epitaxial substrate according to the present embodiment.
  • silicon carbide epitaxial substrate 10 includes a silicon carbide single crystal substrate 20, a silicon carbide layer 31, and a silicon carbide layer 32.
  • Silicon carbide single crystal substrate 20 is made of, for example, polytype 4H hexagonal silicon carbide. Silicon carbide single crystal substrate 20 has a front surface 21 and a back surface 22. The maximum diameter 23 of the front surface 21 and the back surface 22 is, for example, 100 mm or more. The maximum diameter 23 may be 150 mm or more.
  • Silicon carbide single crystal substrate 20, silicon carbide layer 31, and silicon carbide layer 32 contain nitrogen as an n-type impurity.
  • the concentration of n-type impurities in silicon carbide single crystal substrate 20 is higher than the concentration of n-type impurities in silicon carbide layer 31.
  • the concentration of n-type impurities in silicon carbide layer 31 is higher than the concentration of n-type impurities in silicon carbide layer 32.
  • the concentration of the n-type impurity in silicon carbide single crystal substrate 20 is 1 ⁇ 10 19 cm ⁇ 3 .
  • the concentration of n-type impurities in silicon carbide layer 31 is 1 ⁇ 10 18 cm ⁇ 3 .
  • the concentration of the n-type impurity in silicon carbide layer 32 is not less than 1 ⁇ 10 15 cm ⁇ 3 and not more than 2 ⁇ 10 16 cm ⁇ 3 , for example.
  • the thickness of the silicon carbide single crystal substrate 20 is, for example, not less than 300 ⁇ m and not more than 600 ⁇ m.
  • Silicon carbide layer 31 has a thickness of, for example, not less than 0.1 ⁇ m and not more than 20 ⁇ m.
  • Silicon carbide layer 32 may have a thickness greater than that of silicon carbide layer 31.
  • Silicon carbide layer 32 has a thickness of not less than 1 ⁇ m and not more than 150 ⁇ m, for example.
  • FIG. 2 is a partial cross-sectional schematic diagram showing a configuration of a film forming apparatus 40 for executing the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • the film forming apparatus 40 is, for example, a CVD (Chemical Vapor Deposition) apparatus.
  • the film forming apparatus 40 includes a quartz tube 43, an induction heating coil 44, a heat insulating material 42, a heating element 41, a substrate holder 46, gas supply sources 51 to 55, and a pipe 60. 61, an exhaust pump 62, a mass analyzer 64, valves 63 and 65, and dew point meters 81 to 85.
  • the heating element 41 has a hollow structure and has a reaction chamber 45 formed therein.
  • the heat insulating material 42 is disposed so as to surround the outer periphery of the heating element 41.
  • the quartz tube 43 is disposed so as to surround the outer periphery of the heat insulating material 42.
  • the induction heating coil 44 is provided so as to wind the outer periphery of the quartz tube 43.
  • the substrate holder 46 is placed inside the reaction chamber 45.
  • Substrate holder 46 is a support member configured to hold silicon carbide single crystal substrate 20.
  • the substrate holder 46 is a susceptor.
  • the gas supply source 51 supplies hydrogen (H 2 ) gas as a carrier gas.
  • the gas supply sources 52 and 53 supply a source gas.
  • the gas supply source 52 supplies a gas containing silicon (Si) atoms.
  • the gas supply source 53 supplies a gas containing carbon (C) atoms.
  • the gas containing silicon atoms may be silane (SiH 4 ) gas.
  • Other examples of the gas containing silicon atoms include silicon tetrachloride (SiCl 4 ) gas, trichlorosilane (SiHCl 3 ) gas, and dichlorosilane (SiH 2 Cl 2 ) gas.
  • the gas containing carbon atoms may be propane (C 3 H 8 ) gas.
  • the gas supply source 54 supplies ammonia (NH 3 ) gas as a dopant gas.
  • the gas supply source 55 supplies an inert gas as a purge gas. Examples of the inert gas include argon (Ar) gas and neon (Ne) gas.
  • Each of the gas supply sources 51 to 55 may include a gas purification device.
  • the gas purification device can lower the dew point of the gas.
  • the gas containing silicon (Si) atoms is a silane gas.
  • the gas containing carbon atoms is propane (C 3 H 8 ) gas.
  • the inert gas is argon (Ar) gas.
  • the pipe 60 is configured to introduce the gas 70 into the reaction chamber 45.
  • a mixed gas in which a carrier gas, a source gas, and a dopant gas are mixed is supplied into the reaction chamber 45 as the gas 70.
  • argon gas is supplied as the gas 70.
  • the piping 61 is configured to discharge gas from the reaction chamber 45.
  • the exhaust pump 62 is connected to the pipe 61.
  • the valve 63 is provided in the pipe 61 in order to adjust the exhaust flow rate, for example.
  • the mass analyzer 64 is attached to the pipe 61 via the valve 65.
  • Dew point meters 81 to 85 measure the dew points of the gases supplied from the gas supply sources 51 to 55, respectively.
  • the dew points shown below are values measured by dew point meters 81-85.
  • FIG. 3 is a flowchart schematically showing a method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment.
  • the method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment is performed using the film forming apparatus 40 shown in FIG. 3 may be applied to either one of silicon carbide layers 31 and 32, or may be applied to both silicon carbide layers 31 and 32.
  • step 110 is performed at room temperature.
  • “Normal temperature” can be the temperature of the reaction chamber 45 in a state where the reaction chamber 45 is not heated or cooled.
  • room temperature may be room temperature.
  • Step 110 includes a step 111 and a step 112.
  • step 111 the inside of the reaction chamber 45 is purged with argon gas.
  • argon gas is introduced into the reaction chamber 45 from the gas supply source 55 with the valves 63 and 65 closed.
  • the dew point of argon gas is ⁇ 95 ° C. or lower.
  • step 112 the valve 63 is opened.
  • the reaction chamber 45 is evacuated by the exhaust pump 62. While the valve 65 is opened, the mass analyzer 64 may detect the component of the gas discharged from the reaction chamber 45. The mass analyzer 64 can detect that moisture is discharged from the reaction chamber 45.
  • Step 111 and Step 112 are executed at least once. Therefore, step 111 and step 112 may be performed repeatedly.
  • step 120 degassing is performed. While the reaction chamber 45 is heated, the inside of the reaction chamber 45 is evacuated by the exhaust pump 62. By causing a high frequency current to flow through the induction heating coil 44, the heating element 41 is induction heated. Thereby, the reaction chamber 45 is heated. When the inside of the reaction chamber 45 is evacuated by the exhaust pump 62, gas molecules and moisture are desorbed from the wall of the reaction chamber 45. Therefore, the amount of moisture present in the reaction chamber 45 can be reduced.
  • a silicon carbide layer 31 is formed on silicon carbide single crystal substrate 20 by epitaxial growth.
  • silicon carbide layer 32 is formed on silicon carbide layer 31.
  • silicon carbide layers 31 and 32 can be formed continuously.
  • the silicon carbide single crystal substrate 20 is introduced into the reaction chamber 45 before the step 130. As shown in FIG. 4, silicon carbide single crystal substrate 20 having front surface 21 and rear surface 22 is prepared. Silicon carbide single crystal substrate 20 is produced, for example, by slicing an ingot made of a silicon carbide single crystal manufactured by a sublimation method.
  • the surface 21 is a surface inclined by an off angle from the basal plane.
  • the basal plane is, for example, a ⁇ 0001 ⁇ plane, specifically a (0001) Si plane.
  • the off angle is, for example, 2 ° or more and 8 ° or less.
  • the off direction may be the ⁇ 1-100> direction or the ⁇ 11-20> direction.
  • silicon carbide single crystal substrate 20 is placed on substrate holder 46.
  • Heating reaction chamber 45 raises the temperature inside silicon carbide single crystal substrate 20 and the reaction chamber.
  • gas 70 in which hydrogen gas, a source gas containing silane and propane, and a dopant gas (ammonia gas) are mixed into reaction chamber 45.
  • the dew point of the source gas and the dew point of the dopant gas are, for example, ⁇ 100 ° C. or lower as in the case of hydrogen gas.
  • the gas 70 may be heated before being introduced into the reaction chamber 45.
  • silicon carbide layers 31 and 32 are formed on silicon carbide single crystal substrate 20 by epitaxial growth.
  • FIG. 5 is a graph for explaining each process shown in FIG. In FIG. 5, the time change of the temperature T and the pressure P in the reaction chamber 45 is shown. Furthermore, the time change of the gas flow rate in steps 110 to 130 is shown. “0” represents the start time of step 120.
  • step 110 argon gas is introduced into the reaction chamber 45 at the temperature T1, and then the inside of the reaction chamber 45 is evacuated.
  • the temperature T1 is room temperature.
  • the flow rate of the argon gas is E (sccm).
  • the introduction of argon gas into the reaction chamber 45 and the discharge of argon gas from the reaction chamber 45 may be repeated.
  • argon gas is introduced into the reaction chamber 45 at times a1, a2, and a3.
  • the pressure P reaches P1 by the introduction of argon gas.
  • the pressure P1 is 2 ⁇ 10 4 (Pa) or more, for example. By vacuuming, the pressure P becomes 1 ⁇ 10 ⁇ 4 Pa or less.
  • step 120 the reaction chamber 45 is heated and degassed.
  • the temperature T in the reaction chamber 45 rises from T1.
  • the pressure P temporarily rises. Since the exhaust is continued, the pressure P decreases again after the increase.
  • T2 is a predetermined temperature of 1000 ° C. or higher. Until time c2, temperature T is maintained at T2.
  • the inside of the reaction chamber 45 is evacuated until the pressure in the reaction chamber 45 becomes 0.01 Pa or less.
  • step 130 is started. Hydrogen gas having a dew point of ⁇ 100 ° C. or lower is supplied to the reaction chamber 45.
  • the flow rate of hydrogen gas is G (slm). With the supply of hydrogen gas, the pressure P increases to P2 (Pa).
  • the temperature T rises from T2.
  • the temperature T reaches T3.
  • the temperature T3 is, for example, 1500 ° C. or higher and 1700 ° C. or lower.
  • a mixed gas of silane gas, propane gas, ammonia gas, and hydrogen gas is introduced into the reaction chamber 45.
  • the total flow rate of silane gas, propane gas, and ammonia gas is F (sccm).
  • the flow rate of hydrogen gas may remain G (slm).
  • the pressure P is kept at P2 (Pa).
  • the process 130 ends.
  • the supply of silane gas, propane gas, and ammonia gas is stopped.
  • the supply of hydrogen gas may be continued after time c4.
  • the temperature T decreases and reaches room temperature at time c5.
  • step 110 an inert gas is introduced into the reaction chamber 45, and then the inert gas is discharged from the reaction chamber 45. As a result, the amount of moisture present in the reaction chamber 45 can be reduced. Through step 120, the moisture adsorbed in the reaction chamber 45 can be discharged to the outside of the reaction chamber 45. Step 110 may be omitted.
  • step 130 by using a gas having a low dew point, the amount of water contained in the gas per unit volume can be reduced.
  • the thermal decomposition of ammonia can be promoted during the epitaxial growth of silicon carbide. As a result, the in-plane uniformity of the doping density of the silicon carbide layer can be improved.
  • FIG. 6 is a diagram for illustrating a silicon carbide epitaxial substrate having a diameter of 100 mm formed by the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • measurement points 201 are located on the surface of silicon carbide epitaxial substrate 10 (silicon carbide layer 32) at intervals of 10 mm.
  • the number of measurement points 201 is 17, only 13 measurement points are shown in FIG.
  • the coordinates of the wafer center are defined as (0 mm, 0 mm)
  • the coordinates of the 17 measurement points can be expressed as follows.
  • Silicon carbide layer 32 is formed, for example, according to the following conditions.
  • the epitaxial growth temperature (T3) is 1600 ° C.
  • the epitaxial growth pressure (P2) is 1 ⁇ 10 4 Pa.
  • the flow rate of silane gas is 46 sccm.
  • the flow rate of propane gas is 17 sccm.
  • the flow rate of ammonia gas is 0.16 sccm.
  • the dew point of argon gas is ⁇ 100 ° C.
  • the flow rate of hydrogen gas is 120 slm.
  • the dew point of hydrogen gas is -110 ° C.
  • the doping density (Nd—Na) can be obtained by a capacitance-voltage measurement method.
  • the in-plane uniformity of the doping density is obtained from the measured values of the doping density at the 17 measurement points 201.
  • the standard deviation of the measured value is ⁇ and the average value of the measured value is m
  • the in-plane uniformity is expressed by a value ⁇ / m obtained by dividing ⁇ by m.
  • Silicon carbide layer 32 formed according to the above conditions has a doping density of 2.7 ⁇ 10 15 cm ⁇ 3 .
  • In-plane uniformity of the doping density of silicon carbide layer 32 is 1.8%.
  • An in-plane uniformity of 1.8% is desirable for a silicon carbide semiconductor substrate having a diameter of 100 mm.
  • FIG. 7 is a diagram for illustrating a silicon carbide epitaxial substrate having a diameter of 150 mm formed by the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • measurement points 301 are located on the surface of silicon carbide epitaxial substrate 10 (silicon carbide layer 32) at intervals of 10 mm.
  • the number of measurement points 301 is 29, only 21 measurement points are schematically shown in FIG.
  • the coordinates of the wafer center are defined as (0 mm, 0 mm)
  • the coordinates of the 29 measurement points can be expressed as follows.
  • Silicon carbide layer 32 is formed, for example, according to the following conditions.
  • the epitaxial growth temperature (T3) is 1600 ° C.
  • the epitaxial growth pressure (P2) is 1 ⁇ 10 4 Pa.
  • the flow rate of silane gas is 46 sccm.
  • the flow rate of propane gas is 17 sccm.
  • the flow rate of ammonia gas is 0.17 sccm.
  • the dew point of argon gas is ⁇ 100 ° C.
  • the flow rate of hydrogen gas is 120 slm.
  • the dew point of hydrogen gas is -110 ° C.
  • the doping density (Nd—Na) can be obtained by a capacitance-voltage measurement method. According to the above conditions, the doping density of silicon carbide layer 32 is 2.8 ⁇ 10 15 cm ⁇ 3 . In-plane uniformity of the doping density of silicon carbide layer 32 is 3.9%. An in-plane uniformity of a doping density of 3.9% is desirable for a silicon carbide semiconductor substrate having a diameter of 150 mm.
  • silicon carbide epitaxial substrate 20 silicon carbide single crystal substrate, 21 front surface, 22 back surface, 23 maximum diameter, 31, 32 silicon carbide layer, 40 film forming device, 41 heating element, 42 heat insulating material, 43 quartz tube, 44 induction heating Coil, 45 reaction chamber, 46 substrate holder, 51-55 gas supply source, 60, 61 piping, 62 exhaust pump, 63, 65 valve, 64 mass analyzer, 70 gas, 81-85 dew point meter, 110, 111, 112 , 120, 130 steps, 201, 301 measurement points, P, P1, P2 pressure, T, T1, T2, T3 temperature, E, F, G flow, a1 to a3, c1 to c5 time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

炭化珪素エピタキシャル基板の製造方法は、成膜装置の反応室を加熱して脱ガスを行う工程と、シリコン原子を含むガスと、炭素原子を含むガスと、アンモニアガスと、キャリアガスである露点が-100℃以下の水素ガスとを用いて、反応室内の炭化珪素単結晶基板の表面に炭化珪素層をエピタキシャル成長する工程とを備える。

Description

炭化珪素エピタキシャル基板の製造方法
 本開示は、炭化珪素エピタキシャル基板の製造方法に関する。
 本出願は、2015年9月14日出願の日本出願第2015-180673号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特開2003-86518号公報(特許文献1)は、炭化珪素層のCVD(Chemical Vapor Deposition)方法、CVD装置およびCVD装置用サセプタ―を開示する。
特開2003-86518号公報
 本開示に係る炭化珪素エピタキシャル基板の製造方法は、成膜装置の反応室を加熱して脱ガスを行う工程と、シリコン原子を含むガス、炭素原子を含むガス、アンモニアガス、およびキャリアガスである露点が-100℃以下の水素ガスを用いて、前記反応室内の炭化珪素単結晶基板の表面に炭化珪素層をエピタキシャル成長する工程とを備える。
図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す断面模式図である。 図2は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を実行するための成膜装置の構成を示す一部断面模式図である。 図3は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を概略的に示すフロー図である。 図4は、炭化珪素単結晶基板の一例を示す斜視模式図である。 図5は、図2に示された各工程を説明するためのグラフである。 図6は、本実施の形態に係る炭化珪素エピタキシャル基板の製造方法によって形成された直径100mmの炭化珪素エピタキシャル基板を説明するための図である。 図7は、本実施の形態に係る炭化珪素エピタキシャル基板の製造方法によって形成された直径150mmの炭化珪素エピタキシャル基板を説明するための図である。
 [実施形態の説明]
 (1)本開示に係る炭化珪素層の炭化珪素エピタキシャル基板の製造方法は、成膜装置の反応室を加熱して脱ガスを行う工程と、シリコン原子を含むガス、炭素原子を含むガス、アンモニアガス、およびキャリアガスである露点が-100℃以下の水素ガスを用いて、反応室内の炭化珪素単結晶基板の表面に炭化珪素層をエピタキシャル成長する工程とを備える。
 シリコン原子を含むガス、炭素原子を含むガスおよびアンモニアガスを含むガスによって、不純物である窒素(N)が添加された炭化珪素層が炭化珪素単結晶基板の表面に形成される。窒素原子は、アンモニアの分解によって生成される。しかし、アンモニアは水に反応しやすい。アンモニアが水と反応した場合にはアンモニアの熱分解が阻害されやすい。成膜装置の反応室を加熱して脱ガスを行うことにより、反応室の内部に吸着した水分を、反応室の外部に放出することができる。さらに、キャリアガスの露点が低いことによって、単位体積あたりのガスに含まれる水分の量を減らすことができる。炭化珪素のエピタキシャル成長の際に、反応室の内部に存在する水分の量を少なくすることができるので、アンモニアが熱分解されやすい。したがってドーピング密度の面内均一性に優れた炭化珪素層を形成することができる。
 (2)上記(1)に係る炭化珪素エピタキシャル基板の製造方法は、常温下で反応室に不活性ガスを導入し、その後に反応室から不活性ガスを排出する工程をさらに備えてもよい。不活性ガスを導入および排出する工程は、脱ガスを行う工程に先立って実行されてもよい。
 「常温」とは、反応室が加熱あるいは冷却されていない状態における反応室の温度であると定義してもよい。
 (3)上記(2)に係る炭化珪素エピタキシャル基板の製造方法において、不活性ガスは、露点が-95℃以下のアルゴンガスであってもよい。不活性ガスを導入および排出する工程において、反応室内の圧力が2×104Pa以上となるまでアルゴンガスを反応室内に導入し、その後、反応室内の圧力が1×10-4Pa以下の圧力になるまで反応室内を真空引きしてもよい。
 (4)上記(1)~(3)のいずれかに係る炭化珪素エピタキシャル基板の製造方法において、脱ガスを行う工程は、反応室を1000℃以上の温度に加熱し、かつ反応室の圧力が0.01Pa以下になるまで真空引きを実施する工程を含んでもよい。
 (5)上記の(1)~(4)のいずれかに係る炭化珪素エピタキシャル基板の製造方法において、炭化珪素単結晶基板の直径は、100mm以上であってもよい。
 (6)上記の(1)~(4)のいずれかに係る炭化珪素エピタキシャル基板の製造方法において、炭化珪素単結晶基板の直径は、150mm以上であってもよい。
 (7)本開示に係る炭化珪素層の炭化珪素エピタキシャル基板の製造方法は、常温下で成膜装置の反応室に不活性ガスを導入し、その後に反応室から不活性ガスを排出する工程と、不活性ガスを排出する工程の後に、反応室を加熱して脱ガスを行う工程と、シリコン原子を含むガスと、炭素原子を含むガスと、アンモニアガスと、キャリアガスである露点が-100℃以下の水素ガスとを用いて、反応室内の炭化珪素単結晶基板の表面に、炭化珪素層をエピタキシャル成長する工程とを備える。不活性ガスは、露点が-95℃以下のアルゴンガスである。不活性ガスを導入および排出する工程において、反応室内の圧力が2×104Pa以上となるまでアルゴンガスを反応室内に導入し、その後、前記反応室内の圧力が1×10-4Pa以下の圧力になるまで前記反応室内を真空引きする。脱ガスを行う工程は、反応室を1000℃以上の温度に加熱し、かつ反応室の圧力が0.01Pa以下になるまで真空引きを実施する工程を含む。炭化珪素単結晶基板の直径は、150mm以上である。
 [実施形態の詳細]
 以下、図面に基づいて実施形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。本明細書中においては、個別面を()、集合面を{}でそれぞれ示す。負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す断面模式図である。図1に示されるように、炭化珪素エピタキシャル基板10は、炭化珪素単結晶基板20と、炭化珪素層31と、炭化珪素層32とを含む。
 炭化珪素単結晶基板20は、たとえばポリタイプ4Hの六方晶炭化珪素から構成される。炭化珪素単結晶基板20は、表面21と裏面22とを有する。表面21および裏面22の最大径23は、たとえば100mm以上である。最大径23は、150mm以上でもよい。
 炭化珪素単結晶基板20と、炭化珪素層31と、炭化珪素層32とは、窒素をn型不純物として含む。一例では、炭化珪素単結晶基板20のn型不純物の濃度は、炭化珪素層31のn型不純物の濃度よりも高い。炭化珪素層31のn型不純物の濃度は、炭化珪素層32のn型不純物の濃度よりも高い。
 たとえば炭化珪素単結晶基板20におけるn型不純物の濃度は、1×1019cm-3である。炭化珪素層31のn型不純物の濃度は、1×1018cm-3である。炭化珪素層32のn型不純物の濃度は、たとえば1×1015cm-3以上2×1016cm-3以下である。
 炭化珪素単結晶基板20の厚みは、たとえば300μm以上600μm以下である。炭化珪素層31の厚みは、たとえば0.1μm以上20μm以下である。炭化珪素層32の厚みは、炭化珪素層31の厚みよりも大きくてもよい。炭化珪素層32の厚みは、たとえば1μm以上150μm以下である。
 図2は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を実行するための成膜装置40の構成を示す一部断面模式図である。成膜装置40は、たとえばCVD(Chemical Vapor Deposition)装置である。図2に示されるように、成膜装置40は、石英管43と、誘導加熱コイル44と、断熱材42と、発熱体41と、基板ホルダ46と、ガス供給源51~55と、配管60,61と、排気ポンプ62と、質量分析器64と、バルブ63,65と、露点計81~85とを主に有している。
 発熱体41は中空構造であって、内部に反応室45を形成している。断熱材42は、発熱体41の外周を囲うように配置されている。石英管43は、断熱材42の外周を囲うように配置されている。誘導加熱コイル44は、石英管43の外周を巻回するように設けられている。
 基板ホルダ46は、反応室45の内部に載置される。基板ホルダ46は、炭化珪素単結晶基板20を保持可能に構成された支持部材である。一例では、基板ホルダ46は、サセプタである。
 ガス供給源51は、キャリアガスとして水素(H)ガスを供給する。ガス供給源52,53は、原料ガスを供給する。ガス供給源52は、シリコン(Si)原子を含むガスを供給する。ガス供給源53は、炭素(C)原子を含むガスを供給する。
 シリコン原子を含むガスは、シラン(SiH)ガスであってもよい。シリコン原子を含むガスの他の例として、四塩化ケイ素(SiCl)ガス、トリクロロシラン(SiHCl)ガス、およびジクロロシラン(SiHCl)ガスを挙げることができる。炭素原子を含むガスは、プロパン(C)ガスであってもよい。
 ガス供給源54は、ドーパントガスとしてアンモニア(NH)ガスを供給する。ガス供給源55は、パージガスとして不活性ガスを供給する。不活性ガスの例として、アルゴン(Ar)ガス、ネオン(Ne)ガスを挙げることができる。
 ガス供給源51~55の各々は、ガス精製装置を含み得る。ガス精製装置は、ガスの露点を下げることができる。
 以下に説明される例において、シリコン(Si)原子を含むガスはシランガスである。炭素原子を含むガスは、プロパン(C)ガスである。不活性ガスはアルゴン(Ar)ガスである。
 配管60は、ガス70を反応室45に導入するように構成されている。炭化珪素のエピタキシャル成長時において、ガス70として、キャリアガス、原料ガスおよびドーパントガスが混合された混合ガスが反応室45の内部に供給される。反応室45をパージする際において、ガス70として、アルゴンガスが供給される。
 配管61は、反応室45からガスを排出するように構成されている。排気ポンプ62は、配管61に接続されている。バルブ63は、たとえば排気流量を調整するために配管61に設けられる。質量分析器64は、バルブ65を介して、配管61に取り付けられる。
 露点計81~85は、それぞれ、ガス供給源51~55からそれぞれ供給されるガスの露点を計測する。以下に示された露点は、露点計81~85によって計測された値である。
 図3は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を概略的に示すフロー図である。本実施形態に係る炭化珪素エピタキシャル基板の製造方法は、図2に示された成膜装置40を用いて実行される。なお、図3に示すフローは、炭化珪素層31,32のいずれか一方に適用されてもよく、炭化珪素層31,32の両方に適用されてもよい。
 図3に示されるように、まず、工程110が常温下で実施される。「常温」とは、反応室45が加熱または冷却されない状態における反応室45の温度とすることができる。たとえば「常温」は室温であってもよい。
 工程110は、工程111と、工程112とを含む。工程111において、アルゴンガスにより反応室45の内部がパージされる。一例では、バルブ63,65が閉じた状態で、アルゴンガスが、ガス供給源55から反応室45内に導入される。アルゴンガスの露点は-95℃以下である。
 工程112において、バルブ63が開けられる。排気ポンプ62によって、反応室45が真空引きされる。バルブ65が開けられるとともに、質量分析器64が、反応室45から排出されるガスの成分を検出してもよい。質量分析器64によって、水分が反応室45から排出されることを検出することができる。
 工程111および工程112は、少なくとも1度ずつ実行される。したがって、工程111および工程112は繰り返して実行されてもよい。
 次に、工程120において、脱ガスが実施される。反応室45が加熱されるとともに、排気ポンプ62によって反応室45の内部が真空引きされる。誘導加熱コイル44に高周波電流を流すことによって、発熱体41が誘導加熱される。これにより、反応室45が加熱される。排気ポンプ62によって反応室45の内部が真空引きされることにより、反応室45の壁から気体分子および水分が脱離される。したがって、反応室45の内部に存在する水分の量を減らすことができる。
 続いて、工程130において、エピタキシャル成長によって、炭化珪素単結晶基板20上に炭化珪素層31が形成される。または、炭化珪素層31上に炭化珪素層32が形成される。たとえば炭化珪素層31,32は連続的に形成することができる。
 炭化珪素単結晶基板20は、工程130よりも前に反応室45に導入される。図4に示されるように、表面21と、裏面22とを有する炭化珪素単結晶基板20が準備される。炭化珪素単結晶基板20は、たとえば昇華法により製造された炭化珪素単結晶からなるインゴットをスライスすることにより、作製される。表面21は、基底面からオフ角だけ傾斜した面である。基底面は、たとえば{0001}面であり、特定的には(0001)Si面である。オフ角は、たとえば2°以上8°以下である。オフ方向は、<1-100>方向であってもよいし、<11-20>方向であってもよい。
 図2に示されるように、炭化珪素単結晶基板20は、基板ホルダ46に載置される。反応室45が加熱されることにより炭化珪素単結晶基板20および反応室の内部の温度が上昇する。反応室45および炭化珪素単結晶基板20の温度が成長温度に達すると、水素ガスと、シランおよびプロパンを含む原料ガスと、ドーパントガス(アンモニアガス)とが混合されたガス70が反応室45に導入される。原料ガスの露点およびドーパントガスの露点は、たとえば水素ガスと同じく-100℃以下である。アンモニアの熱分解を促進するため、反応室45に導入される前に、ガス70が加熱されてもよい。以上のようにして、エピタキシャル成長によって、炭化珪素単結晶基板20上に炭化珪素層31,32が形成される。
 図5は、図2に示された各工程を説明するためのグラフである。図5において、反応室45内の温度Tおよび圧力Pの時間変化が示される。さらに、工程110~130におけるガスの流量の時間変化が示される。「0」は、工程120の開始時点を表す。
 工程110において、温度T1で、反応室45内にアルゴンガスが導入され、その後に、反応室45の内部が真空引きされる。温度T1は、常温である。アルゴンガスの流量はE(sccm)である。
 反応室45へのアルゴンガスの導入と反応室45からのアルゴンガスの排出とが繰り返されてもよい。たとえば、時刻a1,a2,a3において、反応室45内にアルゴンガスが導入される。アルゴンガスの導入により、圧力PがP1に達する。圧力P1は、たとえば2×104(Pa)以上である。真空引きによって、圧力Pは、1×10-4Pa以下になる。
 工程120において、反応室45が加熱されるとともに脱ガスが行なわれる。反応室45の温度TはT1から上昇する。気体分子あるいは水分が反応室45の壁から脱離することで、圧力Pは一時的に上昇する。排気が継続されているため、圧力Pは、上昇後に再び減少する。
 時刻c1において、温度TはT2に達する。T2は、1000℃以上の所定の温度である。時刻c2まで、温度TはT2に保たれる。反応室45内の圧力が0.01Pa以下の圧力になるまで反応室45の内部が真空引きされる。
 時刻c2において、工程130が開始される。露点が-100℃以下である水素ガスが反応室45に供給される。水素ガスの流量はG(slm)である。水素ガスの供給によって、圧力Pは、P2(Pa)へと上昇する。
 時刻c2において、温度Tは、T2から上昇する。時刻c3において、温度TがT3に達する。温度T3は、たとえば1500℃以上1700℃以下である。時刻c3において、シランガス、プロパンガス、アンモニアガスおよび水素ガスの混合ガスが反応室45に導入される。シランガス、プロパンガス、アンモニアガスの流量の合計は、F(sccm)である。水素ガスの流量は、G(slm)のままであってもよい。圧力Pは、P2(Pa)に保たれる。
 時刻c4において、工程130が終了する。シランガス、プロパンガス、アンモニアガスの供給が停止される。反応室45を冷却するために、時刻c4以後も水素ガスの供給が継続されてもよい。温度Tは低下し、時刻c5において常温に達する。
 工程110では、反応室45に不活性ガスが導入され、その後に不活性ガスが反応室45から排出される。これにより、反応室45の内部に存在する水分の量を減らすことができる。工程120によって、反応室45に吸着した水分を反応室45の外部に排出することができる。工程110は、省略されてもよい。
 工程130において、露点の低いガスを用いることにより、単位体積当たりのガスに含まれる水分の量を低くすることができる。反応室45の内部の水分の量を減らすことによって、炭化珪素のエピタキシャル成長の際に、アンモニアの熱分解を促進できる。この結果、炭化珪素層のドーピング密度の面内均一性を良好にすることができる。
 図6は、本実施の形態に係る炭化珪素エピタキシャル基板の製造方法によって形成された直径100mmの炭化珪素エピタキシャル基板を説明するための図である。図6に示されるように、測定点201が、10mmの間隔で炭化珪素エピタキシャル基板10(炭化珪素層32)の表面に位置する。測定点201の数は17であるが、図6には13個の測定点のみ示される。ウェハ中心の座標を(0mm,0mm)と定めた場合、17個の測定点の座標は、以下のように表すことができる。
 (0mm,-40mm),(0mm,-30mm),(0mm,-20mm),(0mm,-10mm),(0mm,0mm),(0mm,10mm),(0mm,20mm),(0mm,30mm),(0mm,40mm),(-40mm,0mm),(-30mm,0mm),(-20mm,0mm),(-10mm,0mm),(10mm,0mm),(20mm,0mm),(30mm,0mm),(40mm,0mm)
 炭化珪素層32は、たとえば以下の条件に従って形成される。エピタキシャル成長温度(T3)は、1600℃である。エピタキシャル成長圧力(P2)は、1×104Paである。シランガスの流量は46sccmである。プロパンガスの流量は17sccmである。アンモニアガスの流量は0.16sccmである。アルゴンガスの露点は-100℃である。水素ガスの流量は、120slmである。水素ガスの露点は-110℃である。
 ドーピング密度(Nd-Na)は、容量-電圧測定方法によって得ることができる。ドーピング密度の面内均一性は、17個の測定点201におけるドーピング密度の測定値から求められる。測定値の標準偏差をσとし、測定値の平均値をmとすると、面内均一性は、σをmで割った値σ/mによって表される。
 上記の条件に従って形成された炭化珪素層32のドーピング密度は、2.7×1015cm-3である。炭化珪素層32のドーピング密度の面内均一性は、1.8%である。面内均一性が1.8%であることは、直径100mmの炭化珪素半導体基板において望ましいといえる。
 図7は、本実施の形態に係る炭化珪素エピタキシャル基板の製造方法によって形成された直径150mmの炭化珪素エピタキシャル基板を説明するための図である。図7に示されるように、測定点301が、10mmの間隔で炭化珪素エピタキシャル基板10(炭化珪素層32)の表面に位置する。測定点301の数は29であるが図7には21個の測定点のみ模式的に示される。ウェハ中心の座標を(0mm,0mm)と定めた場合、29個の測定点の座標は、以下のように表すことができる。
 (0mm,-70mm),(0mm,-60mm),(0mm,-50mm),(0mm,-40mm),(0mm,-30mm),(0mm,-20mm),(0mm,-10mm),(0mm,0mm),(0mm,10mm),(0mm,20mm),(0mm,30mm),(0mm,40mm),(0mm,50mm),(0mm,60mm),(0mm,70mm),(-70mm,0mm),(-60mm,0mm),(-50mm,0mm),(-40mm,0mm),(-30mm,0mm),(-20mm,0mm),(-10mm,0mm),(10mm,0mm),(20mm,0mm),(30mm,0mm),(40mm,0mm),(50mm,0mm),(60mm,0mm),(70mm,0mm)
 炭化珪素層32は、たとえば以下の条件に従って形成される。エピタキシャル成長温度(T3)は、1600℃である。エピタキシャル成長圧力(P2)は、1×104Paである。シランガスの流量は46sccmである。プロパンガスの流量は17sccmである。アンモニアガスの流量は0.17sccmである。アルゴンガスの露点は-100℃である。水素ガスの流量は、120slmである。水素ガスの露点は-110℃である。
 ドーピング密度(Nd-Na)は、容量-電圧測定方法によって得ることができる。上記の条件によれば、炭化珪素層32のドーピング密度は、2.8×1015cm-3である。炭化珪素層32のドーピング密度の面内均一性は、3.9%である。3.9%のドーピング密度の面内均一性は、直径150mmの炭化珪素半導体基板において、望ましいといえる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 10 炭化珪素エピタキシャル基板、20 炭化珪素単結晶基板、21 表面、22 裏面、23 最大径、31,32 炭化珪素層、40 成膜装置、41 発熱体、42 断熱材、43 石英管、44 誘導加熱コイル、45 反応室、46 基板ホルダ、51~55 ガス供給源、60,61 配管、62 排気ポンプ、63,65 バルブ、64 質量分析器、70 ガス、81~85 露点計、110,111,112,120,130 工程、201,301 測定点、P,P1,P2 圧力、T,T1,T2,T3 温度、E,F,G 流量、a1~a3,c1~c5 時刻。

Claims (7)

  1.  成膜装置の反応室を加熱して脱ガスを行う工程と、
     シリコン原子を含むガスと、炭素原子を含むガスと、アンモニアガスと、キャリアガスである露点が-100℃以下の水素ガスとを用いて、前記反応室内の炭化珪素単結晶基板の表面に、炭化珪素層をエピタキシャル成長する工程とを備える、炭化珪素エピタキシャル基板の製造方法。
  2.  常温下で前記反応室に不活性ガスを導入し、その後に前記反応室から前記不活性ガスを排出する工程をさらに備え、
     前記不活性ガスを導入および排出する工程は、前記脱ガスを行う工程に先立って実行される、請求項1に記載の炭化珪素エピタキシャル基板の製造方法。
  3.  前記不活性ガスは、露点が-95℃以下のアルゴンガスであり、
     前記不活性ガスを導入および排出する工程において、前記反応室内の圧力が2×104Pa以上となるまで前記アルゴンガスを前記反応室内に導入し、その後、前記反応室内の圧力が1×10-4Pa以下の圧力になるまで前記反応室内を真空引きする、請求項2に記載の炭化珪素エピタキシャル基板の製造方法。
  4.  前記脱ガスを行う工程は、
     前記反応室を1000℃以上の温度に加熱し、かつ前記反応室の圧力が0.01Pa以下になるまで真空引きを実施する工程を含む、請求項1から請求項3のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。
  5.  前記炭化珪素単結晶基板の直径は、100mm以上である、請求項1から請求項4のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。
  6.  前記炭化珪素単結晶基板の直径は、150mm以上である、請求項1から請求項4のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。
  7.  常温下で成膜装置の反応室に不活性ガスを導入し、その後に前記反応室から前記不活性ガスを排出する工程と、
     前記不活性ガスを排出する工程の後に、前記反応室を加熱して脱ガスを行う工程と、
     シリコン原子を含むガスと、炭素原子を含むガスと、アンモニアガスと、キャリアガスである露点が-100℃以下の水素ガスとを用いて、前記反応室内の炭化珪素単結晶基板の表面に、炭化珪素層をエピタキシャル成長する工程とを備え、
     前記不活性ガスは、露点が-95℃以下のアルゴンガスであり、
     前記不活性ガスを導入および排出する工程において、前記反応室内の圧力が2×104Pa以上となるまで前記アルゴンガスを前記反応室内に導入し、その後、前記反応室内の圧力が1×10-4Pa以下の圧力になるまで前記反応室内を真空引きし、
     前記脱ガスを行う工程は、
     前記反応室を1000℃以上の温度に加熱し、かつ前記反応室の圧力が0.01Pa以下になるまで真空引きを実施する工程を含み、
     前記炭化珪素単結晶基板の直径は、150mm以上である、炭化珪素エピタキシャル基板の製造方法。
PCT/JP2016/072142 2015-09-14 2016-07-28 炭化珪素エピタキシャル基板の製造方法 WO2017047245A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016004163.2T DE112016004163T5 (de) 2015-09-14 2016-07-28 Verfahren zur Herstellung eines Siliziumkarbid-Epitaxiesubstrats
US15/743,950 US10337119B2 (en) 2015-09-14 2016-07-28 Method of manufacturing silicon carbide epitaxial substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015180673A JP6436024B2 (ja) 2015-09-14 2015-09-14 炭化珪素エピタキシャル基板の製造方法
JP2015-180673 2015-09-14

Publications (1)

Publication Number Publication Date
WO2017047245A1 true WO2017047245A1 (ja) 2017-03-23

Family

ID=58288795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072142 WO2017047245A1 (ja) 2015-09-14 2016-07-28 炭化珪素エピタキシャル基板の製造方法

Country Status (4)

Country Link
US (1) US10337119B2 (ja)
JP (1) JP6436024B2 (ja)
DE (1) DE112016004163T5 (ja)
WO (1) WO2017047245A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102417484B1 (ko) * 2017-09-05 2022-07-05 주식회사 엘엑스세미콘 에피택셜 웨이퍼 및 그 제조 방법
DE102019116228B4 (de) * 2019-06-14 2023-09-28 centrotherm international AG Verfahren zur Herstellung einer Halbleitervorrichtung sowie eine Halbleitervorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086518A (ja) * 2001-09-10 2003-03-20 Toshiba Corp 炭化珪素膜のcvd方法、cvd装置及びcvd装置用サセプター
JP2011178623A (ja) * 2010-03-02 2011-09-15 Tokyo Univ Of Agriculture & Technology 積層体の製造方法
JP2015101503A (ja) * 2013-11-25 2015-06-04 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法、基板支持部材、および炭化珪素半導体製造装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345345A (ja) * 1999-06-04 2000-12-12 Mitsubishi Electric Corp Cvd装置およびcvd装置用気化装置
TW460942B (en) * 1999-08-31 2001-10-21 Mitsubishi Material Silicon CVD device, purging method, method for determining maintenance time for a semiconductor making device, moisture content monitoring device, and semiconductor making device with such moisture content monitoring device
JP4793293B2 (ja) * 2007-03-16 2011-10-12 日産自動車株式会社 炭化珪素半導体装置及びその製造方法
WO2010132521A1 (en) 2009-05-13 2010-11-18 Sepracor Inc. Compositions comprising transnorsertraline and serotonin receptor 1a agonists/ antagonists and uses thereof
JP5696630B2 (ja) * 2011-09-21 2015-04-08 住友電気工業株式会社 炭化珪素基板およびその製造方法
WO2016117251A1 (ja) * 2015-01-21 2016-07-28 住友電気工業株式会社 結晶成長装置、炭化珪素単結晶の製造方法、炭化珪素単結晶基板および炭化珪素エピタキシャル基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086518A (ja) * 2001-09-10 2003-03-20 Toshiba Corp 炭化珪素膜のcvd方法、cvd装置及びcvd装置用サセプター
JP2011178623A (ja) * 2010-03-02 2011-09-15 Tokyo Univ Of Agriculture & Technology 積層体の製造方法
JP2015101503A (ja) * 2013-11-25 2015-06-04 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法、基板支持部材、および炭化珪素半導体製造装置

Also Published As

Publication number Publication date
US20180202068A1 (en) 2018-07-19
US10337119B2 (en) 2019-07-02
JP6436024B2 (ja) 2018-12-12
JP2017059576A (ja) 2017-03-23
DE112016004163T5 (de) 2018-06-07

Similar Documents

Publication Publication Date Title
JP4839646B2 (ja) 炭化珪素半導体の製造方法および炭化珪素半導体の製造装置
US10907273B2 (en) Growing epitaxial 3C-SiC on single-crystal silicon
US20100297832A1 (en) Semiconductor device manufacturing method, substrate processing apparatus, substrate manufacturing method
WO2015114961A1 (ja) 炭化珪素エピタキシャル基板および炭化珪素エピタキシャル基板の製造方法
EP3879010A1 (en) Sic semiconductor substrate, and, production method therefor and production device therefor
JP2014058411A (ja) エピタキシャル炭化珪素ウエハの製造方法
JP6149931B2 (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
WO2017047245A1 (ja) 炭化珪素エピタキシャル基板の製造方法
JP2017019679A (ja) 炭化珪素エピタキシャル基板
US8802546B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6786939B2 (ja) 炭化珪素半導体基板および炭化珪素半導体基板の製造方法
WO2018078944A1 (ja) 炭化珪素エピタキシャル基板の製造方法
JP2014232799A (ja) 炭化珪素半導体基板の製造方法
JP7143638B2 (ja) 炭化珪素エピタキシャル基板の製造方法
JP5648442B2 (ja) 炭化珪素半導体
JP7322594B2 (ja) 炭化珪素基板及びその製造方法
CN110117814A (zh) 具有低密度c空位缺陷的碳化硅外延的制备方法
JP2014103363A (ja) 炭化珪素半導体基板の製造方法
JP2014166957A (ja) 炭化珪素半導体およびその製造方法と製造装置
JP2014166957A5 (ja)
JP5896346B2 (ja) 炭化珪素半導体
US9269572B2 (en) Method for manufacturing silicon carbide semiconductor substrate
WO2017047244A1 (ja) 炭化珪素エピタキシャル基板の製造方法および炭化珪素エピタキシャル成長装置
JP2015122540A5 (ja)
JP6117522B2 (ja) エピタキシャル炭化珪素ウエハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743950

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016004163

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846118

Country of ref document: EP

Kind code of ref document: A1