WO2017047179A1 - 荷重検出装置 - Google Patents

荷重検出装置 Download PDF

Info

Publication number
WO2017047179A1
WO2017047179A1 PCT/JP2016/067719 JP2016067719W WO2017047179A1 WO 2017047179 A1 WO2017047179 A1 WO 2017047179A1 JP 2016067719 W JP2016067719 W JP 2016067719W WO 2017047179 A1 WO2017047179 A1 WO 2017047179A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
base material
load detection
detection device
less
Prior art date
Application number
PCT/JP2016/067719
Other languages
English (en)
French (fr)
Inventor
斎藤 充
関根 幹夫
隆史 林
Original Assignee
アルプス電気株式会社
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社, 新日鐵住金ステンレス株式会社 filed Critical アルプス電気株式会社
Priority to JP2017539718A priority Critical patent/JP6430027B2/ja
Publication of WO2017047179A1 publication Critical patent/WO2017047179A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Definitions

  • the present invention relates to a load detection device.
  • Such a strain sensor is a high elastic strain sensor based on a ferritic stainless steel, and a ferritic stainless steel containing Cu: 0.3 to 3.0% by mass is used as a base.
  • a first insulating layer baked at 900 ° C., an electrode, a circuit pattern, a strain resistance element, and a second insulating layer baked at 600 to 700 ° C. are sequentially provided.
  • the base material of the load detection device provided with the strain sensor preferably has a high 0.2% proof stress from the viewpoint of enhancing detection performance.
  • the substrate of the strain sensor described in Patent Document 1 is also designed with a composition and the like so that the 0.2% proof stress can be increased.
  • the substrate of the load detection device has a function other than a function of generating strain with high reproducibility according to the applied load, that is, a function as a strain generating material (also referred to as “load detection performance” in this specification).
  • a function as a strain generating material also referred to as “load detection performance” in this specification.
  • it is required to have a function (also referred to as “load bearing performance” in the present specification) for appropriately fixing a member that is a load detection target to another member.
  • the load detection device is a device for measuring a load applied to a vehicle seat, that is, a seating detection device, a vehicle seat and a passenger fixed to the seat via a seat belt are It is required to be able to maintain a fixed state with respect to other members, for example, a vehicle frame (vehicle body).
  • both the inertial force due to the mass of the seat and the inertial force due to the mass of the occupant transmitted through the seat belt are applied as tensile forces to the base material of the load detection device.
  • the base material is not easily broken.
  • An object of the present invention is to provide a load detection device capable of having excellent load detection performance and excellent load bearing performance.
  • One embodiment of the present invention provided to solve the above problems outputs a base material having a tensile strength of 650 MPa or more and a breaking elongation of 25% or more, and an electric signal based on deformation of the base material.
  • a base material wherein the base material is 0.030% by mass or less, Mn is 2.0% by mass or more and 4.0% by mass or less, and Cr is 20.5% by mass or more.
  • the balance is made of duplex stainless steel made of Fe and inevitable impurities, and the detection unit is provided on the substrate by firing at a temperature of 800 ° C. or more.
  • Insulating layer and strain sensor circuit formed on the insulating layer A load detection device according to claim Rukoto.
  • the load detection device can have excellent load detection performance and excellent load resistance performance.
  • the 0.2% proof stress of the base material is preferably 450 MPa or more.
  • strain can be generated with good reproducibility, and the load detection device according to the present invention can more stably have excellent load detection performance. .
  • the strain detection element in the strain sensor circuit increases the strain generated on the base material. It can be detected with accuracy. Even if a heat treatment at 800 ° C. or higher is performed to fire this insulating layer, the base material made of the duplex stainless steel according to the present invention can have an elongation at break of 25% or higher.
  • the elongation at break of the substrate may be 35% or more.
  • the base material preferably has a high elongation at break. If the base material has an elongation at break of 35% or more, the load detection device according to the present invention has an excellent load resistance performance. It can have more stable.
  • the base member includes a vehicle body attachment portion, an elastic deformation portion provided continuously from the vehicle attachment portion, and a seat attachment portion connected from the elastic deformation portion, and the detection portion is provided in the elastic deformation portion. Also good.
  • the load detection device can have excellent load detection performance more stably.
  • a load detection device capable of having excellent load detection performance and excellent load bearing performance is provided.
  • FIG. 1 is a bottom view conceptually showing the structure of a load detection device according to an embodiment of the present invention.
  • FIG. 2 is a front view conceptually showing the configuration of the usage state of the load detection device according to the embodiment of the present invention.
  • a load detection apparatus 100 includes a base material 10 having a tensile strength of 650 MPa or more and a breaking elongation of 25% or more, and a detection unit that outputs an electrical signal corresponding to the deformation of the base material 10. 20.
  • the base material 10 has C of 0.030% by mass or less, Mn of 2.0% by mass to 4.0% by mass, Cr of 20.5% by mass to 21.5% by mass, and Ni of 1.5% by mass. %, 2.5% by mass or less, Mo by 0.6% by mass or less, Cu by 0.5% by mass or more and 1.5% by mass or less, and N by 0.15% by mass or more and 0.20% by mass Made of stainless steel.
  • C is an unavoidable element present in steel, and if its content exceeds 0.030%, it combines with Cr during heat treatment to form carbides, and toughness and corrosion resistance deteriorate.
  • the C content is preferably 0.025% or less. If the C content is excessively reduced, the production cost increases. Therefore, the C content is preferably 0.005% or more, and more preferably 0.010% or more.
  • Mn is an element that increases the chemical stability of the ⁇ phase and suppresses the formation of nitrides by promoting the formation of the ⁇ phase, so the Mn content is 2.0% or more.
  • the Mn content is 4.0% or less, it is possible to make it difficult for the corrosion resistance to deteriorate.
  • the content of Mn is 0.1% or more and 5.5 from the viewpoint of more stably realizing heat resistance (hardness of deterioration of mechanical properties of the heat-treated product) and preventing deterioration of corrosion resistance. % Or less is preferable.
  • the Cr content is 20.5% or more.
  • the generation of the ⁇ phase is promoted during the heat treatment, and the toughness of the heat treated product tends to be lowered, so the Cr content is set to 21.5% or less.
  • Ni is an element that increases the ⁇ phase, and in order to further improve the corrosion resistance and toughness, the Ni content is 1.5% or more.
  • Ni is an expensive element, and adding excessively leads to an increase in cost, so the Ni content is set to 2.5% or less.
  • Mo is an element effective for improving the corrosion resistance, but is expensive, and the Mo content is set to 0.6% or less in order to accelerate the formation of the ⁇ phase and easily reduce the toughness of the heat-treated product.
  • the lower limit of the Mo content is not limited, but the Mo content is preferably 0.05% or more from the viewpoint of more stably enjoying the effect of containing Mo.
  • Cu like Ni, is an element effective in suppressing the formation of nitride by enhancing the chemical stability of the ⁇ phase and promoting the formation of the ⁇ phase, so the Cu content is 0.5% or more. .
  • excessive content of Cu causes a decrease in hot workability, so the Cu content is 1.5% or less.
  • the Cu content is preferably 0.6% or more and 1.0% or less.
  • N is an effective element that increases the ⁇ phase as well as improving strength and corrosion resistance, so the N content is 0.15% or more.
  • N excessively increases the ⁇ -phase generation capability and promotes nitride generation, so the N content is 0.20% or less.
  • the duplex stainless steel constituting the base material 10 of the load detection device 100 according to an embodiment of the present invention includes elements inevitably contained in steel materials such as Si, P, S, V, Ca, A metal element such as W may be additionally contained.
  • the balance of the duplex stainless steel constituting the base material 10 of the load detection device 100 according to the embodiment of the present invention is composed of Fe and inevitable impurities.
  • the base material 10 of the load detection device 100 has a tensile strength of 650 MPa or more and an elongation at break of 25% or more.
  • the load detection apparatus 100 according to an embodiment of the present invention including the base material 10 has appropriate load resistance performance.
  • the tensile strength of the base material 10 is preferably 700 MPa or more.
  • the upper limit of the tensile strength of the base material 10 of the load detection device 100 according to the embodiment of the present invention is not set from the viewpoint of causing the load detection device 100 to have appropriate load resistance performance.
  • the elongation at break of the base material 10 is preferably 30% or more, more preferably 35% or more, It is especially preferable that it is 40% or more.
  • the upper limit of the elongation at break of the base material 10 of the load detection device 100 according to one embodiment of the present invention is not set from the viewpoint of causing the load detection device 100 to have appropriate load bearing performance.
  • the base material 10 of the load detection device 100 preferably has a 0.2% proof stress of 450 MPa or more.
  • the 0.2% proof stress of the base material 10 is 450 MPa or more, distortion can be generated with good reproducibility, and the base material 10 can stably have excellent load detection performance.
  • the 0.2% proof stress of the base material 10 is preferably 480 MPa or more.
  • the upper limit of the 0.2% proof stress of the base material 10 of the load detection device 100 according to the embodiment of the present invention is not set from the viewpoint of the load detection device 100 having excellent load detection performance.
  • the base material 10 of the load detection device 100 becomes a heat-treated product by firing for forming the insulating layers 21a and 21b.
  • precipitation phases such as carbonitrides and intermetallic compounds such as ⁇ phase may occur. Since such a precipitated phase is generally hard, heat-treated products of duplex stainless steel may tend to have lower mechanical properties such as impact resistance than non-heat-treated products.
  • the duplex stainless steel constituting the base material 10 of the load detection device 100 according to one embodiment of the present invention has the above-described composition, even if it is a heat-treated product, it is difficult for mechanical properties to deteriorate. As described above, it can have excellent elongation at break.
  • the base material 10 of the load detection device 100 includes vehicle body attachment portions 11 a and 11 b, elastic deformation portions 12 a and 12 b, a seat attachment portion 13, and a protrusion 14. Prepare.
  • the vehicle body attachment portions 11a and 11b are respectively end portions in the X1-X2 direction of the base material 10 in plan view (the vehicle body attachment portion 11a is the X1-X2 direction end portion on the X1 side, and the vehicle body attachment portion 11b is the X1-X2 direction end portion on the X2 side. Part).
  • the vehicle body attachment portions 11a and 11b in the base material 10 of the load detection device 100 shown in FIG. 1 are provided with through holes having openings on the surfaces having the X1-X2 direction and the Y1-Y2 direction as in-plane directions. Yes.
  • washers 50 and 60 are fixed to both surfaces of the vehicle body attachment portions 11 a and 11 b, and the load detection device 100 uses these through holes to detect the vehicle body. It can be attached.
  • the elastic deformation portions 12a and 12b are respectively located closer to the center in plan view from the vehicle body attachment portion 11a or the vehicle body attachment portion 11b (the X1-X2 direction X2 side for the vehicle body attachment portion 11a, and the X1-X2 direction for the vehicle body attachment portion 11b. X1 side).
  • the elastic deformation portions 12 a and 12 b are provided with a detection unit 20 on the bottom surface (Z1-Z2 direction Z2 side surface in FIG. 2) side of the base material 10.
  • the seat mounting portion 13 is a portion connected to the center from the elastic deformation portions 12a and 12b (X1-X2 direction X2 side for the elastic deformation portion 12a and X1-X2 direction X1 side for the elastic deformation portion 12b). 1 is located in the center of the X1-X2 direction in plan view. Therefore, in the base material 10 shown in FIG. 1, the elastic deformation portions 12 a and 12 b are located between the two vehicle body attachment portions 11 a and 11 b and the seat attachment portion 13, respectively.
  • the seat mounting portion 13 in the base material 10 of the load detecting device 100 shown in FIG. 1 is provided with a through hole having an opening on a surface having the X1-X2 direction and the Y1-Y2 direction as in-plane directions. As shown in FIG. 2, when the load detection device 100 is in use, the bolt 30 inserted through the through hole is fixed by the nut 40, and the load detection device 100 can be attached to the seat using the bolt 30.
  • the detection unit 20 of the load detection device 100 can output an electrical signal corresponding to the deformation of the substrate 10.
  • the detection unit 20 includes insulating layers 21a and 21b made of a fired body formed on the substrate 10 and strain sensor circuits 22a and 22b formed on the insulating layers 21a and 21b.
  • the load detection device 100 shown in FIG. 1 has portions where the insulating layers 21a and 21b are exposed in a plan view, but is not limited to this.
  • the insulating layers 21a and 21b are interposed on the base material 10 at the portions where the strain sensor circuits 22a and 22b of the detection unit 20 are located, so that the detection unit 20 including the strain sensor circuits 22a and 22b is appropriately attached to the base material 10.
  • the insulating layers 21a and 21b may not be visible in plan view as long as they are fixed. Further, the insulating layers 21a and 21b may extend integrally to the seat mounting portion 13 side.
  • the material constituting the insulating layers 21a and 21b contains one or more inorganic materials such as glass and ceramics from the viewpoint of excellent mechanical strength or excellent repeatability.
  • the insulating layers 21a and 21b are made of an inorganic material
  • the insulating layers 21a and 21b are fired bodies.
  • the strain sensor circuits 22a and 22b are formed of a base material via the insulating layer 21 made of the fired body. Since the top 10 is formed, the strain detection elements 23a1, 23a2, 23b1, 23b2 in the strain sensor circuits 22a, 22b can detect the strain generated in the substrate 10 with high accuracy.
  • the firing temperature for forming the fired bodies of the insulating layers 21a and 21b is 800 ° C. or higher.
  • the duplex stainless steel constituting the base material 10 has a reduction in mechanical characteristics, particularly elongation at break, even if it is a heat-treated product by setting the firing temperature to 800 ° C. or higher. Can be suppressed.
  • a non-limiting example includes a case where the firing temperature for forming the insulating layers 21a and 21b is preferably 800 ° C. or higher and 900 ° C. or lower, and a case where 820 ° C. or higher and 850 ° C. or lower is preferable. .
  • strain sensor circuits 22a and 22b are provided in the elastically deforming portions 12a and 12b of the base material 10, respectively.
  • the elastically deforming portions 12a and 12b are located between the vehicle body mounting portions 11a and 11b and the seat mounting portion 13, so that the relative position of the seat to the vehicle body fluctuated. In such a case, the fluctuation tends to appear as deformation of the elastic deformation portions 12a and 12b. Therefore, by disposing the elastically deforming portions 12a and 12b between the vehicle body mounting portions 11a and 11b and the seat mounting portion 13, fluctuations in the relative position of the seat with respect to the vehicle body are efficiently detected by the strain sensor circuits 22a and 22b. can do.
  • each of the strain sensor circuits 22a and 22b includes two strain detection elements.
  • the strain sensor circuit 22a includes strain detection elements 23a1 and 23a2
  • the strain sensor circuit 22b includes strain detection elements 23b1 and 23b2.
  • These two strain sensor circuits are arranged so as to be aligned along the X1-X2 direction. By arranging in this way, a bridge circuit using four strain detection elements can be configured, and detection sensitivity and detection performance (linearity) can be improved.
  • a signal processing device 24 for processing electrical signals from the strain sensor circuits 22a and 22b is provided on the protruding portion 14.
  • the strain sensor circuits 22a and 22b output an electrical signal corresponding to the degree of deformation of the base material 10 caused by the change in the relative position of the seat with respect to the vehicle body, and the signal processing device 24 outputs from the strain sensor circuits 22a and 22b.
  • An electric signal is input, and an electric signal based on deformation of the substrate 10 is output as an output signal of the detection unit 20.
  • Examples of the electrical signal output from the signal processing device 24 include an electrical signal related to the weight of the occupant of the seat, a control signal for determining whether another device operates according to the weight of the occupant, and the like. .
  • a connector for transmitting an electrical signal output from the signal processing device 24 to the outside may be attached to the protruding portion 14.
  • the detection unit 20 is provided on the surface opposite to the (Z1-Z2 direction Z2 side) (Z1-Z2 direction Z1 side), but is not limited thereto.
  • the detection unit 20 may be provided on the plane (the Z1-Z2 direction Z1 side surface) of the substrate 10.
  • Example 2 A duplex stainless steel slab having the following composition (the balance being Fe and inevitable impurities) was melted and hot-rolled to obtain a hot-rolled steel sheet having a thickness of 5.0 mm. This hot-rolled steel sheet is subjected to solution heat treatment / pickling at 1050 ° C., and then subjected to solution heat treatment / pickling at 1050 ° C. to a thickness of 3 mm by cold rolling.
  • N 0.16% by mass Si: 0.29 mass%
  • P 0.024 mass%
  • No. 13B test piece specified in JIS Z2241: 2011 and No. 1 test piece specified in JIS Z2275: 1978 were prepared and obtained as pre-heat treatment test pieces.
  • the obtained pre-heat treatment test piece was heat-treated under the following conditions to obtain a post-heat treatment test piece. Temperature increase rate: 40 ° C / min Holding temperature: 850 ° C Holding time: 50 minutes Cooling rate: 40 ° C / minute
  • the mechanical properties shown in Table 1 were measured according to JIS Z2241: 2011, JIS Z2275: 1978, and the like. The measurement results are shown in Table 1.
  • the plane bending fatigue strength refers to the strength after 107 times of plane bending.
  • the load detection device can be suitably used for a seating detection device that outputs a signal for determining whether or not to activate an air bag of an automobile.

Abstract

優れた荷重検出性能と優れた耐荷重性能とを有することができる荷重検出装置として、引張強度が650MPa以上であって破断伸びが25%以上である基材10と、基材10の変形に対応する電気信号を出力する検出部20と、を備え、基材10は、Cを0.030質量%以下、Mnを2.0質量%以上4.0質量%以下、Crを20.5質量%以上21.5質量%以下、Niを1.5質量%以上2.5質量%以下、Moを0.6質量%以下、Cuを0.5質量%以上1.5質量%以下、およびNを0.15質量%以上0.20質量%含み、残部Feおよび不可避的不純物からなる二相ステンレス鋼からなり、検出部20は、800℃以上の温度で焼成することにより基材10上に設けられた絶縁層21a,21bおよび当該絶縁層21a,21b上に形成された歪センサ回路22a,22bを備えることを特徴とする荷重検出装置100が提供される。

Description

荷重検出装置
 本発明は、荷重検出装置に関する。
 上記の荷重検出装置として使用可能な歪センサの一例が、特許文献1に開示されている。かかる歪センサは、フェライト系ステンレス鋼を基材とする高弾性歪みセンサであって、Cu:0.3~3.0質量%を含むフェライト系ステンレス鋼を基材とし、この基材に800~900℃で焼成された第一の絶縁層,電極,回路パターン,歪抵抗素子,600~700℃で焼成された第二の絶縁層を順次設けていることを特徴とする。このように基材上に絶縁層を介して歪センサ回路を直接形成することにより、別途作製した歪抵抗素子を、粘着材などを用いて基材に貼付した場合に比べて、高精度な歪検出が可能とされている。
特開2005-283263号公報
 歪センサが設けられた荷重検出装置の基材は、検出性能を高める観点から0.2%耐力が高い方が好ましい。特許文献1に記載される歪センサの基材も、0.2%耐力を高めることが可能なように組成等の設計が行われている。
 しかしながら、荷重検出装置の基材は、付与された荷重に応じて歪を再現性よく発生させる機能、すなわち、起歪材としての機能(本明細書において「荷重検出性能」ともいう。)以外に、荷重検出対象となる部材を他の部材に対して適切に固定する機能(本明細書において「耐荷重性能」ともいう。)を有していることが求められる。例えば、荷重検出装置が、車両の座席に加えられる荷重を測定するためのもの、すなわち着座検出装置である場合には、車両の座席およびシートベルトを介して座席に固定される搭乗者を、車両の他の部材、例えば車両のフレーム(車体)に対して固定した状態を維持できることが求められる。特に、車両が衝突した場合には、座席の質量による慣性力と、シートベルトを介して伝わる搭乗者の質量による慣性力の両方が、荷重検出装置の基材に対して引張力として加えられることもある。このようなときであっても、基材の破壊が生じにくいことが搭乗者の安全性確保の観点から求められている。
 本発明は、優れた荷重検出性能と優れた耐荷重性能とを有することができる荷重検出装置を提供することを目的とする。
 上記の課題を解決するために提供される本発明の一態様は、引張強度が650MPa以上であって破断伸びが25%以上である基材と、前記基材の変形に基づく電気信号を出力する検出部と、を備える荷重検出装置であって、前記基材は、Cを0.030質量%以下、Mnを2.0質量%以上4.0質量%以下、Crを20.5質量%以上21.5質量%以下、Niを1.5質量%以上2.5質量%以下、Moを0.6質量%以下、Cuを0.5質量%以上1.5質量%以下、およびNを0.15質量%以上0.20質量%含み、残部Feおよび不可避的不純物からなる二相ステンレス鋼からなり、前記検出部は、800℃以上の温度で焼成することにより前記基材上に設けられた絶縁層および当該絶縁層上に形成された歪センサ回路を備えることを特徴とする荷重検出装置である。
 上記のように、基材の引張強度が650MPa以上かつ破断伸びが25%以上であることにより、弾性域を超えるような高い荷重が基材に付与されても、基材の塑性変形でとどまり破断に至りにくい。したがって、本発明に係る荷重検出装置は、優れた荷重検出性能と優れた耐荷重性能とを有することができる。
 前記基材の0.2%耐力は、450MPa以上であることが好ましい。基材の0.2%耐力が450MPa以上である場合には、再現性良く歪を発生させることができ、本発明に係る荷重検出装置は優れた荷重検出性能をより安定的に有することができる。
 前記絶縁層は焼成体からなり、歪センサ回路は焼成体からなる絶縁層を介して基材上に形成されているため、歪センサ回路内の歪検出素子は、基材に生じた歪を高精度で検出することができる。この絶縁層を焼成するために800℃以上の熱処理が施されても、本発明に係る二相ステンレス鋼からなる基材は、25%以上の破断伸びを有することができる。
 前記基材の破断伸びは35%以上であってもよい。荷重検出装置の耐荷重性能を高める観点からは基材の破断伸びは高いことが好ましく、基材の破断伸びが35%以上であれば、本発明に係る荷重検出装置は優れた耐荷重性能をより安定的に有することができる。
 前記基材は、車体取付部、前記車体取付部から連設される弾性変形部、および前記弾性変形部から連接される座席取付部を備え、前記弾性変形部に前記検出部が設けられていてもよい。
 弾性変形部に検出部が設けられていることにより、本発明に係る荷重検出装置は、優れた荷重検出性能をより安定的に有することができる。
 本発明によれば、優れた荷重検出性能と優れた耐荷重性能とを有することができる荷重検出装置が提供される。
本発明の一実施形態に係る荷重検出装置の構造を概念的に示す底面図である。 本発明の一実施形態に係る荷重検出装置の使用状態の構成を概念的に示す、正面図である。
 以下、本発明の実施形態に係る荷重検出装置について説明する。
 図1は、本発明の一実施形態に係る荷重検出装置の構造を概念的に示す底面図である。図2は、本発明の一実施形態に係る荷重検出装置の使用状態の構成を概念的に示す、正面図である。
 本発明の一実施形態に係る荷重検出装置100は、引張強度が650MPa以上であって破断伸びが25%以上である基材10と、基材10の変形に対応する電気信号を出力する検出部20と、を備える。
 基材10は、Cを0.030質量%以下、Mnを2.0質量%以上4.0質量%以下、Crを20.5質量%以上21.5質量%以下、Niを1.5質量%以上2.5質量%以下、Moを0.6質量%以下、Cuを0.5質量%以上1.5質量%以下、およびNを0.15質量%以上0.20質量%含む二相ステンレス鋼からなる。
 以下、各元素の含有量について説明する。下記の説明において、ことわりのない「%」は質量%を意味する。
 Cは鋼中に存在する不可避的な元素であり、その含有量が0.030%を超えると、熱処理時にCrと結合し炭化物が形成されて、靭性および耐食性が劣化する。Cの含有量は0.025%以下であることが好ましい。C含有量を過度に低減しようとすると製造コストが増加するため、C含有量は、0.005%以上であることが好ましく、0.010%以上であることがより好ましい。
 MnはNiと同様、γ相の化学的安定性を高め、γ相の生成を促進することで窒化物の生成を抑制する元素であるため、Mn含有量を2.0%以上とする。一方、Mn含有量を4.0%以下とすることにより、耐食性の劣化を生じにくくすることができる。耐熱性(熱処理品の機械特性の低下しにくさ)を高めることと耐食性の劣化を生じにくくすることをより安定的に実現させる観点から、Mnの含有量は、0.1%以上5.5%以下であることが好ましい。
 Crは耐食性を確保するために必要な元素であるため、Cr含有量を20.5%以上とする。一方で、Crを過度に含有すると、熱処理時にσ相の生成が促進され、熱処理品の靭性が低下しやすくなるため、Cr含有量を21.5%以下とする。
 Niはγ相を増加させる元素であり、さらに耐食性および靭性を改善するため、Ni含有量を1.5%以上とする。一方、Niは高価な元素であり、過剰に添加することはコストアップにつながるため、Ni含有量を2.5%以下とする。
 Moは耐食性の向上に有効な元素であるが、高価であり、σ相の生成を早めて熱処理品の靭性を低下させやすくするため、Mo含有量を0.6%以下とする。Mo含有量の下限は限定されないが、Moを含有させた効果をより安定的に享受する観点から、Mo含有量は0.05%以上とすることが好ましい。
 CuはNiと同様、γ相の化学的安定性を高め、γ相の生成を促進することで窒化物の生成の抑制に有効な元素であるため、Cu含有量を0.5%以上とする。一方、Cuの過度の含有は熱間加工性の低下をもたらすため、Cu含有量を1.5%以下とする。Cu含有量は、0.6%以上1.0%以下とすることが好ましい場合もある。
 Nは強度、耐食性を向上させると伴に、γ相を増加させる有効な元素であるため、N含有量を0.15%以上とする。一方で、Nは過剰な添加でγ相生成能力を上回って窒化物生成を助長してしまうため、N含有量を0.20%以下とする。
 本発明の一実施形態に係る荷重検出装置100の基材10を構成する二相ステンレス鋼は、上記元素のほか、Si,P,Sなど鋼材に不可避的に含まれる元素や、V,Ca,Wなどの金属元素を追加的に含有していてもよい。本発明の一実施形態に係る荷重検出装置100の基材10を構成する二相ステンレス鋼の残部は、Feおよび不可避的不純物からなる。
 本発明の一実施形態に係る荷重検出装置100の基材10は、引張強度が650MPa以上かつ破断伸びが25%以上である。破断伸びが25%以上であることにより、弾性域を超えるような高い荷重が基材10に付与されても、基材10の塑性変形でとどまり破断に至りにくい。したがって、かかる基材10を備える本発明の一実施形態に係る荷重検出装置100は、適切な耐荷重性能を有する。荷重検出装置100が適切な耐荷重性能を有することをより安定的に実現する観点から、基材10の引張強度は、700MPa以上であることが好ましい。本発明の一実施形態に係る荷重検出装置100の基材10の引張強度の上限は、荷重検出装置100に適切な耐荷重性能を有させる観点からは設定されない。荷重検出装置100が適切な耐荷重性能を有することをより安定的に実現する観点から、基材10の破断伸びは、30%以上であることが好ましく、35%以上であることがより好ましく、40%以上であることが特に好ましい。本発明の一実施形態に係る荷重検出装置100の基材10の破断伸びの上限は、荷重検出装置100に適切な耐荷重性能を有させる観点からは設定されない。
 本発明の一実施形態に係る荷重検出装置100の基材10は、0.2%耐力が450MPa以上であることが好ましい。基材10の0.2%耐力が450MPa以上である場合には、再現性良く歪を発生させることができ、基材10が優れた荷重検出性能を安定的に有することができる。基材10が優れた荷重検出性能を有することをより安定的に実現する観点から、基材10の0.2%耐力は、480MPa以上であることが好ましい。本発明の一実施形態に係る荷重検出装置100の基材10の0.2%耐力の上限は、荷重検出装置100が優れた荷重検出性能を有する観点からは設定されない。
 本発明の一実施形態に係る荷重検出装置100の基材10は、絶縁層21a,21bを形成するための焼成によって、熱処理品となる。二相ステンレス鋼は、熱処理を受けると、炭窒化物、σ相等の金属間化合物などの析出相が生じる場合がある。こうした析出相は一般的に硬質であるため、二相ステンレス鋼の熱処理品は、非熱処理品に比べて、耐衝撃性等の機械特性が低下する傾向を示すことがある。しかしながら、本発明の一実施形態に係る荷重検出装置100の基材10を構成する二相ステンレス鋼は前述のような組成を有するため、熱処理品であっても機械特性の低下が生じにくく、特に、上記のように、優れた破断伸びを有することができる。
 本発明の一実施形態に係る荷重検出装置100の基材10は、図1に示されるように、車体取付部11a,11b、弾性変形部12a,12b、座席取付部13、および突出部14を備える。
 車体取付部11a,11bは、それぞれ、平面視で基材10のX1-X2方向端部(車体取付部11aはX1-X2方向X1側端部、車体取付部11bはX1-X2方向X2側端部)に位置する部分である。図1に示される荷重検出装置100の基材10における車体取付部11a,11bには、X1-X2方向およびY1-Y2方向を面内方向とする面に開口部を有する貫通孔が設けられている。図2に示されるように、荷重検出装置100の使用状態では、車体取付部11a,11bのそれぞれの両面にワッシャ50,60が固着されて、荷重検出装置100はこれらの貫通孔を用いて車体と取り付け可能とされる。
 弾性変形部12a,12bは、それぞれ、車体取付部11aまたは車体取付部11bから、平面視で中央寄り(車体取付部11aについてはX1-X2方向X2側、車体取付部11bについてはX1-X2方向X1側)に連設される部分である。図1に示される基材10では、弾性変形部12a,12bは基材10の底面(図2におけるZ1-Z2方向Z2側面)側に検出部20が設けられている。
 座席取付部13は、弾性変形部12a,12bから、中央寄り(弾性変形部12aについてはX1-X2方向X2側、弾性変形部12bについてはX1-X2方向X1側)に連接される部分であって、図1に示される基材10では、平面視でX1-X2方向の中央部に位置する。したがって、図1に示される基材10において、弾性変形部12a,12bは、それぞれ、2つの車体取付部11a,11bと座席取付部13との間に位置する。図1に示される荷重検出装置100の基材10における座席取付部13には、X1-X2方向およびY1-Y2方向を面内方向とする面に開口部を有する貫通孔が設けられている。図2に示されるように、荷重検出装置100の使用状態では、この貫通孔を挿通するボルト30がナット40により固定されて、荷重検出装置100はこのボルト30を用いて座席と取り付け可能とされる。
 本発明の一実施形態に係る荷重検出装置100の検出部20は、基材10の変形に対応する電気信号を出力することができる。検出部20は、基材10上に形成された焼成体からなる絶縁層21a,21bおよび絶縁層21a,21b上に形成された歪センサ回路22a,22bを備える。図1に示される荷重検出装置100は、平面視で絶縁層21a,21bが露出している部分を有しているが、これに限定されない。絶縁層21a,21bは基材10上で検出部20の歪センサ回路22a,22bが位置する部分に介在して、歪センサ回路22a,22bを備える検出部20を基材10に対して適切に固定していればよく、平面視では絶縁層21a,21bを視認できなくてもよい。また、絶縁層21a,21bは座席取付部13側に延在して一体であってもよい。
 本発明において、絶縁層21a,21bを構成する材料は、機械的強度に優れる、あるいは繰り返し特性に優れる観点から、ガラス、セラミックスなどの無機系材料を1種類以上含有する。絶縁層21a,21bが無機系材料からなる場合には、絶縁層21a,21bは焼成体であり、この場合には、歪センサ回路22a,22bは焼成体からなる絶縁層21を介して基材上10に形成されているため、歪センサ回路22a,22b内の歪検出素子23a1,23a2,23b1,23b2が、基材10に生じた歪を高精度で検出することが可能である。絶縁層21a,21bの焼成体を形成する際の焼成温度は800℃以上とする。前述のように、本発明の一実施形態に係る基材10を構成する二相ステンレス鋼は、焼成温度を800℃以上とすることにより、熱処理品であっても機械特性、特に破断伸びの低下を抑制することができる。限定されない例として、絶縁層21a,21bを形成するための焼成温度を、800℃以上900℃以下とすることが好ましい場合が挙げられ、820℃以上850℃以下とすることが好ましい場合が挙げられる。
 図1に示される荷重検出装置100では、基材10における弾性変形部12a,12bのそれぞれに、歪センサ回路22a,22bが設けられている。前述のように、図1に示される荷重検出装置100では弾性変形部12a,12bは車体取付部11a,11bと座席取付部13との間に位置するため、車体に対する座席の相対位置が変動した場合に、その変動は弾性変形部12a,12bの変形として表れやすい。したがって、弾性変形部12a,12bを車体取付部11a,11bと座席取付部13との間に配置することによって、車体に対する座席の相対位置の変動を、歪センサ回路22a,22bにより効率的に検出することができる。
 図1に示される荷重検出装置100では、歪センサ回路22a,22bのそれぞれは、2つの歪検出素子を備える。具体的には、歪センサ回路22aは歪検出素子23a1,23a2を備え、歪センサ回路22bは歪検出素子23b1,23b2を備える。これらの2つの歪センサ回路の配置は、X1-X2方向に沿って並ぶように配置される。このように配置することにより、4つの歪検出素子を用いたブリッジ回路を構成することができ、検出感度や検出性能(線形性)を高めることが可能となる。
 図1に示される荷重検出装置100の基材10は、X1-X2方向中央部においてY1-Y2方向Y1向きに突出する突出部14を備える。この突出部14上には、歪センサ回路22a,22bからの電気信号を処理するための信号処理装置24が設けられている。歪センサ回路22a,22bは、車体に対する座席の相対位置の変動により生じた基材10の変形の程度に対応する電気信号を出力し、信号処理装置24は、この歪センサ回路22a,22bからの電気信号を入力として、基材10の変形に基づく電気信号を、検出部20の出力信号として出力する。信号処理装置24から出力される電気信号として、座席の搭乗者の重量に関する電気信号、搭乗者の重量に応じて他の装置が動作するか否かを決定するための制御信号などが例示される。信号処理装置24から出力される電気信号を外部に伝達するためのコネクタが突出部14に取り付けられていてもよい。
 なお、図1に示される荷重検出装置100では、基材10の底面(Z1-Z2方向Z2側面)上、すなわち、図2に示されるように、使用状態においてボルト30のねじ部が突出する側(Z1-Z2方向Z2側)と反対側(Z1-Z2方向Z1側)の面上に検出部20が設けられているが、これに限定されない。基材10の平面(Z1-Z2方向Z1側面)上に検出部20が設けられていてもよい。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 以下、以下に実施例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 次の組成(残部はFeおよび不可避的不純物)を有する二相ステンレスの鋳片を溶製し、熱間圧延を行い板厚5.0mmの熱延鋼板とした。この熱延鋼板を1050℃で溶体化熱処理・酸洗した後、冷間圧延で3mm厚として1050℃の溶体化熱処理・酸洗を実施したものである。
  C:0.020質量%
  Mn:3.19質量%
  Cr:20.93質量%
  Ni:2.21質量%
  Mo:0.28質量%
  Cu:1.05質量%
  N:0.16質量%
  Si:0.29質量%
  S:0.001質量%
  P:0.024質量%
 得られた熱間圧延鋼板から、JIS Z2241:2011に規定される13B号試験片およびJIS Z2275:1978に規定される1号試験片を作製し、熱処理前試験片として得た。得られた熱処理前試験片に対して次の条件で熱処理を行い、熱処理後試験片を得た。
  昇温速度:40℃/分
  保持温度:850℃
  保持時間:50分間
  冷却速度:40℃/分
 熱処理前試験片および熱処理後試験片について、JIS Z2241:2011、JIS Z2275:1978などに準拠して、表1に示される機械特性を測定した。測定結果を表1に示す。なお、本明細書において、平面曲げ疲労強度とは、107回平面曲げを行った後の強度をいう。
(比較例)
 二相ステンレス鋼材(SUS329J4L(25Cr-6Ni-3Mo-N-LC))から、JIS Z2241:2011に規定される13B号試験片およびJIS Z2275:1978に規定される1号試験片を作製し、熱処理前試験片として得た。得られた熱処理前試験片に対して実施例と同じ条件で熱処理を行い、熱処理後試験片を得た。
 熱処理前試験片および熱処理後試験片について、JIS Z2241:2011、JIS Z2275:1978などに準拠して、表1に示される機械特性を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明に係る荷重検出装置は、自動車のエアバックを作動させるか否かを判断するための信号を出力する着座検出装置に好適に使用されうる。
100…荷重検出装置
10…基材
11a,11b…車体取付部
12a,12b…弾性変形部
13…座席取付部
14…突出部
20…検出部
21a,21b…絶縁層
22a,22b…歪センサ回路
23a1,23a2,23b1,23b2…歪検出素子
24…信号処理装置
30…ボルト
40…ナット
50,60…ワッシャ

Claims (4)

  1.  引張強度が650MPa以上であって破断伸びが25%以上である基材と、前記基材の変形に基づく電気信号を出力する検出部と、を備える荷重検出装置であって、
     前記基材は、Cを0.030質量%以下、Mnを2.0質量%以上4.0質量%以下、Crを20.5質量%以上21.5質量%以下、Niを1.5質量%以上2.5質量%以下、Moを0.6質量%以下、Cuを0.5質量%以上1.5質量%以下、およびNを0.15質量%以上0.20質量%含む二相ステンレス鋼からなり、
     前記検出部は、800℃以上の温度で焼成することにより前記基材上に設けられた絶縁層および当該絶縁層上に形成された歪センサ回路を備えること
    を特徴とする荷重検出装置。
  2.  前記基材の0.2%耐力が450MPa以上である、請求項1に記載の荷重検出装置。
  3.  前記基材の破断伸びが35%以上である、請求項1から3のいずれか一項に記載の荷重検出装置。
  4.  前記基材は、車体取付部、前記車体取付部から連設される弾性変形部、および前記弾性変形部から連接される座席取付部を備え、前記弾性変形部に前記歪センサ回路が設けられている、請求項1から3のいずれか一項に記載の荷重検出装置。
PCT/JP2016/067719 2015-09-14 2016-06-15 荷重検出装置 WO2017047179A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017539718A JP6430027B2 (ja) 2015-09-14 2016-06-15 荷重検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015180588 2015-09-14
JP2015-180588 2015-09-14

Publications (1)

Publication Number Publication Date
WO2017047179A1 true WO2017047179A1 (ja) 2017-03-23

Family

ID=58288628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067719 WO2017047179A1 (ja) 2015-09-14 2016-06-15 荷重検出装置

Country Status (2)

Country Link
JP (1) JP6430027B2 (ja)
WO (1) WO2017047179A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114153A (ja) * 2001-10-04 2003-04-18 Alps Electric Co Ltd 歪みセンサおよびその製造方法
JP2009128153A (ja) * 2007-11-22 2009-06-11 Aisin Seiki Co Ltd 車両用のシート用荷重検知センサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020166385A1 (en) * 2001-05-08 2002-11-14 Terry Bloom Strain sensor incorporating a steel substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114153A (ja) * 2001-10-04 2003-04-18 Alps Electric Co Ltd 歪みセンサおよびその製造方法
JP2009128153A (ja) * 2007-11-22 2009-06-11 Aisin Seiki Co Ltd 車両用のシート用荷重検知センサ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Stainless Reien Kohan", NIPPON STEEL & SUMIKIN STAINLESS STEEL CORP., September 2014 (2014-09-01), Tokyo, pages 4 - 5 *
"Stainless Steel Plates & Sheets", NIPPON STEEL & SUMIKIN STAINLESS STEEL CORP., June 2013 (2013-06-01), Tokyo, pages 10 - 11 *

Also Published As

Publication number Publication date
JP6430027B2 (ja) 2018-11-28
JPWO2017047179A1 (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
Koyama et al. Hydrogen-induced delayed fracture of a Fe–22Mn–0.6 C steel pre-strained at different strain rates
Podgornik et al. Microstructure refinement and its effect on properties of spring steel
Ha et al. Tensile deformation of a low density Fe–27Mn–12Al–0.8 C duplex steel in association with ordered phases at ambient temperature
JP6520516B2 (ja) オーステナイト系耐熱合金部材
US20160334289A1 (en) High gage factor strain gage
Yoo et al. Effect of stacking faults on the ductility of Fe-18Mn-1.5 Al-0.6 C twinning-induced plasticity steel at low temperatures
Calik et al. Effect of carbon content on the mechanical properties of medium carbon steels
CN104302794B (zh) 导电性及应力松弛特性优异的铜合金板
Beladi et al. Effect of carbon content on the recrystallization kinetics of Nb-steels
JP5001520B2 (ja) ひずみ検出センサー基板用ステンレス鋼およびそれを用いたセンサー
JP6738671B2 (ja) ステンレス鋼板
JP6477007B2 (ja) 板ばね及びその製造方法
JP6430027B2 (ja) 荷重検出装置
RU2601037C2 (ru) Высококремнистые двухфазные стали с улучшенной пластичностью
ZA200908581B (en) Steel alloy for machine components
KR20150074697A (ko) 저 니켈 함유 스테인리스강
CN110088323A (zh) 包含双相不锈钢的制品及其用途
Barros et al. Comparison between hot rolled and powder metallurgy–Hot Isostatic Pressing (PM-HIP) processed duplex stainless steel UNS S32205
US6733694B2 (en) Electric resistance material
Kustov et al. Twinning in Ni–Fe–Ga–Co shape memory alloy: Temperature scaling beyond the Seeger model
JP2008195976A (ja) バネ用鋼板およびそれを用いたバネ材並びにそれらの製造法
CN107805757A (zh) 一种低合金钢管及其制备方法
KR20090052957A (ko) 고크롬 페라이트계 스테인리스강의 연신율 제어방법
JP3958280B2 (ja) 重量検知センサー基板用高Al含有フェライト系ステンレス鋼板およびその製造方法並びに重量検知センサー
JP4331731B2 (ja) オーステナイト系ステンレス鋼およびその鋼で製造されたばね

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846052

Country of ref document: EP

Kind code of ref document: A1