WO2017047069A1 - 光源モジュール、および光源モジュールの製造方法 - Google Patents
光源モジュール、および光源モジュールの製造方法 Download PDFInfo
- Publication number
- WO2017047069A1 WO2017047069A1 PCT/JP2016/004141 JP2016004141W WO2017047069A1 WO 2017047069 A1 WO2017047069 A1 WO 2017047069A1 JP 2016004141 W JP2016004141 W JP 2016004141W WO 2017047069 A1 WO2017047069 A1 WO 2017047069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- package
- source module
- light source
- wavelength
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0977—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0239—Combinations of electrical or optical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02438—Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
- H01S5/02446—Cooling being separate from the laser chip cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/141—External cavity lasers using a wavelength selective device, e.g. a grating or etalon
- H01S5/142—External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02216—Butterfly-type, i.e. with electrode pins extending horizontally from the housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02251—Out-coupling of light using optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02407—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
- H01S5/02415—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
Definitions
- the present invention relates to a light source module and a method for manufacturing the light source module, and more particularly to a variable wavelength light source module and a method for manufacturing the light source module.
- An optical communication module is a key device of an optical network system, and with the increase in the speed and capacity of the system, there is a demand for downsizing and speeding up of the optical communication module.
- digital coherent communication using multi-level phase modulation is generally used as a means for solving the increase in capacity of optical communication systems, and transceivers for digital coherent communication are downsized as the capacity of the system increases. It has been demanded.
- Patent Document 1 proposes a laser module that provides a wavelength monitor, monitors the wavelength of an optical signal, and keeps it constant as a technique for realizing wavelength stabilization of the optical signal.
- the first thermo module 102 and the second thermo module 112 are arranged close to each other on the bottom surface of the package 101.
- the first thermo module 102 and the second thermo module 112 are devices capable of heating and cooling their surfaces according to the magnitude and direction of the current to be energized, and are configured with Peltier elements or the like.
- a base 103 is placed on the first thermo module 102, and further, a semiconductor laser element 106, and a parallel lens 105 that converts laser light output from the front end face of the semiconductor laser element 106 into parallel light. Is provided. Further, on the base 103, an optical isolator 104 for blocking reflected return light from the optical fiber 121 side, and a parallel lens 107 for collimating the monitoring laser light output from the rear end face of the semiconductor laser element 106. And are provided.
- a base 113 is placed on the second thermo module 112, and a prism 114 for branching the monitoring laser light output from the rear end face of the semiconductor laser element 106 in two directions at a predetermined angle is further provided thereon. Is provided. Further, on the base 113, a first photodetector 116 that receives one light branched by the prism 114, and a first light that passes through the optical filter 115 among the other light branched by the prism 114 is received. 2 photodetectors 117.
- the optical filter 115 is composed of a Fabry-Perot etalon. The optical filter 115, the first photodetector 116, the second photodetector 117, and the like constitute a wavelength monitor unit of Patent Document 1.
- the first thermo module 102 under the semiconductor laser element 106 is controlled in order to change the temperature of the semiconductor laser element 106.
- the semiconductor laser element 106 is temperature-controlled by the first thermo module 102 and is feedback-controlled so as to suppress wavelength changes.
- Laser light output from the front end face of the semiconductor laser element 106 is converted into parallel light by the parallel lens 105 and coupled to the optical fiber 121 by the condenser lens 120.
- the light transmitted to the optical fiber 121 is used for a desired application as signal light.
- the laser module of Patent Document 1 also includes an optical filter 115 configured with a Fabry-Perot etalon in the wavelength monitor unit.
- the semiconductor laser element 106 and the wavelength monitor unit are arranged on the bottom surface of the package 101 via the first thermo module 102, the second thermo module 112, the bases 103, 113, and the like. . For this reason, there is a problem that the package area of the laser module becomes large.
- an object of the present invention is to provide a light source module capable of reducing the package area while ensuring wavelength accuracy, and a manufacturing method for such a light source module.
- a light source module comprises: an optical amplifying unit; a wavelength monitoring unit that detects a wavelength change of light output from the optical amplifying unit; and the optical amplifying unit and the wavelength monitoring unit. And a reflecting means disposed between the reflecting means for reflecting the light output from the light amplifying means to the wavelength monitoring means.
- the light source module manufacturing method includes a light source that houses at least a light amplifying means and a wavelength monitoring means for detecting a wavelength change of the light output from the light amplifying means in a package including a bottom portion and a lid portion.
- a method of manufacturing a module Fixing the light amplification means to the bottom side of the package; Fixing the wavelength monitoring means to the lid side of the package; A part of the reflection means for reflecting the light output from the light amplification means to the wavelength monitor means is fixed to the bottom side of the package, The other part of the reflection means for reflecting the light output from the light amplification means to the wavelength monitor means is fixed to the lid portion side of the package, The optical amplification means, the wavelength monitoring means, and the reflection means are accommodated between the bottom portion of the package and the lid portion of the package.
- FIG. 1 is a block diagram for demonstrating the light source module by embodiment of the highest concept of this invention.
- A is a top view of the upper surface side of the light source module by one Embodiment of this invention
- (b) is a top view of the bottom face side of this light source module.
- It is a side view of the light source module by one Embodiment of this invention.
- It is a side view for demonstrating the laser module of patent document 1.
- FIG. 1 is a block diagram illustrating a light source module according to an embodiment of the highest concept of the present invention.
- the light source module of FIG. 1 includes an optical amplifying means 31 and a wavelength monitoring means 33 for detecting a wavelength change of the light output from the optical amplifying means 31. Further, the light source module of FIG. 1 includes a reflection unit 32 that is disposed between the optical amplification unit 31 and the wavelength monitoring unit 33 and reflects the light output from the optical amplification unit 31 to the wavelength monitoring unit 33.
- the wavelength monitoring unit 33 is arranged so that the optical axis of light output from the optical amplification unit 31 and the optical axis of light input to the wavelength monitoring unit 33 are substantially parallel to each other. Be placed.
- the wavelength monitoring unit 33 is arranged so that the optical amplification unit 31 and the wavelength monitoring unit 33 overlap in a plan view.
- the reflecting means 32 is arranged so that the optical axis of the light output from the optical amplifying means 31 and the optical axis of the light input to the wavelength monitoring means 33 are substantially parallel to each other. Be placed.
- FIG. 2A is a plan view of the upper surface side of the light source module according to the embodiment of the present invention
- FIG. 2B is a plan view of the lower surface side of the light source module
- FIG. 3 is a side view of a light source module according to an embodiment of the present invention.
- the light source module of the present embodiment is a variable wavelength light source module in which a ring resonator is configured by a PLC (Planar Lightwave Circuit) and this is used as an external resonator.
- the wavelength variable light source module is equipped with a wavelength locker using an etalon element.
- the light source module of this embodiment includes an SOA (Semiconductor Optical Amplifier) element 5 as an example of an optical amplifying unit.
- SOA semiconductor Optical Amplifier
- a Peltier element 8 as a temperature control element is arranged on the bottom surface of the package 1 of the light source module.
- the surface of the Peltier element 8 can be heated and cooled depending on the magnitude and direction of the current to be applied.
- a carrier 2 is placed on the Peltier element 8, and a PLC type wavelength tunable filter 3, a collimating lens 6, an isolator 7, and a thermistor 9 are further provided thereon.
- the PLC type wavelength tunable filter 3 is a variable external resonator, and the ring resonator 4 is configured by PLC (Planar Lightwave Circuit).
- the thermistor 9 is a PLC temperature detector.
- a wiring substrate 10 is provided on the package 1 side of the light source module.
- the collimating lens 6 couples light from the front end face of the SOA element 5 to the optical fiber 21.
- the isolator 7 blocks reflected return light from the optical fiber 21 side and transmits light only in the direction of the optical fiber 21.
- the laser light output from the front end face, which is the front light output of the SOA element 5, is collimated by the collimator lens 6 and is coupled to the optical fiber 21 by the condenser lens 22.
- the light transmitted to the optical fiber 21 is used for a desired application as signal light.
- a Peltier element 17 as a temperature control element is arranged on a package LID 20 as an example of a lid of the package.
- a carrier 12 is placed on the Peltier element 17, and further, a tap prism 13, an etalon element 14, and a monitor PD for branching the monitoring laser light output from the rear end face of the SOA element 5 in two directions.
- (Photo Detector) 15 is provided.
- the monitor PD 15 includes a first monitor PD 15a and a second monitor PD 15b.
- the second monitor PD 15 b receives one light branched by the tap prism 13.
- the other light branched by the tap prism 13 enters the etalon element 14.
- the first monitor PD 15 a receives the light transmitted through the etalon element 14. Further, a thermistor 16 is provided on the carrier 12. The etalon element 14, the first monitor PD 15a, the second monitor PD 15b, and the like constitute wavelength monitor means of the light source module. A wiring board 18 is provided on the package LID 20 side of the light source module.
- the light source module of the present embodiment includes a mirror 11 as an example of a reflecting means.
- the mirror 11 includes a first mirror 11a that reflects the laser beam output from the rear end face of the SOA element 5, and a second mirror 11b that reflects the light reflected by the first mirror 11a to the wavelength monitoring means. .
- the laser light output from the rear end face of the SOA element 5 passes through the PLC-type wavelength tunable filter 3, is reflected by the first mirror 11a, is reflected by the second mirror 11b, and the optical path is turned back to the wavelength monitoring means.
- the first mirror 11 a is fixed to the bottom side of the package 1. Specifically, the first mirror 11 a is mounted on the carrier 2 of the package 1.
- the second mirror 11b is fixed to the package LID 20 side. Specifically, the second mirror 11b is mounted on the carrier 12 on the package LID20 side.
- the light source module of this embodiment includes a ceramic wiring column 19 as an example of a columnar wiring between the package 1 and the package LID 20.
- the wiring of the elements and circuit components mounted on the package LID 20 side, for example, the wiring of the wiring board 18 is electrically connected to the wiring on the package 1 side via the ceramic wiring column 19.
- the PLC type wavelength tunable filter 3 and the SOA element 5 constitute a wavelength tunable light source function, and an optical output of a desired wavelength can be output to the optical fiber 21 side.
- the optical fiber 21 guides light to the outside of the package 1.
- accurate wavelength control can be performed by calculating the monitor values of the monitor PDs 15a and 15b before and after transmission through the etalon element 14 of the rear light output.
- the light output to the etalon element 14 mounted on the package LID 20 side is enabled by turning the rear light output of the PLC type wavelength tunable filter 3 back to the upper surface side by the mirror 11.
- the SOA element 5 and the ring resonator 4 are mounted on the PLC type wavelength tunable filter 3.
- PLC type wavelength tunable filter 3 Such a PLC type wavelength tunable filter 3, the first mirror 11a, the collimating lens 6, the isolator 7 and the like are mounted on the carrier 2. Then, the carrier 2 is fixed to the bottom of the package 1 through the Peltier element 8.
- the tap prism 13, the etalon element 14, the first monitor PD 15a, the second monitor PD 15b, and the second mirror 11b are mounted on the carrier 12. Then, the carrier 12 is fixed to the package LID 20 via the Peltier element 17.
- the opening of the package 1 is closed with the package LID 20, and the package 1 is hermetically sealed.
- the ceramic wiring pillar 19 it is possible to obtain an electrical connection to a circuit component fixed to the package LID 20 side.
- energization to the wiring board 18 and the Peltier element 17 on the package LID 20 side can be performed from the package 1 side via the ceramic wiring column 19.
- the ceramic wiring pillar 19 is mounted in advance on the bottom surface side of the package 1 and solder-mounted when the package LID 20 is closed, the electrical connection to the circuit components fixed on the package LID 20 side can be simplified. It can be realized in the manufacturing process.
- the etalon element 14 is arranged on the package LID 20 side, and the rear light output is folded back to the upper surface side by the mirror 11 for this arrangement.
- the space of the package can be used efficiently, and the light source module can be configured with a small area. According to the present embodiment, it is possible to realize a light source module having a small package area while ensuring wavelength accuracy using the etalon element 14.
- the rear light output of a PLC type tunable filter or SOA element is output in the plane direction, and the etalon element and peripheral components are arranged in the same plane as the SOA element.
- a light source module with a small package area can be realized.
- the mirror 11 includes a first mirror 11a that reflects the light output from the PLC-type wavelength tunable filter 3, and a second mirror 11b that reflects the light reflected by the first mirror 11a to the wavelength monitoring means. is doing.
- the first mirror 11a is fixed to the bottom side of the package 1, and the second mirror 11b is fixed to the package LID20 side.
- the ceramic wiring pillar 19 By using the ceramic wiring pillar 19, it is possible to obtain an electrical connection to an element or circuit component fixed to the package LID 20 side. For example, energization to the wiring board 18 and the Peltier element 17 on the package LID 20 side can be performed from the package 1 side via the ceramic wiring column 19.
- the present invention is not limited to this.
- the back light output of the PLC type wavelength tunable filter 3 is folded back to the upper surface side by the mirror 11 so that light output to the etalon element 14 mounted on the package LID 20 side is enabled. Went.
- the direction and position of the optical axis and each element are described with reference to the upper surface of the carrier 2, and the position and direction of each element are relatively defined, and are limited to the arrangement of this embodiment. is not.
- the return direction of the rear light output of the PLC type wavelength tunable filter 3 by the mirror 11 is a relative one determined by the positional relationship between the elements constituting the light source module, and is not limited to this.
- the mirror 11 by arranging the mirror 11 so that the rear light output of the PLC type wavelength tunable filter 3 is folded back to the left side, the right side, or the lower surface side, the effect of reducing the package area while ensuring the wavelength accuracy by the etalon element 14 can be obtained. can get.
- a light source module in which the etalon element 14 is disposed on the left side, the right side, or the lower surface side with respect to the main surface of the PLC type wavelength tunable filter 3 can also be configured.
- the light source module shown in FIGS. 2 and 3 is a light source module having an element arrangement in which the installation surface of the light source module itself and the main surface of the PLC type tunable filter 3 are parallel.
- the rear light output of the PLC type wavelength tunable filter 3 is folded back to the left side, the right side, or the lower side. It is conceivable to arrange the mirror 11 as described above. Even in the light source module having such an element arrangement, the same effect as that of the above-described embodiment is expected.
- Additional remark 1 It arrange
- the light source module of Additional remark 1 further including the package which accommodates the said optical amplification means, the said wavelength monitoring means, and the said reflection means.
- the wavelength monitoring unit is arranged so that the optical axis of the light output from the optical amplification unit and the optical axis of the light input to the wavelength monitoring unit are substantially parallel to each other.
- the light source module according to any one of supplementary notes 1 to 3.
- the said reflection means is arrange
- the light source module according to any one of 1 to appendix 4.
- the package includes a bottom portion and a lid portion, the optical amplification means is fixed to the bottom portion side of the package, and the wavelength monitoring means is fixed to the lid portion side of the package.
- the light source module according to any one of 1 to Appendix 5.
- the said reflection means contains the 1st mirror which reflects the light output from the said optical amplification means, and the 2nd mirror which reflects the light which the said 1st mirror reflected to the said wavelength monitor means, The light source module according to any one of supplementary notes 1 to 6.
- the first mirror of the reflection means is fixed to the bottom side of the package, and the second mirror of the reflection means is fixed to the lid side of the package.
- Light source module (Additional remark 9) It further includes the columnar wiring fixed between the bottom part of the package and the lid part of the package, and electrically connected to a circuit component fixed to the lid part side of the package.
- the light source module according to any one of 6 to appendix 8. (Additional remark 10) It is a manufacturing method of the light source module which accommodates at least the light amplifying means and the wavelength monitor means for detecting the wavelength change of the light output from the light amplifying means in the package including the bottom and the lid.
- the light amplifying means is fixed to the bottom side of the package, the wavelength monitoring means is fixed to the lid side of the package, and the light output from the light amplifying means is reflected to the wavelength monitoring means.
- a part of the means is fixed to the bottom side of the package, and another part of the reflecting means for reflecting the light output from the light amplifying means to the wavelength monitor means is fixed to the lid side of the package.
- a method of manufacturing a light source module wherein the light amplification means, the wavelength monitoring means, and the reflection means are accommodated between the bottom portion of the package and the lid portion of the package. (Appendix 11) After fixing the columnar wiring to the bottom side of the package, the columnar wiring is connected to the lid side of the package by fixing the bottom of the package and the lid of the package.
- the method for manufacturing a light source module according to appendix 10 wherein the light source module is electrically connected to a circuit component to be fixed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
上記光増幅手段を上記パッケージの上記底部側に固定し、
上記波長モニタ手段を上記パッケージの上記蓋部側に固定し、
上記光増幅手段が出力する光を上記波長モニタ手段へと反射する反射手段の一部を上記パッケージの上記底部側に固定し、
上記光増幅手段が出力する光を上記波長モニタ手段へと反射する反射手段の他の一部を上記パッケージの上記蓋部側に固定し、
上記パッケージの上記底部と上記パッケージの上記蓋部との間に、上記光増幅手段、上記波長モニタ手段、および上記反射手段を収容する。
本発明の第1実施形態による光源モジュール、および光源モジュールの製造方法について、説明する。図2(a)は本発明の一実施形態による光源モジュールの上面側の平面図であり、図2(b)はこの光源モジュールの底面側の平面図である。図3は、本発明の一実施形態による光源モジュールの側面図である。
本実施形態の光源モジュールは、PLC(Planar Lightwave Circuit)でリング共振器を構成し、これを外部共振器として利用した波長可変光源モジュールである。波長可変光源モジュールは、エタロン素子による波長ロッカを搭載する。
次に本実施形態の光源モジュールの製造方法について、主要部分を説明する。
本実施形態では、エタロン素子14をパッケージLID20側に配置し、この配置のためにミラー11で後方光出力を上面側に折り返した配置としている。モジュール内部に搭載する素子を上下面に配置することで、パッケージの空間を効率良く使うことができ、小さな面積で光源モジュールを構成することができる。本実施形態によれば、エタロン素子14を用いて波長精度を確保しながら、パッケージ面積が小さい光源モジュールを実現することができる。
以上本発明の好ましい実施形態について説明したが、本発明はこれに限られるものではない。たとえば、上述した実施形態では、PLC型波長可変フィルタ3の後方光出力をミラー11にて上面側に折り返すことでパッケージLID20側に搭載されたエタロン素子14への光出力を可能とする、といった説明を行った。光軸や各要素の向きや位置は、キャリア2の上面を基準として説明するもので、各要素の位置や向きは相対的に規定されるものであり、この実施形態の配置に限定されるものではない。
(付記1)光増幅手段と、前記光増幅手段から出力された光の波長変化を検出する波長モニタ手段と、前記光増幅手段と波長モニタ手段との間に配置され、前記光増幅手段から出力された光を前記波長モニタ手段へと反射する反射手段とを、含む光源モジュール。
(付記2)前記光増幅手段、前記波長モニタ手段、および前記反射手段を収容するパッケージをさらに含む、付記1に記載の光源モジュール。
(付記3)平面視で光増幅手段とオーバーラップするように、前記波長モニタ手段が配置される、付記1または付記2に記載の光源モジュール。
(付記4)前記光増幅手段から出力される光の光軸と、前記波長モニタ手段に入力される光の光軸とがお互いに略平行となるように、前記波長モニタ手段が配置される、付記1乃至付記3のいずれか一つに記載の光源モジュール。
(付記5)前記光増幅手段から出力される光の光軸と、前記波長モニタ手段に入力される光の光軸とがお互いに略平行となるように、前記反射手段が配置される、付記1乃至付記4のいずれか一つに記載の光源モジュール。
(付記6)前記パッケージは、底部と蓋部とを含み、前記光増幅手段は前記パッケージの前記底部側に固定され、前記波長モニタ手段は前記パッケージの前記蓋部側に固定されている、付記1乃至付記5のいずれか一つに記載の光源モジュール。
(付記7)前記反射手段は、前記光増幅手段から出力された光を反射する第1ミラーと、前記第1ミラーが反射した光を前記波長モニタ手段へと反射する第2ミラーとを含む、付記1乃至付記6のいずれか一つに記載の光源モジュール。
(付記8)前記反射手段の前記第1ミラーは前記パッケージの前記底部側に固定され、前記反射手段の前記第2ミラーは前記パッケージの前記蓋部側に固定されている、付記7に記載の光源モジュール。
(付記9)前記パッケージの前記底部と前記パッケージの前記蓋部との間に固定され、前記パッケージの前記蓋部側に固定される回路部品に電気的に接続される柱状配線をさらに含む、付記6乃至付記8のいずれか一つに記載の光源モジュール。
(付記10)底部と蓋部とを含むパッケージに、光増幅手段と、前記光増幅手段から出力された光の波長変化を検出する波長モニタ手段とを少なくとも収容する光源モジュールの製造方法であって、前記光増幅手段を前記パッケージの前記底部側に固定し、前記波長モニタ手段を前記パッケージの前記蓋部側に固定し、前記光増幅手段が出力する光を前記波長モニタ手段へと反射する反射手段の一部を前記パッケージの前記底部側に固定し、前記光増幅手段が出力する光を前記波長モニタ手段へと反射する反射手段の他の一部を前記パッケージの前記蓋部側に固定し、前記パッケージの前記底部と前記パッケージの前記蓋部との間に、前記光増幅手段、前記波長モニタ手段、および前記反射手段を収容する、光源モジュールの製造方法。
(付記11)前記パッケージの前記底部側に柱状配線を固定した後で、前記パッケージの前記底部と前記パッケージの前記蓋部とを固定することにより、前記柱状配線を前記パッケージの前記蓋部側に固定される回路部品に電気的に接続する、付記10に記載の光源モジュールの製造方法。
2、12 キャリア
3 PLC型波長可変フィルタ
4 リング共振器
5 SOA素子
6 コリメートレンズ
7 アイソレータ
8、17 ペルチェ素子
9、16 サーミスタ
10、18 配線基板
11 ミラー
11a 第1ミラー
11b 第2ミラー
13 タッププリズム
14 エタロン素子
15 モニタPD
15a 第1モニタPD
15b 第2モニタPD
19 セラミック配線柱
20 パッケージLID
21 光ファイバ
22 集光レンズ
Claims (10)
- 光増幅手段と、前記光増幅手段から出力された光の波長変化を検出する波長モニタ手段と、前記光増幅手段と波長モニタ手段との間に配置され、前記光増幅手段から出力された光を前記波長モニタ手段へと反射する反射手段とを、含む光源モジュール。
- 前記光増幅手段、前記波長モニタ手段、および前記反射手段を収容するパッケージをさらに含む、請求項1に記載の光源モジュール。
- 平面視で光増幅手段とオーバーラップするように、前記波長モニタ手段が配置される、請求項1または請求項2に記載の光源モジュール。
- 前記光増幅手段から出力される光の光軸と、前記波長モニタ手段に入力される光の光軸とがお互いに略平行となるように、前記波長モニタ手段が配置される、請求項1乃至請求項3のいずれか一項に記載の光源モジュール。
- 前記光増幅手段から出力される光の光軸と、前記波長モニタ手段に入力される光の光軸とがお互いに略平行となるように、前記反射手段が配置される、請求項1乃至請求項4のいずれか一項に記載の光源モジュール。
- 前記パッケージは、底部と蓋部とを含み、
前記光増幅手段は前記パッケージの前記底部側に固定され、前記波長モニタ手段は前記パッケージの前記蓋部側に固定されている、請求項1乃至請求項5のいずれか一項に記載の光源モジュール。 - 前記反射手段は、前記光増幅手段から出力された光を反射する第1ミラーと、前記第1ミラーが反射した光を前記波長モニタ手段へと反射する第2ミラーとを含む、請求項1乃至請求項6のいずれか一項に記載の光源モジュール。
- 前記反射手段の前記第1ミラーは前記パッケージの前記底部側に固定され、前記反射手段の前記第2ミラーは前記パッケージの前記蓋部側に固定されている、請求項7に記載の光源モジュール。
- 前記パッケージの前記底部と前記パッケージの前記蓋部との間に固定され、前記パッケージの前記蓋部側に固定される回路部品に電気的に接続される柱状配線をさらに含む、請求項6乃至請求項8のいずれか一項に記載の光源モジュール。
- 底部と蓋部とを含むパッケージに、光増幅手段と、前記光増幅手段から出力された光の波長変化を検出する波長モニタ手段とを少なくとも収容する光源モジュールの製造方法であって、
前記光増幅手段を前記パッケージの前記底部側に固定し、
前記波長モニタ手段を前記パッケージの前記蓋部側に固定し、
前記光増幅手段が出力する光を前記波長モニタ手段へと反射する反射手段の一部を前記パッケージの前記底部側に固定し、
前記光増幅手段が出力する光を前記波長モニタ手段へと反射する反射手段の他の一部を前記パッケージの前記蓋部側に固定し、
前記パッケージの前記底部と前記パッケージの前記蓋部との間に、前記光増幅手段、前記波長モニタ手段、および前記反射手段を収容する、光源モジュールの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680053336.1A CN108028508A (zh) | 2015-09-15 | 2016-09-12 | 光源模块及制造光源模块的方法 |
JP2017540500A JP6610670B2 (ja) | 2015-09-15 | 2016-09-12 | 光源モジュール、および光源モジュールの製造方法 |
US15/757,525 US10644478B2 (en) | 2015-09-15 | 2016-09-12 | Light source module and method of manufacturing light source module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-181946 | 2015-09-15 | ||
JP2015181946 | 2015-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047069A1 true WO2017047069A1 (ja) | 2017-03-23 |
Family
ID=58288568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004141 WO2017047069A1 (ja) | 2015-09-15 | 2016-09-12 | 光源モジュール、および光源モジュールの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10644478B2 (ja) |
JP (1) | JP6610670B2 (ja) |
CN (1) | CN108028508A (ja) |
WO (1) | WO2017047069A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111448722A (zh) * | 2017-12-12 | 2020-07-24 | 住友电气工业株式会社 | 光学组件 |
WO2023275913A1 (ja) * | 2021-06-28 | 2023-01-05 | 三菱電機株式会社 | 光半導体装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113540960A (zh) * | 2020-04-21 | 2021-10-22 | 山东华光光电子股份有限公司 | 一种夹心式边发射激光器封装结构及其制作方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002043686A (ja) * | 2000-05-16 | 2002-02-08 | Furukawa Electric Co Ltd:The | 半導体レーザ装置、半導体レーザモジュール及び光送信器 |
JP2003258364A (ja) * | 2001-12-25 | 2003-09-12 | Sumitomo Electric Ind Ltd | 光通信装置 |
JP2004117730A (ja) * | 2002-09-25 | 2004-04-15 | Matsushita Electric Works Ltd | 光通信モジュールおよびその製造方法 |
JP2008193003A (ja) * | 2007-02-07 | 2008-08-21 | Nec Corp | 光モジュール |
JP2009146992A (ja) * | 2007-12-12 | 2009-07-02 | Nec Corp | 光モジュール |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6650667B2 (en) * | 2000-05-16 | 2003-11-18 | The Furukawa Electric Co., Ltd. | Semiconductor laser apparatus, semiconductor laser module, optical transmitter and wavelength division multiplexing communication system |
JP4190749B2 (ja) | 2001-09-28 | 2008-12-03 | 古河電気工業株式会社 | レーザモジュール |
US20130266264A1 (en) | 2010-12-21 | 2013-10-10 | Nec Corporation | Optical module and method for making the same |
-
2016
- 2016-09-12 CN CN201680053336.1A patent/CN108028508A/zh active Pending
- 2016-09-12 WO PCT/JP2016/004141 patent/WO2017047069A1/ja active Application Filing
- 2016-09-12 US US15/757,525 patent/US10644478B2/en active Active
- 2016-09-12 JP JP2017540500A patent/JP6610670B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002043686A (ja) * | 2000-05-16 | 2002-02-08 | Furukawa Electric Co Ltd:The | 半導体レーザ装置、半導体レーザモジュール及び光送信器 |
JP2003258364A (ja) * | 2001-12-25 | 2003-09-12 | Sumitomo Electric Ind Ltd | 光通信装置 |
JP2004117730A (ja) * | 2002-09-25 | 2004-04-15 | Matsushita Electric Works Ltd | 光通信モジュールおよびその製造方法 |
JP2008193003A (ja) * | 2007-02-07 | 2008-08-21 | Nec Corp | 光モジュール |
JP2009146992A (ja) * | 2007-12-12 | 2009-07-02 | Nec Corp | 光モジュール |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111448722A (zh) * | 2017-12-12 | 2020-07-24 | 住友电气工业株式会社 | 光学组件 |
CN111448722B (zh) * | 2017-12-12 | 2023-07-28 | 住友电气工业株式会社 | 光学组件 |
WO2023275913A1 (ja) * | 2021-06-28 | 2023-01-05 | 三菱電機株式会社 | 光半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017047069A1 (ja) | 2018-06-07 |
US10644478B2 (en) | 2020-05-05 |
JP6610670B2 (ja) | 2019-11-27 |
US20180248335A1 (en) | 2018-08-30 |
CN108028508A (zh) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8145017B2 (en) | Optical module | |
US20120127715A1 (en) | Laser module | |
WO2002090881A1 (en) | Single etalon wavelength locker | |
JP6610670B2 (ja) | 光源モジュール、および光源モジュールの製造方法 | |
KR100587950B1 (ko) | 파장분할다중화시스템에서 다중파장 안정화를 위한 광출력-파장 감시 장치 | |
US9325154B2 (en) | Wavelength-tunable laser apparatus having wavelength measuring function | |
US12100933B2 (en) | Tunable laser assembly including tunable semiconductor laser apparatus and photodetector outside of laser housing | |
WO2004025789A2 (en) | Miniaturized internal laser stabilizing apparatus with inline output for fiber optic applications | |
JP2009004525A (ja) | 光源モジュール | |
EP1158630A1 (en) | Wavelength stabilization monitor and method for adjusting the working wavelength of said monitor | |
JP2014165384A (ja) | 半導体レーザモジュール | |
WO2019122877A1 (en) | Optical source and method of assembling an optical source | |
US8831054B2 (en) | Wavelength locking of a laser device | |
KR100343310B1 (ko) | 파장안정화 광원 모듈 | |
US20060062259A1 (en) | Optical wavelength control system and related method of assembly | |
JP6507659B2 (ja) | 光モジュールの製造方法 | |
JP4780694B2 (ja) | 波長安定化レーザモジュール及びレーザ光の波長安定化方法 | |
CN111194528B (zh) | 波长监测和/或控制设备、包括所述设备的激光系统及操作所述设备的方法 | |
WO2018159373A1 (ja) | 光モジュールおよび光監視装置 | |
JP2011077069A (ja) | 波長可変光源モジュール及び波長可変光送信器 | |
WO2023145764A1 (ja) | 光モジュール | |
CN110718851B (zh) | 光学组件 | |
JP2004095920A (ja) | 半導体レーザ装置及びその製造方法並びに半導体レーザモジュール | |
JP2010232337A (ja) | 光源装置 | |
US20040160999A1 (en) | Unit for stabilizing wavelength of laser beams and module for stabilizing wavelength of optical signal in optical communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16845943 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017540500 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15757525 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16845943 Country of ref document: EP Kind code of ref document: A1 |