WO2017047069A1 - 光源モジュール、および光源モジュールの製造方法 - Google Patents

光源モジュール、および光源モジュールの製造方法 Download PDF

Info

Publication number
WO2017047069A1
WO2017047069A1 PCT/JP2016/004141 JP2016004141W WO2017047069A1 WO 2017047069 A1 WO2017047069 A1 WO 2017047069A1 JP 2016004141 W JP2016004141 W JP 2016004141W WO 2017047069 A1 WO2017047069 A1 WO 2017047069A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
package
source module
light source
wavelength
Prior art date
Application number
PCT/JP2016/004141
Other languages
English (en)
French (fr)
Inventor
功 冨田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201680053336.1A priority Critical patent/CN108028508A/zh
Priority to JP2017540500A priority patent/JP6610670B2/ja
Priority to US15/757,525 priority patent/US10644478B2/en
Publication of WO2017047069A1 publication Critical patent/WO2017047069A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • H01S5/02446Cooling being separate from the laser chip cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Definitions

  • the present invention relates to a light source module and a method for manufacturing the light source module, and more particularly to a variable wavelength light source module and a method for manufacturing the light source module.
  • An optical communication module is a key device of an optical network system, and with the increase in the speed and capacity of the system, there is a demand for downsizing and speeding up of the optical communication module.
  • digital coherent communication using multi-level phase modulation is generally used as a means for solving the increase in capacity of optical communication systems, and transceivers for digital coherent communication are downsized as the capacity of the system increases. It has been demanded.
  • Patent Document 1 proposes a laser module that provides a wavelength monitor, monitors the wavelength of an optical signal, and keeps it constant as a technique for realizing wavelength stabilization of the optical signal.
  • the first thermo module 102 and the second thermo module 112 are arranged close to each other on the bottom surface of the package 101.
  • the first thermo module 102 and the second thermo module 112 are devices capable of heating and cooling their surfaces according to the magnitude and direction of the current to be energized, and are configured with Peltier elements or the like.
  • a base 103 is placed on the first thermo module 102, and further, a semiconductor laser element 106, and a parallel lens 105 that converts laser light output from the front end face of the semiconductor laser element 106 into parallel light. Is provided. Further, on the base 103, an optical isolator 104 for blocking reflected return light from the optical fiber 121 side, and a parallel lens 107 for collimating the monitoring laser light output from the rear end face of the semiconductor laser element 106. And are provided.
  • a base 113 is placed on the second thermo module 112, and a prism 114 for branching the monitoring laser light output from the rear end face of the semiconductor laser element 106 in two directions at a predetermined angle is further provided thereon. Is provided. Further, on the base 113, a first photodetector 116 that receives one light branched by the prism 114, and a first light that passes through the optical filter 115 among the other light branched by the prism 114 is received. 2 photodetectors 117.
  • the optical filter 115 is composed of a Fabry-Perot etalon. The optical filter 115, the first photodetector 116, the second photodetector 117, and the like constitute a wavelength monitor unit of Patent Document 1.
  • the first thermo module 102 under the semiconductor laser element 106 is controlled in order to change the temperature of the semiconductor laser element 106.
  • the semiconductor laser element 106 is temperature-controlled by the first thermo module 102 and is feedback-controlled so as to suppress wavelength changes.
  • Laser light output from the front end face of the semiconductor laser element 106 is converted into parallel light by the parallel lens 105 and coupled to the optical fiber 121 by the condenser lens 120.
  • the light transmitted to the optical fiber 121 is used for a desired application as signal light.
  • the laser module of Patent Document 1 also includes an optical filter 115 configured with a Fabry-Perot etalon in the wavelength monitor unit.
  • the semiconductor laser element 106 and the wavelength monitor unit are arranged on the bottom surface of the package 101 via the first thermo module 102, the second thermo module 112, the bases 103, 113, and the like. . For this reason, there is a problem that the package area of the laser module becomes large.
  • an object of the present invention is to provide a light source module capable of reducing the package area while ensuring wavelength accuracy, and a manufacturing method for such a light source module.
  • a light source module comprises: an optical amplifying unit; a wavelength monitoring unit that detects a wavelength change of light output from the optical amplifying unit; and the optical amplifying unit and the wavelength monitoring unit. And a reflecting means disposed between the reflecting means for reflecting the light output from the light amplifying means to the wavelength monitoring means.
  • the light source module manufacturing method includes a light source that houses at least a light amplifying means and a wavelength monitoring means for detecting a wavelength change of the light output from the light amplifying means in a package including a bottom portion and a lid portion.
  • a method of manufacturing a module Fixing the light amplification means to the bottom side of the package; Fixing the wavelength monitoring means to the lid side of the package; A part of the reflection means for reflecting the light output from the light amplification means to the wavelength monitor means is fixed to the bottom side of the package, The other part of the reflection means for reflecting the light output from the light amplification means to the wavelength monitor means is fixed to the lid portion side of the package, The optical amplification means, the wavelength monitoring means, and the reflection means are accommodated between the bottom portion of the package and the lid portion of the package.
  • FIG. 1 is a block diagram for demonstrating the light source module by embodiment of the highest concept of this invention.
  • A is a top view of the upper surface side of the light source module by one Embodiment of this invention
  • (b) is a top view of the bottom face side of this light source module.
  • It is a side view of the light source module by one Embodiment of this invention.
  • It is a side view for demonstrating the laser module of patent document 1.
  • FIG. 1 is a block diagram illustrating a light source module according to an embodiment of the highest concept of the present invention.
  • the light source module of FIG. 1 includes an optical amplifying means 31 and a wavelength monitoring means 33 for detecting a wavelength change of the light output from the optical amplifying means 31. Further, the light source module of FIG. 1 includes a reflection unit 32 that is disposed between the optical amplification unit 31 and the wavelength monitoring unit 33 and reflects the light output from the optical amplification unit 31 to the wavelength monitoring unit 33.
  • the wavelength monitoring unit 33 is arranged so that the optical axis of light output from the optical amplification unit 31 and the optical axis of light input to the wavelength monitoring unit 33 are substantially parallel to each other. Be placed.
  • the wavelength monitoring unit 33 is arranged so that the optical amplification unit 31 and the wavelength monitoring unit 33 overlap in a plan view.
  • the reflecting means 32 is arranged so that the optical axis of the light output from the optical amplifying means 31 and the optical axis of the light input to the wavelength monitoring means 33 are substantially parallel to each other. Be placed.
  • FIG. 2A is a plan view of the upper surface side of the light source module according to the embodiment of the present invention
  • FIG. 2B is a plan view of the lower surface side of the light source module
  • FIG. 3 is a side view of a light source module according to an embodiment of the present invention.
  • the light source module of the present embodiment is a variable wavelength light source module in which a ring resonator is configured by a PLC (Planar Lightwave Circuit) and this is used as an external resonator.
  • the wavelength variable light source module is equipped with a wavelength locker using an etalon element.
  • the light source module of this embodiment includes an SOA (Semiconductor Optical Amplifier) element 5 as an example of an optical amplifying unit.
  • SOA semiconductor Optical Amplifier
  • a Peltier element 8 as a temperature control element is arranged on the bottom surface of the package 1 of the light source module.
  • the surface of the Peltier element 8 can be heated and cooled depending on the magnitude and direction of the current to be applied.
  • a carrier 2 is placed on the Peltier element 8, and a PLC type wavelength tunable filter 3, a collimating lens 6, an isolator 7, and a thermistor 9 are further provided thereon.
  • the PLC type wavelength tunable filter 3 is a variable external resonator, and the ring resonator 4 is configured by PLC (Planar Lightwave Circuit).
  • the thermistor 9 is a PLC temperature detector.
  • a wiring substrate 10 is provided on the package 1 side of the light source module.
  • the collimating lens 6 couples light from the front end face of the SOA element 5 to the optical fiber 21.
  • the isolator 7 blocks reflected return light from the optical fiber 21 side and transmits light only in the direction of the optical fiber 21.
  • the laser light output from the front end face, which is the front light output of the SOA element 5, is collimated by the collimator lens 6 and is coupled to the optical fiber 21 by the condenser lens 22.
  • the light transmitted to the optical fiber 21 is used for a desired application as signal light.
  • a Peltier element 17 as a temperature control element is arranged on a package LID 20 as an example of a lid of the package.
  • a carrier 12 is placed on the Peltier element 17, and further, a tap prism 13, an etalon element 14, and a monitor PD for branching the monitoring laser light output from the rear end face of the SOA element 5 in two directions.
  • (Photo Detector) 15 is provided.
  • the monitor PD 15 includes a first monitor PD 15a and a second monitor PD 15b.
  • the second monitor PD 15 b receives one light branched by the tap prism 13.
  • the other light branched by the tap prism 13 enters the etalon element 14.
  • the first monitor PD 15 a receives the light transmitted through the etalon element 14. Further, a thermistor 16 is provided on the carrier 12. The etalon element 14, the first monitor PD 15a, the second monitor PD 15b, and the like constitute wavelength monitor means of the light source module. A wiring board 18 is provided on the package LID 20 side of the light source module.
  • the light source module of the present embodiment includes a mirror 11 as an example of a reflecting means.
  • the mirror 11 includes a first mirror 11a that reflects the laser beam output from the rear end face of the SOA element 5, and a second mirror 11b that reflects the light reflected by the first mirror 11a to the wavelength monitoring means. .
  • the laser light output from the rear end face of the SOA element 5 passes through the PLC-type wavelength tunable filter 3, is reflected by the first mirror 11a, is reflected by the second mirror 11b, and the optical path is turned back to the wavelength monitoring means.
  • the first mirror 11 a is fixed to the bottom side of the package 1. Specifically, the first mirror 11 a is mounted on the carrier 2 of the package 1.
  • the second mirror 11b is fixed to the package LID 20 side. Specifically, the second mirror 11b is mounted on the carrier 12 on the package LID20 side.
  • the light source module of this embodiment includes a ceramic wiring column 19 as an example of a columnar wiring between the package 1 and the package LID 20.
  • the wiring of the elements and circuit components mounted on the package LID 20 side, for example, the wiring of the wiring board 18 is electrically connected to the wiring on the package 1 side via the ceramic wiring column 19.
  • the PLC type wavelength tunable filter 3 and the SOA element 5 constitute a wavelength tunable light source function, and an optical output of a desired wavelength can be output to the optical fiber 21 side.
  • the optical fiber 21 guides light to the outside of the package 1.
  • accurate wavelength control can be performed by calculating the monitor values of the monitor PDs 15a and 15b before and after transmission through the etalon element 14 of the rear light output.
  • the light output to the etalon element 14 mounted on the package LID 20 side is enabled by turning the rear light output of the PLC type wavelength tunable filter 3 back to the upper surface side by the mirror 11.
  • the SOA element 5 and the ring resonator 4 are mounted on the PLC type wavelength tunable filter 3.
  • PLC type wavelength tunable filter 3 Such a PLC type wavelength tunable filter 3, the first mirror 11a, the collimating lens 6, the isolator 7 and the like are mounted on the carrier 2. Then, the carrier 2 is fixed to the bottom of the package 1 through the Peltier element 8.
  • the tap prism 13, the etalon element 14, the first monitor PD 15a, the second monitor PD 15b, and the second mirror 11b are mounted on the carrier 12. Then, the carrier 12 is fixed to the package LID 20 via the Peltier element 17.
  • the opening of the package 1 is closed with the package LID 20, and the package 1 is hermetically sealed.
  • the ceramic wiring pillar 19 it is possible to obtain an electrical connection to a circuit component fixed to the package LID 20 side.
  • energization to the wiring board 18 and the Peltier element 17 on the package LID 20 side can be performed from the package 1 side via the ceramic wiring column 19.
  • the ceramic wiring pillar 19 is mounted in advance on the bottom surface side of the package 1 and solder-mounted when the package LID 20 is closed, the electrical connection to the circuit components fixed on the package LID 20 side can be simplified. It can be realized in the manufacturing process.
  • the etalon element 14 is arranged on the package LID 20 side, and the rear light output is folded back to the upper surface side by the mirror 11 for this arrangement.
  • the space of the package can be used efficiently, and the light source module can be configured with a small area. According to the present embodiment, it is possible to realize a light source module having a small package area while ensuring wavelength accuracy using the etalon element 14.
  • the rear light output of a PLC type tunable filter or SOA element is output in the plane direction, and the etalon element and peripheral components are arranged in the same plane as the SOA element.
  • a light source module with a small package area can be realized.
  • the mirror 11 includes a first mirror 11a that reflects the light output from the PLC-type wavelength tunable filter 3, and a second mirror 11b that reflects the light reflected by the first mirror 11a to the wavelength monitoring means. is doing.
  • the first mirror 11a is fixed to the bottom side of the package 1, and the second mirror 11b is fixed to the package LID20 side.
  • the ceramic wiring pillar 19 By using the ceramic wiring pillar 19, it is possible to obtain an electrical connection to an element or circuit component fixed to the package LID 20 side. For example, energization to the wiring board 18 and the Peltier element 17 on the package LID 20 side can be performed from the package 1 side via the ceramic wiring column 19.
  • the present invention is not limited to this.
  • the back light output of the PLC type wavelength tunable filter 3 is folded back to the upper surface side by the mirror 11 so that light output to the etalon element 14 mounted on the package LID 20 side is enabled. Went.
  • the direction and position of the optical axis and each element are described with reference to the upper surface of the carrier 2, and the position and direction of each element are relatively defined, and are limited to the arrangement of this embodiment. is not.
  • the return direction of the rear light output of the PLC type wavelength tunable filter 3 by the mirror 11 is a relative one determined by the positional relationship between the elements constituting the light source module, and is not limited to this.
  • the mirror 11 by arranging the mirror 11 so that the rear light output of the PLC type wavelength tunable filter 3 is folded back to the left side, the right side, or the lower surface side, the effect of reducing the package area while ensuring the wavelength accuracy by the etalon element 14 can be obtained. can get.
  • a light source module in which the etalon element 14 is disposed on the left side, the right side, or the lower surface side with respect to the main surface of the PLC type wavelength tunable filter 3 can also be configured.
  • the light source module shown in FIGS. 2 and 3 is a light source module having an element arrangement in which the installation surface of the light source module itself and the main surface of the PLC type tunable filter 3 are parallel.
  • the rear light output of the PLC type wavelength tunable filter 3 is folded back to the left side, the right side, or the lower side. It is conceivable to arrange the mirror 11 as described above. Even in the light source module having such an element arrangement, the same effect as that of the above-described embodiment is expected.
  • Additional remark 1 It arrange
  • the light source module of Additional remark 1 further including the package which accommodates the said optical amplification means, the said wavelength monitoring means, and the said reflection means.
  • the wavelength monitoring unit is arranged so that the optical axis of the light output from the optical amplification unit and the optical axis of the light input to the wavelength monitoring unit are substantially parallel to each other.
  • the light source module according to any one of supplementary notes 1 to 3.
  • the said reflection means is arrange
  • the light source module according to any one of 1 to appendix 4.
  • the package includes a bottom portion and a lid portion, the optical amplification means is fixed to the bottom portion side of the package, and the wavelength monitoring means is fixed to the lid portion side of the package.
  • the light source module according to any one of 1 to Appendix 5.
  • the said reflection means contains the 1st mirror which reflects the light output from the said optical amplification means, and the 2nd mirror which reflects the light which the said 1st mirror reflected to the said wavelength monitor means, The light source module according to any one of supplementary notes 1 to 6.
  • the first mirror of the reflection means is fixed to the bottom side of the package, and the second mirror of the reflection means is fixed to the lid side of the package.
  • Light source module (Additional remark 9) It further includes the columnar wiring fixed between the bottom part of the package and the lid part of the package, and electrically connected to a circuit component fixed to the lid part side of the package.
  • the light source module according to any one of 6 to appendix 8. (Additional remark 10) It is a manufacturing method of the light source module which accommodates at least the light amplifying means and the wavelength monitor means for detecting the wavelength change of the light output from the light amplifying means in the package including the bottom and the lid.
  • the light amplifying means is fixed to the bottom side of the package, the wavelength monitoring means is fixed to the lid side of the package, and the light output from the light amplifying means is reflected to the wavelength monitoring means.
  • a part of the means is fixed to the bottom side of the package, and another part of the reflecting means for reflecting the light output from the light amplifying means to the wavelength monitor means is fixed to the lid side of the package.
  • a method of manufacturing a light source module wherein the light amplification means, the wavelength monitoring means, and the reflection means are accommodated between the bottom portion of the package and the lid portion of the package. (Appendix 11) After fixing the columnar wiring to the bottom side of the package, the columnar wiring is connected to the lid side of the package by fixing the bottom of the package and the lid of the package.
  • the method for manufacturing a light source module according to appendix 10 wherein the light source module is electrically connected to a circuit component to be fixed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

波長精度を確保しつつ、パッケージ面積が小さくすることができる光源モジュール、およびこのような光源モジュールのための製造方法を提供する。光源モジュールは、光増幅手段と、上記光増幅手段から出力された光の波長変化を検出する波長モニタ手段と、上記光増幅手段と波長モニタ手段との間に配置され、上記光増幅手段から出力された光を上記波長モニタ手段へと反射する反射手段とを、含む。

Description

光源モジュール、および光源モジュールの製造方法
 本発明は、光源モジュール、および光源モジュールの製造方法に関し、特に可変波長型の光源モジュール、および光源モジュールの製造方法に関する。
 近年、通信トラフィックの急激な増加により、伝送容量の拡大が必要となっている。光通信モジュールは光ネットワークシステムのキーデバイスであり、システムの高速・大容量化に伴い、光通信モジュールの小型化・高速化が求められている。また、光通信システムの大容量化を解決する手段として多値位相変調を利用したデジタルコヒーレント通信が一般的となっており、デジタルコヒーレント通信用のトランシーバもシステムの大容量化に伴い、小型化が求められている。
 特許文献1は、光信号の波長安定化を実現する技術として、波長モニタ部を設け、光信号の波長をモニタし、それを一定に保つレーザモジュールを提案している。図4に示すように、特許文献1のレーザモジュールでは、パッケージ101の底面上に、第1サーモモジュール102と第2サーモモジュール112とが近接して、配置されている。第1サーモモジュール102と第2サーモモジュール112は、通電させる電流の大きさおよび向きによってその表面の加熱および冷却が可能な装置であり、ペルチェ素子等で構成されるものである。
 第1サーモモジュール102上にはベース103が載置され、さらにその上に、半導体レーザ素子106と、半導体レーザ素子106の前側端面から出力されたレーザ光を平行光にする平行レンズ105と、が設けられている。さらにベース103の上に、光ファイバ121側からの反射戻り光を阻止するための光アイソレータ104と、半導体レーザ素子106の後側端面から出力されたモニタ用のレーザ光を平行にする平行レンズ107と、が設けられている。
 第2サーモモジュール112上にはベース113が載置され、さらにその上に、半導体レーザ素子106の後側端面から出力されたモニタ用のレーザ光を所定の角度で2方向に分岐させるプリズム114が設けられている。さらにベース113の上に、プリズム114によって分岐された一方の光を受光する第1の光検出器116と、プリズム114によって分岐された他方の光のうち光フィルタ115を透過した光を受光する第2の光検出器117とを、備える。光フィルタ115は、ファブリペローエタロンで構成されている。光フィルタ115、第1の光検出器116、や第2の光検出器117などは、特許文献1の波長モニタ部を構成している。
 特許文献1のレーザモジュールでは、半導体レーザ素子106の後側端面から出力されたモニタ用のレーザ光について、第1の光検出器116と、光フィルタ115を透過した光を受光する第2の光検出器117とから、波長のずれを検出する。そして波長のずれを補正するように、例えば、半導体レーザ素子106を温度変化させるため、半導体レーザ素子106下部の第1サーモモジュール102を制御する。半導体レーザ素子106は、第1サーモモジュール102によって温度調節され、波長変化を抑制するように、フィードバック制御される。
 半導体レーザ素子106の前側端面から出力されたレーザ光は、平行レンズ105によって平行光にされ、集光レンズ120によって光ファイバ121に結合される。光ファイバ121に伝送された光は、信号光として所望の用途に利用される。
特開2003-110190号公報
 上述した光通信用レーザモジュールでは、波長精度を確保するためエタロン素子を搭載することが、一般的である。このような光通信用レーザモジュールでは、モジュール内部の搭載部品が多いために、パッケージ面積が大きくなってしまう、という課題があった。
 特許文献1のレーザモジュールも、波長モニタ部にファブリペローエタロンで構成された光フィルタ115を含む。特許文献1のレーザモジュールでは、半導体レーザ素子106と波長モニタ部とが、第1サーモモジュール102や第2サーモモジュール112、ベース103、113などを介して、パッケージ101の底面上に配置されている。このため、レーザモジュールのパッケージ面積が大きくなってしまう、という課題があった。
 したがって本発明の目的は、波長精度を確保しつつ、パッケージ面積が小さくすることができる光源モジュール、およびこのような光源モジュールのための製造方法を提供することにある。
 前記目的を達成するため、本発明に係る光源モジュールは、光増幅手段と、上記光増幅手段から出力された光の波長変化を検出する波長モニタ手段と、上記光増幅手段と波長モニタ手段との間に配置され、上記光増幅手段から出力された光を上記波長モニタ手段へと反射する反射手段とを、含む。
 本発明に係る光源モジュールの製造方法は、底部と蓋部とを含むパッケージに、光増幅手段と、上記光増幅手段から出力された光の波長変化を検出する波長モニタ手段とを少なくとも収容する光源モジュールの製造方法であって、
 上記光増幅手段を上記パッケージの上記底部側に固定し、
 上記波長モニタ手段を上記パッケージの上記蓋部側に固定し、
 上記光増幅手段が出力する光を上記波長モニタ手段へと反射する反射手段の一部を上記パッケージの上記底部側に固定し、
 上記光増幅手段が出力する光を上記波長モニタ手段へと反射する反射手段の他の一部を上記パッケージの上記蓋部側に固定し、
 上記パッケージの上記底部と上記パッケージの上記蓋部との間に、上記光増幅手段、上記波長モニタ手段、および上記反射手段を収容する。
 本発明によれば、波長精度を確保しつつ、パッケージ面積が小さい光源モジュールを実現できる。
本発明の最上位概念の実施形態による光源モジュールを説明するための構成図である。 (a)は本発明の一実施形態による光源モジュールの上面側の平面図であり、(b)はこの光源モジュールの底面側の平面図である。 本発明の一実施形態による光源モジュールの側面図である。 特許文献1のレーザモジュールを説明するための側面図である。
 本発明の好ましい実施形態について説明する前に、本発明の最上位概念の実施形態による光源モジュールについて、説明する。図1は、本発明の最上位概念の実施形態による光源モジュールを説明するための構成図である。
 図1の光源モジュールは、光増幅手段31と、光増幅手段31から出力された光の波長変化を検出する波長モニタ手段33とを、含む。さらに図1の光源モジュールは、光増幅手段31と波長モニタ手段33との間に配置され、光増幅手段31から出力された光を波長モニタ手段33へと反射する反射手段32とを、含む。
 図1の光源モジュールでは、例えば光増幅手段31から出力される光の光軸と、波長モニタ手段33に入力される光の光軸とがお互いに略平行となるように、波長モニタ手段33が配置される。言い換えると、平面視で光増幅手段31と波長モニタ手段33とがオーバーラップするように、波長モニタ手段33が配置される。また図1の光源モジュールでは例えば、光増幅手段31から出力される光の光軸と、波長モニタ手段33に入力される光の光軸とがお互いに略平行となるように、反射手段32が配置される。
 これにより、波長モニタ手段33を用いて波長精度を確保しつつ、パッケージ面積が小さい光源モジュールを実現できる。以下、本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。
 〔第1実施形態〕
 本発明の第1実施形態による光源モジュール、および光源モジュールの製造方法について、説明する。図2(a)は本発明の一実施形態による光源モジュールの上面側の平面図であり、図2(b)はこの光源モジュールの底面側の平面図である。図3は、本発明の一実施形態による光源モジュールの側面図である。
 (構成)
 本実施形態の光源モジュールは、PLC(Planar Lightwave Circuit)でリング共振器を構成し、これを外部共振器として利用した波長可変光源モジュールである。波長可変光源モジュールは、エタロン素子による波長ロッカを搭載する。
 本実施形態の光源モジュールは、光増幅手段の一例としてのSOA(Semiconductor Optical Amplifier)素子5を含む。
 図2(b)および図3に示すように、光源モジュールのパッケージ1の底面上に、温度制御素子としてのペルチェ素子8が、配置されている。ペルチェ素子8は、通電させる電流の大きさおよび向きによってその表面の加熱および冷却が可能である。ペルチェ素子8上にはキャリア2が載置され、さらにその上に、PLC型波長可変フィルタ3、コリメートレンズ6、アイソレータ7、サーミスタ9が設けられている。PLC型波長可変フィルタ3は可変外部共振器であり、PLC(Planar Lightwave Circuit)でリング共振器4を構成している。サーミスタ9は、PLCの温度検知器である。光源モジュールのパッケージ1側には、配線基板10が設けられている。
 コリメートレンズ6は、SOA素子5の前側端面からの光を光ファイバ21に結合させる。アイソレータ7は、光ファイバ21側からの反射戻り光を阻止し、光ファイバ21方向にのみ光を透過させる。SOA素子5の前方光出力である、前側端面から出力されたレーザ光は、コリメートレンズ6によって平行光にされ、集光レンズ22によって光ファイバ21に結合される。光ファイバ21に伝送された光は、信号光として所望の用途に利用される。
 図2(a)および図3に示すように、パッケージの蓋部の一例としてのパッケージLID20上に、温度制御素子としてのペルチェ素子17が、配置されている。ペルチェ素子17上にはキャリア12が載置され、さらにその上に、SOA素子5の後側端面から出力されたモニタ用のレーザ光を2方向に分岐させるタッププリズム13、エタロン素子14、モニタPD(Photo Detector)15が、設けられている。モニタPD15は、第1モニタPD15aと第2モニタPD15bとを含む。第2モニタPD15bは、タッププリズム13によって分岐された一方の光を受光する。エタロン素子14には、タッププリズム13によって分岐された他方の光が入射する。第1モニタPD15aは、エタロン素子14を透過した光を受光する。さらにキャリア12上にはサーミスタ16が設けられている。エタロン素子14、第1モニタPD15a、および第2モニタPD15bなどは、光源モジュールの波長モニタ手段を構成している。光源モジュールのパッケージLID20側には、配線基板18が設けられている。
 さらに本実施形態の光源モジュールは、反射手段の一例としてのミラー11を含む。ミラー11は、SOA素子5の後側端面から出力されたレーザ光を反射する第1ミラー11aと、第1ミラー11aが反射した光を波長モニタ手段へと反射する第2ミラー11bとを、含む。SOA素子5の後側端面から出力されたレーザ光はPLC型波長可変フィルタ3を経由し、第1ミラー11aで反射され、第2ミラー11bで反射されて光路が折り返され、波長モニタ手段へと導かれる。そして、図2(b)および図3に示すように、第1ミラー11aはパッケージ1の底部側に固定されている。具体的には、第1ミラー11aをパッケージ1のキャリア2上に搭載している。そして、図2(a)および図3に示すように、第2ミラー11bはパッケージLID20側に固定されている。具体的には、第2ミラー11bをパッケージLID20側のキャリア12上に搭載している。
 さらに本実施形態の光源モジュールでは、パッケージ1とパッケージLID20との間に、柱状配線の一例としてのセラミック配線柱19を含む。パッケージLID20側に搭載される素子や回路部品の配線、例えば配線基板18の配線は、セラミック配線柱19を経由してパッケージ1側の配線に電気的に接続される。
 本実施形態の光源モジュールでは、PLC型波長可変フィルタ3とSOA素子5とで波長可変光源機能を構成し、所望の波長の光出力を光ファイバ21側へ出力することができる。光ファイバ21はパッケージ1の外部に光を導く。また、後方光出力のエタロン素子14の透過前後のモニタPD15a、15bのモニタ値を演算することにより、正確な波長制御を行うことができる。
 本実施形態の光源モジュールでは、PLC型波長可変フィルタ3の後方光出力をミラー11にて上面側に折り返すことで、パッケージLID20側に搭載されたエタロン素子14への光出力を可能としている。
 (製造方法)
 次に本実施形態の光源モジュールの製造方法について、主要部分を説明する。
 PLC型波長可変フィルタ3にSOA素子5やリング共振器4を搭載する。このようなPLC型波長可変フィルタ3や、第1ミラー11a、コリメートレンズ6、アイソレータ7などをキャリア2に搭載する。そしてキャリア2を、ペルチェ素子8を介して、パッケージ1の底部に固定する。
 タッププリズム13、エタロン素子14、第1モニタPD15a、第2モニタPD15b、第2ミラー11bを、キャリア12に搭載する。そしてキャリア12を、ペルチェ素子17を介して、パッケージLID20に固定する。
 次に、パッケージ1の開口部を、パッケージLID20で閉じて、パッケージ1を気密封止する。この際に、セラミック配線柱19を用いることで、パッケージLID20側に固定される回路部品への電気的な接続を得ることができる。例えば、パッケージLID20側の配線基板18やペルチェ素子17への通電は、セラミック配線柱19を経由して、パッケージ1側から行うことができる。
 セラミック配線柱19を予めパッケージ1の底面側に実装しておいて、パッケージLID20を閉じる際に半田実装することにすれば、パッケージLID20側に固定される回路部品への電気的な接続を簡単な製造工程で実現できる。
 (効果)
 本実施形態では、エタロン素子14をパッケージLID20側に配置し、この配置のためにミラー11で後方光出力を上面側に折り返した配置としている。モジュール内部に搭載する素子を上下面に配置することで、パッケージの空間を効率良く使うことができ、小さな面積で光源モジュールを構成することができる。本実施形態によれば、エタロン素子14を用いて波長精度を確保しながら、パッケージ面積が小さい光源モジュールを実現することができる。
 例えば、PLC型波長可変フィルタやSOA素子の後方光出力を平面方向に出力し、エタロン素子および周辺部品をSOA素子と同一平面内に配置する構成のものと比較して、本実施形態によればパッケージ面積が小さい光源モジュールを実現できる。
 ミラー11を、PLC型波長可変フィルタ3から出力された光を反射する第1ミラー11aと、第1ミラー11aが反射した光を波長モニタ手段へと反射する第2ミラー11bとを含んで、構成している。そして、第1ミラー11aをパッケージ1の底部側に固定し、第2ミラー11bをパッケージLID20側に固定している。これによりパッケージ1の開口部をパッケージLID20で閉じて、パッケージ1を気密封止する際に、後方光出力の上面側への折り返し構造を簡単な製造工程で実現できる。
 セラミック配線柱19を用いることで、パッケージLID20側に固定される素子や回路部品への電気的な接続を得ることができる。例えば、パッケージLID20側の配線基板18やペルチェ素子17への通電は、セラミック配線柱19を経由して、パッケージ1側から行うことができる。
 〔その他の実施形態〕
 以上本発明の好ましい実施形態について説明したが、本発明はこれに限られるものではない。たとえば、上述した実施形態では、PLC型波長可変フィルタ3の後方光出力をミラー11にて上面側に折り返すことでパッケージLID20側に搭載されたエタロン素子14への光出力を可能とする、といった説明を行った。光軸や各要素の向きや位置は、キャリア2の上面を基準として説明するもので、各要素の位置や向きは相対的に規定されるものであり、この実施形態の配置に限定されるものではない。
 PLC型波長可変フィルタ3の後方光出力のミラー11による折り返し方向は、光源モジュールを構成する要素同士の位置関係により決まる相対的なものであって、これに限られない。たとえば、PLC型波長可変フィルタ3の後方光出力を左側、右側或いは下面側に折り返すようにミラー11を配置することによっても、エタロン素子14により波長精度を確保しながら、パッケージ面積を小さくする効果が得られる。PLC型波長可変フィルタ3の主表面に対し、エタロン素子14が左側、右側或いは下面側に配置されるといった、光源モジュールを構成することもできる。
 図2や図3に示す光源モジュールは、光源モジュール自体の設置面と、PLC型波長可変フィルタ3の主表面とが平行である要素配置の光源モジュールである。光源モジュール自体の設置面に対し、PLC型波長可変フィルタ3の主表面が直交するといった配置の光源モジュールが存在した場合、PLC型波長可変フィルタ3の後方光出力を左側、右側或いは下面側に折り返すようにミラー11を配置することが考えられる。このような要素配置の光源モジュールであっても、上述した実施形態と同様な効果が期待される。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)光増幅手段と、前記光増幅手段から出力された光の波長変化を検出する波長モニタ手段と、前記光増幅手段と波長モニタ手段との間に配置され、前記光増幅手段から出力された光を前記波長モニタ手段へと反射する反射手段とを、含む光源モジュール。
(付記2)前記光増幅手段、前記波長モニタ手段、および前記反射手段を収容するパッケージをさらに含む、付記1に記載の光源モジュール。
(付記3)平面視で光増幅手段とオーバーラップするように、前記波長モニタ手段が配置される、付記1または付記2に記載の光源モジュール。
(付記4)前記光増幅手段から出力される光の光軸と、前記波長モニタ手段に入力される光の光軸とがお互いに略平行となるように、前記波長モニタ手段が配置される、付記1乃至付記3のいずれか一つに記載の光源モジュール。
(付記5)前記光増幅手段から出力される光の光軸と、前記波長モニタ手段に入力される光の光軸とがお互いに略平行となるように、前記反射手段が配置される、付記1乃至付記4のいずれか一つに記載の光源モジュール。
(付記6)前記パッケージは、底部と蓋部とを含み、前記光増幅手段は前記パッケージの前記底部側に固定され、前記波長モニタ手段は前記パッケージの前記蓋部側に固定されている、付記1乃至付記5のいずれか一つに記載の光源モジュール。
(付記7)前記反射手段は、前記光増幅手段から出力された光を反射する第1ミラーと、前記第1ミラーが反射した光を前記波長モニタ手段へと反射する第2ミラーとを含む、付記1乃至付記6のいずれか一つに記載の光源モジュール。
(付記8)前記反射手段の前記第1ミラーは前記パッケージの前記底部側に固定され、前記反射手段の前記第2ミラーは前記パッケージの前記蓋部側に固定されている、付記7に記載の光源モジュール。
(付記9)前記パッケージの前記底部と前記パッケージの前記蓋部との間に固定され、前記パッケージの前記蓋部側に固定される回路部品に電気的に接続される柱状配線をさらに含む、付記6乃至付記8のいずれか一つに記載の光源モジュール。
(付記10)底部と蓋部とを含むパッケージに、光増幅手段と、前記光増幅手段から出力された光の波長変化を検出する波長モニタ手段とを少なくとも収容する光源モジュールの製造方法であって、前記光増幅手段を前記パッケージの前記底部側に固定し、前記波長モニタ手段を前記パッケージの前記蓋部側に固定し、前記光増幅手段が出力する光を前記波長モニタ手段へと反射する反射手段の一部を前記パッケージの前記底部側に固定し、前記光増幅手段が出力する光を前記波長モニタ手段へと反射する反射手段の他の一部を前記パッケージの前記蓋部側に固定し、前記パッケージの前記底部と前記パッケージの前記蓋部との間に、前記光増幅手段、前記波長モニタ手段、および前記反射手段を収容する、光源モジュールの製造方法。
(付記11)前記パッケージの前記底部側に柱状配線を固定した後で、前記パッケージの前記底部と前記パッケージの前記蓋部とを固定することにより、前記柱状配線を前記パッケージの前記蓋部側に固定される回路部品に電気的に接続する、付記10に記載の光源モジュールの製造方法。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年9月15日に出願された日本出願特願2015-181946号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  パッケージ
 2、12  キャリア
 3  PLC型波長可変フィルタ
 4  リング共振器
 5  SOA素子
 6  コリメートレンズ
 7  アイソレータ
 8、17  ペルチェ素子
 9、16  サーミスタ
 10、18  配線基板
 11  ミラー
 11a  第1ミラー
 11b  第2ミラー
 13  タッププリズム
 14  エタロン素子
 15  モニタPD
 15a  第1モニタPD
 15b  第2モニタPD
 19  セラミック配線柱
 20  パッケージLID
 21  光ファイバ
 22  集光レンズ

Claims (10)

  1.  光増幅手段と、前記光増幅手段から出力された光の波長変化を検出する波長モニタ手段と、前記光増幅手段と波長モニタ手段との間に配置され、前記光増幅手段から出力された光を前記波長モニタ手段へと反射する反射手段とを、含む光源モジュール。
  2.  前記光増幅手段、前記波長モニタ手段、および前記反射手段を収容するパッケージをさらに含む、請求項1に記載の光源モジュール。
  3.  平面視で光増幅手段とオーバーラップするように、前記波長モニタ手段が配置される、請求項1または請求項2に記載の光源モジュール。
  4.  前記光増幅手段から出力される光の光軸と、前記波長モニタ手段に入力される光の光軸とがお互いに略平行となるように、前記波長モニタ手段が配置される、請求項1乃至請求項3のいずれか一項に記載の光源モジュール。
  5.  前記光増幅手段から出力される光の光軸と、前記波長モニタ手段に入力される光の光軸とがお互いに略平行となるように、前記反射手段が配置される、請求項1乃至請求項4のいずれか一項に記載の光源モジュール。
  6.  前記パッケージは、底部と蓋部とを含み、
     前記光増幅手段は前記パッケージの前記底部側に固定され、前記波長モニタ手段は前記パッケージの前記蓋部側に固定されている、請求項1乃至請求項5のいずれか一項に記載の光源モジュール。
  7.  前記反射手段は、前記光増幅手段から出力された光を反射する第1ミラーと、前記第1ミラーが反射した光を前記波長モニタ手段へと反射する第2ミラーとを含む、請求項1乃至請求項6のいずれか一項に記載の光源モジュール。
  8.  前記反射手段の前記第1ミラーは前記パッケージの前記底部側に固定され、前記反射手段の前記第2ミラーは前記パッケージの前記蓋部側に固定されている、請求項7に記載の光源モジュール。
  9.  前記パッケージの前記底部と前記パッケージの前記蓋部との間に固定され、前記パッケージの前記蓋部側に固定される回路部品に電気的に接続される柱状配線をさらに含む、請求項6乃至請求項8のいずれか一項に記載の光源モジュール。
  10.  底部と蓋部とを含むパッケージに、光増幅手段と、前記光増幅手段から出力された光の波長変化を検出する波長モニタ手段とを少なくとも収容する光源モジュールの製造方法であって、
     前記光増幅手段を前記パッケージの前記底部側に固定し、
     前記波長モニタ手段を前記パッケージの前記蓋部側に固定し、
     前記光増幅手段が出力する光を前記波長モニタ手段へと反射する反射手段の一部を前記パッケージの前記底部側に固定し、
     前記光増幅手段が出力する光を前記波長モニタ手段へと反射する反射手段の他の一部を前記パッケージの前記蓋部側に固定し、
     前記パッケージの前記底部と前記パッケージの前記蓋部との間に、前記光増幅手段、前記波長モニタ手段、および前記反射手段を収容する、光源モジュールの製造方法。
PCT/JP2016/004141 2015-09-15 2016-09-12 光源モジュール、および光源モジュールの製造方法 WO2017047069A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680053336.1A CN108028508A (zh) 2015-09-15 2016-09-12 光源模块及制造光源模块的方法
JP2017540500A JP6610670B2 (ja) 2015-09-15 2016-09-12 光源モジュール、および光源モジュールの製造方法
US15/757,525 US10644478B2 (en) 2015-09-15 2016-09-12 Light source module and method of manufacturing light source module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-181946 2015-09-15
JP2015181946 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017047069A1 true WO2017047069A1 (ja) 2017-03-23

Family

ID=58288568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004141 WO2017047069A1 (ja) 2015-09-15 2016-09-12 光源モジュール、および光源モジュールの製造方法

Country Status (4)

Country Link
US (1) US10644478B2 (ja)
JP (1) JP6610670B2 (ja)
CN (1) CN108028508A (ja)
WO (1) WO2017047069A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448722A (zh) * 2017-12-12 2020-07-24 住友电气工业株式会社 光学组件
WO2023275913A1 (ja) * 2021-06-28 2023-01-05 三菱電機株式会社 光半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540960A (zh) * 2020-04-21 2021-10-22 山东华光光电子股份有限公司 一种夹心式边发射激光器封装结构及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043686A (ja) * 2000-05-16 2002-02-08 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュール及び光送信器
JP2003258364A (ja) * 2001-12-25 2003-09-12 Sumitomo Electric Ind Ltd 光通信装置
JP2004117730A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd 光通信モジュールおよびその製造方法
JP2008193003A (ja) * 2007-02-07 2008-08-21 Nec Corp 光モジュール
JP2009146992A (ja) * 2007-12-12 2009-07-02 Nec Corp 光モジュール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650667B2 (en) * 2000-05-16 2003-11-18 The Furukawa Electric Co., Ltd. Semiconductor laser apparatus, semiconductor laser module, optical transmitter and wavelength division multiplexing communication system
JP4190749B2 (ja) 2001-09-28 2008-12-03 古河電気工業株式会社 レーザモジュール
US20130266264A1 (en) 2010-12-21 2013-10-10 Nec Corporation Optical module and method for making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043686A (ja) * 2000-05-16 2002-02-08 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュール及び光送信器
JP2003258364A (ja) * 2001-12-25 2003-09-12 Sumitomo Electric Ind Ltd 光通信装置
JP2004117730A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd 光通信モジュールおよびその製造方法
JP2008193003A (ja) * 2007-02-07 2008-08-21 Nec Corp 光モジュール
JP2009146992A (ja) * 2007-12-12 2009-07-02 Nec Corp 光モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448722A (zh) * 2017-12-12 2020-07-24 住友电气工业株式会社 光学组件
CN111448722B (zh) * 2017-12-12 2023-07-28 住友电气工业株式会社 光学组件
WO2023275913A1 (ja) * 2021-06-28 2023-01-05 三菱電機株式会社 光半導体装置

Also Published As

Publication number Publication date
JPWO2017047069A1 (ja) 2018-06-07
US10644478B2 (en) 2020-05-05
JP6610670B2 (ja) 2019-11-27
US20180248335A1 (en) 2018-08-30
CN108028508A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
US8145017B2 (en) Optical module
US20120127715A1 (en) Laser module
WO2002090881A1 (en) Single etalon wavelength locker
JP6610670B2 (ja) 光源モジュール、および光源モジュールの製造方法
KR100587950B1 (ko) 파장분할다중화시스템에서 다중파장 안정화를 위한 광출력-파장 감시 장치
US9325154B2 (en) Wavelength-tunable laser apparatus having wavelength measuring function
US12100933B2 (en) Tunable laser assembly including tunable semiconductor laser apparatus and photodetector outside of laser housing
WO2004025789A2 (en) Miniaturized internal laser stabilizing apparatus with inline output for fiber optic applications
JP2009004525A (ja) 光源モジュール
EP1158630A1 (en) Wavelength stabilization monitor and method for adjusting the working wavelength of said monitor
JP2014165384A (ja) 半導体レーザモジュール
WO2019122877A1 (en) Optical source and method of assembling an optical source
US8831054B2 (en) Wavelength locking of a laser device
KR100343310B1 (ko) 파장안정화 광원 모듈
US20060062259A1 (en) Optical wavelength control system and related method of assembly
JP6507659B2 (ja) 光モジュールの製造方法
JP4780694B2 (ja) 波長安定化レーザモジュール及びレーザ光の波長安定化方法
CN111194528B (zh) 波长监测和/或控制设备、包括所述设备的激光系统及操作所述设备的方法
WO2018159373A1 (ja) 光モジュールおよび光監視装置
JP2011077069A (ja) 波長可変光源モジュール及び波長可変光送信器
WO2023145764A1 (ja) 光モジュール
CN110718851B (zh) 光学组件
JP2004095920A (ja) 半導体レーザ装置及びその製造方法並びに半導体レーザモジュール
JP2010232337A (ja) 光源装置
US20040160999A1 (en) Unit for stabilizing wavelength of laser beams and module for stabilizing wavelength of optical signal in optical communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540500

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15757525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845943

Country of ref document: EP

Kind code of ref document: A1