WO2017046999A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2017046999A1
WO2017046999A1 PCT/JP2016/003653 JP2016003653W WO2017046999A1 WO 2017046999 A1 WO2017046999 A1 WO 2017046999A1 JP 2016003653 W JP2016003653 W JP 2016003653W WO 2017046999 A1 WO2017046999 A1 WO 2017046999A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
partition
header
baffle
Prior art date
Application number
PCT/JP2016/003653
Other languages
English (en)
French (fr)
Inventor
潤一 濱舘
正憲 神藤
好男 織谷
智彦 坂巻
甲樹 山田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201690001147.5U priority Critical patent/CN208091295U/zh
Publication of WO2017046999A1 publication Critical patent/WO2017046999A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present invention relates to a heat exchanger in which ends of a plurality of flat tubes are connected to a header collecting tube.
  • Patent Document 1 discloses this type of heat exchanger.
  • the heat exchanger is connected to a plurality of flat tubes (heat transfer tubes) each having a large number of refrigerant channels, a header collecting tube to which ends of the plurality of flat tubes are connected, and the header collecting tube. And a partition part for partitioning the inside of the header collecting pipe into a plurality of spaces.
  • the refrigerant is divided into a plurality of spaces through the diversion pipes, and then flows from each space into the flat pipe.
  • the refrigerant flowing through the flat tube exchanges heat with the air around the flat tube, and is used for heating and cooling the air.
  • a plurality of flat tubes are connected to the header collecting pipe only in one direction (one side surface), and no flat tubes are connected in the opposite direction (side surface), but a flat tube is connected.
  • the part where there is not is more likely to be distorted than the part where the flat tube is connected.
  • the header collecting pipe is deformed into an arcuate shape, a strong pulling force is applied to the flat pipe, and the flat pipe is deformed.
  • the flat tube is deformed, the cross-sectional shape of the refrigerant flow path is also deformed. Specifically, the aspect ratio of the refrigerant flow path of the flat tube changes, and the pressure resistance of the flat tube becomes weak.
  • the thickness of the flat tube is increased to increase the strength, or the header collecting tube is increased in thickness to prevent bow-like deformation, the above problem can be avoided, but the heat exchanger is reduced in weight. It becomes impossible to raise the cost.
  • the present invention has been made in view of such problems, and the object thereof is to realize a lightweight heat exchanger in a heat exchanger in which ends of a plurality of flat tubes are connected to a header collecting pipe. This is to enable a possible configuration and to suppress the strength reduction of the heat exchanger itself by suppressing the deformation of the header collecting pipe.
  • the inventors of the present invention have found that the present invention can be solved by adopting the following configuration for the new problem of solving the above problem in the heat exchanger. is there.
  • the first aspect of the present disclosure includes a plurality of flat tubes (63), a header collecting tube (80) to which ends of the plurality of flat tubes (63) are connected, and an interior of the header collecting tube (80). And a heat exchanger provided with a plurality of partition portions (83, 84) for partitioning the inside and outside of the header collecting pipe (80) and the inside of the header collecting pipe (80) into a plurality of spaces.
  • the plurality of partition portions (83, 84) include an end partition portion (83) disposed near the end of the header collecting pipe (80), and the header collecting pipe (
  • the intermediate partition portion (84) is arranged on the inner side of both ends of 80), and the end partition portion (83) is characterized by being more rigid than the intermediate partition portion (84).
  • the second aspect of the present disclosure is characterized in that, in the first aspect, the end partitioning portion (83) is disposed near both end portions of the header collecting pipe (80).
  • the end partition (83) and the intermediate partition (84) are each a partition plate formed of a plate material. Yes.
  • the end partition part (83) has a higher rigidity than the intermediate partition part (84), so that the pressure resistance of the end partition part (83) is improved. Therefore, while the header collecting pipe (80) is bent like a bow in the prior art, the header collecting pipe (80) can be held in a state where it is not bent.
  • the end partition part (83) is longer than the intermediate partition part (84). It is characterized by a large thickness dimension in the vertical direction.
  • the end partition (83) has a thickness dimension larger than that of the intermediate partition (84), the pressure resistance of the end partition (83) is improved. Therefore, while the header collecting pipe (80) is bent like a bow in the prior art, the header collecting pipe (80) can be held in a state where it is not bent.
  • each of the intermediate partition portions (84) is configured by one plate member, and each of the end partition portions (83) is an intermediate partition portion ( 84) is characterized in that a plurality of plate materials are laminated so that the thickness dimension becomes thicker than that in 84).
  • the intermediate partition portion (84) is formed by one plate material, whereas the end partition portion (83) is formed by stacking a plurality of plate materials.
  • the pressure resistance of the partition (83) is improved. Therefore, while the header collecting pipe (80) is bent like a bow in the prior art, the header collecting pipe (80) can be held in a state where it is not bent.
  • the header collecting pipe (80) can be held in an unbent state by making the end partitioning part (83) thicker than the intermediate partitioning part (84).
  • the flat pipes (63) at both ends of the header collecting pipe (80) are not subjected to a strong pulling force, and the strength of the flat pipe (63) is prevented from being lowered.
  • the aspect ratio of the refrigerant flow path of the flat tube (63) can be maintained, the pressure resistance of the flat tube (63) does not decrease.
  • the above problem can be avoided by increasing the thickness of the flat tube (63) to increase the strength, or by increasing the thickness of the header collecting tube (80) to prevent bow-shaped deformation.
  • the end partition portion (83) is thickened, the heat exchanger cannot be reduced in weight and the problem of cost increase arises. Since it is only good, the maintenance of strength and weight reduction can be realized at the same time, the problem of cost increase can be prevented, and the above new problem can be solved.
  • the effects of the first to third aspects can be achieved with a simple configuration only by changing the thickness of the end partition (83) and the intermediate partition (84). it can.
  • the end partition (83) is made of the same thickness plate as the intermediate partition (84), and the end partition (83) is simply laminated with a plurality of plates.
  • the effects of the first to third aspects can be achieved with a simpler configuration.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of the outdoor heat exchanger.
  • FIG. 3 is a partially enlarged view of the heat exchange section of FIG.
  • FIG. 4 is a diagram corresponding to FIG. 3 when a corrugated fin is employed as the heat transfer fin.
  • FIG. 5 is a schematic configuration diagram of an outdoor heat exchanger.
  • FIG. 6 is an enlarged view of the inlet / outlet header and the refrigerant distributor in FIG.
  • FIG. 7 is a plan view of the flow dividing member.
  • FIG. 8 is a perspective view of a boundary baffle that is an intermediate partition.
  • FIG. 9 is a perspective view of a closing baffle that is an end partition.
  • FIG. 10 is a perspective view showing a modified example of the closing baffle.
  • FIG. 11 is an explanatory view showing a state in which the header collecting pipe is bent in the conventional heat exchanger.
  • a refrigerant flow divider (70) is applied to the heat exchange unit (U) of the air conditioner (1).
  • FIG. 1 is a schematic configuration diagram of an air conditioner (1) having a refrigerant flow divider (70) according to the present invention.
  • the air conditioner (1) is an example of a refrigeration apparatus (a refrigeration apparatus in a broad sense that performs refrigeration in a warehouse or air conditioning in a room) to which the heat exchanger of the present invention is applied.
  • the air conditioner (1) is a device capable of cooling and heating a room such as a building by performing a vapor compression refrigeration cycle.
  • the air conditioner (1) is mainly configured by connecting an outdoor unit (2) and an indoor unit (4).
  • the outdoor unit (2) and the indoor unit (4) are connected via a liquid refrigerant communication pipe (5) and a gas refrigerant communication pipe (6).
  • the vapor compression refrigerant circuit (10) of the air conditioner (1) is configured such that the outdoor unit (2) and the indoor unit (4) are connected via the refrigerant communication pipe (5, 6). It is configured.
  • the indoor unit (4) is installed indoors and constitutes a part of the refrigerant circuit (10).
  • the indoor unit (4) mainly has an indoor heat exchanger (second heat exchanger) (41).
  • the indoor heat exchanger (41) is a heat exchanger that functions as a refrigerant evaporator during cooling operation to cool room air and functions as a refrigerant radiator during heating operation to heat indoor air.
  • the liquid side of the indoor heat exchanger (41) is connected to the liquid refrigerant communication pipe (5), and the gas side of the indoor heat exchanger (41) is connected to the gas refrigerant communication pipe (6).
  • the indoor unit (4) sucks indoor air into the indoor unit (4), exchanges heat with the refrigerant in the indoor heat exchanger (41), and then supplies the indoor fan (42 )have. That is, the indoor unit (4) has an indoor fan (42) as a fan that supplies indoor air as a heating source or cooling source of the refrigerant flowing through the indoor heat exchanger (41) to the indoor heat exchanger (41). is doing.
  • the indoor fan (42) a centrifugal fan or a multiblade fan driven by an indoor fan motor (42a) is used as the indoor fan (42).
  • the outdoor unit (2) is installed outside and constitutes a part of the refrigerant circuit (10).
  • the outdoor unit (2) mainly includes a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (first heat exchanger) (23), and an expansion valve (expansion mechanism) (24). And a liquid side closing valve (25) and a gas side closing valve (26).
  • Compressor (21) is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure.
  • the compressor (21) has a hermetic structure in which a displacement type compression element (not shown) such as a rotary type or a scroll type is rotationally driven by a compressor motor (21a).
  • the compressor (21) has a suction pipe (31) connected to the suction side and a discharge pipe (32) connected to the discharge side.
  • the suction pipe (31) is a refrigerant pipe that connects the suction side of the compressor (21) and the four-way switching valve (22).
  • the discharge pipe (32) is a refrigerant pipe that connects the discharge side of the compressor (21) and the four-way switching valve (22).
  • the four-way switching valve (22) is a switching valve for switching the direction of refrigerant flow in the refrigerant circuit (10).
  • the four-way switching valve (22) causes the outdoor heat exchanger (23) to function as a radiator for the refrigerant compressed in the compressor (21) and cools the indoor heat exchanger (41) to the outdoor heat during cooling operation.
  • switching to a cooling cycle state is performed to function as an evaporator for the refrigerant that has dissipated heat. That is, during the cooling operation, the four-way switching valve (22) is disposed on the discharge side (here, the discharge pipe (32)) of the compressor (21) and on the gas side (here, the first heat exchanger (23)).
  • Gas refrigerant pipe (33)) is connected (see solid line of four-way switching valve (22) in FIG. 1).
  • the suction side (here, the suction pipe (31)) of the compressor (21) and the gas refrigerant communication pipe (6) side are connected. (Refer to the solid line of the four-way selector valve (22) in FIG. 1).
  • the four-way selector valve (22) causes the outdoor heat exchanger (23) to function as an evaporator for the heat dissipated in the indoor heat exchanger (41) and compresses the indoor heat exchanger (41) during heating operation. Switching to a heating cycle state that functions as a radiator for the refrigerant compressed in the machine (21). That is, during the heating operation, the four-way selector valve (22) is connected to the discharge side (here, the discharge pipe (32)) and the gas refrigerant communication pipe (6) side (here, the second gas refrigerant) of the compressor (21). A pipe (34)) (see the broken line of the four-way selector valve (22) in FIG. 1).
  • the suction side (here, the suction pipe (31)) of the compressor (21) and the gas side (here, the first gas refrigerant pipe (33)) of the outdoor heat exchanger (23) are connected.
  • the first gas refrigerant pipe (33) is a refrigerant pipe connecting the four-way switching valve (22) and the gas side of the outdoor heat exchanger (23).
  • the second gas refrigerant pipe (34) is a refrigerant pipe that connects the four-way switching valve (22) and the gas-side stop valve (26).
  • the outdoor heat exchanger (23) functions as a refrigerant radiator (refrigerant radiator) that uses outdoor air as a cooling source during cooling operation, and a refrigerant evaporator (refrigerant evaporator) that uses outdoor air as a heating source during heating operation ) As a heat exchanger.
  • the outdoor heat exchanger (23) has a liquid side connected to the liquid refrigerant pipe (35) and a gas side connected to the first gas refrigerant pipe (33).
  • the liquid refrigerant pipe (35) is a refrigerant pipe connecting the liquid side of the outdoor heat exchanger (23) and the liquid refrigerant communication pipe (5) side.
  • the expansion valve (24) is a valve that decompresses the high-pressure refrigerant of the refrigeration cycle radiated in the outdoor heat exchanger (23) to the low pressure of the refrigeration cycle during the cooling operation.
  • the expansion valve (24) is a valve that decompresses the high-pressure refrigerant of the refrigeration cycle that has radiated heat in the indoor heat exchanger (41) to the low pressure of the refrigeration cycle during heating operation.
  • the expansion valve (24) is provided in a portion of the liquid refrigerant pipe (35) near the liquid side closing valve (25).
  • an electric expansion valve is used as the expansion valve (24).
  • the liquid side shutoff valve (25) and gas side shutoff valve (26) are provided at the connection port with external equipment and piping (specifically, the liquid refrigerant communication pipe (5) and gas refrigerant communication pipe (6)). Valve.
  • the liquid side closing valve (25) is provided at the end of the liquid refrigerant pipe (35).
  • the gas side closing valve (26) is provided at the end of the second gas refrigerant pipe (34).
  • the outdoor unit (2) has an outdoor fan (36) for sucking outdoor air into the outdoor unit (2), exchanging heat with the refrigerant in the outdoor heat exchanger (23), and then discharging it to the outside. is doing. That is, the outdoor unit (2) has an outdoor fan (36) as a fan that supplies outdoor air as a cooling source or a heating source of the refrigerant flowing through the outdoor heat exchanger (23) to the outdoor heat exchanger (23). is doing.
  • a propeller fan or the like driven by an outdoor fan motor (36a) is used as the outdoor fan (36).
  • Refrigerant communication pipes (5, 6) are refrigerant pipes installed on site when the air conditioner (1) is installed at the installation site such as a building. Depending on the installation conditions such as the combination with (4), those with various lengths and pipe diameters are used.
  • FIG. 2 is a schematic perspective view of the heat exchange unit (U) (outdoor heat exchanger (23))
  • FIG. 3 is a partially enlarged view of the heat exchange section (60) of FIG.
  • FIG. 4 is a view corresponding to FIG. 3 when a corrugated fin is employed as the heat transfer fin (64).
  • FIG. 5 is a schematic configuration diagram of the outdoor heat exchanger (23).
  • the wording indicating the direction and surface is based on the state in which the outdoor heat exchanger (23) is installed in the casing (not shown) of the outdoor unit (2) unless otherwise specified. Means the direction or plane.
  • the outdoor heat exchanger (23) is a heat exchanger panel having a substantially L shape in plan view.
  • the outdoor heat exchanger (23) mainly includes a heat exchanging part (60) for exchanging heat between the outdoor air and the refrigerant, and an inlet / outlet header (80) (first) provided on one end side of the heat exchanging part (60). (Header collecting pipe) and an intermediate header (90) (second header collecting pipe) provided on the other end side of the heat exchange section (60).
  • the outdoor heat exchanger (23) constitutes a heat exchanger in which the inlet / outlet header (80), the intermediate header (90), and the heat exchange part (60) are all formed of aluminum or an aluminum alloy.
  • the heat exchange section (60) includes a plurality of (in this case, 12) main heat exchange sections (61A to 61L) constituting the upper part of the outdoor heat exchanger (23) and the lower part of the outdoor heat exchanger (23). It has a plurality of (here, 12) sub heat exchange parts (62A to 62L).
  • the main heat exchange section (61A to 61L) is arranged at the uppermost stage, and the main heat exchange section (61B to 61L) is arranged in order from the lower stage side to the upper side. Yes.
  • the sub heat exchange section (62A) is arranged at the lowermost stage, and the sub heat exchange sections (62B to 62L) are arranged in order from the upper stage side to the lower side. ing.
  • the heat exchange section (60) is a so-called plug-in type heat exchanger composed of a large number of heat transfer tubes (63) consisting of flat tubes and a large number of heat transfer fins (64) consisting of so-called insertion fins. It is.
  • the heat transfer tube (63) is made of aluminum or an aluminum alloy, and has a flat multi-hole with a flat surface portion (63a) facing the vertical direction as a heat transfer surface and a large number of small internal channels (63b) through which the refrigerant flows. It is a tube.
  • a large number of heat transfer tubes (63) are arranged in a plurality of stages at intervals along the vertical direction.
  • the heat transfer fin (64) is made of aluminum or an aluminum alloy. One side edge of the heat transfer fin (64) is elongated horizontally so that it can be inserted into a number of heat transfer tubes (63) disposed between the inlet / outlet header (80) and the intermediate header (90). A number of notches (64a) are formed. The shape of the notch (64a) of the heat transfer fin (64) substantially matches the outer shape of the cross section of the heat transfer tube (63).
  • heat transfer tubes (63) are divided into a main heat exchange section (61A to 61L) and a sub heat exchange section (62A to 62L).
  • a predetermined number (about 3 to 8) of heat transfer tubes (63) from the uppermost stage of the outdoor heat exchanger (23) to the lower side constitute the main heat exchange section (61A ⁇ 61L) respectively.
  • a predetermined number (about 1 to 3) of heat transfer tubes (63) from the lowermost stage of the outdoor heat exchanger (23) to the upper side are sub-heat exchangers (62A to 62L).
  • the outdoor heat exchanger (23) is not limited to an insertion fin type heat exchanger adopting an insertion fin (see FIG. 3) as the heat transfer fin (64) as described above. It may be a corrugated fin type heat exchanger employing a large number of corrugated fins (see FIG. 4) as the heat fins (64).
  • the intermediate header (90) is a cylindrical member that is formed of aluminum or an aluminum alloy and extends in the vertical direction, and has a vertically long intermediate header case (91).
  • the intermediate header case (91) has a plurality of (here, 11) main intermediate baffles (92), a plurality (11 here) sub intermediate baffles (93), and a boundary intermediate baffle. It is partitioned along the vertical direction by (94).
  • the plurality of main-side intermediate baffles (92) partition the internal space above the intermediate header case (91) into main-side intermediate spaces (95A to 95K) that communicate with the other ends of the main heat exchange sections (61A to 61K). Are provided in order along the vertical direction.
  • the sub-intermediate baffle (93) is vertically arranged to partition the internal space below the intermediate header case (91) into the sub-side intermediate space (96A to 96K) that communicates with the other end of the sub heat exchange section (62A to 62K).
  • the boundary-side intermediate baffle (94) is a main heat exchanger for the internal space between the main-side intermediate baffle (92) on the lowermost side of the intermediate header case (91) and the sub-intermediate baffle (93) on the uppermost side in the vertical direction.
  • the main side intermediate space (95L) communicating with the other end of the portion (61L) and the sub side intermediate space (96L) communicating with the other end of the sub heat exchanging portion (62L) are provided.
  • the intermediate header case (91) is connected with a plurality (here, 11) of intermediate connecting pipes (97A to 97K).
  • the intermediate connecting pipes (97A to 97K) are refrigerant pipes that connect the main side intermediate space (95A to 95K) and the sub side intermediate space (96A to 96K).
  • the main heat exchanging part (61A to 61K) and the sub heat exchanging part (62A to 62K) communicate with each other via the intermediate header (90) and the intermediate connecting pipe (97A to 97K).
  • the refrigerant path (65A to 65K) of the vessel (23) is formed.
  • the boundary-side intermediate baffle (94) is formed with an intermediate baffle communication hole (94a) that allows the main-side intermediate space (95L) and the sub-side intermediate space (96L) to communicate with each other.
  • the main heat exchange part (61L) and the sub heat exchange part (62L) communicate with each other via the intermediate header (90) and the intermediate baffle communication hole (94a), and the outdoor heat exchanger (23)
  • a refrigerant path (65L) is formed.
  • the outdoor heat exchanger (23) has a configuration divided into multi-pass (here, 12 passes) refrigerant paths (65A to 65L).
  • the entrance / exit header (80) is a member that is formed of aluminum or an aluminum alloy and extends in the vertical direction, and has a vertically long entrance / exit header case (81).
  • the entrance / exit header case (81) has a cylindrical entrance / exit header tubular body (82) whose upper and lower ends are open, and the upper and lower ends are closed by two closed baffles (83).
  • the inlet / outlet header case (81) has an internal space partitioned by a boundary baffle (84) into an upper inlet / outlet space (85) and a lower supply space (86A to 86L) along the vertical direction.
  • the blocking baffle (83) constitutes an end partition portion of the present invention, which will be described later, and the boundary baffle (84) constitutes an intermediate partition portion of the present invention, which will be described later.
  • a plurality of partition portions are configured.
  • the closing baffle (83), which is the end partition, is disposed near both ends of the inlet / outlet header (header collecting pipe) (80).
  • the closed baffle (83) and the boundary baffle (84) are inserted into the slit (S) formed in the inlet / outlet header (80) which is a header collecting pipe.
  • the slit (S) is formed by a substantially arc-shaped cutout portion formed in a substantially half region on the outer side of the entire circumference of the entrance / exit header (80).
  • the blocking baffle (83) and the boundary baffle (84) partition the inside of the entrance / exit header (80) into a supply space (86A to 86L) and an entrance / exit space (85).
  • the supply spaces (86A to 86L) constitute a first space through which the refrigerant (fluid) before flowing into the heat transfer tube (63) flows.
  • the entrance / exit space (85) constitutes a second space through which the refrigerant (fluid) after flowing through the heat transfer tube (63) flows.
  • the entrance / exit space (85) is a space communicating with one end of the main heat exchange section (61A to 61L), and functions as a space where the refrigerant that has passed through the refrigerant path (65A to 65L) joins at the outlet.
  • the upper part of the inlet / outlet header (80) having the inlet / outlet space (85) functions as a refrigerant outlet part that joins the refrigerant that has passed through the refrigerant path (65A to 65L) at the outlet.
  • the inlet / outlet header (80) is connected to the first gas refrigerant pipe (33) and communicates with the inlet / outlet space (85).
  • the supply space (86A to 86L) has a plurality (here, twelve) communicating with one end of the sub heat exchange section (62A to 62L) partitioned by a plurality (here, eleven) supply side inlet / outlet baffles (87). ) And functions as a space for the refrigerant to flow out to the refrigerant path (65A to 65L).
  • the lower part of the inlet / outlet header (80) having a plurality of supply spaces (86A to 86L) functions as a refrigerant supply section (86) for dividing the refrigerant into a plurality of refrigerant paths (65A to 65L) and flowing out the refrigerant. ing.
  • the refrigerant flow divider (70) is a refrigerant passing component that diverts the refrigerant flowing in through the liquid refrigerant pipe (35) and flows it out downstream (here, the plurality of heat transfer pipes (63)).
  • the refrigerant flow divider (70) is provided on one end side of the outdoor heat exchanger (23), and one end of the heat transfer pipe (63) is connected via the refrigerant supply part (86) of the inlet / outlet header (80). Yes.
  • the refrigerant distributor (70) is made of aluminum or an aluminum alloy.
  • the refrigerant flow divider (70) is integrated with the outdoor heat exchanger (23) to constitute a heat exchange unit (U).
  • the refrigerant flow divider (70) has a vertically long hollow flow divider main body (71).
  • the shunt main body (71) has a cylindrical body (72) whose upper and lower ends are open.
  • a plurality of insertion slits (72a, 72b, 72c) are formed in the trunk portion (72) along the axial direction (vertical direction) of the trunk portion (72).
  • a plurality of baffles (73, 77, 77a) are inserted through the insertion slits (72a, 72b, 72c), respectively.
  • the shunt main body (71) is not limited to a cylindrical shape, and may be, for example, a polygonal cylindrical shape such as a square cylindrical shape.
  • the plurality of insertion slits (72a, 72b, 72c) includes two end side slits (72a, 72a), one nozzle side slit (72c), and a number of intermediate slits (72b).
  • the end side slits (72a, 72a) are respectively formed at the upper end and the lower end of the body portion (72).
  • the nozzle side slit (72c) constitutes the insertion slit (72c) closest to the lower end side slit (72a) among the plurality of insertion slits (72a, 72b, 72c).
  • a large number of intermediate slits (72b) are formed between the upper end side slit (72a) and the nozzle side slit (72c).
  • the plurality of baffles (73, 77, 77a) are composed of two end baffles (73, 73) and a number of intermediate baffles (77).
  • Each end side baffle (73, 73) is formed in a circular plate shape, and is inserted through each end side slit (72a, 72a).
  • Each end baffle (73, 73) closes the upper and lower openings of the trunk (72) of the flow distributor main body (71).
  • the intermediate baffle (77) is inserted one by one into the nozzle side slit (72c) and each intermediate slit (72b).
  • the nozzle member (79) is inserted into the nozzle side slit (72c) below the intermediate baffle (77).
  • the nozzle baffle (77a) and the intermediate slit (72b) are annular plate-like members having a substantially circular insertion hole (77b) formed in the center.
  • a rod-shaped flow diverting member (74) is inserted through the plurality of intermediate slits (72b) so as to pass through the respective insertion holes (77b).
  • One lower space (78) and a number of relay spaces (76A to 76L) are formed inside the shunt body (71).
  • the lower space (78) is defined between the lower end baffle (73) and the nozzle member (79).
  • the open end of the liquid refrigerant pipe (35) communicates with the lower space (78).
  • a large number of relay spaces (76A to 76L) are formed between the flow dividing member (74) and the intermediate baffles (77) adjacent to each other in the vertical direction. That is, the large number of relay spaces (76A to 76L) are substantially cylindrical columnar spaces formed around the flow dividing member (74).
  • the diversion member (74) is a rod-like member extending in the vertical direction.
  • the flow dividing member (74) is made of aluminum or an aluminum alloy.
  • a plurality (here, 12) of flow dividing channels (74A to 74L) arranged in the circumferential direction of the flow dividing member (74) are formed.
  • These flow dividing channels (74A to 74L) are formed by, for example, extruding the flow dividing member (74) in the longitudinal direction of the flow dividing member (74).
  • a portion surrounded by the plurality of flow dividing channels (74A to 74L) is solid.
  • the upper end of the flow dividing member (74) is in contact with the lower surface of the upper end side baffle (73).
  • the openings at the upper ends of the plurality of branch channels (74A to 74L) are substantially closed by the upper end side baffle (73).
  • the lower end of the flow dividing member (74) is in contact with the upper surface of the nozzle member (79).
  • the openings at the lower ends of the plurality of diversion channels (74A to 74L) communicate with one diversion space (75) formed in the nozzle member (79).
  • a large number (here, 12) of side holes (74a) are formed on the outer peripheral surface of the flow dividing member (74).
  • Each side hole (74a) is arranged in a spiral shape so as to gradually shift in the circumferential direction from the lower side to the upper side of the flow dividing member (74).
  • Each side hole (74a) communicates with each relay space (76A to 76L) corresponding to each side hole (74a). In other words, each side hole (74a) communicates only with the corresponding relay space (76A to 76L), and does not communicate with other non-corresponding relay spaces (76A to 76L).
  • the nozzle member (79) is inserted into the nozzle side slit (72c) together with the lowermost intermediate baffle (77). That is, the nozzle member (79) is held by the flow divider main body (71) in a state of being stacked on the lower side of the intermediate baffle (77).
  • the nozzle member (79) is made of aluminum or an aluminum alloy.
  • the nozzle member (79) is a disk-shaped plate member, and a circular nozzle hole (70c) is formed in the central portion in the radial direction.
  • a recess (70b) is formed on the upper surface of the nozzle member (79). The inner diameter of the recess (70b) is larger than the inner diameter of the nozzle hole (70c).
  • a cylindrical shunt space (75) is formed inside the recess (70b).
  • the lower end of the diversion space (75) communicates with the nozzle hole (70c).
  • the upper end of the diversion space (75) communicates with each diversion channel (74A to 74L).
  • the refrigerant flow divider (70) includes a plurality of flow dividers that respectively connect each relay space (76A to 76L) of the flow divider body (71) and each supply space (86A to 86L) of the inlet / outlet header (80). Has a tube (88). In the example of FIG. 6, twelve flow dividing pipes (88A to 88L) are connected between the flow divider body (71) and the inlet / outlet header (80).
  • the boundary baffle (84) is a substantially circular plate member (partition plate), and has a first large diameter portion (111a) and a first small diameter portion (111b).
  • the first large-diameter portion (111a) is a substantially semicircular plate portion formed in a substantially half on the near side (rear side) in the insertion direction of the first disc portion (111).
  • the radius of the first large diameter portion (111a) is substantially equal to the radius of the outer peripheral surface of the entrance / exit header (80).
  • the first small-diameter portion (111b) is a substantially semicircular plate portion formed in a substantially half on the back side (front) in the insertion direction of the first disc portion (111).
  • the radius of the first small diameter portion (111b) is substantially equal to the radius of the inner peripheral surface of the entrance / exit header (80). Both end portions of the first large diameter portion (111a) in the width direction (width direction of the flat tube (63)) protrude from the first small diameter portion (111b).
  • the two projecting portions (111c) constitute a contact portion that comes into contact with the opening edge of the slit (S) when the first plate portion (110) is inserted to the back side of the slit (S).
  • the closed baffle (83) is a plate material (partition plate) having a substantially circular diameter with a thickness dimension (2t) approximately twice that of the boundary baffle (84), where the thickness of the boundary baffle (84) is (t). It has a portion (121a) and a second small diameter portion (121b).
  • the second large-diameter portion (121a) is a substantially semicircular plate portion formed in a substantially half on the near side (rear side) in the insertion direction of the second disc portion (121).
  • the radius of the second large diameter portion (121a) is substantially equal to the radius of the outer peripheral surface of the entrance / exit header (80).
  • a 2nd small diameter part (121b) is a substantially semicircular board part formed in the substantially half of the back
  • the radius of the second small diameter portion (121b) is substantially equal to the radius of the inner peripheral surface of the entrance / exit header (80).
  • Both ends of the second large diameter portion (121a) in the width direction (width direction of the flat tube (63)) protrude from the second small diameter portion (121b).
  • the two protruding portions (121c) form a contact portion that comes into contact with the opening edge of the slit (S) in a state where the second plate portion (120) is inserted to the back side of the slit (S).
  • the boundary baffle (84) and the blocking baffle (83) are joined to the inside of the entrance / exit header (80), and a plurality of inside and outside of the entrance / exit header (80) and the inside of the header collecting pipe are connected. It is the some partition part partitioned off into space.
  • occlusion baffle (83) which is an edge part partition part arrange
  • the boundary baffle (84) is about twice as thick and stiffer than the boundary baffle (84).
  • the slits (S) formed in the inlet / outlet header (80) are respectively formed in the blocking baffle (83) and the boundary baffle (84).
  • the air conditioner (1) can perform a cooling operation and a heating operation as basic operations.
  • the high-pressure gas refrigerant discharged from the compressor (21) is sent to the outdoor heat exchanger (23) through the four-way switching valve (22).
  • the high-pressure gas refrigerant sent to the outdoor heat exchanger (23) exchanges heat with outdoor air supplied as a cooling source by the outdoor fan (36) in the outdoor heat exchanger (23) functioning as a refrigerant radiator. Go to dissipate heat and become high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger (23) is sent to the expansion valve (24).
  • the high-pressure liquid refrigerant sent to the expansion valve (24) is decompressed to the low pressure of the refrigeration cycle by the expansion valve (24), and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve (24) is sent to the indoor heat exchanger (41) through the liquid-side closing valve (25) and the liquid refrigerant communication pipe (5).
  • the low-pressure gas-liquid two-phase refrigerant sent to the indoor heat exchanger (41) exchanges heat with indoor air supplied as a heating source by the indoor fan (42) in the indoor heat exchanger (41). Evaporate. As a result, the room air is cooled and then supplied to the room to cool the room.
  • the low-pressure gas refrigerant evaporated in the indoor heat exchanger (41) is again sucked into the compressor (21) through the gas refrigerant communication pipe (6), gas-side shutoff valve (26), and four-way switching valve (22). Is done.
  • the four-way selector valve (22) is switched to the heating cycle state (the state indicated by the broken line in FIG. 1).
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor (21) and compressed until it reaches the high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure gas refrigerant discharged from the compressor (21) is sent to the indoor heat exchanger (41) through the four-way switching valve (22), the gas side closing valve (26), and the gas refrigerant communication pipe (6). .
  • the high-pressure gas refrigerant sent to the indoor heat exchanger (41) dissipates heat by exchanging heat with indoor air supplied as a cooling source by the indoor fan (42) in the indoor heat exchanger (41). Becomes a high-pressure liquid refrigerant. Thereby, indoor air is heated, and indoor heating is performed by being supplied indoors after that.
  • the high-pressure liquid refrigerant radiated by the indoor heat exchanger (41) is sent to the expansion valve (24) through the liquid refrigerant communication pipe (5) and the liquid side shut-off valve (25).
  • the high-pressure liquid refrigerant sent to the expansion valve (24) is decompressed to the low pressure of the refrigeration cycle by the expansion valve (24), and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve (24) is sent to the outdoor heat exchanger (23).
  • the low-pressure gas-liquid two-phase refrigerant sent to the outdoor heat exchanger (23) is supplied to the outdoor heat exchanger (23) functioning as a refrigerant evaporator and supplied as a heating source by the outdoor fan (36). It exchanges heat with air and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger (23) is again sucked into the compressor (21) through the four-way switching valve (22).
  • the refrigerant in the gas-liquid two-phase state flows through the liquid refrigerant pipe (35) and then flows into the lower space (78) of the refrigerant flow divider (70).
  • This refrigerant passes through the nozzle hole (70c), the diversion space (75), the diversion flow paths (74A to 74L), and the side holes (74a), and is further depressurized, and then is connected to the relay spaces (76A to 76L). To leak.
  • the refrigerant in each relay space (76A to 76L) flows through each branch pipe (88) and flows into each supply space (86A to 86L) of the inlet / outlet header (80).
  • each supply space (86A to 86L) flows through each heat transfer tube (63) of the sub heat exchange section (62A to 62L) and absorbs heat from the air, and then each sub-side intermediate space (90) of the intermediate header (90) ( 96A-96K).
  • the refrigerant in each sub-side intermediate space (96A to 96K) flows through each intermediate connecting pipe (97A to 97K) and then flows into each main-side intermediate space (95A to 95K).
  • each heat transfer pipe (63) of the main heat exchange section (61A to 61L) absorbs heat from the air, and then the inlet / outlet space (85) of the inlet / outlet header (80) Flow into.
  • This refrigerant flows through the first gas refrigerant pipe (33) and is sent to the suction side of the compressor (21).
  • the closing baffle (83) that is the end partitioning portion is formed of a plate material thicker than the boundary baffle (84) that is the intermediate partitioning portion, the pressure resistance strength of the closing baffle (83) is improved. . Therefore, while the entrance / exit header (80) is bent like a bow as shown in FIG. 11, the entrance / exit header (80) can be held in an unbent state.
  • occlusion baffle (83) which is an edge part partition part is formed with a board
  • the flat tubes (63) at both ends of the entrance / exit header (80) are not subjected to a strong pulling force, and the strength of the flat tube (63) is also prevented from being lowered.
  • the aspect ratio of the refrigerant flow path of the flat tube (63) can be maintained so as not to change, the pressure resistance strength of the flat tube (63) does not decrease.
  • the above problem can be avoided by increasing the thickness of the flat tube (63) to increase the strength, or by increasing the thickness of the inlet / outlet header (80) to prevent bow-like deformation.
  • this makes it impossible to reduce the weight of the heat exchanger (23) and raises the problem of cost increase.
  • the heat exchanger can be obtained simply by increasing the thickness of the blocking baffle (83). (23) Strength maintenance and weight reduction can be realized at the same time, and the problem of cost increase can be prevented.
  • the partition portion of the present invention is used for the blocking baffle (83) and the boundary baffle (84) of the inlet / outlet header (80) which is a header collecting pipe.
  • the present invention may be applied not only to the entrance / exit header (80) but also to a partition (baffle) that partitions the intermediate header (90), which is also a header collecting pipe, into a plurality of spaces.
  • the boundary baffle (84) that is the intermediate partition plate and the closing baffle (83) that is the end partition plate are formed of a single plate material having different thicknesses.
  • the boundary baffle (84) is formed of a single plate
  • the closed baffle (83) is overlapped with the same plate as the boundary baffle (84) as shown in FIG. A member having a greater thickness may be used. If it does in this way, since the same board
  • occlusion baffle (83) is set to about twice the thickness of the boundary baffle (84), the relationship of a thickness dimension is not restricted to 2 times, You may change suitably. .
  • the specific configuration of the outdoor heat exchanger (23) described in the above embodiment and the specific configuration of the refrigerant flow divider (70) are both examples, and may be changed as appropriate.
  • the outdoor heat exchanger (23) may not be L-shaped in plan view, and the number of stages of the heat transfer tubes may be changed as appropriate.
  • the outdoor heat exchanger (23) may include a plurality (for example, two rows) of heat exchange units (60) arranged side by side in the air passage direction.
  • the refrigerant flow divider of the present invention is not limited to the air conditioner (1), but may be applied to an internal heat exchanger of a refrigeration apparatus that cools the internal space.
  • the present invention is useful for a heat exchanger in which ends of a plurality of flat tubes are connected to a header collecting tube.
  • Heat exchanger 63 Heat transfer tube (flat tube) 80 Header collecting pipe (entrance / exit header) 83 Blocking baffle (end partition) 84 Boundary baffle (intermediate partition)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

ヘッダ集合管(80)の内部を複数の空間に仕切る複数の仕切部(83,84)を設けた熱交換器において、複数の仕切部(83,84)を、ヘッダ集合管(80)の最も端部付近に配置された端部仕切部(83)と、ヘッダ集合管(80)の両端よりも内側に配置された中間仕切部(84)から構成し、端部仕切部(83)の剛性を中間仕切部(84)よりも大きくすることにより、強度を高める。

Description

熱交換器
 本発明は、複数の扁平管の端部がヘッダ集合管に接続された熱交換器に関するものである。
 従来、流体を熱交換させる熱交換器が知られている。特許文献1には、この種の熱交換器が開示されている。
 この熱交換器は、それぞれが多数の冷媒流路を有する複数の扁平管(伝熱管)と、該複数の扁平管の端部が接続されるヘッダ集合管と、ヘッダ集合管の内部に接続され、該ヘッダ集合管の内部を複数の空間に仕切る仕切部とを有している。この熱交換器では、冷媒が分流管を通じて複数の空間に分流した後、各空間から扁平管へ流入する。扁平管を流れる冷媒は、扁平管の周囲の空気と熱交換し、この空気の加熱や冷却に利用される。
特開2012-163319号公報
 ここで、ヘッダ集合管には一方向(一側面)側にだけ複数の扁平管が接続されていて、逆の方向(側面)には扁平管は接続されておらず、扁平管が接続されていない部分は扁平管が接続されている部分に比べて歪みが生じやすい。特にヒートポンプ式の空気調和装置に上記熱交換器が使用される場合は、ヘッダ集合管に流れる冷媒の圧力差が大きいため、図11に示すように、本来は破線で示すようにまっすぐなヘッダ集合管が弓形に変形してしまう。
 そして、ヘッダ集合管が弓形に変形すると扁平管に強い引っ張り力がかかり、扁平管が変形してしまう。扁平管が変形すると冷媒流路の断面の形状も変形する。具体的には、扁平管の冷媒流路のアスペクト比が変わってしまい、扁平管の耐圧強度が弱くなる。これに対して、扁平管の肉厚を厚くして強度を高めるか、ヘッダ集合管の肉厚を厚くして弓なりの変形を防止すると上記の問題は回避できるものの、熱交換器を軽量化することができなくなり、コストアップの問題が生じてしまう。
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、複数の扁平管の端部がヘッダ集合管に接続された熱交換器において、熱交換器の軽量化を実現できる構成を可能にするとともに、ヘッダ集合管の変形を抑えることにより熱交換器自体の強度低下を抑えることである。
 本願発明の発明者らは、熱交換器において上記の問題を解決するという新規な課題に対して、以下の構成を採用することによりその課題を解決できることを見いだし、本願発明をなし得たものである。
 本開示の第1の態様は、複数の扁平管(63)と、上記複数の扁平管(63)の端部が接続されるヘッダ集合管(80)と、上記ヘッダ集合管(80)の内部に接合され、該ヘッダ集合管(80)の内部と外部および該ヘッダ集合管(80)の内部を複数の空間に仕切る複数の仕切部(83,84)とを備えた熱交換器を前提としている。
 そして、この熱交換器は、上記複数の仕切部(83,84)が、上記ヘッダ集合管(80)の最も端部付近に配置された端部仕切部(83)と、該ヘッダ集合管(80)の両端よりも内側に配置された中間仕切部(84)からなり、該端部仕切部(83)は該中間仕切部(84)よりも剛性が大きいことを特徴としている。
 本開示の第2の態様は、第1の態様において、上記端部仕切部(83)が、上記ヘッダ集合管(80)の両端部付近に配置されることを特徴としている。
 本開示の第3の態様は、第1または第2の態様において、上記端部仕切部(83)及び中間仕切部(84)が、それぞれが板材により形成された仕切板であることを特徴としている。
 上記第1から第3の態様では、端部仕切部(83)の剛性が中間仕切部(84)よりも大きいので、端部仕切部(83)の耐圧強度が向上する。したがって、従来であればヘッダ集合管(80)が弓なりに撓んでいたのに対して、ヘッダ集合管(80)が撓まない状態に保持できる。
 本開示の第4の態様は、第1,第2または第3の態様において、上記端部仕切部(83)が、上記中間仕切部(84)よりも、上記ヘッダ集合管(80)の長さ方向の厚さ寸法が大きいことを特徴としている。
 この第4の態様では、端部仕切部(83)が中間仕切部(84)よりも厚さ寸法が大きいので、端部仕切部(83)の耐圧強度が向上する。したがって、従来であればヘッダ集合管(80)が弓なりに撓んでいたのに対して、ヘッダ集合管(80)が撓まない状態に保持できる。
 本開示の第5の態様は、第3の態様において、上記中間仕切部(84)が、それぞれ、1枚の板材により構成され、上記端部仕切部(83)は、それぞれ、中間仕切部(84)よりも厚さ寸法が厚くなるように、複数枚の板材が積層されて構成されていることを特徴としている。
 この第5の態様では、中間仕切部(84)を1枚の板材で形成するのに対して、端部仕切部(83)を複数枚の板材を積層することにより形成しているので、端部仕切部(83)の耐圧強度が向上する。したがって、従来であればヘッダ集合管(80)が弓なりに撓んでいたのに対して、ヘッダ集合管(80)が撓まない状態に保持できる。
 本開示の第1から第3の態様によれば、端部仕切部(83)を中間仕切部(84)よりも厚くしたことにより、ヘッダ集合管(80)が撓まない状態に保持できるから、ヘッダ集合管(80)の両端の扁平管(63)が強い引っ張り力を受けることがなくなり、扁平管(63)の強度が低下するのも抑えられる。具体的には、扁平管(63)の冷媒流路のアスペクト比を維持できるので、扁平管(63)の耐圧強度が低下しない。
 また、従来であれば、扁平管(63)の肉厚を厚くして強度を高めるか、ヘッダ集合管(80)の肉厚を厚くして弓なりの変形を防止すると上記の問題は回避できるものの、熱交換器を軽量化することができなくなり、コストアップの問題が生じてしまうのに対して、本開示の第1から第3の態様によれば端部仕切部(83)を厚くすればよいだけであるため、強度の維持と軽量化を同時に実現してコストアップの問題も防止でき、上記の新規な課題を解決できる。
 本開示の第4の態様によれば、端部仕切部(83)を中間仕切部(84)の板材の厚さを変えるだけで、第1から第3の態様の効果を簡単な構成で達成できる。
 本開示の第5の態様によれば、端部仕切部(83)を中間仕切部(84)に同じ厚さの板材を用い、端部仕切部(83)を複数の板材を積層するだけで、第1から第3の態様の効果をより簡単な構成で達成できる。
図1は、本発明の実施形態に係る空気調和装置の概略構成図である。 図2は、室外熱交換器の概略斜視図である。 図3は、図2の熱交換部の部分拡大図である。 図4は、伝熱フィンとして波形フィンを採用した場合の図3に対応する図である。 図5は、室外熱交換器の概略構成図である。 図6は、図2の出入口ヘッダ及び冷媒分流器の拡大図である。 図7は、分流部材の平面図である。 図8は、中間仕切部である境界バッフルの斜視図である。 図9は、端部仕切部である閉塞バッフルの斜視図である。 図10は、閉塞バッフルの変形例を示す斜視図である。 図11は、従来の熱交換器においてヘッダ集合管が撓む様子を示す説明図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 《発明の実施形態》
 この実施形態は、空気調和装置(1)の熱交換ユニット(U)に冷媒分流器(70)を適用したものである。
 〈空気調和装置の基本構成〉
 図1は、本発明に係る冷媒分流器(70)を有する空気調和装置(1)の概略構成図である。この空気調和装置(1)は本発明の熱交換器が適用される冷凍装置(庫内の冷凍冷蔵や室内の空調を行う広義の冷凍装置)の一例である。
 空気調和装置(1)は、蒸気圧縮式の冷凍サイクルを行うことによって、建物等の室内の冷房及び暖房を行うことが可能な装置である。空気調和装置(1)は、主として、室外ユニット(2)と、室内ユニット(4)とが接続されることによって構成されている。ここで、室外ユニット(2)と室内ユニット(4)とは、液冷媒連絡管(5)及びガス冷媒連絡管(6)を介して接続されている。すなわち、空気調和装置(1)の蒸気圧縮式の冷媒回路(10)は、室外ユニット(2)と、室内ユニット(4)とが冷媒連絡管(5,6)を介して接続されることによって構成されている。
  〔室内ユニット〕
 室内ユニット(4)は、室内に設置されており、冷媒回路(10)の一部を構成している。室内ユニット(4)は、主として、室内熱交換器(第2熱交換器)(41)を有している。
 室内熱交換器(41)は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の放熱器として機能して室内空気を加熱する熱交換器である。室内熱交換器(41)の液側は液冷媒連絡管(5)に接続されており、室内熱交換器(41)のガス側はガス冷媒連絡管(6)に接続されている。
 室内ユニット(4)は、室内ユニット(4)内に室内空気を吸入して、室内熱交換器(41)において冷媒と熱交換させた後に、供給空気として室内に供給するための室内ファン(42)を有している。すなわち、室内ユニット(4)は、室内熱交換器(41)を流れる冷媒の加熱源又は冷却源としての室内空気を室内熱交換器(41)に供給するファンとして、室内ファン(42)を有している。ここでは、室内ファン(42)として、室内ファン用モータ(42a)によって駆動される遠心ファンや多翼ファン等が使用されている。
  〔室外ユニット〕
 室外ユニット(2)は、室外に設置されており、冷媒回路(10)の一部を構成している。室外ユニット(2)は、主として、圧縮機(21)と、四路切換弁(22)と、室外熱交換器(第1熱交換器)(23)と、膨張弁(膨張機構)(24)と、液側閉鎖弁(25)と、ガス側閉鎖弁(26)とを有している。
 圧縮機(21)は、冷凍サイクルの低圧の冷媒を高圧になるまで圧縮する機器である。圧縮機(21)は、ロータリ式やスクロール式等の容積式の圧縮要素(図示せず)を圧縮機用モータ(21a)によって回転駆動する密閉式構造となっている。圧縮機(21)は、吸入側に吸入管(31)が接続されており、吐出側に吐出管(32)が接続されている。吸入管(31)は、圧縮機(21)の吸入側と四路切換弁(22)とを接続する冷媒管である。吐出管(32)は、圧縮機(21)の吐出側と四路切換弁(22)とを接続する冷媒管である。
 四路切換弁(22)は、冷媒回路(10)における冷媒の流れの方向を切り換えるための切換弁である。四路切換弁(22)は、冷房運転時には、室外熱交換器(23)を圧縮機(21)において圧縮された冷媒の放熱器として機能させ、かつ、室内熱交換器(41)を室外熱交換器(23)において放熱した冷媒の蒸発器として機能させる冷房サイクル状態への切り換えを行う。すなわち、四路切換弁(22)は、冷房運転時には、圧縮機(21)の吐出側(ここでは、吐出管(32))と室外熱交換器(23)のガス側(ここでは、第1ガス冷媒管(33))とが接続される(図1の四路切換弁(22)の実線を参照)。また、このとき、圧縮機(21)の吸入側(ここでは、吸入管(31))とガス冷媒連絡管(6)側(ここでは、第2ガス冷媒管(34))とが接続される(図1の四路切換弁(22)の実線を参照)。
 四路切換弁(22)は、暖房運転時には、室外熱交換器(23)を室内熱交換器(41)において放熱した冷媒の蒸発器として機能させ、かつ、室内熱交換器(41)を圧縮機(21)において圧縮された冷媒の放熱器として機能させる暖房サイクル状態への切り換えを行う。すなわち、四路切換弁(22)は、暖房運転時には、圧縮機(21)の吐出側(ここでは、吐出管(32))とガス冷媒連絡管(6)側(ここでは、第2ガス冷媒管(34))とが接続される(図1の四路切換弁(22)の破線を参照)。また、このとき、圧縮機(21)の吸入側(ここでは、吸入管(31))と室外熱交換器(23)のガス側(ここでは、第1ガス冷媒管(33))とが接続される(図1の四路切換弁(22)の破線を参照)。ここで、第1ガス冷媒管(33)は、四路切換弁(22)と室外熱交換器(23)のガス側とを接続する冷媒管である。第2ガス冷媒管(34)は、四路切換弁(22)とガス側閉鎖弁(26)とを接続する冷媒管である。
 室外熱交換器(23)は、冷房運転時には室外空気を冷却源とする冷媒の放熱器(冷媒放熱器)として機能し、暖房運転時には室外空気を加熱源とする冷媒の蒸発器(冷媒蒸発器)として機能する熱交換器である。室外熱交換器(23)は、液側が液冷媒管(35)に接続されており、ガス側が第1ガス冷媒管(33)に接続されている。液冷媒管(35)は、室外熱交換器(23)の液側と液冷媒連絡管(5)側とを接続する冷媒管である。
 膨張弁(24)は、冷房運転時には、室外熱交換器(23)において放熱した冷凍サイクルの高圧の冷媒を冷凍サイクルの低圧まで減圧する弁である。また、膨張弁(24)は、暖房運転時には、室内熱交換器(41)において放熱した冷凍サイクルの高圧の冷媒を冷凍サイクルの低圧まで減圧する弁である。膨張弁(24)は、液冷媒管(35)の液側閉鎖弁(25)寄りの部分に設けられている。ここでは、膨張弁(24)として、電動膨張弁が使用されている。
 液側閉鎖弁(25)及びガス側閉鎖弁(26)は、外部の機器・配管(具体的には、液冷媒連絡管(5)及びガス冷媒連絡管(6))との接続口に設けられた弁である。液側閉鎖弁(25)は、液冷媒管(35)の端部に設けられている。ガス側閉鎖弁(26)は、第2ガス冷媒管(34)の端部に設けられている。
 室外ユニット(2)は、室外ユニット(2)内に室外空気を吸入して、室外熱交換器(23)において冷媒と熱交換させた後に、外部に排出するための室外ファン(36)を有している。すなわち、室外ユニット(2)は、室外熱交換器(23)を流れる冷媒の冷却源又は加熱源としての室外空気を室外熱交換器(23)に供給するファンとして、室外ファン(36)を有している。ここでは、室外ファン(36)として、室外ファン用モータ(36a)によって駆動されるプロペラファン等が使用されている。
  〔冷媒連絡管〕
 冷媒連絡管(5,6)は、空気調和装置(1)を建物等の設置場所に設置する際に、現地にて施工される冷媒管であり、設置場所や室外ユニット(2)と室内ユニット(4)との組み合わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。
 〈室外熱交換器の基本構成〉
 次に、室外熱交換器(23)の構成について図1~図5を参照しながら説明する。ここで、図2は、熱交換ユニット(U)(室外熱交換器(23))の概略斜視図、図3は、図2の熱交換部(60)の部分拡大図である。図4は、伝熱フィン(64)として波形フィンを採用した場合の図3に対応する図である。図5は、室外熱交換器(23)の概略構成図である。なお、以下の説明においては、方向や面を表す文言は、特にことわりのない限り、室外熱交換器(23)が室外ユニット(2)のケーシング(図示せず)に設置された状態を基準とした方向や面を意味する。
 室外熱交換器(23)は、平面視略L字形状の熱交換器パネルである。室外熱交換器(23)は、主として、室外空気と冷媒との熱交換を行う熱交換部(60)と、熱交換部(60)の一端側に設けられた出入口ヘッダ(80)(第1ヘッダ集合管)と、熱交換部(60)の他端側に設けられた中間ヘッダ(90)(第2ヘッダ集合管)とを有している。室外熱交換器(23)は、出入口ヘッダ(80)、中間ヘッダ(90)、及び熱交換部(60)のすべてが、アルミニウムまたはアルミニウム合金で形成された熱交換器を構成する。
 熱交換部(60)は、室外熱交換器(23)の上部を構成する複数(ここでは、12個)のメイン熱交換部(61A~61L)と、室外熱交換器(23)の下部を構成する複数(ここでは、12個)のサブ熱交換部(62A~62L)とを有している。メイン熱交換部(61A~61L)においては、最上段にメイン熱交換部(61A)が配置されており、その下段側から上側に向かって順にメイン熱交換部(61B~61L)が配置されている。サブ熱交換部(62A~62L)においては、最下段にサブ熱交換部(62A)が配置されており、その上段側から下側に向かって順にサブ熱交換部(62B~62L)が配置されている。
 熱交換部(60)は、扁平管からなる多数の伝熱管(63)と、いわゆる差込フィンからなる多数の伝熱フィン(64)とにより構成された、いわゆる差込フィン式の熱交換器である。伝熱管(63)は、アルミニウムまたはアルミニウム合金で形成されており、伝熱面となる鉛直方向を向く平面部(63a)と、冷媒が流れる多数の小さな内部流路(63b)を有する扁平多穴管である。多数の伝熱管(63)は、鉛直方向に沿って間隔をあけて複数段配置されている。伝熱管(63)の一端が出入口ヘッダ(80)に接続され、伝熱管(63)の他端が中間ヘッダ(90)に接続されている。伝熱フィン(64)は、アルミニウムまたはアルミニウム合金で形成されている。伝熱フィン(64)の片方の側縁部には、出入口ヘッダ(80)と中間ヘッダ(90)との間に配置された多数の伝熱管(63)に差し込めるように、水平に細長く延びる多数の切り欠き(64a)が形成されている。伝熱フィン(64)の切り欠き(64a)の形状は、伝熱管(63)の断面の外形にほぼ一致している。
 多数の伝熱管(63)は、メイン熱交換部(61A~61L)及びサブ熱交換部(62A~62L)に区分されている。多数の伝熱管(63)のうち、室外熱交換器(23)の最上段から下側に向かう所定数(3~8本程度)毎の伝熱管(63)群が、メイン熱交換部(61A~61L)をそれぞれ構成している。多数の伝熱管(63)のうち、室外熱交換器(23)の最下段から上側に向かう所定数(1~3本程度)毎の伝熱管(63)群が、サブ熱交換部(62A~62L)をそれぞれ構成している。
 なお、室外熱交換器(23)は、上記のような伝熱フィン(64)として差込フィン(図3参照)を採用した差込フィン式の熱交換器に限定されるものではなく、伝熱フィン(64)として多数の波形フィン(図4参照)を採用した波形フィン式の熱交換器であってもよい。
  〔中間ヘッダの構成〕
 中間ヘッダ(90)の構成について図5を参照しながら説明する。なお、以下の説明においては、方向や面を表す文言は、特にことわりのない限り、中間ヘッダ(90)を含む室外熱交換器(23)が室外ユニット(2)に設置された状態を基準とした方向や面を意味する。
 中間ヘッダ(90)は、アルミニウムまたはアルミニウム合金で形成された鉛直方向に延びる筒状の部材であり、縦長中空の中間ヘッダケース(91)を有している。
 中間ヘッダケース(91)は、その内部空間が、複数(ここでは、11個)のメイン側中間バッフル(92)、複数(ここでは、11個)のサブ中間バッフル(93)、境界側中間バッフル(94)によって、鉛直方向に沿って仕切られている。複数のメイン側中間バッフル(92)は、中間ヘッダケース(91)の上部の内部空間をメイン熱交換部(61A~61K)の他端に連通するメイン側中間空間(95A~95K)に仕切るように、鉛直方向に沿って順に設けられている。サブ中間バッフル(93)は、中間ヘッダケース(91)の下部の内部空間をサブ熱交換部(62A~62K)の他端に連通するサブ側中間空間(96A~96K)に仕切るように、鉛直方向に沿って順に設けられている。境界側中間バッフル(94)は、中間ヘッダケース(91)の最下段側のメイン側中間バッフル(92)と最上段側のサブ中間バッフル(93)との鉛直方向間の内部空間をメイン熱交換部(61L)の他端に連通するメイン側中間空間(95L)とサブ熱交換部(62L)の他端に連通するサブ側中間空間(96L)に仕切るように設けられている。
 中間ヘッダケース(91)には、複数(ここでは、11本)の中間連絡管(97A~97K)が接続されている。中間連絡管(97A~97K)は、メイン側中間空間(95A~95K)とサブ側中間空間(96A~96K)とを連通する冷媒管である。これにより、メイン熱交換部(61A~61K)とサブ熱交換部(62A~62K)とが中間ヘッダ(90)及び中間連絡管(97A~97K)を介して連通することになり、室外熱交換器(23)の冷媒パス(65A~65K)が形成されている。また、境界側中間バッフル(94)には、メイン側中間空間(95L)とサブ側中間空間(96L)とを連通させる中間バッフル連通孔(94a)が形成されている。これにより、メイン熱交換部(61L)とサブ熱交換部(62L)とが中間ヘッダ(90)及び中間バッフル連通孔(94a)を介して連通することになり、室外熱交換器(23)の冷媒パス(65L)が形成されている。このように、室外熱交換器(23)は、多パス(ここでは、12パス)の冷媒パス(65A~65L)に区分された構成を有している。
  〔出入口ヘッダの構成〕
 出入口ヘッダ(80)の構成について図5及び図6を参照しながら説明する。なお、以下の説明においては、方向や面を表す文言は、特にことわりのない限り、出入口ヘッダ(80)を含む室外熱交換器(23)が室外ユニット(2)に設置された状態を基準とした方向や面を意味する。
 出入口ヘッダ(80)は、アルミニウムまたはアルミニウム合金で形成された鉛直方向に延びる部材であり、縦長中空の出入口ヘッダケース(81)を有している。出入口ヘッダケース(81)は、上端及び下端が開口した円筒形状の出入口ヘッダ筒状体(82)を有しており、2つの閉塞バッフル(83)によって上端及び下端の開口が閉じられている。出入口ヘッダケース(81)は、その内部空間が、境界バッフル(84)によって、上部の出入口空間(85)と下部の供給空間(86A~86L)とに鉛直方向に沿って仕切られている。閉塞バッフル(83)は、後述する本発明の端部仕切部を構成し、境界バッフル(84)は、後述する本発明の中間仕切部を構成しており、端部仕切部と中間仕切部とで複数の仕切部が構成されている。上記端部仕切部である閉塞バッフル(83)は、上記出入口ヘッダ(ヘッダ集合管)(80)の両端部付近に配置されている。
 閉塞バッフル(83)と境界バッフル(84)は、ヘッダ集合管である出入口ヘッダ(80)に形成されるスリット(S)の内部に挿通される。スリット(S)は、出入口ヘッダ(80)の全周のうち外側寄りの略半分の領域に形成される、略円弧状の切り欠き部で構成される。閉塞バッフル(83)と境界バッフル(84)は、出入口ヘッダ(80)の内部を、供給空間(86A~86L))と出入口空間(85)とに仕切っている。供給空間(86A~86L)は、伝熱管(63)に流入する前の冷媒(流体)が流れる第1空間を構成する。出入口空間(85)は、伝熱管(63)を流れた後の冷媒(流体)が流れる第2空間を構成する。
 出入口空間(85)は、メイン熱交換部(61A~61L)の一端に連通する空間であり、冷媒パス(65A~65L)を通過した冷媒を出口で合流させる空間として機能している。このように、出入口空間(85)を有する出入口ヘッダ(80)の上部が、冷媒パス(65A~65L)を通過した冷媒を出口で合流させる冷媒出口部として機能している。
 出入口ヘッダ(80)は、第1ガス冷媒管(33)に接続して出入口空間(85)に連通している。供給空間(86A~86L)は、複数(ここでは、11個)の供給側出入口バッフル(87)によって仕切られたサブ熱交換部(62A~62L)の一端に連通する複数(ここでは、12個)の空間であり、冷媒パス(65A~65L)に冷媒を流出させる空間として機能している。このように、複数の供給空間(86A~86L)を有する出入口ヘッダ(80)の下部が、複数の冷媒パス(65A~65L)に区分して冷媒を流出させる冷媒供給部(86)として機能している。
 〈冷媒分流器〉
 冷媒分流器(70)の構成について、図5~図7を参照しながら詳細に説明する。
 冷媒分流器(70)は、液冷媒管(35)を通じて流入する冷媒を分流して下流側(ここでは、複数の伝熱管(63))に流出させる冷媒通過部品である。冷媒分流器(70)は、室外熱交換器(23)の一端側に設けられており、出入口ヘッダ(80)の冷媒供給部(86)を介して伝熱管(63)の一端が接続されている。冷媒分流器(70)は、アルミニウムまたはアルミニウム合金で形成されている。冷媒分流器(70)は、室外熱交換器(23)と一体化されることで、熱交換ユニット(U)を構成する。
 冷媒分流器(70)は、縦長の中空状の分流器本体(71)を有している。分流器本体(71)は、上端及び下端が開口した円筒形状の胴部(72)を有している。胴部(72)には、該胴部(72)の軸方向(鉛直方向)に沿って複数の差込スリット(72a,72b,72c)が形成される。各差込スリット(72a,72b,72c)には、それぞれ複数のバッフル(73,77,77a)が挿通される。なお、分流器本体(71)は、円筒形状に限定されず、例えば、四角筒形状等の多角筒形状であってもよい。
 複数の差込スリット(72a,72b,72c)は、2つの端部側スリット(72a,72a)と、1つのノズル側スリット(72c)と、多数の中間スリット(72b)とで構成される。端部側スリット(72a,72a)は、胴部(72)の上端及び下端にそれぞれ形成される。ノズル側スリット(72c)は、複数の差込スリット(72a,72b,72c)のうち下側の端部側スリット(72a)に最も近い差込スリット(72c)を構成する。多数の中間スリット(72b)は、上側の端部側スリット(72a)とノズル側スリット(72c)の間に形成される。
 複数のバッフル(73,77,77a)は、2枚の端部側バッフル(73,73)と、多数の中間バッフル(77)とで構成される。各端部側バッフル(73,73)は、円形板状に形成され、各端部側スリット(72a,72a)にそれぞれ挿通される。各端部側バッフル(73,73)は、分流器本体(71)の胴部(72)の上下の開口をそれぞれ閉塞している。
 中間バッフル(77)は、ノズル側スリット(72c)及び各中間スリット(72b)に1枚ずつ挿通される。ノズル側スリット(72c)には、中間バッフル(77)の下側にノズル部材(79)が挿通される。ノズル側バッフル(77a)及び中間スリット(72b)は、中央に略円形状の挿通穴(77b)が形成された円環板状の部材である。多数の中間スリット(72b)には、各々の挿通穴(77b)を貫通するように棒状の分流部材(74)が挿通される。
 分流器本体(71)の内部には、1つの下部空間(78)と、多数の中継空間(76A~76L)とが形成される。下部空間(78)は、下側の端部側バッフル(73)とノズル部材(79)の間に区画される。下部空間(78)には、液冷媒管(35)の開口端が連通している。多数の中継空間(76A~76L)は、分流部材(74)と、上下に隣り合う各中間バッフル(77)との間にそれぞれ形成される。つまり、多数の中継空間(76A~76L)は、分流部材(74)の周囲に形成される略円筒柱状の空間である。
 分流部材(74)は、鉛直方向に延びる棒状の部材である。分流部材(74)は、アルミニウム又はアルミニウム合金で構成される。分流部材(74)には、該分流部材(74)の周方向に配列される複数(ここでは、12個)の分流路(74A~74L)が形成される。これらの分流路(74A~74L)は、例えば分流部材(74)を該分流部材(74)の長手方向に押出成形することで形成される。分流部材(74)では、複数の分流路(74A~74L)に囲まれた部分が中実となっている。
 分流部材(74)の上端は、上側の端部側バッフル(73)の下面と接触する。複数の分流路(74A~74L)の上端の開口は、上側の端部側バッフル(73)により実質的に閉塞される。分流部材(74)の下端は、ノズル部材(79)の上面と接触する。複数の分流路(74A~74L)の下端の開口は、ノズル部材(79)に形成される1つの分流空間(75)と連通する。
 分流部材(74)の外周面には、多数(ここでは、12個)の側面孔(74a)が形成される。各側面孔(74a)は、分流部材(74)の下側から上側に向かうにつれて徐々に周方向にずれるように、螺旋状に配列されている。各側面孔(74a)は、該各側面孔(74a)に1つずつ対応する各中継空間(76A~76L)と連通している。つまり、各側面孔(74a)は、それぞれ対応する中継空間(76A~76L)のみと連通し、対応しない他の中継空間(76A~76L)とは連通しない。
 ノズル部材(79)は、最も下側の中間バッフル(77)とともに、ノズル側スリット(72c)に差し込まれる。つまり、ノズル部材(79)は、中間バッフル(77)の下側に積層された状態で分流器本体(71)に保持される。ノズル部材(79)は、アルミニウムまたはアルミニウム合金で構成される。ノズル部材(79)は、円板状の板部材であり、径方向の中央部分に円形のノズル孔(70c)が形成されている。ノズル部材(79)の上面には、凹部(70b)が形成されている。凹部(70b)の内部の内径は、ノズル孔(70c)の内径よりも大きい。凹部(70b)の内部には、円柱状の分流空間(75)が形成される。分流空間(75)の下端は、ノズル孔(70c)と連通している。分流空間(75)の上端は、各分流路(74A~74L)と連通している。
 冷媒分流器(70)は、分流器本体(71)の各中継空間(76A~76L)と、出入口ヘッダ(80)の各供給空間(86A~86L)とをそれぞれ1つずつ連通させる複数の分流管(88)を有している。図6の例では、分流器本体(71)と出入口ヘッダ(80)との間に12本の分流管(88A~88L)が接続される。
 〈仕切部の構成〉
 中間仕切部である境界バッフル(84)と、端部仕切部である閉塞バッフル(83)について、図8,図9を参照して説明する。
 境界バッフル(84)はほぼ円径の板材(仕切板)であり、第1大径部(111a)と第1小径部(111b)とを有している。第1大径部(111a)は、第1円板部(111)の差込方向の手前側(後方)の略半分に形成される略半円形の板部である。第1大径部(111a)の半径は、出入口ヘッダ(80)の外周面の半径と概ね等しい。第1小径部(111b)は、第1円板部(111)の差込方向の奥側(前方)の略半分に形成される略半円形の板部である。第1小径部(111b)の半径は、出入口ヘッダ(80)の内周面の半径と概ね等しい。第1大径部(111a)は、その幅方向(扁平管(63)の幅方向)の両端部が第1小径部(111b)から突出している。この2つの突出部分(111c)は、第1板部(110)をスリット(S)の奥側まで差し込んだ状態において、スリット(S)の開口縁部と接触する接触部を構成する。
 閉塞バッフル(83)は、境界バッフル(84)の厚さを(t)とすると、その約2倍の厚さ寸法(2t)のほぼ円径の板材(仕切板)であり、第2大径部(121a)と第2小径部(121b)とを有している。第2大径部(121a)は、第2円板部(121)の差込方向の手前側(後方)の略半分に形成される略半円形の板部である。第2大径部(121a)の半径は、出入口ヘッダ(80)の外周面の半径と概ね等しい。第2小径部(121b)は、第2円板部(121)の差込方向の奥側(前方)の略半分に形成される略半円形の板部である。第2小径部(121b)の半径は、出入口ヘッダ(80)の内周面の半径と概ね等しい。第2大径部(121a)は、その幅方向(扁平管(63)の幅方向)の両端部が第2小径部(121b)から突出している。この2つの突出部分(121c)は、第2板部(120)をスリット(S)の奥側まで差し込んだ状態において、スリット(S)の開口縁部と接触する接触部を構成する。
 上述したように、境界バッフル(84)と閉塞バッフル(83)は、上記出入口ヘッダ(80)の内部に接合され、該出入口ヘッダ(80)の内部と外部および該ヘッダ集合管の内部を複数の空間に仕切る複数の仕切部である。そして、上記出入口ヘッダ(80)の最も端部付近に配置された端部仕切部である閉塞バッフル(83)は、該出入口ヘッダ(80)の両端よりも内側に配置された中間仕切部である境界バッフル(84)約2倍の厚さであり、境界バッフル(84)よりも剛性が高い。
 上述したように閉塞バッフル(83)と境界バッフル(84)の厚さ寸法が異なるため、出入口ヘッダ(80)に形成されるスリット(S)は、それぞれが閉塞バッフル(83)と境界バッフル(84)の厚さに対応する寸法で形成されている。
 〈運転動作〉
 次に、空気調和装置(1)の基本動作について図1を参照しながら説明する。空気調和装置(1)は、基本動作として、冷房運転及び暖房運転を行うことが可能である。
  〔冷房運転〕
 冷房運転時には、四路切換弁(22)が冷房サイクル状態(図1の実線で示される状態)に切り換えられる。冷媒回路(10)において、冷凍サイクルの低圧のガス冷媒は、圧縮機(21)に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。
 圧縮機(21)から吐出された高圧のガス冷媒は、四路切換弁(22)を通じて、室外熱交換器(23)に送られる。室外熱交換器(23)に送られた高圧のガス冷媒は、冷媒放熱器として機能する室外熱交換器(23)において、室外ファン(36)によって冷却源として供給される室外空気と熱交換を行って放熱して、高圧の液冷媒になる。
 室外熱交換器(23)において放熱した高圧の液冷媒は、膨張弁(24)に送られる。膨張弁(24)に送られた高圧の液冷媒は、膨張弁(24)によって冷凍サイクルの低圧まで減圧されて、低圧の気液二相状態の冷媒になる。膨張弁(24)で減圧された低圧の気液二相状態の冷媒は、液側閉鎖弁(25)及び液冷媒連絡管(5)を通じて、室内熱交換器(41)に送られる。
 室内熱交換器(41)に送られた低圧の気液二相状態の冷媒は、室内熱交換器(41)において、室内ファン(42)によって加熱源として供給される室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却され、その後に、室内に供給されることで室内の冷房が行われる。
 室内熱交換器(41)において蒸発した低圧のガス冷媒は、ガス冷媒連絡管(6)、ガス側閉鎖弁(26)及び四路切換弁(22)を通じて、再び、圧縮機(21)に吸入される。
  〔暖房運転〕
 暖房運転時には、四路切換弁(22)が暖房サイクル状態(図1の破線で示される状態)に切り換えられる。冷媒回路(10)において、冷凍サイクルの低圧のガス冷媒は、圧縮機(21)に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。
 圧縮機(21)から吐出された高圧のガス冷媒は、四路切換弁(22)、ガス側閉鎖弁(26)及びガス冷媒連絡管(6)を通じて、室内熱交換器(41)に送られる。室内熱交換器(41)に送られた高圧のガス冷媒は、室内熱交換器(41)において、室内ファン(42)によって冷却源として供給される室内空気と熱交換を行って放熱して、高圧の液冷媒になる。これにより、室内空気は加熱され、その後に、室内に供給されることで室内の暖房が行われる。
 室内熱交換器(41)で放熱した高圧の液冷媒は、液冷媒連絡管(5)及び液側閉鎖弁(25)を通じて、膨張弁(24)に送られる。膨張弁(24)に送られた高圧の液冷媒は、膨張弁(24)によって冷凍サイクルの低圧まで減圧されて、低圧の気液二相状態の冷媒になる。膨張弁(24)で減圧された低圧の気液二相状態の冷媒は、室外熱交換器(23)に送られる。
 室外熱交換器(23)に送られた低圧の気液二相状態の冷媒は、冷媒蒸発器として機能する室外熱交換器(23)において、室外ファン(36)によって加熱源として供給される室外空気と熱交換を行って蒸発して、低圧のガス冷媒になる。
 室外熱交換器(23)で蒸発した低圧の冷媒は、四路切換弁(22)を通じて、再び、圧縮機(21)に吸入される。
   [暖房運転時の熱交換ユニットの冷媒の流れ]
 上述した暖房運転時における熱交換ユニット(U)の冷媒の流れについて、図5、図6を参照しながら詳細に説明する。
 気液二相状態の冷媒は、液冷媒管(35)を流れた後、冷媒分流器(70)の下部空間(78)に流入する。この冷媒は、ノズル孔(70c)、分流空間(75)、各分流路(74A~74L)、及び各側面孔(74a)を通過して更に減圧された後、各中継空間(76A~76L)に流出する。各中継空間(76A~76L)の冷媒は、各分流管(88)を流れ、出入口ヘッダ(80)の各供給空間(86A~86L)にそれぞれ流入する。
 各供給空間(86A~86L)の冷媒は、サブ熱交換部(62A~62L)の各伝熱管(63)をそれぞれ流れて空気から吸熱した後、中間ヘッダ(90)の各サブ側中間空間(96A~96K)に流入する。各サブ側中間空間(96A~96K)の冷媒は、各中間連絡管(97A~97K)を流れた後、各メイン側中間空間(95A~95K)に流入する。
 各メイン側中間空間(95A~95K)の冷媒は、メイン熱交換部(61A~61L)の各伝熱管(63)を流れて空気から吸熱した後、出入口ヘッダ(80)の出入口空間(85)に流入する。この冷媒は、第1ガス冷媒管(33)を流れ、圧縮機(21)の吸入側へ送られる。
 本実施形態においては、端部仕切部である閉塞バッフル(83)を中間仕切部である境界バッフル(84)よりも厚い板材で形成しているので、閉塞バッフル(83)の耐圧強度が向上する。したがって、従来であれば出入口ヘッダ(80)が図11に示すように弓なりに撓んでいたのに対して、出入口ヘッダ(80)を撓まない状態に保持できる。
 -実施形態の効果―
 上記実施形態によれば、端部仕切部である閉塞バッフル(83)を中間仕切部である境界バッフル(84)よりも厚い板材で形成し、出入口ヘッダ(80)が撓まない状態に保持できるようにしているので、出入口ヘッダ(80)の両端の扁平管(63)が強い引っ張り力を受けることがなくなり、扁平管(63)の強度が低下するのも抑えられる。具体的には、扁平管(63)の冷媒流路のアスペクト比が変化しないように維持できるので、扁平管(63)の耐圧強度が低下しない。
 また、従来であれば、扁平管(63)の肉厚を厚くして強度を高めるか、出入口ヘッダ(80)の肉厚を厚くして弓なりの変形を防止することで上記の問題は回避できるものの、そうすると熱交換器(23)を軽量化することができなくなり、コストアップの問題が生じてしまうのに対して、本実施形態によれば閉塞バッフル(83)を厚くするだけで熱交換器(23)強度の維持と軽量化を同時に実現でき、コストアップの問題も防止できる。
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
 上記実施形態は、ヘッダ集合管である出入口ヘッダ(80)の閉塞バッフル(83)と境界バッフル(84)について、本発明の仕切部を採用している。しかし、出入口ヘッダ(80)に限らず、同じくヘッダ集合管である中間ヘッダ(90)を複数の空間に仕切る仕切部(バッフル)に本発明を適用してもよい。
 また、上記実施形態では、中間仕切板である境界バッフル(84)と端部仕切板である閉塞バッフル(83)をそれぞれ厚さが異なる1枚の板材で形成している。しかしながら、境界バッフル(84)を1枚の板材で形成する一方、図10に示すように、閉塞バッフル(83)を境界バッフル(84)と同じ板材を2枚重ねることにより、境界バッフル(84)よりも厚さのある部材にしてもよい。このようにすると、境界バッフル(84)と閉塞バッフル(83)に同じ板材を用いることができるので、材料の管理が容易になる。
 さらに、上記実施形態では、閉塞バッフル(83)を境界バッフル(84)の約2倍の厚さに設定しているが、厚さ寸法の関係は2倍に限らず、適宜変更してもよい。
 また、上記実施形態において説明した室外熱交換器(23)の具体的な構成や、冷媒分流器(70)の具体的な構成は、いずれも一例であり、適宜変更してもよい。例えば室外熱交換器(23)は平面視L形でなくてもよいし、伝熱管の段数も適宜変更してもよい。また、室外熱交換器(23)は、複数(例えば2列)の熱交換部(60)が空気の通過方向に並んで配置されるものであってもよい。
 本発明の冷媒分流器は、上述したように、空気調和装置(1)に限らず、庫内を冷却する冷凍装置の庫内熱交換器に適用してもよい。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、複数の扁平管の端部がヘッダ集合管に接続された熱交換器について有用である。
 23 熱交換器
 63 伝熱管(扁平管)
 80 ヘッダ集合管(出入口ヘッダ)
 83 閉塞バッフル(端部仕切部)
 84 境界バッフル(中間仕切部)

Claims (5)

  1.  複数の扁平管(63)と、
     上記複数の扁平管(63)の端部が接続されるヘッダ集合管(80)と、上記ヘッダ集合管(80)の内部に接合され、該ヘッダ集合管(80)の内部と外部および該ヘッダ集合管(80)の内部を複数の空間に仕切る複数の仕切部(83,84)とを備えた熱交換器であって、
     上記複数の仕切部(83,84)は、上記ヘッダ集合管(80)の最も端部付近に配置された端部仕切部(83)と、該ヘッダ集合管(80)の両端よりも内側に配置された中間仕切部(84)からなり、該端部仕切部(83)は該中間仕切部(84)よりも剛性が大きいことを特徴とする熱交換器。
  2.  請求項1において、
     上記端部仕切部(83)は、上記ヘッダ集合管(80)の両端部付近に配置されることを特徴とする熱交換器。
  3.  請求項1または2において、
     上記端部仕切部(83)及び中間仕切部(84)は、それぞれが板材により形成された仕切板であることを特徴とする熱交換器。
  4.  請求項1,2または3において、
     上記端部仕切部(83)は、上記中間仕切部(84)よりも、上記ヘッダ集合管(80)の長さ方向の厚さ寸法が大きいことを特徴とする熱交換器。
  5.  請求項3において、
     上記中間仕切部(84)は、それぞれ、1枚の板材により構成され、
     上記端部仕切部(83)は、それぞれ、中間仕切部(84)よりも厚さ寸法が厚くなるように、複数枚の板材が積層されて構成されていることを特徴とする熱交換器。
     
PCT/JP2016/003653 2015-09-14 2016-08-08 熱交換器 WO2017046999A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201690001147.5U CN208091295U (zh) 2015-09-14 2016-08-08 热交换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-180521 2015-09-14
JP2015180521A JP6386431B2 (ja) 2015-09-14 2015-09-14 熱交換器

Publications (1)

Publication Number Publication Date
WO2017046999A1 true WO2017046999A1 (ja) 2017-03-23

Family

ID=58288477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003653 WO2017046999A1 (ja) 2015-09-14 2016-08-08 熱交換器

Country Status (3)

Country Link
JP (1) JP6386431B2 (ja)
CN (1) CN208091295U (ja)
WO (1) WO2017046999A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023126B2 (ja) * 2018-01-31 2022-02-21 ダイキン工業株式会社 熱交換器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111388A (ja) * 1997-06-10 1999-01-06 Kawatetsu Mining Co Ltd 単結晶成長方法及び装置
JP2014055699A (ja) * 2012-09-12 2014-03-27 Keihin Thermal Technology Corp 熱交換器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127983U (ja) * 1989-03-29 1990-10-22
JPH05332693A (ja) * 1992-06-02 1993-12-14 Showa Alum Corp 熱交換器
JPH0674684A (ja) * 1992-08-31 1994-03-18 Showa Alum Corp 熱交換器
JP3790946B2 (ja) * 1997-12-08 2006-06-28 株式会社ヴァレオサーマルシステムズ 熱交換器
JP2012154604A (ja) * 2011-01-28 2012-08-16 Showa Denko Kk コンデンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111388A (ja) * 1997-06-10 1999-01-06 Kawatetsu Mining Co Ltd 単結晶成長方法及び装置
JP2014055699A (ja) * 2012-09-12 2014-03-27 Keihin Thermal Technology Corp 熱交換器

Also Published As

Publication number Publication date
JP2017058030A (ja) 2017-03-23
CN208091295U (zh) 2018-11-13
JP6386431B2 (ja) 2018-09-05

Similar Documents

Publication Publication Date Title
JP4749373B2 (ja) 空気調和機
JP6361452B2 (ja) 冷媒蒸発器
JP2009281693A (ja) 熱交換器、その製造方法及びこの熱交換器を用いた空調冷凍装置
WO2013160957A1 (ja) 熱交換器、室内機及び冷凍サイクル装置
JP6446990B2 (ja) 冷媒分流器
EP3220093B1 (en) Heat exchanger
JP2010249343A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
US11892206B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2018138770A1 (ja) 熱源側ユニット、及び、冷凍サイクル装置
JP6386431B2 (ja) 熱交換器
JP6784632B2 (ja) 熱交換器用接続装置
JP2019184192A (ja) 室外ユニット
JP6278010B2 (ja) 冷媒分流器
JP6375959B2 (ja) 冷媒分流構造
JP2009127882A (ja) 熱交換器、室内機及び空気調和機
JP6048515B2 (ja) 冷媒分流器
JP6202064B2 (ja) 熱交換器及び冷凍装置
JP2016200292A (ja) 熱交換器
JP7210744B2 (ja) 熱交換器及び冷凍サイクル装置
US11248856B2 (en) Refrigeration apparatus
JP2017058028A (ja) 熱交換器
JP6421540B2 (ja) 冷媒分流器
WO2019215837A1 (ja) 熱交換器、室内機、室外機、空気調和機、連通管の製造方法及び熱交換器の製造方法
US20240280327A1 (en) Heat exchanger
WO2022014516A1 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845877

Country of ref document: EP

Kind code of ref document: A1