WO2017045477A1 - 阴面对接斜立焊接方法 - Google Patents

阴面对接斜立焊接方法 Download PDF

Info

Publication number
WO2017045477A1
WO2017045477A1 PCT/CN2016/090463 CN2016090463W WO2017045477A1 WO 2017045477 A1 WO2017045477 A1 WO 2017045477A1 CN 2016090463 W CN2016090463 W CN 2016090463W WO 2017045477 A1 WO2017045477 A1 WO 2017045477A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
welded
weld
plate
female face
Prior art date
Application number
PCT/CN2016/090463
Other languages
English (en)
French (fr)
Inventor
王宏
吕黄兵
彭湃
李毅
尉成伟
黄建川
夏秋实
Original Assignee
中建钢构有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建钢构有限公司 filed Critical 中建钢构有限公司
Publication of WO2017045477A1 publication Critical patent/WO2017045477A1/zh
Priority to US15/924,278 priority Critical patent/US10350694B2/en
Priority to AU2018100343A priority patent/AU2018100343A4/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0206Seam welding; Backing means; Inserts of horizontal seams in assembling vertical plates, a welding unit being adapted to travel along the upper horizontal edge of the plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0209Seam welding; Backing means; Inserts of non-horizontal seams in assembling non-horizontal plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories

Definitions

  • the invention relates to the field of steel structure welding, in particular to a structure of an ultra-long matte oblique welding, and a welding method relating to the structure.
  • U.S. Patent No. 4,292,496 discloses M.G. Hoy. A vertical plate welding method using a double-tilt weld invented by et al., which is proposed for thick plate welding, as described herein, a known method of improving thick plate welding such as using a special weld (such as single or double) Face U, V, X And Y-shaped groove), increase the welding current or reduce the welding speed.
  • the patented method is for arc welding of thick plates such as aluminum and aluminum alloy (about 3.8 cm), and the welding current is selected at 290-420A.
  • an inert gas such as pure argon
  • the essence of the method is to improve the weld toughness such as aluminum alloy welding, without considering how to ensure the welding speed, in particular, does not give practical parameters suitable for steel plate welding, nor does it propose welding residual stress.
  • the object of the present invention is to provide a shaded surface that overcomes residual stress and deformation control during the construction process of the profiled section ultra-long oblique vertical welding, provides a preferred oblique weld seam transfer form, welding sequence and high-altitude welding operation protection. Butt oblique welding method.
  • the present invention provides a female face-facing oblique welding method, the method comprising the steps of: providing a welding member and a welding plate welded to the welding member, wherein the welding member is to be welded to the welding plate.
  • One end is provided with a first welding surface and a second welding surface, the first welding surface and the second welding surface form a pointed cone, and the pointed shape of the pointed top is defined as the inner side, and the space between the first welding surface and the welded plate a first welding zone, the space between the second welding surface and the welded plate is a second welding zone; the welding part and the welding plate are welded in the first welding zone, and the welding position is the innermost side of the tapered cone to form a first welding track; Welding the weldment and the welded plate in the second weld zone, the weld position is forming a second weld pass at the innermost side of the tapered cone, and then welding the outer side of the second weld pass and adjacent to the second weld pass to form a third weld pass; Welding the welding piece and the welding plate, welding the outer side of the first welding pass, forming a fourth welding pass, and then welding the position adjacent to the fourth welding pass to form a fifth welding pass; welding the
  • the wire diameter is 1.2 mm
  • the welding current is At 120 amps
  • the welding voltage is 18.5 volts and the welding speed is 13 cm per minute.
  • the wire diameter is 1.2 mm
  • the welding current is At 135 amps
  • the welding voltage is 20 volts and the welding speed is 9 cm per minute.
  • the wire diameter is 1.2 mm
  • the welding current is 125 amps with a welding voltage of 20.5 volts and a welding speed of 6.5 cm per minute.
  • the method further includes a heating and dehumidifying step when the air humidity in the weld zone is greater than 85%.
  • the method further comprises a post thermal insulation treatment, 100 mm on both sides of the weld Wide-width uniform heating, heating from the edge to the middle, and from the middle to the edge from the low to high uniform heating, heating temperature is 200 ⁇ 250 ° C, holding time is the thickness of the sheet every 25 mm for 1 hour.
  • the method further comprises a preheating step, the preheating range width being selected to be 150 mm.
  • the method further comprises the following steps: after the welding is completed, the weld is subjected to local heat treatment to eliminate stress, and the heat treatment is performed by using an electric resistance heater covering a width of 320 mm around the weld.
  • the welding member is a herringbone arch
  • the welded plate is an inverted triangular roof ridge beam
  • the herringbone arch comprises two vertically intersecting webs, respectively a long web and a short web
  • the herringbone arch is further Includes upper and lower chords.
  • the lower chord curved plate of the herringbone arch is separated from the web, and the long web and the inverted triangular ridge beam are separately welded. After the welding of the web and the inverted triangle roof ridge is completed, The lower chord curved plate is then welded to the long web.
  • the two lower-chord curved plates of the opposite faces are welded first, and the two lower-chord curved plates of the other opposite faces are welded.
  • the lower chord curved plate is curved, including two opposite straight sides and two opposite curved sides.
  • two curved shapes are firstly formed. Weld to the long web and weld the two straight sides to the long web.
  • each side of the lower chord curved plate is divided into a first welding zone and a reserved zone.
  • first welding zone of each side is welded first, and the first welding zone of the four sides is welded, and then Welding reserved area.
  • the method further includes a heating correction step, and the heating temperature is controlled to 650 ⁇ 50 ° C.
  • the method further uses a pylon comprising a plurality of channel steel frames for forming a skeleton of the pylon, and a plurality of transverse angle steel frames are formed on the channel steel frame for forming a plurality of brackets for further laying
  • the steel springboard is also provided with a steel ladder in the channel steel frame.
  • the method provided by the invention adopts a thin layer 3 on each side
  • the welding method of full swing and segment welding strictly control the thickness and width of the single weld, reduce the welding heat input, because the web weld is a double-sided groove of the tapered joint, butt weld
  • the flange plate backbone side plate
  • the plastic deformation zone is mainly in the plate thickness direction
  • the lateral deformation of the weld metal is not constrained by the base metal, and the residual stress is relatively less affected, and the web weld is relatively small.
  • Double sided The V-shaped piercing penetrates the butt weld and effectively reduces the welding angle deformation.
  • the docking precision is strictly ensured during installation, the weld gap spacing is controlled, and the welding residual deformation caused by the increase of the weld cross-sectional area is minimized.
  • FIG. 1 is a schematic view showing the structure of a female face-facing oblique welding method of the present invention.
  • FIG. 2 is a schematic flow chart of the method of the oblique facing oblique welding of the present invention.
  • Fig. 3 is a structural schematic view showing a specific embodiment of the female face-facing oblique welding method of the present invention.
  • Figure 4 is a schematic cross-sectional view of a herringbone arch of the embodiment of Figure 3.
  • Figure 5 is a schematic view showing the structure of the arc plate of the specific embodiment of Figure 3.
  • Figure 6 is a schematic view of the structure of the arc plate in Figure 5.
  • Fig. 7 is a perspective view showing the pylon used in the yaw-facing oblique welding method of the present invention.
  • Figure 8 is a process parameter diagram of the present invention in the process of welding the weldment and the welded plate.
  • the present invention relates to a female face-facing oblique welding method according to the present invention with reference to the accompanying drawings and preferred embodiments.
  • the specific embodiments, structures, features and functions are described in detail as follows:
  • the smear, split, symmetrical and synchronous welding methods should be used for welding. On the one hand, it ensures the temperature control during the welding process, and on the other hand, the total station is used to check the position of the component installation. Similarly, after the completion of the welding operation, the project self-inspection and the weld inspection of the professional inspection mechanism should be done.
  • FIG. 1 is a schematic structural view of a female face-facing oblique welding method according to the present invention, which includes a welding member 10 and a welding member 10 a welded welded plate 11 , wherein one end of the welded member 10 to be welded to the welded plate 11 is provided with a first welded surface 101 and a second welded surface 102, the first welded surface 101 A tapered shape is formed with the second welding surface 102, and a pointed top position is defined as an inner side, and a space between the first welded surface 101 and the welded plate 11 is defined as a first welded portion 21 and a second welded surface 102.
  • the space between the welded plate 11 and the welded plate 11 is defined as a second land 22 which is used to accommodate the soldered solder 23 between the two pads.
  • Field preparation mainly includes data collection of various external tools and equipment materials involved in the construction work layer.
  • the first step of welding is performed, and the welded part 10 and the welded plate are welded in the first land 21 , the welding position is the innermost side of the tip cone, as shown in Figure 1 (the first weld line);
  • the second step of welding is performed, and the weldment 10 and the welded plate are welded in the second weld zone 22
  • the welding position is the innermost side of the tip cone, as shown in Figure 2 (2nd weld), and then the third pass is welded, the position is adjacent to the second weld in Figure 1. 2 outside of the position and immediately adjacent to the position of the second weld 2, ie the position of 3 (third weld);
  • the third step of welding is performed, and the welded part 10 and the welded plate 11 are welded in the first welding zone 21, and the welding position is adjacent to FIG. 1
  • the outer side of the position of the first weld bead 1 that is, the position of 4 (fourth weld bead), followed by the fifth pass, the position being the outer side of the position immediately adjacent to the fourth weld 4, that is, the position of 5 (the fifth weld pass) );
  • the fourth step of welding is performed, and the welded part 10 and the welded plate 11 are welded in the second welding zone 22, and the welding position is as shown in FIG.
  • the middle position is the outer side of the third weld bead 3, that is, the position 6 (sixth weld bead).
  • the welding sequence is: welding one of the first sides between the two components, then welding the two sides of the other side between the two components, welding the two sides of the first side, and finally welding the last one of the other side, 6 total, 3 on each side Road.
  • the weld bead of the first region 21 includes 14 5
  • the weld bead of the second region 22 includes 2 3 6
  • the three weld beads in each zone shall be processed according to the process parameters shown in Figure 8.
  • This weld is an oblique weld, for example, a vertical angle of 20° It has strong characteristics of overhead welding. Since the droplets with high welding efficiency are transitioned to the spatial position, the weld formation during welding is not easy to control, and the droplet transfer mode of short-circuit transition should be adopted. Control the short circuit transition voltage to 18 ⁇ 20V Between, the short circuit time is longer, the welding process is more stable, and the molding can be better in the oblique position of the female side. A smaller voltage will also effectively reduce the melting width and increase the penetration.
  • the welding current and the wire diameter that is, the current density of the wire, also have a large influence on the short-circuit transition process.
  • the fine wire has a wide wire feed speed range in the short-circuit transition, and the process is easy to control. Therefore, a smaller diameter ⁇ 1.2mm flux-cored wire is selected, and a smaller wire diameter is cooled by the CO 2 shielding gas. Under compression, it will bring a large current density and improve welding efficiency.
  • the welding method of full swing and segment welding of the track strictly controls the thickness and width of the single weld and reduces the welding heat input to reduce the factors that reduce the mechanical properties of the weld.
  • Single weld thickness is controlled at 6mm Left and right, the outermost weld bead width is controlled within 15mm.
  • the weld seam is controlled at about 0.6m and welded from bottom to top.
  • the interlayer temperature of weld welding is controlled at 85 ⁇ 100 °C, use the temperature thermometer for monitoring during the welding process.
  • the welding temperature of the weld is lower than required, immediately heat it to the specified requirements before welding.
  • the welds need to be welded continuously, and no welding is allowed for no reason. In case of special circumstances, measures are taken immediately. After the welding conditions are met, the welds are reheated, and the heating temperature is higher than the preheating temperature before welding. 20 to 30 °C.
  • the welding adopts the root manual welding bottom sealing, the semi-automatic welding intermediate filling, and the surface layer manual welding surface welding method.
  • the lining weldments are all semi-automatically welded with CO 2 gas protection.
  • the initial weld head shall start at least 15 mm after the original arc extinction, and it is forbidden to directly arc at the original extinction arc.
  • the torch can be removed after the gas is completely stopped and the weld is completely condensed. It is forbidden to stop the burning of the arc, that is, to remove the welding torch, so that the red hot molten pool is exposed to the atmosphere and loses the protection of CO 2 gas.
  • the bottom layer must be more than 50mm ahead of the weld.
  • the arc on the arcing plate is ignited, and then the arc is welded.
  • the arc is not allowed to be extinguished at the joint, but the arc should be led to the beyond joint 50mm
  • the arc extinguishing plate extinguishes the arc and fills the arc pit.
  • the arc is driven by a reciprocating arc-moving method, which is slightly stopped on both sides to avoid the angle between the welding meat and the groove, and achieve the requirement of gentle transition.
  • Filling layer before filling and welding, remove the convex part on the first layer of weld bead and the excess part caused by arcing, remove the spatter and dust adhering to the slope wall, and check whether the edge of the groove has unfused and concave angle. If so, it must be removed with an angle grinder.
  • CO 2 gas shielded welding pay attention to controlling the flow rate of CO 2 gas, the molten pool maintains the level state, and the welding method adopts the slanting circle method.
  • the depth is evenly set to 1.5 mm to 2 mm, which is convenient for the cover. You can see the edge of the groove when you are facing.
  • the interlayer temperature of the weld should always be controlled between 100 and 150 Between °C, the welding process is required to have the maximum continuity. In the process of welding, if there is a repair defect and the temperature of the welding slag needs to be stopped, the temperature must be reduced, then the heat treatment must be carried out until the specified value is reached. welding. When there is a crack in the weld, the welder shall not handle it without authorization. The person in charge of the welding technology shall be reported to find out the cause and the repair measures shall be made before the treatment can be carried out.
  • Post-weld heat treatment and protective measures base metal thickness 25mm ⁇ T ⁇ 80mm
  • the weld must be immediately subjected to post-heat insulation treatment, and the heat should be 100mm on both sides of the weld.
  • Wide-width uniform heating heating from the edge to the middle, and from the middle to the edge from the low to high uniform heating, it is strictly prohibited to hold the heat source concentrated to the local, after the thermal insulation treatment heating temperature is 200-250 ° C, the holding time should be determined according to the thickness of the workpiece according to the thickness of each 25mm plate for 1 hour. After reaching the holding time, it should be slowly cooled to normal temperature.
  • Post-weld cleaning and inspection After welding, the spatter and welding slag should be removed. After cleaning, the weld appearance and the magnifying glass should be used to check the appearance of the weld, and there should be no defects such as depression, undercut, stomata, unfused, crack, etc. Do a good post-weld self-inspection record. After passing the self-test, check the number of the welder. The stamp should be in the middle of the joint. At 50mm, it is strictly forbidden to print on the edge to prevent cracking.
  • the appearance quality inspection standard shall comply with the Class I regulations of Table 4-7-13 of GB-50221.
  • the cutting and extinction plates shall be cut and ground.
  • Non-destructive testing of welds after the weldment is cooled to normal temperature ⁇ 24 hours, non-destructive inspection is carried out.
  • the inspection method is UT inspection, and the inspection standard should be consistent.
  • JGB-11345-89 “Inspection level of manual ultrasonic flaw detection method and quality classification method for steel welds" and issue inspection report.
  • the web weld is T
  • the double-sided groove of the joint is welded through butt welding.
  • the weld is equivalent to the surface surfacing with respect to the flange plate (the side plate of the spine), the plastic deformation zone is mainly in the direction of the plate thickness, and the lateral deformation of the weld metal is not restricted by the base metal. Relatively speaking, the influence of residual stress is small. Residual stress is mainly caused by The T-joint web is removed from the weld of the arc plate.
  • T There is a large welding stress in the weld area of the interface and the vicinity, and the welding stress is gradually reduced in the area far from the weld.
  • the weld Before the start of the operation, preheat the base metal around the weld, and the width of the preheating range is 150mm. To avoid new temperature difference stress caused by too narrow a range.
  • the weld After the welding is completed, the weld is locally heat treated to eliminate the stress. The heat treatment is performed by an electric resistance heater covering a width of 320 mm around the weld.
  • FIG. 3 is a schematic structural view of a specific embodiment of the female face-facing oblique welding method of the present invention.
  • the structure includes an inverted triangular ridge beam 91 and a herringbone 92 welded to the triangular ridge beam 91.
  • FIG. 4 is a schematic cross-sectional view of the herringbone 92, which can be seen from the figure.
  • the herringbone arch 92 includes two vertically intersecting webs, a long web 921 and a short web 922, respectively coupled to the web.
  • the upper chord of the herringbone 92 includes a winding tube 923, and the lower chord includes a lower chord.
  • Shape plate 924 in short, the cross-section of herringbone arch 92 is a profiled olive-shaped section, the upper string is a round tube structure, the lower string is an olive-shaped structure composed of four arc plates, and the web runs through the upper and lower strings.
  • the length of the rib arch and the ridge beam is 4.87m, the thickness of the plate is 30mm, and the material is Q345GJC.
  • the thickness of the side slab of the ridge beam is 20mm, and the material is Q345GJC.
  • the web weld (the black line between the herringbone 92 and the inverted triangle ridge 91 in Figure 3) is at an angle of 20° to the vertical.
  • the web of the herringbone 92 corresponds to the welded piece, and the inverted triangular roof ridge 91 Corresponding to the welded plate, the web weld is welded by the welding method of the present invention.
  • the lower-chord curved plate 924 of the herringbone 91 is first separated from the web, and the long web is separately welded. 921 and inverted triangle roof ridge 91, after welding the web, the lower chord 924 is welded to the long web 921 Because this form includes four lower-chord curved plates, the four lower-chord curved plates are opposite each other, and the lower curved plate 924 to the long web 921 are welded. In the process, the two lower-chord curved plates of the opposite side are welded first (diagonal direction), and then the two lower-chord curved plates of the other opposite sides are welded.
  • the butt welds between the web and the ridge beam are long in length and long in thickness.
  • the form is a slanted vertical weld with a difficult to operate at a high altitude. Type interface, deformation and residual stress control is difficult.
  • the weld is located at the key transmission force node of the structure and is extremely sensitive to welding cracks. The control of welding cracks is also a major focus.
  • FIG. 5 it is a schematic diagram of a lower-chord curved plate 924 which is curved and includes two opposite straight sides 924a. And two opposite curved sides 924b.
  • the two curved sides 924b are first welded to the long web 921, and then the two straight sides 924a Solder to long web 921.
  • each side is divided into a first welding zone H1 and a reserved zone H2.
  • first weld the first weld zone H1 on each side, and the first weld zone H1 of the four sides is welded, and then weld the reserved zone H2.
  • the restraint of the weld causes the transient stress release during the cooling process to be hindered, which is a major factor in generating residual stress.
  • the welding of the cross webs ie, the combination of long and short webs
  • the welding of the subsequent lower-chord curved plates is greatly restrained.
  • the two arc plates at the diagonal position are welded first, and the degree of restraint is small.
  • the other two diagonal arc plates are reserved for the angular position.
  • the welds in the reserved position are welded after the welds are completed at other positions, so that the welding stress is dissipated more smoothly.
  • Web welds are double-sided V
  • the type of fracture penetrates the butt weld and effectively reduces the deformation of the weld angle.
  • the docking precision is strictly ensured during installation, the weld gap spacing is controlled, and the welding residual deformation caused by the increase of the weld cross-sectional area is minimized.
  • Welding deformation is inevitable and can only be minimized. For example, during the welding process, large deformation of the web occurs due to unexpected factors such as improper operation.
  • the hammering method and the heating correction method are used for processing, and the heating temperature is controlled. 650 ⁇ 50°C, the number of heating in the same position should not exceed 2 times to avoid material embrittlement.
  • One is the wavy deformation of the web, which is caused by the longitudinal shrinkage of the weld.
  • the hammering method is used for the correction, and the distance weld is 3cm.
  • the inner band is hammered to lengthen the shortened metal.
  • FIG. 7 is a hanger 80 used in the present invention.
  • a special operation protection hanger is designed for the structural features, and the hanger 80 includes a plurality of channel steel frames 81 for forming a skeleton of the hanger 80, and a plurality of transverse angle steel frames 82 are arranged on the channel steel frame 80 for A plurality of brackets are formed to further lay a steel springboard (not shown).
  • a steel ladder 83 is disposed in the channel frame 81 for the construction workers to pass up and down.
  • the overall form of the pylon is consistent with the vertical angle of the inverted triangle ridge beam, and the side slab of the ridge beam is fitted, and the upper part is welded and fixed by the card board and the ridge beam, which is safe and reliable. Its four transverse angle steel frames can be used for the welding of all heights within the range of the pylon after laying the springboard. During operation, the windshield is surrounded by the windshield, which effectively prevents the influence of high-altitude windy environment on CO 2 gas shielded welding.
  • the hanger can be hung directly at the weld of the ridge beam.
  • a vertical steel ladder is arranged inside the pylon to facilitate the workers to walk up and down; the pylon and the ridge beam are closely fitted, and each layer is provided with a steel springboard, and a safety protection net and a windproof cloth are arranged around to ensure the safety of the construction workers in the pylon.
  • the welding method provided by the invention is described in detail from the construction process, and combined with a specific embodiment, from the aspects of economical efficiency, cost saving, technical experience, quality control, etc., the multi-angle system is explained, which is the same type of engineering. Scientific paradigm.
  • the on-site welding method of the ultra-long slanting vertical welding control the difficulty in controlling the quality of such welds in the past, thus eliminating the cost of repairing the welds in the past, and on the other hand, it is safe and reliable in the welding process.
  • the operating rack saves material costs.
  • the welded structure in the specific embodiment is a space arch prestressed structural system, which has a unique form, novel shape, complicated component form, and the roof steel structure is 10
  • the arched structure constitutes a space stress system.
  • it overcomes several difficult and difficult points of residual stress and deformation control, oblique weld seam transfer form, welding sequence and high-altitude welding operation protection, and completes this with better quality.
  • Welding of unconventional welds can provide lessons for subsequent similar projects. Among them, the one-time test pass rate of the over-length oblique weld seam of the female surface is tested. 100%, the third-party testing one-time pass rate of 100%, achieved good economic and social impact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

一种阴面对接斜立焊接方法,包括如下步骤:提供一焊接件(10)以及与该焊接件(10)焊接的焊接板(11),其中,焊接件(10)上欲与焊接板(11)焊接结合的一端设置有第一焊接面(101)及第二焊接面(102),该第一焊接面(101)与第二焊接面(102)形成尖锥形,第一焊接面(101)对应为第一焊接区(21),第二焊接面(102)对应为第二焊接区(22);在第一焊接区(21)焊接位置为尖锥最内侧,形成第一焊接道(1);在第二焊接区(22),焊接位置为尖锥最内侧形成第二焊接道(2),接着焊接第二焊接道(2)的外侧并紧邻第二焊接道(2),形成第三焊接道(3);在第一焊接区(21)焊接第一焊接道(1)的外侧,形成第四焊接道(4),接着焊接紧邻第四焊接道(4)的位置,形成第五焊接道(5);在第二焊接区(22)焊接第三焊接道(3)的外侧,形成第六焊接道(6)。采用上述阴面对接斜立焊接方法可有效克服残余应力,并控制减少焊接变形。

Description

阴面对接斜立焊接方法 技术领域
本发明涉及钢结构焊接领域,尤其涉及一种超长阴面斜立焊接的结构,以及涉及该结构的焊接方法。
背景技术
随着我国经济水平的不断发展,人民物质文化生活水平达到了一个新的高度。人们对建筑(特别是公共建筑)的需求观念也发生了根本性变化,在对功能、安全要求日益提高的同时,对建筑美观性能也比以往有着更高的需求。近 15 年间,国内各类结构形式新颖、造型奇特的钢结构建筑层出不穷。不断追求性能与美观的同时,对钢结构制作、安装,特别是焊接作业提出了更大的挑战以及更高的要求。
由于节点日益复杂,而现场施工条件又各不相同,各类形式的阴面斜立焊不断出现,但目前尚无成熟案例和施工规范可做参考。
比如,美国专利 US4,292,496 号,公开了 M.G.Hoy 等人发明的采用双斜焊缝的竖板焊接方法,这是针对厚板焊接提出的,正如该文所述,公知的改善厚板焊接的作法诸如采用特殊的焊缝 ( 如单面或双面 U 、 V 、 X 和 Y 形坡口 ) ,加大焊接电流或者降低焊接速度等。该专利的方法即针对诸如铝及铝合金厚板 ( 约 3.8cm ) 电弧焊接,选择焊接电流在 290-420A ,并且提出在惰性气体 ( 如纯净的氩气 ) 保护下采用双斜缝的竖板焊接工艺。但该方法的实质是着眼于改善诸如铝合金焊接时的焊口韧性,而未虑及如何确保焊接速度,特别是并未给出适用于钢板焊接的实用参数,也并未提出焊接残余应力的消除或者焊接板材变形的问题的解决方案。
再如,中国专利申请 94114847.5 号,虽涉及大型工件,如圆盘式水轮发电机转子支架的 ' 现场 ' 焊接方法,该文献中虽有给出相关焊接参数的配合方式,但该方法的作业方式实质是按工厂式条件考虑的,目的仅是针对所述特殊焊件,为减小焊接应力、圆盘面收缩及变形,同样没考虑到焊接残余应力的消除或者焊接板材变形的问题的解决方案。
有鉴于此,为了解决上述问题需要提供一种新的阴面对接斜立焊接方法。
技术问题
本发明的目的在于提供一种在异型截面超长斜立焊的施工过程中,克服残余应力及变形控制、提供较佳斜立焊缝熔滴过渡形式、焊接顺序及高空焊接操作防护的阴面对接斜立焊接方法。
技术解决方案
为实现上述目的,本发明提供一种阴面对接斜立焊接方法,该方法包括如下步骤:提供一焊接件以及与该焊接件焊接的焊接板,其中,焊接件上欲与焊接板焊接结合的一端设置有第一焊接面及第二焊接面,该第一焊接面与第二焊接面形成尖锥形,尖锥形的尖顶位置定义为内侧,第一焊接面与焊接板之间的空间为第一焊接区,第二焊接面与焊接板之间的空间为第二焊接区;在第一焊接区焊接该焊接件与焊接板,焊接位置为尖锥最内侧,形成第一焊接道;在第二焊接区焊接该焊接件与焊接板,焊接位置为尖锥最内侧形成第二焊接道,接着焊接第二焊接道的外侧并紧邻第二焊接道,形成第三焊接道;在第一焊接区焊接该焊接件与焊接板,焊接第一焊接道的外侧,形成第四焊接道,接着焊接紧邻第四焊接道的位置,形成第五焊接道;在第二焊接区焊接该焊接件与焊接板紧邻第三焊接道的外侧,形成第六焊接道。
作为本发明的一种改进,上述的第一焊接道和第二焊接道焊接时,焊丝直径为 1.2 毫米 ,焊接电流为 120 安培,焊接电压为 18.5 伏特,焊接速度为 13 厘米每分钟。
作为本发明的一种改进,上述的第三焊接道和第四焊接道焊接时,焊丝直径为 1.2 毫米 ,焊接电流为 135 安培,焊接电压为 20 伏特,焊接速度为 9 厘米每分钟。
作为本发明的一种改进,上述的第五焊接道和第六焊接道焊接时,焊丝直径为 1.2 毫米 ,焊接电流为 125 安培,焊接电压为 20.5 伏特,焊接速度为 6.5 厘米 每分钟。
作为本发明的一种改进,在外界温度低于 0 度时,需对焊口两侧 75 毫米 范围内预热至 30-50 度。
作为本发明的一种改进,在焊缝区空气湿度大于 85% 时,该方法还包括加热除湿步骤。
作为本发明的一种改进,该方法还包括后热保温处理,在焊缝两侧 100mm 宽幅均匀加热,加热时自边缘向中部,又自中部向边缘由低向高均匀加热,加热温度为 200~250℃,保温时间为板材厚度每25毫米1 小时。
作为本发明的一种改进,该方法还包括预热步骤,预热范围宽度选择为 150 毫米 。
作为本发明的一种改进,该方法还包括如下步骤,焊接完成后对焊缝进行局部热处理消除应力,热处理采用电阻加热器,覆盖宽度为焊缝周围 320 毫米 。
作为本发明的一种改进,该焊接件为人字拱,该焊接板为倒三角屋脊梁,该人字拱包括两垂直相交的腹板,分别为长腹板和短腹板,人字拱还包括上弦圆管和下弦弧形板。
作为本发明的一种改进,焊接之前,先将人字拱的下弦弧形板与腹板分离,单独焊接长腹板与倒三角屋脊梁,在腹板与倒三角屋脊梁的焊接完成后,再将下弦弧形板焊接至长腹板。
作为本发明的一种改进,在焊接下弦弧形板至长腹板的过程中,先焊接对立面的两个下弦弧形板,再焊接另一对立面的两个下弦弧形板。
作为本发明的一种改进,该下弦弧形板为弧形,包括两相对的直边以及两相对的弧形边,在将下弦弧形板焊接至长腹板过程中,先将两弧形边焊接至长腹板,再将两直边焊接至长腹板。
作为本发明的一种改进,下弦弧形板的每边分设成先焊区和预留区,焊接时,先焊接每边的先焊区,四条边的先焊区都焊接完成后,再焊接预留区。
作为本发明的一种改进,在腹板出现较大变形时,本方法还包括加热矫正步骤,加热温度控制为 650±50℃。
作为本发明的一种改进,该方法还使用一挂架,该挂架包括若干槽钢框架用以形成挂架的骨架,在槽钢框架上架设若干横向角钢框架用以形成若干支架以进一步铺设钢跳板,于槽钢框架内还设置有钢爬梯。
有益效果
本发明提供的方法,采用每侧破口薄层 3 道全摆幅和分段焊接的焊接方法,严格控制单道焊缝的厚度和宽度,减少焊接热输入,由于腹板焊缝为尖锥形接头双面坡口熔透对接焊,焊缝相对于翼缘板(脊梁侧板)相当于表面堆焊,塑变区主要处于板厚方向,且焊缝金属的横向变形不受到母材约束,相对而言残余应力影响较小,腹板焊缝为双面 V 型破口熔透对接焊缝,可效的减小焊接角变形。同时在安装时严格保证对接精度,控制焊缝间距大小,最大化减小焊缝截面积增大带来的焊接残余变形。
附图说明
图 1 是本发明阴面对接斜立焊接方法的结构示意图。
图 2 是本发明阴面对接斜立焊接方法的流程示意图。
图 3 是本发明阴面对接斜立焊接方法的一个具体实施例的结构示意图。
图 4 是图 3 中具体实施例的人字拱截面示意图。
图 5 是图 3 中具体实施例的弧板的结构示意图。
图 6 是图 5 中弧板焊接时的结构示意图。
图 7 是本发明阴面对接斜立焊接方法中应用的挂架的立体示意图。
图 8 是本发明在焊接该焊接件与焊接板的过程中的工艺参数图表。
本发明的实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的 阴面对接斜立焊接方法 的具体实施例、结构、特征及其功效,详细说明如下:
有关本发明的前述及其它技术内容、特点及功效,在以下配合参考图式的较佳实施例的详细说明中将可清楚呈现。通过具体实施例的说明,当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。 作为焊接作业的基本内容,在超长阴面斜立焊的现场焊接正式施工前,技术质量部门首先根据现场焊接的实际形式、现场焊接环境等规范要求考虑的因素进行焊接工艺评定。完成人员、材料准备工作后,还应当在正式焊接前,做好构件母材检测(主要对节点部位进行检测),并根据实际节点形式,确定焊接顺序及工艺。在做好焊接常规措施的同时,需根据节点形式设计专用焊接操作平台,阴面超长斜立焊在焊接施工过程中,应当采取分层、分道、对称、同步焊接的方法进行施焊作业,一方面确保在焊接过程中的温度控制,另一方面及时采用全站仪对构件安装的位置进行核查。同样,在焊接作业完成后还要做好项目自检和专业检测机构焊缝检查等工作。
焊接施工前,应在开工前组织现场施工人员认真学习实施性施工组织设计、施工图纸设计要求,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,并提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前培训,考核合格后持证上岗。主要包括以下四个部分
请参图 1,为本发明阴面对接斜立焊接方法的结构示意图,该结构中包括焊接件 10 以及与该焊接件 10 焊接的焊接板 11 ,其中,焊接件 10 上欲与焊接板 11 焊接结合的一端设置有第一焊接面 101 及第二焊接面 102 ,该第一焊接面 101 与第二焊接面 102 形成尖锥形,尖锥形的尖顶位置定义为内侧,同时,第一焊接面 101 与焊接板 11 之间的空间定义为第一焊接区 21 ,第二焊接面 102 与焊接板 11 之间的空间定义为第二焊接区 22 ,两焊接区之间用以容纳焊接的焊料 23 。
(1) 熟悉施工图纸、施工方案及相关规范要求。
(2) 编制作业指导书、技术交底,并确保交底到个人。
(3) 了解特殊环境下焊接作业操作要点及应对措施;了解特殊焊接部位节点焊接工艺要求。
(4) 在正式施焊前,根据本工程的设计文件、图纸规定的施工工艺和验收标准,结合工程的结构特点、节点形式等做出相应的焊接工艺评定。
外业准备主要包括施工作业层中所涉及的各种外部机具、设备材料等数据收集。
请同时参考图 2 ,在焊接该焊接件 10 与焊接板 11 的过程中,本发明采用了分区域、分道焊接的流程:
首先,定位焊接件 10 与焊接板 11 的相对位置;
其次,进行第一步焊接,在第一焊接区 21 焊接该焊接件 10 与焊接板 11 ,焊接位置为尖锥最内侧,如图1中1的位置(第一焊接道);
第三,进行第二步焊接,在第二焊接区 22 焊接该焊接件 10 与焊接板 11 ,焊接位置为尖锥最内侧,如图1中2的位置(第二焊接道),接着焊接第三道,位置为相邻图 1 中第二焊接道 2位置的外侧并紧邻第二焊接道2的位置,即3的位置(第三焊接道);
第四,进行第三步焊接,在第一焊接区 21 焊接该焊接件 10 与焊接板 11 ,焊接位置为紧邻图 1 中第一焊接道1的位置的外侧,即4的位置(第四焊接道),接着焊接第五道,位置为紧邻第四焊接4的位置的外侧,即,5的位置(第五焊接道);
第五,进行第四步焊接,在第二焊接区 22 焊接该焊接件 10 与焊接板 11 ,焊接位置为图 1 中位置第三焊接道3的外侧,即位置6(第六焊接道)。
简单来说,焊接顺序为:焊接两元件之间第一侧的一道,再焊接两元件之间另一侧的两道,再焊接第一侧的两道,最后焊接另一侧的最后一道,共计 6 道,每侧 3 道。
按上述,则第一区域 21 的焊道包括 14 5,第二区域 22 的焊道包括 2 3 6 ,每一区域的三焊道均需按照图 8 所示的工艺参数进行。
本焊缝属于斜立焊位,如,垂直角度 20° ,具有较强的仰焊特点。由于焊接效率较高的射滴过渡于空间位置,焊接时焊缝成型不易控制,宜采用短路过渡的熔滴过渡形式。将短路过渡电压控制在 18~20V 之间,短路时间较长,焊接过程较稳定,能够在阴面斜立位较好的成型。较小的电压也会有效的降低熔宽,增大熔深。
焊接电流和焊丝直径也即焊丝的电流密度对短路过渡过程同样有着较大影响。在焊丝选择方面,细焊丝在短路过渡中有着较宽的送丝速度范围,过程易于控制,故而选择直径较小的 φ1.2mm 的药芯焊丝,较小的焊丝直径在 CO2 保护气体的冷却、压缩作用下会带来较大的电流密度,提高焊接效率。
采用每侧破口薄层 3 道全摆幅和分段焊接的焊接方法,严格控制单道焊缝的厚度和宽度,减少焊接热输入,以减少降低焊缝机械性能的因素。单道焊缝厚度控制在 6mm 左右,最外侧焊道宽度控制在 15mm 以内。焊缝分段控制在 0.6m 左右,自下而上进行焊接。
采用氧气和乙炔气体中性焰加热方法,将焊缝焊接的层间温度控制在 85 ~ 100 ℃,焊接过程中使用温度测温仪进行监控,当焊缝焊接温度低于要求时,立即加热到规定要求之后再进行焊接。焊缝需连续焊接完成,不允许无故停焊,如遇特殊情况立即采取措施,达到施焊条件后,重新对焊缝进行加热,加热温度比焊前预热温度相应提高 20 ~ 30 ℃。
另外,较佳的,一些焊接条件可具备:
  1. 下雨天时,露天不允许进行焊接施工,如果必须施工,必须进行防雨处理,在焊接作业区域设置防雨防风措施;
  2. 在外界温度低于0度时,需对焊口两侧75毫米范围内预热至30-50度;
  3. 若焊缝区空气湿度大于85%,应采取加热除湿处理;
  4. 焊缝表面需干净,无浮锈,无油漆;
  5. 采用手工电弧焊接作业(风力大于5米/秒)和二氧化碳气体保护焊(风力大于2米/秒)作业时,未设置防风棚或没有防风措施的部位严禁进行施焊作业;
  6. 正式施焊前应清除焊渣、飞溅等污物,定位焊点与收弧处必须用角向磨光机修磨成缓坡状,且确认并无熔合、收缩孔等缺陷。
焊接施工过程中:
焊接采用根部手工焊封底、半自动焊中间填充、面层手工焊盖面的焊接方式。带衬板的焊件全部采用 CO2 气体保护半自动焊焊接。
同一层道焊缝出现一次或数次停顿需再续焊时,始焊接头需在原熄弧处后至少 15mm 处起弧,禁止在原熄弧处直接起弧。 CO2 气体保护焊熄弧时,应待保护气体完全停止供给、焊缝完全冷凝后方能移走焊枪。禁止电弧刚停止燃烧即移走焊枪,使红热熔池暴露在大气中失去 CO2 气体保护。
打底层,在焊缝起点必须超过前方 50mm 处的引弧板上引燃电弧,然后电弧进行焊接施工。熄弧时,电弧不允许在接头处熄灭,而是应将电弧引带至超越接头处 50mm 的熄弧板熄弧,并填满弧坑,运弧采用往复式运弧手法,在两侧稍加停留,避免焊肉与坡口产生夹角,达到平缓过渡的要求。
填充层,在进行填充焊接前应清除首层焊道上的凸起部分及引弧造成的多余部分,清除粘连在坡壁上的飞溅物及粉尘,检查坡口边缘有无未熔合及凹陷夹角,如有 , 必须用角向磨光机除去。 CO2 气体保护焊时,注意控制 CO2 气体流量,熔池保持水准状态,运焊手法采用划斜圆方法,填充层焊接面层时,应注意均匀留出 1.5mm ~ 2mm 的深度,便于盖面时能够看清坡口边。
面层焊接,直接关系到该焊缝外观质量是否符合质量检验标准,开始焊接前应对全焊缝进行修补,消除凹凸处,尚未达到合格处应先予以修复,保持该焊缝的连续均匀成型 , 面层焊缝应在最后一道焊缝焊接时,注意防止边部出现咬边缺陷。
焊接过程中,焊缝的层间温度应始终控制在 100 ~ 150 ℃之间,要求焊接过程具有最大的连续性,在施焊过程中,若出现修补缺陷、清理焊渣所需停焊的情况造成温度下降,则必须进行加热处理,直至达到规定值后方能继续焊接。焊缝出现裂纹时,焊工不得擅自处理,应报告焊接技术负责人,查清原因,订出修补措施后,方可进行处理。
焊后热处理及防护措施:母材厚度 25mm ≤T≤80mm 的焊缝,必须立即进行后热保温处理,后热应在焊缝两侧各 100mm 宽幅均匀加热,加热时自边缘向中部,又自中部向边缘由低向高均匀加热,严禁持热源集中指向局部,后热保温处理加热温度为 200-250℃,保温时间应依据工件板厚按每25mm 板厚 1 小时确定。达到保温时间后应缓冷至常温。
焊后清理与检查:焊后应清除飞溅物与焊渣,清除干净后,用焊缝量规、放大镜对焊缝外观进行检查,不得有凹陷、咬边、气孔、未熔合、裂纹等缺陷,并做好焊后自检记录,自检合格后鉴上操作焊工的编号钢印,钢印应鉴在接头中部距焊缝纵向 50mm 处,严禁在边沿处鉴印,防止出现裂源。外观质量检查标准应符合 GB-50221 表 4-7-13 的 I 级规定。
焊后清理,焊接完成后,须切除并磨平引、熄弧板。
焊缝的无损检测,焊件冷至常温 ≥24 小时后,进行无损检验,检验方式为 UT 检测,检验标准应符合 JGB-11345-89 《钢焊缝手工超声波探伤方法及质量分级方法》规定的检验等级并出具探伤报告。
由于腹板焊缝为 T 型接头双面坡口熔透对接焊,焊缝相对于翼缘板(脊梁侧板)相当于表面堆焊,塑变区主要处于板厚方向,且焊缝金属的横向变形不受到母材约束,相对而言残余应力影响较小。残余应力主要产生于 T 型接头腹板与取出弧板焊缝上。
各项研究表明,焊接区域上温差过大或时间上变化过快,会产生较大的瞬时应力,造成焊接残余应力。 T 型接口焊缝区域及附近存在较大的焊接应力,距离焊缝较远的区域焊接应力逐渐降低。作业开始前,对焊缝周围内母材进行预热,预热范围宽度选择为 150mm ,避免因范围过窄造成新的温差应力。焊接完成后对焊缝进行局部热处理以消除应力,热处理采用电阻加热器,覆盖宽度为焊缝周围 320mm 。
请参图 3 ,图 3 是本发明阴面对接斜立焊接方法的一个具体实施例的结构示意图。于此形态中,该构造包括倒三角屋脊梁 91 以及与该三角屋脊梁 91 焊接的人字拱 92 ,请同时参考图 4 ,图 4 所示为人字拱 92 的截面示意图,从图中可看出,人字拱 92 包括两垂直相交的腹板,分别为长腹板 921 和短腹板 922 ,结合于腹板,该人字拱 92 的上弦区域包括上弦圆管 923 ,下弦区域包括下弦弧形板 924 ,简言之,人字拱 92 的截面形式为异型橄榄式截面,上弦为圆管结构,下弦为四块弧板组成的橄榄式结构,腹板贯穿上下弦。人字拱腹板与屋脊梁对接长度 4.87m ,板厚 30mm ,材质 Q345GJC ;对接位置屋脊梁侧板厚度 20mm ,材质 Q345GJC 。腹板焊缝(图 3 中人字拱 92 与倒三角屋脊梁 91 之间的黑线部分)与垂直线夹角 20° 。某屋盖结构中,共 10 对( 20 根)人字拱,与屋脊梁对接接口全部位于 30m~45m 高空的拱顶位置。由于拱架结构的特殊形式,周围无任何可作为操作面的结构存在,且构件截面均为异型,需针对异型构件的特点设计安全可靠的专用焊接操作平台。同时考虑到工程地处临海地区,作业时间跨越冬春季节,气候多风,操作平台需要具备妥善的焊接防护功能,以满足风速敏感度较高的 CO2 气体保护焊作业时的基本要求。
对应上述,该人字拱 92 的腹板即对应焊接件,而倒三角屋脊梁 91 则对应焊接板,腹板焊缝则采用本发明的焊接方法焊接。
于此实施例中,为便于焊接,需要先将人字拱 91 的下弦弧形板 924 与腹板分离,单独焊接长腹板 921 与倒三角屋脊梁 91 ,在焊接完成腹板之后,再将下弦弧形板 924 焊接至长腹板 921 ,因为此形态中包括四个下弦弧形板,四个下弦弧形板两两相对,在焊接下弦弧形板 924 至长腹板 921 的过程中,先焊接对立面的两个下弦弧形板(对角方向),再焊接另一对立面的两个下弦弧形板。
腹板与屋脊梁对接焊缝长度超长,且长厚比较大,形式为高空较难操作的阴面斜立焊缝,薄板组立厚板的 T 型接口,变形与残余应力控制困难。焊缝位于结构关键传力节点位置,对焊接裂纹极其敏感,焊接裂纹的控制同样为一大重点。
请参图 5 ,为下弦弧形板 924 的示意图,该下弦弧形板 924 为弧形,包括两相对的直边 924a 以及两相对的弧形边 924b 。在将下弦弧形板 924 焊接至长腹板 921 过程中,先将两弧形边 924b 焊接至长腹板 921 ,再将两直边 924a 焊接至长腹板 921 。
请参图 6 ,为下弦弧形板 924 焊接时的结构示意图,即,每边分设成先焊区 H1 和预留区 H2 ,焊接时,先焊接每边的先焊区 H1 ,四条边的先焊区 H1 都焊接完成后,再焊接预留区 H2 。
焊缝的拘束度导致降温过程中瞬时应力释放受到阻碍,是产生残余应力的一个主要因素。在完成十字腹板(即,长短腹板的组合)的焊接后,对后续下弦弧形板的焊接产生了较大约束作用。焊接顺序上先焊对角线位置的两块弧板,拘束度较小,另两块对角线弧板焊接时变角位置预留 350mm 焊缝后焊,待其他位置焊缝完成后再进行预留位置焊接,使焊接应力消散更为平滑。
腹板焊缝为双面 V 型破口熔透对接焊缝,可效的减小焊接角变形。同时在安装时严格保证对接精度,控制焊缝间距大小,最大化减小焊缝截面积增大带来的焊接残余变形。
焊接变形是不可避免的,只能尽量减小,如焊接过程中由于操作不当等意外因素出现腹板较大变形,采用锤击法与加热矫正方式进行处理,加热温度控制为 650±50℃,同一位置加热次数不可超过2 次,以避免材料脆化的发生。
分析较易出现的焊接变形情况,一种为局部腹单侧角变形,这是由于整个焊接过程中两侧焊缝焊接工艺、人员水平存在差异造成的,校正时对弯曲外侧焊缝及周围进行带状加热。加热时采用微氧化焰。
一种为腹板波浪形变形,由焊缝纵向收缩造成,校正时采用锤击法,对距离焊缝 3cm 内的带状范围进行锤击,使缩短的金属拉长。
请参图 7 ,为本发明中所使用的一种挂架 80 。为解决焊接操作空间问题,针对结构特点设计专用操作防护挂架,该挂架 80 包括若干槽钢框架 81 用以形成挂架 80 的骨架,在槽钢框架 80 上架设若干横向角钢框架 82 用以形成若干支架以进一步铺设钢跳板(未图示),另外,于槽钢框架 81 内还设置有钢爬梯 83 ,用于施工人员上下通行。挂架整体形式与倒三角屋脊梁的竖边倾斜角度一致,贴合屋脊梁侧板,上部通过卡板与屋脊梁焊接固定,安全可靠。其四道横向角钢框架铺设跳板后可应对挂架范围内各个高度的焊接作用。作业时,架体周围以防风布围挡,有效的防止高空多风环境对 CO2 气体保护焊的影响。
可以直接将挂架挂在屋脊梁焊缝处。挂架里面设置垂直钢爬梯,方便工人上下同行;挂架与屋脊梁紧密贴合,每层铺设钢跳板,周边拉设安全防护网及防风布,保证作业人员在挂架内施工安全。
本发明提供的焊接方法从施工工艺进行了详尽的说明,并结合一具体实施例,从经济时效,节约成本,技术经验,质量控制等多方面,多角度系统的加以阐述,是同类型工程的科学典范。超长阴面斜立焊的现场焊接工法控制了以往焊接此类焊缝时质量难以控制的难点,从而消除了以往因此所带来的焊缝返修等费用,另一方面,焊接过程中采用安全可靠的操作挂架,节约材料费用。
具体实施例中的焊接结构为空间拱形预应力结构体系,形式独特,造型新颖,构件形式复杂,屋盖钢结构由 10 榀拱形结构组成空间受力体系。在异型截面超长斜立焊的施工过程中,克服了残余应力及变形控制、斜立焊缝熔滴过渡形式、焊接顺序及高空焊接操作防护几个重难点,以较好的质量完成了此非常规焊缝的焊接,可为后续类似工程提供借鉴经验。其中对阴面超长斜立焊焊缝检测一次性检测合格率 100% ,第三方检测一次性合格率 100% ,取得了良好的经济效益和社会影响。
以上所述,仅是本发明的实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (16)

  1. 一种阴面对接斜立焊接方法,其特征在于:该方法包括如下步骤:
    提供一焊接件以及与该焊接件焊接的焊接板,其中,焊接件上欲与焊接板焊接结合的一端设置有第一焊接面及第二焊接面,该第一焊接面与第二焊接面形成尖锥形,尖锥形的尖顶位置定义为内侧,第一焊接面与焊接板之间的空间为第一焊接区,第二焊接面与焊接板之间的空间为第二焊接区;
    在第一焊接区焊接该焊接件与焊接板,焊接位置为尖锥最内侧,形成第一焊接道;
    在第二焊接区焊接该焊接件与焊接板,焊接位置为尖锥最内侧形成第二焊接道,接着焊接第二焊接道的外侧并紧邻第二焊接道,形成第三焊接道;
    在第一焊接区焊接该焊接件与焊接板,焊接第一焊接道的外侧,形成第四焊接道,接着焊接紧邻第四焊接道的位置,形成第五焊接道;
    在第二焊接区焊接该焊接件与焊接板紧邻第三焊接道的外侧,形成第六焊接道。
  2. 如权利要求1所述的阴面对接斜立焊接方法,其特征在于:所述第一焊接道和第二焊接道焊接时,焊丝直径为1.2毫米,焊接电流为120安培,焊接电压为18.5伏特,焊接速度为13厘米每分钟。
  3. 如权利要求2所述的阴面对接斜立焊接方法,其特征在于:所述第三焊接道和第四焊接道焊接时,焊丝直径为1.2毫米,焊接电流为135安培,焊接电压为20伏特,焊接速度为9厘米每分钟。
  4. 如权利要求3所述的阴面对接斜立焊接方法,其特征在于:所述第五焊接道和第六焊接道焊接时,焊丝直径为1.2毫米,焊接电流为125安培,焊接电压为20.5伏特,焊接速度为6.5厘米每分钟。
  5. 如权利要求1所述的阴面对接斜立焊接方法,其特征在于:在外界温度低于0度时,需对焊口两侧75毫米范围内预热至30-50度。
  6. 如权利要求1所述的阴面对接斜立焊接方法,其特征在于:在焊缝区空气湿度大于85%时,该方法还包括加热除湿步骤。
  7. 如权利要求1所述的阴面对接斜立焊接方法,其特征在于:该方法还包括后热保温处理,在焊缝两侧100mm宽幅均匀加热,加热时自边缘向中部,又自中部向边缘由低向高均匀加热,加热温度为200~250℃,保温时间为板材厚度每25毫米1小时。
  8. 如权利要求1所述的阴面对接斜立焊接方法,其特征在于:该方法还包括预热步骤,预热范围宽度选择为150毫米。
  9. 如权利要求8所述的阴面对接斜立焊接方法,其特征在于:该方法还包括如下步骤,焊接完成后对焊缝进行局部热处理消除应力,热处理采用电阻加热器,覆盖宽度为焊缝周围320毫米。
  10. 如权利要求1所述的阴面对接斜立焊接方法,其特征在于:该焊接件为人字拱,该焊接板为倒三角屋脊梁,人字拱包括两垂直相交的腹板,分别为长腹板和短腹板,人字拱还包括上弦圆管和下弦弧形板。
  11. 如权利要求10所述的阴面对接斜立焊接方法,其特征在于:焊接之前,先将人字拱的下弦弧形板与腹板分离,单独焊接长腹板与倒三角屋脊梁,在长腹板与倒三角屋脊梁的焊接完成之后,再将下弦弧形板焊接至长腹板。
  12. 如权利要求11所述的阴面对接斜立焊接方法,其特征在于:在焊接下弦弧形板至长腹板的过程中,先焊接对立面的两个下弦弧形板,再焊接另一对立面的两个下弦弧形板。
  13. 如权利要求10所述的阴面对接斜立焊接方法,其特征在于:该下弦弧形板为弧形,包括两相对的直边以及两相对的弧形边,在将下弦弧形板焊接至长腹板过程中,先将两弧形边焊接至长腹板,再将两直边焊接至长腹板。
  14. 如权利要求13所述的阴面对接斜立焊接方法,其特征在于:下弦弧形板的每边分设成先焊区和预留区,焊接时,先焊接每边的先焊区,四条边的先焊区都焊接完成后,再焊接预留区。
  15. 如权利要求10所述的阴面对接斜立焊接方法,其特征在于:在腹板出现较大变形时,本方法还包括加热矫正步骤,加热温度控制为650±50℃。
  16. 如权利要求1所述的阴面对接斜立焊接方法,其特征在于:该方法还使用一挂架,该挂架包括若干槽钢框架用以形成挂架的骨架,在槽钢框架上架设若干横向角钢框架用以形成若干支架以进一步铺设钢跳板,于槽钢框架内还设置有钢爬梯。
PCT/CN2016/090463 2015-09-17 2016-07-19 阴面对接斜立焊接方法 WO2017045477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/924,278 US10350694B2 (en) 2015-09-17 2018-03-19 Nightside inclined-vertical-butting welding method
AU2018100343A AU2018100343A4 (en) 2015-09-17 2018-03-20 Nightside inclined-vertical-butting welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510598282.4A CN105195860B (zh) 2015-09-17 2015-09-17 阴面对接斜立焊接方法
CN201510598282.4 2015-09-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/924,278 Continuation US10350694B2 (en) 2015-09-17 2018-03-19 Nightside inclined-vertical-butting welding method
AU2018100343A Division AU2018100343A4 (en) 2015-09-17 2018-03-20 Nightside inclined-vertical-butting welding method

Publications (1)

Publication Number Publication Date
WO2017045477A1 true WO2017045477A1 (zh) 2017-03-23

Family

ID=54943994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090463 WO2017045477A1 (zh) 2015-09-17 2016-07-19 阴面对接斜立焊接方法

Country Status (3)

Country Link
US (1) US10350694B2 (zh)
CN (1) CN105195860B (zh)
WO (1) WO2017045477A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682886A (zh) * 2022-04-28 2022-07-01 河南鼎力杆塔股份有限公司 一种角铁塔包钢的焊接方法
CN115198053A (zh) * 2022-08-12 2022-10-18 安徽马钢重型机械制造有限公司 一种水冷式转炉托圈工艺孔插管结构及其应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195860B (zh) 2015-09-17 2018-09-07 中建钢构有限公司 阴面对接斜立焊接方法
CN106112223A (zh) * 2016-07-18 2016-11-16 中建钢构有限公司 一种t型接头埋弧焊工艺
CN106271155B (zh) * 2016-08-30 2018-08-10 苏州海陆重工股份有限公司 高温气冷堆中下堆芯壳底座中的外筋板焊接方法
CN106238860B (zh) * 2016-08-30 2018-08-10 苏州海陆重工股份有限公司 高温气冷堆中下堆芯壳底座中的内筒与底板焊接方法
CN106271157B (zh) * 2016-08-30 2018-08-10 苏州海陆重工股份有限公司 高温气冷堆中下堆芯壳底座中的外筒与底板焊接方法
CN106270974B (zh) * 2016-08-30 2018-08-10 苏州海陆重工股份有限公司 高温气冷堆核电站中金属堆内构件下堆芯壳底座焊接方法
CN106864690A (zh) * 2017-04-07 2017-06-20 青岛哈工程船舶科技有限公司 一种船艇靠帮防撞装备的压载设施
JP6681941B2 (ja) * 2018-05-31 2020-04-15 株式会社Uacj 衝撃吸収部材
CN109202353B (zh) * 2018-10-25 2020-09-01 广州文冲船厂有限责任公司 一种b型吊环的定位焊接方法
CN110640271B (zh) * 2019-09-30 2021-09-14 广州黄船海洋工程有限公司 低合金高强度钢t型全焊透接头横角焊位置的高效焊接工艺
CN112846502B (zh) * 2020-12-31 2022-06-17 湖北三江航天红阳机电有限公司 一种盒形结构箱体的制备方法
CN114515917B (zh) * 2022-01-30 2023-10-27 中冶(上海)钢结构科技有限公司 桁架层转角柱的装焊方法
CN114932293A (zh) * 2022-04-24 2022-08-23 珠海华发人居生活研究院有限公司 一种超大截面箱型钢柱焊接施工方法
CN115945831A (zh) * 2022-12-28 2023-04-11 山东矿机华能装备制造有限公司 一种液压支架侧护板的焊接方法
CN117483924B (zh) * 2023-11-09 2024-09-20 永胜机械工业(昆山)有限公司 一种钛制降液板铆焊工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292496A (en) * 1980-01-17 1981-09-29 Aluminum Company Of America Vertical plate welding using double bevel joint
CN1103341A (zh) * 1994-08-13 1995-06-07 中国水利水电第四工程局机电安装处 安装现场焊接大型圆盘式水轮发电机转子支架的工艺方法
CN1171316A (zh) * 1996-07-18 1998-01-28 中国建筑第三工程局钢结构建筑安装工程公司 Co2气体保护半自动立焊和/或斜立焊焊接工艺
CN101644190A (zh) * 2009-09-04 2010-02-10 沪东重机有限公司 一种大缸径柴油机机架的对接方法
CN102303194A (zh) * 2011-08-19 2012-01-04 山东塔高矿业机械装备制造有限公司 一种高强板焊后不退火工艺
JP5153368B2 (ja) * 2008-01-31 2013-02-27 日立Geニュークリア・エナジー株式会社 T型継手の貫通溶接方法及び貫通溶接構造物
CN105195860A (zh) * 2015-09-17 2015-12-30 中建钢构有限公司 阴面对接斜立焊接方法

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1990168A (en) * 1926-10-20 1935-02-05 Electro Metallurg Co Heat treatment of alloys
US1986303A (en) * 1934-03-31 1935-01-01 American Brass Co Method of welding copper
US2027750A (en) * 1934-10-20 1936-01-14 American Brass Co Copper base alloy
US2275188A (en) * 1940-08-01 1942-03-03 Gen Electric Double aged copper base alloys
US2325041A (en) * 1941-01-29 1943-07-27 Cooper Wilford Beryllium Ltd Beryllium cementation
US2522146A (en) * 1949-11-22 1950-09-12 Curtiss Wright Corp Contour welding machine
US3031568A (en) * 1956-08-02 1962-04-24 Ici Ltd Process of arc welding copper
US3418707A (en) * 1965-04-19 1968-12-31 Rohr Corp Integrated and match machined rocket nozzle and process of making same
US3537646A (en) * 1965-04-19 1970-11-03 Rohr Corp Rocket nozzle structure
NL138853B (nl) * 1967-10-27 1973-05-15 Schelde Nl Werkwijze voor het poederdek- of gasbeschermd booglassen met een afsmeltbare elektrode.
US3597821A (en) * 1968-08-09 1971-08-10 Rohr Corp Method of making an integrated match machining rocket nozzle
US3732393A (en) * 1970-09-03 1973-05-08 Messer Griesheim Gmbh Electric arc welding process
US3832522A (en) * 1972-07-10 1974-08-27 Kobe Steel Ltd Welding process and apparatus
CA1018477A (en) * 1974-04-29 1977-10-04 Regis Gagnon Method of joining a copper contact button to the aluminum headbar of an electrode plate
US4038514A (en) * 1975-02-03 1977-07-26 Reynolds Metals Company Vertical welding of thick aluminum members
JPS5212647A (en) * 1975-07-22 1977-01-31 Kobe Steel Ltd Arc welding process
NL7603317A (nl) * 1976-03-31 1977-10-04 Philips Nv Lastoorts voor het plasma-mig lassen.
NL7603319A (nl) * 1976-03-31 1977-10-04 Philips Nv Werkwijze en inrichting voor het plasma-mig lassen.
US4119830A (en) * 1977-08-08 1978-10-10 Gilliland Malcolm T Remote welding control system
US4213026A (en) * 1978-06-06 1980-07-15 United Technologies Corporation Age hardenable nickel superalloy welding wires containing manganese
JPS607578B2 (ja) * 1978-06-30 1985-02-26 新日本製鐵株式会社 厚肉鋼管の造管溶接法
US4336441A (en) * 1978-10-27 1982-06-22 Kobe Steel, Ltd. Welding process
US4179314A (en) * 1978-12-11 1979-12-18 Kawecki Berylco Industries, Inc. Treatment of beryllium-copper alloy and articles made therefrom
US4355224A (en) * 1980-08-15 1982-10-19 Huntington Alloys, Inc. Coated electrode
US4447703A (en) * 1981-11-13 1984-05-08 Westinghouse Electric Corp. Method and apparatus for arc welding
US4460659A (en) * 1982-07-29 1984-07-17 General Electric Company Copper alloy welding filler and method of use
US4481402A (en) * 1982-09-27 1984-11-06 Aluminum Company Of America Multi-position plate welding using modified double-J joint
US4539465A (en) * 1983-12-30 1985-09-03 Westinghouse Electric Corp. Wire feed system for robot welder
US4724013A (en) * 1984-06-08 1988-02-09 Brush Wellman, Inc. Processing of copper alloys and product
DE3503641A1 (de) * 1984-07-24 1986-02-06 Nationale Genossenschaft für die Lagerung radioaktiver Abfälle - NAGRA, Baden Verfahren zum schliessen eines behaelters zur aufnahme von radioaktivem material und behaelter zur durchfuehrung des verfahrens
US4594116A (en) * 1984-07-30 1986-06-10 Hudson Wire Company Method for manufacturing high strength copper alloy wire
US4782206A (en) * 1987-01-27 1988-11-01 The Babcock & Wilcox Company Method and apparatus for controlling weld bead shape to eliminate microfissure defects when shape melting austenitic materials
US4724302A (en) * 1987-03-30 1988-02-09 General Electric Company Bead process control with profiler
US5080256A (en) * 1990-01-18 1992-01-14 Rock-Ola Manufacturing Corporation Slant shelf magazine for automatic vending machines
JPH06339775A (ja) * 1991-07-15 1994-12-13 Nippon Steel Corp ニッケルおよびニッケル合金材の溶接方法
US5233149A (en) * 1991-08-02 1993-08-03 Eaton Corporation Reprocessing weld and method
US5217158A (en) * 1992-07-14 1993-06-08 Brush Wellman, Inc. Process for thermodynamically treating a region joining two members
US5324914A (en) * 1992-09-25 1994-06-28 Trustees Of Princeton University Method and apparatus for welding precipitation hardenable materials
US5789720A (en) * 1992-12-30 1998-08-04 Westinghouse Electric Corporation Method of repairing a discontinuity on a tube by welding
US5593605A (en) * 1994-10-11 1997-01-14 Crc-Evans Pipeline International, Inc. Internal laser welder for pipeline
JP3542407B2 (ja) * 1995-06-14 2004-07-14 株式会社日立製作所 低残留応力構造の溶接方法
FR2742368B1 (fr) * 1995-12-18 1998-03-06 Framatome Sa Procede de raccordement par soudage heterogene bout a bout de deux pieces de natures differentes et utilisations
US5995573A (en) * 1996-09-18 1999-11-30 Murray, Jr.; Holt A. Dry storage arrangement for spent nuclear fuel containers
US5796069A (en) * 1997-01-10 1998-08-18 Crc-Evans Pipeline International, Inc. Arc and laser welding process for pipeline
US6151772A (en) * 1997-11-21 2000-11-28 Pigott; Patrick C. Automated machinery for fabricating a wrought-iron fence
US20020005397A1 (en) * 1998-04-10 2002-01-17 Bong William L. Modular welding system and method
US6297472B1 (en) * 1998-04-10 2001-10-02 Aromatic Integrated Systems, Inc. Welding system and method
US6338765B1 (en) * 1998-09-03 2002-01-15 Uit, L.L.C. Ultrasonic impact methods for treatment of welded structures
US6336583B1 (en) * 1999-03-23 2002-01-08 Exxonmobil Upstream Research Company Welding process and welded joints
FR2809645B1 (fr) * 2000-05-31 2002-09-27 Air Liquide Application d'un procede hybride laser-arc au soudage de tube
US20020079301A1 (en) * 2000-08-08 2002-06-27 Arcmatic Integrated Systems, Inc. High deposition submerged arc welding system
MY136134A (en) * 2001-11-07 2008-08-29 Migfast Pty Ltd Improved consumable electrode arc welding
CA2390054C (en) * 2002-06-28 2013-03-19 Weatherford Canada Partnership Method for manufacturing continuous sucker rod
JP4189201B2 (ja) * 2002-10-30 2008-12-03 新日本製鐵株式会社 鋼材の溶接継手における熱影響部の靭性向上方法
CN1283410C (zh) * 2003-06-09 2006-11-08 上海市安装工程有限公司 桥梁钢结构现场焊接工艺
US7897267B2 (en) * 2005-04-26 2011-03-01 Exxonmobil Upstream Research Company Apparatus and methods of improving riser weld fatigue
DE102007022863B4 (de) * 2007-05-15 2010-07-22 Meyer Werft Gmbh Verfahren zum unlösbaren Verbinden von Bauteilen aus wärmeschmelzbarem, metallischen Werkstoff
US9895760B2 (en) * 2007-09-26 2018-02-20 Lincoln Global, Inc. Method and system to increase heat input to a weld during a short-circuit arc welding process
US9415458B2 (en) * 2007-09-26 2016-08-16 Lincoln Global, Inc. Method to improve the characteristics of a root pass pipe weld
CN102333613B (zh) * 2009-02-27 2016-05-11 杰富意钢铁株式会社 组合气体保护电弧焊和潜弧焊而成的复合焊接方法及其复合电弧焊接机
CN101513695B (zh) * 2009-04-03 2011-09-21 燕山大学 一种桥梁用Q420qE级超低碳贝氏体钢的焊接方法
US8110772B1 (en) * 2009-06-03 2012-02-07 Bong William L System and method for multi-pass computer controlled narrow-gap electroslag welding applications
CN101905366A (zh) * 2009-06-05 2010-12-08 南通虹波风电设备有限公司 一种底法兰角焊缝无碳刨焊接方法
US8946582B1 (en) * 2009-10-02 2015-02-03 William L. Bong System and method for metal powder welding
WO2012096937A1 (en) * 2011-01-10 2012-07-19 Arcelormittal Investigacion Y Desarrollo S.L. Method of welding nickel-aluminide
US8950648B2 (en) * 2011-05-07 2015-02-10 Conxtech, Inc. Box column assembly
US9605328B2 (en) * 2011-07-29 2017-03-28 Progress Rail Services Corporation Surface contouring of a weld cap and adjacent base metal using ultrasonic impact treatment
CN104625357A (zh) * 2013-11-15 2015-05-20 上海中远川崎重工钢结构有限公司 H型钢或t型钢全熔透免清根焊接方法
US9836987B2 (en) * 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292496A (en) * 1980-01-17 1981-09-29 Aluminum Company Of America Vertical plate welding using double bevel joint
CN1103341A (zh) * 1994-08-13 1995-06-07 中国水利水电第四工程局机电安装处 安装现场焊接大型圆盘式水轮发电机转子支架的工艺方法
CN1171316A (zh) * 1996-07-18 1998-01-28 中国建筑第三工程局钢结构建筑安装工程公司 Co2气体保护半自动立焊和/或斜立焊焊接工艺
JP5153368B2 (ja) * 2008-01-31 2013-02-27 日立Geニュークリア・エナジー株式会社 T型継手の貫通溶接方法及び貫通溶接構造物
CN101644190A (zh) * 2009-09-04 2010-02-10 沪东重机有限公司 一种大缸径柴油机机架的对接方法
CN102303194A (zh) * 2011-08-19 2012-01-04 山东塔高矿业机械装备制造有限公司 一种高强板焊后不退火工艺
CN105195860A (zh) * 2015-09-17 2015-12-30 中建钢构有限公司 阴面对接斜立焊接方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682886A (zh) * 2022-04-28 2022-07-01 河南鼎力杆塔股份有限公司 一种角铁塔包钢的焊接方法
CN114682886B (zh) * 2022-04-28 2024-03-19 河南鼎力杆塔股份有限公司 一种角铁塔包钢的焊接方法
CN115198053A (zh) * 2022-08-12 2022-10-18 安徽马钢重型机械制造有限公司 一种水冷式转炉托圈工艺孔插管结构及其应用

Also Published As

Publication number Publication date
CN105195860B (zh) 2018-09-07
CN105195860A (zh) 2015-12-30
US20180207738A1 (en) 2018-07-26
US10350694B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2017045477A1 (zh) 阴面对接斜立焊接方法
CN1283410C (zh) 桥梁钢结构现场焊接工艺
CN102922085B (zh) 手工电弧焊打底层之字形灭弧法在q460钢管焊接中的应用
CN103343592B (zh) 一种大型日字型厚板组合箱形柱及其制作方法
CN111659983A (zh) 一种波形钢腹板钢混组合梁焊接施工工艺
CN202411746U (zh) 一种单面焊接双面成型焊接装置
CN107984105A (zh) 风电塔架s355nl钢的焊接工艺
CN110355449A (zh) 一种低本底不锈钢06Cr19Ni10结构的焊接施工方法
CN102085602A (zh) 低温环境下钢结构厚板焊接施工方法
CN102922086A (zh) 手工电弧焊打底层之字形灭弧法及其在q460高强钢对接平板焊接中的应用
CN204771228U (zh) 一种用于钢管管节纵缝焊接的防护棚
CN109024903B (zh) 一种半球体支座节点及其制作工艺
CN106270953A (zh) 大型工字型吊车梁现场组对、焊接方法
CN106270952A (zh) 一种建筑结构用钢q345gjb的焊接方法
AU2018100343A4 (en) Nightside inclined-vertical-butting welding method
CN104759767B (zh) 重级工作制q390d钢吊车梁翼缘板与腹板的焊接方法
RU2089363C1 (ru) Способ сварки корпусных конструкций из стали типа ак
CN104999186A (zh) 一种厚钢板低温环境焊接工艺
CN109262156A (zh) 一种永久衬垫t形接头的根部熔透焊接方法
CN108817617A (zh) 一种Q500qE高强度桥梁钢角接头的焊接方法
CN204283450U (zh) 一种隧道防水板及其热熔焊接机
CN114160919A (zh) 一种站台层及以下钢结构的焊接方法
CN106826087A (zh) 一种大型集装箱船止裂钢施工方法
RU2551751C2 (ru) Способ алюминотермитной сварки рельсов при отрицательных температурах окружающей среды
CN221716004U (zh) 一种用于钢结构高空焊接作业的活动式防风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845591

Country of ref document: EP

Kind code of ref document: A1