WO2017043871A1 - X선 디텍터 - Google Patents

X선 디텍터 Download PDF

Info

Publication number
WO2017043871A1
WO2017043871A1 PCT/KR2016/010041 KR2016010041W WO2017043871A1 WO 2017043871 A1 WO2017043871 A1 WO 2017043871A1 KR 2016010041 W KR2016010041 W KR 2016010041W WO 2017043871 A1 WO2017043871 A1 WO 2017043871A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
ray detector
hole transport
photoelectric material
semiconductor structure
Prior art date
Application number
PCT/KR2016/010041
Other languages
English (en)
French (fr)
Inventor
허성근
신동희
김태우
윤민석
Original Assignee
주식회사 레이언스
(주)바텍이우홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160055463A external-priority patent/KR20170029370A/ko
Application filed by 주식회사 레이언스, (주)바텍이우홀딩스 filed Critical 주식회사 레이언스
Priority to US15/757,994 priority Critical patent/US10312292B2/en
Publication of WO2017043871A1 publication Critical patent/WO2017043871A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Definitions

  • the present invention relates to an X-ray detector, and more particularly, to an X-ray detector using a perovskite material.
  • Digital X-ray detectors are classified into indirect and direct conversion methods.
  • X-rays are converted into visible light using phosphors, and visible light is converted into electrical signals using photodiodes to be detected.
  • a photoconductor that directly generates an electrical signal by X-ray absorption is used.
  • the direct conversion detector detects the X-rays directly by converting them into electrical signals, so that the resolution is excellent, the conversion efficiency and the collection efficiency are excellent, and the radiation exposure can be reduced. There is a very low problem.
  • a-Se has disadvantages of high applied voltage, low sensitivity, and charge trapping, and thus, there is a limit to using a-Se as a photoelectric material.
  • CdTe, HgI 2 , PbI 2 , PbO has a disadvantage that the process is complicated, high cost, difficult to manufacture a large-area detector, takes a long time in mass production, and lacks a technique for producing reproducibly.
  • An object of the present invention is to provide a direct conversion type X-ray detector using a photoelectric material capable of mass production of a detector at low cost while satisfying various properties required as a photoelectric material.
  • the present invention and the first electrode on the substrate;
  • a direct conversion X-ray detector including a second electrode on the semiconductor structure.
  • the semiconductor structure may include a hole transport layer and an electron transport layer, and the photoelectric material may be formed in a film form between the hole transport layer and the electron transport layer.
  • the hole transport layer may include first and second hole transport layers.
  • the semiconductor structure has a type opposite to that of one of the electron transport layer and the hole transport layer, and includes a photoelectric material film in which the photoelectric material is formed in a film form, or includes an electron transport layer and a hole transport layer, and the semiconductor structure includes the electron transport layer and
  • the photoelectric material may be formed in the form of particles inside one of the electron transport layer and the hole transport layer.
  • the semiconductor structure includes a hole transport layer, an electron transport layer, and a photoelectric material film having a P type therebetween, wherein the photoelectric material is formed in the form of a film, or between the hole transport layer and the electron transport layer, and in the form of particles therebetween. It may include other hole transport layer formed.
  • the substrate may be a CMOS substrate or a plastic substrate, and may further include an adhesive polymer formed between the first electrode and the photoelectric material.
  • the adhesive polymer may be polyacryloyl piperidine (PVP).
  • the substrate may further include a sealing member that seals the entire stacked structure including the substrate, the first electrode, the semiconductor structure, and the second electrode, or seals the entire stacked structure including the substrate, the first electrode, and the semiconductor structure.
  • the sealing member is a polyethylene resin, polypropylene resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride resin, fluorine resin, One of poly (meth) acrylic resin and polycarbonate resin, or a mixture of at least two of them, may be formed of paraline.
  • the thickness of the photoelectric material film is 200um to 800um when the X-ray detector is used as a dental CT or cephalo sensor, and the X-ray detector is used as a dental panorama sensor.
  • 150um ⁇ 600um when the X-ray detector is used as an intraoral (I / O) sensor for dental, 100um ⁇ 450um, when the X-ray detector is used as a mammography sensor 60um ⁇ 300um, it may be 90um ⁇ 1000um when the X-ray detector is used as a medical fluoroscopy X-ray sensor.
  • the semiconductor structure may include a photoelectric material film using the perovskite material and a quantum dot material for converting incident X-rays into visible light.
  • the quantum dot may be formed of a-Se, Cs, CdSe, CdS, PbO, or PbI 2, and may have a diameter of about 1 nm to about 100 nm.
  • the quantum dot may be formed in a form dispersed in the photoelectric material film or may be formed in a film contacting at least one of an upper surface and a lower surface of the photoelectric material film.
  • the semiconductor structure may include one of a hole transport layer and an electron transport layer, and one of the hole transport layer and the electron transport layer may be disposed between the quantum dot and the photoelectric material layer and one of the first and second electrodes.
  • the semiconductor structure includes a hole transport layer and an electron transport layer, wherein the hole transport layer is disposed between the quantum dot and the photoelectric material film and one of the first and second electrodes, and the electron transport layer is formed of the quantum dot and the photoelectric material film. It may be disposed between the other one of the one and two electrodes.
  • the film made of the quantum dots may have a thickness of 100 nm to 1000 um.
  • the perovskite material of the present invention has suitable properties as a photoelectric material for X-ray detectors, in addition to low cost, excellent deposition characteristics for the substrate and easy manufacturing thereof. As a result, the X-ray detector can be mass-produced at a low cost and a short process time.
  • a quantum dot material is used to convert X-rays of specific energy into visible light.
  • X-rays can be absorbed in a wide energy range from substantially low energy to high energy, thereby minimizing the radiation exposure dose received by the patient, thereby realizing a high resolution and low noise image.
  • 1 to 10 are schematic cross-sectional views showing various structures of X-ray detectors using perovskite material according to a first embodiment of the present invention.
  • 11 to 22 are cross-sectional views schematically showing various structures of hybrid X-ray detectors using a perovskite material and a quantum dot material according to a second embodiment of the present invention.
  • the X-ray detector of the direct conversion method according to the first embodiment of the present invention uses a perovskite material as a photoelectric material.
  • Perovskite is a crystal structure of the ABX3 chemical formula and is known as a material having a special structure which shows not only the properties of insulators, semiconductors, conductors, but also superconducting phenomena.
  • the perovskite material having such a structure is used as a photoelectric material. do.
  • the materials constituting the ABX3 chemical formula are as follows.
  • B a divalent transition metal material such as Pb, Sn, Cu, Ni, Bi, Co, Fe, Mn, Cr, Cd, Ge, Yb as a metal material;
  • X halogen, for example I x Br (1-x) , I x Cl (1-x) , Br x Cl (1-x) (real number 0.2 ⁇ x ⁇ 1 ).
  • B material Pb, Bi, and Cd among the above listed materials may be used as more preferable materials than other materials.
  • [Table 1] below shows the physical properties of (CH 3 NH 3 ) PbI 3 and the previously proposed materials as an example of the perovskite material when the organic material is used as the A material.
  • the perovskite material of this embodiment has a high atomic number and a low energy band gap.
  • the quantum efficiency can be increased. It can be seen that the mobility characteristics are higher than that of a-Se, which is widely applied to the direct conversion detector.
  • the perovskite material of the present embodiment can sufficiently satisfy the requirements through the production of CH 3 NH 3 Pb (I X Br 1-X ) 3 .
  • the perovskite material using organic material as A material is cheaper than conventional materials, and can be easily formed through synthesis of organic and inorganic materials, so that a large area detector can be mass-produced in a short time at low cost.
  • the perovskite material using the organic material as the A material is superior to the substrate deposition compared to the existing materials, thereby improving the interface characteristics with the CMOS substrate and the like can improve the detection efficiency of the detector.
  • the perovskite material using an organic material as the A material determines the perovskite crystal size according to the concentration. As the concentration of the organic material increases, the crystal becomes smaller, and on the contrary, when the concentration of the organic material decreases, the crystal becomes larger.
  • the size of the crystal is related to the amount of X-ray absorption, the smaller the size of the crystal increases the amount of X-ray absorption. Therefore, as a result of adjusting the organic concentration, as a result of measuring the light absorption, it can be seen that the light absorption is the most optimized condition when the organic concentration is 35mM to 45mM, preferably 38mM.
  • the perovskite material used as the photoelectric material of the direct conversion type X-ray detector needs to be formed into a thick film having a relatively thick thickness of a predetermined thickness or more in consideration of X-ray absorption characteristics. Is preferably formed of a film having a thickness of 1 mm or more.
  • Such photovoltaic materials manufacturing methods include spray coating method, sol-gel coating method, spin coating method, slot-die coating method, thermal evaporation method, and sequential vapor deposition. (sequential vapor deposition) method, vapor-assisted solution process method and the like can be used.
  • a spray coating method a sol-gel coating method, a vapor deposition method, and a vapor-assisted solution process method are preferable.
  • thermal deposition may be used as an example.
  • the thermal evaporation method can produce a uniform high quality thick film compared to other deposition methods, and has the advantage of suppressing the doping of impurities in the air as much as possible.
  • 1 to 10 are cross-sectional views schematically showing various structures of X-ray detectors using perovskite material according to the first embodiment of the present invention.
  • the X-ray detector 10 of FIGS. 1 and 2 uses the optoelectronic device 30 having a shottky structure on the substrate 20.
  • the substrate 20 includes a plurality of sensing pixels that read an electrical signal generated from the photoelectric device.
  • various types of substrates may be used.
  • a CMOS substrate, a glass substrate, a flexible plastic substrate, or the like may be used.
  • the plastic substrate is, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polycarbonate (PC), polypropylene (PP), triacetyl cellulose (TAC), poly Ethersulfone (PES) and the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • PC polycarbonate
  • PP polypropylene
  • TAC triacetyl cellulose
  • PES poly Ethersulfone
  • the optoelectronic device 30 includes a first electrode 31 which is a lower electrode formed on the substrate 20, a second electrode 39 which is an upper electrode positioned on the first electrode 31, and first and second electrodes. And a semiconductor structure disposed between (31, 39) to perform a photoelectric function, wherein the semiconductor structure may be composed of a photoelectric material film (35).
  • the photoelectric material film 35 is formed of a perovskite material.
  • One of the first and second electrodes 31 and 39 corresponds to a cathode and the other corresponds to an anode.
  • the material for forming the first and second electrodes 31 and 39 for example, ITO, F-SnO, gold, silver, platinum, palladium, copper, aluminum, carbon, cobalt sulfide, copper sulfide and nickel oxide
  • ITO inorganic conductive electrode materials
  • F-SnO gold, silver, platinum, palladium, copper, aluminum, carbon
  • cobalt sulfide copper sulfide and nickel oxide
  • ITO inorganic conductive electrode materials
  • inorganic conductive electrode materials such as single or multi carbon nanotubes or graphene
  • organic conductive electrode materials such as PEDOT: PSS
  • silver nanowire electrode materials such as metal materials may be used.
  • an adhesive polymer may be formed between the first electrode 31 and the photoelectric material layer 35 of the perovskite, and the adhesive polymer may be formed of polyacryloyl piperidine (PVP).
  • PVP polyacryloyl piperidine
  • the photoelectric material film 35 has a property that is vulnerable to moisture or oxygen introduced from the outside.
  • the X-ray detector 10 includes a sealing member 90.
  • the sealing member 90 is formed to seal the entire laminated structure composed of the substrate 20 and the photoelectric device 30 from the outside.
  • a sealing member 90 is formed to seal the entire laminated structure composed of the semiconductor layer (35).
  • the material for forming the sealing member 90 for example, polyethylene resin, polypropylene resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene air
  • polyethylene resin polypropylene resin
  • cyclic polyolefin resin polystyrene resin
  • acrylonitrile-styrene copolymer acrylonitrile-butadiene-styrene air
  • One or a mixture of at least two of the copolymers, polyvinyl chloride resins, fluorine resins, poly (meth) acrylic resins, and polycarbonate resins, or paraline may be used. At this time, it is preferable to use paraline.
  • the X-ray detector 10 of FIGS. 3 and 4 uses a photoelectric element 30 having a PIN structure on the substrate 20.
  • the PIN photoelectric device 30 is a semiconductor structure between the first and second electrodes 31 and 39, and includes an I (intrinsic) type photoelectric material film 35 and a P (positive) type hole.
  • a semiconductor structure including a hole transporting layer (HTL) and an electron transport layer (ETL) of a negative type is used.
  • the electron transport layer ETL is disposed between the photoelectric material film 35 and the first electrode 31, and the hole transport layer ( The HTL is disposed between the photoelectric material film 35 and the second electrode 39.
  • the material for forming the electron transport layer for example, Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Zr oxide, Sr oxide, Yr oxide, One or a mixture of at least two of La oxide, V oxide, Al oxide, Y oxide, Sc oxide, Sm oxide, Ga oxide, In oxide, and SrTi oxide, or an organic semiconductor such as PCBM can be used.
  • Zn oxide or Ti oxide which is approximately room temperature, as a material having a low process temperature.
  • the material for forming the hole transport layer for example, a thiophene-based, paraphenylenevinylene-based, carbazole-based, triphenylamine-based, or a mixture of at least two of them can be used.
  • a thiophene-based, paraphenylenevinylene-based, carbazole-based, triphenylamine-based, or a mixture of at least two of them can be used.
  • the X-ray detector 10 of FIGS. 3 and 4 may also include a sealing member 90.
  • the sealing member 90 is formed so as to seal the entire laminated structure composed of the substrate 20 and the photoelectric element 30 from the outside.
  • a sealing member 90 is formed to seal the entire laminated structure including the ETL, the photoelectric material film 35 and the semiconductor structure of the hole transport layer HTL.
  • the X-ray detector 10 of FIGS. 5 and 6 uses the optoelectronic device 30 of the PPIN structure on the substrate 20.
  • the photoelectric device 30 having the PPIN structure is a semiconductor structure between the first and second electrodes 31 and 39, and includes an I (intrinsic) type photoelectric material film 35 and a P type first and second hole transport layer ( HTL1, HTL2) and N type electron transport layer (ETL) are used.
  • the electron transport layer ETL is disposed between the photoelectric material film 35 and the first electrode 31
  • the two hole transport layers HTL1 and HTL2 are disposed between the photoelectric material layer 35 and the second electrode 39.
  • hole transport efficiency may be improved.
  • the X-ray detector 10 of FIGS. 5 and 6 may also include a sealing member 90.
  • the sealing member 90 is formed so as to seal the entire laminated structure composed of the substrate 20 and the photoelectric element 30 from the outside.
  • the configuration of the substrate 20 and the photoelectric device 30 except for the second electrode 39 that is, the first electrode 31 and the electron transport layer (ETL), a photoelectric material film 35 and a semiconductor member of the first and second hole transport layers (HTL1, HTL2) of the laminated structure) is formed to seal the whole.
  • the second electrode 39 that is, the first electrode 31 and the electron transport layer
  • HTL1, HTL2 semiconductor member of the first and second hole transport layers
  • the X-ray detector 10 of FIGS. 7 and 8 uses a photoelectric element 30 having a PN structure on the substrate 20.
  • the PN structure photoelectric device 30 is a semiconductor structure between the first and second electrodes 31 and 39, and is opposite to one selected from a P type hole transport layer HTL and an N type electron transport layer ETL.
  • a semiconductor structure composed of a type photoelectric material film 35 may be used.
  • one transport layer selected from a P-type hole transport layer HTL and an N-type electron transport layer ETL is positioned on the side of the first electrode 31, and a photoelectric material film 35 is formed thereon.
  • the case is taken as an example.
  • a transport layer selected from a P-type hole transport layer HTL and an N-type electron transport layer ETL is disposed on the side of the second electrode 39, and the photoelectric material film 35 is disposed thereunder. This may be formed.
  • HTL P type hole transport layer
  • ETL N type electron transport layer
  • the X-ray detector 10 of FIGS. 7 and 8 may also include a sealing member 90.
  • the sealing member 90 is formed so as to seal the whole laminated structure composed of the substrate 20 and the photoelectric element 30 from the outside.
  • a sealing member 90 is formed to encapsulate the entire laminated structure including the ETL or the hole transport layer HTL and the semiconductor structure of the photoelectric material layer 35.
  • the X-ray detector 10 of FIGS. 9 and 10 uses a photoelectric element 30 having a PPN structure on the substrate 20.
  • the photoelectric device 30 having the PPN structure is a semiconductor structure between the first and second electrodes 31 and 39, and includes a P-type hole transport layer (HTL), a P-type photoelectric material film 35, and an N-type electron transport layer.
  • a semiconductor structure composed of (ETL) can be used.
  • the P-type photoelectric material film 35 is disposed to contact the electron transport layer ETL.
  • another P-type hole transport layer may be formed in place of the P-type photovoltaic layer 35, and in the other hole transport layer, photoelectric material in the form of particles, that is, the photoelectric material particles 35a may be formed. It may be formed in a dispersed form.
  • the X-ray detector 10 may be formed in various structures, and also a PN junction structure having a P type and an N type semiconductor material layer may be easily manufactured. At this time, the PN junction structure has an effect of reducing the dark current due to its characteristics.
  • the direct conversion type X-ray detector can be used as an X-ray sensor for various purposes in various fields, for example, a dental CT or cephalo sensor, a dental panorama sensor. It may be used as a dental intraoral sensor, mammography sensor, medical fluoroscopy X-ray sensor.
  • the required X-ray output strength of the X-ray irradiator that is, the tube voltage of the X-ray irradiator is different. Accordingly, in view of the X-ray absorption rate, the required thickness range of the perovskite photoelectric material film in these X-ray sensors also differs.
  • [Table 2] to [Table 7] is a dental CT or cephalo sensor, dental panorama sensor, dental intraoral sensor, mammography sensor, medical In the fluoroscopy X-ray sensor, the experimental results of the X-ray absorption ratio versus the thickness of the photoelectric material film are shown.
  • Dental panorama sensor 150um to 600um
  • the perovskite material of the present embodiment has suitable characteristics as a photoelectric material for direct conversion X-ray detterter, in addition, it is inexpensive, has excellent deposition characteristics on the substrate, and is easy to manufacture. It also has one advantage. Accordingly, it is possible to mass-produce the direct conversion X-ray detector at low cost and short process time.
  • the X-ray detector of the direct conversion method according to the second embodiment of the present invention uses a perovskite material as a photoelectric material, and in addition, a quantum dot converting X-rays of specific energy into visible light. Material is used.
  • the perovskite material and the quantum dot material may have different X-ray energy ranges in terms of X-ray absorption rate, thereby absorbing X-rays in a wide energy range from substantially low energy to high energy.
  • the quantum dot material absorbs X-rays of the corresponding energy range and emits corresponding visible light.
  • the perovskite material absorbs X-rays of the corresponding energy range to directly generate electron-hole pairs, and also absorbs visible light emitted from the quantum dot material to generate electron-hole pairs. .
  • the X-ray detector of the present embodiment performs a photoelectric conversion function that converts incident X-rays into an electrical signal using two materials together, that is, not only directly converts X-rays electrically but also through a quantum dot material. The emitted visible light is converted into an electrical signal.
  • the X-ray detector of the present embodiment may be referred to as a hybrid type X-ray detector in which a so-called direct conversion method is mixed with an indirect conversion method.
  • Perovskite is a crystal structure of the ABX3 chemical formula and is known as a material having a special structure which shows not only the properties of insulators, semiconductors, conductors, but also superconducting phenomena.
  • the perovskite material having such a structure is used as a photoelectric material. do.
  • the materials constituting the ABX3 chemical formula are as follows.
  • B a divalent transition metal material such as Pb, Sn, Cu, Ni, Bi, Co, Fe, Mn, Cr, Cd, Ge, Yb as a metal material;
  • X halogen, for example I x Br (1-x) , I x Cl (1-x) , Br x Cl (1-x) (real number 0.2 ⁇ x ⁇ 1 ).
  • B material Pb, Bi, and Cd among the above listed materials may be used as more preferable materials than other materials.
  • [Table 8] below shows the properties of (CH 3 NH 3 ) PbI 3 and the previously proposed materials as an example of the perovskite material when the organic material is used as the A material.
  • the perovskite material of this embodiment has a high atomic number and a low energy band gap.
  • the quantum efficiency can be increased. It can be seen that the mobility characteristics are higher than that of a-Se, which is widely applied to the direct conversion detector.
  • the perovskite material of the present embodiment can sufficiently satisfy the requirements through the production of CH 3 NH 3 Pb (I X Br 1-X ) 3 .
  • the perovskite material using organic material as A material is cheaper than conventional materials, and can be easily formed through synthesis of organic and inorganic materials, so that a large area detector can be mass-produced in a short time at low cost.
  • the perovskite material using the organic material as the A material is superior to the substrate deposition compared to the existing materials, thereby improving the interface characteristics with the CMOS substrate and the like can improve the detection efficiency of the detector.
  • the perovskite material using an organic material as the A material determines the perovskite crystal size according to the concentration. As the concentration of the organic material increases, the crystal becomes smaller, and on the contrary, when the concentration of the organic material decreases, the crystal becomes larger.
  • the size of the crystal is related to the amount of X-ray absorption, the smaller the size of the crystal increases the amount of X-ray absorption. Therefore, as a result of adjusting the organic concentration, as a result of measuring the light absorption, it can be seen that the light absorption is the most optimized condition when the organic concentration is 35mM to 45mM, preferably 38mM.
  • the perovskite material used as the photoelectric material of the direct conversion type X-ray detector needs to be formed into a thick film having a relatively thick thickness of a predetermined thickness or more in consideration of X-ray absorption characteristics. Is preferably formed of a film having a thickness of 1 mm or more.
  • Such photovoltaic materials manufacturing methods include spray coating method, sol-gel coating method, spin coating method, slot-die coating method, thermal evaporation method, and sequential vapor deposition. (sequential vapor deposition) method, vapor-assisted solution process method and the like can be used.
  • a spray coating method a sol-gel coating method, a vapor deposition method, and a vapor-assisted solution process method are preferable.
  • thermal deposition may be used as an example.
  • the thermal evaporation method can produce a uniform high quality thick film compared to other deposition methods, and has the advantage of suppressing the doping of impurities in the air as much as possible.
  • the quantum dot material has a function of absorbing X-rays of relatively low energy relative to the perovskite material in terms of X-ray absorption rate.
  • a quantum dot material for example, a-Se, Cs, CdSe, CdS, PbO, PbI2 and the like can be used.
  • the quantum dot is preferably formed to have a diameter range of approximately 1nm ⁇ 100nm.
  • the quantum dot film is preferably formed to have a thickness of approximately 100 nm to 1000 um.
  • 11 to 22 are cross-sectional views schematically illustrating various structures of a hybrid type X-ray detector using a perovskite material and a quantum dot material according to a second embodiment of the present invention.
  • the X-ray detector 110 of FIGS. 11 to 14 uses the optoelectronic device 130 having a shottky structure on the substrate 120.
  • the substrate 120 includes a plurality of sensing pixels that read an electrical signal generated from the photoelectric device.
  • various types of substrates may be used.
  • a CMOS substrate a glass substrate, a flexible plastic substrate, or the like may be used.
  • the plastic substrate is, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polycarbonate (PC), polypropylene (PP), triacetyl cellulose (TAC), poly Ethersulfone (PES) and the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • PC polycarbonate
  • PP polypropylene
  • TAC triacetyl cellulose
  • PES poly Ethersulfone
  • the optoelectronic device 130 may include a first electrode 131, which is a lower electrode formed on the substrate 120, a second electrode 139, which is an upper electrode positioned on the first electrode 131, and first and second electrodes.
  • the semiconductor structure may be disposed between 131 and 139 to perform a photoelectric function, and the semiconductor structure may include a photovoltaic layer 135 and a quantum dot material formed of a perovskite material.
  • the quantum dot material may be formed in various forms, for example, may be formed in the form shown in FIGS. 11, 12, 13, and 14.
  • the quantum dot 140 having a particle shape may be formed to be dispersed in the photoelectric material layer 35.
  • a film form that is, a quantum dot film 141, is formed, which may be disposed to directly contact the top, bottom, or top and bottom surfaces of the photoelectric material layer 135. have.
  • the first and second electrodes 131 and 139 for example, one of ITO, F-SnO, gold, silver, platinum, palladium, copper, aluminum, carbon, cobalt sulfide, copper sulfide and nickel oxide Or a mixture of at least two, inorganic conductive electrode materials such as single or multi carbon nanotubes or graphene, organic conductive electrode materials such as PEDOT: PSS, or silver nanowire metals. Nanowire electrode materials such as materials can be used.
  • an adhesive polymer may be formed therebetween, and the adhesive polymer may be formed of polyacryloyl piperidine (PVP). .
  • the X-ray detector 110 of FIGS. 15 to 18 uses a photoelectric element 130 having a PIN structure on the substrate 120.
  • the PIN photoelectric device 130 is a semiconductor structure between the first and second electrodes 131 and 139.
  • the photoelectric material film 135 of the I (intrinsic) type and the positive hole of the P type are formed.
  • a semiconductor structure including a hole transporting layer (HTL) and a negative type electron transporting layer (ETL) is used, and the semiconductor structure may also include a quantum dot material.
  • the quantum dot material may be formed in various forms.
  • the quantum dot material may be formed in the form shown in FIGS. 15 to 18 similarly to FIGS. 11 to 14.
  • the quantum dots 140 may be formed to be dispersed in the photoelectric material layer 135.
  • the quantum dot film 141 may be formed and disposed to directly contact the top, bottom, or top and bottom surfaces of the photoelectric material layer 135.
  • the electron transport layer ETL is disposed on the first electrode 131 side, and the hole transport layer HTL is formed on the second electrode ( 139) on the side.
  • the material for forming the electron transport layer for example, Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Zr oxide, Sr oxide, Yr oxide, One or a mixture of at least two of La oxide, V oxide, Al oxide, Y oxide, Sc oxide, Sm oxide, Ga oxide, In oxide, and SrTi oxide, or an organic semiconductor such as PCBM can be used. At this time, it is preferable to use Zn oxide or Ti oxide.
  • the material for forming the hole transport layer for example, a thiophene-based, paraphenylenevinylene-based, carbazole-based, triphenylamine-based, or a mixture of at least two of them can be used.
  • a thiophene-based, paraphenylenevinylene-based, carbazole-based, triphenylamine-based, or a mixture of at least two of them can be used.
  • the X-ray detector 110 of FIGS. 19 to 22 uses the photoelectric element 130 having the PN structure on the substrate 120.
  • the photoelectric device 130 having the PN structure is a semiconductor structure between the first and second electrodes 131 and 139, and is opposite to the selected one of the P type hole transport layer HTL and the N type electron transport layer ETL.
  • a semiconductor structure composed of a type photoelectric material layer 135 is used, and the semiconductor structure may also include a quantum dot material.
  • the arrangement relationship between the P-type semiconductor film and the N-type semiconductor film in the semiconductor structure is determined by which of the anode and the cathode the first and second electrodes 131 and 139 function.
  • one transport layer selected from a P type hole transport layer HTL and an N type electron transport layer ETL is positioned on the first electrode 131 side, and the photoelectric material layer 135 is formed thereon.
  • the case is taken as an example.
  • a transport layer selected from a P-type hole transport layer HTL and an N-type electron transport layer ETL is positioned on the side of the second electrode 139 and the photoelectric material layer 135 is disposed thereunder. This may be formed.
  • the quantum dot material may be formed in various forms.
  • the quantum dot material may be formed in the form shown in FIGS. 19 to 22 similarly to FIGS. 11 to 14.
  • the quantum dot 140 may be formed to be dispersed in the photoelectric material layer 135.
  • the quantum dot film 141 may be formed and disposed to directly contact the top, bottom, or top and bottom surfaces of the photoelectric material layer 135.
  • the perovskite material of this embodiment has suitable properties as a photoelectric material for the X-ray detector, in addition to the low cost, excellent deposition characteristics for the substrate and easy manufacturing thereof .
  • the X-ray detector can be mass-produced at a low cost and a short process time.
  • a quantum dot material is used to convert X-rays of specific energy into visible light. As a result, it is possible to absorb a wide range of energy X-rays from substantially low energy to high energy, thereby producing an X-ray detector having a high resolution and low noise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Hardware Design (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명은 기판 상의 제1전극과; 상기 제1전극 상의 페로브스카이트(perovskite) 물질을 사용한 광전물질을 포함하는 반도체구조물과; 상기 반도체구조물 상의 제2전극을 포함하는 직접 변환방식의 X선 디텍터를 제공한다.

Description

X선 디텍터
본 발명은 X선 디텍터에 관한 것으로서, 보다 상세하게는, 페로브스카이트 물질을 사용한 X선 디텍터에 대한 것이다.
디지털 방식의 X선 디텍터는 간접 변환방식과 직접 변환방식으로 구분된다.
간접 변환방식에서는, 형광체를 이용하여 X선을 가시광선으로 전환하고 가시광선을 포토다이오드를 사용하여 전기적 신호로 변환하여 검출하게 된다. 반면에, 직접 변환방식에서는, X선 흡수에 의해 직접 전기적 신호를 발생시키는 광전물질(photoconductor)을 사용하게 된다.
이처럼, 직접 변환방식의 디텍터는 X선을 직접 전기적 신호로 변환하여 검출하게 되므로, 분해능이 우수하고 변환효율 및 수집효율이 우수하여, 방사선 피폭을 감소시킬 수 있는 장점이 있으나, 현재로서는 상용화 비율이 매우 낮은 문제가 있다.
이와 관련하여, 직접 변환방식에 사용되는 광전물질에 대해서는 다양한 특성등이 만족될 필요가 있으며, 현재까지 제안된 광전물질들인 a-Se, CdTe, HgI2, PbI2, PbO는 여러 가지 단점이 존재한다.
a-Se는 높은 인가전압과 낮은 감도(sensitivity)와 전하 트랩(trap) 현상이 발생하는 단점이 있어, 광전물질로 사용하는 데 한계가 있다.
또한, CdTe, HgI2, PbI2, PbO는 공정이 복잡하고 단가가 높으며 대면적 디텍터를 제작하는 것이 어렵고 대량생산에 장시간이 소요되고, 재현성 있게 제작하기 위한 기술이 현재로서는 부족한 단점이 있다.
따라서, 현재까지 연구된 물질들 외에, 광전물질로서 요구되는 여러 특성을 충족시키면서 저비용으로 디텍터를 대량생산 가능하게 할 수 있는 광전물질이 절실히 요구되고 있는 실정이다.
본 발명은 광전물질로서 요구되는 여러 특성을 충족시키면서 저비용으로 디텍터를 대량생산 가능하게 할 수 있는 광전물질을 사용한 직접 변환방식 X선 디텍터를 제공하는 것을 과제로 한다.
또한, 기존 투명전도성 전극(ITO, SnO)/Glass 기판 외에 CMOS 및 플렉서블 플라스틱 기판에도 접착(adhesive) 문제 없이 증착이 가능한 기술을 제공하는 것을 과제로 한다.
전술한 바와 같은 과제를 달성하기 위해, 본 발명은 기판 상의 제1전극과; 상기 제1전극 상의 페로브스카이트(perovskite) 물질을 사용한 광전물질을 포함하는 반도체구조물과; 상기 반도체구조물 상의 제2전극을 포함하는 직접 변환방식의 X선 디텍터를 제공한다.
여기서, 상기 페로브스카이트 물질은 ABX3 화학식으로 표현되고, 상기 A는 Cs, 메틸암모늄(CH3NH3), 또는 폼아미디니윰(NH2CH=NH2)이며, 상기 B는 Pb, Sn, Cu, Ni, Bi, Co, Fe, Mn, Cr, Cd, Ge, 또는 Yb이며, 상기 X는 IxBr(1-x), IxCl(1-x), 또는 BrxCl(1-x) (0.2≤x≤1인 실수)일 수 있다.
상기 반도체구조물은 정공수송층과 전자수송층을 포함하고, 상기 광전물질은 상기 정공수송층과 전자수송층 사이에 막 형태로 형성될 수 있다.
상기 정공수송층은 제1 및 2정공수송층을 포함할 수 있다.
상기 반도체구조물은, 전자수송층 및 정공수송층 중 하나와 이와 반대되는 타입을 가지며 상기 광전물질이 막 형태로 형성된 광전물질막을 포함하거나, 전자수송층 및 정공수송층을 포함하고, 상기 반도체구조물이 상기 전자수송층 및 정공수송층을 포함하는 경우에, 상기 광전물질은 상기 전자수송층 및 정공수송층 중 하나 내부에 입자 형태로 형성될 수 있다.
상기 반도체구조물은, 정공수송층과 전자수송층과 이들 사이에 P 타입을 가지며 상기 광전물질이 막 형태로 형성된 광전물질막을 포함하거나, 정공수송층과 전자수송층과 이들 사이에 상기 광전물질이 입자 형태로 내부에 형성된 다른 정공수송층을 포함할 수 있다.
상기 기판은 CMOS 기판이나 플라스틱 기판이고, 상기 제1전극과 광전물질 사이에 형성된 접착폴리머를 더 포함할 수 있다.
상기 접착폴리머는 PVP(polyacryloyl piperidine)일 수 있다.
상기 기판과 제1전극과 반도체구조물과 제2전극으로 구성된 적층 구조물 전체를 밀봉하거나, 상기 기판과 제1전극과 반도체구조물로 구성된 적층 구조물 전체를 밀봉하는 밀봉부재를 더 포함할 수 있다.
상기 밀봉부재는 폴리에틸렌계 수지, 폴리프로필렌계 수지, 고리형 폴리올레핀계 수지, 폴리스티렌계 수지, 아크릴로니트릴-스티렌 공중합체, 아크릴로니트릴-부타디엔-스티렌 공중합체, 폴리염화비닐계 수지, 불소계 수지, 폴리(메타)아크릴계 수지, 폴리카보네이트계 수지 중 하나 또는 이들 중 적어도 2개의 혼합물이나, 패럴린으로 형성될 수 있다.
상기 광전물질막의 두께는, 상기 X선 디텍터가 치과용(dental) CT 또는 세팔로(cephalo) 센서로 사용되는 경우에 200um~800um이며, 상기 X선 디텍터가 치과용 파노라마(panorama) 센서로 사용되는 경우에 150um~600um이며, 상기 X선 디텍터가 치과용 구강내(I/O: intraoral) 센서로 사용되는 경우에 100um~450um이며, 상기 X선 디텍터가 맘모그라피(mammography) 센서로 사용되는 경우에 60um~300um이며, 상기 X선 디텍터가 의료용 투시촬영용(fluoroscopy) X선 센서로 사용되는 경우에 90um~1000um일 수 있다.
그리고, 상기 반도체구조물은, 상기 페로브스카이트(perovskite) 물질을 사용한 광전물질막과 입사된 X선을 가시광선으로 변환하는 퀀텀도트(quantum dot) 물질을 포함할 수 있다.
여기서, 상기 퀀텀도트는 a-Se, Cs, CdSe, CdS, PbO, 또는 PbI2으로 형성되고, 1nm~100nm의 직경을 가질 수 있다.
상기 퀀텀도트는 상기 광전물질막 내부에 분산된 형태로 형성되거나, 상기 광전물질막의 상면 및 하면 중 적어도 하나에 접촉하는 막 형태로 형성될 수 있다.
상기 반도체구조물은 정공수송층과 전자수송층 중 하나를 포함하고, 상기 정공수송층과 전자수송층 중 하나는 상기 퀀텀도트 및 광전물질막과 제1 및 2전극 중 하나 사이에 배치될 수 있다.
상기 반도체구조물은 정공수송층과 전자수송층을 포함하고, 상기 정공수송층은 상기 퀀텀도트 및 광전물질막과 제1 및 2전극 중 하나 사이에 배치되고, 상기 전자수송층은 상기 퀀텀도트 및 광전물질막과 제1 및 2전극 중 다른 하나 사이에 배치될 수 있다.
상기 퀀텀도트로 이루어진 막은 100nm~1000um의 두께를 가질 수 있다.
본 발명의 페로브스카이트 물질은 X선 디텍터용 광전물질로서 적합한 특성을 구비하며, 이에 더하여 단가가 저렴하고 기판에 대한 증착 특성이 우수하며 그 제조가 용이한 장점 또한 갖고 있다. 이에 따라, X선 디텍터를 저렴한 비용과 짧은 공정시간으로 대량 생산할 수 있게 된다.
또한, 페로브스카이트 물질에 더하여 특정 에너지의 X선을 가시광선으로 변환하는 퀀텀도트(quantum dot) 물질을 사용하게 된다. 이에 따라 실질적으로 낮은 에너지부터 높은 에너지까지 넓은 에너지 범위의 X선을 흡수할 수 있고, 이로 인해 환자가 받는 방사선 피폭 선량을 최소화 하면서 해상도가 우수하고 잡음이 적은 영상 이미지를 구현할 수 있다.
도 1 내지 10은 본 발명의 제1실시예에 따른 페로브스카이트 물질을 사용한 X선 디텍터들의 여러 구조를 개략적으로 도시한 단면도.
도 11 내지 22는 본 발명의 제2실시예에 따른 페로브스카이트 물질 및 퀀텀도트 물질을 사용한 하이브리드 방식의 X선 디텍터들의 여러 구조를 개략적으로 도시한 단면도.
이하, 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
<제1실시예>
본 발명의 제1실시예에 따른 직접 변환방식의 X선 디텍터는 광전물질로서 페로브스카이트(perovskite) 물질을 사용하게 된다.
페로브스카이트는 ABX3 화학식의 결정구조로서 부도체, 반도체, 도체의 성질은 물론 초전도 현상까지 보이는 특별한 구조의 물질로 알려져 있는데, 본 실시예에서는 이와 같은 구조의 페로브스카이트 물질을 광전물질로 사용하게 된다.
이때, 본 실시예에서 사용되는 페로브스카이트 물질에 대해 보다 상세하게 설명하면, ABX3 화학식을 구성하는 물질들은 다음과 같다.
A: 유기물질로서 예를 들어 메틸암모늄(CH3NH3), 폼아미디니윰(NH2CH=NH2), 또는 무기물질로서 예를 들어 세슘(Cs);
B: 금속물질로서 예를 들어 Pb, Sn, Cu, Ni, Bi, Co, Fe, Mn, Cr, Cd, Ge, Yb 등의 2가의 전이 금속물질;
X: 할로겐물질로서 예를 들어 IxBr(1-x), IxCl(1-x), BrxCl(1-x) (0.2≤x≤1인 실수).
이처럼, 본 실시예에서는 위와 같은 구조의 페로브스카이트 물질을 사용함으로써, 우수한 특성의 광전물질이 구현될 수 있게 된다.
이때, B 물질로서는 위 열거된 물질들 중 Pb, Bi, Cd가 다른 물질들에 비해 보다 바람직한 물질로 사용될 수 있다.
이하, A 물질로서 유기물을 사용한 페로브스카이트 물질을 사용하는 경우에 대해 설명한다.
한편, 아래 [표 1]에서는 A 물질로서 유기물이 사용되는 경우의 페로브스카이트물질의 예로서 (CH3NH3)PbI3와 기존에 제안된 물질들의 물성을 보여주고 있다.
이를 참조하면, 본 실시예의 페로브스카이트 물질은 높은 원자번호(atomic number)를 갖고 낮은 에너지 밴드갭(energy band gap)을 가진다. 또한, 낮은 이온화 에너지(ionization energy)를 갖고, 트랩(trap) 밀도가 작기 때문에 양자효율을 높일 수 있다. 현재 직접 변환방식 디텍터에 널리 적용되고 있는 a-Se 보다 높은 이동도 특성을 가지는 것을 알 수 있다.
표 1
광전물질 a-Se CdTe Poly-HgI2 Poly-PbI2 Poly-PbO Poly-(CH3NH3)PbI3
원자번호(Z) 34 48/62 80/53 82/53 82/8 82/53
에너지밴드갭(eV) 2.2 1.44 2.1 2.4 1.9 1.55
밀도(g/㎤) 4.3 5.85 6.36 6.16 9.6 4.28
트랩 밀도(cm-3) 1016 1013~1014 ~1013 ~1013 - ~1010
이온화에너지(W±) 45 5 5 5 8 <5
이동도(㎠/Vs) 전자 ~ 10-3 103 102 - 50 ~ 6
~ 10-2 ~ 90 4 0.01~0.1 - 19
비저항(Ω) 1014~1015 109 ~ 1013 1011~1012 ~ 1012 107
이처럼, 본 실시예의 페로브스카이트 물질은 CH3NH3Pb(IXBr1-X)3 제작을 통해 충분히 요구 조건을 만족 시킬 수 있다.
더욱이, A 물질로서 유기물을 사용한 페로브스카이트 물질은 기존 물질들에 비해 단가가 저렴하며, 유무기물의 합성을 통해 손쉽게 형성 가능하므로, 저비용으로 대면적의 디텍터를 단시간에 대량 생산 가능하게 된다.
또한, A 물질로서 유기물을 사용한 페로브스카이트 물질은 기존 물질들에 비해 기판 증착이 우수하며, 이에 따라 CMOS 기판 등과의 계면 특성을 향상시킬 수 있게 되어 디텍터의 검출 효율을 향상시킬 수 있게 된다.
한편, A 물질로서 유기물을 사용한 페로브스카이트 물질은 농도에 따라 페로브스카이트 결정 크기가 결정되는데, 유기물의 농도가 커지면 결정이 작아지고 반대로 유기물의 농도가 작아지면 결정이 커지게 된다. 한편, 결정의 크기는 X선의 흡수량과 관계되는데, 결정 크기가 작아지면 X선 흡수량은 증가하게 된다. 따라서, 유기물 농도를 조절함에 따라 광 흡수율 측정 결과 태양광에서와 같이 유기물 농도가 35mM~45mM, 바람직하게는 38mM 일 때 광흡수율이 가장 최적화된 조건임을 알 수 있다.
한편, 직접변환 방식 X선 디텍터의 광전물질로 사용되는 페로브스카이트 물질은 X선 흡수 특성을 고려하여 일정 두께 이상의 상대적으로 두꺼운 두께의 후막(厚膜)으로 형성될 필요가 있는데, ~100㎛ 부터 1㎜ 이상의 두께를 갖는 막으로 형성되는 것이 바람직하다.
이러한 광전물질 제작 방법으로서는, 스프레이 코팅(spray coating) 방법, 졸-겔(sol-gel) 코팅 방법, 스핀(spin) 코팅 방법, 슬롯-다이(slot-die) 코팅 방법, 열증착법, 순차 기상 증착(sequential vapor deposition) 방법, 기상 솔루션(vapor-assisted solution process) 방법 등이 사용될 수 있다.
이들 방법들 중, 스프레이 코팅(spray coating) 방법, 졸-겔(sol-gel) 코팅 방법, 기상 증착(vapor deposition) 방법, 기상 솔루션(vapor-assisted solution process) 방법이 바람직하다.
이때, 기상 증착 방법으로서 다양한 방식의 기상 증착 방법이 사용될 수 있으며, 일예로 열증착법이 사용될 수 있다. 열증착법은 다른 증착법에 비해 균일한 양질의 후막을 제작 할 수 있으며, 공기 중 불순물 도핑을 최대한 억제 할 수 있다는 장점이 있다.
이하, 본 실시예에 따라 페로브스카이트 물질을 광전물질로 사용한 X선 디텍터의 여러 예들을 도면을 참조하여 설명한다.
도 1 내지 10은 본 발명의 제1실시예에 따른 페로브스카이트 물질을 사용한 X선 디텍터들의 여러 구조를 개략적으로 도시한 단면도이다.
먼저, 도 1 및 2의 X선 디텍터(10)는, 기판(20) 상에 쇼트기(shottky) 구조의 광전소자(30)를 사용한다.
기판(20)은 광전소자에서 발생된 전기신호를 독출하는 복수의 감지 픽셀을 포함한다. 기판(20)으로서는 다양한 형태의 기판이 사용될 수 있는데, 예를 들면, CMOS 기판, 유리 기판, 플렉서블 특성의 플라스틱 기판 등이 사용될 수 있다. 여기서, 플라스틱 기판은, 예를 들면, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈레이트 (PEN), 폴리이미드(PI), 폴리카보네이트(PC), 폴리프로필렌(PP), 트리아세틸셀룰로오스(TAC), 폴리에테르술폰(PES) 등이 사용될 수 있다.
광전소자(30)는 기판(20) 상에 형성된 하부전극인 제1전극(31)과, 제1전극(31) 상에 위치하는 상부전극인 제2전극(39)과, 제1 및 2전극(31, 39) 사이에 배치되어 광전 기능을 수행하는 반도체구조물을 포함하며, 이때 반도체구조물은 광전물질막(35)으로 구성될 수 있다.
광전물질막(35)은 페로브스카이트 물질로 형성된다. 그리고, 제1 및 2전극(31, 39) 중 하나는 캐소드(cathode)에 해당되고 나머지 하나는 애노드(anode)에 해당된다.
여기서, 제1,2전극(31,39)을 형성하는 물질로서는, 예를 들면, ITO, F-SnO, 금, 은, 백금, 팔라듐, 구리, 알루미늄, 탄소, 황화코발트, 황화구리, 산화니켈 중 하나 또는 적어도 2개의 혼합물이나, 싱글 또는 멀티 탄소나노튜브(carbon nanotube)나 그래핀(graphene)과 같은 무기계 전도성 전극 물질이나, PEDOT:PSS와 같은 유기계 전도성 전극 물질이나, 은 나노와이어(Ag Nanowire) 금속 물질과 같은 나노와이어 전극 물질이 사용될 수 있다.
한편, 제1전극(31)과 페로브스카이트의 광전물질막(35) 사이에는 접착폴리머(adhesive polymer)를 형성할 수 있으며, 이 접착 폴리머는 PVP(polyacryloyl piperidine)로 형성될 수 있다.
이때, 광전물질막(35)은 외부로부터 유입되는 습기나 산소 등에 취약한 특성을 갖게 된다. 광전물질막(35)을 외부로부터 보호하기 위해, X선 디텍터(10)는 밀봉부재(90)를 구비하게 된다.
이와 관련하여 예를 들면, 도 1의 X선 디텍터(10)의 경우에는, 기판(20) 및 광전소자(30)로 구성된 적층 구조물 전체를 외부로부터 밀봉하도록 밀봉부재(90)가 형성된다.
다른 예로서, 도 2의 X선 디텍터(10)의 경우에는, 기판(20) 및 광전소자(30) 중 제2전극(39)을 제외한 구성(즉, 제1전극(31)과 광전물질막(35)의 반도체층)으로 구성된 적층 구조물 전체를 밀봉하는 밀봉부재(90)가 형성된다.
밀봉부재(90)를 형성하는 물질로서는, 예를 들면, 폴리에틸렌계 수지, 폴리프로필렌계 수지, 고리형 폴리올레핀계 수지, 폴리스티렌계 수지, 아크릴로니트릴-스티렌 공중합체, 아크릴로니트릴-부타디엔-스티렌 공중합체, 폴리염화비닐계 수지, 불소계 수지, 폴리(메타)아크릴계 수지, 폴리카보네이트계 수지 중 하나 또는 이들 중 적어도 2개의 혼합물이나, 패럴린이 사용될 수 있다. 이때, 패럴린을 사용하는 것이 바람직하다.
다음으로, 도 3 및 4의 X선 디텍터(10)는, 기판(20) 상에 PIN 구조의 광전소자(30)를 사용한다. 이 PIN 구조의 광전소자(30)는 제1 및 2전극(31, 39) 사이의 반도체구조물로서, I(intrinsic) 타입(type)의 광전물질막(35)과, P(positive) 타입의 정공수송층(hole transporting layer: HTL)과, N(negative) 타입의 전자수송층(electron transporting layer: ETL)으로 구성된 반도체구조물을 사용한다.
여기서, 제1전극(31)이 캐소드이고 제2전극(39)이 애노드인 경우에, 전자수송층(ETL)은 광전물질막(35)과 제1전극(31) 사이에 배치되고, 정공수송층(HTL)은 광전물질막(35)과 제2전극(39) 사이에 배치된다.
그리고, 전자수송층(ETL)을 형성하는 물질로서는, 예를 들면, Ti산화물, Zn산화물, In산화물, Sn산화물, W산화물, Nb산화물, Mo산화물, Mg산화물, Zr산화물, Sr산화물, Yr산화물, La산화물, V산화물, Al산화물, Y산화물, Sc산화물, Sm산화물, Ga산화물, In산화물, SrTi산화물 중 하나 또는 이들 중 적어도 2개의 혼합물이나, PCBM과 같은 유기물반도체가 사용될 있다. 이때, 공정 온도를 감안하여, 공정 온도가 낮은 물질로서 대략 상온(room temperature)인 Zn산화물 또는 Ti산화물을 사용하는 것이 바람직하다.
또한, 정공수송층(HTL)을 형성하는 물질로서는, 예를 들면, 티오펜계, 파라페닐렌비닐렌계, 카바졸계, 트리페닐아민계 중 하나 또는 이들 중 적어도 2개의 혼합물이 사용될 수 있다. 이때, 페로브스카이트의 광전물질막(35)과의 에너지 매칭 측면에서, 티오펜계와 트리페닐아민계 중 적어도 하나를 사용하는 것이 바람직하며, 더욱이 프리페닐아민계가 보다 더 바람직하다.
이때, 도 1 및 2와 유사하게, 도 3 및 4의 X선 디텍터(10) 또한 밀봉부재(90)를 구비할 수 있다.
예를 들면, 도 3의 X선 디텍터(10)의 경우에는, 기판(20) 및 광전소자(30)로 구성된 적층 구조물 전체를 외부로부터 밀봉하도록 밀봉부재(90)가 형성된다.
다른 예로서, 도 4의 X선 디텍터(10)의 경우에는, 기판(20) 및 광전소자(30) 중 제2전극(39)을 제외한 구성(즉, 제1전극(31)과, 전자수송층(ETL)과 광전물질막(35)과 정공수송층(HTL)의 반도체구조물)으로 구성된 적층 구조물 전체를 밀봉하는 밀봉부재(90)가 형성된다.
다음으로, 도 5 및 6의 X선 디텍터(10)는, 기판(20) 상에 PPIN 구조의 광전소자(30)를 사용한다. 이 PPIN 구조의 광전소자(30)는 제1 및 2전극(31, 39) 사이의 반도체구조물로서, I(intrinsic) 타입의 광전물질막(35)과, P 타입의 제1 및 2정공수송층(HTL1, HTL2)과, N 타입의 전자수송층(ETL)으로 구성된 반도체구조물을 사용한다. 여기서, 제1전극(31)이 캐소드이고 제2전극(39)이 애노드인 경우에, 전자수송층(ETL)은 광전물질막(35)과 제1전극(31) 사이에 배치되고, 제1 및 2정공수송층(HTL1, HTL2)은 광전물질막(35)과 제2전극(39) 사이에 배치된다. 이처럼, 도 5 및 6의 X선 디텍터(10)는 이중 구조의 정공수송층을 사용함에 따라, 정공 수송 효율이 향상될 수 있다.
이때, 도 1 및 2와 유사하게, 도 5 및 6의 X선 디텍터(10) 또한 밀봉부재(90)를 구비할 수 있다.
예를 들면, 도 5의 X선 디텍터(10)의 경우에는, 기판(20) 및 광전소자(30)로 구성된 적층 구조물 전체를 외부로부터 밀봉하도록 밀봉부재(90)가 형성된다.
다른 예로서, 도 6의 X선 디텍터(10)의 경우에는, 기판(20) 및 광전소자(30) 중 제2전극(39)을 제외한 구성(즉, 제1전극(31)과, 전자수송층(ETL)과 광전물질막(35)과 제1,2정공수송층(HTL1,HTL2)의 반도체구조물)으로 구성된 적층 구조물 전체를 밀봉하는 밀봉부재(90)가 형성된다.
다음으로, 도 7 및 8의 X선 디텍터(10)는, 기판(20) 상에 PN 구조의 광전소자(30)를 사용한다. 이 PN 구조의 광전소자(30)는 제1 및 2전극(31, 39) 사이의 반도체구조물로서, P 타입의 정공수송층(HTL)과 N 타입의 전자수송층(ETL) 중 선택된 하나와 이와는 반대되는 타입의 광전물질막(35)으로 구성된 반도체구조물이 사용될 수 있다.
이때, 도 7 및 8에서는 P 타입의 정공수송층(HTL)과 N 타입의 전자수송층(ETL) 중 선택된 하나의 수송층이 제1전극(31) 측에 위치하고 그 상부에 광전물질막(35)이 형성된 경우를 예로 들고 있다. 도시하지는 않았지만, 이와 다른 예로서, P 타입의 정공수송층(HTL)과 N 타입의 전자수송층(ETL) 중 선택된 하나의 수송층이 제2전극(39) 측에 위치하고 그 하부에 광전물질막(35)이 형성될 수도 있다.
도시하지는 않았지만, 또 다른 예로서 P 타입의 정공수송층(HTL)과 N 타입의 전자수송층(ETL)을 사용하고, 이들 중 하나의 내부에 입자 형태의 광전물질 즉 광전물질 입자가 분산된 형태로 형성될 수도 있다.
한편, 도 1 및 2와 유사하게, 도 7 및 8의 X선 디텍터(10) 또한 밀봉부재(90)를 구비할 수 있다.
예를 들면, 도 7의 X선 디텍터(10)의 경우에는, 기판(20) 및 광전소자(30)로 구성된 적층 구조물 전체를 외부로부터 밀봉하도록 밀봉부재(90)가 형성된다.
다른 예로서, 도 8의 X선 디텍터(10)의 경우에는, 기판(20) 및 광전소자(30) 중 제2전극(39)을 제외한 구성(즉, 제1전극(31)과, 전자수송층(ETL) 또는 정공수송층(HTL)과 광전물질막(35)의 반도체구조물)으로 구성된 적층 구조물 전체를 밀봉하는 밀봉부재(90)가 형성된다.
다음으로, 도 9 및 10의 X선 디텍터(10)는, 기판(20) 상에 PPN 구조의 광전소자(30)를 사용한다. 이 PPN 구조의 광전소자(30)는 제1 및 2전극(31, 39) 사이의 반도체구조물로서, P 타입의 정공수송층(HTL) 및 P 타입의 광전물질막(35)과 N 타입의 전자수송층(ETL)으로 구성된 반도체구조물이 사용될 수 있다. 이때, P 타입의 광전물질막(35)은 전자수송층(ETL)에 접하도록 배치된다.
도시하지는 않았지만, 이와 다른 예로서, P 타입의 광전물질막(35)을 대신하여 P 타입의 다른 정공수송층을 형성하고, 이 다른 정공수송층 내에는 입자 형태의 광전물질 즉 광전물질 입자(35a)가 분산된 형태로 형성될 수 있다.
위와 같이, 본 발명의 실시예에 따른 X선 디텍터(10)는 다양한 구조로 형성될 수 있으며, 또한 P 타입 및 N 타입의 반도체 물질층을 갖는 PN 접합 구조 또한 손쉽게 제작될 수 있다. 이때, PN 접합 구조는 그 특성상 암전류를 감소시킬 수 있는 효과를 갖게 된다.
전술한 바와 같은 직접변환 방식 X선 디텍터는 다양한 분야에서 다양한 용도의 X선 센서로 사용될 수 있는데, 예를 들면, 치과용(dental) CT 또는 세팔로(cephalo) 센서, 치과용 파노라마(panorama) 센서, 치과용 구강내(intraoral) 센서, 맘모그라피(mammography) 센서, 의료용 투시촬영용(fluoroscopy) X선 센서로 사용될 수 있다.
이와 같은 여러 X선 센서들에 대해서는 요구되는 X선 조사기의 X선 출력 강도 즉 X선 조사기의 관전압은 서로 다르다. 이에 따라, X선 흡수율을 감안할 때, 이들 X선 센서들에서의 페로브스카이트 광전물질막의 요구 두께 범위 또한 차이가 있다.
이와 관련하여 아래 [표 2] 내지 [표 7]을 참조하여 설명한다. [표 2] 내지 [표 7]은 각각 치과용(dental) CT 또는 세팔로(cephalo) 센서, 치과용 파노라마(panorama) 센서, 치과용 구강내(intraoral) 센서, 맘모그라피(mammography) 센서, 의료용 투시촬영용(fluoroscopy) X선 센서에서 광전물질막의 두께 대비 X선 흡수율에 대한 실험 결과를 보여주고 있다.
[표 2] 내지 [표 7]을 살펴보면 각 센서에서 60% 이상의 X선 흡수율을 위한 광전물질막의 필요 두께 범위는,
- 치과용(dental) CT 또는 세팔로(cephalo) 센서: 200um~800um
- 치과용 파노라마(panorama) 센서: 150um~600um
- 치과용 구강내(I/O: intraoral) 센서: 100um~450um
- 맘모그라피(mammography) 센서: 60um~300um
- 의료용 투시촬영용 X선 센서(모바일(mobile) C-arm 및 Mini Mobile C-arm): 90um~1000um
임을 알 수 있다.
표 2
Dental CT & Cepahlo (주 사용 관전압 : 90kVp) / 필요 두께 : 200~800um
Thickness (um) In Out Attenuation Absorption (%)
100 2.65E-05 1.59E-05 60.09441088 39.90558912
150 2.66E-05 1.28E-05 48.28222013 51.71777987
200 2.66E-05 1.04E-05 39.12373652 60.87626348
250 2.67E-05 8.55E-06 32.05338732 67.94661268
300 2.66E-05 7.09E-06 26.67180451 73.32819549
350 2.66E-05 6.05E-06 22.74398496 77.25601504
400 2.66E-05 5.18E-06 19.47894737 80.52105263
450 2.66E-05 4.50E-06 16.91090226 83.08909774
500 2.66E-05 3.88E-06 14.57293233 85.42706767
550 2.66E-05 3.42E-06 12.85 87.15
표 3
Panorama (주 사용 관전압 : 75kVp) / 필요 두께 : 150~600um
Thickness (um) In Out Attenuation Absorption (%)
100 4.89E-05 2.65E-05 54.10656642 45.89343358
150 4.91E-05 2.01E-05 40.9693244 59.0306756
200 4.92E-05 1.55E-05 31.4683894 68.5316106
250 4.93E-05 1.22E-05 24.69859955 75.30140045
300 4.93E-05 9.72E-06 19.72167563 80.27832437
350 4.93E-05 7.83E-06 15.87666092 84.12333908
400 4.93E-05 6.44E-06 13.05675528 86.94324472
표 4
I/O sensor (주 사용 관전압 : 60kVp) / 필요 두께 : 100~450um
Thickness (um) In Out Attenuation Absorption (%)
80 3.16E-05 1.55E-05 49.00875834 50.99124166
90 3.17E-05 1.43E-05 45.30011683 54.69988317
100 3.17E-05 1.34E-05 42.17422879 57.82577121
110 3.17E-05 1.24E-05 39.03107861 60.96892139
130 3.18E-05 1.06E-05 33.3941893 66.6058107
150 3.18E-05 9.25E-06 29.07752791 70.92247209
200 3.18E-05 6.59E-06 20.72369869 79.27630131
표 5
Mammo (주 사용 관전압 : 30kVp) / 필요 두께 : 60~300um
Thickness (um) In Out Attenuation Absorption (%)
50 7.96E-05 3.61E-05 45.4086058 54.5913942
60 2.52E-05 9.99E-06 39.64057603 60.35942397
70 2.52E-05 8.64E-06 34.27098207 65.72901793
80 2.52E-05 7.55E-06 29.93138188 70.06861812
90 2.52E-05 6.54E-06 25.95605442 74.04394558
100 2.52E-05 5.72E-06 22.68155317 77.31844683
150 2.52E-05 2.98E-06 11.81439619 88.18560381
200 2.52E-05 1.53E-06 6.057421581 93.94257842
표 6
Mobile C-arm (주 사용 관전압 : 120kVp) / 필요 두께 : 500um 이상
Thickness (um) In Out Attenuation Absorption (%)
100 1.02E-05 7.84E-06 76.56698915 23.43301085
300 1.05E-05 5.64E-06 53.73809524 46.26190476
350 1.06E-05 5.24E-06 49.70616114 50.29383886
500 1.06E-05 4.16E-06 39.22380458 60.77619542
550 1.06E-05 3.92E-06 36.93490566 63.06509434
600 1.06E-05 3.72E-06 35.10660377 65
650 1.06E-05 3.51E-06 33.11415094 67
700 1.06E-05 3.23E-06 30.36793074 69
750 1.06E-05 2.98E-06 28.00526662 71
표 7
Mini C-arm (주 사용 관전압 : 65kVp) / 필요 두께 : 90~500um
Thickness (um) In Out Attenuation Absorption (%)
80 8.16E-05 3.49E-05 42.79164419 57.20835581
90 8.18E-05 2.95E-05 36.10954816 63
100 8.18E-05 2.72E-05 33.26121237 66.73878763
150 8.20E-05 1.89E-05 23.10337679 76.89662321
200 8.21E-05 1.35E-05 16.466475 83.533525
250 8.21E-05 9.75E-06 11.87029686 88.12970314
300 8.21E-05 7.26E-06 8.842874543 91.15712546
전술한 바와 같이, 본 실시예의 페로브스카이트 물질은 직접 변환방식의 X선 디테터용 광전물질로서 적합한 특성을 구비하며, 이에 더하여 단가가 저렴하고 기판에 대한 증착 특성이 우수하며 그 제조가 용이한 장점 또한 갖고 있다. 이에 따라, 직접 변환방식의 X선 디텍터를 저렴한 비용과 짧은 공정시간으로 대량 생산할 수 있게 된다.
<제2실시예>
본 발명의 제2실시예에 따른 직접 변환방식의 X선 디텍터는 광전물질로서 페로브스카이트(perovskite) 물질을 사용하며 이에 더하여 특정 에너지의 X선을 가시광선으로 변환하는 퀀텀도트(quantum dot) 물질을 사용하게 된다.
이때, 페로브스카이트 물질과 퀀텀도트 물질은 X선 흡수율에 있어 서로 다른 X선 에너지 범위를 가질 수 있는데, 이에 따라 실질적으로 낮은 에너지부터 높은 에너지까지 넓은 에너지 범위의 X선을 흡수할 수 있는 장점을 가질 수 있다.
여기서, 퀀텀도트 물질은 해당 에너지 범위의 X선을 흡수하여 대응되는 가시광선을 방출하게 된다. 그리고, 페로브스카이트 물질은 해당 에너지 범위의 X선을 흡수하여 직접 전자-정공 쌍을 생성하고, 또한 퀀텀도트 물질에서 방출된 가시광선을 흡수하여 이에 대한 전자-정공 쌍을 생성할 수 있게 된다.
이처럼, 본 실시예의 X선 디텍터는 2가지 물질을 함께 사용하여 입사된 X선을 전기적 신호로 변환하는 광전 변환 기능을 수행하는 것으로서, 즉 X선을 직접 전기적으로 변환할 뿐만 아니라 퀀텀도트 물질을 통해 방출된 가시광선을 전기적 신호로 변환하게 된다. 이러한바, 본 실시예의 X선 디텍터는 소위 직접 변환방식에 간접 변환방식이 혼용된 하이브리드(hybrid) 방식 X선 디텍터라고 칭하여 질 수 있다.
이하, 하이브리드 방식의 X선 디텍터에 대해 보다 상세하게 설명한다.
페로브스카이트는 ABX3 화학식의 결정구조로서 부도체, 반도체, 도체의 성질은 물론 초전도 현상까지 보이는 특별한 구조의 물질로 알려져 있는데, 본 실시예에서는 이와 같은 구조의 페로브스카이트 물질을 광전물질로 사용하게 된다.
이때, 본 실시예에서 사용되는 페로브스카이트 물질에 대해 보다 상세하게 설명하면, ABX3 화학식을 구성하는 물질들은 다음과 같다.
A: 유기물질로서 예를 들어 메틸암모늄(CH3NH3), 폼아미디니윰(NH2CH=NH2), 또는 무기물질로서 예를 들어 세슘(Cs);
B: 금속물질로서 예를 들어 Pb, Sn, Cu, Ni, Bi, Co, Fe, Mn, Cr, Cd, Ge, Yb 등의 2가의 전이 금속물질;
X: 할로겐물질로서 예를 들어 IxBr(1-x), IxCl(1-x), BrxCl(1-x) (0.2≤x≤1인 실수).
이처럼, 본 실시예에서는 위와 같은 구조의 페로브스카이트 물질을 사용함으로써, 우수한 특성의 광전물질이 구현될 수 있게 된다.
이때, B 물질로서는 위 열거된 물질들 중 Pb, Bi, Cd가 다른 물질들에 비해 보다 바람직한 물질로 사용될 수 있다.
이하, A 물질로서 유기물을 사용한 페로브스카이트 물질을 사용하는 경우에 대해 설명한다.
한편, 아래 [표 8]에서는 A 물질로서 유기물이 사용되는 경우의 페로브스카이트물질의 예로서 (CH3NH3)PbI3와 기존에 제안된 물질들의 물성을 보여주고 있다.
이를 참조하면, 본 실시예의 페로브스카이트 물질은 높은 원자번호(atomic number)를 갖고 낮은 에너지 밴드갭(energy band gap)을 가진다. 또한, 낮은 이온화 에너지(ionization energy)를 갖고, 트랩(trap) 밀도가 작기 때문에 양자효율을 높일 수 있다. 현재 직접 변환방식 디텍터에 널리 적용되고 있는 a-Se 보다 높은 이동도 특성을 가지는 것을 알 수 있다.
표 8
광전물질 a-Se CdTe Poly-HgI2 Poly-PbI2 Poly-PbO Poly-(CH3NH3)PbI3
원자번호(Z) 34 48/62 80/53 82/53 82/8 82/53
에너지밴드갭(eV) 2.2 1.44 2.1 2.4 1.9 1.55
밀도(g/㎤) 4.3 5.85 6.36 6.16 9.6 4.28
트랩 밀도(cm-3) 1016 1013~1014 ~1013 ~1013 - ~1010
이온화에너지(W±) 45 5 5 5 8 <5
이동도(㎠/Vs) 전자 ~ 10-3 103 102 - 50 ~ 6
~ 10-2 ~ 90 4 0.01~0.1 - 19
비저항(Ω) 1014~1015 109 ~ 1013 1011~1012 ~ 1012 107
이처럼, 본 실시예의 페로브스카이트 물질은 CH3NH3Pb(IXBr1-X)3 제작을 통해 충분히 요구 조건을 만족 시킬 수 있다.
더욱이, A 물질로서 유기물을 사용한 페로브스카이트 물질은 기존 물질들에 비해 단가가 저렴하며, 유무기물의 합성을 통해 손쉽게 형성 가능하므로, 저비용으로 대면적의 디텍터를 단시간에 대량 생산 가능하게 된다.
또한, A 물질로서 유기물을 사용한 페로브스카이트 물질은 기존 물질들에 비해 기판 증착이 우수하며, 이에 따라 CMOS 기판 등과의 계면 특성을 향상시킬 수 있게 되어 디텍터의 검출 효율을 향상시킬 수 있게 된다.
한편, A 물질로서 유기물을 사용한 페로브스카이트 물질은 농도에 따라 페로브스카이트 결정 크기가 결정되는데, 유기물의 농도가 커지면 결정이 작아지고 반대로 유기물의 농도가 작아지면 결정이 커지게 된다. 한편, 결정의 크기는 X선의 흡수량과 관계되는데, 결정 크기가 작아지면 X선 흡수량은 증가하게 된다. 따라서, 유기물 농도를 조절함에 따라 광 흡수율 측정 결과 태양광에서와 같이 유기물 농도가 35mM~45mM, 바람직하게는 38mM 일 때 광흡수율이 가장 최적화된 조건임을 알 수 있다.
한편, 직접변환 방식 X선 디텍터의 광전물질로 사용되는 페로브스카이트 물질은 X선 흡수 특성을 고려하여 일정 두께 이상의 상대적으로 두꺼운 두께의 후막(厚膜)으로 형성될 필요가 있는데, ~100㎛ 부터 1㎜ 이상의 두께를 갖는 막으로 형성되는 것이 바람직하다.
이러한 광전물질 제작 방법으로서는, 스프레이 코팅(spray coating) 방법, 졸-겔(sol-gel) 코팅 방법, 스핀(spin) 코팅 방법, 슬롯-다이(slot-die) 코팅 방법, 열증착법, 순차 기상 증착(sequential vapor deposition) 방법, 기상 솔루션(vapor-assisted solution process) 방법 등이 사용될 수 있다.
이들 방법들 중, 스프레이 코팅(spray coating) 방법, 졸-겔(sol-gel) 코팅 방법, 기상 증착(vapor deposition) 방법, 기상 솔루션(vapor-assisted solution process) 방법이 바람직하다.
이때, 기상 증착 방법으로서 다양한 방식의 기상 증착 방법이 사용될 수 있으며, 일예로 열증착법이 사용될 수 있다. 열증착법은 다른 증착법에 비해 균일한 양질의 후막을 제작 할 수 있으며, 공기 중 불순물 도핑을 최대한 억제 할 수 있다는 장점이 있다.
퀀텀도트 물질은, X선 흡수율에 있어 페로브스카이트 물질에 비해 상대적으로 저에너지의 X선을 주로 흡수하는 기능을 수행하게 된다.
이와 같은 퀀텀도트 물질로서는, 예를 들어 a-Se, Cs, CdSe, CdS, PbO, PbI2 등이 사용될 수 있다.
한편, 퀀텀도트는 대략 1nm~100nm의 직경 범위를 갖도록 형성되는 것이 바람직하다. 그리고, 퀀텀도트 물질을 막 형태로 형성하여 사용하는 경우에, 이 퀀텀도트 막의 두께는 대략 100nm~1000um의 범위를 갖도록 형성하는 것이 바람직하다.
이하, 본 실시예에 따라 페로브스카이트 물질 및 퀀텀도트 물질을 사용한 하이브리드 방식 X선 디텍터의 여러 예들을 도면을 참조하여 설명한다.
도 11 내지 22는 본 발명의 제2실시예에 따른 페로브스카이트 물질 및 퀀텀도트 물질을 사용한 하이브리드 방식의 X선 디텍터들의 여러 구조를 개략적으로 도시한 단면도이다.
먼저, 도 11 내지 14의 X선 디텍터(110)는, 기판(120) 상에 쇼트기(shottky) 구조의 광전소자(130)를 사용한다.
기판(120)은 광전소자에서 발생된 전기신호를 독출하는 복수의 감지 픽셀을 포함한다. 기판(120)으로서는 다양한 형태의 기판이 사용될 수 있는데, 예를 들면, CMOS 기판, 유리 기판, 플렉서블 특성의 플라스틱 기판 등이 사용될 수 있다. 여기서, 플라스틱 기판은, 예를 들면, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈레이트 (PEN), 폴리이미드(PI), 폴리카보네이트(PC), 폴리프로필렌(PP), 트리아세틸셀룰로오스(TAC), 폴리에테르술폰(PES) 등이 사용될 수 있다.
광전소자(130)는 기판(120) 상에 형성된 하부전극인 제1전극(131)과, 제1전극(131) 상에 위치하는 상부전극인 제2전극(139)과, 제1 및 2전극(131, 139) 사이에 배치되어 광전 기능을 수행하는 반도체구조물을 포함하며, 이때 반도체구조물은 페로브스카이트 물질로 형성된 광전물질막(135)과 퀀텀도트 물질을 포함할 수 있다.
여기서, 퀀텀도트 물질은 여러 형태로 구성될 수 있는데, 예를 들면 도 11, 12, 13, 14에 도시된 형태로 구성될 수 있다.
이와 관련하여, 도 11를 참조하면, 입자 형태인 퀀텀도트(140)가 광전물질막(35) 내부에 분산된 형태로 형성될 수 있다.
다른 예로서, 도 12, 13, 또는 14를 참조하면, 막 형태 즉 퀀텀도트 막(141)이 형성되고 이는 광전물질막(135)의 상면, 하면, 또는 상면 및 하면에 직접 접촉하도록 배치될 수 있다.
한편, 제1,2전극(131,139)을 형성하는 물질로서는, 예를 들면, ITO, F-SnO, 금, 은, 백금, 팔라듐, 구리, 알루미늄, 탄소, 황화코발트, 황화구리, 산화니켈 중 하나 또는 적어도 2개의 혼합물이나, 싱글 또는 멀티 탄소나노튜브(carbon nanotube)나 그래핀(graphene)과 같은 무기계 전도성 전극 물질이나, PEDOT:PSS와 같은 유기계 전도성 전극 물질이나, 은 나노와이어(Ag Nanowire) 금속 물질과 같은 나노와이어 전극 물질이 사용될 수 있다.
한편, 제1전극(131)과 광전물질막(135)이 직접 접촉하는 경우에 이들 사이에 접착폴리머(adhesive polymer)를 형성할 수 있으며, 이 접착 폴리머는 PVP(polyacryloyl piperidine)로 형성될 수 있다.
다음으로, 도 15 내지 18의 X선 디텍터(110)는, 기판(120) 상에 PIN 구조의 광전소자(130)를 사용한다. 이 PIN 구조의 광전소자(130)는 제1 및 2전극(131, 139) 사이의 반도체구조물로서, I(intrinsic) 타입(type)의 광전물질막(135)과, P(positive) 타입의 정공수송층(hole transporting layer: HTL)과, N(negative) 타입의 전자수송층(electron transporting layer: ETL)으로 구성된 반도체구조물을 사용하며, 또한 반도체구조물은 퀀텀도트 물질을 포함할 수 있다.
여기서, 퀀텀도트 물질은 여러 형태로 구성될 수 있는데, 예를 들면 앞서 도 11 내지 14와 유사하게 도 15 내지 18에 도시된 형태로 구성될 수 있다.
예를 들어, 도 15를 참조하면, 퀀텀도트(140)가 광전물질막(135) 내부에 분산된 형태로 형성될 수 있다.
다른 예로서, 도 16, 17, 또는 18을 참조하면, 퀀텀도트 막(141)이 형성되고 이는 광전물질막(135)의 상면, 하면, 또는 상면 및 하면에 직접 접촉하도록 배치될 수 있다.
한편, 제1전극(131)이 캐소드이고 제2전극(139)이 애노드인 경우에, 전자수송층(ETL)은 제1전극(131) 측에 배치되고, 정공수송층(HTL)은 제2전극(139) 측에 배치된다.
그리고, 전자수송층(ETL)을 형성하는 물질로서는, 예를 들면, Ti산화물, Zn산화물, In산화물, Sn산화물, W산화물, Nb산화물, Mo산화물, Mg산화물, Zr산화물, Sr산화물, Yr산화물, La산화물, V산화물, Al산화물, Y산화물, Sc산화물, Sm산화물, Ga산화물, In산화물, SrTi산화물 중 하나 또는 이들 중 적어도 2개의 혼합물이나, PCBM과 같은 유기물반도체가 사용될 있다. 이때, Zn산화물 또는 Ti산화물을 사용하는 것이 바람직하다.
또한, 정공수송층(HTL)을 형성하는 물질로서는, 예를 들면, 티오펜계, 파라페닐렌비닐렌계, 카바졸계, 트리페닐아민계 중 하나 또는 이들 중 적어도 2개의 혼합물이 사용될 수 있다. 이때, 페로브스카이트의 광전물질막(135)과의 에너지 매칭 측면에서, 티오펜계와 트리페닐아민계 중 적어도 하나를 사용하는 것이 바람직하며, 더욱이 프리페닐아민계가 보다 더 바람직하다.
다음으로, 도 19 내지 22의 X선 디텍터(110)는, 기판(120) 상에 PN 구조의 광전소자(130)를 사용한다. 이 PN 구조의 광전소자(130)는 제1 및 2전극(131, 139) 사이의 반도체구조물로서, P 타입의 정공수송층(HTL)과 N 타입의 전자수송층(ETL) 중 선택된 하나와 이와는 반대되는 타입의 광전물질막(135)으로 구성된 반도체구조물을 사용하며, 또한 반도체구조물은 퀀텀도트 물질을 포함할 수 있다.
이때, 반도체구조물에서의 P 타입 반도체막과 N 타입 반도체막의 배치 관계는 제1,2전극(131,139)이 애노드 및 캐소드 중 어느 전극으로 기능하는지에 따라 결정된다.
한편, 도 19 내지 22에서는 P 타입의 정공수송층(HTL)과 N 타입의 전자수송층(ETL) 중 선택된 하나의 수송층이 제1전극(131) 측에 위치하고 그 상부에 광전물질막(135)이 형성된 경우를 예로 들고 있다. 도시하지는 않았지만, 이와 다른 예로서, P 타입의 정공수송층(HTL)과 N 타입의 전자수송층(ETL) 중 선택된 하나의 수송층이 제2전극(139) 측에 위치하고 그 하부에 광전물질막(135)이 형성될 수도 있다.
여기서, 퀀텀도트 물질은 여러 형태로 구성될 수 있는데, 예를 들면 앞서 도 11 내지 14와 유사하게 도 19 내지 22에 도시된 형태로 구성될 수 있다.
예를 들어, 도 19를 참조하면, 퀀텀도트(140)가 광전물질막(135) 내부에 분산된 형태로 형성될 수 있다.
다른 예로서, 도 20, 21, 또는 22를 참조하면, 퀀텀도트 막(141)이 형성되고 이는 광전물질막(135)의 상면, 하면, 또는 상면 및 하면에 직접 접촉하도록 배치될 수 있다.
전술한 바와 같이, 본 실시예의 페로브스카이트 물질은 X선 디텍터용 광전물질로서 적합한 특성을 구비하며, 이에 더하여 단가가 저렴하고 기판에 대한 증착 특성이 우수하며 그 제조가 용이한 장점 또한 갖고 있다. 이에 따라, X선 디텍터를 저렴한 비용과 짧은 공정시간으로 대량 생산할 수 있게 된다.
또한, 페로브스카이트 물질에 더하여 특정 에너지의 X선을 가시광선으로 변환하는 퀀텀도트(quantum dot) 물질을 사용하게 된다. 이에 따라 실질적으로 낮은 에너지부터 높은 에너지까지 넓은 에너지 범위의 X선을 흡수할 수 있고, 이로 인해 고해상도와 낮은 잡음을 갖는 X선 디텍터를 제작할 수 있다.

Claims (17)

  1. 기판 상의 제1전극과;
    상기 제1전극 상의 페로브스카이트(perovskite) 물질을 사용한 광전물질을 포함하는 반도체구조물과;
    상기 반도체구조물 상의 제2전극
    을 포함하는 X선 디텍터.
  2. 제 1 항에 있어서,
    상기 페로브스카이트 물질은 ABX3 화학식으로 표현되고,
    상기 A는 Cs, 메틸암모늄(CH3NH3), 또는 폼아미디니윰(NH2CH=NH2)이며,
    상기 B는 Pb, Sn, Cu, Ni, Bi, Co, Fe, Mn, Cr, Cd, Ge, 또는 Yb이며,
    상기 X는 IxBr(1-x), IxCl(1-x), 또는 BrxCl(1-x) (0.2≤x≤1인 실수)인
    X선 디텍터.
  3. 제 1 항에 있어서,
    상기 반도체구조물은 정공수송층과 전자수송층을 포함하고,
    상기 광전물질은 상기 정공수송층과 전자수송층 사이에 막 형태로 형성된
    X선 디텍터.
  4. 제 3 항에 있어서,
    상기 정공수송층은 제1 및 2정공수송층을 포함하는
    X선 디텍터.
  5. 제 1 항에 있어서,
    상기 반도체구조물은, 전자수송층 및 정공수송층 중 하나와 이와 반대되는 타입을 가지며 상기 광전물질이 막 형태로 형성된 광전물질막을 포함하거나, 전자수송층 및 정공수송층을 포함하고,
    상기 반도체구조물이 상기 전자수송층 및 정공수송층을 포함하는 경우에, 상기 광전물질은 상기 전자수송층 및 정공수송층 중 하나 내부에 입자 형태로 형성된
    X선 디텍터.
  6. 제 1 항에 있어서,
    상기 반도체구조물은, 정공수송층과 전자수송층과 이들 사이에 P 타입을 가지며 상기 광전물질이 막 형태로 형성된 광전물질막을 포함하거나, 정공수송층과 전자수송층과 이들 사이에 상기 광전물질이 입자 형태로 내부에 형성된 다른 정공수송층을 포함하는
    X선 디텍터.
  7. 제 1 항에 있어서,
    상기 기판은 CMOS 기판이나 플라스틱 기판이고,
    상기 제1전극과 광전물질 사이에 형성된 접착폴리머를 더 포함하는
    X선 디텍터.
  8. 제 7 항에 있어서,
    상기 접착폴리머는 PVP(polyacryloyl piperidine)인
    X선 디텍터.
  9. 제 1 항에 있어서,
    상기 기판과 제1전극과 반도체구조물과 제2전극으로 구성된 적층 구조물 전체를 밀봉하거나, 상기 기판과 제1전극과 반도체구조물로 구성된 적층 구조물 전체를 밀봉하는 밀봉부재
    를 더 포함하는 X선 디텍터.
  10. 제 9 항에 있어서,
    상기 밀봉부재는 폴리에틸렌계 수지, 폴리프로필렌계 수지, 고리형 폴리올레핀계 수지, 폴리스티렌계 수지, 아크릴로니트릴-스티렌 공중합체, 아크릴로니트릴-부타디엔-스티렌 공중합체, 폴리염화비닐계 수지, 불소계 수지, 폴리(메타)아크릴계 수지, 폴리카보네이트계 수지 중 하나 또는 이들 중 적어도 2개의 혼합물이나, 패럴린으로 형성된
    X선 디텍터.
  11. 제 1 항에 있어서,
    상기 광전물질막의 두께는,
    상기 X선 디텍터가 치과용(dental) CT 또는 세팔로(cephalo) 센서로 사용되는 경우에 200um~800um이며,
    상기 X선 디텍터가 치과용 파노라마(panorama) 센서로 사용되는 경우에 150um~600um이며,
    상기 X선 디텍터가 치과용 구강내(I/O: intraoral) 센서로 사용되는 경우에 100um~450um이며,
    상기 X선 디텍터가 맘모그라피(mammography) 센서로 사용되는 경우에 60um~300um이며,
    상기 X선 디텍터가 의료용 투시촬영용(fluoroscopy) X선 센서로 사용되는 경우에 90um~1000um인
    X선 디텍터.
  12. 제 1 항에 있어서,
    상기 반도체구조물은, 상기 페로브스카이트(perovskite) 물질을 사용한 광전물질막과 입사된 X선을 가시광선으로 변환하는 퀀텀도트(quantum dot) 물질을 포함하는
    X선 디텍터.
  13. 제 12 항에 있어서,
    상기 퀀텀도트는 a-Se, Cs, CdSe, CdS, PbO, 또는 PbI2이며, 1nm~100nm의 직경을 갖는
    X선 디텍터.
  14. 제 12 항에 있어서,
    상기 퀀텀도트는 상기 광전물질막 내부에 분산된 형태로 형성되거나, 상기 광전물질막의 상면 및 하면 중 적어도 하나에 접촉하는 막 형태로 형성된
    X선 디텍터.
  15. 제 14 항에 있어서,
    상기 반도체구조물은 정공수송층과 전자수송층 중 하나를 포함하고,
    상기 정공수송층과 전자수송층 중 하나는 상기 퀀텀도트 및 광전물질막과 제1 및 2전극 중 하나 사이에 배치되는
    X선 디텍터.
  16. 제 14 항에 있어서,
    상기 반도체구조물은 정공수송층과 전자수송층을 포함하고,
    상기 정공수송층은 상기 퀀텀도트 및 광전물질막과 제1 및 2전극 중 하나 사이에 배치되고,
    상기 전자수송층은 상기 퀀텀도트 및 광전물질막과 제1 및 2전극 중 다른 하나 사이에 배치되는
    X선 디텍터.
  17. 제 14 항에 있어서,
    상기 퀀텀도트로 이루어진 막은 100nm~1000um의 두께를 갖는
    X선 디텍터.
PCT/KR2016/010041 2015-09-07 2016-09-07 X선 디텍터 WO2017043871A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/757,994 US10312292B2 (en) 2015-09-07 2016-09-07 X-ray detector

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0126401 2015-09-07
KR20150126401 2015-09-07
KR10-2016-0055518 2016-05-04
KR10-2016-0055463 2016-05-04
KR1020160055463A KR20170029370A (ko) 2015-09-07 2016-05-04 X선 디텍터
KR1020160055518A KR20170029371A (ko) 2015-09-07 2016-05-04 X선 디텍터

Publications (1)

Publication Number Publication Date
WO2017043871A1 true WO2017043871A1 (ko) 2017-03-16

Family

ID=58240823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010041 WO2017043871A1 (ko) 2015-09-07 2016-09-07 X선 디텍터

Country Status (1)

Country Link
WO (1) WO2017043871A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107382744A (zh) * 2017-07-04 2017-11-24 青岛海信电器股份有限公司 一种钙钛矿量子点膜及其制备方法、背光模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161604A1 (en) * 2003-03-07 2005-07-28 Fujitsu Limited Electromagnetic radiation sensor and method for fabricating the same
KR101366122B1 (ko) * 2009-05-22 2014-02-25 각코호진 와세다다이가쿠 광흡수 재료 및 광전변환 소자
KR20150056851A (ko) * 2012-09-18 2015-05-27 아이시스 이노베이션 리미티드 광전자 디바이스
WO2015116297A2 (en) * 2013-11-12 2015-08-06 The Regents Of The University Of California Sequential processing with vapor treatment of thin films of organic-inorganic perovskite materials
KR101546500B1 (ko) * 2014-09-25 2015-08-24 성균관대학교산학협력단 광 검출 소자 및 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161604A1 (en) * 2003-03-07 2005-07-28 Fujitsu Limited Electromagnetic radiation sensor and method for fabricating the same
KR101366122B1 (ko) * 2009-05-22 2014-02-25 각코호진 와세다다이가쿠 광흡수 재료 및 광전변환 소자
KR20150056851A (ko) * 2012-09-18 2015-05-27 아이시스 이노베이션 리미티드 광전자 디바이스
WO2015116297A2 (en) * 2013-11-12 2015-08-06 The Regents Of The University Of California Sequential processing with vapor treatment of thin films of organic-inorganic perovskite materials
KR101546500B1 (ko) * 2014-09-25 2015-08-24 성균관대학교산학협력단 광 검출 소자 및 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107382744A (zh) * 2017-07-04 2017-11-24 青岛海信电器股份有限公司 一种钙钛矿量子点膜及其制备方法、背光模组及显示装置

Similar Documents

Publication Publication Date Title
KR20170029370A (ko) X선 디텍터
Gelinck et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes
Gelinck et al. X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate
US20110095266A1 (en) Photodetector and method for the production thereof
JP5141685B2 (ja) 光電変換素子の製造方法
JP2015170859A (ja) 放射を検知するためのフォトセンサアレイおよびそれを準備するための方法
US20190257959A1 (en) Direct conversion radiation detector
US10756283B2 (en) Fabrication method for fused multi-layer amorphous selenium sensor
US20140191218A1 (en) X-ray-sensitive devices and systems using organic pn junction photodiodes
WO2020009506A1 (ko) 광안정성이 강화된 이중층 형태의 전하수송층을 포함하는 유기태양전지 및 이의 제조방법
US20040200972A1 (en) Digital x-ray image detector
WO2022215990A1 (ko) 페로브스카이트 태양 전지 및 이를 포함하는 탠덤 태양 전지
KR20110109066A (ko) 산화물 반도체 트랜지스터를 구비한 엑스선 검출기
Zou et al. Pixellated perovskite photodiode on IGZO thin film transistor backplane for low dose indirect X-ray detection
JP2008258421A (ja) 有機光電変換素子及びその製造方法
US8324556B2 (en) Radiation detector
WO2017043871A1 (ko) X선 디텍터
JP2019506733A (ja) 上部透明電極を有する光電子アレイデバイス
Nariyuki et al. New development of large-area direct conversion detector for digital radiography using amorphous selenium with a C60-doped polymer layer
US20120199833A1 (en) Radiation detector
CN109273555B (zh) 一种光电子注入型x射线探测器件及其制备方法
WO2017078302A1 (ko) 광대역 감광 전-고분자 유기광전자소자
WO2016047127A1 (ja) 光電変換装置
WO2022220456A1 (ko) 태양 전지 및 그 제조 방법
WO2011052567A1 (ja) 有機光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15757994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844687

Country of ref document: EP

Kind code of ref document: A1