WO2017043556A1 - 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー - Google Patents

電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー Download PDF

Info

Publication number
WO2017043556A1
WO2017043556A1 PCT/JP2016/076376 JP2016076376W WO2017043556A1 WO 2017043556 A1 WO2017043556 A1 WO 2017043556A1 JP 2016076376 W JP2016076376 W JP 2016076376W WO 2017043556 A1 WO2017043556 A1 WO 2017043556A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic
copper alloy
mass
electrical equipment
less
Prior art date
Application number
PCT/JP2016/076376
Other languages
English (en)
French (fr)
Inventor
裕隆 松永
牧 一誠
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015235096A external-priority patent/JP5910790B1/ja
Priority claimed from JP2016069077A external-priority patent/JP6187629B1/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP16844417.2A priority Critical patent/EP3348656B1/en
Priority to MX2018000330A priority patent/MX2018000330A/es
Priority to MYPI2017705081A priority patent/MY184755A/en
Priority to CN201680032070.2A priority patent/CN107614714B/zh
Priority to US15/737,642 priority patent/US20180171437A1/en
Priority to SG11201710511UA priority patent/SG11201710511UA/en
Priority to KR1020177030942A priority patent/KR102474009B1/ko
Publication of WO2017043556A1 publication Critical patent/WO2017043556A1/ja
Priority to PH12017502294A priority patent/PH12017502294A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a copper alloy for electronic / electric equipment suitable for electronic frames such as lead frames, terminals such as connectors and press-fit, bus bars, etc., and electronic / electrical products made of this copper alloy for electronic / electric equipment.
  • the present invention relates to a plastic alloy material for equipment, parts for electronic and electrical equipment, terminals, and bus bars.
  • the present application is filed in Japanese Patent Application No. 2015-177743 filed in Japan on September 9, 2015, Japanese Patent Application No. 2015-2335096 filed in Japan on December 1, 2015, and March 30, 2016 in Japan. The priority is claimed based on Japanese Patent Application No. 2016-069077 filed, and the contents thereof are incorporated herein.
  • copper or copper alloy having high conductivity is used for electronic / electric equipment parts such as terminals such as connectors and press fits, relays, lead frames, bus bars and the like.
  • terminals such as connectors and press fits, relays, lead frames, bus bars and the like.
  • parts for electronic and electrical devices used in these electronic devices and electrical devices are being made smaller and thinner.
  • the material which comprises the components for electronic / electrical devices is calculated
  • stress relaxation resistance is also required for connector terminals used in high-temperature environments such as automobile engine rooms.
  • Patent Documents 1 and 2 propose Cu-Mg alloys. Yes.
  • the Cu—Mg-based alloy described in Patent Document 1 has a high Mg content, so that the conductivity is insufficient, and it is difficult to apply to applications that require high conductivity. there were.
  • the Mg content is 0.01 to 0.5 mass%
  • the P content is 0.01 to 0.5 mass%. From this, coarse crystallized products were formed, and cold workability and bending workability were insufficient.
  • the longitudinal direction of the electronic / electric equipment parts is a copper alloy. It is often stamped so as to face the direction parallel to the rolling direction of the rolled sheet. Then, in a large terminal etc., a bending process is performed so that a bending axis may be orthogonal to the rolling direction of the copper alloy rolled sheet.
  • the thickness of electronic / electrical equipment parts such as connectors, relays, lead frames, etc. used in such electronic equipment, electrical equipment, etc. has been reduced. For this reason, in a terminal such as a connector, it is necessary to perform severe bending work in order to ensure contact pressure, and bending workability is required more than ever.
  • the present invention has been made in view of the above-mentioned circumstances, and has excellent conductivity, strength, bending workability, stress relaxation resistance copper alloy for electronic and electrical equipment, and copper alloy plastic working for electronic and electrical equipment.
  • An object is to provide materials, parts for electronic / electrical equipment, terminals, and bus bars.
  • the copper alloy for electronic and electrical equipment according to one embodiment of the present invention (hereinafter referred to as “copper alloy for electronic and electrical equipment of the present invention”) has an Mg content of 0.15 mass% or more, 0
  • the yield ratio YS / TS calculated from the 2% yield strength YS exceeds 88%.
  • the Mg content is in the range of 0.15 mass% or more and less than 0.35 mass%, so that Mg is dissolved in the copper matrix.
  • the strength and stress relaxation resistance can be improved without greatly reducing the electrical conductivity.
  • the electrical conductivity exceeds 75% IACS, it can also be applied to applications that require high electrical conductivity.
  • the yield ratio YS / TS calculated from the strength TS and the 0.2% proof stress YS when the tensile test is performed in the direction parallel to the rolling direction exceeds 88%, 0.2 The% yield strength YS is relatively higher than the strength TS.
  • the proof stress-bending balance is improved, and the bending workability in the direction parallel to the rolling direction is excellent. Therefore, even when it is bent in a direction parallel to the rolling direction of the copper alloy rolled plate and formed into a complicated shape like a relay or a large terminal, the occurrence of cracks and the like can be suppressed.
  • P may be included in the range of 0.0005 mass% or more and less than 0.01 mass%.
  • P by adding P, the viscosity of the molten copper alloy containing Mg can be lowered, and the castability can be improved.
  • the Mg content [Mg] (mass%) and the P content [P] (mass%) It is preferable that the relational expression [Mg] + 20 ⁇ [P] ⁇ 0.5 is satisfied. In this case, it is possible to suppress the generation of coarse crystallized substances containing Mg and P, and it is possible to suppress the cold workability and the bending workability from being lowered.
  • the Mg content [Mg] (mass%) and the P content [P] (mass%) are: It is preferable that the relational expression [Mg] / [P] ⁇ 400 is satisfied. In this case, the castability can be reliably improved by defining the ratio of the Mg content that lowers the castability and the P content that improves the castability as described above.
  • the average crystal grain size is preferably 100 ⁇ m or less.
  • the yield ratio YS / TS can be improved by reducing the crystal grain size.
  • the above-mentioned yield ratio can be improved greatly by suppressing an average crystal grain diameter to 100 micrometers or less.
  • the residual stress rate is preferably 50% or more at 1000C for 1000 hours.
  • the stress relaxation rate is defined as described above, permanent deformation can be suppressed to a small level even when used in a high temperature environment, and for example, a decrease in contact pressure of a connector terminal or the like is suppressed. be able to. Therefore, it can be applied as a material for electronic device parts used in a high temperature environment such as an engine room.
  • the copper alloy plastic working material for electronic / electric equipment of the other aspect of the present invention (hereinafter referred to as “copper alloy plastic working material for electronic / electric equipment of the present invention”) is made of the above-described copper alloy for electronic / electric equipment. It is characterized by that. According to the copper alloy plastic working material for electronic / electric equipment of this configuration, since it is composed of the above-mentioned copper alloy for electronic / electric equipment, it has excellent conductivity, strength, bending workability, and stress relaxation resistance. It is particularly suitable as a material for electronic and electrical equipment parts such as connectors, press-fit terminals, relays, lead frames, bus bars and the like.
  • the copper alloy plastic working material for electronic / electrical equipment of the present invention it is preferable to have a Sn plating layer or an Ag plating layer on the surface.
  • a Sn plating layer or an Ag plating layer since it has a Sn plating layer or an Ag plating layer on the surface, it is particularly suitable as a material for components for electronic and electrical equipment such as terminals such as connectors and press fits, relays, lead frames, bus bars and the like.
  • “Sn plating” includes pure Sn plating or Sn alloy plating
  • “Ag plating” includes pure Ag plating or Ag alloy plating.
  • a component for electronic / electrical equipment according to another aspect of the invention of the present application (hereinafter referred to as “component for electronic / electrical equipment of the present invention”) is made of the above-described copper alloy plastic working material for electronic / electrical equipment.
  • the electronic / electrical device parts in the present invention include terminals such as connectors and press-fit, relays, lead frames, bus bars and the like.
  • the electronic / electrical device parts with this structure are manufactured using the above-mentioned copper alloy plastic working material for electronic / electrical devices, so that they exhibit excellent characteristics even when downsized and thinned. Can do.
  • a terminal according to another embodiment of the present invention (hereinafter referred to as “terminal of the present invention”) is characterized by being made of the above-described copper alloy plastic working material for electronic / electrical equipment. Since the terminal of this structure is manufactured using the above-mentioned copper alloy plastic working material for electronic and electrical equipment, it can exhibit excellent characteristics even when it is downsized and thinned.
  • a bus bar according to another aspect of the present invention (hereinafter referred to as “the bus bar of the present invention”) is made of the above-described copper alloy plastic working material for electronic / electrical equipment. Since the bus bar having this configuration is manufactured using the above-described copper alloy plastic working material for electronic and electrical equipment, it can exhibit excellent characteristics even when it is downsized and thinned.
  • copper alloy for electronic and electrical equipment excellent in electrical conductivity, strength, bending workability and stress relaxation resistance, copper alloy plastic working material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, And a bus bar can be provided.
  • the copper alloy for electronic and electric apparatuses which is one Embodiment of this invention is demonstrated.
  • the copper alloy for electronic / electric equipment according to the present embodiment includes Mg in a range of 0.15 mass% or more and less than 0.35 mass%, with the balance being composed of Cu and inevitable impurities.
  • the electrical conductivity exceeds 75% IACS.
  • the yield ratio calculated from the strength TS when the tensile test is performed in the direction parallel to the rolling direction and the 0.2% proof stress YS. YS / TS exceeds 88%.
  • it is a rolled material of a copper alloy for electronic / electric equipment, and the strength TS and 0.2% proof stress when a tensile test is performed in a direction parallel to the rolling direction in the final rolling process.
  • the relationship with YS is defined as described above.
  • the Mg content [Mg] (mass%) and the P content [P] (mass%) are: [Mg] + 20 ⁇ [P] ⁇ 0.5 Is satisfied. Furthermore, in this embodiment, Mg content [Mg] (mass%) and P content [P] (mass%) [Mg] / [P] ⁇ 400 Is satisfied.
  • the average crystal grain diameter shall be 100 micrometers or less.
  • the residual stress rate is 50% or more at 150 ° C. for 1000 hours.
  • Mg 0.15 mass% or more and less than 0.35 mass%
  • Mg dissolves in the parent phase of the copper alloy, so that the strength and stress relaxation resistance can be improved without greatly reducing the electrical conductivity.
  • the content of Mg is less than 0.15 mass%, there is a possibility that the effect cannot be sufficiently achieved.
  • the Mg content is 0.35 mass% or more, the conductivity is greatly reduced, the viscosity of the molten copper alloy is increased, and castability may be reduced. From the above, in the present embodiment, the Mg content is set within a range of 0.15 mass% or more and less than 0.35 mass%.
  • the lower limit of the Mg content is preferably set to 0.18 mass% or more, and more preferably set to 0.2 mass% or more. Moreover, in order to suppress reliably the fall of electroconductivity and a castability, it is preferable to make the upper limit of content of Mg into 0.32 mass% or less, and it is further more preferable to set it as 0.3 mass% or less.
  • P 0.0005 mass% or more and less than 0.01 mass%
  • P is an element having an effect of improving castability. Moreover, it has the effect
  • content of P is less than 0.0005 mass%, there exists a possibility that the effect cannot be fully achieved.
  • content of P is 0.01 mass% or more, the crystallized product containing Mg and P is coarsened. Therefore, this crystallized product becomes a starting point of fracture, and during cold working or There is a risk of cracking during bending.
  • the P content is set in the range of 0.0005 mass% or more and less than 0.01 mass%.
  • the lower limit of the P content is preferably 0.0007 mass% or more, and more preferably 0.001 mass% or more.
  • [Mg] + 20 ⁇ [P] is set to 0.48 in order to reliably suppress the coarsening and densification of the crystallized product and to suppress the occurrence of cracks during cold working or bending. It is preferably less than 0.46, more preferably less than 0.46.
  • Mg is an element that has the effect of increasing the viscosity of the molten copper alloy and lowering the castability. Therefore, in order to reliably improve the castability, it is necessary to optimize the ratio of the contents of Mg and P. There is.
  • the Mg content is [Mg] and the P content is [P]
  • [Mg] / [P] exceeds 400
  • the Mg content relative to the P There is a possibility that the content is increased and the effect of improving castability by the addition of P is reduced. From the above, when adding P in this embodiment, [Mg] / [P] is set to 400 or less.
  • [Mg] / [P] is preferably 350 or less, and more preferably 300 or less.
  • the lower limit of [Mg] / [P] is set to more than 20 Is more preferable, and it is more preferable that it is more than 25.
  • Inevitable impurities 0.1 mass% or less
  • Other inevitable impurities include Ag, B, Ca, Sr, Ba, Sc, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru , Os, Co, Se, Te, Rh, Ir, Ni, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn, As, Sb, Tl, Pb, Bi, Be, N , C, Si, Li, H, O, S and the like. Since these inevitable impurities have the effect of lowering the conductivity, the total amount is set to 0.1 mass% or less.
  • the total amount of inevitable impurities is more preferably 0.09 mass% or less, and still more preferably 0.08 mass% or less.
  • Ag, Zn, and Sn are easily mixed in copper to lower the electrical conductivity, so that the total amount is preferably less than 500 massppm.
  • Si, Cr, Ti, Zr, Fe, and Co particularly reduce the electrical conductivity greatly and deteriorate the bending workability due to the formation of inclusions, the total amount of these elements is preferably less than 500 massppm.
  • yield ratio YS / TS (Yield ratio YS / TS: over 88%) If the yield ratio YS / TS calculated from the strength TS and 0.2% proof stress YS when the tensile test is performed in the direction parallel to the rolling direction exceeds 88%, it is relative to the strength TS. In addition, 0.2% yield strength is increased. Flexibility is a problem of fracture and has a strong correlation with strength. For this reason, when the 0.2% yield strength is relatively high with respect to the strength, the yield strength-bending balance is increased, and the bending workability is excellent.
  • the yield ratio YS / TS is preferably 90% or more, more preferably 91% or more, and further preferably 92% or more. preferable.
  • the electrical conductivity is preferably more than 76% IACS, more preferably more than 77% IACS, more preferably more than 78% IACS, and still more preferably more than 80% IACS.
  • the average crystal grain size is 100 ⁇ m or less. Since the yield ratio YS / TS is improved when the crystal grain size is reduced, the yield ratio YS / TS in the direction parallel to the rolling direction can be further improved by setting the average crystal grain size to 100 ⁇ m or less. .
  • the average crystal grain size is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the residual stress rate is set to 50% or more at 150 ° C. for 1000 hours.
  • the residual stress rate under these conditions is high, permanent deformation can be suppressed even when used in a high temperature environment, and a decrease in contact pressure can be suppressed. Therefore, the copper alloy for electronic devices according to the present embodiment can be applied as a terminal used in a high temperature environment such as around the engine room of an automobile.
  • the residual stress ratio obtained by performing the stress relaxation test in the direction orthogonal to the rolling direction is set to 50% or more at 150 ° C. for 1000 hours.
  • the residual stress rate is preferably 60% or more at 150 ° C. and 1000 hours, and more preferably 70% or more at 150 ° C. and 1000 hours.
  • the above-described elements are added to a molten copper obtained by melting a copper raw material to adjust the components, thereby producing a molten copper alloy.
  • the molten copper is preferably so-called 4NCu having a purity of 99.99 mass% or more, or so-called 5NCu having a purity of 99.999 mass% or more.
  • an element simple substance, a mother alloy, etc. can be used for the addition of various elements.
  • the atmosphere is dissolved in an inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O, and the holding time at the time of melting is minimized. It is preferable that the inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O, and the holding time at the time of melting is minimized. It is preferable that the inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O, and the holding time at the time of melting is minimized. It is preferable that the inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O, and the holding time at the time of melting is minimized. It is preferable that the inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O, and the holding time at the time of melting is minimized. It is preferable that the
  • the copper alloy molten metal whose components are adjusted is poured into a mold to produce an ingot.
  • the cooling rate of the molten metal is preferably 0.1 ° C./sec or more, more preferably 0.5 ° C./sec or more, and most preferably 1 ° C./sec or more.
  • heat treatment is performed for homogenization and solution of the obtained ingot.
  • the ingot there may be an intermetallic compound or the like mainly composed of Cu and Mg generated by Mg segregating and concentrating in the solidification process. Therefore, in order to eliminate or reduce these segregation and intermetallic compounds, etc., by performing a heat treatment to heat the ingot to 300 ° C. or more and 900 ° C. or less, Mg can be uniformly diffused in the ingot. Mg is dissolved in the matrix.
  • the heating step S02 is preferably performed in a non-oxidizing or reducing atmosphere.
  • the heating temperature is set in the range of 300 ° C. or higher and 900 ° C. or lower.
  • hot working may be performed after the above-described homogenization / solution forming step S02.
  • the processing method is not particularly limited, and for example, rolling, wire drawing, extrusion, groove rolling, forging, pressing, and the like can be employed.
  • the hot working temperature is preferably in the range of 300 ° C. or higher and 900 ° C. or lower.
  • the temperature condition in this roughing step S03 is not particularly limited, but is in the range of ⁇ 200 ° C. to 200 ° C. which is cold or warm rolled to suppress recrystallization or improve dimensional accuracy. It is preferable to use normal temperature.
  • the processing rate (rolling rate) is preferably 20% or more, and more preferably 30% or more.
  • a processing method For example, rolling, wire drawing, extrusion, groove rolling, forging, a press, etc. are employable.
  • the heat treatment method is not particularly limited, but the heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere at a holding temperature of 400 ° C. to 900 ° C. and a holding time of 10 seconds to 10 hours.
  • the cooling method after heating is not particularly limited, but it is preferable to adopt a method such as water quenching in which the cooling rate is 200 ° C./min or more. Note that the roughing step S03 and the intermediate heat treatment step S04 may be repeatedly performed.
  • Finishing is performed to process the copper material after the intermediate heat treatment step S04 into a predetermined shape.
  • the temperature condition in the finishing step S05 is not particularly limited, but is in the range of ⁇ 200 ° C. to 200 ° C., which is cold or warm processing to suppress recrystallization or to suppress softening. In particular, room temperature is preferable.
  • the processing rate is appropriately selected so as to approximate the final shape, but in the finishing processing step S05, dislocations are sufficiently introduced by processing, the strength is improved by work hardening, and the yield ratio is further improved by improving the yield strength. In order to achieve this increase, the processing rate is preferably 35% or more. Also. When further improving the strength and yield ratio, the processing rate is more preferably 40% or more, and further preferably 45% or more.
  • the heat treatment temperature is preferably 800 ° C. or less, and more preferably 700 ° C. or less.
  • the heat treatment temperature is preferably 250 ° C. or higher, and is preferably 300 ° C.
  • finishing heat treatment step S06 it is necessary to set heat treatment conditions (temperature, time, cooling rate) so as to avoid a significant decrease in strength due to recrystallization. For example, it is preferable to hold at 350 ° C. for about 1 second to 120 seconds.
  • This heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere.
  • the method of heat treatment is not particularly limited, but short-time heat treatment using a continuous annealing furnace is preferable from the viewpoint of reducing the manufacturing cost. Furthermore, the above-described finishing processing step S05 and finishing heat treatment step S06 may be repeated.
  • a rolled plate is produced as the copper alloy plastic working material for electronic / electric equipment according to the present embodiment.
  • the thickness of the copper alloy plastic working material (thin plate) for electronic / electric equipment is within a range of 0.05 mm to 3.0 mm, preferably within a range of 0.1 mm to less than 3.0 mm. It is said that. If the thickness of the copper alloy plastic working material (thin plate) for electronic / electric equipment is 0.05mm or less, it is not suitable for use as a conductor in high current applications, and if the thickness exceeds 3.0mm , Press punching becomes difficult.
  • the copper alloy plastic working material for electronic / electric equipment may be used as it is for a part for electronic / electric equipment, but the film thickness of 0.1 to An Sn plating layer or an Ag plating layer of about 100 ⁇ m may be formed.
  • the plate thickness of the copper alloy plastic working material for electronic / electric equipment is preferably 10 to 1000 times the plating layer thickness.
  • a copper alloy for electronic / electric equipment (copper alloy plastic working material for electronic / electric equipment) according to the present embodiment as a raw material, for example, a terminal such as a connector or a press fit, Components for electronic and electrical equipment such as relays, lead frames and bus bars are molded.
  • the Mg content is in the range of 0.15 mass% or more and less than 0.35 mass%.
  • the strength and stress relaxation resistance can be improved without greatly reducing the electrical conductivity.
  • the electrical conductivity is 75% IACS or more, it can be applied to applications requiring high electrical conductivity.
  • the yield ratio YS / calculated from the strength TS and 0.2% proof stress YS when the tensile test is performed in the direction parallel to the rolling direction Since TS exceeds 88%, the yield strength-bending balance is improved, and the bending workability in the direction parallel to the rolling direction is excellent. Therefore, even when it is bent in a direction parallel to the rolling direction of the copper alloy rolled plate and formed into a complicated shape like a relay or a large terminal, the occurrence of cracks and the like can be suppressed.
  • the viscosity of the molten copper alloy is set to It can be lowered and the castability can be improved.
  • the Mg content [Mg] (mass%) and the P content [P] (mass%) satisfy the relational expression [Mg] + 20 ⁇ [P] ⁇ 0.5. And the formation of coarse crystallized crystals of P can be suppressed, and the cold workability and bending workability can be suppressed from decreasing.
  • the Mg content [Mg] (mass%) and the P content [P] (mass%) satisfy the relational expression [Mg] / [P] ⁇ 400.
  • the ratio between the content of Mg that lowers the castability and the content of P that improves the castability is optimized, and the castability can be reliably improved by the effect of the addition of P.
  • the yield ratio YS / TS can be greatly improved.
  • the residual stress rate is 50% or more at 150 ° C. for 1000 hours, so that permanent deformation occurs even when used in a high temperature environment. For example, a decrease in contact pressure of a connector terminal or the like can be suppressed. Therefore, it can be applied as a material for electronic device parts used in a high temperature environment such as an engine room.
  • the copper alloy plastic working material for electronic / electric equipment according to the present embodiment is composed of the above-described copper alloy for electronic / electric equipment, the copper alloy plastic working material for electronic / electric equipment is bent.
  • parts for electronic and electrical equipment such as terminals such as connectors and press-fit, relays, lead frames, and bus bars.
  • an Sn plating layer or an Ag plating layer is formed on the surface, it is particularly suitable as a material for electronic / electric equipment parts such as terminals such as connectors and press-fit, relays, lead frames, bus bars, and the like.
  • the electronic / electrical device parts (terminals such as connectors and press-fit, relays, lead frames, bus bars, etc.) according to the present embodiment are made of the above-described copper alloy for electronic / electrical devices. Even when the thickness is reduced, excellent characteristics can be exhibited.
  • the copper alloy for electronic / electric equipment As mentioned above, although the copper alloy for electronic / electric equipment, the copper alloy plastic working material for electronic / electric equipment, and the parts for electronic / electric equipment (terminal, bus bar, etc.) which are embodiments of the invention of the present application have been described, It is not limited and can be changed as appropriate without departing from the technical idea of the invention.
  • an example of a method for producing a copper alloy for electronic / electric equipment has been described.
  • the method for producing a copper alloy for electronic / electric equipment is not limited to that described in the embodiment.
  • the existing manufacturing method may be selected as appropriate.
  • a copper raw material made of oxygen-free copper (ASTM B152 C10100) having a purity of 99.99 mass% or more was prepared, charged in a high-purity graphite crucible, and high-frequency melted in an atmosphere furnace having an Ar gas atmosphere.
  • Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and poured into a mold to produce an ingot.
  • Invention Example 3 is a heat insulating material (isowool) mold
  • Invention Example 23 is a carbon mold
  • Invention Examples 1 to 2, 4 to 22, 24 to 32, and Comparative Examples 1 to 5 are copper alloys having a water cooling function. The mold was used as a casting mold.
  • the size of the ingot was about 20 mm thick x about 150 mm wide x about 70 mm long.
  • the vicinity of the cast surface of the ingot was chamfered, and the ingot was cut out and the size was adjusted so that the thickness of the final product was 0.5 mm.
  • the block was heated in an Ar gas atmosphere for 4 hours under the temperature conditions shown in Table 2 to perform homogenization / solution treatment.
  • finish rolling was performed at room temperature at a rolling rate described in Table 2 to produce a thin plate having a thickness of 0.5 mm, a width of about 150 mm, and a length of 200 mm. Then, after finish rolling (finishing), finish heat treatment was performed in an Ar atmosphere under the conditions shown in Table 2, and then water quenching was performed to create a thin plate for property evaluation.
  • test piece having a width of 10 mm and a length of 150 mm was taken from the strip for characteristic evaluation, and the electric resistance was determined by a four-terminal method. Moreover, the dimension of the test piece was measured using the micrometer, and the volume of the test piece was calculated. And electrical conductivity was computed from the measured electrical resistance value and volume. In addition, the test piece was extract
  • Bending was performed in accordance with four test methods of Japan Copper and Brass Association Technical Standard JCBA-T307: 2007.
  • the judgment is “C”
  • a and B were determined to be acceptable bending workability.
  • the evaluation results are shown in Table 3.
  • the rolled surface was mirror-polished and then etched, and was taken with an optical microscope so that the rolling direction was beside the photograph, and observed with a 500 ⁇ field of view (about 700 ⁇ 500 ⁇ m 2 ). Then, according to the cutting method of JIS H 0501, the crystal grain size is drawn by 5 lines each having a predetermined length in the vertical and horizontal directions, the number of crystal grains to be completely cut is counted, and the average value of the cutting lengths is calculated. Was calculated as the average crystal grain size. When the crystal grain size is as fine as 10 ⁇ m or less, SEM-EBSD (Electron The average crystal grain size was measured by a Backscatter Diffraction Patterns) measuring apparatus.
  • SEM-EBSD Electrom The average crystal grain size was measured by a Backscatter Diffraction Patterns
  • each measurement point (pixel) within the measurement range of the sample surface is irradiated with an electron beam, and an azimuth difference between adjacent measurement points is found by orientation analysis by backscattered electron diffraction.
  • a large tilt grain boundary was defined between the measurement points at 15 ° or more, and a small tilt grain boundary was defined as 15 ° or less.
  • Stress relaxation characteristics In the stress relaxation resistance test, stress was applied by a method according to the cantilevered screw method of Japan Copper and Brass Association Technical Standard JCBA-T309: 2004, and the residual stress ratio after holding for 1000 hours at a temperature of 150 ° C. was measured. .
  • the evaluation results are shown in Table 3.
  • a specimen width 10 mm is taken from each characteristic evaluation strip in a direction parallel to the rolling direction, and the initial deflection displacement is set so that the maximum surface stress of the specimen is 80% of the proof stress.
  • the span length was adjusted to 2 mm.
  • the maximum surface stress is determined by the following equation.
  • the example of this invention it is confirmed that it is excellent in 0.2% yield strength, electrical conductivity, stress relaxation resistance, and bending workability. Moreover, when P is added, it is confirmed that it is excellent also in castability. From the above, according to the example of the present invention, the copper alloy for electronic / electric equipment and the copper alloy plastic working material for electronic / electric equipment excellent in conductivity, strength, bending workability, stress relaxation resistance and castability are obtained. It was confirmed that it could be provided.
  • Copper alloy for electronic / electric equipment copper alloy plastic working material for electronic / electric equipment, parts for electronic / electric equipment, terminals, superior in electrical conductivity, strength, bending workability, and stress relaxation resistance compared to conventional technology
  • a bus bar can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Mgを0.15mass%以上、0.35mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、導電率が75%IACSを超えるとともに、圧延方向に対して平行方向に引張試験を行った際の強度TSと、0.2%耐力YSと、から算出される降伏比YS/TSが88%を超えることを特徴とする。さらにPを0.0005mass%以上0.01mass%未満の範囲内で含んでいてもよい。

Description

電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
 本願発明は、リードフレーム、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品に適した電子・電気機器用銅合金、及び、この電子・電気機器用銅合金からなる電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーに関するものである。
 本願は、2015年9月9日に日本に出願された特願2015-177743号、2015年12月1日に日本に出願された特願2015-235096号及び2016年3月30日に日本に出願された特願2016-069077号に基づき優先権を主張し、その内容をここに援用する。
 従来、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品には、導電性の高い銅又は銅合金が用いられている。
 ここで、電子機器や電気機器等の小型化にともない、これら電子機器や電気機器等に使用される電子・電気機器用部品の小型化および薄肉化が図られている。このため、電子・電気機器用部品を構成する材料には、高い強度や良好な曲げ加工性が求められている。また、自動車のエンジンルーム等の高温環境下で使用されるコネクタの端子等においては、耐応力緩和特性も求められている。
 ここで、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品に使用される材料として、例えば特許文献1、2には、Cu-Mg系合金が提案されている。
日本国特許第5045783号公報(B) 日本国特開2014-114464号公報(A)
 ここで、特許文献1に記載されたCu-Mg系合金においては、Mgの含有量が多いため、導電性が不十分であり、高い導電性が要求される用途には適用することが困難であった。
 また、特許文献2に記載されたCu-Mg系合金においては、Mgの含有量が0.01~0.5mass%、及びPの含有量が0.01~0.5mass%とされていることから、粗大な晶出物が生じ、冷間加工性及び曲げ加工性が不十分であった。
 ところで、小型化が進む電子・電気機器用部品の中でもサイズが比較的大きいリレーや大型端子といった電子・電気機器用部品を製造する場合には、電子・電気機器用部品の長手方向が、銅合金圧延板の圧延方向に対して平行方向を向くように打ち抜き加工されることが多い。すると、大型端子等においては、銅合金圧延板の圧延方向に対して曲げの軸が直交方向になるように曲げ加工が施されることになる。
 最近では、電子・電気機器の軽量化にともない、これら電子機器や電気機器等に使用されるコネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品の薄肉化が図られている。このため、コネクタ等の端子においては、接圧を確保するために、厳しい曲げ加工を行う必要があり、従来にも増して、曲げ加工性が要求されている。
 本願発明は、前述した事情に鑑みてなされたものであって、導電性、強度、曲げ加工性、耐応力緩和特性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーを提供することを目的とする。
 この課題を解決するために、本願発明の一態様の電子・電気機器用銅合金(以下、「本願発明の電子・電気機器用銅合金」と称する)は、Mgを0.15mass%以上、0.35mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、導電率が75%IACS超えるとともに、圧延方向に対して平行方向に引張試験を行った際の強度TSと、0.2%耐力YSと、から算出される降伏比YS/TSが88%を超えることを特徴としている。
 上述の構成の電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することにより、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。具体的には導電率が75%IACS超えとされているので、高い導電性が要求される用途にも適用することができる。
 そして、圧延方向に対して平行方向に引張試験を行った際の強度TSと0.2%耐力YSとから算出される降伏比YS/TSが88%超えとなっていることから、0.2%耐力YSが強度TSに対して相対的に高くなっている。よって、耐力―曲げバランスが向上し、圧延方向に対して平行方向における曲げ加工性が優れることになる。そのため、リレーや大型端子のように、銅合金圧延板の圧延方向に対して平行方向に曲げ加工し、複雑な形状に成形した場合であっても、割れ等の発生を抑制することができる。
 ここで、本願発明の電子・電気機器用銅合金においては、Pを0.0005mass%以上0.01mass%未満の範囲内で含んでいてもよい。
 この場合、Pの添加によって、Mgを含む銅合金溶湯の粘度を下げることができ、鋳造性を向上させることができる。
 また、本願発明の電子・電気機器用銅合金においてPを上述の範囲で含有する場合には、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕+20×〔P〕<0.5の関係式を満足していることが好ましい。
 この場合、MgとPを含む粗大な晶出物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
 さらに、本願発明の電子・電気機器用銅合金においてPを上述の範囲で含有する場合には、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕/〔P〕≦400の関係式を満たすことが好ましい。
 この場合、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率を、上述のように規定することにより、鋳造性を確実に向上させることができる。
 また、本願発明の電子・電気機器用銅合金においては、平均結晶粒径が100μm以下とされていることが好ましい。
 結晶粒径と降伏比YS/TSとの関係を調査した結果、結晶粒径を小さくすることによって降伏比YS/TSを向上することが可能であることが判明した。そして、本願発明の電子・電気機器用銅合金においては、平均結晶粒径を100μm以下に抑制することにより、上述の降伏比を大きく向上させることができる。
 さらに、本願発明の電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で50%以上であることが好ましい。
 この場合、応力緩和率が上述のように規定されていることから、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、例えばコネクタ端子等の接圧の低下を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することが可能となる。
 本願発明の他態様の電子・電気機器用銅合金塑性加工材(以下、「本願発明の電子・電気機器用銅合金塑性加工材」と称する)は、上述の電子・電気機器用銅合金からなることを特徴としている。
 この構成の電子・電気機器用銅合金塑性加工材によれば、上述の電子・電気機器用銅合金で構成されていることから、導電性、強度、曲げ加工性、耐応力緩和特性に優れており、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
 ここで、本願発明の電子・電気機器用銅合金塑性加工材においては、表面にSnめっき層又はAgめっき層を有することが好ましい。
 この場合、表面にSnめっき層又はAgめっき層を有しているので、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。なお、本願発明において、「Snめっき」は、純Snめっき又はSn合金めっきを含み、「Agめっき」は、純Agめっき又はAg合金めっきを含む。
 本願発明の他態様の電子・電気機器用部品(以下、「本願発明の電子・電気機器用部品」と称する)は、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。なお、本願発明における電子・電気機器用部品とは、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等を含むものである。
 この構成の電子・電気機器用部品は、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
 本願発明の他態様の端子(以下、「本願発明の端子」と称する)は、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。
 この構成の端子は、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
 本願発明の他態様のバスバー(以下、「本願発明のバスバー」と称する)は、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。
 この構成のバスバーは、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
 本願発明によれば、導電性、強度、曲げ加工性、耐応力緩和特性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーを提供することができる。
本実施形態である電子・電気機器用銅合金の製造方法のフロー図である。
 以下に、本願発明の一実施形態である電子・電気機器用銅合金について説明する。
 本実施形態である電子・電気機器用銅合金は、Mgを0.15mass%以上0.35mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなる組成を有する。
 また、本実施形態である電子・電気機器用銅合金においては、導電率が75%IACS超えとされている。
 さらに、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して平行方向に引張試験を行った際の強度TSと、0.2%耐力YSと、から算出される降伏比YS/TSが88%を超える。すなわち、本実施形態では、電子・電気機器用銅合金の圧延材とされており、圧延の最終工程における圧延方向に対して平行方向に引張試験を行った際の強度TSと0.2%耐力YSとの関係が上述のように規定されているのである。
 なお、本実施形態である電子・電気機器用銅合金においては、さらにPを0.0005mass%以上0.01mass%未満の範囲内で含んでいてもよい。
 本実施形態である電子・電気機器用銅合金においてPを上述の範囲で含有する場合には、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
 〔Mg〕+20×〔P〕<0.5
の関係式を満たしている。
 さらに、本実施形態では、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
 〔Mg〕/〔P〕≦400
の関係式を満たしている。
 また、本実施形態である電子・電気機器用銅合金においては、平均結晶粒径が100μm以下とされている。
 さらに、本実施形態である電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で50%以上とされている。
 ここで、上述のように成分組成、結晶粒径、各種特性を規定した理由について以下に説明する。
(Mg:0.15mass%以上、0.35mass%未満)
 Mgは、銅合金の母相中に固溶することで、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
 ここで、Mgの含有量が0.15mass%未満の場合には、その作用効果を十分に奏功せしめることができなくなるおそれがある。一方、Mgの含有量が0.35mass%以上の場合には、導電率が大きく低下するとともに、銅合金溶湯の粘度が上昇し、鋳造性が低下するおそれがある。
 以上のことから、本実施形態では、Mgの含有量を0.15mass%以上0.35mass%未満の範囲内に設定している。
 なお、強度および耐応力緩和特性をさらに向上させるためには、Mgの含有量の下限を0.18mass%以上とすることが好ましく、0.2mass%以上とすることがさらに好ましい。また、導電率の低下及び鋳造性の低下を確実に抑制するためには、Mgの含有量の上限を0.32mass%以下とすることが好ましく、0.3mass%以下とすることがさらに好ましい。
(P:0.0005mass%以上、0.01mass%未満)
 Pは、鋳造性を向上させる作用効果を有する元素である。また、Mgと化合物を形成することで、再結晶粒径を微細化させる作用も有する。
 ここで、Pの含有量が0.0005mass%未満の場合には、その作用効果を十分に奏功せしめることができないおそれがある。一方、Pの含有量が0.01mass%以上の場合には、上記のMgとPを含有する晶出物が粗大化することから、この晶出物が破壊の起点となり、冷間加工時や曲げ加工時に割れが生じるおそれがある。
 以上のことから、本実施形態においてPを添加する場合には、Pの含有量を0.0005mass%以上、0.01mass%未満の範囲内に設定している。なお、確実に鋳造性を向上させるためには、Pの含有量の下限を0.0007mass%以上とすることが好ましく、0.001mass%以上とすることがさらに好ましい。また、粗大な晶出物の生成を確実に抑制するためには、Pの含有量の上限を0.009mass%未満とすることが好ましく、0.008mass%未満とすることがさらに好ましく、0.0075mass%以下とすることが最も好ましい。
(〔Mg〕+20×〔P〕<0.5)
 Pを添加した場合には、上述のようにMgとPが共存することにより、MgとPを含む晶出物が生成することになる。
 ここで、mass%で、Mgの含有量〔Mg〕とPの含有量〔P〕とした場合に、〔Mg〕+20×〔P〕が0.5以上となる場合には、MgおよびPの総量が多く、MgとPを含む晶出物が粗大化するとともに高密度に分布し、冷間加工時や曲げ加工時に割れが生じやすくなるおそれがある。
 以上のことから、本実施形態においてPを添加する場合には、〔Mg〕+20×〔P〕を0.5未満に設定している。なお、晶出物の粗大化および高密度化を確実に抑制して、冷間加工時や曲げ加工時における割れの発生を抑制するためには、〔Mg〕+20×〔P〕を0.48未満とすることが好ましく、0.46未満とすることがさらに好ましい。
(〔Mg〕/〔P〕≦400)
 Mgは、銅合金溶湯の粘度を上昇させ、鋳造性を低下させる作用を有する元素であることから、鋳造性を確実に向上させるためには、MgとPの含有量の比率を適正化する必要がある。
 ここで、mass%で、Mgの含有量を〔Mg〕、Pの含有量を〔P〕とした場合に、〔Mg〕/〔P〕が400を超える場合には、Pに対してMgの含有量が多くなり、Pの添加による鋳造性向上効果が小さくなるおそれがある。
 以上のことから、本実施形態においてPを添加する場合には、〔Mg〕/〔P〕を400以下に設定している。鋳造性をより向上させるためには、〔Mg〕/〔P〕を350以下とすることが好ましく、300以下とすることがさらに好ましい。
 なお、〔Mg〕/〔P〕が過剰に低い場合には、Mgが晶出物として消費され、Mgの固溶による効果を得ることができなくなるおそれがある。MgとPを含有する晶出物の生成を抑制し、Mgの固溶による耐力、耐応力緩和特性の向上を確実に図るためには、〔Mg〕/〔P〕の下限を20超えとすることが好ましく、25超えであることがさらに好ましい。
(不可避不純物:0.1mass%以下)
 その他の不可避的不純物としては、Ag、B、Ca、Sr、Ba、Sc、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Se、Te、Rh、Ir、Ni、Pd、Pt、Au、Zn、Cd,Hg、Al、Ga、In、Ge、Sn、As、Sb、Tl、Pb、Bi、Be、N、C、Si、Li、H、O、S等が挙げられる。これらの不可避不純物は、導電率を低下させる作用があることから、総量で0.1mass%以下とする。不可避不純物の総量は、0.09mass%以下とすることがより好ましく、0.08mass%以下とすることがさらにより好ましい。
 また、Ag、Zn、Snは銅中に容易に混入して導電率を低下させるため、総量で500massppm未満とすることが好ましい。
 さらにSi、Cr、Ti、Zr、Fe、Coは、特に導電率を大きく減少させるとともに、介在物の形成により曲げ加工性を劣化させるため、これらの元素は総量で500massppm未満とすることが好ましい。
(降伏比YS/TS:88%超え)
 圧延方向に対して平行方向に引張試験を行った際の強度TSと0.2%耐力YSとから算出される降伏比YS/TSが88%を超えていると、強度TSに対して相対的に0.2%耐力が高くなる。曲げ性は、破壊の問題であり、強度と強い相関がある。このため、強度に対して相対的に0.2%耐力が高い場合には、耐力―曲げバランスが高くなり、曲げ加工性に優れることになる。
 ここで、曲げ加工性を確実に向上させるためには、上述の降伏比YS/TSを90%以上とすることが好ましく、91%以上とすることがより好ましく、92%以上とすることがさらに好ましい。
(導電率:75%IACS超え)
 本実施形態である電子・電気機器用銅合金において、導電率を75%IACS超えに設定することにより、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品として良好に使用することができる。
 なお、導電率は76%IACS超えであることが好ましく、77%IACS超えであることがさらに好ましく、78%IACS超えであることがより好ましく、80%IACS超えであることがさらに好ましい。
(平均結晶粒径:100μm以下)
 本実施形態である電子・電気機器用銅合金においては、平均結晶粒径が100μm以下とされている。結晶粒径が小さくなると降伏比YS/TSが向上することから、平均結晶粒径を100μm以下に設定することで、圧延方向に対して平行方向における降伏比YS/TSをさらに向上させることができる。
 なお、平均結晶粒径は、50μm以下とすることが好ましく、30μm以下とすることがさらに好ましい。
(残留応力率:50%以上)
 本実施形態である電子機器用銅合金においては、上述のように、残留応力率が150℃、1000時間で50%以上とされている。
 この条件における残留応力率が高い場合には、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、接圧の低下を抑制することができる。よって、本実施形態である電子機器用銅合金は、自動車のエンジンルーム周りのような高温環境下で使用される端子として適用することが可能となる。本実施形態では、圧延方向に対して直交方向に応力緩和試験を行った残留応力率が150℃、1000時間で50%以上とされている。
 なお、残留応力率は150℃、1000時間で60%以上とすることが好ましく、150℃、1000時間で70%以上とすることがさらに好ましい。
 次に、このような構成とされた本実施形態である電子・電気機器用銅合金の製造方法について、図1に示すフロー図を参照して説明する。
(溶解・鋳造工程S01)
 まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。ここで、銅溶湯は、純度が99.99mass%以上とされたいわゆる4NCu、あるいは99.999mass%以上とされたいわゆる5NCuとすることが好ましい。なお、各種元素の添加には、元素単体や母合金等を用いることができる。
また、上述の元素を含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材およびスクラップ材を用いてもよい。溶解工程では、Mgの酸化を抑制するため、また水素濃度低減のため、HOの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることが好ましい。
 そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
 この際、溶湯の凝固時に、MgとPを含む晶出物が形成されるため、凝固速度を速くすることで晶出物サイズをより微細にすることが可能となる。そのため、溶湯の冷却速度は0.1℃/sec以上とすることが好ましく、さらに好ましくは0.5℃/sec以上であり、最も好ましくは1℃/sec以上である。
(均質化/溶体化工程S02)
 次に、得られた鋳塊の均質化および溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析して濃縮することにより発生したCuとMgを主成分とする金属間化合物等が存在することがある。そこで、これらの偏析および金属間化合物等を消失または低減させるために、鋳塊を300℃以上900℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりする。なお、この加熱工程S02は、非酸化性または還元性雰囲気中で実施することが好ましい。
 ここで、加熱温度が300℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を300℃以上900℃以下の範囲に設定している。
 なお、後述する粗圧延の効率化と組織の均一化のために、前述の均質化/溶体化工程S02の後に熱間加工を実施してもよい。この場合、加工方法に特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。また、熱間加工温度は、300℃以上900℃以下の範囲内とすることが好ましい。
(粗加工工程S03)
 所定の形状に加工するために、粗加工を行う。なお、この粗加工工程S03における温度条件は特に限定はないが、再結晶を抑制するために、あるいは寸法精度の向上のため、冷間または温間圧延となる-200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。加工率(圧延率)については、20%以上が好ましく、30%以上がさらに好ましい。また、加工方法については、特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。
(中間熱処理工程S04)
 粗加工工程S03後に、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的として熱処理を実施する。熱処理の方法は特に限定はないが、好ましくは400℃以上900℃以下の保持温度、10秒以上10時間以下の保持時間で、非酸化雰囲気または還元性雰囲気中で熱処理を行う。また、加熱後の冷却方法は、特に限定しないが、水焼入など冷却速度が200℃/min以上となる方法を採用することが好ましい。
 なお、粗加工工程S03及び中間熱処理工程S04は、繰り返し実施してもよい。
(仕上加工工程S05) 
 中間熱処理工程S04後の銅素材を所定の形状に加工するため、仕上加工を行う。なお、この仕上加工工程S05における温度条件は特に限定はないが、再結晶を抑制するため、または軟化を抑制するために冷間、または温間加工となる-200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、仕上加工工程S05において、加工により十分に転位を導入し、加工硬化による強度向上、さらに耐力の向上による降伏比の上昇を達成するためには、加工率を35%以上とすることが好ましい。また。さらなる強度と降伏比の向上を図る場合には、加工率を40%以上とすることがより好ましく、加工率を45%以上とすることがさらに好ましい。
(仕上熱処理工程S06)
 次に、仕上加工工程S05によって得られた塑性加工材に対して、耐応力緩和特性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、仕上熱処理を実施する。
 熱処理温度が高すぎると、回復、もしくは再結晶により組織中の転位が大きく減少し、耐力が大きく低下する。すなわち、降伏比YS/TSが低下することから、熱処理温度は、800℃以下とすることが好ましく、700℃以下とすることがより好ましい。また、仕上加工工程S05にて高い加工率で加工した際に導入された転位を再配列させ、確実に延性を回復させるために熱処理温度は250℃以上とすることが好ましく、300℃以上とすることがより好ましい。なお、この仕上熱処理工程S06においては、再結晶による強度の大幅な低下を避けるように、熱処理条件(温度、時間、冷却速度)を設定する必要がある。
 例えば350℃では1秒から120秒程度保持とすることが好ましい。この熱処理は、非酸化雰囲気または還元性雰囲気中で行うことが好ましい。
 熱処理の方法は特に限定はないが、製造コスト低減の効果から、連続焼鈍炉による短時間の熱処理が好ましい。
 さらに、上述の仕上加工工程S05と仕上熱処理工程S06とを、繰り返し実施してもよい。
 このようにして、本実施形態である電子・電気機器用銅合金塑性加工材として圧延板(薄板)が製出されることになる。なお、この電子・電気機器用銅合金塑性加工材(薄板)の板厚は、0.05mm超え3.0mm以下の範囲内とされており、好ましくは0.1mm超え3.0mm未満の範囲内とされている。電子・電気機器用銅合金塑性加工材(薄板)の板厚が0.05mm以下の場合、大電流用途での導体としての使用には不向きであり、板厚が3.0mmを超える場合には、プレス打ち抜き加工が困難となる。
 ここで、本実施形態である電子・電気機器用銅合金塑性加工材は、そのまま電子・電気機器用部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1~100μm程度のSnめっき層またはAgめっき層を形成してもよい。この際、電子・電気機器用銅合金塑性加工材の板厚がめっき層厚さの10~1000倍となることが好ましい。
 さらに、本実施形態である電子・電気機器用銅合金(電子・電気機器用銅合金塑性加工材)を素材として、打ち抜き加工や曲げ加工等を施すことにより、例えばコネクタやプレスフィット等の端子、リレー、リードフレーム、バスバーといった電子・電気機器用部品が成形される。
 以上のような構成とされた本実施形態である電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することで、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
 また、本実施形態である電子・電気機器用銅合金においては、導電率が75%IACS以上とされているので、高い導電性が要求される用途にも適用することができる。
 そして、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して平行方向に引張試験を行った際の強度TSと0.2%耐力YSとから算出される降伏比YS/TSが88%超えとなっていることから、耐力―曲げバランスが向上し、圧延方向に対して平行方向における曲げ加工性が優れることになる。そのため、リレーや大型端子のように、銅合金圧延板の圧延方向に対して平行方向に曲げ加工し、複雑な形状に成形した場合であっても、割れ等の発生を抑制することができる。
 また、本実施形態である電子・電気機器用銅合金においてPを添加し、Pの含有量を0.0005mass%以上0.01mass%未満の範囲内とした場合には、銅合金溶湯の粘度を低下させ、鋳造性を向上させることができる。
 そして、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕+20×〔P〕<0.5の関係式を満足しているので、MgとPの粗大な晶出物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
 さらに、本実施形態では、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕/〔P〕<400の関係式を満たしているので、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率が適正化され、P添加の効果により、鋳造性を確実に向上させることができる。
 また、本実施形態である電子・電気機器用銅合金においては、平均結晶粒径が100μm以下とされているので、降伏比YS/TSを大きく向上させることができる。
 さらに、本実施形態である電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で50%以上とされているので、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、例えばコネクタ端子等の接圧の低下を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することが可能となる。
 また、本実施形態である電子・電気機器用銅合金塑性加工材は、上述の電子・電気機器用銅合金で構成されていることから、この電子・電気機器用銅合金塑性加工材に曲げ加工等を行うことで、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品を製造することができる。
 なお、表面にSnめっき層又はAgめっき層を形成した場合には、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
 さらに、本実施形態である電子・電気機器用部品(コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等)は、上述の電子・電気機器用銅合金で構成されているので、小型化および薄肉化しても優れた特性を発揮することができる。
 以上、本願発明の実施形態である電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品(端子、バスバー等)について説明したが、本願発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、上述の実施形態では、電子・電気機器用銅合金の製造方法の一例について説明したが、電子・電気機器用銅合金の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
 以下に、本願発明の効果を確認すべく行った確認実験の結果について説明する。
 純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、鋳型に注湯して鋳塊を製出した。なお、本発明例3は断熱材(イソウール)鋳型、本発明例23はカーボン鋳型、本発明例1~2、4~22、24~32、比較例1~5は水冷機能を備えた銅合金鋳型を鋳造用の鋳型として用いた。鋳塊の大きさは、厚さ約20mm×幅約150mm×長さ約70mmとした。
 この鋳塊の鋳肌近傍を面削し、最終製品の板厚が0.5mmとなるように、鋳塊を切り出してサイズを調整した。
 このブロックを、Arガス雰囲気中において、表2に記載の温度条件で4時間の加熱を行い、均質化/溶体化処理を行った。
 その後、表2に記載の条件で粗圧延を実施した後、ソルトバスを用いて表2に記載された温度条件で熱処理を行った。
 熱処理を行った銅素材を、適宜、最終形状に適した形にするために、切断するとともに、酸化被膜を除去するために表面研削を実施した。その後、常温で、表2に記載された圧延率で仕上圧延(仕上加工)を実施し、厚さ0.5mm、幅約150mm、長さ200mmの薄板を製出した。
 そして、仕上圧延(仕上加工)後に、表2に示す条件で、Ar雰囲気中で仕上熱処理を実施し、その後、水焼入れを行い、特性評価用薄板を作成した。
(鋳造性)
 鋳造性の評価として、前述の鋳造時における肌荒れの有無を観察した。目視で肌荒れが全くあるいはほとんど認められなかったものをA、深さ1mm未満の小さな肌荒れが発生したものをB、深さ1mm以上2mm未満の肌荒れが発生したものをCとした。また深さ2mm以上の大きな肌荒れが発生したものはDとした。評価結果を表3に示す。
 なお、肌荒れの深さとは、鋳塊の端部から中央部に向かう肌荒れの深さのことである。
(機械的特性)
特性評価用条材からJIS Z 2241に規定される13B号試験片を採取し、JIS
 Z 2241のオフセット法により、0.2%耐力を測定した。なお、試験片は、圧延方向に平行な方向で採取した。そして、得られた強度TS、0.2%耐力YSから、降伏比YS/TSを算出した。評価結果を表3に示す。
(導電率)
 特性評価用条材から幅10mm×長さ150mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して垂直になるように採取した。
評価結果を表3に示す。
(曲げ加工性)
 日本伸銅協会技術標準JCBA-T307:2007の4試験方法に準拠して曲げ加工を行った。圧延方向に対して曲げの軸が直交方向になるように、特性評価用薄板から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0.3mm(R/t=0.6)のW型の治具を用い、W曲げ試験を行った。
 曲げ部の外周部を目視で観察して割れが観察された場合は「C」、大きなしわが観察された場合はB、破断や微細な割れ、大きなしわを確認できない場合をAとして判定を行った。なお、A、Bは許容できる曲げ加工性と判断した。評価結果を表3に示す。
(平均結晶粒径)
 各試料において、圧延面を鏡面研磨した後エッチングを行い、光学顕微鏡にて、圧延方向が写真の横になるように撮影し、500倍の視野(約700×500μm)で観察を行った。そして、結晶粒径をJIS H 0501の切断法にしたがい、写真の縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径として算出した。
 また、結晶粒径が10μm以下と微細な場合は、SEM-EBSD(Electron
 Backscatter Diffraction Patterns)測定装置によって、平均結晶粒径を測定した。耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。その後、走査型電子顕微鏡を用いて、試料表面の測定範囲内の個々の測定点(ピクセル)に電子線を照射し、後方散乱電子線回折による方位解析により、隣接する測定点間の方位差が15°以上となる測定点間を大傾角粒界とし、15°以下を小傾角粒界とした。大傾角粒界を用いて、結晶粒界マップを作成し、JIS H 0501の切断法に準拠し、結晶粒界マップに対して、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。
(耐応力緩和特性)
 耐応力緩和特性試験は、日本伸銅協会技術標準JCBA-T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、150℃の温度で1000時間保持後の残留応力率を測定した。評価結果を表3に示す。
 試験方法としては、各特性評価用条材から圧延方向に対して平行な方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面最大応力(MPa)=1.5Etδ0/Ls 2
ただし、
E:ヤング率(MPa)
t:試料の厚み(t=0.5mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。
 150℃の温度で、1000h保持後の曲げ癖から、残留応力率を測定し、耐応力緩和特性を評価した。なお残留応力率は次式を用いて算出した。
残留応力率(%)=(1-δt0)×100
ただし、
δ:150℃で1000h保持後の永久たわみ変位(mm)-常温で24h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例1~2は、Mgの含有量が本願発明の範囲よりも少なく、0.2%耐力が低く、強度不足であった。また、耐応力緩和特性も不十分であった。
 比較例3~4は、Mgの含有量が本願発明の範囲よりも多く、導電率が低くかった。
 比較例5は、降伏比YS/TSが低く、曲げ加工性が不十分であった。
 これに対して、本発明例においては、0.2%耐力、導電率、耐応力緩和特性、曲げ加工性に優れていることが確認される。また、Pを添加した場合には鋳造性にも優れていることが確認される。
 以上のことから、本発明例によれば、導電性、強度、曲げ加工性、耐応力緩和特性、鋳造性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材を提供できることが確認された。
 従来技術と比較して、導電性、強度、曲げ加工性、耐応力緩和特性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーを提供することができる。

Claims (11)

  1.  Mgを0.15mass%以上、0.35mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、
     導電率が75%IACS超えるとともに、
     圧延方向に対して平行方向に引張試験を行った際の強度TSと、0.2%耐力YSと、から算出される降伏比YS/TSが88%を超えることを特徴とする電子・電気機器用銅合金。
  2.  Pを0.0005mass%以上0.01mass%未満の範囲内で含むことを特徴とする請求項1に記載の電子・電気機器用銅合金。
  3.  Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
      〔Mg〕+20×〔P〕<0.5
    の関係式を満たすことを特徴とする請求項2に記載の電子・電気機器用銅合金。
  4.  Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
      〔Mg〕/〔P〕≦400
    の関係式を満たすことを特徴とする請求項2又は請求項3に記載の電子・電気機器用銅合金。
  5.  平均結晶粒径が100μm以下とされていることを特徴とする請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金。
  6.  残留応力率が150℃、1000時間で50%以上であることを特徴とする請求項1から請求項5のいずれか一項に記載の電子・電気機器用銅合金。
  7.  請求項1から請求項6のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする電子・電気機器用銅合金塑性加工材。
  8.  表面にSnめっき層又はAgめっき層を有することを特徴とする請求項7に記載の電子・電気機器用銅合金塑性加工材。
  9.  請求項7又は請求項8に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とする電子・電気機器用部品。
  10.  請求項7又は請求項8に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とする端子。
  11.  請求項7又は請求項8に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とするバスバー。
PCT/JP2016/076376 2015-09-09 2016-09-08 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー WO2017043556A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16844417.2A EP3348656B1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
MX2018000330A MX2018000330A (es) 2015-09-09 2016-09-08 Aleacion de cobre para dispositivo electronico/electrico, material trabajado plasticamente de aleacion de cobre para dispositivo electrico/electrico, componente para dispositivo electrico/electrico, terminal y barra colectora.
MYPI2017705081A MY184755A (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
CN201680032070.2A CN107614714B (zh) 2015-09-09 2016-09-08 电子电气设备用铜合金板、电子电气设备用铜合金塑性加工材、电子电气设备用组件、端子及汇流条
US15/737,642 US20180171437A1 (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
SG11201710511UA SG11201710511UA (en) 2015-09-09 2016-09-08 Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
KR1020177030942A KR102474009B1 (ko) 2015-09-09 2016-09-08 전자·전기 기기용 구리 합금, 전자·전기 기기용 구리 합금 소성 가공재, 전자·전기 기기용 부품, 단자, 및, 버스바
PH12017502294A PH12017502294A1 (en) 2015-09-09 2017-12-13 Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-177743 2015-09-09
JP2015177743 2015-09-09
JP2015-235096 2015-12-01
JP2015235096A JP5910790B1 (ja) 2015-12-01 2015-12-01 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP2016-069077 2016-03-30
JP2016069077A JP6187629B1 (ja) 2016-03-30 2016-03-30 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー

Publications (1)

Publication Number Publication Date
WO2017043556A1 true WO2017043556A1 (ja) 2017-03-16

Family

ID=58239797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076376 WO2017043556A1 (ja) 2015-09-09 2016-09-08 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー

Country Status (10)

Country Link
US (1) US20180171437A1 (ja)
EP (1) EP3348656B1 (ja)
KR (1) KR102474009B1 (ja)
CN (1) CN107614714B (ja)
MX (1) MX2018000330A (ja)
MY (1) MY184755A (ja)
PH (1) PH12017502294A1 (ja)
SG (1) SG11201710511UA (ja)
TW (1) TWI740842B (ja)
WO (1) WO2017043556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200128669A (ko) * 2018-03-30 2020-11-16 미쓰비시 마테리알 가부시키가이샤 전자·전기 기기용 구리 합금, 전자·전기 기기용 구리 합금판 스트립재, 전자·전기 기기용 부품, 단자, 및 버스바

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319615B2 (en) * 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
WO2017170699A1 (ja) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片
EP3778941A4 (en) * 2018-03-30 2021-11-24 Mitsubishi Materials Corporation COPPER ALLOY FOR ELECTRONIC / ELECTRIC DEVICE, SHEET / STRIP MATERIAL COPPER ALLOY FOR ELECTRONIC / ELECTRIC DEVICE, ELECTRONIC / ELECTRIC DEVICE COMPONENT, TERMINAL AND OMNIBUS BAR
TW202129021A (zh) * 2019-11-29 2021-08-01 日商三菱綜合材料股份有限公司 銅合金、銅合金塑性加工材、電子/電氣機器用零件、端子、匯流條、散熱基板
JP7136157B2 (ja) * 2020-06-30 2022-09-13 三菱マテリアル株式会社 銅合金、銅合金塑性加工材、電子・電気機器用部品、端子
CN114457254B (zh) * 2022-01-13 2023-04-07 武汉正威新材料科技有限公司 一种基于联合挤压超细晶铜镁合金的制备方法及得到的合金

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284946A (ja) * 1985-06-11 1986-12-15 Mitsubishi Shindo Kk 半導体装置用Cu合金リ−ド素材
JP2007056297A (ja) * 2005-08-23 2007-03-08 Dowa Holdings Co Ltd Cu−Mg−P系銅合金およびその製造法
JP2013253267A (ja) * 2012-06-05 2013-12-19 Mitsubishi Shindoh Co Ltd 機械的な成形性に優れたCu−Mg−P系銅合金板及びその製造方法
JP2014114464A (ja) * 2012-12-06 2014-06-26 Furukawa Electric Co Ltd:The 銅合金材料およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661462B2 (ja) * 1992-05-01 1997-10-08 三菱伸銅株式会社 繰り返し曲げ性にすぐれた直経:0.1mm以下のCu合金極細線
JP3796784B2 (ja) * 1995-12-01 2006-07-12 三菱伸銅株式会社 コネクタ製造用銅合金薄板およびその薄板で製造したコネクタ
JP5260992B2 (ja) * 2008-03-19 2013-08-14 Dowaメタルテック株式会社 銅合金板材およびその製造方法
JP4516154B1 (ja) * 2009-12-23 2010-08-04 三菱伸銅株式会社 Cu−Mg−P系銅合金条材及びその製造方法
JP5045783B2 (ja) 2010-05-14 2012-10-10 三菱マテリアル株式会社 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材
JP6055242B2 (ja) * 2012-08-30 2016-12-27 三菱伸銅株式会社 Cu−Mg−P系銅合金Snめっき板及びその製造方法
JP5962707B2 (ja) * 2013-07-31 2016-08-03 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用銅合金塑性加工材の製造方法、電子・電気機器用部品及び端子
MX2018001139A (es) * 2015-09-09 2018-04-20 Mitsubishi Materials Corp Aleacion de cobre para dispositivo electronico/electrico, material plasticamente trabajado de aleacion de cobre para dispositivo electronico/electrico, componente para dispositivo electronico/electrico, terminal y barra colectora.
US10453582B2 (en) * 2015-09-09 2019-10-22 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284946A (ja) * 1985-06-11 1986-12-15 Mitsubishi Shindo Kk 半導体装置用Cu合金リ−ド素材
JP2007056297A (ja) * 2005-08-23 2007-03-08 Dowa Holdings Co Ltd Cu−Mg−P系銅合金およびその製造法
JP2013253267A (ja) * 2012-06-05 2013-12-19 Mitsubishi Shindoh Co Ltd 機械的な成形性に優れたCu−Mg−P系銅合金板及びその製造方法
JP2014114464A (ja) * 2012-12-06 2014-06-26 Furukawa Electric Co Ltd:The 銅合金材料およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348656A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200128669A (ko) * 2018-03-30 2020-11-16 미쓰비시 마테리알 가부시키가이샤 전자·전기 기기용 구리 합금, 전자·전기 기기용 구리 합금판 스트립재, 전자·전기 기기용 부품, 단자, 및 버스바
US11655523B2 (en) * 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
KR102591742B1 (ko) * 2018-03-30 2023-10-19 미쓰비시 마테리알 가부시키가이샤 전자·전기 기기용 구리 합금, 전자·전기 기기용 구리 합금판 스트립재, 전자·전기 기기용 부품, 단자, 및 버스바

Also Published As

Publication number Publication date
MY184755A (en) 2021-04-20
KR102474009B1 (ko) 2022-12-02
MX2018000330A (es) 2018-04-20
EP3348656B1 (en) 2020-12-30
EP3348656A4 (en) 2019-05-15
KR20180043197A (ko) 2018-04-27
CN107614714A (zh) 2018-01-19
TWI740842B (zh) 2021-10-01
CN107614714B (zh) 2020-09-11
EP3348656A1 (en) 2018-07-18
SG11201710511UA (en) 2018-03-28
TW201730349A (zh) 2017-09-01
PH12017502294A1 (en) 2018-06-11
US20180171437A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6226097B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片
WO2017043551A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP6226098B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片
WO2017043556A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP6187629B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
CN111788320B (zh) 电子电气设备用铜合金﹑电子电气设备用铜合金板条材、电子电气设备用组件、端子及汇流排
WO2017043577A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP6680041B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
WO2017170699A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片
JP5910790B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
WO2019189534A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
WO2015004939A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6680042B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP5572754B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2019178398A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
WO2015087624A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子
JP6187630B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP2019178399A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
WO2015004940A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6248387B2 (ja) 電子・電気機器用銅合金、電子・電気機器用部品及び端子
JP6304867B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2015034333A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177030942

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017502294

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 15737642

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/000330

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 11201710511U

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE