WO2017042989A1 - 燃料タンク用フロート弁 - Google Patents

燃料タンク用フロート弁 Download PDF

Info

Publication number
WO2017042989A1
WO2017042989A1 PCT/JP2016/002399 JP2016002399W WO2017042989A1 WO 2017042989 A1 WO2017042989 A1 WO 2017042989A1 JP 2016002399 W JP2016002399 W JP 2016002399W WO 2017042989 A1 WO2017042989 A1 WO 2017042989A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
air
fuel tank
float valve
valve
Prior art date
Application number
PCT/JP2016/002399
Other languages
English (en)
French (fr)
Inventor
武藤 信晴
杉山 晃也
Original Assignee
京三電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京三電機株式会社 filed Critical 京三電機株式会社
Publication of WO2017042989A1 publication Critical patent/WO2017042989A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/18Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float
    • F16K31/20Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a lift valve
    • F16K31/22Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a lift valve with the float rigidly connected to the valve

Definitions

  • the disclosure in this specification relates to a float valve provided in an air passage of a fuel tank.
  • Patent Document 1 and Patent Document 2 disclose a float valve provided in a passage for venting a fuel tank.
  • An oil supply control valve which is one application of a float valve is disclosed.
  • the fuel supply control valve is also referred to as a full tank control valve for controlling full tank (a state in which fuel is supplied to the upper limit of the fuel tank).
  • This device controls the ventilation of fuel vapor generated in the fuel tank so as to prompt the fuel supply device to stop.
  • This device is equipped with two valves for controlling the ventilation.
  • This device has a float valve that closes and stops venting by floating when the liquid fuel arrives.
  • a cap-shaped or cup-shaped container provides an air chamber.
  • the inclination of the fuel tank and / or the fluctuation of the fuel liquid level may make it difficult to hold the air in the air chamber.
  • the vehicle tilting or shaking may cause air to flow out of the air chamber and introduce fuel into the air chamber.
  • the float valve cannot exhibit the expected closing force.
  • the inclination of the fuel tank and / or the fluctuation of the fuel liquid level cause movement of air or fuel in the air chamber.
  • the buoyancy of the float valve may be biased.
  • An uneven buoyancy of the float valve may impair the closing force expected of the float valve.
  • One object of one disclosure is to provide a fuel tank float valve that can provide a stable valve closing state.
  • Another object of the other disclosure is to provide a fuel tank float valve that can exhibit stable buoyancy even when the fuel tank is inclined and / or the fuel liquid level fluctuates.
  • a fuel tank float valve is provided.
  • the float valve for a fuel tank includes a valve seat (52) that defines a passage, and a movable valve body (54) that is seated or separated from the valve seat by floating on the fuel in the fuel tank.
  • the movable valve body is a plurality of air reservoirs that accumulate air below the liquid level of the fuel in order to float on the fuel, and is arranged in an annular shape along the outer periphery of the movable valve body, and each can independently collect air.
  • Forming members 64, 564, 65, 565, 665) for defining a plurality of air reservoirs (62, 262, 362, 462) are provided.
  • a plurality of air reservoirs are arranged along the outer periphery of the movable valve body.
  • Each of the plurality of air reservoirs can independently store air, and air remains in each air reservoir even when the fuel tank float valve tilts or the fuel level fluctuates. Thereby, the deviation of the buoyancy applied to the movable valve body is suppressed. Therefore, the movable valve body can stably obtain buoyancy along the circumferential direction of the valve seat. Therefore, the movable valve body can stably maintain the valve closing state.
  • the fuel storage device 1 includes a fuel tank 2, a fuel supply control valve 3, and a fuel vapor processing device 4.
  • the fuel storage device 1 is mounted on a vehicle.
  • the fuel storage device 1 can include a fuel supply device that supplies fuel to an internal combustion engine mounted on a vehicle.
  • the fuel supply control valve 3 is provided in the fuel tank 2.
  • the fuel supply control valve 3 may be provided in a fuel supply device provided in the fuel tank 2, for example, a pump module.
  • the fuel supply control valve 3 provides a fuel tank float valve.
  • the fuel supply control valve 3 is provided in a ventilation path for ventilation between the fuel tank 2 and the fuel vapor processing device 4.
  • the air passage is used for discharging gas from the fuel tank 2 to the fuel vapor processing device 4.
  • the air passage is also called a ventilation passage or a breathing passage.
  • the oil supply control valve 3 opens and closes the air passage.
  • the fuel supply control valve 3 is provided on the upper wall surface of the fuel tank 2.
  • the fuel supply control valve 3 allows fuel to be supplied from the fuel filler port by allowing ventilation between the fuel tank 2 and the fuel vapor processing device 4.
  • the fuel supply control valve 3 urges stop of fuel supply from the fuel supply port by blocking the ventilation between the fuel tank 2 and the fuel vapor processing device 4.
  • the fuel supply control valve 3 blocks ventilation, the fuel level rises toward the fuel supply port.
  • an automatic stop mechanism also referred to as an auto stop mechanism of the fueling device 5 reacts, and fueling from the fueling device 5 is automatically stopped.
  • the fuel vapor processing apparatus 4 includes a canister that captures fuel vapor (vapor) contained in the gas discharged from the fuel tank 2.
  • the fuel vapor processing apparatus 4 includes a purge mechanism. The purge mechanism processes the fuel vapor by supplying the fuel vapor captured by the canister to the internal combustion engine and burning it when a predetermined condition is satisfied.
  • the fuel supply control valve 3 is mounted on a flange 6 provided on the upper portion of the fuel tank 2.
  • the flange 6 is made of resin or metal.
  • the flange 6 is a member that covers the opening of the fuel tank 2.
  • the flange 6 can be provided by a dedicated member for mounting the fuel supply control valve 3 or a member for mounting other fuel tank accessories.
  • the fuel supply control valve 3 is disposed in the fuel tank 2 via the flange 6.
  • the fuel supply control valve 3 is suspended from the flange 6 into the fuel tank 2.
  • the flange 6 defines a passage 7 between the fuel tank 2 and the fuel vapor processing device 4.
  • the oil supply control valve 3 and the flange 6 are connected by a connection mechanism such as a snap fit mechanism.
  • An O-ring 8 as a seal member is provided between the oil supply control valve 3 and the flange 6.
  • the fuel supply control valve 3 is installed so as to be in the illustrated posture when the vehicle is in a horizontal state, that is, when the fuel tank 2 is in a horizontal state.
  • the fuel supply control valve 3 has a cylindrical appearance extending downward from the upper part of the fuel tank 2.
  • the oil supply control valve 3 provides a cylindrical tube that is defined by members 31, 34, 51, 52 as cases.
  • the tube can also be referred to as a siphon tube or an air chamber forming tube.
  • the upper end of the pipe communicates with the passage 7, and the lower end is opened slightly below the upper end of the fuel tank 2.
  • the pipe hangs down from the upper part of the fuel tank 2 and defines a ventilation path.
  • the fuel supply control valve 3 opens and closes the communication state between the fuel tank 2 and the passage 7 in response to the fuel level in the pipe, that is, opens and closes the air passage.
  • the fuel supply control valve 3 includes a main float valve 21, a fuel retainer 22, a sub float valve 23, and a relief valve 24.
  • the main float valve 21 is arranged in the pipe.
  • the main float valve 21 opens the air passage when there is no fuel in the pipe.
  • the main float valve 21 floats on the fuel that has reached the inside of the pipe and closes the ventilation path.
  • the main float valve 21 opens and closes the air passage in response to the fuel liquid level (first liquid level height) in the relatively upper part of the pipe.
  • the fuel retainer 22 provides a fuel reservoir for adjusting the responsiveness of the main float valve 21.
  • the fuel retainer 22 is also a responsiveness adjusting mechanism for preventing frequent opening and closing such that the main float valve 21 is once closed and then opened again in a short period of time.
  • the fuel retainer 22 recognizes that the fuel tank 2 is filled, and maintains the main float valve 21 in the closed state for a period assumed to end the fueling operation.
  • the sub float valve 23 controls the arrival of fuel to the main float valve 21.
  • the sub float valve 23 prevents the fuel from reaching the main float valve 21 even if the fuel level temporarily rises.
  • the sub float valve 23 allows the fuel to reach the main float valve 21 when the fuel level continuously rises.
  • the sub float valve 23 is disposed closer to the fuel tank 2 side of the pipe than the main float valve 21.
  • the sub float valve 23 is disposed at the lower part of the pipe, that is, near the inlet.
  • the sub float valve 23 opens the air passage when there is no fuel in the pipe, floats on the fuel that has reached the pipe, and closes the air passage. Thereby, the sub float valve 23 restricts the arrival of fuel to the main float valve 21.
  • the sub float valve 23 opens and closes a passage inside the pipe, that is, an air passage between the pipe inlet and the main float valve 21 in response to the fuel liquid level at the pipe inlet.
  • the relief valve 24 suppresses the pressure in the fuel tank 2.
  • the relief valve 24 opens when the pressure in the fuel tank 2 becomes excessively high, and releases the gas in the fuel tank 2 into the passage 7.
  • the main float valve 21 has a first case 31.
  • the first case 31 is cylindrical.
  • the upper end of the first case 31 is connected to the flange 6.
  • An opening for communicating the inside of the fuel tank 2 and the passage 7 is provided at the upper end of the first case 31. This opening is surrounded and partitioned by the first valve seat 32.
  • An opening end communicating with the fuel tank 2 is provided at the lower end of the first case 31.
  • a sub float valve 23 is provided at the lower end of the first case 31.
  • the lower end of the first case 31 is opened and closed by the sub float valve 23.
  • a through hole 33 is provided at a predetermined position on the top of the first case 31.
  • the through hole 33 communicates the inside and outside of the first case 31.
  • the through hole 33 enables the fuel to be discharged from the upper part of the first case 31 and / or the air to be supplied to the upper part of the first case 31.
  • the fuel holder 22 has an inner cup 34.
  • the inner cup 34 is accommodated in the first case 31.
  • the inner cup 34 has a cup shape capable of storing fuel.
  • the inner cup 34 defines a fuel reservoir in the first case 31.
  • the upper end opening 35 of the fuel reservoir provided by the inner cup 34 is located at substantially the same height as the through hole 33.
  • the inner cup 34 is formed so as to introduce and accumulate fuel from the upper end opening 35.
  • the inner cup 34 is held by being sandwiched between a first case 31 and a second case 51 described later.
  • the inner cup 34 has a through hole 36 provided in the side wall and a through hole 37 provided in the bottom wall.
  • the through hole 36 allows the fuel to be discharged from the fuel reservoir in the inner cup 34.
  • the through hole 36 slowly discharges the fuel.
  • the through hole 36 is set to be small so that the fuel is slowly leaked over a relatively long time when the operator of the fueling device 5 is expected to give up additional fueling.
  • the bottom wall of the inner cup 34 is formed so as to provide a funnel-shaped bottom surface therein.
  • the through hole 37 opens at the lowest position of the bottom wall.
  • the through hole 37 is formed to be relatively large so that the fuel is discharged rapidly.
  • the inner cup 34 provides a member that forms a fuel sump for accumulating fuel in order to maintain the main float valve 21 in the closed state.
  • the main float valve 21 has a ball 38.
  • the ball 38 can close the through hole 37. Further, the ball 38 can open the through hole 37 by rolling while detecting the shaking. In place of the ball 38, various members such as a roller for detecting shaking and a thin piece can be used.
  • Inner cup 34 and ball 38 provide fuel retainer 22.
  • the inner cup 34 and the ball 38 provide a discharge valve for discharging the fuel in the inner cup 34 in a period after the refueling operation is completed.
  • the ball 38 rolls upon sensing the shaking of the fuel tank 2, that is, the shaking accompanying the traveling of the vehicle.
  • the through holes 36 and 37 and the ball 38 provide discharge means for discharging the fuel from the fuel reservoir provided by the inner cup 34.
  • the discharge means holds the fuel so as to prevent excessive refueling in one refueling operation, and enables refueling after the refueling operation is completed.
  • the through hole 37 and the ball 38 provide a means for determining the end of the refueling operation and discharging the fuel.
  • the main float valve 21 has a movable valve body 39.
  • the movable valve body 39 is accommodated in the first case 31.
  • the movable valve body 39 is accommodated in the inner cup 34.
  • the movable valve body 39 is accommodated in the first case 31 and the inner cup 34 so as to be movable in the axial direction, that is, in the vertical direction.
  • the movable valve body 39 is configured to float on the fuel when fuel is present in the inner cup 34.
  • the movable valve body 39 has a float 41.
  • the float 41 is accommodated in the inner cup 34.
  • the movable valve body 39 has a holder 42.
  • the holder 42 is disposed on the float 41.
  • the holder 42 is coupled to the float 41 via the coupling mechanism 43.
  • the coupling mechanism 43 is provided by a protrusion provided on the float 41 and a hook provided on the holder 42 and having a slot elongated in the height direction for receiving the protrusion. Play is allowed by the protrusion moving in the slot of the hook.
  • the coupling mechanism 43 couples the float 41 and the holder 42 so that they can be separated from each other by a predetermined amount in the axial direction.
  • the holder 42 holds the seal member 44.
  • the seal member 44 is an annular plate.
  • the seal member 44 is closely fitted into the cylindrical portion of the holder 42.
  • the holder 42 and the seal member 44 block communication between the fuel tank 2 and the passage 7 when the movable valve element 39 is seated on the valve seat 32, that is, when the seal member 44 is seated on the valve seat 32.
  • the seal member 44 is seated on the valve seat 32, the closed state of the main float valve 21 is provided.
  • the valve opening state of the main float valve 21 is provided.
  • a pilot valve 45 for assisting the opening of the main float valve 21 is formed.
  • the float 41 has a hemispherical convex part.
  • the holder 42 has a sheet surface that receives the convex portion.
  • the pilot valve 45 is opened and closed by play provided by the coupling mechanism 43.
  • the coupling mechanism 43 allows the float 41 to be separated from the holder 42.
  • the pilot valve 45 is opened.
  • the pilot valve 45 is opened, the pressure difference before and after the seal member 44 is relaxed, and the seal member 44 is easily separated from the valve seat 32.
  • Float 41 is guided in the inner cup 34 in the vertical direction, that is, in the axial direction.
  • the inner cup 34 provides an inner cylinder and an outer cylinder for guiding the float 41.
  • a guide mechanism 46 is provided between the holder 42 and the first case 31.
  • the guide mechanism 46 is provided by a small diameter cylindrical portion provided in the holder 42 and a large diameter cylindrical portion provided in the first case 31. By arranging the small-diameter cylindrical portion in the large-diameter cylindrical portion, the holder 42 is guided so as to be movable in the axial direction without being displaced in the radial direction.
  • a compressed flange portion 64d spring 47 is disposed between the inner cup 34 and the float 41. The flange portion 64d spring 47 urges the movable valve body 39 upward. The flange portion 64d spring 47 supplements the buoyancy of the movable valve element 39.
  • the first case 31, the inner cup 34, the float 41, and the holder 42 are made of resin.
  • the ball 38 is made of resin.
  • the seal member 44 is made of rubber.
  • the sub float valve 23 has a second case 51.
  • the second case 51 is cylindrical.
  • the second case 51 is attached to the lower end opening of the first case 31.
  • the first case 31 and the second case 51 are connected.
  • the first case 31 and the second case 51 are connected by a snap fit.
  • the upper wall of the second case 51 is provided with an opening that allows the fuel tank 2 and the first case 31 to communicate with each other. This opening is surrounded and partitioned by the second valve seat 52.
  • the second valve seat 52 is positioned upstream of the first valve seat 32 with respect to the air flow direction in the fuel supply control valve 3. In other words, the second valve seat 52 is installed inside the fuel tank 2 relative to the first valve seat 32.
  • the opening formed by the second valve seat 52 is larger than the opening formed by the first valve seat 32.
  • the diameter of the opening defined by the second valve seat 52 is larger than the radius of the first case 31.
  • the sub float valve 23 has a third case 53.
  • the third case 53 has a shallow dish shape.
  • the third case 53 is attached to the lower end opening of the second case 51.
  • the second case 51 and the third case 53 are connected by snap fit.
  • the third case 53 forms an accommodation chamber for the movable valve body 54 between the second case 51 and the third case 53 while forming an opening at the lower end of the second case 51.
  • the accommodation chamber communicates with the fuel tank 2 through a large opening at the lower end. Therefore, the fuel in the fuel tank 2 can freely enter at least a room defined by the second case 51 and the third case 53.
  • the sub float valve 23 has a movable valve element 54.
  • the movable valve body 54 has a flat cylindrical shape.
  • the movable valve body 54 is accommodated between the second case 51 and the third case 53.
  • the movable valve body 54 is seated on or separated from the second valve seat 52 by floating on the fuel in the fuel tank 2.
  • the movable valve body 54 defines a plurality of air reservoirs 61 and 62.
  • the plurality of air reservoirs 61 and 62 accumulate air below the liquid level of the fuel because the movable valve body 54 floats on the fuel.
  • the plurality of air reservoirs 61 and 62 include a first air reservoir 61 and a second air reservoir 62.
  • the plurality of air reservoirs 61 and 62 provide buoyancy chambers for floating the movable valve body 54 to the fuel when the fuel reaches the movable valve body 54.
  • the air reservoirs 61 and 62 are defined by cap-shaped members that open downward.
  • the first air reservoir 61 is disposed at the radial center of the movable valve element 54.
  • the first air reservoir 61 is disposed so as to occupy the central portion in the radial direction of the movable valve body 54.
  • the first air reservoir 61 is disposed on the upper part of the movable valve body 54.
  • the first air reservoir 61 accumulates air below the fuel level because the movable valve body 54 floats on the fuel.
  • the first air reservoir 61 includes buoyancy reduction means for gradually reducing the buoyancy applied to the movable valve body 54 as time passes after the fuel reaches the movable valve body 54.
  • the movable valve body 54 has a through hole 63 for gradually reducing buoyancy.
  • the through hole 63 provides buoyancy reduction means for gradually reducing buoyancy by drawing air from the first air reservoir 61 and introducing fuel into the first air reservoir 61.
  • the buoyancy reduction means gradually sinks the movable valve body 54 into the fuel.
  • the second air reservoir 62 is disposed on the radially outer side of the movable valve body 54.
  • the second air reservoir 62 is disposed at a position that can be called the central portion or the lower portion of the movable valve body 54 in the vertical direction.
  • the second air reservoir 62 is disposed on the radially outer side of at least a part of the first air reservoir 61.
  • the second air reservoir 62 is disposed so as to surround at least a part of the first air reservoir 61.
  • the second air reservoir 62 does not include buoyancy reducing means like the through hole 63.
  • the second air reservoir 62 has a plurality of small rooms. The plurality of small rooms are dispersedly arranged along the circumferential direction.
  • the second air reservoir 62 is annularly arranged along the second valve seat 52, and each can independently store air.
  • the second air reservoir 62 is annularly arranged along the outer periphery of the movable valve body.
  • the movable valve body 54 has a first member 64 and a second member 65.
  • the first member 64 provides an upper part and a central part of the movable valve body 54.
  • the first member 64 can also be called an upper member or an inner member.
  • the first member 64 is cylindrical.
  • the first member 64 has a cap shape having a lower end opening at the lower end.
  • the first member 64 has a through hole 63 in the upper wall. The through hole 63 opens into the opening surrounded by the second valve seat 52.
  • the second member 65 provides a lower part and an outer peripheral part of the movable valve body 54.
  • the second member 65 can also be referred to as a lower member or an outer member.
  • the second member 65 is annular.
  • the first member 64 is disposed on the radially inner side of the second member 65.
  • the first member 64 and the second member 65 provide a forming member that partitions the plurality of air reservoirs 61 and 62.
  • the second member 65 provides a forming member that partitions the plurality of second air reservoirs 62.
  • the first member 64 defines a through hole 63 as buoyancy reducing means.
  • the first member 64 and the second member 65 are connected by a connection mechanism such as a snap fit.
  • the first member 64 and the second member 65 can be connected by various connection methods such as adhesion and welding.
  • the first member 64 and the second member 65 are made of resin.
  • the movable valve body 54 has a seal member 66.
  • the seal member 66 is disposed on the upper surface of the movable valve body 54.
  • the seal member 66 is fixed between the first member 64 and the second member 65 which are forming members.
  • the seal member 66 is seated on or separated from the second valve seat 52.
  • the seal member 66 is seated on the second valve seat 52 when the movable valve body 54 moves upward due to floating on the fuel.
  • the seal member 66 closes the air passage by being seated on the second valve seat 52.
  • the seal member 66 moves away from the second valve seat 52 when the movable valve body 54 sinks in the fuel or moves downward as the liquid level of the fuel drops.
  • the seal member 66 opens the air passage by being separated from the second valve seat 52.
  • the movable valve body 54 is guided by the guide mechanism 67 so as to move in the vertical direction, that is, in the axial direction.
  • the guide mechanism 67 provides stable contact between the second valve seat 52 and the seal
  • the relief valve 24 is provided on the upper wall of the first case 31.
  • the relief valve 24 includes a valve seat 71, a movable valve body 72, and a spring 73.
  • the relief pressure is set by the movable valve body 72 and the spring 73.
  • the first member 64 has an upper wall 64a that can be called a disk shape or a dish shape, and a cylindrical side wall 64b.
  • the first member 64 has a guide shaft 64 c for providing a guide mechanism 67.
  • the guide shaft 64c guides the movable valve body 54 in the axial direction by being inserted into a cylindrical guide tube formed in the third case 53.
  • the first member 64 has an annular flange portion 64d on the radially outer side of the upper portion thereof.
  • the flange portion 64d provides a holding portion for holding the seal member 66.
  • the first member 64 mainly defines the first air reservoir 61.
  • the second member 65 has an annular upper wall 65a, and an outer wall 65b and an inner wall 65c arranged inside and outside thereof.
  • the second member 65 has an annular cap shape having a lower end opening at the lower end.
  • the second member 65 mainly defines a second air reservoir 62.
  • the second member 65 has a funnel-shaped skirt portion 65 d extending so as to cover the lower end opening of the first member 64.
  • the skirt portion 65d squeezes the lower opening of the first air reservoir 61 inward in the radial direction.
  • the second member 65 also contributes to partition the first air reservoir 61 by the skirt portion 65d.
  • the skirt portion 65 d suppresses air leakage from the first air reservoir 61.
  • the second member 65 provides a receiving surface 65e for receiving the seal member 66 by its upper wall 65a.
  • the seal member 66 is disposed outside the side wall 64b of the first member 64. Most of the seal member 66 in the radial direction is disposed so as to be exposed upward on the receiving surface 65e.
  • the flange portion 64d and the receiving surface 65e form an annular slot that opens outward in the radial direction. In this slot, a seal member 66 is accommodated and held.
  • the radially inner edge of the seal member 66 is positioned between the flange portion 64d and the receiving surface 65e.
  • the radially inner edge of the seal member 66 is sandwiched between the flange portion 64d and the receiving surface 65e. As a result, the seal member 66 is fixed to the movable valve body 54.
  • the seal member 66 includes a base cloth 66a and a rubber layer 66b.
  • the base fabric 66a is a fabric formed by weaving fibers.
  • the rubber layer 66b is formed on both surfaces of the base fabric 66a.
  • the base fabric 66a improves the durability of the seal member 66.
  • FIG. 9 shows a cross section of the movable valve body 54 taken along the line IX-IX shown in FIG.
  • FIG. 10 shows a cross section of the movable valve body 54 taken along the line XX shown in FIG.
  • the second member 65 has a plurality of partition walls 65f.
  • the plurality of partition walls 65f partition an annular cavity surrounded by the upper wall 65a, the outer wall 65b, and the inner wall 65c into a plurality of small rooms along the circumferential direction.
  • the plurality of partition walls 65f partition the annular cavity into a plurality of partial arc-shaped cavities.
  • the plurality of partition walls 65f define a plurality of air reservoirs.
  • six partition walls 65 f are provided, and six small chambers are provided as the second air reservoir 62.
  • the annular second air reservoir 62 is divided into a plurality of small chambers by the plurality of partition walls 65f.
  • the movable valve body 54 has a plurality of second air reservoirs 62 arranged in a distributed manner in the circumferential direction.
  • the plurality of second air reservoirs are located below the seal member 66.
  • the plurality of second air reservoirs 62 are distributed in the circumferential direction.
  • the plurality of second air reservoirs 62 are evenly distributed along the circumferential direction. Such an arrangement contributes to suppressing an undesirable distribution of buoyancy in the circumferential direction.
  • the liquid level FLv in the second air reservoir 62 when the fuel reaches the movable valve body 54 when the fuel supply control valve 3 is in the normal vertical posture shown in FIG. 1 is shown. Yes.
  • the plurality of second air reservoirs 62 all retain air. This provides the necessary buoyancy. Moreover, an even buoyancy with almost no distribution along the circumferential direction is provided.
  • the liquid level in the second air reservoir 62 reaches the height of the broken line.
  • air accumulates at the left end (upper part of the slope) of the annular second air reservoir 62 in the figure.
  • air cannot be stored at the right end (lower part of the slope) of the annular second air reservoir 62 in the figure.
  • the movable valve body 54 produces an undesirable distribution of buoyancy along the circumferential direction.
  • the movable valve body 54 cannot press the seal member 66 against the second valve seat 52 with sufficient strength at a portion where the buoyancy is small or a portion where the buoyancy is lost. For this reason, the valve-closed state cannot be maintained in a portion where buoyancy is small or where buoyancy is lost, and fuel may be allowed to enter. In this case, the sub float valve 23 cannot perform its intended function.
  • this embodiment has a partition wall 65f.
  • Each of the plurality of second air reservoirs 62 holds air.
  • each of the plurality of second air reservoirs 62 supplies buoyancy, the distribution of buoyancy in the circumferential direction is suppressed.
  • the seal member 66 is pressed toward the second valve seat 52 by buoyancy at all positions in the circumferential direction.
  • the movable valve body 54 can exhibit a stable buoyancy even if the fuel tank 2 is inclined and / or the fuel liquid level fluctuates. Therefore, according to the fuel supply control valve 3 of this embodiment, a stable valve closing state is provided.
  • the operation of the oil supply control valve 3 will be described.
  • the fuel level FL in the fuel tank 2 is sufficiently low, if fuel is supplied from the fuel supply device 5 into the fuel tank 2, the gas in the fuel tank 2 passes through the fuel supply control valve 3 and the fuel vapor processing device. It is discharged toward 4. At this time, the main float valve 21 and the sub float valve 23 of the fuel supply control valve 3 are opened.
  • the gas flows as indicated by an arrow AR.
  • the fuel supply control valve 3 no reverse flow of fuel to the fuel supply device 5 occurs. Therefore, the fuel supply from the fuel supply device 5 into the fuel tank 2 proceeds, and the liquid level gradually rises.
  • the 3 shows a state in which the liquid level in the fuel tank 2 has reached the lower end of the fuel supply control valve 3.
  • the fuel rapidly rises in the fuel supply control valve 3.
  • the through hole 33 communicates the inside and outside of the fuel supply control valve 3. However, since the through hole 33 restricts the amount of air passing therethrough, the fuel liquid level outside the fuel supply control valve 3 rises only slowly. The fuel may enter the fuel supply control valve 3 even when the fuel level fluctuates at a fuel level close to FIG.
  • the movable valve body 54 floats on the fuel as the fuel level rapidly rises.
  • the movable valve body 54 eventually presses the seal member 66 against the second valve seat 52. Therefore, the sub float valve 23 shifts from the open state to the closed state. Thereby, the discharge of the gas via the oil supply control valve 3 is blocked.
  • the fuel supplied from the fuel supply device 5 flows backward to the filler pipe.
  • the fueling device 5 detects the fuel that has flowed back to the filler pipe, and automatically stops fueling. This automatic stop is the first automatic stop.
  • Such an automatic stop function is generally provided in the fuel supply device 5 as an automatic stop mechanism.
  • the gas stored in the first air reservoir 61 is gradually discharged from the through hole 63.
  • the through hole 63 discharges gas toward the oil supply control valve 3.
  • fuel is introduced into the first air reservoir 61.
  • the first air reservoir 61 gradually loses buoyancy.
  • the second air reservoir 62 alone cannot provide buoyancy for pressing the movable valve element 54 against the second valve seat 52. Therefore, the movable valve body 54 eventually sinks, and the sub-float valve 23 returns from the closed state to the open state.
  • the fuel level in the fuel supply control valve 3 is also lowered by the ventilation through the through hole 33. Therefore, the movable valve body 54 is also lowered by the drop in the liquid level, and the sub-float valve 23 returns from the closed state to the open state.
  • the sub-float valve 23 is opened, additional oil supply from the oil supply device 5 becomes possible.
  • the movable valve body 54 may float on the fuel and press the seal member 66 against the second valve seat 52.
  • the sub float valve 23 closes the air passage on the fuel tank 2 side than the main float valve 21. Therefore, the sub float valve 23 prevents the fuel from reaching the main float valve 21.
  • the temporary closing by the sub-float valve 23 is released when the oscillating fuel liquid level is lowered and the movable valve body 54 is lowered.
  • the movable valve body 39 maintains the valve closed state for a predetermined time or longer which is assumed to give up further refueling. This is because even if the fuel level in the first case 31 is lowered, the fuel is stored in the inner cup 34.
  • the through hole 33 discharges excessive fuel introduced into the fuel supply control valve 3 and introduces air to lower the liquid level in the fuel supply control valve 3. Thereby, the fuel liquid level outside the fuel reservoir provided by the inner cup 34 is lowered.
  • the through hole 36 gradually discharges the fuel from the fuel reservoir.
  • the ball 38 moves. Thereby, the ball 38 opens the through hole 37.
  • the fuel in the fuel reservoir is also discharged from the through hole 37.
  • the movable valve body 39 moves downward.
  • the pilot valve 45 is first opened, and then the seal member 44 is separated from the first valve seat 32.
  • the main float valve 21 returns from the closed state to the open state. As a result, refueling to the fuel tank 2 becomes possible.
  • the movable valve body 54 can exhibit a stable buoyancy even if the fuel tank 2 is inclined and / or the fuel liquid level fluctuates. Therefore, according to the fuel supply control valve 3 of this embodiment, a stable valve closing state is provided.
  • the movable valve body 54 of this embodiment has two second air reservoirs 262.
  • the second member 65 has two partition walls 265f.
  • the movable valve body 54 may have three, four, or five second air reservoirs.
  • the movable valve body 54 of this embodiment has eight second air reservoirs 362.
  • the second member 65 has eight partition walls 365f.
  • the movable valve body 54 may have seven, nine, or more second air reservoirs.
  • the plurality of second air reservoirs 62 are equal in size to each other, and they are equally arranged along the circumferential direction. Instead of this, a plurality of second air reservoirs having different sizes may be employed. Further, the plurality of second air reservoirs may be arranged slightly unevenly or biased along the circumferential direction.
  • the movable valve body 54 of this embodiment has five second air reservoirs 462.
  • the second member 65 has five partition walls 465f.
  • the five second reservoirs 462 are different in size, that is, in volume.
  • the volume of the air reservoir in the right half in the figure is slightly smaller than the volume of the air reservoir in the left half in the figure.
  • the plurality of second air reservoirs are arranged slightly unevenly along the circumferential direction.
  • the movable valve body 54 can exhibit a stable buoyancy even when the fuel tank 2 is inclined and / or the fuel liquid level fluctuates. According to the fuel supply control valve 3 of this embodiment, a stable valve closing state is provided.
  • the movable valve element 54 of this embodiment includes a first member 564 and a second member 565.
  • the first member 564 and the second member 565 are forming members that form the plurality of air reservoirs 61 and 62.
  • the first member 564 has a mushroom-like protrusion 564e for holding the seal member 566 at the upper part.
  • the seal member 566 is fitted into the protrusion 564e using its own elasticity.
  • the seal member 566 is held between a flange portion 564f provided by the protrusion 564e and a receiving surface 564g provided by the first member 564.
  • the seal member 566 is mounted before or after connecting the first member 564 and the second member 565.
  • the second member 565 has a plurality of recesses 565g at a position slightly closer to the center of the lower surface.
  • the concave portion 565g opens downward.
  • the plurality of recesses 565g are arranged in an annular shape between the outer edge of the second member 565 and the center.
  • the plurality of recesses 565g provide a plurality of second air reservoirs 62.
  • the first air reservoir 61 has a disk cavity that extends over substantially the entire radial direction of the movable valve body 54. Further, the first air reservoir 61 has a cylindrical cavity extending in the axial direction at the radial center.
  • the plurality of second air reservoirs 62 are located below the disk cavity.
  • the plurality of second air reservoirs 62 are located on the radially outer side of the cylindrical cavity.
  • the radially outer end of the disk cavity reaches the radially outer side from the plurality of second air reservoirs 62.
  • the radially outer end of the disk cavity extends so as to wrap around the radially outer side of the plurality of second air reservoirs 62.
  • the movable valve body 54 of this embodiment has a forming member 665 for forming a first air reservoir 61 and a plurality of second air reservoirs 62.
  • the seal member 666 is bonded to the forming member 665. Also in this embodiment, it is possible to obtain the effect of the plurality of second air reservoirs 62.
  • the disclosure of this specification is not limited to the illustrated embodiments.
  • the disclosure encompasses the illustrated embodiments and variations by those skilled in the art based thereon.
  • the disclosure is not limited to the combinations of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments are omitted.
  • the disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the description of the claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the claims.
  • the oil supply control valve 3 is provided with the relief valve 24.
  • a configuration in which the oil supply control valve 3 does not include the relief valve 24 may be employed.
  • the fuel cup is formed in the first case 31 by the inner cup 34.
  • the inner cup 34 may be formed integrally with the first case 31 or the second case 51.
  • the sub float valve 23 is disposed under the main float valve 21.
  • a sub float valve 23 may be arranged beside the main float valve 21. Even with this configuration, the fuel can reach the main float valve 21 by the sub float valve 23.
  • the snap fit which engages components using the elasticity of a resin component is utilized for the connection or connection of a member.
  • connection methods such as adhesion with an adhesive, welding to melt a part of the member, connection with a fastening member such as a bolt, and screw coupling can be used.
  • the members 31, 34, 51, and 52 as cases can adopt various shapes in order to provide functional elements found in the configuration of the embodiment.
  • the seal member 66 in which the rubber layer 66b is formed on the base cloth 66a is employed.
  • a seal member in which a rubber layer is coated on a metal core plate may be used.
  • a seal member made only of rubber may be used.
  • a seal protrusion or a seal lip may be provided on the rubber surface to enhance the sealing performance.
  • the first air reservoir 61 and the second air reservoir 62 are provided by cap-shaped members that are closed at the upper end of the lower end opening.
  • the first air reservoir 61 and / or the second air reservoir 62 may be provided by a cup-shaped member having a closed upper end opening and a lower end.
  • the buoyancy reducing means associated with the first air reservoir 61 can be provided by a through hole or a groove provided in the cup-shaped member.
  • the through hole provided in the bottom of the cup-shaped member gradually reduces buoyancy by introducing fuel into the first air reservoir 61.
  • the plurality of second air reservoirs 62 are formed by providing the thin plate-like partition wall 65f.
  • a thick partition may be provided.
  • a partition wall having a circumferential thickness corresponding to the circumferential width of one second air reservoir may be provided.
  • the plurality of second air reservoirs 62 are arranged in a line along the circumferential direction of the movable valve body 54.
  • the plurality of second air reservoirs 62 may be arranged in multiple rows.
  • the plurality of second air reservoirs 62 may be arranged in a double annular shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)
  • Float Valves (AREA)

Abstract

 給油制御弁3は、燃料タンク用フロート弁を提供する。複数のケース31、51は、燃料タンク内に垂下される管を提供する。給油されると、燃料が管の中を上昇する。メインフロート弁21は、上部にまで燃料が到達すると、通気路を閉じることによって給油作業の終了を促す。サブフロート弁23は、燃料がメインフロート弁21に到達する前に、通気路を一時的に閉じることによって大量給油から少量給油への移行を促す。可動弁体54は、複数の第2の空気溜め62を有する。複数の第2の空気溜め62は、環状に配列されている。給油制御弁3が傾いても、液面が揺れても、複数の第2の空気溜め62のそれぞれの中に空気が溜められる。複数の第2の空気溜め62の浮力によりシール部材66は弁座52に押し付けられる。

Description

燃料タンク用フロート弁 関連出願の相互参照
 この出願は、2015年9月7日に出願された日本特許出願2015-175914号を基礎出願とするものであり、基礎出願の開示内容は参照によってこの出願に組み込まれている。
 この明細書における開示は、燃料タンクの通気路に設けられるフロート弁に関する。
 特許文献1および特許文献2は、燃料タンクの通気のための通路に設けられたフロート弁を開示する。フロート弁のひとつの用途である給油制御弁が開示されている。給油制御弁は、満タン(燃料タンクの上限まで給油された状態)を制御するための満タン制御弁とも呼ばれる。この装置は、給油装置の停止を促すように、燃料タンク内で発生する燃料蒸気の通気を制御する。この装置は、通気を制御するための2つの弁を備えている。この装置は、液体の燃料が到達すると、燃料に浮くことによって閉弁し通気を停止するフロート弁を有する。
特開2013-82427号公報 特開2014-159209号公報
 従来技術の構成では、キャップ状、またはカップ状の容器が空気室を提供する。ところが、燃料タンクの傾斜および/または燃料液面の揺れが、空気室における空気の保持を困難にすることがある。例えば、燃料供給装置が車両に搭載される場合、車両の傾斜、揺れは、空気室から空気を流出させ、空気室に燃料を導入することがある。この場合、フロート弁は期待される閉弁力を発揮することができない。
 また、別の観点では、燃料タンクの傾斜および/または燃料液面の揺れは、空気室における空気または燃料の移動を生じさせる。この結果、フロート弁の浮力に偏りが生じることがある。フロート弁の浮力の偏りはフロート弁に期待される閉弁力を損なうことがある。特に、大きい開口を囲む大きいシール径を有する場合、安定した閉弁状態を提供することが困難である。
 上述の観点において、または言及されていない他の観点において、燃料タンク用フロート弁にはさらなる改良が求められている。
 ひとつの開示のひとつの目的は、安定した閉弁状態を提供できる燃料タンク用フロート弁を提供することである。
 他の開示のひとつの目的は、燃料タンクの傾斜および/または燃料液面の揺れがあっても、安定した浮力を発揮できる燃料タンク用フロート弁を提供することである。
 この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態の部分との対応関係を示すものであって、技術的範囲を限定するものではない。
 ひとつの態様により、燃料タンク用フロート弁が提供される。燃料タンク用フロート弁は、通路を区画形成する弁座(52)と、燃料タンク内の燃料に浮くことによって弁座に対して着座または離座する可動弁体(54)とを備える。可動弁体は、燃料に浮くために燃料の液面下において空気を溜める複数の空気溜めであって、可動弁体の外周に沿って環状に配置され、それぞれが独立して空気を溜めることができる複数の空気溜め(62、262、362、462)を区画形成する形成部材(64、564、65、565、665)を備える。
 この構成によると、複数の空気溜めが可動弁体の外周に沿って配置される。複数の空気溜めは、それぞれが独立して空気を溜めることができ、燃料タンク用フロート弁が傾斜したり、または燃料の液面が揺れたりしても、それぞれの空気溜めに空気が残留する。これにより、可動弁体に与えられる浮力の偏りが抑制される。よって、可動弁体は、弁座の周方向に沿って、安定的に浮力を得ることができる。よって、可動弁体は、閉弁状態を安定して維持することができる。
第1実施形態の燃料貯蔵装置のブロック図である。 第1実施形態の燃料遮断弁の縦断面図である。 第1実施形態の燃料貯蔵装置のブロック図である。 第1実施形態の燃料遮断弁の縦断面図である。 第1実施形態の燃料貯蔵装置のブロック図である。 第1実施形態の燃料遮断弁の縦断面図である。 第1実施形態の可動弁体の断面図である。 第1実施形態のガスケットの断面図である。 第1実施形態のサブフロートの横断面図である。 第1実施形態のサブフロートの縦断面図である。 第1実施形態のサブフロートの傾斜時における縦断面図である。 第2実施形態のサブフロートの横断面図である。 第3実施形態のサブフロートの横断面図である。 第4実施形態のサブフロートの横断面図である。 第5実施形態のサブフロートの縦断面図である。 第6実施形態のサブフロートの縦断面図である。
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。
 (第1実施形態)
 図1において、燃料貯蔵装置1は、燃料タンク2、給油制御弁3、および燃料蒸気処理装置4を備える。燃料貯蔵装置1は、車両に搭載されている。燃料貯蔵装置1は、車両に搭載された内燃機関に燃料を供給する燃料供給装置を含むことができる。
 給油制御弁3は、燃料タンク2に設けられている。給油制御弁3は、燃料タンク2に設けられた燃料供給装置、例えばポンプモジュールに設けられてもよい。給油制御弁3は、燃料タンク用フロート弁を提供する。給油制御弁3は、燃料タンク2と燃料蒸気処理装置4との間の通気のための通気路に設けられている。通気路は、燃料タンク2から燃料蒸気処理装置4への気体の排出に利用される。通気路は、換気通路、または呼吸通路とも呼ばれる。給油制御弁3は、通気路を開閉する。給油制御弁3は、燃料タンク2の上部の壁面に設けられている。
 給油制御弁3は、燃料タンク2と燃料蒸気処理装置4との間の通気を許容することによって給油口からの給油を許容する。給油制御弁3は、燃料タンク2と燃料蒸気処理装置4との間の通気を遮断することによって給油口からの給油の停止を促す。給油制御弁3が通気を遮断することにより、給油口に向けて燃料液面が上昇する。この結果、給油装置5の自動停止機構(オートストップ機構とも呼ばれる)が反応し、給油装置5からの給油が自動的に停止される。
 燃料蒸気処理装置4は、燃料タンク2から排出される気体に含まれる燃料蒸気(ベーパ)を捕捉するキャニスタを備える。燃料蒸気処理装置4は、パージ機構を含む。パージ機構は、所定の条件が成立するとキャニスタに捕捉された燃料蒸気を内燃機関に供給し燃焼させることによって、燃料蒸気を処理する。
 図2において、給油制御弁3は、燃料タンク2の上部に設けられたフランジ6に装着されている。フランジ6は、樹脂製または金属製である。フランジ6は、燃料タンク2の開口部を覆う部材である。フランジ6は、給油制御弁3を装着するための専用の部材、または、他の燃料タンク付属部品を装着するための部材によって提供することができる。給油制御弁3は、フランジ6を介して燃料タンク2内に配置されている。給油制御弁3は、フランジ6から燃料タンク2内に垂下されている。フランジ6は、燃料タンク2と燃料蒸気処理装置4との間における通路7を区画形成している。給油制御弁3とフランジ6とは、スナップフィット機構などのような接続機構によって接続されている。給油制御弁3とフランジ6との間には、シール部材としてのOリング8が設けられている。給油制御弁3は、車両が水平状態にあるとき、すなわち燃料タンク2が水平状態に置かれているときに、図示の姿勢となるように設置されている。
 給油制御弁3は、燃料タンク2の上部から下に向けて延びる筒状の外観を有する。給油制御弁3は、ケースとしての部材31、34、51、52によって区画形成される筒状の管を提供する。この管は、燃料タンク2の上端にまで燃料液面が到達しようとするときに、管の外側(燃料タンク2の上部)に空気空間を確保しながら、管の中を燃料液面が上昇することを可能とする。管は、サイフォン管または空気室形成管とも呼ぶことができる。管の上端は通路7に連通し、下端は燃料タンク2の上端よりやや下において開口している。管は、燃料タンク2の上部から垂下され、通気路を区画形成する。給油制御弁3は、管の中における燃料液面に応答して燃料タンク2と通路7との連通状態を開閉する、すなわち通気路を開閉する。
 給油制御弁3は、メインフロート弁21、燃料保持器22、サブフロート弁23、およびリリーフ弁24を有する。
 メインフロート弁21は、管内に配置されている。メインフロート弁21は、管内に燃料がないときに通気路を開く。メインフロート弁21は、管内に到達した燃料に浮いて通気路を閉じる。メインフロート弁21は、上記管の比較的上部における燃料液面(第1液面高さ)に反応して通気路を開閉する。
 燃料保持器22は、メインフロート弁21の応答性を調節するための燃料溜めを提供する。燃料保持器22は、メインフロート弁21が一旦は閉弁した後に、短期間のうちに再び開弁するような頻繁な開閉を阻止するための応答性調節機構でもある。燃料保持器22は、燃料タンク2が満たされたことを給油作業者が認識し、給油作業を終了すると想定される期間にわたってメインフロート弁21を閉弁状態に維持する。
 サブフロート弁23は、メインフロート弁21への燃料の到達を制御する。サブフロート弁23は、一時的な燃料液面の上昇があっても、燃料がメインフロート弁21に到達することを阻止する。一方、サブフロート弁23は、継続的な燃料液面の上昇があると、燃料がメインフロート弁21に到達することを許容する。サブフロート弁23は、メインフロート弁21よりも管の燃料タンク2側に配置されている。サブフロート弁23は、上記管の下部、すなわち入口付近に配置されている。サブフロート弁23は、管内に燃料がないときに通気路を開き、管内に到達した燃料に浮いて通気路を閉じる。これにより、サブフロート弁23は、メインフロート弁21への燃料の到達を制限する。サブフロート弁23は、管の入口における燃料液面に反応して、管内部の通路、すなわち管の入口とメインフロート弁21との間の通気路を開閉する。
 リリーフ弁24は、燃料タンク2内の圧力を抑制する。リリーフ弁24は、燃料タンク2内の圧力が過剰に高くなると開弁し、燃料タンク2内の気体を通路7に放出する。
 メインフロート弁21は、第1のケース31を有する。第1のケース31は、筒状である。第1のケース31の上端はフランジ6に連結されている。第1のケース31の上端には、燃料タンク2内と通路7とを連通する開口部が設けられている。この開口部は、第1の弁座32によって囲まれ、区画されている。第1のケース31の下端には、燃料タンク2に連通する開口端が設けられている。第1のケース31の下端には、サブフロート弁23が設けられている。第1のケース31の下端は、サブフロート弁23によって開閉される。第1のケース31の上部の所定位置には、貫通穴33が設けられている。貫通穴33は、第1のケース31の内外を連通する。貫通穴33は、第1のケース31の上部からの燃料の排出および/または第1のケース31の上部への空気の供給を可能とする。
 燃料保持器22は、インナカップ34を有する。インナカップ34は、第1のケース31内に収容されている。インナカップ34は、燃料を溜めることができるカップ状である。インナカップ34は、第1のケース31内において燃料溜めを区画形成する。インナカップ34が提供する燃料溜めの上端開口35は、貫通穴33とほぼ同じ高さに位置している。インナカップ34は、上端開口35から燃料を導入し溜めるように形成されている。インナカップ34は、第1のケース31と後述の第2のケース51との間に挟まれることによって保持されている。
 インナカップ34は、側壁に設けられた貫通穴36と、底壁に設けられた貫通穴37とを有する。貫通穴36は、インナカップ34内の燃料溜めからの燃料の排出を可能とする。貫通穴36は、燃料をゆっくりと排出する。貫通穴36は、給油装置5の操作者が追加給油を諦めるであろうと予測される比較的長い時間にわたって、ゆっくりと燃料を漏出させるように小さく設定されている。インナカップ34の底壁は、内部に漏斗状の底面を提供するように形成されている。貫通穴37は、底壁の最も下の位置に開口している。貫通穴37は、燃料を急速に排出するように比較的大きく形成されている。インナカップ34は、メインフロート弁21を閉弁状態に維持するために燃料を溜める燃料溜めを形成する部材を提供する。
 メインフロート弁21は、ボール38を有する。ボール38は、貫通穴37を閉塞することができる。また、ボール38は、揺れを感知して転動することによって貫通穴37を開くことができる。ボール38に代えて、揺れを感知するためのローラ、薄片など多様な部材を利用することができる。インナカップ34とボール38とは、燃料保持器22を提供する。インナカップ34とボール38とは、給油作業が完了した後の期間において、インナカップ34内の燃料を排出するための排出弁を提供する。ボール38は、燃料タンク2の揺れ、すなわち車両の走行に伴う揺れを感知して転動する。貫通穴36、37およびボール38は、インナカップ34が提供する燃料溜めから燃料を排出する排出手段を提供する。排出手段は、一回の給油作業における過剰な給油を阻止するように燃料を保持する一方で、給油作業が終了した後には、再び給油を可能とする。貫通穴37とボール38とは、給油作業の終了を判定して燃料を排出する手段を提供している。
 メインフロート弁21は、可動弁体39を有する。可動弁体39は、第1のケース31内に収容されている。可動弁体39は、インナカップ34内に収容されている。可動弁体39は、第1のケース31内、およびインナカップ34内を軸方向、すなわち上下方向に沿って移動可能に収容されている。
 可動弁体39は、インナカップ34内に燃料があると、燃料に浮くように構成されている。可動弁体39は、フロート41を有する。フロート41は、インナカップ34内に収容されている。可動弁体39は、ホルダ42を有する。ホルダ42は、フロート41の上に配置されている。ホルダ42は、連結機構43を介してフロート41と連結されている。連結機構43は、フロート41に設けられた突起部と、ホルダ42に設けられ、突起部を受け入れる高さ方向に細長いスロットを有するフック部とによって提供されている。突起部がフック部のスロット内を移動することにより遊びが許容されている。連結機構43は、フロート41とホルダ42とが軸方向に関して所定量だけ離れることができるように、両者を連結している。
 ホルダ42は、シール部材44を保持する。シール部材44は、環状の板である。シール部材44は、ホルダ42の筒状部分に緊密に嵌めこまれている。ホルダ42とシール部材44とは、可動弁体39が弁座32に着座するとき、すなわち、シール部材44が弁座32に着座するときに燃料タンク2と通路7との連通を遮断する。弁座32にシール部材44が着座することによって、メインフロート弁21の閉弁状態が提供される。弁座32からシール部材44が離座することによって、メインフロート弁21の開弁状態が提供される。
 フロート41とホルダ42との間には、メインフロート弁21の開弁を補助するためのパイロット弁45が形成されている。フロート41は、半球状の凸部を有する。ホルダ42は、凸部を受け入れるシート面を有する。連結機構43が提供する遊びによって、パイロット弁45は開閉される。弁座32にシール部材44が着座していると、燃料タンク2内の圧力は通路7より高くなる。燃料液面の低下によってフロート41が下降すると、連結機構43は、ホルダ42からフロート41が離れることを許容する。この結果、パイロット弁45が開く。パイロット弁45が開くと、シール部材44の前後における圧力差が緩和され、シール部材44が弁座32から離れやすくなる。
 フロート41は、インナカップ34内において上下方向、すなわち軸方向に案内されている。インナカップ34は、フロート41を案内するための内筒と外筒とを提供する。さらに、ホルダ42と第1のケース31との間には、ガイド機構46が設けられている。ガイド機構46は、ホルダ42に設けられた小径筒状部分と、第1のケース31に設けられた大径筒状部分とによって提供されている。大径筒状部分の中に小径筒状部分が配置されることによって、ホルダ42は径方向にずれることなく軸方向に移動可能に案内される。インナカップ34とフロート41との間には圧縮状態のフランジ部64dスプリング47が配置されている。フランジ部64dスプリング47は、可動弁体39を上方向へ向けて付勢する。フランジ部64dスプリング47は可動弁体39の浮力を補う。
 第1のケース31、インナカップ34、フロート41、ホルダ42は樹脂製である。ボール38は、樹脂製である。シール部材44はゴム製である。
 サブフロート弁23は、第2のケース51を有する。第2のケース51は筒状である。第2のケース51は、第1のケース31の下端開口に装着されている。第1のケース31と第2のケース51とは接続されている。この実施形態では、第1のケース31と第2のケース51とは、スナップフィットによって接続されている。
 第2のケース51の上壁には、燃料タンク2内と第1のケース31内とを連通する開口部が設けられている。この開口部は、第2の弁座52によって囲まれ、区画されている。第2の弁座52は、給油制御弁3における空気の流れ方向に関して、第1の弁座32より上流側に位置づけられている。言い換えると、第2の弁座52は、第1の弁座32よりも燃料タンク2内側に設置されている。第2の弁座52が区画形成する開口は、第1の弁座32が区画形成する開口より大きい。第2の弁座52が区画形成する開口の直径は、第1のケース31の半径よりも大きい。
 サブフロート弁23は、第3のケース53を有する。第3のケース53は、浅い皿状である。第3のケース53は、第2のケース51の下端開口に装着されている。第2のケース51と第3のケース53とはスナップフィットによって接続されている。第3のケース53は、第2のケース51の下端に開口を形成しながら、第2のケース51と第3のケース53との間に、可動弁体54のための収容室を形成する。この収容室は、下端において大きい開口を介して燃料タンク2内に連通している。よって、燃料タンク2内の燃料は、少なくとも第2のケース51と第3のケース53とで区画される室内には自由に入ることができる。
 サブフロート弁23は、可動弁体54を有する。可動弁体54は、扁平な円筒状である。可動弁体54は、第2のケース51と第3のケース53との間に収容されている。可動弁体54は、燃料タンク2内の燃料に浮くことによって第2の弁座52に対して着座または離座する。可動弁体54は、複数の空気溜め61、62を区画形成している。複数の空気溜め61、62は、可動弁体54が燃料に浮くために、燃料の液面下において空気を溜める。複数の空気溜め61、62は、第1の空気溜め61と第2の空気溜め62とを含む。複数の空気溜め61、62は、可動弁体54に燃料が到達すると可動弁体54を燃料に浮かせるための浮力室を提供する。これら空気溜め61、62は、下方向へ開口したキャップ状の部材によって区画形成されている。
 第1の空気溜め61は、可動弁体54の径方向中央部に配置されている。第1の空気溜め61は、可動弁体54の径方向における中央部分を占めるように配置されている。第1の空気溜め61は、可動弁体54の上部に配置されている。第1の空気溜め61は、可動弁体54が燃料に浮くために燃料の液面下において空気を溜める。
 第1の空気溜め61は、可動弁体54に燃料が到達した後の時間経過に伴って、可動弁体54に与える浮力を徐々に減少させる浮力減少手段を備える。可動弁体54は、浮力を徐々に減少させるための貫通穴63を有する。貫通穴63は、第1の空気溜め61から空気を抜くとともに、第1の空気溜め61に燃料を導入することにより、浮力を徐々に減少させる浮力減少手段を提供する。浮力減少手段は、可動弁体54を燃料の中に徐々に沈ませる。
 第2の空気溜め62は、可動弁体54の径方向外側部に配置されている。第2の空気溜め62は、可動弁体54の上下方向中央部または下部と呼べる位置に配置されている。第2の空気溜め62は、第1の空気溜め61の少なくとも一部の径方向外側に配置されている。第2の空気溜め62は、第1の空気溜め61の少なくとも一部を囲むように配置されている。第2の空気溜め62は、貫通穴63のような浮力減少手段を備えない。第2の空気溜め62は、複数の小部屋を有する。これら複数の小部屋は、周方向に沿って分散的に配置されている。第2の空気溜め62は、第2の弁座52に沿って環状に配置され、それぞれが独立して空気を溜めることができる。第2の空気溜め62は、可動弁体の外周に沿って環状に配置されている。
 可動弁体54は、第1部材64と第2部材65とを有する。第1部材64は、可動弁体54の上部および中央部を提供する。第1部材64は、アッパメンバまたはインナメンバとも呼ぶことができる。第1部材64は、円筒状である。第1部材64は、下端に下端開口部を有するキャップ状である。第1部材64は、上壁に貫通穴63を有する。貫通穴63は、第2の弁座52によって囲まれた開口部の中に開口している。第2部材65は、可動弁体54の下部および外周部を提供する。第2部材65は、ロワメンバまたはアウタメンバとも呼ぶことができる。第2部材65は、環状である。第1部材64は、第2部材65の径方向内側に配置されている。
 第1部材64と第2部材65とは、複数の空気溜め61、62を区画形成する形成部材を提供する。特に、第2部材65は、複数の第2の空気溜め62を区画形成する形成部材を提供する。第1部材64は、浮力減少手段としての貫通穴63を区画形成する。第1部材64と第2部材65とは、スナップフィットなどの接続機構によって接続されている。第1部材64と第2部材65とは、接着、溶着など多様な接続手法によって接続することができる。第1部材64と第2部材65とは樹脂製である。
 可動弁体54は、シール部材66を有する。シール部材66は、可動弁体54の上面に配置されている。シール部材66は、形成部材である第1部材64と第2部材65との間に固定されている。シール部材66は、第2の弁座52に対して着座または離座する。シール部材66は、可動弁体54が燃料に浮くことによって上方向へ移動すると、第2の弁座52に着座する。シール部材66は、第2の弁座52に着座することによって通気路を閉じる。シール部材66は、可動弁体54が燃料に沈むか、燃料の液面が下がることによって下方向へ移動すると、第2の弁座52から離座する。シール部材66は、第2の弁座52から離座することによって通気路を開く。可動弁体54は、ガイド機構67によって上下方向、すなわち軸方向へ移動するように案内されている。ガイド機構67は、第2の弁座52とシール部材66との安定した接触を提供する。
 リリーフ弁24は、第1のケース31の上壁に設けられている。リリーフ弁24は、弁座71と、可動弁体72と、スプリング73とを有する。可動弁体72とスプリング73とによってリリーフ圧が設定される。
 図7において、第1部材64は、円板状または皿状と呼びうる上壁64aと、円筒状の側壁64bとを有する。第1部材64は、ガイド機構67を提供するためのガイドシャフト64cを有する。ガイドシャフト64cは、第3のケース53に形成された筒状のガイド筒の中に挿入されることによって、可動弁体54を軸方向に案内する。第1部材64は、その上部の径方向外側に環状のフランジ部64dを有する。フランジ部64dは、シール部材66を保持するための保持部を提供する。第1部材64は、主として第1の空気溜め61を区画形成している。
 第2部材65は、環状の上壁65aと、その内外に配置された外壁65bおよび内壁65cとを有する。第2部材65は、下端に下端開口部を有する環状のキャップ状である。第2部材65は主として第2の空気溜め62を区画形成している。第2部材65は、第1部材64の下端開口を覆うように延びる漏斗状のスカート部65dを有している。スカート部65dは、第1の空気溜め61の下部開口を径方向内側へ向けて絞る。第2部材65は、スカート部65dによって第1の空気溜め61を区画するためにも貢献している。スカート部65dは、第1の空気溜め61からの空気の漏れ出しを抑制する。第2部材65は、その上壁65aによってシール部材66を受けるための受け面65eを提供する。
 シール部材66は、第1部材64の側壁64bの外側に配置されている。シール部材66の径方向における大部分は、受け面65eの上において上に向けて露出して配置されている。フランジ部64dと受け面65eとは、それらの間に、径方向外側に向けて開口する環状のスロットを形成する。このスロットには、シール部材66が収容され、保持されている。シール部材66の径方向内側の縁は、フランジ部64dと受け面65eとの間に位置づけられている。シール部材66の径方向内側の縁は、フランジ部64dと受け面65eとの間に挟まれている。これによって、シール部材66は、可動弁体54に固定される。
 図8において、シール部材66は、基布66aと、ゴム層66bとを有する。基布66aは、繊維を織って形成された布である。ゴム層66bは、基布66aの両面に形成されている。基布66aは、シール部材66の耐久性を向上させる。
 図9は、図1に図示されたIX-IX線における可動弁体54の断面を示す。図10は、図9に図示されたX-X線における可動弁体54の断面を示す。図中には、外壁65bの一部が取り除かれた可動弁体54が図示されている。図9および図10において、第2部材65は、複数の隔壁65fを有する。複数の隔壁65fは、上壁65a、外壁65b、および内壁65cによって囲まれた環状の空洞を周方向に沿って複数の小部屋に仕切る。複数の隔壁65fは、環状の空洞を、複数の部分円弧状の空洞に区画する。複数の隔壁65fは、複数の空気溜めを区画形成する。この実施形態では、6つの隔壁65fが設けられ、6つの小部屋が第2の空気溜め62として設けられている。言い換えると、複数の隔壁65fによって、環状の第2の空気溜め62は、複数の小部屋に分割されている。
 可動弁体54は、周方向に分散して配置された複数の第2の空気溜め62を有している。複数の第2の空気溜めは、シール部材66の下に位置している。複数の第2の空気溜め62は、周方向に沿って分散して配置されている。複数の第2の空気溜め62は、周方向に沿って均等に分布している。このような配置は、周方向における浮力の望ましくない分布を抑制するために貢献する。
 図10において、給油制御弁3が図1に図示される正規の縦姿勢にあるときに、可動弁体54に燃料が到達した場合の、第2の空気溜め62における液面FLvが図示されている。複数の第2の空気溜め62は、それらのすべてが空気を保持する。この結果、必要な浮力が提供される。しかも、周方向に沿った分布がほとんどない均等な浮力が提供される。
 図11において、給油制御弁3が傾斜したときに、または燃料タンク2内の液面が揺動しているときに、可動弁体54に燃料が到達した場合の、第2の空気溜め62における液面FLtが図示されている。
 隔壁65fがない場合、第2の空気溜め62内における液面は、破線の高さにまで到達する。この場合、環状の第2の空気溜め62の図中左端(傾斜の上部)には空気が溜まる。しかし、環状の第2の空気溜め62の図中右端(傾斜の下部)には空気を溜めることができない。この結果、可動弁体54は、周方向に沿って浮力の望ましくない分布を生じる。可動弁体54は、浮力が小さい部分、または浮力が失われた部分では、シール部材66を第2の弁座52に十分な強さで押し付けることができない。このため、浮力が小さい部分、または浮力が失われた部分において閉弁状態を維持できなくなり、燃料の侵入を許すことがある。この場合、サブフロート弁23は所期の機能を発揮することができない。
 これに対して、この実施形態は隔壁65fを有する。複数の第2の空気溜め62は、それぞれが空気を保持する。この結果、複数の第2の空気溜め62のそれぞれが浮力を供給するから、周方向における浮力の分布が抑制される。これにより、シール部材66は、周方向のすべての位置において、浮力によって第2の弁座52に向けて押し付けられる。
 よって、この実施形態によると、可動弁体54は、燃料タンク2の傾斜および/または燃料液面の揺れがあっても、安定した浮力を発揮できる。よって、この実施形態の給油制御弁3によると、安定した閉弁状態が提供される。
 図1に戻り、給油制御弁3の作動を説明する。燃料タンク2内の燃料液面FLが十分に低いとき、給油装置5から燃料タンク2内に燃料が給油されると、燃料タンク2内の気体が給油制御弁3を経由して燃料蒸気処理装置4に向けて排出される。このとき、給油制御弁3のメインフロート弁21とサブフロート弁23とは開弁している。
 図2に図示されるように、気体は、矢印ARで示されるように流れる。気体が給油制御弁3を経由して排出されることにより、給油装置5への燃料の逆流は生じない。よって、給油装置5から燃料タンク2内への給油が進行し、液面が徐々に上昇する。
 図3において、燃料タンク2内の液面が給油制御弁3の下端に到達した状態が図示されている。燃料の液面が給油制御弁3の下端に到達し、燃料が下端開口を覆うと、燃料は給油制御弁3の中を急速に上昇する。貫通穴33は、給油制御弁3の内外を連通するが、貫通穴33は、そこを通る空気量を制限するから、給油制御弁3の外側の燃料液面はゆっくりとしか上昇しない。図3に近い燃料液面の高さにおいて、燃料液面が揺れた場合にも、燃料が給油制御弁3の中に入る場合がある。
 図4に図示されるように、燃料液面の急速な上昇にともなって可動弁体54が燃料に浮く。可動弁体54は、やがてシール部材66を第2の弁座52に押し付ける。よって、サブフロート弁23が開弁状態から閉弁状態に移行する。これにより、給油制御弁3を経由する気体の排出が遮断される。この結果、給油装置5から給油される燃料はフィラーパイプへ逆流する。給油装置5は、フィラーパイプに逆流した燃料を検出し、給油を自動的に停止する。この自動停止は、一回目の自動停止である。このような自動的な停止機能は、オートストップ機構として給油装置5に一般的に設けられている。
 給油の自動停止と並行して、第1の空気溜め61内に溜められた気体は、貫通穴63から徐々に排出される。貫通穴63は、給油制御弁3の中に向けて気体を排出する。第1の空気溜め61から気体が排出されると、第1の空気溜め61に燃料が導入される。この結果、第1の空気溜め61は徐々に浮力を失う。第2の空気溜め62は、それだけでは可動弁体54を第2の弁座52に押し付ける浮力を提供できない。よって、可動弁体54は、やがては沈み、サブフロート弁23は閉弁状態から開弁状態へと復帰する。なお、貫通穴33による通気によって、給油制御弁3内の燃料液面も低下する。よって、可動弁体54は、液面の低下によっても下降し、サブフロート弁23は閉弁状態から開弁状態へと復帰する。サブフロート弁23が開くと、給油装置5からの追加給油が可能となる。
 燃料液面の揺動によって燃料が給油制御弁3の中に入った場合にも、可動弁体54は、燃料に浮き、シール部材66を第2の弁座52に押し付けることがある。この場合、サブフロート弁23は、メインフロート弁21よりも燃料タンク2側において通気路を閉鎖する。よって、サブフロート弁23は燃料がメインフロート弁21に到達することを阻止する。サブフロート弁23による一時的な閉鎖は、揺動する燃料液面が下がり、可動弁体54が下降することによって解除される。
 図5において、1回目の自動停止の後、給油装置5を操作する作業者は、少量ずつゆっくりと給油する少量給油に移行する。可動弁体54が燃料の中に沈んでいると、少量給油によって給油制御弁3の中を燃料液面がゆっくりと上昇する。やがて、燃料は、インナカップ34の上端開口35に到達し、インナカップ34内の燃料溜めの中に流れ込む。燃料溜めに入った燃料は、フロート41に浮力を与えるから可動弁体39が燃料に浮き、上方向へ移動する。なお、作業者が急速給油を継続する場合も同様に可動弁体39が浮き、上方へ移動する。
 図6に図示されるように、可動弁体39が燃料に浮き、上昇すると、シール部材44が第1の弁座32に押し付けられる。これによりメインフロート弁21が開弁状態から閉弁状態に移行する。これにより、給油制御弁3を経由する通気路が遮断される。この結果、給油装置5から給油される燃料はフィラーパイプへ逆流する。給油装置5は、フィラーパイプに逆流した燃料を検出し、給油を自動的に停止する。この自動停止は、2回目の自動停止である。2回目の自動停止を知った作業者は給油作業を終了する。
 可動弁体39は、作業者がさらなる給油を諦めるであろうと想定される所定時間以上にわたって、閉弁状態を維持する。第1のケース31内の燃料液面が低下しても、インナカップ34内に燃料が溜められるからである。
 貫通穴33は、給油制御弁3内に過剰に導入された燃料を排出し、給油制御弁3内の液面を下げるために空気を導入する。これにより、インナカップ34が提供する燃料溜めの外側の燃料液面は低下する。貫通穴36は、燃料溜めから燃料を徐々に排出する。さらに、車両が移動すると、ボール38が移動する。これにより、ボール38は、貫通穴37を開く。燃料溜め内の燃料は、貫通穴37からも排出される。この結果、可動弁体39は下方向に移動する。可動弁体39が下方向へ移動すると、まずパイロット弁45が開き、次にシール部材44が第1の弁座32から離れる。これにより、メインフロート弁21が閉弁状態から開弁状態に復帰する。この結果、燃料タンク2への再度の給油が可能となる。
 以上に述べた実施形態によると、可動弁体54は、燃料タンク2の傾斜および/または燃料液面の揺れがあっても、安定した浮力を発揮できる。よって、この実施形態の給油制御弁3によると、安定した閉弁状態が提供される。
 (第2実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、可動弁体54は、6つの第2の空気溜め62を有する。これに代えて、可動弁体54は、多様な数の第2の空気溜めを有することができる。
 図12に図示されるように、この実施形態の可動弁体54は、2つの第2の空気溜め262を有する。この場合、第2部材65は、2つの隔壁265fを有する。可動弁体54は、3つ、4つ、または5つの第2の空気溜めを有していてもよい。
 (第3実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図13に図示されるように、この実施形態の可動弁体54は、8つの第2の空気溜め362を有している。この場合、第2部材65は、8つの隔壁365fを有する。可動弁体54は、7つ、9つ、またはそれ以上の数の第2の空気溜めを有していてもよい。
 (第4実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、複数の第2の空気溜め62は、互いに大きさが等しい、しかも、それらは周方向に沿って均等に配置されている。これに代えて、大きさが異なる複数の第2の空気溜めを採用してもよい。また、複数の第2の空気溜めは、周方向に沿ってやや不均一に、または偏りをもって配置されていてもよい。
 図14に図示されるように、この実施形態の可動弁体54は、5つの第2の空気溜め462を有する。第2部材65は、5つの隔壁465fを有する。5つの第2の空気溜め462は、互いに大きさ、すなわち容積が異なる。この配置では、図中の右半部における空気溜めの容積が、図中の左半部における空気溜めの容積よりもやや小さい。すなわち、複数の第2の空気溜めは、周方向に沿ってやや不均一に、偏りをもって配置されている。
 この実施形態でも、給油制御弁3が傾くか、または液面が揺れたときには、隔壁465fがない場合に比べて、各空気溜め462に空気が溜められる可能性が高められる。よって、可動弁体54は、燃料タンク2の傾斜および/または燃料液面の揺れがあっても、安定した浮力を発揮できる。この実施形態の給油制御弁3によると、安定した閉弁状態が提供される。
 (第5実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、第1部材と第2部材との間にシール部材66を挟むことによってシール部材66を可動弁体54上に固定している。これに代えて、シール部材は多様な構造、手法を用いて可動弁体54上に固定することができる。
 図15において、この実施形態の可動弁体54は、第1部材564と、第2部材565とを有する。第1部材564と第2部材565とは、複数の空気溜め61、62を形成する形成部材である。第1部材564は、上部にシール部材566を保持するためのキノコ状の突部564eを有する。シール部材566は、自身の弾性を利用して、突部564eに嵌め込まれる。シール部材566は、突部564eが提供するフランジ部564fと、第1部材564により提供される受け面564gとの間に保持される。この実施形態、シール部材566は、第1部材564と第2部材565とを接続する前、または後に装着される。
 第2部材565は、下面のやや中央寄りの位置に、複数の凹部565gを有する。凹部565gは、下方向へ向けて開口している。複数の凹部565gは、第2部材565の外縁と、中心との間において、環状に配列されている。これら複数の凹部565gは、複数の第2の空気溜め62を提供する。
 この実施形態では、第1の空気溜め61は、可動弁体54の径方向のほぼ全体にわたって広がる円板空洞を有している。さらに、第1の空気溜め61は、径方向の中央部において軸方向に延びる円筒空洞を有している。複数の第2の空気溜め62は、円板空洞の下側に位置している。複数の第2の空気溜め62は、円筒空洞の径方向外側に位置している。円板空洞の径方向外側の端部は、複数の第2の空気溜め62より径方向外側に到達している。しかも、円板空洞の径方向外側の端部は、複数の第2の空気溜め62の径方向外側に回りこむように延びている。
 (第6実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、第1部材と第2部材とによって可動弁体54が形成されている。これに代えて、可動弁体54はひとつの部材によって形成されてもよい。
 図16において、この実施形態の可動弁体54は、第1の空気溜め61および複数の第2の空気溜め62を形成するための形成部材665を有する。シール部材666は、形成部材665に接着されている。この実施形態でも、複数の第2の空気溜め62による作用効果を得ることができる。
 (他の実施形態)
 この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに、請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
 上記実施形態では、給油制御弁3に、リリーフ弁24を設けている。これに代えて、給油制御弁3がリリーフ弁24を備えない構成を採用してもよい。また、給油制御弁3自身を、他の部品とひとつのアセンブリを形成するように構成してもよい。
 上記実施形態では、インナカップ34によって第1のケース31内に燃料溜めが形成される。これに代えて、インナカップ34を第1のケース31または第2のケース51に一体的に成形してもよい。また、上記実施形態では、メインフロート弁21の下にサブフロート弁23を配置した。これに代えて、メインフロート弁21の横にサブフロート弁23を配置してもよい。この構成であっても、サブフロート弁23によってメインフロート弁21への燃料の到達を制御することができる。また、上記実施形態では、部材の接続または連結のために樹脂部品の弾性を利用して部品を係合させるスナップフィットを利用している。これに代えて、接着剤による接着、部材の一部を溶融させる溶着、ボルトなどの締結部材による接続、およびネジ結合など多様な接続手法を用いることができる。このように、ケースとしての部材31、34、51、52は、実施形態の構成に見られる機能的な要素を提供するために、多様な形状を採用することができる。
 上記実施形態では、基布66aにゴム層66bを形成したシール部材66を採用している。これに代えて、金属製のコアプレートにゴム層をコーティングしたシール部材を用いてもよい。また、ゴムだけのシール部材を用いてもよい。さらに、ゴムの表面には、シール性を高めるためのシール突起、またはシールリップを設けてもよい。
 上記実施形態では、第1の空気溜め61および第2の空気溜め62は、下端開口上端閉塞のキャップ状の部材によって提供されている。これに代えて、第1の空気溜め61および/または第2の空気溜め62は、上端開口下端閉塞のカップ状の部材によって提供されてもよい。この場合、第1の空気溜め61と関連付けられる浮力減少手段は、カップ状の部材に設けられた貫通穴または溝によって提供することができる。例えば、カップ状の部材の底に設けられた貫通穴は、第1の空気溜め61に燃料を導入することによって浮力を徐々に減少させる。
 上記実施形態では、薄い板状の隔壁65fを設けることによって複数の第2の空気溜め62を形成している。これに代えて、厚い隔壁を設けてもよい。例えば、ひとつの第2の空気溜めの周方向幅に相当する周方向厚さをもつ隔壁を設けてもよい。また、周方向の一部にのみ、他の隔壁よりも厚い隔壁を設けても良い。
 上記実施形態では、複数の第2の空気溜め62は、可動弁体54の周方向に沿って一列に配列されている。これに代えて、複数の第2の空気溜め62は、多列に配列されてもよい。例えば、複数の第2の空気溜め62は、2重の環状に配列されてもよい。

Claims (11)

  1.  通路を区画形成する弁座(52)と、
     燃料タンク内の燃料に浮くことによって前記弁座に対して着座または離座する可動弁体(54)とを備える燃料タンク用フロート弁において、
     前記可動弁体は、
     前記燃料に浮くために前記燃料の液面下において空気を溜める複数の空気溜めであって、前記可動弁体の外周に沿って環状に配置され、それぞれが独立して空気を溜めることができる複数の空気溜め(62、262、362、462)を区画形成する形成部材(64、564、65、565、665)を備える燃料タンク用フロート弁。
  2.  前記形成部材は、
     前記可動弁体の径方向における中央部分を占めるように配置され、前記燃料に浮くために前記燃料の液面下において空気を溜める第1の空気溜め(61)と、
     前記複数の空気溜めによって提供され、前記第1の空気溜めの少なくとも一部の径方向外側に配置されている第2の空気溜め(62、262、362、462)とを区画形成している請求項1に記載の燃料タンク用フロート弁。
  3.  前記形成部材は、さらに、
     前記第1の空気溜めから空気を抜くとともに前記第1の空気溜めに燃料を導入することにより、前記可動弁体を前記燃料の中に徐々に沈ませる浮力減少手段(63)を区画形成している請求項2に記載の燃料タンク用フロート弁。
  4.  前記形成部材は、
     前記第1の空気溜めを区画形成する第1部材(64、564)と、
     前記第1部材に接続され、複数の前記第2の空気溜めを区画形成する第2部材(65、565)とを備える請求項2または請求項3に記載の燃料タンク用フロート弁。
  5.  前記形成部材は、
     環状の上壁(65a)と、
     前記上壁の内外に配置された外壁(65b)および内壁(65c)と、
     前記上壁、前記外壁、および前記内壁によって区画される環状の空洞を周方向に沿って複数の部分円弧状の空洞に区画することにより前記複数の空気溜めを区画形成する複数の隔壁(65f)とを備える請求項1から請求項4のいずれかに記載の燃料タンク用フロート弁。
  6.  前記可動弁体は、さらに、
     前記形成部材に固定され、前記弁座に対して着座または離座するシール部材(66、566、666)を備える請求項1から請求項5のいずれかに記載の燃料タンク用フロート弁。
  7.  前記形成部材は、前記シール部材を上から押さえるフランジ部(64d、564f)と、前記シール部材を受ける受け部(65e、564g)とを備える請求項6に記載の燃料タンク用フロート弁。
  8.  前記シール部材は、前記形成部材(564)に嵌め込まれることによって固定されている請求項6に記載の燃料タンク用フロート弁。
  9.  前記シール部材は、前記形成部材(665)に接着されることによって固定されている請求項6に記載の燃料タンク用フロート弁。
  10.  さらに、
     前記燃料タンクの上部から垂下され、前記燃料タンク内からの通気路を区画形成する管(31、51)と、
     前記管内に配置され、前記管内に前記燃料がないときに前記通気路を開き、前記管内に到達した前記燃料に浮いて前記通気路を閉じるメインフロート弁(21)と、
     前記メインフロート弁よりも前記管の前記燃料タンク側に配置され、前記管内に前記燃料がないときに前記通気路を開き、前記管内に到達した前記燃料に浮いて前記通気路を閉じることにより、前記メインフロート弁への前記燃料の到達を制限するサブフロート弁(23)とを備え、
     前記弁座と前記可動弁体とが前記サブフロート弁を提供する請求項1から請求項9のいずれかに記載の燃料タンク用フロート弁。
  11.  さらに、前記メインフロート弁を閉弁状態に維持するために前記燃料を溜める燃料溜めを形成する部材(34)と、
     前記燃料溜めから前記燃料を排出する排出手段(36、37、38)とを備える請求項10に記載の燃料タンク用フロート弁。

     
PCT/JP2016/002399 2015-09-07 2016-05-17 燃料タンク用フロート弁 WO2017042989A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015175914A JP2017052320A (ja) 2015-09-07 2015-09-07 燃料タンク用フロート弁
JP2015-175914 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017042989A1 true WO2017042989A1 (ja) 2017-03-16

Family

ID=58240614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002399 WO2017042989A1 (ja) 2015-09-07 2016-05-17 燃料タンク用フロート弁

Country Status (2)

Country Link
JP (1) JP2017052320A (ja)
WO (1) WO2017042989A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527299A (zh) * 2018-01-19 2020-08-11 京三电机株式会社 燃料箱用通气控制阀
GB2627076A (en) * 2023-01-27 2024-08-14 Piolax Inc Valve device for fuel tank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841251B2 (ja) * 2018-02-23 2021-03-10 豊田合成株式会社 燃料バルブ
JP7198840B2 (ja) * 2021-01-21 2023-01-04 京三電機株式会社 燃料タンク用制御弁

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105469A (ja) * 2008-10-29 2010-05-13 Toyoda Gosei Co Ltd 燃料遮断弁
JP2013082427A (ja) * 2011-09-26 2013-05-09 Kyosan Denki Co Ltd 満タン制御弁装置
JP2013095339A (ja) * 2011-11-02 2013-05-20 Piolax Inc 弁装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105469A (ja) * 2008-10-29 2010-05-13 Toyoda Gosei Co Ltd 燃料遮断弁
JP2013082427A (ja) * 2011-09-26 2013-05-09 Kyosan Denki Co Ltd 満タン制御弁装置
JP2013095339A (ja) * 2011-11-02 2013-05-20 Piolax Inc 弁装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527299A (zh) * 2018-01-19 2020-08-11 京三电机株式会社 燃料箱用通气控制阀
GB2627076A (en) * 2023-01-27 2024-08-14 Piolax Inc Valve device for fuel tank

Also Published As

Publication number Publication date
JP2017052320A (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2017042989A1 (ja) 燃料タンク用フロート弁
US9139084B2 (en) Small engine emissions control valve
US20190070954A1 (en) Float valve for fuel tank and manufacturing method for the same
US8360089B2 (en) Fuel cut-off valve
US9151256B2 (en) Overfill prevention valve
WO2017068882A1 (ja) 燃料タンク用通気制御弁
US11560049B2 (en) Fill limit venting valve with high shut-off height
JP6620511B2 (ja) 燃料タンク用通気制御弁
JP2009202703A (ja) 燃料遮断弁
US8291929B2 (en) Dual float rollover valve
WO2017068883A1 (ja) 燃料タンク用通気制御弁
WO2017163661A1 (ja) 燃料タンク用通気制御弁
JP4440090B2 (ja) 満タン規制バルブ
US20200331341A1 (en) Ventilation control valve for fuel tank
CN113700917A (zh) 一种油箱排气阀
JP2010173397A (ja) 燃料遮断弁
JP2010059826A (ja) 満タン制御弁
JP6060609B2 (ja) 通気制御弁装置
US9079488B2 (en) Fuel tank structure
WO2022080302A1 (ja) 満タン規制バルブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843863

Country of ref document: EP

Kind code of ref document: A1