WO2017042963A1 - Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle - Google Patents

Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle Download PDF

Info

Publication number
WO2017042963A1
WO2017042963A1 PCT/JP2015/075853 JP2015075853W WO2017042963A1 WO 2017042963 A1 WO2017042963 A1 WO 2017042963A1 JP 2015075853 W JP2015075853 W JP 2015075853W WO 2017042963 A1 WO2017042963 A1 WO 2017042963A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor region
semiconductor
type
sic
Prior art date
Application number
PCT/JP2015/075853
Other languages
French (fr)
Japanese (ja)
Inventor
悠佳 清水
三江子 松村
慎太郎 佐藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017538820A priority Critical patent/JP6473512B2/en
Priority to PCT/JP2015/075853 priority patent/WO2017042963A1/en
Publication of WO2017042963A1 publication Critical patent/WO2017042963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, a power module, a power conversion device, and a railway vehicle.
  • Patent Document 1 JP-A-2003-96802
  • Patent Document 2 JP-A-2013-58601
  • Patent Document 1 describes a silicon carbide semiconductor device in which a surface channel layer is formed of 4H or 6H—SiC and a semiconductor layer to be an n + type source region is formed of 3C—SiC.
  • Patent Document 2 describes a semiconductor device using 3C—SiC SiC in the source region.
  • SiC-MOSFETs Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • Ni silicide is formed between them.
  • SiC silicon carbide
  • Ni nickel
  • Excess C (carbon) discharge occurs.
  • it is difficult to form an ohmic contact due to a complicated reaction accompanied by precipitation of carbon clusters, and problems such as a decrease in reliability and a decrease in yield of the SiC-MOSFET arise.
  • a semiconductor device includes an n ⁇ type epitaxial layer formed on a first main surface of an n + type SiC substrate and a plurality of p ⁇ layers formed in the n ⁇ type epitaxial layer.
  • n + -type source region apart from the end portion side surface of the n + -type source region, n - -type from the upper surface of the epitaxial layer to the n + -type source region, p formed reaches the p-type body region + -type potential fixing region, at the top of the n + -type source region between the end side and the p + -type potential end side of the fixing area of the n + -type source region, formed apart from the side surface of the n + -type source region n + -type 3C-SiC region.
  • a channel region formed in the upper layer part of the p-type body region between the end side surface of the p-type body region and the end side surface of the n + -type source region, and a gate insulating film formed in contact with the channel region And a gate electrode formed in contact with the gate insulating film.
  • an interlayer insulating film covering the gate electrode and having an opening through which the p + -type potential fixing region and the n + -type 3C-SiC region are exposed, and at the bottom surface of the opening, the p + -type potential fixing region and the n + -type 3C-
  • a barrier metal film formed on an interlayer insulating film in contact with the SiC region and including the inner wall of the opening, a first electrode formed on the barrier metal film, and formed on the second main surface of the n + -type SiC substrate A second electrode.
  • FIG. 3 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to Example 1 are arranged.
  • FIG. 3 is a main part sectional view (a sectional view taken along line AA in FIG. 1) showing the SiC-MOSFET according to Example 1; It is a schematic diagram which shows the band structure of SiC.
  • 7 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a first modification of Example 1 are arranged;
  • FIG. FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a second modification of Example 1 are arranged.
  • FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs are arranged according to a third modification of Example 1;
  • FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a fourth modification of Example 1 are arranged.
  • FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a fifth modification of Example 1 are arranged.
  • FIG. 6 is a sectional view showing the principal parts of an example of a manufacturing process of the SiC-MOSFET according to Example 1.
  • FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs are arranged according to a third modification of Example 1;
  • FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of Si
  • FIG. 10 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 9;
  • FIG. 11 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process that follows FIG. 10;
  • 12 is a fragmentary cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 11.
  • FIG. 13 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 12.
  • FIG. 14 is an essential part cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 13;
  • FIG. 10 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to Example 2 are arranged.
  • FIG. 16 is a cross-sectional view of a principal part showing a SiC-MOSFET according to Example 2 (cross-sectional view taken along line BB in FIG. 15).
  • 12 is a sectional view of the substantial part showing one example of manufacturing steps of the SiC-MOSFET according to Example 2.
  • FIG. FIG. 18 is an essential part cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 17;
  • FIG. 19 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 18;
  • FIG. 20 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 19;
  • FIG. 21 is an essential part cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 20;
  • FIG. 22 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 21; It is a figure which shows the structure of the three-phase motor system by Example 3.
  • FIG. It is a figure which shows the structure of the rail vehicle by Example 4.
  • FIG. 21 is an essential part cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 20;
  • FIG. 22 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 21; It is a figure which shows the structure of the three-phase motor system by Example 3.
  • FIG. It is a figure which shows the structure of the rail vehicle by Example 4.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • FIG. 1 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to the first embodiment are arranged.
  • FIG. 2 is a cross-sectional view of a principal part showing the SiC-MOSFET according to the first embodiment (cross-sectional view along the line AA in FIG. 1).
  • the SiC-MOSFET is a planar type DMOS (Double-diffused-Metal-Oxide-Semiconductor) MOSFET.
  • n made of 4H—SiC having an impurity concentration lower than that of the n + type SiC substrate 1 is formed on the surface (first main surface) of the n + type SiC substrate 1 made of 4H—SiC.
  • a ⁇ type epitaxial layer 2 is formed, and an SiC epitaxial substrate 3 is constituted by the n + type SiC substrate 1 and the n ⁇ type epitaxial layer 2.
  • the thickness of the n ⁇ type epitaxial layer 2 is, for example, about 5.0 to 100.0 ⁇ m.
  • the preferable range of the impurity concentration of the n + -type SiC substrate 1 is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
  • the preferable range of the impurity concentration of the n ⁇ -type epitaxial layer 2 is, for example, 1 ⁇ 10 14. It is about 1 ⁇ 10 17 cm ⁇ 3 .
  • the n + type SiC substrate 1 made of 4H—SiC is used.
  • the present invention is not limited to this, and the n + type SiC substrate 1 made of 6H—SiC can also be used.
  • n ⁇ -type epitaxial layer 2 a plurality of p-type body regions (well regions) 4 having a predetermined depth from the upper surface of the n ⁇ -type epitaxial layer 2 are formed apart from each other.
  • the depth of the p-type body region 4 from the upper surface of the n ⁇ -type epitaxial layer 2 is, for example, about 0.5 to 1.0 ⁇ m.
  • a preferable range of the impurity concentration of the p-type body region 4 is, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • n + type source region 5 is formed in the p type body region 4 with a predetermined depth from the upper surface of the n ⁇ type epitaxial layer 2.
  • the n + -type source region 5 is formed in the p-type body region 4 so as to be separated from the end side surface of the p-type body region 4, and from the upper surface of the n ⁇ -type epitaxial layer 2 of the n + -type source region 5.
  • the depth is, for example, about 0.3 to 0.5 ⁇ m.
  • a preferable range of the impurity concentration of the n + -type source region 5 is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 .
  • a p + type potential fixing region 6 having a predetermined depth from the upper surface of the n ⁇ type epitaxial layer 2 and fixing the potential of the p type body region 4 is formed. ing.
  • the depth of the p + type potential fixing region 6 from the upper surface of the n ⁇ type epitaxial layer 2 is, for example, about 0.3 to 0.5 ⁇ m.
  • a preferable range of the impurity concentration of the p + -type potential fixing region 6 is, for example, about 1 ⁇ 10 20 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a region sandwiched between adjacent p-type body regions 4 is a part that functions as a JFET (Junction Field Effect Transistor) region 7.
  • a preferable range of the impurity concentration of the JFET region 7 is, for example, about 3 ⁇ 10 16 cm ⁇ 3 .
  • the end side surface of the p-type body region 4 (interface between the JFET region 7 and the p-type body region 4) and the end side surface of the n + -type source region 5 (p-type body region 4 and n + -type source region 5
  • the p-type body region 4 located between the first and second interfaces) functions as the channel region 8.
  • n ⁇ -type epitaxial layer 2 a region where the p-type body region 4 is not formed is a region functioning as a drift layer that plays a role of securing a breakdown voltage. Further, the n + type SiC substrate 1 is a region functioning as a drain layer.
  • the n + type 3C—SiC region 9 is not formed in the upper layer portion of the p + type potential fixing region 6.
  • the depth of the n + -type 3C—SiC region 9 from the upper surface of the n ⁇ -type epitaxial layer 2 is, for example, about 0.05 to 0.2 ⁇ m.
  • a preferable range of the impurity concentration of the n + -type 3C—SiC region 9 is, for example, about 1 ⁇ 10 20 to 1 ⁇ 10 21 cm ⁇ 3 .
  • ⁇ and + are signs representing relative impurity concentrations of n-type or p-type conductivity, for example, n-type in the order of “n ⁇ ”, “n”, and “n + ”.
  • the impurity concentration of the impurity increases, and the impurity concentration of the p-type impurity increases in the order of “p ⁇ ”, “p”, and “p + ”.
  • a gate insulating film 10 is formed on the channel region 8, and a gate electrode 11 (a region indicated by relatively wide hatching in FIG. 1) is formed on the gate insulating film 10.
  • the gate electrode 11 is formed in a lattice shape in plan view, and a p-type body region 4 is formed so as to be surrounded by the gate electrode 11.
  • the gate insulating film 10 and the gate electrode 11 are covered with an interlayer insulating film 12.
  • the n + type 3C—SiC region 9 and the p + type potential fixing region 6 are exposed on the bottom surface of the opening 13 formed in the interlayer insulating film 12.
  • the barrier metal film 14 is provided for preventing diffusion of the metal of the main conductive material constituting the source wiring electrode 15.
  • the barrier metal film 14 is made of, for example, titanium nitride / titanium (TiN / Ti) with Ti (titanium), Ta (tantalum), W (tungsten), TiN (titanium nitride), TaN (tantalum nitride), and Ti (titanium) as a lower layer.
  • the source wiring electrode 15 is made of, for example, Al (aluminum), Cu (copper), Al (aluminum) -Cu (copper) alloy, or the like. Although illustration is omitted, similarly, the gate electrode 11 is electrically connected to the gate wiring electrode.
  • a drain wiring electrode 16 is electrically connected to the back surface (second main surface) of the n + -type SiC substrate 1.
  • a metal silicide layer may be formed on the back surface of n + -type SiC substrate 1.
  • a source potential is applied to the source wiring electrode 15 from the outside, a drain potential is applied to the drain wiring electrode 16 from the outside, and a gate potential is applied to the gate wiring electrode from the outside.
  • FIG. 3 is a schematic view showing a band structure of SiC.
  • the SiC-MOSFET according to the first embodiment is characterized in that the n + -type 3C—SiC region 9 is formed between the n + -type source region 5 and the barrier metal film 14.
  • Ni silicide is formed between the source region (n + -type source region 5) and the extraction electrode (barrier metal film 14) in order to reduce the contact resistance.
  • SiC silicon carbide
  • Ni nickel
  • Excess C (carbon) discharge occurs. For this reason, it becomes difficult to form an ohmic contact due to a complicated reaction accompanied by precipitation of carbon clusters.
  • Ni silicide is not formed. For this reason, there is a concern that the contact resistance between the source region (n + -type source region 5) and the extraction electrode (barrier metal film 14) increases. However, the contact resistance can be reduced by forming the n + -type 3C—SiC region 9 between the source region (n + -type source region 5) and the extraction electrode (barrier metal film 14).
  • FIG. 3 shows band structures of Ti (titanium), 3C—SiC, and 4H—SiC.
  • the valence band levels (E V ) of 3C—SiC and 4H—SiC are almost the same.
  • 3C-SiC forbidden band width (E G) and electron affinity (chi) are each 2.23eV and 4.0 eV
  • the band gap of the 4H-SiC (E G) and the electron affinity (chi ) Are 3.26 eV and 3.2 eV, respectively, and are different from each other.
  • the work function ( ⁇ m) of Ti (titanium) is 4.3 eV, so the Fermi level (E F ) of Ti (titanium) and 3C-SiC of the difference between the level (E C) of the conduction band is smaller than the difference between Ti Fermi level (E F) and 4H-SiC in level of the conduction band (titanium) (E C). Therefore, when the n-type region is made of 3C—SiC, the contact resistance can be reduced compared to the case where the n-type region is made of 4H—SiC.
  • the upper layer of the n + source region 5 is separated from the channel region 8 by a predetermined distance, for example, 0.3 ⁇ m or more so as not to affect the reliability of the gate insulating film 10.
  • An n + -type 3C—SiC region 9 is formed in the part.
  • the n + type 3C—SiC region 9 is not formed in the upper layer portion of the p + type potential fixing region 6. This is because the contact resistance is not reduced even if the n + -type 3C—SiC region 9 is formed in the upper layer portion of the p + -type potential fixing region 6.
  • FIG. 4 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a first modification of the first embodiment are arranged.
  • FIG. 5 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a second modification of the first embodiment are arranged.
  • a plurality of p-type body regions 4 arranged at first intervals along the X direction are arranged along the Y direction orthogonal to the X direction on the surface of the SiC epitaxial substrate 3.
  • the plurality of p-type body regions 4 are arranged so as to be surrounded by the gate electrodes 11 formed in a lattice shape.
  • the plurality of p-type body regions 4 arranged at the second interval along the Y direction are positioned at half the second interval. , And are arranged at first intervals along the X direction so as to be alternately positioned.
  • the plurality of p-type body regions 4 are arranged in a so-called staggered arrangement.
  • a plurality of p-type body regions 4 extending along the Y direction are arranged apart from each other in the X direction, and along the Y direction.
  • a plurality of extending gate electrodes 11 are arranged between adjacent p-type body regions 4.
  • FIG. 6 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a third modification of the first embodiment are arranged.
  • FIG. 7 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a fourth modification of the first embodiment are arranged.
  • FIG. 8 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a fifth modification of the first embodiment are arranged.
  • the gate electrode is formed around the p + -type potential fixing region 6 in plan view.
  • a plurality of n + -type 3C—SiC regions 9 are formed apart from 11, and these are formed apart from each other.
  • a mold 3C-SiC region 9 is formed.
  • FIGS. 9 to 14 are cross-sectional views of relevant parts showing an example of a manufacturing process of the SiC-MOSFET according to the first embodiment.
  • an n + type SiC substrate 1 made of 4H—SiC is prepared.
  • An n-type impurity is introduced into the n + -type SiC substrate 1.
  • the n-type impurity is, for example, N (nitrogen), and the impurity concentration of the n-type impurity is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the n + type SiC substrate 1 has both a Si surface and a C surface, but the surface of the n + type SiC substrate 1 may be either the Si surface or the C surface.
  • an n ⁇ type epitaxial layer 2 made of 4H—SiC is formed on the surface of the n + type SiC substrate 1 by epitaxial growth.
  • an n type impurity lower than the impurity concentration of the n + type SiC substrate 1 is introduced.
  • the impurity concentration of the n ⁇ -type epitaxial layer 2 depends on the element rating of the SiC-MOSFET, it is, for example, about 1 ⁇ 10 14 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the thickness of the n ⁇ type epitaxial layer 2 is, for example, about 5.0 to 100.0 ⁇ m.
  • p-type impurities such as Al (aluminum) atoms are ion-implanted into the n ⁇ -type epitaxial layer 2 with a maximum energy of 500 keV.
  • p-type impurities such as Al (aluminum) atoms
  • a plurality of p-type body regions 4 are formed in the element formation region of the n ⁇ -type epitaxial layer 2, and although not shown, a floating field limiting ring (FLR) is formed in the peripheral formation region.
  • the depth of the p-type body region 4 from the upper surface of the n ⁇ -type epitaxial layer 2 is, for example, about 0.5 to 1.0 ⁇ m. Further, the impurity concentration of the p-type body region 4 is, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the FLR structure is formed at the end of the peripheral formation region, the present invention is not limited to this.
  • a junction termination extension (JTE) structure may be used as a structure of the termination portion.
  • an n-type impurity for example, N (nitrogen) atoms are ion-implanted into the p-type body region 4 at a maximum energy of 120 keV and a temperature of about 25 ° C.
  • An n + type source region 5 is formed apart from the side surface (interface between the n ⁇ type epitaxial layer 2 and the p type body region 4).
  • ion implantation is performed so that the n + -type source region 5 is not completely amorphized.
  • the depth of the n + type source region 5 from the upper surface of the n ⁇ type epitaxial layer 2 is, for example, about 0.3 to 0.5 ⁇ m.
  • the impurity concentration of the n + -type source region 5 is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 .
  • a p-type impurity for example, Al (aluminum) atoms is ion-implanted into the n + -type source region 5 at a maximum energy of 150 keV and a temperature of about 350 to 700 ° C.
  • a + -type potential fixing region 6 is formed.
  • ion implantation is performed so that the p + -type potential fixing region 6 is not completely amorphized.
  • the depth of the p + type potential fixing region 6 from the upper surface of the n ⁇ type epitaxial layer 2 is, for example, about 0.3 to 0.5 ⁇ m.
  • the impurity concentration of the p + -type potential fixing region 6 is, for example, about 1 ⁇ 10 20 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a mask pattern 17 made of a resist film is formed on the upper surface of the n ⁇ -type epitaxial layer 2.
  • the mask pattern 17 is provided with an opening only in a region where the n + -type 3C—SiC region 9 is formed.
  • an n-type impurity such as P (phosphorus) atoms is ion-implanted into the n + -type source region 5 through the mask pattern 17 at a maximum energy of 50 keV and a temperature of about 25 ° C.
  • the n + -type amorphous region is located between the end side surface of the p + -type potential fixing region 6 and a position separated by 0.3 ⁇ m or more from the end side surface of the n + -type source region 5 toward the p + -type potential fixing region 6 side.
  • Region 9a is formed.
  • ion implantation is performed so that the n + -type amorphous region 9a is completely amorphized.
  • the depth of the n + type amorphous region 9a from the upper surface of the n ⁇ type epitaxial layer 2 is, for example, about 0.05 to 0.2 ⁇ m.
  • the impurity concentration of the n + -type amorphous region 9a is, for example, about 1 ⁇ 10 20 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a C (carbon) film is deposited on the upper surface of the n ⁇ -type epitaxial layer 2 by, for example, a plasma CVD (Chemical Vapor Deposition) method.
  • the thickness of the C (carbon) film is, for example, about 0.03 ⁇ m.
  • the SiC epitaxial substrate 3 is heat-treated at a temperature of about 1,700 ° C. for about 2 to 3 minutes. Apply. Thereby, each impurity ion-implanted into the n ⁇ -type epitaxial layer 2 is activated.
  • the n + type amorphous region 9a becomes the n + type 3C—SiC region 9 containing 3C—SiC.
  • the C (carbon) film is removed by, for example, oxygen plasma treatment.
  • a gate insulating film 10 made of SiON (silicon oxynitride) is formed on the upper surface of the n ⁇ type epitaxial layer 2.
  • the gate insulating film 10 is formed by, for example, forming a SiO 2 (silicon dioxide) film by a CVD method and then performing a heat treatment in an NO (nitrogen monoxide) or N 2 O (dinitrogen monoxide) atmosphere.
  • the thickness of the gate insulating film 10 is, for example, about 0.05 to 0.15 ⁇ m.
  • a polycrystalline Si (polycrystalline silicon) film is formed on the gate insulating film 10, and the polycrystalline Si (polycrystalline silicon) film is processed by a dry etching method to form the gate electrode 11.
  • the thickness of the gate electrode 11 is, for example, about 0.2 to 0.5 ⁇ m.
  • an interlayer insulating film 12 is formed on the upper surface of the n ⁇ -type epitaxial layer 2 so as to cover the gate insulating film 10 and the gate electrode 11 by, for example, a plasma CVD method. Thereafter, the interlayer insulating film 12 is processed by a dry etching method, and an opening 13 reaching a part of the n + -type 3C—SiC region 9 and the p + -type potential fixing region 6 and an opening reaching the gate electrode 11 (illustrated). Is omitted).
  • a barrier metal film 14 is formed on the interlayer insulating film 12 so as to cover the inner wall (bottom surface and side surface) of the opening 13.
  • the barrier metal film 14 is made of, for example, titanium nitride / titanium (TiN / Ti) with Ti (titanium), Ta (tantalum), W (tungsten), TiN (titanium nitride), TaN (tantalum nitride), and Ti (titanium) as a lower layer.
  • TiN / Ti titanium nitride / titanium
  • Ta tantalum
  • W tungsten
  • TiN titanium nitride
  • TaN tantalum
  • Ta tantalum
  • a conductive film (not shown) is formed on the barrier metal film 14 so as to fill the inside of the opening 13.
  • the conductive film is made of, for example, Al (aluminum), Cu (copper), or Al (aluminum) -Cu (copper) alloy.
  • the thickness of the conductive film is preferably 2.0 ⁇ m or more, for example.
  • the conductive film and the barrier metal film 14 are processed by a dry etching method, and the source wiring electrode 15 and the gate wiring electrode (not shown) made of the conductive film having the barrier metal film 14 in the lower layer are formed.
  • the source wiring electrode 15 is electrically connected to the n + -type 3C—SiC region 9 and the p + -type potential fixing region 6, and the gate wiring electrode is electrically connected to the gate electrode 11.
  • the SiC epitaxial substrate 3 is subjected to a heat treatment at a temperature of about 500 ° C.
  • a passivation film (not shown) is formed so as to cover the source wiring electrode 15 and the gate wiring electrode.
  • An opening is formed in a portion of the passivation film where a pad region for electrically connecting the source wiring electrode 15 and the gate wiring electrode to the outside is formed.
  • drain wiring electrode 16 is formed on the back surface of n + -type SiC substrate 1.
  • the thickness of the drain wiring electrode 16 is, for example, about 0.4 ⁇ m.
  • the SiC-MOSFET according to the first embodiment is substantially completed.
  • Ni silicide is not formed between the n + -type source region 5 and the barrier metal film 14, but the n + -type 3C-SiC region 9 is formed.
  • an ohmic contact can be formed, and the contact resistance can be reduced.
  • Ni silicide in order to form Ni silicide, it is necessary to react SiC (silicon carbide) and Ni (nickel) at about 1,000 ° C. In the step of forming Ni silicide, SiC (silicon carbide) is required. ) Discharge of surplus C (carbon) contained therein. For this reason, it becomes difficult to form an ohmic contact due to a complicated reaction accompanied by precipitation of carbon clusters, and problems such as a decrease in reliability and a decrease in yield of the SiC-MOSFET arise.
  • the SiC-MOSFET according to the first embodiment does not form Ni silicide, a stable contact resistance between the n + type source region 5 and the barrier metal film 14 can be obtained. Therefore, problems such as a decrease in the reliability of the SiC-MOSFET and a decrease in the yield due to the variation in the contact resistance can be avoided. Further, since a stable contact resistance can be obtained even at a high temperature, the reliability of a semiconductor device having an element formation region in which a plurality of SiC-MOSFETs are arranged is improved in a high temperature operation.
  • FIG. 15 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to the second embodiment are arranged.
  • FIG. 16 is a sectional view (a sectional view taken along line BB in FIG. 15) showing the SiC-MOSFET according to the second embodiment.
  • the SiC-MOSFET is a planar type DMOS MOSFET.
  • the difference from the first embodiment is the structure of the n + -type source region 5 and the n + -type 3C—SiC region 9. Since the other structure is almost the same as that of the SiC-MOSFET according to the first embodiment, the description will focus on the differences.
  • Each of the plurality of p-type body regions (well regions) 4 formed in the n ⁇ -type epitaxial layer 2 includes an n + -type source region 5, a p + -type potential fixing region 6, and an n + -type 3C—SiC. Region 9 is formed.
  • n + -type source region 5 the upper first 2n located - - (lower surface -type epitaxial layer 2 n) a 1n + -type source region 5a and a lower located (n type upper surface side of the epitaxial layer 2) + which is composed of a source region 5b, both as the 2n + -type source region 5b is included in the first 1n + -type source region 5a in a plan view are formed.
  • the end side surface of the second n + -type source region 5b is formed inside the end side surface of the first n + -type source region 5a in plan view.
  • the distance between the side surface of the p-type body region 4 (L1) includes an end portion side surface of the 2n + -type source region 5b, the p-type body region 4 facing the end portion side surface of the 2n + -type source region 5b Shorter than the distance (L2) from the side face of the end.
  • the end side surface of the first n + type source region 5a and the end side surface of the p + type potential fixing region 6 are in contact.
  • the end side surface of the second n + type source region 5b and the end side surface of the p + type potential fixing region 6 are not in contact with each other and are separated from each other.
  • the depth of the second n + type source region 5b from the upper surface of the n ⁇ type epitaxial layer 2 is, for example, about 0.3 to 0.5 ⁇ m.
  • a preferable range of the impurity concentration of the first n + -type source region 5a and the second n + -type source region 5b is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 .
  • n + -type 3C-SiC region 9 is substantially directly above the first 2n + -type source region 5b, are formed so as to overlap with the first 2n + -type source region 5b in a plan view. Therefore, both are formed such that the n + -type 3C—SiC region 9 is included in the second n + -type source region 5b in plan view. In other words, the n + -type 3C—SiC region 9 is formed inside the end side surface of the second n + -type source region 5b in plan view.
  • the depth of the n + -type 3C—SiC region 9 from the upper surface of the n ⁇ -type epitaxial layer 2 is, for example, about 0.05 to 0.2 ⁇ m. Further, a preferable range of the impurity concentration of the n + -type 3C—SiC region 9 is, for example, about 1 ⁇ 10 20 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the distance between the side surface of the 1n + -type source region 5a facing the end side face of the n + -type 3C-SiC region 9 (L3), for example 0 About 5 ⁇ m.
  • n + type 3C—SiC region 9 and the p + type potential fixing region 6 are electrically connected to the source wiring electrode 15 through the barrier metal film 14.
  • the n + -type 3C-SiC region 9 is formed between the n + -type source region 5 and the barrier metal film 14 in the same manner as the SiC-MOSFET according to the first embodiment. It has the characteristics. Therefore, it is possible to form an ohmic contact by forming the n + -type 3C—SiC region 9 between the n + -type source region 5 and the barrier metal film 14 without forming Ni silicide. Contact resistance can be reduced. ⁇ SiC-MOSFET manufacturing method ⁇
  • FIGS. 17 to 22 are cross-sectional views of relevant parts showing one example of manufacturing steps of the SiC-MOSFET according to the second embodiment.
  • an n + type SiC substrate 1 made of 4H—SiC is prepared.
  • An n-type impurity is introduced into the n + -type SiC substrate 1.
  • the n-type impurity is, for example, N (nitrogen), and the impurity concentration of the n-type impurity is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the n + type SiC substrate 1 has both a Si surface and a C surface, but the surface of the n + type SiC substrate 1 may be either the Si surface or the C surface.
  • an n ⁇ type epitaxial layer 2 made of 4H—SiC is formed on the surface of the n + type SiC substrate 1 by epitaxial growth.
  • an n type impurity lower than the impurity concentration of the n + type SiC substrate 1 is introduced.
  • the impurity concentration of the n ⁇ -type epitaxial layer 2 depends on the element rating of the SiC-MOSFET, it is, for example, about 1 ⁇ 10 14 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the thickness of the n ⁇ type epitaxial layer 2 is, for example, about 5.0 to 100.0 ⁇ m.
  • p-type impurities such as Al (aluminum) atoms are ion-implanted into the n ⁇ -type epitaxial layer 2 with a maximum energy of 500 keV.
  • p-type impurities such as Al (aluminum) atoms
  • a plurality of p-type body regions 4 are formed in the element formation region of the n ⁇ -type epitaxial layer 2, and although not shown, an FLR structure is formed in the peripheral formation region.
  • the depth of the p-type body region 4 from the upper surface of the n ⁇ -type epitaxial layer 2 is, for example, about 0.5 to 1.0 ⁇ m. Further, the impurity concentration of the p-type body region 4 is, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the FLR structure is formed at the end of the peripheral formation region, the present invention is not limited to this.
  • a structure of the terminal portion for example, a JTE structure may be used.
  • p-type impurity in p-type body region 4 for example, Al (aluminum) atom maximum energy 150 keV, and ion-implanted at a temperature of about 350 ⁇ 700 ° C., in the region to fix the potential of the p-type body region 4 p +
  • a type potential fixing region 6 is formed.
  • ion implantation is performed so that the p + -type potential fixing region 6 is not completely amorphized.
  • the depth of the p + type potential fixing region 6 from the upper surface of the n ⁇ type epitaxial layer 2 is, for example, about 0.3 to 0.5 ⁇ m.
  • the impurity concentration of the p + -type potential fixing region 6 is, for example, about 1 ⁇ 10 20 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a mask pattern 18 made of, for example, SiO 2 (silicon dioxide) is formed on the upper surface of the n ⁇ -type epitaxial layer 2.
  • the mask pattern 18 is provided with an opening only in a region where the first n + type source region 5a is formed. That is, the p-type body region 4 is exposed between a position away from the end side surface of the p-type body region 4 toward the p + -type potential fixing region 6 and the end side surface of the p + -type potential fixing region 6.
  • the mask pattern 18 is provided with an opening.
  • an n-type impurity such as N (nitrogen) atoms is ion-implanted into the p-type body region 4 through the mask pattern 18 at a maximum energy of 50 keV and a temperature of about 25 ° C.
  • the first n + is added to the p-type body region 4 between the position away from the end side surface of the p-type body region 4 toward the p + -type potential fixing region 6 and the end side surface of the p + -type potential fixing region 6.
  • a mold source region 5a is formed.
  • ion implantation is performed so that the first n + -type source region 5a is not completely amorphized.
  • the impurity concentration of the first n + -type source region 5a is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 .
  • an SiO 2 (silicon dioxide) film is formed on the upper surface of the n ⁇ -type epitaxial layer 2 so as to cover the mask pattern 18, and then the SiO 2 (silicon dioxide) film is etched back.
  • sidewalls 19 are formed on the side surfaces of the mask pattern 18.
  • the width (W) of the sidewall 19 is, for example, about 0.5 ⁇ m.
  • an n-type impurity such as P (phosphorus) atoms is ion-implanted into the n + -type source region 5 through the mask pattern 18 and the sidewall 19 at a maximum energy of 50 keV and a temperature of about 25 ° C.
  • the n + -type amorphous region 9a is formed apart from the end side surface of the first n + -type source region 5a.
  • ion implantation is performed so that the n + -type amorphous region 9a is completely amorphized.
  • the depth of the n + type amorphous region 9a from the upper surface of the n ⁇ type epitaxial layer 2 is, for example, about 0.05 to 0.2 ⁇ m.
  • the impurity concentration of the n + -type amorphous region 9a is, for example, about 1 ⁇ 10 20 to 1 ⁇ 10 21 cm ⁇ 3 .
  • an n-type impurity for example, N (nitrogen) atoms are ion-implanted into the p-type body region 4 through the mask pattern 18 and the sidewall 19 at a maximum energy of 120 keV and a temperature of about 25 ° C.
  • the second n + type source region 5b is formed deeper than the n + type amorphous region 9a.
  • ion implantation is performed so that the second n + -type source region 5b is not completely amorphized.
  • the depth of the second n + type source region 5b from the upper surface of the n ⁇ type epitaxial layer 2 is, for example, about 0.3 to 0.5 ⁇ m.
  • the impurity concentration of the n + -type source region 5b is, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 .
  • a CCVD method is used on the upper surface of the n ⁇ -type epitaxial layer 2, for example.
  • a (carbon) film is deposited.
  • the thickness of the C (carbon) film is, for example, about 0.03 ⁇ m.
  • the SiC epitaxial substrate 3 is subjected to heat treatment at a temperature of about 1,700 ° C. for about 2 to 3 minutes. Thereby, each impurity ion-implanted into the n ⁇ -type epitaxial layer 2 is activated.
  • the n + type amorphous region 9a becomes the n + type 3C—SiC region 9 containing 3C—SiC.
  • the C (carbon) film is removed by, for example, oxygen plasma treatment.
  • the first n + -type source region 5a is formed by ion implantation through the mask pattern 18, and the n + -type amorphous region 9a is formed by ion implantation through the subsequent mask pattern 18 and the sidewall 19, so that the first and the side surface of 1n + -type source region 5a, set to a desired distance distance (L3) between the side surface of the n + -type 3C-SiC region 9 opposite to the side surface of the 1n + -type source region 5a can do. Therefore, it is possible to prevent defects generated when forming the n + -type amorphous region 9a from affecting the reliability of the gate insulating film 10 formed in a later process. Further, the n + -type 3C—SiC region 9 can be prevented from being formed in the upper layer portion of the p + -type potential fixing region 6.
  • a gate insulating film 10 made of SiON (silicon oxynitride) is formed on the upper surface of the n ⁇ type epitaxial layer 2.
  • the gate insulating film 10 is formed by, for example, forming a SiO 2 (silicon dioxide) film by a CVD method and then performing a heat treatment in an NO (nitrogen monoxide) or N 2 O (dinitrogen monoxide) atmosphere.
  • the thickness of the gate insulating film 10 is, for example, about 0.05 to 0.15 ⁇ m.
  • a polycrystalline Si (polycrystalline silicon) film is formed on the gate insulating film 10, and the polycrystalline Si (polycrystalline silicon) film is processed by a dry etching method to form the gate electrode 11.
  • the thickness of the gate electrode 11 is, for example, about 0.2 to 0.5 ⁇ m.
  • an interlayer insulating film 12 is formed on the upper surface of the n ⁇ -type epitaxial layer 2 so as to cover the gate insulating film 10 and the gate electrode 11 by, for example, a plasma CVD method. Thereafter, the interlayer insulating film 12 is processed by a dry etching method to form a part of the first n + type source region 5a, a part of the n + type 3C—SiC region 9 and the opening 13 reaching the p + type potential fixing region 6. In addition, an opening (not shown) reaching the gate electrode 11 is formed.
  • a barrier metal film 14 is formed on the interlayer insulating film 12 so as to cover the inner wall (bottom surface and side surface) of the opening 13.
  • the barrier metal film 14 is made of, for example, titanium nitride / titanium (TiN / Ti) with Ti (titanium), Ta (tantalum), W (tungsten), TiN (titanium nitride), TaN (tantalum nitride), and Ti (titanium) as a lower layer.
  • TiN / Ti titanium nitride / titanium
  • Ta tantalum
  • W tungsten
  • TiN titanium nitride
  • TaN tantalum
  • Ta tantalum
  • a conductive film (not shown) is formed on the barrier metal film 14 so as to fill the inside of the opening 13.
  • the conductive film is made of, for example, Al (aluminum), Cu (copper), or Al (aluminum) -Cu (copper) alloy.
  • the thickness of the conductive film is preferably 2.0 ⁇ m or more, for example.
  • the conductive film and the barrier metal film 14 are processed by a dry etching method, and the source wiring electrode 15 and the gate wiring electrode (not shown) made of the conductive film having the barrier metal film 14 in the lower layer are formed.
  • the source wiring electrode 15 is electrically connected to the n + type source region 5, the n + type 3C-SiC region 9 and the p + type potential fixing region 6, and the gate wiring electrode is electrically connected to the gate electrode 11. .
  • the SiC epitaxial substrate 3 is subjected to a heat treatment at a temperature of about 500 ° C.
  • a passivation film (not shown) is formed so as to cover the source wiring electrode 15 and the gate wiring electrode.
  • An opening is formed in a portion of the passivation film where a pad region for electrically connecting the source wiring electrode 15 and the gate wiring electrode to the outside is formed.
  • drain wiring electrode 16 is formed on the back surface of n + -type SiC substrate 1.
  • the thickness of the drain wiring electrode 16 is, for example, about 0.4 ⁇ m.
  • the SiC-MOSFET according to the second embodiment is almost completed.
  • the n + -type 3C—SiC region 9 can be prevented from being formed in the upper layer portion of the p + -type potential fixing region 6.
  • the SiC-MOSFET according to the second embodiment is more reliable than the SiC-MOSFET according to the first embodiment.
  • the power module of the third embodiment includes a semiconductor device having an element formation region in which the SiC-MOSFETs of the first embodiment are arranged.
  • the power module according to the third embodiment is obtained by applying this semiconductor device to a three-phase inverter circuit.
  • FIG. 23 is a diagram illustrating a configuration of a three-phase motor system according to the third embodiment.
  • the three-phase motor system 30 includes a power conversion device 31 as an inverter device, a load 32 composed of a three-phase motor, a DC power source 33, and a capacitor 34 composed of a capacitor.
  • the power conversion device 31 includes a power module 35 as a three-phase inverter circuit and a control circuit 36.
  • the load 32 is connected to output terminals TO1, TO2, and TO3, which are three-phase output terminals of the power module 35.
  • the DC power supply 33 and the capacitor 34 are connected in parallel between the input terminal TI1 and the input terminal TI2, which are the two input terminals of the power module 35.
  • the power module 35 as a three-phase inverter circuit has switching elements 37u, 37v, 37w, 37x, 37y and 37z.
  • the switching elements 37u and 37x are connected in series between the input terminal TI1 and the input terminal TI2.
  • the switching elements 37v and 37y are connected in series between the input terminal TI1 and the input terminal TI2.
  • the switching elements 37w and 37z are connected in series between the input terminal TI1 and the input terminal TI2.
  • Each of the switching elements 37u, 37v, 37w, 37x, 37y and 37z includes a MOSFET 38 and a body diode 39.
  • a semiconductor device having an element formation region in which the SiC-MOSFETs of Example 1 described above are arranged can be used.
  • the body diode 39 a body diode built in the SiC-MOSFET can be used.
  • the gate electrodes of the plurality of MOSFETs 38 provided in the switching elements 37u, 37v, 37w, 37x, 37y and 37z, respectively, are control terminals TC1, TC2, TC3, TC4, TC5 which are six control terminals of the power module 35. And TC6, respectively.
  • the control circuit 36 is connected to each of the control terminals TC1, TC2, TC3, TC4, TC5, and TC6. Accordingly, the control circuit 36 is connected to each gate electrode of the plurality of MOSFETs 38 provided in the switching elements 37u, 37v, 37w, 37x, 37y and 37z, respectively.
  • the control circuit 36 drives the switching elements 37u, 37v, 37w, 37x, 37y and 37z.
  • the control circuit 36 switches the switching elements 37u, 37v, 37w, 37x, 37y, and 37z so that the ON state and the OFF state of the switching elements 37u, 37v, 37w, 37x, and 37z are alternately switched at preset timings. And 37z are driven.
  • a U-phase, V-phase, and W-phase three-phase AC voltage is generated from the DC voltage, and the DC power is converted into three-phase AC power.
  • the load 32 is driven by this three-phase AC power.
  • an element formation region in which the SiC-MOSFETs of the first embodiment are arranged is used.
  • the semiconductor device which has can be used.
  • the semiconductor device is composed of a SiC-MOSFET that can obtain a stable operation state even at a high temperature, the reliability of the power module 35 and the power conversion device 31 at a high temperature operation can be improved. Further, even if the semiconductor device is operated at a high current density, it is possible to maintain a stable operation state in which the contact resistance does not fluctuate, so that the semiconductor device can be reduced in size, and accordingly, the power module 35 and the power conversion device 31 can be downsized.
  • the railway vehicle according to the fourth embodiment will be described.
  • the railway vehicle according to the fourth embodiment is a railway vehicle including the power conversion device according to the third embodiment.
  • FIG. 24 is a diagram illustrating a configuration of a railway vehicle according to the fourth embodiment.
  • the railway vehicle 60 includes a pantograph 61 as a current collector, a transformer 62, a power converter 63, a load 64 that is an AC motor, and wheels 65.
  • the power conversion device 63 includes a converter device 66, a capacitor 67 that is, for example, a capacitor, and an inverter device 68.
  • the converter device 66 has switching elements 69 and 70.
  • the switching element 69 is disposed on the upper arm side, that is, the high voltage side
  • the switching element 70 is disposed on the lower arm side, that is, the low voltage side.
  • the switching elements 69 and 70 are shown for one of the three phases U phase, V phase and W phase.
  • the inverter device 68 has switching elements 71 and 72.
  • the switching element 71 is disposed on the upper arm side, that is, the high voltage side
  • the switching element 72 is disposed on the lower arm side, that is, the low voltage side.
  • the switching elements 71 and 72 are shown for one of the three phases U phase, V phase and W phase.
  • One end of the primary side of the transformer 62 is connected to the overhead line 61 a via the pantograph 61.
  • the other end of the primary side of the transformer 62 is connected to the line 65 a via the wheel 65.
  • One end of the secondary side of the transformer 62 is connected to a terminal on the upper arm side opposite to the load 64 of the converter device 66.
  • the other end of the secondary side of the transformer 62 is connected to a terminal on the lower arm side opposite to the load 64 of the converter device 66.
  • the terminal on the load 64 side and the upper arm side of the converter device 66 is connected to the terminal on the upper arm side opposite to the load 64 of the inverter device 68.
  • the terminal on the load 64 side of the converter device 66 on the lower arm side is connected to the terminal on the lower arm side opposite to the load 64 of the inverter device 68.
  • a capacitor 67 is connected between a terminal on the side opposite to the load 64 of the inverter device 68 and on the upper arm side, and a terminal on the side opposite to the load 64 of the inverter device 68 and on the lower arm side.
  • each of the three terminals on the output side of the inverter device 68 is connected to the load 64 as a U phase, a V phase, and a W phase.
  • the power conversion device 31 of the above-described third embodiment can be used.
  • the AC power collected by the pantograph 61 from the overhead line 61 a is transformed by the converter device 66 into desired DC power after the voltage is transformed by the transformer 62.
  • the DC power converted by the converter device 66 is smoothed by the capacitor 67.
  • the DC power whose voltage has been smoothed by the capacitor 67 is converted into AC power by the inverter device 68.
  • the AC power converted by the inverter device 68 is supplied to the load 64.
  • the power conversion device 31 (see FIG. 23) of the above-described third embodiment can be used.
  • a semiconductor device having an element formation region in which the SiC-MOSFETs of Example 1 described above are arranged can be used. .
  • the semiconductor device is composed of a SiC-MOSFET that can obtain a stable operation state even at a high temperature. Therefore, the reliability of the power module 35 and the power conversion device 31 at the high temperature operation is improved. Can be made. Further, even if the semiconductor device is operated at a high current density, it is possible to maintain a stable operation state in which the contact resistance does not fluctuate, so that the semiconductor device can be reduced in size, and accordingly, the power module 35 and the power conversion device 31 can be downsized.
  • the switching elements 71 and 72 provided in the inverter device 68 a semiconductor device having an element formation region in which the SiC-MOSFETs of the first embodiment are arranged can be used. Therefore, the reliability of the inverter device 68 is improved and the size can be reduced. Therefore, in the railway vehicle 60 including the inverter device 68, the energy efficiency when operating the railway can be improved.
  • the switching elements 69 and 70 provided in the converter device 66 a semiconductor device having an element formation region in which the SiC-MOSFETs of Example 1 described above are arranged can be used. Also in this case, the reliability of the converter device 66 is improved and the size can be reduced. Therefore, in the railway vehicle 60 including the converter device 66, the energy efficiency when operating the railway can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

To improve reliability and yield of a power semiconductor device by achieving a stable ohmic contact. In order to solve the above-mentioned problem, this semiconductor device has, in an n- type epitaxial layer formed on a first main surface of an n+ type SiC substrate formed of 4H-SiC, a p type body region, an n+ type source region formed in the p type body region, and an n+ type 3C-SiC region and a p+ type potential fixing region, which are formed in the n+ type source region. A barrier metal film is formed in contact with the n+ type 3C-SiC region and the p+ type potential fixing region, and a source wiring electrode is formed on the barrier metal film.

Description

半導体装置およびその製造方法、パワーモジュール、電力変換装置並びに鉄道車両Semiconductor device and method for manufacturing the same, power module, power conversion device, and railcar
 本発明は、半導体装置およびその製造方法、パワーモジュール、電力変換装置並びに鉄道車両に関する。 The present invention relates to a semiconductor device and a manufacturing method thereof, a power module, a power conversion device, and a railway vehicle.
 本技術分野の背景技術として、特開2003-96802号公報(特許文献1)および特開2013-58601号公報(特許文献2)がある。 As background arts in this technical field, there are JP-A-2003-96802 (Patent Document 1) and JP-A-2013-58601 (Patent Document 2).
 特許文献1には、表面チャネル層を4Hまたは6H-SiCで形成し、n型ソース領域となる半導体層を3C-SiCで形成した炭化珪素半導体装置が記載されている。 Patent Document 1 describes a silicon carbide semiconductor device in which a surface channel layer is formed of 4H or 6H—SiC and a semiconductor layer to be an n + type source region is formed of 3C—SiC.
 また、特許文献2には、ソース領域に3C-SiC構造のSiCを用いた半導体装置が記載されている。 Patent Document 2 describes a semiconductor device using 3C—SiC SiC in the source region.
特開2003-96802号公報JP 2003-96802 A 特開2013-58601号公報JP 2013-58601 A
 鉄道用などの高耐圧電力変換装置用のパワー半導体装置として、Si(珪素)よりも絶縁破壊電界の高いSiC(炭化珪素)を用いたSiC-MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの開発が行われている。 Development of SiC-MOSFETs (Metal-Oxide-Semiconductor-Field-Effect-Transistor) using SiC (silicon carbide), which has a higher breakdown electric field than Si (silicon), as power semiconductor devices for high-voltage power converters such as railways Has been done.
 SiC-MOSFETでは、ソース領域と取り出し電極とのコンタクト抵抗を低減するため、両者間にNiシリサイドを形成している。しかし、Niシリサイドを形成するには、1,000℃程度でSiC(炭化珪素)とNi(ニッケル)とを反応させる必要があり、Niシリサイドを形成する工程においてSiC(炭化珪素)中に含まれる余剰C(炭素)の吐出しが起こる。このため、カーボンクラスタの析出を伴う複雑な反応によりオーミックコンタクトを形成することが困難となり、SiC-MOSFETの信頼性の低下および歩留りの低下などの問題が生じている。 In the SiC-MOSFET, in order to reduce the contact resistance between the source region and the extraction electrode, Ni silicide is formed between them. However, in order to form Ni silicide, it is necessary to react SiC (silicon carbide) and Ni (nickel) at about 1,000 ° C., which is included in SiC (silicon carbide) in the step of forming Ni silicide. Excess C (carbon) discharge occurs. For this reason, it is difficult to form an ohmic contact due to a complicated reaction accompanied by precipitation of carbon clusters, and problems such as a decrease in reliability and a decrease in yield of the SiC-MOSFET arise.
 上記課題を解決するために、本発明による半導体装置は、n型SiC基板の第1主面上に形成されたn型エピタキシャル層と、n型エピタキシャル層内に形成された複数のp型ボディ領域と、p型ボディ領域の端部側面と離間して、n型エピタキシャル層の上面からp型ボディ領域内に形成されたn型ソース領域とを有する。さらに、n型ソース領域の端部側面と離間して、n型エピタキシャル層の上面からn型ソース領域内に、p型ボディ領域に達して形成されたp型電位固定領域と、n型ソース領域の端部側面とp型電位固定領域の端部側面との間のn型ソース領域の上層部に、n型ソース領域の端部側面から離間して形成されたn型3C-SiC領域と、を有する。さらに、p型ボディ領域の端部側面とn型ソース領域の端部側面との間のp型ボディ領域の上層部に形成されたチャネル領域と、チャネル領域に接して形成されたゲート絶縁膜と、ゲート絶縁膜に接して形成されたゲート電極と、を有する。さらに、ゲート電極を覆い、p型電位固定領域およびn型3C-SiC領域が露出する開口部を有する層間絶縁膜と、開口部の底面においてp型電位固定領域およびn型3C-SiC領域と接し、開口部の内壁を含む層間絶縁膜上に形成されたバリアメタル膜と、バリアメタル膜上に形成された第1電極と、n型SiC基板の第2主面上に形成された第2電極と、を有する。 In order to solve the above problems, a semiconductor device according to the present invention includes an n type epitaxial layer formed on a first main surface of an n + type SiC substrate and a plurality of p layers formed in the n type epitaxial layer. A p-type body region and an n + -type source region formed in the p-type body region from the upper surface of the n -type epitaxial layer, spaced apart from the end side surface of the p-type body region. Moreover, apart from the end portion side surface of the n + -type source region, n - -type from the upper surface of the epitaxial layer to the n + -type source region, p formed reaches the p-type body region + -type potential fixing region, at the top of the n + -type source region between the end side and the p + -type potential end side of the fixing area of the n + -type source region, formed apart from the side surface of the n + -type source region n + -type 3C-SiC region. Further, a channel region formed in the upper layer part of the p-type body region between the end side surface of the p-type body region and the end side surface of the n + -type source region, and a gate insulating film formed in contact with the channel region And a gate electrode formed in contact with the gate insulating film. Further, an interlayer insulating film covering the gate electrode and having an opening through which the p + -type potential fixing region and the n + -type 3C-SiC region are exposed, and at the bottom surface of the opening, the p + -type potential fixing region and the n + -type 3C- A barrier metal film formed on an interlayer insulating film in contact with the SiC region and including the inner wall of the opening, a first electrode formed on the barrier metal film, and formed on the second main surface of the n + -type SiC substrate A second electrode.
 本発明によれば、パワー半導体装置の信頼性および歩留りが向上する。
 上記した以外の課題、構成および効果は、以下の実施の形態の説明により明らかにされる。
According to the present invention, the reliability and yield of the power semiconductor device are improved.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
実施例1による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。FIG. 3 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to Example 1 are arranged. 実施例1によるSiC-MOSFETを示す要部断面図(図1のA-A線に沿った断面図)である。FIG. 3 is a main part sectional view (a sectional view taken along line AA in FIG. 1) showing the SiC-MOSFET according to Example 1; SiCのバンド構造を示す模式図である。It is a schematic diagram which shows the band structure of SiC. 実施例1の第1変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。7 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a first modification of Example 1 are arranged; FIG. 実施例1の第2変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a second modification of Example 1 are arranged. 実施例1の第3変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs are arranged according to a third modification of Example 1; 実施例1の第4変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a fourth modification of Example 1 are arranged. 実施例1の第5変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。FIG. 10 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a fifth modification of Example 1 are arranged. 実施例1によるSiC-MOSFETの製造工程の一例を示す要部断面図である。FIG. 6 is a sectional view showing the principal parts of an example of a manufacturing process of the SiC-MOSFET according to Example 1. 図9に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 10 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 9; 図10に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 11 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process that follows FIG. 10; 図11に続く、SiC-MOSFETの製造工程を示す要部断面図である。12 is a fragmentary cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 11. FIG. 図12に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 13 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 12. 図13に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 14 is an essential part cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 13; 実施例2による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。FIG. 10 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to Example 2 are arranged. 実施例2によるSiC-MOSFETを示す要部断面図(図15のB-B線に沿った断面図)である。FIG. 16 is a cross-sectional view of a principal part showing a SiC-MOSFET according to Example 2 (cross-sectional view taken along line BB in FIG. 15). 実施例2によるSiC-MOSFETの製造工程の一例を示す要部断面図である。12 is a sectional view of the substantial part showing one example of manufacturing steps of the SiC-MOSFET according to Example 2. FIG. 図17に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 18 is an essential part cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 17; 図18に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 19 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 18; 図19に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 20 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 19; 図20に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 21 is an essential part cross-sectional view showing a manufacturing step of the SiC-MOSFET, following FIG. 20; 図21に続く、SiC-MOSFETの製造工程を示す要部断面図である。FIG. 22 is a main-portion cross-sectional view showing the SiC-MOSFET manufacturing process following FIG. 21; 実施例3による三相モータシステムの構成を示す図である。It is a figure which shows the structure of the three-phase motor system by Example 3. FIG. 実施例4による鉄道車両の構成を示す図である。It is a figure which shows the structure of the rail vehicle by Example 4. FIG.
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other, and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps) are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
 また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 In addition, when referring to “consisting of A”, “consisting of A”, “having A”, and “including A”, other elements are excluded unless specifically indicated that only that element is included. It goes without saying that it is not what you do. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本実施の形態を図面に基づいて詳細に説明する。 Also, in the drawings used in the following embodiments, hatching may be added to make the drawings easy to see even if they are plan views. In all the drawings for explaining the following embodiments, components having the same function are denoted by the same reference numerals in principle, and repeated description thereof is omitted. Hereinafter, the present embodiment will be described in detail with reference to the drawings.
 ≪SiC-MOSFETの構造≫ ≪SiC-MOSFET structure≫
 本実施例1によるSiC-MOSFETの構造について図1および図2を用いて説明する。図1は、本実施例1による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。図2は、本実施例1によるSiC-MOSFETを示す要部断面図(図1のA-A線に沿った断面図)である。SiC-MOSFETは、プレーナ型のDMOS(Double diffused Metal Oxide Semiconductor)構造のMOSFETである。 The structure of the SiC-MOSFET according to the first embodiment will be described with reference to FIGS. FIG. 1 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to the first embodiment are arranged. FIG. 2 is a cross-sectional view of a principal part showing the SiC-MOSFET according to the first embodiment (cross-sectional view along the line AA in FIG. 1). The SiC-MOSFET is a planar type DMOS (Double-diffused-Metal-Oxide-Semiconductor) MOSFET.
 図1および図2に示すように、4H-SiCからなるn型SiC基板1の表面(第1主面)上に、n型SiC基板1よりも不純物濃度の低い4H-SiCからなるn型エピタキシャル層2が形成されており、n型SiC基板1とn型エピタキシャル層2とからSiCエピタキシャル基板3が構成されている。n型エピタキシャル層2の厚さは、例えば5.0~100.0μm程度である。また、n型SiC基板1の不純物濃度の好ましい範囲は、例えば1×1018~1×1021cm-3程度、n型エピタキシャル層2の不純物濃度の好ましい範囲は、例えば1×1014~1×1017cm-3程度である。本実施例1では、4H-SiCからなるn型SiC基板1を用いたが、これに限定されるものではなく、6H-SiCからなるn型SiC基板1を用いることもできる。 As shown in FIG. 1 and FIG. 2, n made of 4H—SiC having an impurity concentration lower than that of the n + type SiC substrate 1 is formed on the surface (first main surface) of the n + type SiC substrate 1 made of 4H—SiC. A − type epitaxial layer 2 is formed, and an SiC epitaxial substrate 3 is constituted by the n + type SiC substrate 1 and the n type epitaxial layer 2. The thickness of the n type epitaxial layer 2 is, for example, about 5.0 to 100.0 μm. Further, the preferable range of the impurity concentration of the n + -type SiC substrate 1 is, for example, about 1 × 10 18 to 1 × 10 21 cm −3 , and the preferable range of the impurity concentration of the n -type epitaxial layer 2 is, for example, 1 × 10 14. It is about 1 × 10 17 cm −3 . In the first embodiment, the n + type SiC substrate 1 made of 4H—SiC is used. However, the present invention is not limited to this, and the n + type SiC substrate 1 made of 6H—SiC can also be used.
 n型エピタキシャル層2内には、n型エピタキシャル層2の上面から所定の深さを有して、複数のp型ボディ領域(ウェル領域)4が互いに離間して形成されている。p型ボディ領域4のn型エピタキシャル層2の上面からの深さは、例えば0.5~1.0μm程度である。また、p型ボディ領域4の不純物濃度の好ましい範囲は、例えば1×1017~1×1018cm-3程度である。 In the n -type epitaxial layer 2, a plurality of p-type body regions (well regions) 4 having a predetermined depth from the upper surface of the n -type epitaxial layer 2 are formed apart from each other. The depth of the p-type body region 4 from the upper surface of the n -type epitaxial layer 2 is, for example, about 0.5 to 1.0 μm. A preferable range of the impurity concentration of the p-type body region 4 is, for example, about 1 × 10 17 to 1 × 10 18 cm −3 .
 p型ボディ領域4内には、n型エピタキシャル層2の上面から所定の深さを有して、n型ソース領域5が形成されている。n型ソース領域5は、p型ボディ領域4の端部側面と離間してp型ボディ領域4内に形成されており、n型ソース領域5のn型エピタキシャル層2の上面からの深さは、例えば0.3~0.5μm程度である。また、n型ソース領域5の不純物濃度の好ましい範囲は、例えば1×1018~1×1019cm-3程度である。 An n + type source region 5 is formed in the p type body region 4 with a predetermined depth from the upper surface of the n type epitaxial layer 2. The n + -type source region 5 is formed in the p-type body region 4 so as to be separated from the end side surface of the p-type body region 4, and from the upper surface of the n -type epitaxial layer 2 of the n + -type source region 5. The depth is, for example, about 0.3 to 0.5 μm. A preferable range of the impurity concentration of the n + -type source region 5 is, for example, about 1 × 10 18 to 1 × 10 19 cm −3 .
 また、n型ソース領域5内には、n型エピタキシャル層2の上面から所定の深さを有して、p型ボディ領域4の電位を固定するp型電位固定領域6が形成されている。p型電位固定領域6のn型エピタキシャル層2の上面からの深さは、例えば0.3~0.5μm程度である。また、p型電位固定領域6の不純物濃度の好ましい範囲は、例えば1×1020~1×1021cm-3程度である。 Further, in the n + type source region 5, a p + type potential fixing region 6 having a predetermined depth from the upper surface of the n type epitaxial layer 2 and fixing the potential of the p type body region 4 is formed. ing. The depth of the p + type potential fixing region 6 from the upper surface of the n type epitaxial layer 2 is, for example, about 0.3 to 0.5 μm. A preferable range of the impurity concentration of the p + -type potential fixing region 6 is, for example, about 1 × 10 20 to 1 × 10 21 cm −3 .
 互いに隣り合うp型ボディ領域4に挟まれた領域は、JFET(Junction Field Effect Transistor)領域7として機能する部位である。JFET領域7の不純物濃度の好ましい範囲は、例えば3×1016cm-3程度である。また、p型ボディ領域4の端部側面(JFET領域7とp型ボディ領域4との界面)とn型ソース領域5の端部側面(p型ボディ領域4とn型ソース領域5との界面)との間に位置するp型ボディ領域4がチャネル領域8として機能する部位である。 A region sandwiched between adjacent p-type body regions 4 is a part that functions as a JFET (Junction Field Effect Transistor) region 7. A preferable range of the impurity concentration of the JFET region 7 is, for example, about 3 × 10 16 cm −3 . Further, the end side surface of the p-type body region 4 (interface between the JFET region 7 and the p-type body region 4) and the end side surface of the n + -type source region 5 (p-type body region 4 and n + -type source region 5 The p-type body region 4 located between the first and second interfaces) functions as the channel region 8.
 n型エピタキシャル層2のうち、p型ボディ領域4が形成されていない領域が、耐圧を確保する役目を担うドリフト層として機能する領域である。また、n型SiC基板1が、ドレイン層として機能する領域である。 Of the n -type epitaxial layer 2, a region where the p-type body region 4 is not formed is a region functioning as a drift layer that plays a role of securing a breakdown voltage. Further, the n + type SiC substrate 1 is a region functioning as a drain layer.
 さらに、n型ソース領域5の一部上層部には、n型エピタキシャル層2の上面から所定の深さを有して、3C-SiCからなるn型3C-SiC領域9(図1では、相対的に間隔の狭いハッチングで示す領域)が形成されている。n型3C-SiC領域9は、n型ソース領域5の端部側面から0.3μm以上離れている。このように、n型3C-SiC領域9をチャネル領域8から遠ざけるのは、3C-SiCを形成する際に生じる欠陥が、後述するゲート絶縁膜10の信頼性に影響を及ぼさないようにするためである。また、n型3C-SiC領域9は、p型電位固定領域6の上層部には形成されていない。n型3C-SiC領域9のn型エピタキシャル層2の上面からの深さは、例えば0.05~0.2μm程度である。また、n型3C-SiC領域9の不純物濃度の好ましい範囲は、例えば1×1020~1×1021cm-3程度である。 Further, in a part of the upper layer portion of the n + -type source region 5, an n + -type 3C-SiC region 9 made of 3C—SiC having a predetermined depth from the upper surface of the n -type epitaxial layer 2 (FIG. 1). Then, a hatched region with relatively narrow intervals is formed. The n + -type 3C—SiC region 9 is separated from the end side surface of the n + -type source region 5 by 0.3 μm or more. In this way, the n + -type 3C—SiC region 9 is moved away from the channel region 8 so that defects generated when the 3C—SiC is formed do not affect the reliability of the gate insulating film 10 described later. Because. Further, the n + type 3C—SiC region 9 is not formed in the upper layer portion of the p + type potential fixing region 6. The depth of the n + -type 3C—SiC region 9 from the upper surface of the n -type epitaxial layer 2 is, for example, about 0.05 to 0.2 μm. Further, a preferable range of the impurity concentration of the n + -type 3C—SiC region 9 is, for example, about 1 × 10 20 to 1 × 10 21 cm −3 .
 なお、「」および「」は、導電型がn型またはp型の相対的な不純物濃度を表記した符号であり、例えば「n」、「n」、「n」の順にn型不純物の不純物濃度は高くなり、「p」、「p」、「p」の順にp型不純物の不純物濃度は高くなる。 Note that “ ” and “ + ” are signs representing relative impurity concentrations of n-type or p-type conductivity, for example, n-type in the order of “n ”, “n”, and “n + ”. The impurity concentration of the impurity increases, and the impurity concentration of the p-type impurity increases in the order of “p ”, “p”, and “p + ”.
 チャネル領域8上にはゲート絶縁膜10が形成され、ゲート絶縁膜10上にはゲート電極11(図1では、相対的に間隔の広いハッチングで示す領域)が形成されている。ゲート電極11は、平面視において格子状に形成されており、ゲート電極11で囲まれるように、p型のボディ領域4が形成されている。 A gate insulating film 10 is formed on the channel region 8, and a gate electrode 11 (a region indicated by relatively wide hatching in FIG. 1) is formed on the gate insulating film 10. The gate electrode 11 is formed in a lattice shape in plan view, and a p-type body region 4 is formed so as to be surrounded by the gate electrode 11.
 これらゲート絶縁膜10およびゲート電極11は層間絶縁膜12により覆われている。層間絶縁膜12に形成された開口部13の底面にはn型3C-SiC領域9およびp型電位固定領域6が露出している。 The gate insulating film 10 and the gate electrode 11 are covered with an interlayer insulating film 12. The n + type 3C—SiC region 9 and the p + type potential fixing region 6 are exposed on the bottom surface of the opening 13 formed in the interlayer insulating film 12.
 さらに、n型3C-SiC領域9およびp型電位固定領域6は、バリアメタル膜14を介してソース配線用電極15と電気的に接続されている。バリアメタル膜14は、ソース配線用電極15を構成する主導電材料の金属の拡散防止などのために設けられている。バリアメタル膜14は、例えばTi(チタン)、Ta(タンタル)、W(タングステン)、TiN(窒化チタン)、TaN(窒化タンタル)、Ti(チタン)を下層とした窒化チタン/チタン(TiN/Ti)積層、またはTa(タンタル)を下層とした窒化タンタル/タンタル(TaN/Ta)積層などからなる。ソース配線用電極15は、例えばAl(アルミニウム)、Cu(銅)またはAl(アルミニウム)-Cu(銅)合金などからなる。図示は省略するが、同様に、ゲート電極11は、ゲート配線用電極に電気的に接続されている。 Further, the n + -type 3C—SiC region 9 and the p + -type potential fixing region 6 are electrically connected to the source wiring electrode 15 through the barrier metal film 14. The barrier metal film 14 is provided for preventing diffusion of the metal of the main conductive material constituting the source wiring electrode 15. The barrier metal film 14 is made of, for example, titanium nitride / titanium (TiN / Ti) with Ti (titanium), Ta (tantalum), W (tungsten), TiN (titanium nitride), TaN (tantalum nitride), and Ti (titanium) as a lower layer. Or a tantalum nitride / tantalum (TaN / Ta) laminate with Ta (tantalum) as a lower layer. The source wiring electrode 15 is made of, for example, Al (aluminum), Cu (copper), Al (aluminum) -Cu (copper) alloy, or the like. Although illustration is omitted, similarly, the gate electrode 11 is electrically connected to the gate wiring electrode.
 n型SiC基板1の裏面(第2主面)には、ドレイン配線用電極16が電気的に接続されている。なお、n型SiC基板1の裏面に金属シリサイド層を形成してもよい。ソース配線用電極15には外部からソース電位が印加され、ドレイン配線用電極16には外部からドレイン電位が印加され、ゲート配線用電極には外部からゲート電位が印加される。
 ≪SiC-MOSFETの構造の特徴≫
A drain wiring electrode 16 is electrically connected to the back surface (second main surface) of the n + -type SiC substrate 1. A metal silicide layer may be formed on the back surface of n + -type SiC substrate 1. A source potential is applied to the source wiring electrode 15 from the outside, a drain potential is applied to the drain wiring electrode 16 from the outside, and a gate potential is applied to the gate wiring electrode from the outside.
<< Characteristics of SiC-MOSFET structure >>
 次に、本実施例1によるSiC-MOSFETの構造の特徴について図2および図3を用いて説明する。図3は、SiCのバンド構造を示す模式図である。 Next, the characteristics of the structure of the SiC-MOSFET according to the first embodiment will be described with reference to FIGS. FIG. 3 is a schematic view showing a band structure of SiC.
 本実施例1によるSiC-MOSFETでは、n型ソース領域5とバリアメタル膜14との間にn型3C-SiC領域9を形成することに特徴を有する。 The SiC-MOSFET according to the first embodiment is characterized in that the n + -type 3C—SiC region 9 is formed between the n + -type source region 5 and the barrier metal film 14.
 前述したように、SiC-MOSFETでは、一般に、ソース領域(n型ソース領域5)と取り出し電極(バリアメタル膜14)とのコンタクト抵抗を低減するため、両者間にNiシリサイドを形成している。しかし、Niシリサイドを形成するには、1,000℃程度でSiC(炭化珪素)とNi(ニッケル)とを反応させる必要があり、Niシリサイドを形成する工程においてSiC(炭化珪素)中に含まれる余剰C(炭素)の吐出しが起こる。このため、カーボンクラスタの析出を伴う複雑な反応によりオーミックコンタクトを形成することが困難となる。 As described above, in the SiC-MOSFET, generally, Ni silicide is formed between the source region (n + -type source region 5) and the extraction electrode (barrier metal film 14) in order to reduce the contact resistance. . However, in order to form Ni silicide, it is necessary to react SiC (silicon carbide) and Ni (nickel) at about 1,000 ° C., which is included in SiC (silicon carbide) in the step of forming Ni silicide. Excess C (carbon) discharge occurs. For this reason, it becomes difficult to form an ohmic contact due to a complicated reaction accompanied by precipitation of carbon clusters.
 しかし、本実施例1によるSiC-MOSFETでは、Niシリサイドを形成しない。このため、ソース領域(n型ソース領域5)と取り出し電極(バリアメタル膜14)とのコンタクト抵抗が高くなることが懸念される。しかし、ソース領域(n型ソース領域5)と取り出し電極(バリアメタル膜14)との間にn型3C-SiC領域9を形成したことにより、コンタクト抵抗を低減することができる。
 図3に、Ti(チタン)、3C-SiCおよび4H-SiCのバンド構造を示す。
However, in the SiC-MOSFET according to the first embodiment, Ni silicide is not formed. For this reason, there is a concern that the contact resistance between the source region (n + -type source region 5) and the extraction electrode (barrier metal film 14) increases. However, the contact resistance can be reduced by forming the n + -type 3C—SiC region 9 between the source region (n + -type source region 5) and the extraction electrode (barrier metal film 14).
FIG. 3 shows band structures of Ti (titanium), 3C—SiC, and 4H—SiC.
 図3に示すように、3C-SiCと4H-SiCの価電子帯の準位(E)は、ほぼ同じである。これに対して、3C-SiCの禁制帯幅(E)および電子親和力(χ)はそれぞれ2.23eVおよび4.0eVであり、4H-SiCの禁制帯幅(E)および電子親和力(χ)はそれぞれ3.26eVおよび3.2eVであり、それぞれ互いに異なる。バリアメタル膜としてTi(チタン)を用いた場合を考えると、Ti(チタン)の仕事関数(φm)は4.3eVであるので、Ti(チタン)のフェルミ準位(E)と3C-SiCの伝導帯の準位(E)との差は、Ti(チタン)のフェルミ準位(E)と4H-SiCの伝導帯の準位(E)との差よりも小さくなる。従って、n型領域を3C-SiCにより構成した場合は、n型領域を4H-SiCにより構成した場合に比べてコンタクト抵抗を低減することができる。 As shown in FIG. 3, the valence band levels (E V ) of 3C—SiC and 4H—SiC are almost the same. In contrast, 3C-SiC forbidden band width (E G) and electron affinity (chi) are each 2.23eV and 4.0 eV, the band gap of the 4H-SiC (E G) and the electron affinity (chi ) Are 3.26 eV and 3.2 eV, respectively, and are different from each other. Considering the case of using Ti (titanium) as the barrier metal film, the work function (φm) of Ti (titanium) is 4.3 eV, so the Fermi level (E F ) of Ti (titanium) and 3C-SiC of the difference between the level (E C) of the conduction band is smaller than the difference between Ti Fermi level (E F) and 4H-SiC in level of the conduction band (titanium) (E C). Therefore, when the n-type region is made of 3C—SiC, the contact resistance can be reduced compared to the case where the n-type region is made of 4H—SiC.
 本実施例1によるSiC-MOSFETでは、ゲート絶縁膜10の信頼性に影響を及ぼさないようにするため、チャネル領域8から所定の距離、例えば0.3μm以上離して、nソース領域5の上層部にn型3C-SiC領域9を形成する。一方、p型電位固定領域6の上層部にはn型3C-SiC領域9は形成しない。これは、p型電位固定領域6の上層部にn型3C-SiC領域9を形成してもコンタクト抵抗が低減しないからである。
 ≪実施例1の変形例≫
In the SiC-MOSFET according to the first embodiment, the upper layer of the n + source region 5 is separated from the channel region 8 by a predetermined distance, for example, 0.3 μm or more so as not to affect the reliability of the gate insulating film 10. An n + -type 3C—SiC region 9 is formed in the part. On the other hand, the n + type 3C—SiC region 9 is not formed in the upper layer portion of the p + type potential fixing region 6. This is because the contact resistance is not reduced even if the n + -type 3C—SiC region 9 is formed in the upper layer portion of the p + -type potential fixing region 6.
<< Modification of Example 1 >>
 素子形成領域におけるSiC-MOSFETのレイアウトは、図1に示したものに限定されるものではない。例えば図4および図5に示すレイアウトであってもよい。図4は、本実施例1の第1変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。図5は、本実施例1の第2変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。 The layout of the SiC-MOSFET in the element formation region is not limited to that shown in FIG. For example, the layout shown in FIGS. 4 and 5 may be used. FIG. 4 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a first modification of the first embodiment are arranged. FIG. 5 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a second modification of the first embodiment are arranged.
 図1に示したSiC-MOSFETのレイアウトでは、X方向に沿って第1間隔で配置された複数のp型ボディ領域4が、X方向とSiCエピタキシャル基板3の表面において直交するY方向に沿って第2間隔で配置されており、複数のp型ボディ領域4が、格子状に形成されたゲート電極11に囲まれるように配置されている。 In the SiC-MOSFET layout shown in FIG. 1, a plurality of p-type body regions 4 arranged at first intervals along the X direction are arranged along the Y direction orthogonal to the X direction on the surface of the SiC epitaxial substrate 3. Arranged at a second interval, the plurality of p-type body regions 4 are arranged so as to be surrounded by the gate electrodes 11 formed in a lattice shape.
 これに対して、図4に示す第1変形例のSiC-MOSFETのレイアウトでは、Y方向に沿って第2間隔で配置された複数のp型ボディ領域4が、第2間隔の半分の位置に、交互に位置するようにX方向に沿って第1間隔で配置されている。複数のp型ボディ領域4は、所謂千鳥配列となるように配置されている。 On the other hand, in the layout of the SiC-MOSFET of the first modification shown in FIG. 4, the plurality of p-type body regions 4 arranged at the second interval along the Y direction are positioned at half the second interval. , And are arranged at first intervals along the X direction so as to be alternately positioned. The plurality of p-type body regions 4 are arranged in a so-called staggered arrangement.
 また、図5に示す第2変形例のSiC-MOSFETのレイアウトでは、Y方向に沿って延在する複数のp型ボディ領域4が、X方向に互いに離間して配置され、Y方向に沿って延在する複数のゲート電極11が、互いに隣り合うp型ボディ領域4の間に配置されている。 In the SiC-MOSFET layout of the second modification shown in FIG. 5, a plurality of p-type body regions 4 extending along the Y direction are arranged apart from each other in the X direction, and along the Y direction. A plurality of extending gate electrodes 11 are arranged between adjacent p-type body regions 4.
 また、n型3C-SiC領域9のレイアウトも、図1、図4および図5に示したものに限定されるものではない。例えば図6、図7および図8に示すレイアウトであってもよい。図6は、本実施例1の第3変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。図7は、本実施例1の第4変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。図8は、本実施例1の第5変形例による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。 Further, the layout of the n + -type 3C—SiC region 9 is not limited to that shown in FIGS. For example, the layouts shown in FIGS. 6, 7, and 8 may be used. FIG. 6 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a third modification of the first embodiment are arranged. FIG. 7 is a main part plan view showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a fourth modification of the first embodiment are arranged. FIG. 8 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to a fifth modification of the first embodiment are arranged.
 図1に示したSiC-MOSFETおよび図4に示した第1変形例のSiC-MOSFETのレイアウトでは、平面視においてp型電位固定領域6の周囲に、ゲート電極11と離間して、一つに繋がった環状のn型3C-SiC領域9が形成されている。 In the layout of the SiC-MOSFET shown in FIG. 1 and the SiC-MOSFET of the first modified example shown in FIG. 4, one is separated from the gate electrode 11 around the p + -type potential fixing region 6 in plan view. An annular n + -type 3C—SiC region 9 connected to is formed.
 これに対して、図6に示す第3変形例のSiC-MOSFETおよび図7に示す第4変形例のSiC-MOSFETのレイアウトでは、平面視においてp型電位固定領域6の周囲に、ゲート電極11と離間して、複数のn型3C-SiC領域9が形成されており、これらは互いに離間して形成されている。 In contrast, in the layout of the SiC-MOSFET of the third modification shown in FIG. 6 and the SiC-MOSFET of the fourth modification shown in FIG. 7, the gate electrode is formed around the p + -type potential fixing region 6 in plan view. A plurality of n + -type 3C—SiC regions 9 are formed apart from 11, and these are formed apart from each other.
 また、図5に示した第2変形例のSiC-MOSFETのレイアウトでは、第1方向Yに沿って延在するp型電位固定領域6の側面に並行して、一つに繋がったn型3C-SiC領域9が形成されている。 Further, in the layout of the SiC-MOSFET of the second modification example shown in FIG. 5, n + connected together in parallel with the side surface of the p + -type potential fixing region 6 extending along the first direction Y. A mold 3C-SiC region 9 is formed.
 これに対して、図8に示す第5変形例のSiC-MOSFETのレイアウトでは、第1方向Yに沿って延在するp型電位固定領域6の側面に並行して、複数のn型3C-SiC領域9が互いに離間して形成されている。
 ≪SiC-MOSFETの製造方法≫
On the other hand, in the layout of the SiC-MOSFET of the fifth modification shown in FIG. 8, a plurality of n + -types are provided in parallel with the side surfaces of the p + -type potential fixing region 6 extending along the first direction Y. 3C-SiC regions 9 are formed apart from each other.
≪SiC-MOSFET manufacturing method≫
 本実施例1によるSiC-MOSFETの製造方法について図9~図14を用いて工程順に説明する。図9~図14は、本実施例1によるSiC-MOSFETの製造工程の一例を示す要部断面図である。 A method for manufacturing the SiC-MOSFET according to the first embodiment will be described in the order of steps with reference to FIGS. 9 to 14 are cross-sectional views of relevant parts showing an example of a manufacturing process of the SiC-MOSFET according to the first embodiment.
 まず、図9に示すように、4H-SiCからなるn型SiC基板1を用意する。n型SiC基板1には、n型不純物が導入されている。n型不純物は、例えばN(窒素)であり、n型不純物の不純物濃度は、例えば1×1018~1×1021cm-3程度である。また、n型SiC基板1はSi面とC面の両面を有するが、n型SiC基板1の表面はSi面またはC面のどちらでもよい。 First, as shown in FIG. 9, an n + type SiC substrate 1 made of 4H—SiC is prepared. An n-type impurity is introduced into the n + -type SiC substrate 1. The n-type impurity is, for example, N (nitrogen), and the impurity concentration of the n-type impurity is, for example, about 1 × 10 18 to 1 × 10 21 cm −3 . Further, the n + type SiC substrate 1 has both a Si surface and a C surface, but the surface of the n + type SiC substrate 1 may be either the Si surface or the C surface.
 次に、n型SiC基板1の表面にエピタキシャル成長法により4H-SiCからなるn型エピタキシャル層2を形成する。n型エピタキシャル層2には、n型SiC基板1の不純物濃度よりも低いn型不純物が導入されている。n型エピタキシャル層2の不純物濃度はSiC-MOSFETの素子定格に依存するが、例えば1×1014~1×1017cm-3程度である。また、n型エピタキシャル層2の厚さは、例えば5.0~100.0μm程度である。以上の工程により、n型SiC基板1およびn型エピタキシャル層2からなるSiCエピタキシャル基板3が形成される。 Next, an n type epitaxial layer 2 made of 4H—SiC is formed on the surface of the n + type SiC substrate 1 by epitaxial growth. In the n type epitaxial layer 2, an n type impurity lower than the impurity concentration of the n + type SiC substrate 1 is introduced. Although the impurity concentration of the n -type epitaxial layer 2 depends on the element rating of the SiC-MOSFET, it is, for example, about 1 × 10 14 to 1 × 10 17 cm −3 . Further, the thickness of the n type epitaxial layer 2 is, for example, about 5.0 to 100.0 μm. Through the above steps, SiC epitaxial substrate 3 composed of n + type SiC substrate 1 and n type epitaxial layer 2 is formed.
 次に、n型エピタキシャル層2にp型不純物、例えばAl(アルミニウム)原子を最大エネルギー500keVでイオン注入する。これにより、n型エピタキシャル層2の素子形成領域に複数のp型ボディ領域4を形成し、図示は省略するが、周辺形成領域にフローティング・フィールド・リミッティング・リング(Field Limiting Ring:FLR)構造を形成する。 Next, p-type impurities such as Al (aluminum) atoms are ion-implanted into the n -type epitaxial layer 2 with a maximum energy of 500 keV. As a result, a plurality of p-type body regions 4 are formed in the element formation region of the n -type epitaxial layer 2, and although not shown, a floating field limiting ring (FLR) is formed in the peripheral formation region. Form a structure.
 p型ボディ領域4のn型エピタキシャル層2の上面からの深さは、例えば0.5~1.0μm程度である。また、p型ボディ領域4の不純物濃度は、例えば1×1017~1×1018cm-3程度である。周辺形成領域の終端部には、FLR構造を形成したが、これに限定されるものではない。終端部の構造としては、例えばジャンクション・ターミネーション・エクステンション(Junction Termination Extension:JTE)構造であってもよい。 The depth of the p-type body region 4 from the upper surface of the n -type epitaxial layer 2 is, for example, about 0.5 to 1.0 μm. Further, the impurity concentration of the p-type body region 4 is, for example, about 1 × 10 17 to 1 × 10 18 cm −3 . Although the FLR structure is formed at the end of the peripheral formation region, the present invention is not limited to this. As a structure of the termination portion, for example, a junction termination extension (JTE) structure may be used.
 次に、p型ボディ領域4にn型不純物、例えばN(窒素)原子を最大エネルギー120keV、温度25℃程度でイオン注入して、p型ボディ領域4内に、p型ボディ領域4の端部側面(n型エピタキシャル層2とp型ボディ領域4との界面)から離間してn型ソース領域5を形成する。ここで、n型ソース領域5を完全にアモルファス化させないように、イオン注入を行う。n型ソース領域5のn型エピタキシャル層2の上面からの深さは、例えば0.3~0.5μm程度である。また、n型ソース領域5の不純物濃度は、例えば1×1018~1×1019cm-3程度である。 Next, an n-type impurity, for example, N (nitrogen) atoms are ion-implanted into the p-type body region 4 at a maximum energy of 120 keV and a temperature of about 25 ° C. An n + type source region 5 is formed apart from the side surface (interface between the n type epitaxial layer 2 and the p type body region 4). Here, ion implantation is performed so that the n + -type source region 5 is not completely amorphized. The depth of the n + type source region 5 from the upper surface of the n type epitaxial layer 2 is, for example, about 0.3 to 0.5 μm. Further, the impurity concentration of the n + -type source region 5 is, for example, about 1 × 10 18 to 1 × 10 19 cm −3 .
 次に、n型ソース領域5にp型不純物、例えばAl(アルミニウム)原子を最大エネルギー150keV、温度350~700℃程度でイオン注入して、p型ボディ領域4の電位を固定する領域にp型電位固定領域6を形成する。ここで、p型電位固定領域6を完全にアモルファス化させないように、イオン注入を行う。p型電位固定領域6のn型エピタキシャル層2の上面からの深さは、例えば0.3~0.5μm程度である。また、p型電位固定領域6の不純物濃度は、例えば1×1020~1×1021cm-3程度である。 Next, a p-type impurity, for example, Al (aluminum) atoms is ion-implanted into the n + -type source region 5 at a maximum energy of 150 keV and a temperature of about 350 to 700 ° C. A + -type potential fixing region 6 is formed. Here, ion implantation is performed so that the p + -type potential fixing region 6 is not completely amorphized. The depth of the p + type potential fixing region 6 from the upper surface of the n type epitaxial layer 2 is, for example, about 0.3 to 0.5 μm. Further, the impurity concentration of the p + -type potential fixing region 6 is, for example, about 1 × 10 20 to 1 × 10 21 cm −3 .
 次に、図10に示すように、n型エピタキシャル層2の上面上に、レジスト膜からなるマスクパターン17を形成する。マスクパターン17には、n型3C-SiC領域9が形成される領域のみに開口部が設けられている。すなわち、n型ソース領域5の端部側面(p型ボディ領域4とn型ソース領域5との界面)からp型電位固定領域6側に0.3μm以上離れた位置からp型電位固定領域6の端部側面(n型ソース領域5とp型電位固定領域6との界面)との間のn型ソース領域5が露出するように、マスクパターン17に開口部が設けられている。 Next, as shown in FIG. 10, a mask pattern 17 made of a resist film is formed on the upper surface of the n -type epitaxial layer 2. The mask pattern 17 is provided with an opening only in a region where the n + -type 3C—SiC region 9 is formed. That, p + -type from a position apart more than 0.3μm in p + -type potential fixing region 6 side from (the interface with the p-type body region 4 and n + -type source region 5) the side surface of the n + -type source region 5 so that n + -type source region 5 between the end sides of the potential fixing region 6 (the interface with the n + -type source region 5 and p + -type potential fixing region 6) is exposed, the openings in the mask pattern 17 is Is provided.
 次に、マスクパターン17越しに、n型ソース領域5にn型不純物、例えばP(リン)原子を最大エネルギー50keV、温度25℃程度でイオン注入する。これにより、n型ソース領域5の端部側面からp型電位固定領域6側に0.3μm以上離れた位置からp型電位固定領域6の端部側面との間にn型アモルファス領域9aを形成する。ここで、n型アモルファス領域9aを完全にアモルファス化するように、イオン注入を行う。n型アモルファス領域9aのn型エピタキシャル層2の上面からの深さは、例えば0.05~0.2μm程度である。また、n型アモルファス領域9aの不純物濃度は、例えば1×1020~1×1021cm-3程度である。 Next, an n-type impurity such as P (phosphorus) atoms is ion-implanted into the n + -type source region 5 through the mask pattern 17 at a maximum energy of 50 keV and a temperature of about 25 ° C. As a result, the n + -type amorphous region is located between the end side surface of the p + -type potential fixing region 6 and a position separated by 0.3 μm or more from the end side surface of the n + -type source region 5 toward the p + -type potential fixing region 6 side. Region 9a is formed. Here, ion implantation is performed so that the n + -type amorphous region 9a is completely amorphized. The depth of the n + type amorphous region 9a from the upper surface of the n type epitaxial layer 2 is, for example, about 0.05 to 0.2 μm. The impurity concentration of the n + -type amorphous region 9a is, for example, about 1 × 10 20 to 1 × 10 21 cm −3 .
 次に、マスクパターン17を除去した後、図示は省略するが、n型エピタキシャル層2の上面上に、例えばプラズマCVD(Chemical Vapor Deposition)法によりC(炭素)膜を堆積する。C(炭素)膜の厚さは、例えば0.03μm程度である。 Next, after removing the mask pattern 17, although not shown, a C (carbon) film is deposited on the upper surface of the n -type epitaxial layer 2 by, for example, a plasma CVD (Chemical Vapor Deposition) method. The thickness of the C (carbon) film is, for example, about 0.03 μm.
 次に、図11に示すように、n型エピタキシャル層2の上面にC(炭素)膜を被覆した状態で、SiCエピタキシャル基板3に1,700℃程度の温度で2~3分程度の熱処理を施す。これにより、n型エピタキシャル層2にイオン注入した各不純物の活性化を行う。ここで、n型アモルファス領域9aは3C-SiCを含むn型3C-SiC領域9となる。熱処理後は、C(炭素)膜を、例えば酸素プラズマ処理により除去する。 Next, as shown in FIG. 11, with the upper surface of the n -type epitaxial layer 2 covered with a C (carbon) film, the SiC epitaxial substrate 3 is heat-treated at a temperature of about 1,700 ° C. for about 2 to 3 minutes. Apply. Thereby, each impurity ion-implanted into the n -type epitaxial layer 2 is activated. Here, the n + type amorphous region 9a becomes the n + type 3C—SiC region 9 containing 3C—SiC. After the heat treatment, the C (carbon) film is removed by, for example, oxygen plasma treatment.
 次に、図12に示すように、n型エピタキシャル層2の上面上に、SiON(酸窒化珪素)からなるゲート絶縁膜10を形成する。ゲート絶縁膜10は、例えばCVD法によりSiO(二酸化珪素)膜を形成した後、NO(一酸化窒素)またはNO(一酸化二窒素)雰囲気で熱処理することにより形成される。ゲート絶縁膜10の厚さは、例えば0.05~0.15μm程度である。 Next, as shown in FIG. 12, a gate insulating film 10 made of SiON (silicon oxynitride) is formed on the upper surface of the n type epitaxial layer 2. The gate insulating film 10 is formed by, for example, forming a SiO 2 (silicon dioxide) film by a CVD method and then performing a heat treatment in an NO (nitrogen monoxide) or N 2 O (dinitrogen monoxide) atmosphere. The thickness of the gate insulating film 10 is, for example, about 0.05 to 0.15 μm.
 次に、ゲート絶縁膜10上に多結晶Si(多結晶珪素)膜を形成し、この多結晶Si(多結晶珪素)膜をドライエッチング法により加工して、ゲート電極11を形成する。ゲート電極11の厚さは、例えば0.2~0.5μm程度である。 Next, a polycrystalline Si (polycrystalline silicon) film is formed on the gate insulating film 10, and the polycrystalline Si (polycrystalline silicon) film is processed by a dry etching method to form the gate electrode 11. The thickness of the gate electrode 11 is, for example, about 0.2 to 0.5 μm.
 次に、n型エピタキシャル層2の上面上にゲート絶縁膜10およびゲート電極11を覆うように、例えばプラズマCVD法により層間絶縁膜12を形成する。その後、層間絶縁膜12をドライエッチング法により加工して、n型3C-SiC領域9の一部およびp型電位固定領域6に達する開口部13、並びにゲート電極11に達する開口部(図示は省略)を形成する。 Next, an interlayer insulating film 12 is formed on the upper surface of the n -type epitaxial layer 2 so as to cover the gate insulating film 10 and the gate electrode 11 by, for example, a plasma CVD method. Thereafter, the interlayer insulating film 12 is processed by a dry etching method, and an opening 13 reaching a part of the n + -type 3C—SiC region 9 and the p + -type potential fixing region 6 and an opening reaching the gate electrode 11 (illustrated). Is omitted).
 次に、図13に示すように、開口部13の内壁(底面および側面)を被覆するように層間絶縁膜12上にバリアメタル膜14を形成する。バリアメタル膜14は、例えばTi(チタン)、Ta(タンタル)、W(タングステン)、TiN(窒化チタン)、TaN(窒化タンタル)、Ti(チタン)を下層とした窒化チタン/チタン(TiN/Ti)積層、またはTa(タンタル)を下層とした窒化タンタル/タンタル(TaN/Ta)積層などからなる。続いて、開口部13の内部を埋め込むようにバリアメタル膜14上に導電性膜(図示は省略)を形成する。導電性膜は、例えばAl(アルミニウム)、Cu(銅)またはAl(アルミニウム)-Cu(銅)合金などからなる。導電性膜の厚さは、例えば2.0μm以上が好ましい。 Next, as shown in FIG. 13, a barrier metal film 14 is formed on the interlayer insulating film 12 so as to cover the inner wall (bottom surface and side surface) of the opening 13. The barrier metal film 14 is made of, for example, titanium nitride / titanium (TiN / Ti) with Ti (titanium), Ta (tantalum), W (tungsten), TiN (titanium nitride), TaN (tantalum nitride), and Ti (titanium) as a lower layer. Or a tantalum nitride / tantalum (TaN / Ta) laminate with Ta (tantalum) as a lower layer. Subsequently, a conductive film (not shown) is formed on the barrier metal film 14 so as to fill the inside of the opening 13. The conductive film is made of, for example, Al (aluminum), Cu (copper), or Al (aluminum) -Cu (copper) alloy. The thickness of the conductive film is preferably 2.0 μm or more, for example.
 次に、導電性膜およびバリアメタル膜14をドライエッチング法により加工して、バリアメタル膜14を下層に有する、導電性膜からなるソース配線用電極15およびゲート配線用電極(図示は省略)を形成する。ソース配線用電極15はn型3C-SiC領域9およびp型電位固定領域6と電気的に接続し、ゲート配線用電極はゲート電極11と電気的に接続する。 Next, the conductive film and the barrier metal film 14 are processed by a dry etching method, and the source wiring electrode 15 and the gate wiring electrode (not shown) made of the conductive film having the barrier metal film 14 in the lower layer are formed. Form. The source wiring electrode 15 is electrically connected to the n + -type 3C—SiC region 9 and the p + -type potential fixing region 6, and the gate wiring electrode is electrically connected to the gate electrode 11.
 その後、バリアメタル膜14とn型3C-SiC領域9との密着性を向上させるために、SiCエピタキシャル基板3に500℃程度の温度で熱処理を施す。 Thereafter, in order to improve the adhesion between the barrier metal film 14 and the n + -type 3C—SiC region 9, the SiC epitaxial substrate 3 is subjected to a heat treatment at a temperature of about 500 ° C.
 次に、ソース配線用電極15およびゲート配線用電極を覆うように、パッシベーション膜(図示は省略)を形成する。パッシベーション膜のうち、ソース配線用電極15およびゲート配線用電極を外部と電気的に接続するためのパッド領域が形成される部分に、開口部を形成する。 Next, a passivation film (not shown) is formed so as to cover the source wiring electrode 15 and the gate wiring electrode. An opening is formed in a portion of the passivation film where a pad region for electrically connecting the source wiring electrode 15 and the gate wiring electrode to the outside is formed.
 次に、図14に示すように、n型SiC基板1の裏面にドレイン配線用電極16を形成する。ドレイン配線用電極16の厚さは、例えば0.4μm程度である。 Next, as shown in FIG. 14, drain wiring electrode 16 is formed on the back surface of n + -type SiC substrate 1. The thickness of the drain wiring electrode 16 is, for example, about 0.4 μm.
 以上の製造工程により、本実施例1によるSiC-MOSFETが略完成する。 Through the above manufacturing process, the SiC-MOSFET according to the first embodiment is substantially completed.
 このように、本実施例1によるSiC-MOSFETでは、n型ソース領域5とバリアメタル膜14との間に、Niシリサイドは形成せず、n型3C-SiC領域9を形成することにより、オーミックコンタクトを形成することが可能となり、コンタクト抵抗を低減することができる。 Thus, in the SiC-MOSFET according to the first embodiment, Ni silicide is not formed between the n + -type source region 5 and the barrier metal film 14, but the n + -type 3C-SiC region 9 is formed. Thus, an ohmic contact can be formed, and the contact resistance can be reduced.
 さらに、前述したように、Niシリサイドを形成するには、1,000℃程度でSiC(炭化珪素)とNi(ニッケル)とを反応させる必要があり、Niシリサイドを形成する工程においてSiC(炭化珪素)中に含まれる余剰C(炭素)の吐出しが起こる。このため、カーボンクラスタの析出を伴う複雑な反応によりオーミックコンタクトを形成することが困難となり、SiC-MOSFETの信頼性の低下および歩留りの低下などの問題が生じる。 Furthermore, as described above, in order to form Ni silicide, it is necessary to react SiC (silicon carbide) and Ni (nickel) at about 1,000 ° C. In the step of forming Ni silicide, SiC (silicon carbide) is required. ) Discharge of surplus C (carbon) contained therein. For this reason, it becomes difficult to form an ohmic contact due to a complicated reaction accompanied by precipitation of carbon clusters, and problems such as a decrease in reliability and a decrease in yield of the SiC-MOSFET arise.
 しかし、本実施例1によるSiC-MOSFETでは、Niシリサイドを形成しないことから、安定したn型ソース領域5とバリアメタル膜14との間のコンタクト抵抗が得られる。従って、上記コンタクト抵抗の変動などに起因するSiC-MOSFETの信頼性の低下および歩留りの低下などの問題を回避することができる。また、高温においても、安定したコンタクト抵抗が得られるので、複数のSiC-MOSFETが配列された素子形成領域を有する半導体装置の高温動作における信頼性が向上する。 However, since the SiC-MOSFET according to the first embodiment does not form Ni silicide, a stable contact resistance between the n + type source region 5 and the barrier metal film 14 can be obtained. Therefore, problems such as a decrease in the reliability of the SiC-MOSFET and a decrease in the yield due to the variation in the contact resistance can be avoided. Further, since a stable contact resistance can be obtained even at a high temperature, the reliability of a semiconductor device having an element formation region in which a plurality of SiC-MOSFETs are arranged is improved in a high temperature operation.
 ≪SiC-MOSFETの構造≫ ≪SiC-MOSFET structure≫
 本実施例2によるSiC-MOSFETの構造について図15および図16を用いて説明する。図15は、本実施例2による複数のSiC-MOSFETが配列された素子形成領域の一部を示す要部平面図である。図16は、本実施例2によるSiC-MOSFETを示す要部断面図(図15のB-B線に沿った断面図)である。SiC-MOSFETは、プレーナ型のDMOS構造のMOSFETである。 The structure of the SiC-MOSFET according to the second embodiment will be described with reference to FIGS. FIG. 15 is a plan view of a principal part showing a part of an element formation region in which a plurality of SiC-MOSFETs according to the second embodiment are arranged. FIG. 16 is a sectional view (a sectional view taken along line BB in FIG. 15) showing the SiC-MOSFET according to the second embodiment. The SiC-MOSFET is a planar type DMOS MOSFET.
 前述の実施例1と相違する点は、n型ソース領域5とn型3C-SiC領域9の構造である。それ以外の構造は、前述の実施例1によるSiC-MOSFETとほぼ同様であるため、相違点を中心に説明する。 The difference from the first embodiment is the structure of the n + -type source region 5 and the n + -type 3C—SiC region 9. Since the other structure is almost the same as that of the SiC-MOSFET according to the first embodiment, the description will focus on the differences.
 図15および図16に示すように、4H-SiCからなるn型SiC基板1の表面(第1主面)上に、n型SiC基板1よりも不純物濃度の低い4H-SiCからなるn型エピタキシャル層2が形成されており、n型SiC基板1とn型エピタキシャル層2とからSiCエピタキシャル基板3が構成されている。 15 and FIG. 16, on consisting of 4H-SiC n + -type SiC substrate 1 of the surface (first main surface), a low 4H-SiC impurity concentration than n + -type SiC substrate 1 n A − type epitaxial layer 2 is formed, and an SiC epitaxial substrate 3 is constituted by the n + type SiC substrate 1 and the n type epitaxial layer 2.
 そして、n型エピタキシャル層2内に形成された複数のp型ボディ領域(ウェル領域)4のそれぞれには、n型ソース領域5、p型電位固定領域6およびn型3C-SiC領域9が形成されている。 Each of the plurality of p-type body regions (well regions) 4 formed in the n -type epitaxial layer 2 includes an n + -type source region 5, a p + -type potential fixing region 6, and an n + -type 3C—SiC. Region 9 is formed.
 しかし、n型ソース領域5は、上部(n型エピタキシャル層2の上面側)に位置する第1n型ソース領域5aと下部(n型エピタキシャル層2の下面側)に位置する第2n型ソース領域5bとから構成されており、平面視において第2n型ソース領域5bが第1n型ソース領域5aに含まれるように両者は形成されている。言い換えると、平面視において第2n型ソース領域5bの端部側面は、第1n型ソース領域5aの端部側面よりも内側に形成されている。具体的には、互いに隣り合うp型ボディ領域4の方向に沿った断面で見た場合、第1n型ソース領域5aの端部側面と、第1n型ソース領域5aの端部側面に対向するp型ボディ領域4の端部側面との距離(L1)は、第2n型ソース領域5bの端部側面と、第2n型ソース領域5bの端部側面に対向するp型ボディ領域4の端部側面との距離(L2)よりも短い。また、互いに隣り合うp型ボディ領域4の方向に沿った断面で見た場合、第1n型ソース領域5aの端部側面とp型電位固定領域6の端部側面とは接しているが、第2n型ソース領域5bの端部側面とp型電位固定領域6の端部側面とは接しておらず、離れている。 However, n + -type source region 5, the upper first 2n located - - (lower surface -type epitaxial layer 2 n) a 1n + -type source region 5a and a lower located (n type upper surface side of the epitaxial layer 2) + which is composed of a source region 5b, both as the 2n + -type source region 5b is included in the first 1n + -type source region 5a in a plan view are formed. In other words, the end side surface of the second n + -type source region 5b is formed inside the end side surface of the first n + -type source region 5a in plan view. Specifically, when viewed in cross section along the direction of the p-type body region 4 adjacent to each other, opposite the end portion side surface of the 1n + -type source region 5a, the end portion side surface of the 1n + -type source region 5a the distance between the side surface of the p-type body region 4 (L1) includes an end portion side surface of the 2n + -type source region 5b, the p-type body region 4 facing the end portion side surface of the 2n + -type source region 5b Shorter than the distance (L2) from the side face of the end. Further, when viewed in a cross section along the direction of the p-type body regions 4 adjacent to each other, the end side surface of the first n + type source region 5a and the end side surface of the p + type potential fixing region 6 are in contact. The end side surface of the second n + type source region 5b and the end side surface of the p + type potential fixing region 6 are not in contact with each other and are separated from each other.
 第2n型ソース領域5bのn型エピタキシャル層2の上面からの深さは、例えば0.3~0.5μm程度である。また、第1n型ソース領域5aおよび第2n型ソース領域5bの不純物濃度の好ましい範囲は、例えば1×1018~1×1019cm-3程度である。 The depth of the second n + type source region 5b from the upper surface of the n type epitaxial layer 2 is, for example, about 0.3 to 0.5 μm. A preferable range of the impurity concentration of the first n + -type source region 5a and the second n + -type source region 5b is, for example, about 1 × 10 18 to 1 × 10 19 cm −3 .
 さらに、n型3C-SiC領域9は、第2n型ソース領域5bのほぼ真上に位置し、平面視において第2n型ソース領域5bと重なるように形成されている。従って、平面視においてn型3C-SiC領域9が第2n型ソース領域5bに含まれるように両者は形成されている。言い換えると、平面視においてn型3C-SiC領域9は、第2n型ソース領域5bの端部側面よりも内側に形成されている。n型3C-SiC領域9のn型エピタキシャル層2の上面からの深さは、例えば0.05~0.2μm程度である。また、n型3C-SiC領域9の不純物濃度の好ましい範囲は、例えば1×1020~1×1021cm-3程度である。 Further, n + -type 3C-SiC region 9 is substantially directly above the first 2n + -type source region 5b, are formed so as to overlap with the first 2n + -type source region 5b in a plan view. Therefore, both are formed such that the n + -type 3C—SiC region 9 is included in the second n + -type source region 5b in plan view. In other words, the n + -type 3C—SiC region 9 is formed inside the end side surface of the second n + -type source region 5b in plan view. The depth of the n + -type 3C—SiC region 9 from the upper surface of the n -type epitaxial layer 2 is, for example, about 0.05 to 0.2 μm. Further, a preferable range of the impurity concentration of the n + -type 3C—SiC region 9 is, for example, about 1 × 10 20 to 1 × 10 21 cm −3 .
 n型3C-SiC領域9の端部側面と、n型3C-SiC領域9の端部側面に対向する第1n型ソース領域5aの端部側面との距離(L3)は、例えば0.5μm程度である。 and the side surface of the n + -type 3C-SiC region 9, the distance between the side surface of the 1n + -type source region 5a facing the end side face of the n + -type 3C-SiC region 9 (L3), for example 0 About 5 μm.
 n型3C-SiC領域9およびp型電位固定領域6は、バリアメタル膜14を介してソース配線用電極15と電気的に接続されている。 The n + type 3C—SiC region 9 and the p + type potential fixing region 6 are electrically connected to the source wiring electrode 15 through the barrier metal film 14.
 本実施例2によるSiC-MOSFETでは、前述の実施例1によるSiC-MOSFETと同様に、n型ソース領域5とバリアメタル膜14との間にn型3C-SiC領域9を形成することに特徴を有する。従って、Niシリサイドを形成しなくても、n型ソース領域5とバリアメタル膜14との間にn型3C-SiC領域9を形成することにより、オーミックコンタクトを形成することが可能となり、コンタクト抵抗を低減することができる。
 ≪SiC-MOSFETの製造方法≫
In the SiC-MOSFET according to the second embodiment, the n + -type 3C-SiC region 9 is formed between the n + -type source region 5 and the barrier metal film 14 in the same manner as the SiC-MOSFET according to the first embodiment. It has the characteristics. Therefore, it is possible to form an ohmic contact by forming the n + -type 3C—SiC region 9 between the n + -type source region 5 and the barrier metal film 14 without forming Ni silicide. Contact resistance can be reduced.
≪SiC-MOSFET manufacturing method≫
 本実施例2によるSiC-MOSFETの製造方法について図17~図22を用いて工程順に説明する。図17~図22は、本実施例2によるSiC-MOSFETの製造工程の一例を示す要部断面図である。 A manufacturing method of the SiC-MOSFET according to the second embodiment will be described in the order of steps with reference to FIGS. FIGS. 17 to 22 are cross-sectional views of relevant parts showing one example of manufacturing steps of the SiC-MOSFET according to the second embodiment.
 まず、図17に示すように、4H-SiCからなるn型SiC基板1を用意する。n型SiC基板1には、n型不純物が導入されている。n型不純物は、例えばN(窒素)であり、n型不純物の不純物濃度は、例えば1×1018~1×1021cm-3程度である。また、n型SiC基板1はSi面とC面の両面を有するが、n型SiC基板1の表面はSi面またはC面のどちらでもよい。 First, as shown in FIG. 17, an n + type SiC substrate 1 made of 4H—SiC is prepared. An n-type impurity is introduced into the n + -type SiC substrate 1. The n-type impurity is, for example, N (nitrogen), and the impurity concentration of the n-type impurity is, for example, about 1 × 10 18 to 1 × 10 21 cm −3 . Further, the n + type SiC substrate 1 has both a Si surface and a C surface, but the surface of the n + type SiC substrate 1 may be either the Si surface or the C surface.
 次に、n型SiC基板1の表面にエピタキシャル成長法により4H-SiCからなるn型エピタキシャル層2を形成する。n型エピタキシャル層2には、n型SiC基板1の不純物濃度よりも低いn型不純物が導入されている。n型エピタキシャル層2の不純物濃度はSiC-MOSFETの素子定格に依存するが、例えば1×1014~1×1017cm-3程度である。また、n型エピタキシャル層2の厚さは、例えば5.0~100.0μm程度である。以上の工程により、n型SiC基板1およびn型エピタキシャル層2からなるSiCエピタキシャル基板3が形成される。 Next, an n type epitaxial layer 2 made of 4H—SiC is formed on the surface of the n + type SiC substrate 1 by epitaxial growth. In the n type epitaxial layer 2, an n type impurity lower than the impurity concentration of the n + type SiC substrate 1 is introduced. Although the impurity concentration of the n -type epitaxial layer 2 depends on the element rating of the SiC-MOSFET, it is, for example, about 1 × 10 14 to 1 × 10 17 cm −3 . Further, the thickness of the n type epitaxial layer 2 is, for example, about 5.0 to 100.0 μm. Through the above steps, SiC epitaxial substrate 3 composed of n + type SiC substrate 1 and n type epitaxial layer 2 is formed.
 次に、n型エピタキシャル層2にp型不純物、例えばAl(アルミニウム)原子を最大エネルギー500keVでイオン注入する。これにより、n型エピタキシャル層2の素子形成領域に複数のp型ボディ領域4を形成し、図示は省略するが、周辺形成領域にFLR構造を形成する。 Next, p-type impurities such as Al (aluminum) atoms are ion-implanted into the n -type epitaxial layer 2 with a maximum energy of 500 keV. As a result, a plurality of p-type body regions 4 are formed in the element formation region of the n -type epitaxial layer 2, and although not shown, an FLR structure is formed in the peripheral formation region.
 p型ボディ領域4のn型エピタキシャル層2の上面からの深さは、例えば0.5~1.0μm程度である。また、p型ボディ領域4の不純物濃度は、例えば1×1017~1×1018cm-3程度である。周辺形成領域の終端部には、FLR構造を形成したが、これに限定されるものではない。終端部の構造としては、例えばJTE構造であってもよい。 The depth of the p-type body region 4 from the upper surface of the n -type epitaxial layer 2 is, for example, about 0.5 to 1.0 μm. Further, the impurity concentration of the p-type body region 4 is, for example, about 1 × 10 17 to 1 × 10 18 cm −3 . Although the FLR structure is formed at the end of the peripheral formation region, the present invention is not limited to this. As a structure of the terminal portion, for example, a JTE structure may be used.
 次に、p型ボディ領域4にp型不純物、例えばAl(アルミニウム)原子を最大エネルギー150keV、温度350~700℃程度でイオン注入して、p型ボディ領域4の電位を固定する領域にp型電位固定領域6を形成する。ここで、p型電位固定領域6を完全にアモルファス化させないように、イオン注入を行う。p型電位固定領域6のn型エピタキシャル層2の上面からの深さは、例えば0.3~0.5μm程度である。また、p型電位固定領域6の不純物濃度は、例えば1×1020~1×1021cm-3程度である。 Then, p-type impurity in p-type body region 4, for example, Al (aluminum) atom maximum energy 150 keV, and ion-implanted at a temperature of about 350 ~ 700 ° C., in the region to fix the potential of the p-type body region 4 p + A type potential fixing region 6 is formed. Here, ion implantation is performed so that the p + -type potential fixing region 6 is not completely amorphized. The depth of the p + type potential fixing region 6 from the upper surface of the n type epitaxial layer 2 is, for example, about 0.3 to 0.5 μm. Further, the impurity concentration of the p + -type potential fixing region 6 is, for example, about 1 × 10 20 to 1 × 10 21 cm −3 .
 次に、図18に示すように、n型エピタキシャル層2の上面上に、例えばSiO(二酸化珪素)からなるマスクパターン18を形成する。マスクパターン18には、第1n型ソース領域5aが形成される領域のみに開口部が設けられている。すなわち、p型ボディ領域4の端部側面からp型電位固定領域6側に離れた位置とp型電位固定領域6の端部側面との間のp型ボディ領域4が露出するように、マスクパターン18に開口部が設けられている。 Next, as shown in FIG. 18, a mask pattern 18 made of, for example, SiO 2 (silicon dioxide) is formed on the upper surface of the n -type epitaxial layer 2. The mask pattern 18 is provided with an opening only in a region where the first n + type source region 5a is formed. That is, the p-type body region 4 is exposed between a position away from the end side surface of the p-type body region 4 toward the p + -type potential fixing region 6 and the end side surface of the p + -type potential fixing region 6. The mask pattern 18 is provided with an opening.
 次に、マスクパターン18越しに、p型ボディ領域4にn型不純物、例えばN(窒素)原子を最大エネルギー50keV、温度25℃程度でイオン注入する。これにより、p型ボディ領域4の端部側面からp型電位固定領域6側に離れた位置とp型電位固定領域6の端部側面との間のp型ボディ領域4に第1n型ソース領域5aを形成する。ここで、第1n型ソース領域5aを完全にアモルファス化しないように、イオン注入を行う。第1n型ソース領域5aの不純物濃度は、例えば1×1018~1×1019cm-3程度である。 Next, an n-type impurity such as N (nitrogen) atoms is ion-implanted into the p-type body region 4 through the mask pattern 18 at a maximum energy of 50 keV and a temperature of about 25 ° C. As a result, the first n + is added to the p-type body region 4 between the position away from the end side surface of the p-type body region 4 toward the p + -type potential fixing region 6 and the end side surface of the p + -type potential fixing region 6. A mold source region 5a is formed. Here, ion implantation is performed so that the first n + -type source region 5a is not completely amorphized. The impurity concentration of the first n + -type source region 5a is, for example, about 1 × 10 18 to 1 × 10 19 cm −3 .
 次に、図19に示すように、マスクパターン18を覆うようにn型エピタキシャル層2の上面上にSiO(二酸化珪素)膜を形成した後、SiO(二酸化珪素)膜をエッチバックすることにより、マスクパターン18の側面にサイドウォール19を形成する。サイドウォール19の幅(W)は、例えば0.5μm程度である。 Next, as shown in FIG. 19, an SiO 2 (silicon dioxide) film is formed on the upper surface of the n -type epitaxial layer 2 so as to cover the mask pattern 18, and then the SiO 2 (silicon dioxide) film is etched back. As a result, sidewalls 19 are formed on the side surfaces of the mask pattern 18. The width (W) of the sidewall 19 is, for example, about 0.5 μm.
 次に、マスクパターン18およびサイドウォール19越しに、n型ソース領域5にn型不純物、例えばP(リン)原子を最大エネルギー50keV、温度25℃程度でイオン注入する。これにより、第1n型ソース領域5aの端部側面から離間してn型アモルファス領域9aを形成する。ここで、n型アモルファス領域9aを完全にアモルファス化するように、イオン注入を行う。n型アモルファス領域9aのn型エピタキシャル層2の上面からの深さは、例えば0.05~0.2μm程度である。また、n型アモルファス領域9aの不純物濃度は、例えば1×1020~1×1021cm-3程度である。 Next, an n-type impurity such as P (phosphorus) atoms is ion-implanted into the n + -type source region 5 through the mask pattern 18 and the sidewall 19 at a maximum energy of 50 keV and a temperature of about 25 ° C. As a result, the n + -type amorphous region 9a is formed apart from the end side surface of the first n + -type source region 5a. Here, ion implantation is performed so that the n + -type amorphous region 9a is completely amorphized. The depth of the n + type amorphous region 9a from the upper surface of the n type epitaxial layer 2 is, for example, about 0.05 to 0.2 μm. The impurity concentration of the n + -type amorphous region 9a is, for example, about 1 × 10 20 to 1 × 10 21 cm −3 .
 次に、マスクパターン18およびサイドウォール19越しに、p型ボディ領域4にn型不純物、例えばN(窒素)原子を最大エネルギー120keV、温度25℃程度でイオン注入する。これにより、n型アモルファス領域9aよりも深くに第2n型ソース領域5bを形成する。ここで、第2n型ソース領域5bを完全にアモルファス化しないように、イオン注入を行う。第2n型ソース領域5bのn型エピタキシャル層2の上面からの深さは、例えば0.3~0.5μm程度である。また、n型ソース領域5bの不純物濃度は、例えば1×1018~1×1019cm-3程度である。 Next, an n-type impurity, for example, N (nitrogen) atoms are ion-implanted into the p-type body region 4 through the mask pattern 18 and the sidewall 19 at a maximum energy of 120 keV and a temperature of about 25 ° C. Thus, the second n + type source region 5b is formed deeper than the n + type amorphous region 9a. Here, ion implantation is performed so that the second n + -type source region 5b is not completely amorphized. The depth of the second n + type source region 5b from the upper surface of the n type epitaxial layer 2 is, for example, about 0.3 to 0.5 μm. The impurity concentration of the n + -type source region 5b is, for example, about 1 × 10 18 to 1 × 10 19 cm −3 .
 次に、図20に示すように、マスクパターン18およびサイドウォール19をウエットエッチング法などにより除去した後、図示は省略するが、n型エピタキシャル層2の上面上に、例えばプラズマCVD法によりC(炭素)膜を堆積する。C(炭素)膜の厚さは、例えば0.03μm程度である。 Next, as shown in FIG. 20, after the mask pattern 18 and the sidewalls 19 are removed by a wet etching method or the like, although not shown in the figure, on the upper surface of the n -type epitaxial layer 2, for example, a CCVD method is used. A (carbon) film is deposited. The thickness of the C (carbon) film is, for example, about 0.03 μm.
 次に、n型エピタキシャル層2の上面にC(炭素)膜を被覆した状態で、SiCエピタキシャル基板3に1,700℃程度の温度で2~3分程度の熱処理を施す。これにより、n型エピタキシャル層2にイオン注入した各不純物の活性化を行う。ここで、n型アモルファス領域9aは3C-SiCを含むn型3C-SiC領域9となる。熱処理後は、C(炭素)膜を、例えば酸素プラズマ処理により除去する。 Next, in a state where the upper surface of the n -type epitaxial layer 2 is covered with a C (carbon) film, the SiC epitaxial substrate 3 is subjected to heat treatment at a temperature of about 1,700 ° C. for about 2 to 3 minutes. Thereby, each impurity ion-implanted into the n -type epitaxial layer 2 is activated. Here, the n + type amorphous region 9a becomes the n + type 3C—SiC region 9 containing 3C—SiC. After the heat treatment, the C (carbon) film is removed by, for example, oxygen plasma treatment.
 このように、マスクパターン18越しのイオン注入により第1n型ソース領域5aを形成し、続くマスクパターン18およびサイドウォール19越しのイオン注入によりn型アモルファス領域9aを形成しているので、第1n型ソース領域5aの端部側面と、第1n型ソース領域5aの端部側面に対向するn型3C-SiC領域9の端部側面との距離(L3)を所望する距離に設定することができる。従って、n型アモルファス領域9aを形成する際に生じる欠陥が、後の工程で形成されるゲート絶縁膜10の信頼性に影響を及ぼさないようにすることができる。また、n型3C-SiC領域9が、p型電位固定領域6の上層部には形成されないようにすることができる。 Thus, the first n + -type source region 5a is formed by ion implantation through the mask pattern 18, and the n + -type amorphous region 9a is formed by ion implantation through the subsequent mask pattern 18 and the sidewall 19, so that the first and the side surface of 1n + -type source region 5a, set to a desired distance distance (L3) between the side surface of the n + -type 3C-SiC region 9 opposite to the side surface of the 1n + -type source region 5a can do. Therefore, it is possible to prevent defects generated when forming the n + -type amorphous region 9a from affecting the reliability of the gate insulating film 10 formed in a later process. Further, the n + -type 3C—SiC region 9 can be prevented from being formed in the upper layer portion of the p + -type potential fixing region 6.
 次に、n型エピタキシャル層2の上面上に、SiON(酸窒化珪素)からなるゲート絶縁膜10を形成する。ゲート絶縁膜10は、例えばCVD法によりSiO(二酸化珪素)膜を形成した後、NO(一酸化窒素)またはNO(一酸化二窒素)雰囲気で熱処理することにより形成される。ゲート絶縁膜10の厚さは、例えば0.05~0.15μm程度である。 Next, a gate insulating film 10 made of SiON (silicon oxynitride) is formed on the upper surface of the n type epitaxial layer 2. The gate insulating film 10 is formed by, for example, forming a SiO 2 (silicon dioxide) film by a CVD method and then performing a heat treatment in an NO (nitrogen monoxide) or N 2 O (dinitrogen monoxide) atmosphere. The thickness of the gate insulating film 10 is, for example, about 0.05 to 0.15 μm.
 次に、ゲート絶縁膜10上に多結晶Si(多結晶珪素)膜を形成し、この多結晶Si(多結晶珪素)膜をドライエッチング法により加工して、ゲート電極11を形成する。ゲート電極11の厚さは、例えば0.2~0.5μm程度である。 Next, a polycrystalline Si (polycrystalline silicon) film is formed on the gate insulating film 10, and the polycrystalline Si (polycrystalline silicon) film is processed by a dry etching method to form the gate electrode 11. The thickness of the gate electrode 11 is, for example, about 0.2 to 0.5 μm.
 次に、n型エピタキシャル層2の上面上にゲート絶縁膜10およびゲート電極11を覆うように、例えばプラズマCVD法により層間絶縁膜12を形成する。その後、層間絶縁膜12をドライエッチング法により加工して、第1n型ソース領域5aの一部、n型3C-SiC領域9の一部およびp型電位固定領域6に達する開口部13、並びにゲート電極11に達する開口部(図示は省略)を形成する。 Next, an interlayer insulating film 12 is formed on the upper surface of the n -type epitaxial layer 2 so as to cover the gate insulating film 10 and the gate electrode 11 by, for example, a plasma CVD method. Thereafter, the interlayer insulating film 12 is processed by a dry etching method to form a part of the first n + type source region 5a, a part of the n + type 3C—SiC region 9 and the opening 13 reaching the p + type potential fixing region 6. In addition, an opening (not shown) reaching the gate electrode 11 is formed.
 次に、図21に示すように、開口部13の内壁(底面および側面)を被覆するように層間絶縁膜12上にバリアメタル膜14を形成する。バリアメタル膜14は、例えばTi(チタン)、Ta(タンタル)、W(タングステン)、TiN(窒化チタン)、TaN(窒化タンタル)、Ti(チタン)を下層とした窒化チタン/チタン(TiN/Ti)積層、またはTa(タンタル)を下層とした窒化タンタル/タンタル(TaN/Ta)積層などからなる。続いて、開口部13の内部を埋め込むようにバリアメタル膜14上に導電性膜(図示は省略)を形成する。導電性膜は、例えばAl(アルミニウム)、Cu(銅)またはAl(アルミニウム)-Cu(銅)合金などからなる。導電性膜の厚さは、例えば2.0μm以上が好ましい。 Next, as shown in FIG. 21, a barrier metal film 14 is formed on the interlayer insulating film 12 so as to cover the inner wall (bottom surface and side surface) of the opening 13. The barrier metal film 14 is made of, for example, titanium nitride / titanium (TiN / Ti) with Ti (titanium), Ta (tantalum), W (tungsten), TiN (titanium nitride), TaN (tantalum nitride), and Ti (titanium) as a lower layer. Or a tantalum nitride / tantalum (TaN / Ta) laminate with Ta (tantalum) as a lower layer. Subsequently, a conductive film (not shown) is formed on the barrier metal film 14 so as to fill the inside of the opening 13. The conductive film is made of, for example, Al (aluminum), Cu (copper), or Al (aluminum) -Cu (copper) alloy. The thickness of the conductive film is preferably 2.0 μm or more, for example.
 次に、導電性膜およびバリアメタル膜14をドライエッチング法により加工して、バリアメタル膜14を下層に有する、導電性膜からなるソース配線用電極15およびゲート配線用電極(図示は省略)を形成する。ソース配線用電極15はn型ソース領域5、n型3C-SiC領域9およびp型電位固定領域6と電気的に接続し、ゲート配線用電極はゲート電極11と電気的に接続する。 Next, the conductive film and the barrier metal film 14 are processed by a dry etching method, and the source wiring electrode 15 and the gate wiring electrode (not shown) made of the conductive film having the barrier metal film 14 in the lower layer are formed. Form. The source wiring electrode 15 is electrically connected to the n + type source region 5, the n + type 3C-SiC region 9 and the p + type potential fixing region 6, and the gate wiring electrode is electrically connected to the gate electrode 11. .
 その後、バリアメタル膜14とn型3C-SiC領域9との密着性を向上させるために、SiCエピタキシャル基板3に500℃程度の温度で熱処理を施す。 Thereafter, in order to improve the adhesion between the barrier metal film 14 and the n + -type 3C—SiC region 9, the SiC epitaxial substrate 3 is subjected to a heat treatment at a temperature of about 500 ° C.
 次に、ソース配線用電極15およびゲート配線用電極を覆うように、パッシベーション膜(図示は省略)を形成する。パッシベーション膜のうち、ソース配線用電極15およびゲート配線用電極を外部と電気的に接続するためのパッド領域が形成される部分に、開口部を形成する。 Next, a passivation film (not shown) is formed so as to cover the source wiring electrode 15 and the gate wiring electrode. An opening is formed in a portion of the passivation film where a pad region for electrically connecting the source wiring electrode 15 and the gate wiring electrode to the outside is formed.
 次に、図22に示すように、n型SiC基板1の裏面にドレイン配線用電極16を形成する。ドレイン配線用電極16の厚さは、例えば0.4μm程度である。 Next, as shown in FIG. 22, drain wiring electrode 16 is formed on the back surface of n + -type SiC substrate 1. The thickness of the drain wiring electrode 16 is, for example, about 0.4 μm.
 以上の製造工程により、本実施例2によるSiC-MOSFETが略完成する。 By the above manufacturing process, the SiC-MOSFET according to the second embodiment is almost completed.
 このように、本実施例2によれば、前述の実施例1とほぼ同様の効果を得ることができる。 Thus, according to the second embodiment, substantially the same effects as those of the first embodiment can be obtained.
 さらに、n型ソース領域5の端部側面と、n型ソース領域5の端部側面に対向するn型3C-SiC領域9の端部側面とを所望の距離を有して確実に離すことができるので、3C-SiCを形成する際に生じる欠陥が、ゲート絶縁膜10の信頼性に影響を及ぼさないようにすることができる。また、n型3C-SiC領域9が、p型電位固定領域6の上層部に形成されることを防ぐこともできる。これにより、本実施例2によるSiC-MOSFETは、前述の実施例1によるSiC-MOSFETと比べて、より信頼性が向上する。 Further, n + -type and the side surface of the source region 5, n + -type source region 5 and the side surface of the n + -type 3C-SiC region 9 opposite to the side surface to ensure a desired distance Therefore, it is possible to prevent defects generated when 3C—SiC is formed from affecting the reliability of the gate insulating film 10. In addition, the n + -type 3C—SiC region 9 can be prevented from being formed in the upper layer portion of the p + -type potential fixing region 6. Thereby, the SiC-MOSFET according to the second embodiment is more reliable than the SiC-MOSFET according to the first embodiment.
 ≪パワーモジュール、電力変換装置および三相モータシステム≫ ≪Power module, power converter and three-phase motor system≫
 本実施例3によるパワーモジュール、電力変換装置およびその電力変換装置を備えた三相モータシステムについて説明する。本実施例3のパワーモジュールは、前述の実施例1のSiC-MOSFETが配列された素子形成領域を有する半導体装置を備えている。なお、本実施例3のパワーモジュールは、この半導体装置を三相インバータ回路に適用したものである。 A power module, a power converter, and a three-phase motor system including the power converter according to the third embodiment will be described. The power module of the third embodiment includes a semiconductor device having an element formation region in which the SiC-MOSFETs of the first embodiment are arranged. The power module according to the third embodiment is obtained by applying this semiconductor device to a three-phase inverter circuit.
 図23は、本実施例3による三相モータシステムの構成を示す図である。 FIG. 23 is a diagram illustrating a configuration of a three-phase motor system according to the third embodiment.
 図23に示すように、三相モータシステム30は、インバータ装置としての電力変換装置31と、三相モータなどからなる負荷32と、直流電源33と、コンデンサなどからなる容量34と、を備えている。電力変換装置31は、三相インバータ回路としてのパワーモジュール35と、制御回路36と、を備えている。負荷32は、パワーモジュール35の三相の出力端子である、出力端子TO1、TO2およびTO3に接続されている。また、直流電源33および容量34は、パワーモジュール35の2つの入力端子である、入力端子TI1と入力端子TI2との間に、互いに並列に接続されている。 As shown in FIG. 23, the three-phase motor system 30 includes a power conversion device 31 as an inverter device, a load 32 composed of a three-phase motor, a DC power source 33, and a capacitor 34 composed of a capacitor. Yes. The power conversion device 31 includes a power module 35 as a three-phase inverter circuit and a control circuit 36. The load 32 is connected to output terminals TO1, TO2, and TO3, which are three-phase output terminals of the power module 35. The DC power supply 33 and the capacitor 34 are connected in parallel between the input terminal TI1 and the input terminal TI2, which are the two input terminals of the power module 35.
 三相インバータ回路としてのパワーモジュール35は、スイッチング素子37u、37v、37w、37x、37yおよび37zを有する。スイッチング素子37uおよび37xは、入力端子TI1と入力端子TI2との間に、直列に接続されている。スイッチング素子37vおよび37yは、入力端子TI1と入力端子TI2との間に、直列に接続されている。スイッチング素子37wおよび37zは、入力端子TI1と入力端子TI2との間に、直列に接続されている。 The power module 35 as a three-phase inverter circuit has switching elements 37u, 37v, 37w, 37x, 37y and 37z. The switching elements 37u and 37x are connected in series between the input terminal TI1 and the input terminal TI2. The switching elements 37v and 37y are connected in series between the input terminal TI1 and the input terminal TI2. The switching elements 37w and 37z are connected in series between the input terminal TI1 and the input terminal TI2.
 スイッチング素子37u、37v、37w、37x、37yおよび37zの各々は、MOSFET38と、ボディダイオード39と、を含む。スイッチング素子37u、37v、37w、37x、37yおよび37zの各々として、前述の実施例1のSiC-MOSFETが配列された素子形成領域を有する半導体装置を用いることができる。また、ボディダイオード39として、SiC-MOSFETに内蔵されたボディダイオードを用いることができる。 Each of the switching elements 37u, 37v, 37w, 37x, 37y and 37z includes a MOSFET 38 and a body diode 39. As each of the switching elements 37u, 37v, 37w, 37x, 37y, and 37z, a semiconductor device having an element formation region in which the SiC-MOSFETs of Example 1 described above are arranged can be used. As the body diode 39, a body diode built in the SiC-MOSFET can be used.
 スイッチング素子37u、37v、37w、37x、37yおよび37zにそれぞれ設けられた複数のMOSFET38の各々のゲート電極は、パワーモジュール35の6つの制御端子である、制御端子TC1、TC2、TC3、TC4、TC5およびTC6にそれぞれ接続されている。また、制御回路36は、制御端子TC1、TC2、TC3、TC4、TC5およびTC6の各々に接続されている。従って、制御回路36は、スイッチング素子37u、37v、37w、37x、37yおよび37zにそれぞれ設けられた複数のMOSFET38の各々のゲート電極に接続されている。制御回路36は、スイッチング素子37u、37v、37w、37x、37yおよび37zを駆動する。 The gate electrodes of the plurality of MOSFETs 38 provided in the switching elements 37u, 37v, 37w, 37x, 37y and 37z, respectively, are control terminals TC1, TC2, TC3, TC4, TC5 which are six control terminals of the power module 35. And TC6, respectively. The control circuit 36 is connected to each of the control terminals TC1, TC2, TC3, TC4, TC5, and TC6. Accordingly, the control circuit 36 is connected to each gate electrode of the plurality of MOSFETs 38 provided in the switching elements 37u, 37v, 37w, 37x, 37y and 37z, respectively. The control circuit 36 drives the switching elements 37u, 37v, 37w, 37x, 37y and 37z.
 制御回路36は、各スイッチング素子37u、37v、37w、37x、37yおよび37zのオン状態とオフ状態とが予め設定されたタイミングで交互に切り替わるように、スイッチング素子37u、37v、37w、37x、37yおよび37zのそれぞれを駆動する。これにより、直流電圧から、U相、V相およびW相の三相の交流電圧を生成し、直流電力を三相の交流電力に変換する。負荷32は、この三相の交流電力によって駆動される。
 ≪本実施例3の主要な特徴と効果≫
The control circuit 36 switches the switching elements 37u, 37v, 37w, 37x, 37y, and 37z so that the ON state and the OFF state of the switching elements 37u, 37v, 37w, 37x, and 37z are alternately switched at preset timings. And 37z are driven. As a result, a U-phase, V-phase, and W-phase three-phase AC voltage is generated from the DC voltage, and the DC power is converted into three-phase AC power. The load 32 is driven by this three-phase AC power.
<Main features and effects of the third embodiment>
 本実施例3の電力変換装置31に含まれるパワーモジュール35におけるスイッチング素子37u、37v、37w、37x、37yおよび37zの各々として、前述の実施例1のSiC-MOSFETが配列された素子形成領域を有する半導体装置を用いることができる。 As each of the switching elements 37u, 37v, 37w, 37x, 37y and 37z in the power module 35 included in the power conversion device 31 of the third embodiment, an element formation region in which the SiC-MOSFETs of the first embodiment are arranged is used. The semiconductor device which has can be used.
 半導体装置は、高温においても、安定した動作状態が得られるSiC-MOSFETにより構成されているので、高温動作におけるパワーモジュール35および電力変換装置31の信頼性を向上させることができる。また、半導体装置を高い電流密度で動作させてもコンタクト抵抗に変動のない安定した動作状態が維持できるので、半導体装置を小型化することが可能となり、これに伴ってパワーモジュール35および電力変換装置31を小型化することが可能となる。 Since the semiconductor device is composed of a SiC-MOSFET that can obtain a stable operation state even at a high temperature, the reliability of the power module 35 and the power conversion device 31 at a high temperature operation can be improved. Further, even if the semiconductor device is operated at a high current density, it is possible to maintain a stable operation state in which the contact resistance does not fluctuate, so that the semiconductor device can be reduced in size, and accordingly, the power module 35 and the power conversion device 31 can be downsized.
 ≪鉄道車両≫ ≪Railway vehicle≫
 本実施例4による鉄道車両について説明する。本実施例4の鉄道車両は、前述の実施例3の電力変換装置を含む鉄道車両である。 The railway vehicle according to the fourth embodiment will be described. The railway vehicle according to the fourth embodiment is a railway vehicle including the power conversion device according to the third embodiment.
 図24は、本実施例4による鉄道車両の構成を示す図である。 FIG. 24 is a diagram illustrating a configuration of a railway vehicle according to the fourth embodiment.
 図24に示すように、鉄道車両60は、集電装置としてのパンタグラフ61と、変圧器62と、電力変換装置63と、交流電動機である負荷64と、車輪65と、を含む。電力変換装置63は、コンバータ装置66と、例えばコンデンサである容量67と、インバータ装置68と、を有する。 As shown in FIG. 24, the railway vehicle 60 includes a pantograph 61 as a current collector, a transformer 62, a power converter 63, a load 64 that is an AC motor, and wheels 65. The power conversion device 63 includes a converter device 66, a capacitor 67 that is, for example, a capacitor, and an inverter device 68.
 コンバータ装置66は、スイッチング素子69および70を有する。スイッチング素子69は、上アーム側、すなわち高電圧側に配置されており、スイッチング素子70は、下アーム側、すなわち低電圧側に配置されている。なお、図24では、スイッチング素子69および70については、U相、V相およびW相の三相のうち一相について示している。 The converter device 66 has switching elements 69 and 70. The switching element 69 is disposed on the upper arm side, that is, the high voltage side, and the switching element 70 is disposed on the lower arm side, that is, the low voltage side. In FIG. 24, the switching elements 69 and 70 are shown for one of the three phases U phase, V phase and W phase.
 インバータ装置68は、スイッチング素子71および72を有する。スイッチング素子71は、上アーム側、すなわち高電圧側に配置されており、スイッチング素子72は、下アーム側、すなわち低電圧側に配置されている。なお、図24では、スイッチング素子71および72については、U相、V相およびW相の三相のうち一相について示している。 The inverter device 68 has switching elements 71 and 72. The switching element 71 is disposed on the upper arm side, that is, the high voltage side, and the switching element 72 is disposed on the lower arm side, that is, the low voltage side. In FIG. 24, the switching elements 71 and 72 are shown for one of the three phases U phase, V phase and W phase.
 変圧器62の一次側の一端は、パンタグラフ61を介して架線61aに接続されている。変圧器62の一次側の他端は、車輪65を介して線路65aに接続されている。変圧器62の二次側の一端は、コンバータ装置66の負荷64と反対側であって上アーム側の端子に接続されている。変圧器62の二次側の他端は、コンバータ装置66の負荷64と反対側であって下アーム側の端子に接続されている。 One end of the primary side of the transformer 62 is connected to the overhead line 61 a via the pantograph 61. The other end of the primary side of the transformer 62 is connected to the line 65 a via the wheel 65. One end of the secondary side of the transformer 62 is connected to a terminal on the upper arm side opposite to the load 64 of the converter device 66. The other end of the secondary side of the transformer 62 is connected to a terminal on the lower arm side opposite to the load 64 of the converter device 66.
 コンバータ装置66の負荷64側であって上アーム側の端子は、インバータ装置68の負荷64と反対側であって上アーム側の端子に接続されている。また、コンバータ装置66の負荷64側であって下アーム側の端子は、インバータ装置68の負荷64と反対側であって下アーム側の端子に接続されている。さらに、インバータ装置68の負荷64と反対側であって上アーム側の端子と、インバータ装置68の負荷64と反対側であって下アーム側の端子との間に、容量67が接続されている。また、図24では図示を省略するが、インバータ装置68の出力側の3つの端子の各々は、U相、V相およびW相のそれぞれとして、負荷64に接続されている。 The terminal on the load 64 side and the upper arm side of the converter device 66 is connected to the terminal on the upper arm side opposite to the load 64 of the inverter device 68. The terminal on the load 64 side of the converter device 66 on the lower arm side is connected to the terminal on the lower arm side opposite to the load 64 of the inverter device 68. Further, a capacitor 67 is connected between a terminal on the side opposite to the load 64 of the inverter device 68 and on the upper arm side, and a terminal on the side opposite to the load 64 of the inverter device 68 and on the lower arm side. . Although not shown in FIG. 24, each of the three terminals on the output side of the inverter device 68 is connected to the load 64 as a U phase, a V phase, and a W phase.
 本実施例4では、インバータ装置68として、前述の実施例3の電力変換装置31(図23参照)を用いることができる。 In the fourth embodiment, as the inverter device 68, the power conversion device 31 of the above-described third embodiment (see FIG. 23) can be used.
 架線61aからパンタグラフ61により集電された交流電力は、その電圧が変圧器62によって変圧された後、コンバータ装置66により所望の直流電力に変換される。コンバータ装置66により変換された直流電力は、その電圧が容量67により平滑化される。容量67により電圧が平滑化された直流電力は、インバータ装置68により交流電力に変換される。インバータ装置68により変換された交流電力は、負荷64に供給される。交流電力が供給された負荷64が車輪65を回転駆動することで、鉄道車両が加速される。
 ≪本実施例4の主要な特徴と効果≫
The AC power collected by the pantograph 61 from the overhead line 61 a is transformed by the converter device 66 into desired DC power after the voltage is transformed by the transformer 62. The DC power converted by the converter device 66 is smoothed by the capacitor 67. The DC power whose voltage has been smoothed by the capacitor 67 is converted into AC power by the inverter device 68. The AC power converted by the inverter device 68 is supplied to the load 64. The load 64 supplied with AC power rotationally drives the wheels 65, whereby the railway vehicle is accelerated.
≪Main features and effects of the fourth embodiment≫
 本実施例4の鉄道車両60のインバータ装置68として、前述の実施例3の電力変換装置31(図23参照)を用いることができる。電力変換装置31に備えられたスイッチング素子37u、37v、37w、37x、37yおよび37zの各々として、前述の実施例1のSiC-MOSFETが配列された素子形成領域を有する半導体装置を用いることができる。 As the inverter device 68 of the railway vehicle 60 of the fourth embodiment, the power conversion device 31 (see FIG. 23) of the above-described third embodiment can be used. As each of the switching elements 37u, 37v, 37w, 37x, 37y, and 37z provided in the power conversion device 31, a semiconductor device having an element formation region in which the SiC-MOSFETs of Example 1 described above are arranged can be used. .
 前述の実施例3と同様に、半導体装置は、高温においても、安定した動作状態が得られるSiC-MOSFETにより構成されているので、高温動作におけるパワーモジュール35および電力変換装置31の信頼性を向上させることができる。また、半導体装置を高い電流密度で動作させてもコンタクト抵抗に変動のない安定した動作状態が維持できるので、半導体装置を小型化することが可能となり、これに伴ってパワーモジュール35および電力変換装置31を小型化することが可能となる。 Similar to the third embodiment described above, the semiconductor device is composed of a SiC-MOSFET that can obtain a stable operation state even at a high temperature. Therefore, the reliability of the power module 35 and the power conversion device 31 at the high temperature operation is improved. Can be made. Further, even if the semiconductor device is operated at a high current density, it is possible to maintain a stable operation state in which the contact resistance does not fluctuate, so that the semiconductor device can be reduced in size, and accordingly, the power module 35 and the power conversion device 31 can be downsized.
 さらに、インバータ装置68に備えられたスイッチング素子71および72として、前述の実施例1のSiC-MOSFETが配列された素子形成領域を有する半導体装置を用いることができる。従って、インバータ装置68の信頼性が向上し、小型化が可能となる。よって、このインバータ装置68を含む鉄道車両60において、鉄道を運行する際のエネルギー効率を向上させることができる。 Further, as the switching elements 71 and 72 provided in the inverter device 68, a semiconductor device having an element formation region in which the SiC-MOSFETs of the first embodiment are arranged can be used. Therefore, the reliability of the inverter device 68 is improved and the size can be reduced. Therefore, in the railway vehicle 60 including the inverter device 68, the energy efficiency when operating the railway can be improved.
 同様に、コンバータ装置66に備えられたスイッチング素子69および70として、前述の実施例1のSiC-MOSFETが配列された素子形成領域を有する半導体装置を用いることができる。この場合にも、コンバータ装置66の信頼性が向上し、小型化が可能となる。よって、このコンバータ装置66を含む鉄道車両60において、鉄道を運行する際のエネルギー効率を向上させることができる。 Similarly, as the switching elements 69 and 70 provided in the converter device 66, a semiconductor device having an element formation region in which the SiC-MOSFETs of Example 1 described above are arranged can be used. Also in this case, the reliability of the converter device 66 is improved and the size can be reduced. Therefore, in the railway vehicle 60 including the converter device 66, the energy efficiency when operating the railway can be improved.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 1 n型SiC基板
 2 n型エピタキシャル層
 3 SiCエピタキシャル基板
 4 p型ボディ領域(ウエル領域)
 5 n型ソース領域
 5a 第1n型ソース領域
 5b 第2n型ソース領域
 6 p型電位固定領域
 7 JFET領域
 8 チャネル領域
 9 n型3C-SiC領域
 9a n型アモルファス領域
10 ゲート絶縁膜
11 ゲート電極
12 層間絶縁膜
13 開口部
14 バリアメタル膜
15 ソース配線用電極
16 ドレイン配線用電極
17,18 マスクパターン
19 サイドウォール
30 三相モータシステム
31 電力変換装置
32 負荷
33 直流電源
34 容量
35 パワーモジュール
36 制御回路
37u,37v,37w,37x,37y,37z スイッチング素子
38 MOSFET
39 ボディダイオード
60 鉄道車両
61 パンダグラフ
61a 架線
62 変圧器
63 電力変換装置
64 負荷
65 車輪
65a 線路
66 コンバータ装置
67 容量
68 インバータ装置
69,70,71,72 スイッチング素子
T11,T12 入力端子
TC1,TC2,TC3,TC4,TC5,TC6 制御端子
TO1,TO2,TO3 出力端子
1 n + type SiC substrate 2 n type epitaxial layer 3 SiC epitaxial substrate 4 p type body region (well region)
5 n + type source region 5a 1n + type source region 5b 2n n + type source region 6 p + type potential fixing region 7 JFET region 8 channel region 9 n + type 3C-SiC region 9a n + type amorphous region 10 Gate insulation Film 11 Gate electrode 12 Interlayer insulating film 13 Opening 14 Barrier metal film 15 Source wiring electrode 16 Drain wiring electrodes 17 and 18 Mask pattern 19 Side wall 30 Three-phase motor system 31 Power converter 32 Load 33 DC power supply 34 Capacity 35 Power module 36 Control circuit 37u, 37v, 37w, 37x, 37y, 37z Switching element 38 MOSFET
39 body diode 60 railway vehicle 61 panda graph 61a overhead line 62 transformer 63 power converter 64 load 65 wheel 65a line 66 converter device 67 capacity 68 inverter devices 69, 70, 71, 72 switching elements T11, T12 input terminals TC1, TC2, TC3, TC4, TC5, TC6 Control terminal TO1, TO2, TO3 Output terminal

Claims (16)

  1.  第1主面および前記第1主面と反対側の第2主面を有し、炭化珪素からなる第1導電型の基板と、
     前記基板の前記第1主面上に形成された炭化珪素からなる前記第1導電型の半導体層と、
     前記半導体層の上面から前記半導体層内に形成された前記第1導電型とは異なる第2導電型の複数の第1半導体領域と、
     前記第1半導体領域の端部側面と離間して、前記半導体層の上面から前記第1半導体領域内に形成された前記第1導電型の第2半導体領域と、
     前記第2半導体領域の端部側面と離間して、前記半導体層の上面から前記第2半導体領域内に、前記第1半導体領域に達して形成された前記第2導電型の第3半導体領域と、
     前記第2半導体領域の端部側面と前記第3半導体領域の端部側面との間の前記第2半導体領域の上層部に、前記第2半導体領域の端部側面から離間して形成された前記第1導電型の3C結晶構造の炭化珪素からなる第4半導体領域と、
     前記第1半導体領域の端部側面と前記第2半導体領域の端部側面との間の前記第1半導体領域の上層部に形成されたチャネル領域と、
     前記チャネル領域に接して形成されたゲート絶縁膜と、
     前記ゲート絶縁膜に接して形成されたゲート電極と、
     前記ゲート電極を覆い、前記第3半導体領域および前記第4半導体領域が露出する開口部を有する層間絶縁膜と、
     前記開口部の底面において前記第3半導体領域および前記第4半導体領域と接し、前記開口部の内壁を含む前記層間絶縁膜上に形成されたバリアメタル膜と、
     前記バリアメタル膜上に形成された第1電極と、
     前記基板の前記第2主面上に形成された第2電極と、
    を有する、半導体装置。
    A first conductive substrate having a first main surface and a second main surface opposite to the first main surface, and made of silicon carbide;
    The semiconductor layer of the first conductivity type made of silicon carbide formed on the first main surface of the substrate;
    A plurality of first semiconductor regions of a second conductivity type different from the first conductivity type formed in the semiconductor layer from the upper surface of the semiconductor layer;
    A second semiconductor region of the first conductivity type formed in the first semiconductor region from the upper surface of the semiconductor layer, spaced from the end side surface of the first semiconductor region;
    A third semiconductor region of the second conductivity type formed so as to reach the first semiconductor region in the second semiconductor region from the upper surface of the semiconductor layer and spaced from the side surface of the end portion of the second semiconductor region; ,
    The upper portion of the second semiconductor region between the end side surface of the second semiconductor region and the end side surface of the third semiconductor region is formed apart from the end side surface of the second semiconductor region. A fourth semiconductor region made of silicon carbide having a 3C crystal structure of the first conductivity type;
    A channel region formed in an upper layer portion of the first semiconductor region between the end side surface of the first semiconductor region and the end side surface of the second semiconductor region;
    A gate insulating film formed in contact with the channel region;
    A gate electrode formed in contact with the gate insulating film;
    An interlayer insulating film covering the gate electrode and having an opening through which the third semiconductor region and the fourth semiconductor region are exposed;
    A barrier metal film formed on the interlayer insulating film in contact with the third semiconductor region and the fourth semiconductor region at a bottom surface of the opening and including an inner wall of the opening;
    A first electrode formed on the barrier metal film;
    A second electrode formed on the second main surface of the substrate;
    A semiconductor device.
  2.  請求項1記載の半導体装置において、
     前記半導体層は、4H結晶構造または6H結晶構造の炭化珪素からなる、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device is a semiconductor device made of silicon carbide having a 4H crystal structure or a 6H crystal structure.
  3.  請求項1記載の半導体装置において、
     前記第4半導体領域の不純物濃度は、前記第2半導体領域の不純物濃度よりも高い、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device, wherein an impurity concentration of the fourth semiconductor region is higher than an impurity concentration of the second semiconductor region.
  4.  請求項3記載の半導体装置において、
     前記第4不純物領域の不純物濃度は、1×1020~1×1021cm-3である、半導体装置。
    The semiconductor device according to claim 3.
    The semiconductor device, wherein an impurity concentration of the fourth impurity region is 1 × 10 20 to 1 × 10 21 cm −3 .
  5.  請求項1記載の半導体装置において、
     前記第2半導体領域の端部側面から前記第4半導体領域の端部側面までの距離は、0.3μm以上である、半導体装置。
    The semiconductor device according to claim 1,
    The distance from the edge part side surface of the said 2nd semiconductor region to the edge part side surface of the said 4th semiconductor region is a semiconductor device which is 0.3 micrometer or more.
  6.  請求項1記載の半導体装置において、
     前記第3半導体領域の上層部には、前記第4半導体領域は形成されていない、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device, wherein the fourth semiconductor region is not formed in an upper layer portion of the third semiconductor region.
  7.  請求項1記載の半導体装置において、
     前記バリアメタル膜は、Ti膜、Ta膜、W膜、TiN膜、TaN膜、Tiを下層としたTiN/Ti積層膜、またはTaを下層としたTaN/Ta積層膜である、半導体装置。
    The semiconductor device according to claim 1,
    The barrier metal film is a Ti film, a Ta film, a W film, a TiN film, a TaN film, a TiN / Ti laminated film with Ti as a lower layer, or a TaN / Ta laminated film with Ta as a lower layer.
  8.  以下の工程を含む半導体装置の製造方法:
     (a)炭化珪素からなる第1導電型の基板の第1主面上に、炭化珪素からなる前記第1導電型の半導体層を形成する工程、
     (b)前記半導体層の上面から第1深さを有する、前記第1導電型とは異なる第2導電型の複数の第1半導体領域を、前記半導体層内に形成する工程、
     (c)前記半導体層の上面から前記第1深さよりも浅い第2深さを有する前記第1導電型の第2半導体領域を、前記第1半導体領域内に、前記第1半導体領域の端部側面と離間して形成する工程、
     (d)前記半導体層の上面から前記第1深さよりも浅い第3深さを有し、前記第1半導体領域に達する前記第2導電型の第3半導体領域を、前記第2半導体領域内に、前記第2半導体領域の端部側面と離間して形成する工程、
     (e)前記第1導電型の不純物をイオン注入することにより、前記半導体層の上面から前記第2深さよりも浅い第4深さを有する前記第1導電型のアモルファス領域を、前記第2半導体領域の上層部に、前記第2半導体領域の端部側面と離間して形成する工程、
     (f)前記(e)工程の後に、熱処理を施して、前記アモルファス領域を3C結晶構造の炭化珪素からなる第4半導体領域とする工程、
     (g)前記第1半導体領域の端部側面と前記第2半導体領域の端部側面との間の前記第1半導体領域の上面上に、ゲート絶縁膜を介してゲート電極を形成する工程、
     (h)前記ゲート電極を覆う層間絶縁膜を前記半導体層の上面上に形成した後、前記層間絶縁膜に、前記第3半導体領域および前記第4半導体領域に達する開口部を形成する工程、
     (i)前記開口部の内壁を含む前記層間絶縁膜上に、前記開口部の底面で前記第3半導体領域および前記第4半導体領域と接するバリアメタル膜を形成する工程、
     (j)前記バリアメタル膜上に第1電極を形成する工程、
     (k)前記基板の前記第1主面と反対側の第2主面上に、第2電極を形成する工程。
    A semiconductor device manufacturing method including the following steps:
    (A) forming a first conductive type semiconductor layer made of silicon carbide on a first main surface of a first conductive type substrate made of silicon carbide;
    (B) forming a plurality of first semiconductor regions having a first depth from the upper surface of the semiconductor layer and having a second conductivity type different from the first conductivity type in the semiconductor layer;
    (C) The second semiconductor region of the first conductivity type having a second depth shallower than the first depth from the upper surface of the semiconductor layer is formed in the end portion of the first semiconductor region in the first semiconductor region. Forming a space apart from the side surface;
    (D) A third semiconductor region of the second conductivity type having a third depth shallower than the first depth from the upper surface of the semiconductor layer and reaching the first semiconductor region is formed in the second semiconductor region. Forming the second semiconductor region apart from the side surface of the end,
    (E) The first conductive type amorphous region having a fourth depth shallower than the second depth from the upper surface of the semiconductor layer is implanted into the second semiconductor by ion-implanting the first conductive type impurity. Forming an upper layer part of the region apart from an end side surface of the second semiconductor region;
    (F) A step of performing a heat treatment after the step (e) so that the amorphous region becomes a fourth semiconductor region made of silicon carbide having a 3C crystal structure;
    (G) forming a gate electrode on the upper surface of the first semiconductor region between the end side surface of the first semiconductor region and the end side surface of the second semiconductor region via a gate insulating film;
    (H) forming an interlayer insulating film covering the gate electrode on the upper surface of the semiconductor layer, and then forming an opening reaching the third semiconductor region and the fourth semiconductor region in the interlayer insulating film;
    (I) forming a barrier metal film in contact with the third semiconductor region and the fourth semiconductor region on the bottom surface of the opening on the interlayer insulating film including the inner wall of the opening;
    (J) forming a first electrode on the barrier metal film;
    (K) A step of forming a second electrode on a second main surface opposite to the first main surface of the substrate.
  9.  請求項8記載の半導体装置の製造方法において、
     前記半導体層は、4H結晶構造または6H結晶構造の炭化珪素からなる、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 8.
    The method for manufacturing a semiconductor device, wherein the semiconductor layer is made of silicon carbide having a 4H crystal structure or a 6H crystal structure.
  10.  請求項8記載の半導体装置の製造方法において、
     前記バリアメタル膜は、Ti膜、Ta膜、W膜、TiN膜、TaN膜、Tiを下層としたTiN/Ti積層膜、またはTaを下層としたTaN/Ta積層膜である、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 8.
    The barrier metal film is a Ti film, a Ta film, a W film, a TiN film, a TaN film, a TiN / Ti laminated film with Ti as a lower layer, or a TaN / Ta laminated film with Ta as a lower layer. Method.
  11.  以下の工程を含む半導体装置の製造方法:
     (a)炭化珪素からなる第1導電型の基板の第1主面上に、炭化珪素からなる前記第1導電型の半導体層を形成する工程、
     (b)前記半導体層の上面から第1深さを有する、前記第1導電型とは異なる第2導電型の複数の第1半導体領域を、前記半導体層内に形成する工程、
     (c)前記半導体層の上面から前記第1深さよりも浅い第2深さを有する前記第2導電型の第2半導体領域を、前記第1半導体領域内に、前記第1半導体領域の端部側面と離間して形成する工程、
     (d)前記半導体層の上面上にマスクパターンを形成し、前記マスクパターンを介して前記半導体層の上面から前記第1半導体領域内に、前記第1導電型の不純物をイオン注入することにより、前記半導体層の上面から前記第1深さよりも浅い第3深さを有する前記第1導電型の第3半導体領域を、前記第1半導体領域内に、前記第1半導体領域の端部側面と離間して形成する工程、
     (e)前記マスクパターンの開口部の側壁にサイドウォールを形成し、前記マスクパターンおよび前記サイドウォールを介して前記半導体層の上面から前記第3半導体領域内に、前記第1導電型の不純物をイオン注入することにより、アモルファス領域を、前記第3半導体領域内に、前記第3半導体領域の端部側面と離間して形成する工程、
     (f)前記マスクパターンおよび前記サイドウォールを介して前記半導体層の上面から前記アモルファス領域下の前記第1半導体領域内に、前記第1導電型の不純物をイオン注入することにより、第4半導体領域を、前記アモルファス領域下の前記第1半導体領域内に形成する工程、
     (g)前記(f)工程の後、前記マスクパターンおよび前記サイドウォールを除去した後、熱処理を施して、前記アモルファス領域を3C結晶構造の炭化珪素からなる第5半導体領域とする工程、
     (h)前記第1半導体領域の端部側面と前記第3半導体領域の端部側面との間の前記第1半導体領域の上面上に、ゲート絶縁膜を介してゲート電極を形成する工程、
     (i)前記ゲート電極を覆う層間絶縁膜を前記半導体層の上面上に形成した後、前記層間絶縁膜に、前記第2半導体領域および前記第5半導体領域に達する開口部を形成する工程、
     (j)前記開口部の内壁を含む前記層間絶縁膜上に、前記開口部の底面で前記第2半導体領域および前記第5半導体領域と接するバリアメタル膜を形成する工程、
     (k)前記バリアメタル膜上に第1電極を形成する工程、
     (l)前記基板の前記第1主面と反対側の第2主面上に、第2電極を形成する工程。
    A semiconductor device manufacturing method including the following steps:
    (A) forming a first conductive type semiconductor layer made of silicon carbide on a first main surface of a first conductive type substrate made of silicon carbide;
    (B) forming a plurality of first semiconductor regions having a first depth from the upper surface of the semiconductor layer and having a second conductivity type different from the first conductivity type in the semiconductor layer;
    (C) The second semiconductor region of the second conductivity type having a second depth shallower than the first depth from the upper surface of the semiconductor layer, and an end portion of the first semiconductor region in the first semiconductor region Forming a space apart from the side surface;
    (D) forming a mask pattern on the upper surface of the semiconductor layer, and ion-implanting the first conductivity type impurity into the first semiconductor region from the upper surface of the semiconductor layer via the mask pattern; The third semiconductor region of the first conductivity type having a third depth shallower than the first depth from the upper surface of the semiconductor layer is separated from the side surface of the end portion of the first semiconductor region in the first semiconductor region. Forming the process,
    (E) forming a sidewall on the side wall of the opening of the mask pattern, and introducing the first conductivity type impurity into the third semiconductor region from the upper surface of the semiconductor layer via the mask pattern and the sidewall. Forming an amorphous region in the third semiconductor region by separating ions from the side surface of the end portion of the third semiconductor region by ion implantation;
    (F) The fourth semiconductor region is formed by ion-implanting the first conductivity type impurity into the first semiconductor region below the amorphous region from the upper surface of the semiconductor layer via the mask pattern and the sidewall. Forming in the first semiconductor region under the amorphous region,
    (G) After the step (f), the mask pattern and the sidewall are removed, and then a heat treatment is performed to make the amorphous region a fifth semiconductor region made of silicon carbide having a 3C crystal structure,
    (H) forming a gate electrode on the upper surface of the first semiconductor region between the end side surface of the first semiconductor region and the end side surface of the third semiconductor region via a gate insulating film;
    (I) forming an opening reaching the second semiconductor region and the fifth semiconductor region in the interlayer insulating film after forming an interlayer insulating film covering the gate electrode on the upper surface of the semiconductor layer;
    (J) forming a barrier metal film in contact with the second semiconductor region and the fifth semiconductor region on the bottom surface of the opening on the interlayer insulating film including the inner wall of the opening;
    (K) forming a first electrode on the barrier metal film;
    (L) A step of forming a second electrode on the second main surface opposite to the first main surface of the substrate.
  12.  請求項11記載の半導体装置の製造方法において、
     前記半導体層は、4H結晶構造または6H結晶構造の炭化珪素からなる、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 11.
    The method for manufacturing a semiconductor device, wherein the semiconductor layer is made of silicon carbide having a 4H crystal structure or a 6H crystal structure.
  13.  請求項11記載の半導体装置の製造方法において、
     前記バリアメタル膜は、Ti膜、Ta膜、W膜、TiN膜、TaN膜、Tiを下層としたTiN/Ti積層膜、またはTaを下層としたTaN/Ta積層膜である、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 11.
    The barrier metal film is a Ti film, a Ta film, a W film, a TiN film, a TaN film, a TiN / Ti laminated film with Ti as a lower layer, or a TaN / Ta laminated film with Ta as a lower layer. Method.
  14.  請求項1記載の半導体装置から構成される、パワーモジュール。 A power module comprising the semiconductor device according to claim 1.
  15.  請求項14記載のパワーモジュールを備える、電力変換装置。 A power converter comprising the power module according to claim 14.
  16.  請求項15記載の電力変換装置を備えた3相モータシステムで車輪を駆動する、鉄道車両。 A railway vehicle that drives wheels with a three-phase motor system including the power conversion device according to claim 15.
PCT/JP2015/075853 2015-09-11 2015-09-11 Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle WO2017042963A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017538820A JP6473512B2 (en) 2015-09-11 2015-09-11 Semiconductor device and method for manufacturing the same, power module, power conversion device, and railcar
PCT/JP2015/075853 WO2017042963A1 (en) 2015-09-11 2015-09-11 Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075853 WO2017042963A1 (en) 2015-09-11 2015-09-11 Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle

Publications (1)

Publication Number Publication Date
WO2017042963A1 true WO2017042963A1 (en) 2017-03-16

Family

ID=58240691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075853 WO2017042963A1 (en) 2015-09-11 2015-09-11 Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle

Country Status (2)

Country Link
JP (1) JP6473512B2 (en)
WO (1) WO2017042963A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207957A (en) * 2018-05-29 2019-12-05 富士電機株式会社 Semiconductor device
CN111584350A (en) * 2020-05-25 2020-08-25 芜湖启迪半导体有限公司 Filling method of SiC epitaxial trench and trench filling structure prepared by method
WO2022118509A1 (en) * 2020-12-02 2022-06-09 株式会社日立製作所 Semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049198A (en) * 2007-08-20 2009-03-05 New Japan Radio Co Ltd Semiconductor device and manufacturing method thereof
JP2010062477A (en) * 2008-09-05 2010-03-18 Rohm Co Ltd Trench type semiconductor device and its manufacturing method
WO2012029652A1 (en) * 2010-09-03 2012-03-08 三菱電機株式会社 Semiconductor device
JP2013058601A (en) * 2011-09-08 2013-03-28 Toshiba Corp Semiconductor device and semiconductor device manufacturing method
JP2014110362A (en) * 2012-12-04 2014-06-12 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method of the same
WO2015033406A1 (en) * 2013-09-04 2015-03-12 株式会社日立製作所 Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle
WO2015118743A1 (en) * 2014-02-04 2015-08-13 トヨタ自動車株式会社 Semiconductor device and manufacturing method for semiconductor device
WO2015128975A1 (en) * 2014-02-26 2015-09-03 株式会社日立製作所 Power module and power conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848607B2 (en) * 2001-09-11 2011-12-28 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
JP6168732B2 (en) * 2012-05-11 2017-07-26 株式会社日立製作所 Silicon carbide semiconductor device and manufacturing method thereof
JP6104523B2 (en) * 2012-06-07 2017-03-29 株式会社日立製作所 Manufacturing method of semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049198A (en) * 2007-08-20 2009-03-05 New Japan Radio Co Ltd Semiconductor device and manufacturing method thereof
JP2010062477A (en) * 2008-09-05 2010-03-18 Rohm Co Ltd Trench type semiconductor device and its manufacturing method
WO2012029652A1 (en) * 2010-09-03 2012-03-08 三菱電機株式会社 Semiconductor device
JP2013058601A (en) * 2011-09-08 2013-03-28 Toshiba Corp Semiconductor device and semiconductor device manufacturing method
JP2014110362A (en) * 2012-12-04 2014-06-12 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method of the same
WO2015033406A1 (en) * 2013-09-04 2015-03-12 株式会社日立製作所 Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle
WO2015118743A1 (en) * 2014-02-04 2015-08-13 トヨタ自動車株式会社 Semiconductor device and manufacturing method for semiconductor device
WO2015128975A1 (en) * 2014-02-26 2015-09-03 株式会社日立製作所 Power module and power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207957A (en) * 2018-05-29 2019-12-05 富士電機株式会社 Semiconductor device
JP7135445B2 (en) 2018-05-29 2022-09-13 富士電機株式会社 semiconductor equipment
US11876131B2 (en) 2018-05-29 2024-01-16 Fuji Electric Co., Ltd. Semiconductor device
CN111584350A (en) * 2020-05-25 2020-08-25 芜湖启迪半导体有限公司 Filling method of SiC epitaxial trench and trench filling structure prepared by method
CN111584350B (en) * 2020-05-25 2022-08-30 安徽长飞先进半导体有限公司 Filling method of SiC epitaxial trench and trench filling structure prepared by method
WO2022118509A1 (en) * 2020-12-02 2022-06-09 株式会社日立製作所 Semiconductor device

Also Published As

Publication number Publication date
JP6473512B2 (en) 2019-02-20
JPWO2017042963A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
CN110709997B (en) Semiconductor device and power conversion device
JP7068916B2 (en) Silicon Carbide Semiconductor Device, Power Conversion Device, and Method for Manufacturing Silicon Carbide Semiconductor Device
JP6309656B2 (en) Semiconductor device and manufacturing method thereof, power conversion device, three-phase motor system, automobile and railway vehicle
JP2019197792A5 (en)
JP6290457B2 (en) Semiconductor device and manufacturing method thereof, power conversion device, three-phase motor system, automobile, and railway vehicle
US11842895B2 (en) Semiconductor device and power conversion device
JP6923457B2 (en) Silicon Carbide Semiconductor Devices and Their Manufacturing Methods, Power Converters, Automobiles and Rail Vehicles
WO2020100534A1 (en) Semiconductor device and electric power conversion device using same
JP6473512B2 (en) Semiconductor device and method for manufacturing the same, power module, power conversion device, and railcar
JP6564046B2 (en) Semiconductor device and manufacturing method thereof, power conversion device, three-phase motor system, automobile and railway vehicle
DE112018007915T5 (en) SEMICONDUCTOR UNIT AND POWER CONVERTER
JP6843561B2 (en) Semiconductor devices and power converters
CN113330579B (en) Semiconductor device and power conversion device
WO2022168240A1 (en) Silicon carbide semiconductor device and power conversion device
WO2016002083A1 (en) Semiconductor device, power module and electric power converter
JP6271078B2 (en) Semiconductor device and power conversion device
WO2016143099A1 (en) Semiconductor device, method for manufacturing same, and power conversion device
WO2016038695A1 (en) Semiconductor device, power module, power conversion device, and railroad vehicle
WO2015033406A1 (en) Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle
JP7459292B2 (en) Semiconductor device and power conversion device
JP7062143B1 (en) Semiconductor equipment and power conversion equipment
WO2022190269A1 (en) Silicon carbide semiconductor device, method for manufacturing same, and power conversion device
CN112534584B (en) Semiconductor device and power conversion device
JP2017112244A (en) Silicon carbide switching element, power module and electric power conversion device
CN115699329A (en) Semiconductor device and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538820

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903625

Country of ref document: EP

Kind code of ref document: A1