WO2015128975A1 - Power module and power conversion device - Google Patents

Power module and power conversion device Download PDF

Info

Publication number
WO2015128975A1
WO2015128975A1 PCT/JP2014/054757 JP2014054757W WO2015128975A1 WO 2015128975 A1 WO2015128975 A1 WO 2015128975A1 JP 2014054757 W JP2014054757 W JP 2014054757W WO 2015128975 A1 WO2015128975 A1 WO 2015128975A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
power module
input terminal
plan
semiconductor
Prior art date
Application number
PCT/JP2014/054757
Other languages
French (fr)
Japanese (ja)
Inventor
久本 大
大西 正己
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/054757 priority Critical patent/WO2015128975A1/en
Publication of WO2015128975A1 publication Critical patent/WO2015128975A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a power module and a power converter, and relates to a power module and a power converter provided with a switching element.
  • An inverter is used as a power conversion device that converts electric power for driving a motor or the like between direct current and alternating current.
  • an element pair consisting of an insulated gate bipolar transistor (IGBT) and a PIN (P-intrinsic-n) diode connected in antiparallel to each other includes an upper arm on the high voltage side, and For example, one pair is provided on each of the lower arms on the low voltage side.
  • Each of the IGBT and the PIN diode is a switching element using silicon (Si). That is, an inverter as a power conversion device includes a power module including a switching element.
  • the loss at the time of power conversion in the inverter provided with the IGBT and the PIN diode using Si is reduced to a value close to the theoretical value determined from the physical property value of Si. Therefore, it is extremely difficult to further reduce the loss at the time of power conversion in the inverter provided with the switching element using Si.
  • the breakdown electric field of a so-called wide band gap semiconductor such as silicon carbide (SiC) or gallium nitride (GaN) is about an order of magnitude larger than that of silicon (Si).
  • the withstand voltage of a vertical MISFET (Metal Insulator Semiconductor Field Effect Transistor) as a switching element using SiC is in a wide voltage range of several hundred volts to several kV. Therefore, in the vertical MISFET using SiC, the region for relaxing the electric field in which the parasitic resistance is generated can be reduced as compared with the vertical MISFET as a switching element using Si. It is greatly reduced. Therefore, a large current can be passed through the vertical MISFET as a switching element.
  • Patent Document 1 describes a technique regarding a vertical MISFET using SiC.
  • an n-type drain region, a p-type body region, and an n-type source region are provided between the drain electrode and the source electrode, and gate insulation is provided on the surface of the p-type body region.
  • a gate electrode is provided through the film.
  • SiC silicon carbide
  • SiC silicon carbide
  • the switching element formed on the semiconductor substrate in the portion where the crystal defects are introduced varies in performance such as threshold voltage, or has a poor junction breakdown voltage.
  • Manufacturing yield tends to decrease. Therefore, the probability that a crystal defect is introduced and a defect is caused by using a plurality of semiconductor chips each having a relatively small area and electrically connected in parallel to each other instead of one semiconductor chip having a large area. Therefore, the so-called manufacturing yield can be improved.
  • a large current can be allowed to flow through the power module by flowing a current in parallel to the switching elements provided in each of the plurality of semiconductor chips each having a relatively small area and connected in parallel to each other. .
  • a power module includes a first substrate, a chip group including a plurality of semiconductor chips provided on the first substrate, a first input terminal to which a signal sent to the chip group is input, Is provided.
  • the plurality of semiconductor chips are arranged at a distance from each other in plan view, and the first input terminal is provided at a position overlapping the chip group in plan view.
  • Each of the plurality of semiconductor chips includes a semiconductor substrate, a switching element including a gate electrode formed on the semiconductor substrate, and an electrode terminal formed on the semiconductor substrate and electrically connected to the gate electrode. Have.
  • the electrode terminal is disposed closer to the first input terminal than the center of the semiconductor substrate in plan view, and is electrically connected to the first input terminal.
  • a power module includes a semiconductor substrate, a switching element including a gate electrode formed on the semiconductor substrate, and an electrode terminal formed on the semiconductor substrate and electrically connected to the gate electrode. And a resistance element formed on the semiconductor substrate. Further, the gate electrode and the electrode terminal are electrically connected via a resistance element.
  • an impedance between an input terminal to which a gate signal sent to the semiconductor chip is input to the power module and a gate electrode of a switching element provided in the semiconductor chip is desired. Can be adjusted.
  • FIG. 3 is a plan view of the power module according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the power module according to the first embodiment.
  • 3 is a plan view of an upper substrate of the power module according to Embodiment 1.
  • FIG. FIG. 3 is a plan view of a chip group in the power module according to the first embodiment.
  • 4 is a plan view of a semiconductor chip in the power module according to the first embodiment.
  • FIG. FIG. 3 is a main-portion cross-sectional view of the semiconductor chip in the power module according to the first embodiment.
  • FIG. 6 is a plan view of another example of a semiconductor chip in the power module according to the first embodiment.
  • 3 is a plan view of a switching element in the power module according to Embodiment 1.
  • FIG. 1 is a plan view of the power module according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the power module according to the first embodiment.
  • 3 is a plan view of an upper substrate of
  • FIG. 3 is a plan view of a switching element in the power module according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of a main part of a switching element in the power module according to the first embodiment.
  • FIG. 10 is a plan view of a first modification of the semiconductor chip in the power module according to the first embodiment. It is a top view of another example among the 1st modifications of the semiconductor chip in the power module of Embodiment 1.
  • FIG. FIG. 11 is a plan view of a second modification of the semiconductor chip in the power module according to the first embodiment. It is a top view of the chip group in the power module of a comparative example. It is a figure which shows the structure of the power converter device of Embodiment 2.
  • FIG. 6 is a diagram showing a configuration of an electric vehicle as an automobile according to a third embodiment.
  • FIG. 6 is a circuit diagram illustrating an example of a boost converter in an automobile according to a third embodiment.
  • FIG. 10 is a diagram showing a configuration of a railway vehicle according to a fourth embodiment.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
  • FIG. 1 is a plan view of the power module according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the power module according to the first embodiment.
  • FIG. 3 is a plan view of the upper substrate of the power module according to the first embodiment.
  • FIG. 1 is a view of the power module as viewed from the upper surface side.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a view of the upper substrate viewed from the lower surface side.
  • the upper substrate 4 see FIG. 2 is removed and seen through.
  • the power module 1 includes a lower substrate 2, a plurality of chip groups 3, an upper substrate 4, and a module input terminal 5.
  • the plurality of chip groups 3 includes a plurality of semiconductor chips 6 provided on the lower substrate 2.
  • the plurality of chip groups 3 are arranged at intervals from each other in plan view.
  • a chip module 7 is formed by the plurality of chip groups 3.
  • the module input terminal 5 is provided at a position overlapping the central portion of the chip module 7 in plan view.
  • the module input terminal 5 does not have to be provided at a position overlapping the central portion of the chip module 7 in plan view, and may be provided only at a position overlapping the chip module 7.
  • the power module 1 includes a plurality of chip group input terminals 8.
  • the plurality of chip group input terminals 8 are provided corresponding to each of the plurality of chip groups 3.
  • the chip group input terminal 8 is an input terminal to which a gate signal sent to the chip group 3 is input.
  • the module input terminal 5 is an input terminal to which a signal sent to the plurality of chip group input terminals 8 is input. That is, the module input terminal 5 is an input terminal from which the gate signal sent to the chip group input terminal 8 provided corresponding to each of the plurality of chip groups 3 is input from the outside of the power module 1.
  • the term “viewed from a direction perpendicular to the upper surface of the lower substrate 2” means. Further, as shown in FIG. 1, two directions parallel to the upper surface of the lower substrate 2 and intersecting each other, preferably orthogonal, are defined as an X-axis direction and a Y-axis direction. At this time, in the plan view, it means a case when viewed from a direction perpendicular to both the X-axis direction and the Y-axis direction.
  • the lower substrate 2 is made of a conductor such as copper (Cu). Although not shown in FIG. 2, the lower substrate 2 is made of, for example, a drain electrode 31 of each of the plurality of semiconductor chips 6 included in the plurality of chip groups 3 by using a conductive bonding material such as solder or silver paste. 10).
  • the upper substrate 4 is provided on the chip module 7. That is, the upper substrate 4 is provided on the plurality of chip groups 3.
  • the power module 1 of the first embodiment has a connection member 9.
  • the connection member 9 is formed on the lower surface of the upper substrate 4.
  • the connection member 9 electrically connects the plurality of chip group input terminals 8 and the module input terminals 5.
  • each of the module input terminal 5, the chip group input terminal 8, and the connection member 9 is made of a conductive film formed in the same layer on the lower surface of the upper substrate 4. That is, the module input terminal 5, the chip group input terminal 8, and the connection member 9 are integrally formed on the lower surface of the upper substrate 4. Thereby, the plurality of chip group input terminals 8 and the module input terminals 5 are electrically connected via the connection member 9. Further, the module input terminal 5, the chip group input terminal 8 and the connection member 9 can be easily arranged on the chip module 7.
  • being formed on the lower surface of a certain substrate includes being formed below the lower surface of the substrate.
  • the upper substrate 4 is provided on the chip module 7 so that the lower surface of the upper substrate 4, that is, the surface on which the connection member 9 is formed faces the upper surface of the lower substrate 2, that is, the surface on which the chip module 7 is mounted. ing. Specifically, with the chip group input terminal 8 formed on the upper substrate 4 and the electrode terminals 11 of the plurality of semiconductor chips 6 included in the chip group 3 facing each other, the lower substrate 2 is connected to the chip module 7. Crimped on top. Alternatively, the chip group input terminal 8 formed on the upper substrate 4 and the electrode terminals 11 of the plurality of semiconductor chips 6 included in the chip group 3 are bonded by sintering bonding or solder bonding. By such a method, the chip group input terminal 8 formed on the upper substrate 4 and the electrode terminals 11 of the plurality of semiconductor chips 6 included in the chip group 3 are electrically connected.
  • the electrode terminal 11 is electrically connected to the gate electrode 15 (see FIG. 4 described later).
  • connection member 10 may be formed on the lower surface of the upper substrate 4.
  • the connection member 10 is electrically connected to each source electrode 36 of the plurality of semiconductor chips 6 included in the plurality of chip groups 3, and connects each source electrode 36 to the outside of the power module 1. It is.
  • the lower substrate 2 is pressure-bonded onto the chip module 7, whereby the connection member 10 formed on the upper substrate 4 and the source electrodes 36 of each of the plurality of semiconductor chips 6 included in the chip group 3. And are electrically connected.
  • the power module 1 includes chip groups 3 a, 3 b, 3 c and 3 d as the four chip groups 3.
  • the chip groups 3a, 3b, 3c and 3d are arranged in a matrix in the X-axis direction and the Y-axis direction, and the module input terminal 5 is provided at a position overlapping the central portion of the chip module 7 in plan view. It has been.
  • connection resistance when connecting the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 by the connecting member 9 can be reduced between the four chip groups 3a, 3b, 3c and 3d. Can be adjusted to be close to each other. Accordingly, since the impedance between the module input terminal 5 and each chip group input terminal 8 of each of the plurality of chip groups 3 can be adjusted to be close to each other, each chip group input terminal of each of the plurality of chip groups 3 can be adjusted. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal sent to 8.
  • the chip group 3a and the chip group 3b are arranged on opposite sides of the straight line LN1 extending in the Y-axis direction through the center CP1 of the module input terminal 5 in plan view. Further, the chip group 3a and the chip group 3c are arranged on the opposite sides of the straight line LN2 extending in the X-axis direction intersecting the Y-axis direction through the center CP1 of the module input terminal 5 in plan view. Is done. Furthermore, the chip group 3c and the chip group 3d are arranged on opposite sides of the straight line LN1 in plan view.
  • the chip group 3a and the chip group 3b are arranged symmetrically with respect to a straight line LN1 extending in the Y-axis direction through the center CP1 of the module input terminal 5 in plan view.
  • the chip group 3a and the chip group 3c are arranged symmetrically with respect to a straight line LN2 extending in the X-axis direction orthogonal to the Y-axis direction through the center CP1 of the module input terminal 5 in plan view. Is done.
  • the chip group 3c and the chip group 3d are arranged symmetrically with respect to the straight line LN1 in plan view.
  • connection resistance when connecting the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 by the connecting member 9 can be reduced between the four chip groups 3a, 3b, 3c and 3d. Can be adjusted to be equal to each other. Therefore, since the impedance between the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 can be adjusted to be equal to each other, each chip group input of the plurality of chip groups 3 can be adjusted. It can be easily prevented or suppressed that the input waveform of the gate signal sent to the terminal 8 is disturbed.
  • the chip module 7 is composed of a plurality of chip groups 3 other than four, such as two, three, five or more. Even in this case, preferably, any two of the plurality of chip groups 3 are arranged symmetrically with respect to the center CP1 of the module input terminal 5 in a plan view, or the module They are arranged symmetrically with respect to a straight line passing through the center CP1 of the input terminal 5.
  • connection resistance when connecting the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 by the connecting member 9 is made equal between the two chip groups 3. Can be adjusted. Accordingly, since the impedance between the module input terminal 5 and each of these two chip groups 3 can be adjusted to be equal to each other, the signals are sent to the chip group input terminals 8 of each of the plurality of chip groups 3. It can be easily prevented or suppressed that the input waveform of the gate signal is disturbed.
  • FIG. 4 is a plan view of a chip group in the power module according to the first embodiment.
  • FIG. 5 is a plan view of a semiconductor chip in the power module of the first embodiment.
  • FIG. 6 is a cross-sectional view of main parts of the semiconductor chip in the power module according to the first embodiment. 6 is a cross-sectional view taken along the line BB in FIG. 4 shows a state in which the chip group input terminal 8 is removed and seen through, and the outer periphery of the chip group input terminal 8 is indicated by a two-dot chain line.
  • illustration of an n ⁇ type epitaxial layer 32 (see FIG. 10 described later) formed in the upper layer portion of the semiconductor substrate 12 is omitted.
  • the chip group 3 includes a plurality of semiconductor chips 6.
  • the plurality of semiconductor chips 6 are provided on the lower substrate 2 and are arranged at intervals from each other in plan view.
  • the chip group input terminal 8 is an input terminal to which a gate signal sent to the chip group 3 is input. That is, the chip group input terminal 8 is an input terminal to which a gate signal sent to each electrode terminal 11 of the plurality of semiconductor chips 6 is input from the module input terminal 5, that is, from the outside of the chip group 3.
  • each of the plurality of semiconductor chips 6 included in the chip group 3 includes a semiconductor substrate 12, a switching element 13, and an electrode terminal 11.
  • the switching element 13 has a gate electrode 15 formed on the semiconductor substrate 12.
  • the semiconductor substrate 12 has a gate pad region AR1 which is a partial region of the upper surface as the main surface of the semiconductor substrate 12, and a cell array region AR2 which is another region of the upper surface as the main surface of the semiconductor substrate 12.
  • the semiconductor substrate 12 is made of silicon carbide (SiC).
  • SiC silicon carbide
  • the breakdown electric field of a so-called wide band gap semiconductor such as silicon carbide (SiC) is about one digit larger than the breakdown electric field of silicon (Si).
  • the withstand voltage of a vertical MISFET using SiC is in a wide voltage range from several hundred volts to several kV. Therefore, in the vertical MISFET using SiC, the on-resistance is significantly reduced as compared with the vertical MISFET using Si. Therefore, a large current can be passed through the switching element 13.
  • the plurality of semiconductor chips 6 are electrically connected in parallel with each other. By flowing a current in parallel to the switching elements 13 provided in each of the plurality of semiconductor chips 6 each having a relatively small area and connected in parallel to each other, a large current can be passed through the power module 1. A relatively large motor can be driven.
  • SiC silicon carbide
  • SiC silicon carbide
  • the switching element 13 formed on the semiconductor substrate 12 in the portion where the crystal defects are introduced becomes poor because performance such as threshold voltage varies. Manufacturing yield tends to decrease. Therefore, instead of one semiconductor chip having a large area, by using a plurality of semiconductor chips 6 each having a relatively small area and electrically connected in parallel to each other, a crystal defect is introduced to cause a defect. Since the probability is reduced, so-called manufacturing yield can be improved.
  • an underlying conductive film 17 is formed on the semiconductor substrate 12 via an insulating film 16 made of, for example, a silicon oxide film.
  • the underlying conductive film 17 is made of, for example, a polycrystalline silicon (Si) film.
  • An electrode terminal 11 that is electrically connected to the underlying conductive film 17 is formed on the underlying conductive film 17.
  • the electrode terminal 11 is an electrode terminal for a gate electrode, that is, a gate pad. Therefore, in the gate pad region AR1, the electrode terminal 11 as a gate pad is formed.
  • a gate electrode 15 made of a conductive film 18 is formed on the semiconductor substrate 12 via an insulating film 16 made of, for example, a silicon oxide film.
  • the conductive film 18 is a conductive film formed in the same layer as the underlying conductive film 17 and is made of, for example, a polycrystalline silicon (Si) film doped with impurities at a high concentration.
  • an interlayer insulating film 19 is formed on the semiconductor substrate 12 so as to cover the underlying conductive film 17 and the conductive film 18.
  • an opening 20 is formed in the interlayer insulating film 19 so as to penetrate the interlayer insulating film 19 and reach the underlying conductive film 17.
  • the electrode terminal 11 made of the conductive film 21 is formed on the interlayer insulating film 19 including the inside of the opening 20.
  • the conductive film 21 is made of, for example, an aluminum (Al) film, and has an electrical resistivity smaller than that of any of the underlying conductive film 17 and the conductive film 18.
  • the switching element 13 for example, a vertical MOSFET (MetalMetaOxide Semiconductor Field Effect Transistor) or IGBT as a vertical MISFET can be used.
  • a vertical MOSFET MetalMetaOxide Semiconductor Field Effect Transistor
  • IGBT vertical MISFET
  • the structure of the switching element 13 made of a vertical MOSFET will be described later with reference to FIGS.
  • MOSFET includes not only a MISFET using an oxide film as a gate insulating film but also a MISFET using an insulating film other than an oxide film as a gate insulating film.
  • the chip group input terminal 8 is provided at a position overlapping the central portion of the chip group 3 in plan view.
  • the upper substrate 4 (see FIG. 2) is provided on the chip group 3, and the chip group input terminal 8 is formed on the lower surface of the upper substrate 4. With such a configuration, the chip group input terminal 8 can be easily arranged on the chip group 3.
  • the term “when viewed from a direction perpendicular to the upper surface of the lower substrate 2” is used.
  • two directions that are parallel to the upper surface of the lower substrate 2 and intersect each other, preferably orthogonal, are defined as an x-axis direction and a y-axis direction.
  • it means a case when viewed from a direction perpendicular to both the x-axis direction and the y-axis direction.
  • the x-axis direction in FIG. 4 and the X-axis direction in FIG. 1 may be the same direction or different directions.
  • the y-axis direction in FIG. 4 and the Y-axis direction in FIG. 1 may be the same direction or different directions.
  • the chip group input terminal 8 may not be provided at a position overlapping the central portion of the chip group 3 in a plan view, and may be provided only at a position overlapping the chip group 3.
  • the chip group 3 includes semiconductor chips 6 a, 6 b, 6 c and 6 d as four semiconductor chips 6.
  • the semiconductor chips 6a, 6b, 6c, and 6d are arranged in a matrix in the x-axis direction and the y-axis direction, and the chip group input terminal 8 is located at a position that overlaps the central portion of the chip group 3 in plan view. Is provided.
  • connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be close to each other among the four semiconductor chips 6a, 6b, 6c and 6d. Therefore, the impedance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted so as to be close to each other. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal.
  • the semiconductor chip 6a and the semiconductor chip 6b are arranged on opposite sides of the straight line LN3 extending in the y-axis direction through the center CP2 of the chip group input terminal 8 in plan view. Further, the semiconductor chip 6a and the semiconductor chip 6c are opposite to each other across a straight line LN4 extending in the x-axis direction intersecting the y-axis direction through the center CP2 of the chip group input terminal 8 in plan view. Be placed. Furthermore, the semiconductor chip 6c and the semiconductor chip 6d are disposed on opposite sides of the straight line LN3 in plan view.
  • the power module 1 includes the semiconductor chips 6 that are multiples of four.
  • the semiconductor chip 6a and the semiconductor chip 6b are arranged symmetrically with respect to a straight line LN3 extending in the y-axis direction through the center CP2 of the chip group input terminal 8 in plan view.
  • the semiconductor chip 6a and the semiconductor chip 6c are symmetrical with each other with respect to a straight line LN4 extending in the x-axis direction orthogonal to the y-axis direction through the center CP2 of the chip group input terminal 8 in plan view. Be placed.
  • the semiconductor chip 6c and the semiconductor chip 6d are arranged symmetrically with respect to the straight line LN3 in plan view.
  • connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be equal to each other among the four semiconductor chips 6a, 6b, 6c and 6d. Therefore, the impedance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted to be equal to each other. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal to be sent.
  • the chip group 3 includes the four semiconductor chips 6, the four semiconductor chips 6 can be arranged with good symmetry around the center CP2 of the chip group input terminal 8. Therefore, even when the number of chip groups 3 included in the power module 1 increases, the impedance between the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 is adjusted so as to be close to each other. can do.
  • the chip group 3 is composed of a plurality of semiconductor chips 6 other than four, such as two, three, five or more. Even in this case, preferably, any two of the plurality of semiconductor chips 6 are arranged symmetrically with respect to the center CP2 of the chip group input terminal 8 in plan view, or They are arranged symmetrically with respect to a straight line passing through the center CP2 of the chip group input terminal 8.
  • connection resistance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted to be equal to each other between the two semiconductor chips 6. Therefore, since the impedance between the chip group input terminal 8 and the electrode terminals 11 of the two semiconductor chips 6 can be adjusted to be equal to each other, each electrode terminal of the plurality of semiconductor chips 6 can be adjusted. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal sent to 11.
  • each electrode terminal 11 of the plurality of semiconductor chips 6 is arranged closer to the chip group input terminal 8 than the center of the semiconductor substrate 12 in plan view, and is electrically connected to the chip group input terminal 8. Connected.
  • connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be close to each other among the plurality of semiconductor chips 6. Therefore, the impedance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted so as to be close to each other. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal.
  • the semiconductor substrate 12 has a quadrangular shape in plan view, and the electrode terminal 11 is formed at a corner CR1 closest to the chip group input terminal 8 among the four corners of the semiconductor substrate 12.
  • connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be equal among the plurality of semiconductor chips 6. That is, the connection resistance between the chip group input terminal 8 and the electrode terminal 11 is equal among the plurality of semiconductor chips 6. Therefore, the impedance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted to be equal to each other. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal to be sent.
  • the gate electrode 15 may have a shape that is line symmetric with respect to the diagonal line DG1 passing through the corner portion CR1 in plan view.
  • the underlying conductive film 17 is electrically connected to the two portions 15a and 15b of the gate electrode 15 opposite to each other with respect to the diagonal line DG1 by the same structure, The connection resistance between each of the two portions 15a and 15b and the electrode terminal 11 can be adjusted to be equal to each other.
  • close to the chip group input terminal 8 means, for example, closest to the center position of the chip group input terminal 8
  • arthest from the chip group input terminal 8 means, for example, that of the chip group input terminal 8. Means farthest from the center position.
  • the electrode terminal 11 is formed on the peripheral edge EP1 of the semiconductor substrate 12 that is closest to the chip group input terminal 8. Thereby, the connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted so as to be close to each other among the plurality of semiconductor chips 6.
  • the gate electrode 15 is symmetrical with respect to a straight line LN5 that connects the peripheral edge EP1 closest to the chip group input terminal 8 and the peripheral edge EP2 farthest from the chip group input terminal 8 of the semiconductor substrate 12 in plan view. It may have various shapes.
  • the underlying conductive film 17 is electrically connected to both of the two portions 15a and 15b located on the opposite sides of the straight line LN5 in the gate electrode 15 by the same structure, The connection resistance between each of the two portions 15a and 15b and the electrode terminal 11 can be adjusted to be equal to each other.
  • the semiconductor chip 6 has a resistance element 22 formed on the semiconductor substrate 12. That is, the semiconductor chip 6 incorporates the resistance element 22. Further, the gate electrode 15 of the switching element 13 and the electrode terminal 11 are electrically connected via a resistance element 22.
  • the gate electrode 15 is made of a conductive film 18 such as a polycrystalline silicon (Si) film formed on the semiconductor substrate 12.
  • the resistance element 22 includes a conductive film 23 such as a polycrystalline silicon (Si) film formed on the semiconductor substrate 12 in the same layer as the conductive film 18. That is, the resistance element 22 is made of a conductive film 23 such as a polycrystalline silicon (Si) film formed in the same layer as the underlying conductive film 17 and the conductive film 18.
  • the electrode terminal 11 is made of a conductive film 21 having an electrical resistivity smaller than any of the electrical resistance of the underlying conductive film 17, the conductive film 23, and the conductive film 18, such as aluminum (Al).
  • the underlying conductive film 17 and the gate electrode 15 are electrically connected via the resistance element 22, so that the electrode terminal 11 and the gate electrode 15 are connected to the underlying conductive film 17 and Electrical connection is made via the resistance element 22.
  • variable range of the resistance value of the resistance element 22 is larger than the variable range of the resistance value of the electrode terminal 11, the gate electrode 15, the chip group input terminal 8,
  • connection resistance between the plurality of semiconductor chips 6 can be easily adjusted so as to be close to each other. Therefore, it is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal sent to each gate electrode 15 of the plurality of semiconductor chips 6.
  • the semiconductor chip 6 has a plurality of resistance elements 22 formed on the semiconductor substrate 12 and connected in parallel to each other.
  • the gate electrode 15 of the switching element 13 and the electrode terminal 11 are electrically connected via a plurality of resistance elements 22 connected in parallel to each other.
  • the resistance element is divided into a plurality of resistance elements 22 connected in parallel to each other.
  • the sum of the resistance value of the gate electrode 15 and the combined resistance value of the plurality of resistance elements 22 is taken as the built-in resistance, and the resistance value of the desired built-in resistance is set to 10 to 70 ⁇ .
  • the resistance value of the gate electrode 15 made of polycrystalline silicon (Si) is 20 ⁇ .
  • the power module 1 according to the first embodiment may have only one semiconductor chip 6.
  • the semiconductor chip 6 incorporates the resistance element 22, the gate electrode 15 and the electrode terminal 11 are electrically connected via the resistance element 22, and the resistance value of the resistance element 22 is adjusted, whereby the gate The connection resistance between the electrode 15 and the electrode terminal 11 can be adjusted to a desired value. Therefore, it is possible to prevent or suppress the disturbance of the input waveform of the gate signal sent to the electrode terminal 11 of the semiconductor chip 6.
  • each of the plurality of semiconductor chips 6 may not have a resistance element.
  • An example of the semiconductor chip 6 not having such a resistance element is shown in FIG.
  • FIG. 7 is a plan view of another example of the semiconductor chip in the power module according to the first embodiment.
  • the electrode terminal 11 and the gate electrode 15 are electrically connected only through the underlying conductive film 17. ing.
  • an external resistance element is provided between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 and outside each semiconductor chip 6. May be provided. At this time, the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 are electrically connected by respective external resistance elements. In such a case, the connection resistance between the gate electrode 15 and the electrode terminal 11 can be adjusted to a desired value by adjusting the resistance value of the external resistance element.
  • the switching element in the power module according to the first embodiment is a vertical MOSFET as a vertical MISFET made of silicon carbide (SiC).
  • FIG. 8 and 9 are plan views of the switching element in the power module according to the first embodiment.
  • FIG. 10 is a main-portion cross-sectional view of the switching element in the power module according to the first embodiment.
  • 8 and 9 are views of the switching element 13 viewed from the upper surface side
  • FIG. 8 is an enlarged view of a part of the switching element 13 shown in FIG. 5, and
  • FIG. It is a figure which expands and shows a part of switching element 13 to show.
  • 10 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 8 for easy understanding, the source electrode 36 and the interlayer insulating film 19 (see FIG. 10) are removed, that is, seen through, and the source formed in the interlayer insulating film 19 is illustrated.
  • the outer periphery of the contact hole 19a is indicated by a two-dot chain line.
  • 9 shows a state in which the source electrode 36, the interlayer insulating film 19, the insulating film 16 (see FIG. 10) and the gate electrode 15 are removed, that is, seen through, for easy understanding.
  • the outer periphery of the source contact hole 19a formed in the insulating film 19 and the outer periphery of the gate electrode 15 are indicated by a two-dot chain line.
  • the switching element 13 in the power module according to the first embodiment is a vertical MOSFET, and includes a semiconductor substrate 12, a drain electrode 31, an n ⁇ -type epitaxial layer 32, and a p-type body region 33. , N + -type source region 34 and p + -type body contact region 35.
  • the switching element 13 according to the first embodiment includes an insulating film 16 as a gate insulating film, a gate electrode 15, a source electrode 36, and an interlayer insulating film 19.
  • the semiconductor substrate 12 is an n-type semiconductor substrate made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. That is, the conductivity type of the semiconductor substrate 12 is n-type.
  • the n-type impurity concentration in the semiconductor substrate 12 is relatively large, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the thickness of the semiconductor substrate 12 is, for example, about 70 to 700 ⁇ m.
  • the drain electrode 31 is an electrode formed on the lower surface of the semiconductor substrate 12.
  • the drain electrode 31 is electrically connected to the semiconductor substrate 12.
  • a conductive film in which titanium (Ti), nickel (Ni), gold (Au), or the like is stacked can be used. By using such a conductive film, the drain electrode 31 and the semiconductor substrate 12 can be electrically connected with low resistance.
  • the n ⁇ type epitaxial layer 32 is formed on the upper surface of the semiconductor substrate 12 and is an n type semiconductor layer made of silicon carbide (SiC) into which an n type impurity such as nitrogen (N) or phosphorus (P) is introduced. . That is, the conductivity type of the n ⁇ type epitaxial layer 32 as the semiconductor layer is n type.
  • the n - type impurity concentration in the n ⁇ -type epitaxial layer 32 is smaller than the n-type impurity concentration in the semiconductor substrate 12, for example, about 1 ⁇ 10 15 to 1 ⁇ 10 16 cm ⁇ 3 . Further, the thickness of the n ⁇ type epitaxial layer 32 is, for example, about 5 to 70 ⁇ m.
  • this layer functions as an electric field relaxation layer
  • the impurity concentration and thickness may be designed so that the breakdown voltage is not reached by the voltage using the switching element. Since SiC has a breakdown electric field about one digit larger than Si, the film thickness can be reduced. Therefore, the resistance of this layer can be reduced, and the on-resistance of the switching element can be greatly reduced.
  • the n ⁇ type epitaxial layer 32 can be formed by, for example, an epitaxial growth method.
  • a p-type impurity such as aluminum (Al) or boron (B) is implanted into the entire upper surface of the semiconductor substrate 12 by ion implantation, and the n ⁇ -type impurity concentration in the semiconductor substrate 12 is reduced by a method of reducing the n-type impurity concentration.
  • the epitaxial layer 32 can also be formed.
  • being formed on the upper surface of a certain substrate includes being formed above the upper surface of the substrate.
  • the p-type body region 33 is formed in the upper layer portion of the n ⁇ -type epitaxial layer 32, and is a p-type semiconductor made of silicon carbide (SiC) in which a p-type impurity such as aluminum (Al) or boron (B) is diffused. It is an area. That is, the conductivity type of the p-type body region 33 as a semiconductor region is p-type.
  • the p-type impurity concentration in the p-type body region 33 is, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the p-type body region 33 is, for example, about 1 to 2 ⁇ m.
  • the n + -type source region 34 is formed in the upper layer portion of the p-type body region 33 and is an n-type semiconductor made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. It is an area. That is, the conductivity type of the n + type source region 34 as a semiconductor region is n type.
  • the n-type impurity concentration in the n + -type source region 34 is higher than the n-type impurity concentration in the n ⁇ -type epitaxial layer 32, and can be, for example, about 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3 . Further, the thickness of the n + -type source region 34 can be set to about 100 to 700 nm, for example.
  • the p + -type body contact region 35 is formed in the upper layer portion of the p-type body region 33 and is, for example, p-type made of silicon carbide (SiC) in which a p-type impurity such as aluminum (Al) or boron (B) is diffused. It is a semiconductor region. That is, the conductivity type of the p + type body contact region 35 as the semiconductor region is p-type.
  • the p-type impurity concentration in the p + -type body contact region 35 is higher than the p-type impurity concentration in the p-type body region 33, for example, about 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3 . Further, the thickness of the p + type body contact region 35 is, for example, about 100 to 700 nm.
  • An upper layer portion of the n ⁇ -type epitaxial layer 32 sandwiched between two adjacent p-type body regions 33 is a JFET (Junction Field Effect Transistor) region 37. That is, the upper layer portion of the n ⁇ -type epitaxial layer 32 opposite to the n + -type source region 34 across the p-type body region 33 is a JFET region 37. Further, the upper layer portion of the p-type body region 33 sandwiched between the n + -type source region 34 and the JFET region 37, that is, the p-type body region 33 sandwiched between the n + -type source region 34 and the n ⁇ -type epitaxial layer 32. The upper layer portion is a channel region 38.
  • the insulating film 16 as a gate insulating film is an insulating film formed on the upper surface of the p-type body region 33 sandwiched between the n + -type source region 34 and the n ⁇ -type epitaxial layer 32.
  • the insulating film 16 is made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like.
  • the thermal oxidation method or CVD Chemical Vapor Deposition
  • the thickness of the insulating film 16 is, for example, about several tens of nm.
  • the gate electrode 15 is an electrode formed on the insulating film 16 as a gate insulating film. That is, the gate electrode 15 is an electrode formed on the upper surface of the p-type body region 33 sandwiched between the n + -type source region 34 and the n ⁇ -type epitaxial layer 32 via the insulating film 16. As described above, the gate electrode 15 is made of the conductive film 18 (see FIG. 10) such as a polycrystalline silicon (Si) film formed by, for example, the CVD method.
  • an insulating film 16 as a gate insulating film is formed on the JFET region 37, and a gate electrode 15 is formed on the insulating film 16 formed on the JFET region 37.
  • the source electrode 36 is an electrode formed on the n + type source region 34 and the p + type body contact region 35.
  • a conductive film made of titanium (Ti) or aluminum (Al) can be used as the source electrode 36. By using such a conductive film, the source electrode 36 can be electrically connected to the n + type source region 34 and the p + type body contact region 35 with low resistance.
  • the interlayer insulating film 19 is formed on the semiconductor substrate 12 including the surface of the gate electrode 15.
  • a material of the interlayer insulating film 19 for example, PSG (Phospho ⁇ ⁇ ⁇ Silicate Glass) or silicon oxide can be used.
  • Source contact hole 19a as an opening is formed in the interlayer insulating film 19.
  • Source contact hole 19 a penetrates interlayer insulating film 19 and reaches the upper surface of n + -type source region 34 and the upper surface of p + -type body contact region 35. That is, the upper surface of the n + -type source region 34 and the upper surface of the p + -type body contact region 35 are exposed at the bottom surface of the source contact hole 19a.
  • the source electrode 36 is formed on the interlayer insulating film 19 including the bottom and side surfaces of the source contact hole 19a. With such a structure, the source electrode 36 is electrically connected to the n + type source region 34 and the p + type body contact region 35 via the source contact hole 19 a formed in the interlayer insulating film 19. ing.
  • two directions that are parallel to the upper surface of the semiconductor substrate 12 and intersect each other, preferably orthogonal, are defined as an x1 axis direction and a y1 axis direction.
  • the plan view it means a case when viewed from a direction perpendicular to both the x1 axis direction and the y1 axis direction.
  • the x-axis direction in FIG. 4, and the X-axis direction in FIG. 1 may be the same direction or different directions.
  • the y-axis direction in FIG. 4, and the Y-axis direction in FIG. 1 may be the same direction or different directions.
  • switching element 13 has a plurality of p-type body regions 33, a plurality of n + -type source regions 34, and a plurality of p + -type body contact regions 35.
  • the plurality of p-type body regions 33 are formed in the upper layer portion of the n ⁇ -type epitaxial layer 32 so as to be arranged in a matrix in the x1 axis direction and the y1 axis direction in plan view.
  • the plurality of n + -type source regions 34 are formed in the upper layer portion of each of the plurality of p-type body regions 33.
  • the plurality of p + type body contact regions 35 are respectively formed in the upper layer portions of the plurality of p type body regions 33.
  • the gate electrode 15 extends in the y1 axis direction and extends in the x1 axis direction in the plan view, and extends in the x1 axis direction.
  • Each of the extending portions 15d intersects with the existing portions 15c and is arranged in the y1-axis direction, and is formed in a lattice shape.
  • the plurality of p-type body regions 33 arranged in a matrix are partitioned by a lattice-shaped gate electrode 15.
  • each of the plurality of regions AR3 partitioned by the grid-like gate electrode 15 is referred to as a cell.
  • the gate electrode 15 has a positive gate voltage VGS (VGS> 0 V with respect to the source electrode 36). ) Is applied. At this time, an inversion layer is formed in the upper layer portion of the p-type body region 33 sandwiched between the n + -type source region 34 and the n ⁇ -type epitaxial layer 32, that is, the channel region 38.
  • electrons flow from the source electrode 36 to the drain electrode 31 through the n + -type source region 34, the inversion layer formed in the channel region 38, the n ⁇ -type epitaxial layer 32, and the semiconductor substrate 12. That is, current flows from the drain electrode 31 to the source electrode 36 through the semiconductor substrate 12, the n ⁇ type epitaxial layer 32, the inversion layer formed in the channel region 38, and the n + type source region 34.
  • VGS negative or zero gate voltage
  • FIG. 11 is a plan view of a first modification of the semiconductor chip in the power module according to the first embodiment.
  • FIG. 12 is a plan view of still another example of the first modification of the semiconductor chip in the power module according to the first embodiment.
  • the semiconductor chip 6 of the first modification has a wiring 39.
  • the semiconductor substrate 12 has a quadrangular shape in plan view, and the electrode terminal 11 is formed on the corner CR1 closest to the chip group input terminal 8 among the four corners of the semiconductor substrate 12.
  • the wiring 39 electrically connects two portions 15a and 15b located on opposite sides of the gate electrode 15 with the diagonal line DG1 interposed therebetween.
  • connection resistance between the electrode terminal 11 and the gate electrode 15 can be adjusted so as to be close to each other between the plurality of semiconductor chips 6, the connection resistance is sent to each gate electrode 15 of the plurality of semiconductor chips 6. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal.
  • the wiring 39 is made of a conductive film 40.
  • the conductive film 40 is made of, for example, an aluminum (Al) film, and preferably has an electrical resistivity smaller than that of the conductive film 18 included in the gate electrode 15. Further, the wiring 39 is electrically connected to each of the two portions 15a and 15b of the gate electrode 15 through a plug 39a formed so as to overlap the wiring 39 in plan view. On the other hand, the electrode terminal 11 is electrically connected to the underlying conductive film 17 through the plug 39b.
  • the wiring 39 is preferably connected to the diagonal line DG1 passing through the corner portion CR1 in plan view. And have a line-symmetric shape.
  • connection resistance between each of 15b and the electrode terminal 11 can be easily adjusted so as to be close to each other. Accordingly, the connection resistance between the electrode terminal 11 and the gate electrode 15 can be easily adjusted so as to be close to each other between the plurality of semiconductor chips 6. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal to be sent.
  • the semiconductor substrate 12 does not have a quadrangular shape in plan view, and the electrode terminal 11 is formed on the peripheral edge EP1 closest to the chip group input terminal 8 in the semiconductor substrate 12.
  • a straight line connecting the peripheral edge EP1 closest to the chip group input terminal 8 and the peripheral edge EP2 farthest from the chip group input terminal 8 in the semiconductor substrate 12 is defined as a straight line LN5.
  • the wiring 39 electrically connects the two portions 15a and 15b located on the opposite sides of the gate electrode 15 across the straight line LN5.
  • the wiring 39 is formed on a portion 15 e of the gate electrode 15 positioned around the electrode terminal 11 in a plan view.
  • the wiring 39 is on the portion 15 f of the gate electrode 15 located on the opposite side to the electrode terminal 11 side in plan view, that is, the outer periphery of the semiconductor substrate 12 in the gate electrode 15. Is formed on a portion 15f along the line.
  • FIG. 13 is a plan view of a second modification of the semiconductor chip in the power module according to the first embodiment.
  • the electrode terminal 11 is removed and seen through, and the outer periphery of the electrode terminal 11 is indicated by a two-dot chain line.
  • the resistance element 22 is formed at a position overlapping the electrode terminal 11 in plan view.
  • the semiconductor chip 6 of the second modified example may include a plurality of resistance elements 22 connected in parallel as the resistance elements 22.
  • the area of the electrode terminal 11 can be increased by forming the resistance element 22 so as to overlap the electrode terminal 11 in plan view. Therefore, the resistance value of the electrode terminal 11 can be reduced.
  • the semiconductor chip 6 of the second modified example may also have the wiring 39 as in the semiconductor chip 6 of the first modified example.
  • the semiconductor substrate 12 has a quadrangular shape in plan view, and the electrode terminal 11 is the closest to the chip group input terminal 8 among the four corners of the semiconductor substrate 12.
  • the wiring 39 electrically connects two portions 15a and 15b located on opposite sides of the gate electrode 15 with the diagonal line DG1 interposed therebetween.
  • connection resistance between each and the electrode terminal 11 can be adjusted to be close to each other. Accordingly, since the connection resistance between the electrode terminal 11 and the gate electrode 15 can be adjusted so as to be close to each other between the plurality of semiconductor chips 6, the connection resistance is sent to each gate electrode 15 of the plurality of semiconductor chips 6. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal.
  • the electrical resistivity of the conductive film 40 included in the wiring 39 is preferably smaller than the electrical resistivity of the conductive film 18 included in the gate electrode 15.
  • the wiring 39 is electrically connected to each of the two portions 15a and 15b of the gate electrode 15 through a plug 39a formed so as to overlap the wiring 39 in plan view.
  • the electrode terminal 11 is electrically connected to the underlying conductive film 17 through the plug 39b.
  • the wiring 39 is preferably connected to the diagonal line DG1 passing through the corner portion CR1 in plan view. And have a line-symmetric shape.
  • connection resistance between each and the electrode terminal 11 can be easily adjusted to be close to each other. Accordingly, the connection resistance between the electrode terminal 11 and the gate electrode 15 can be easily adjusted so as to be close to each other between the plurality of semiconductor chips 6. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal to be sent.
  • FIG. 14 is a plan view of a chip group in the power module of the comparative example.
  • the chip group 103 has a plurality of semiconductor chips 106 and a chip group input terminal 108.
  • the chip group input terminal 108 is an input terminal through which a gate signal sent to each electrode terminal 111 of the plurality of semiconductor chips 106 is input from the module input terminal 105.
  • each of the plurality of semiconductor chips 106 included in the chip group 103 includes a semiconductor substrate 112, a switching element 113, and an electrode terminal 111.
  • the switching element 113 includes a gate electrode 115 formed on the semiconductor substrate 112.
  • the semiconductor substrate 112 has a gate pad region AR101 that is a partial region of the upper surface as the main surface of the semiconductor substrate 112, and a cell array region AR102 that is another region of the upper surface as the main surface of the semiconductor substrate 112.
  • An electrode terminal 111 is formed in the gate pad region AR101.
  • a gate electrode 115 is formed in the cell array region AR102.
  • the semiconductor substrate 112 is made of silicon carbide (SiC) in order to flow a large current with a high voltage applied to both ends of the switching element 113.
  • SiC silicon carbide
  • a plurality of semiconductor chips 106 having a relatively small area are connected in parallel, and a current is supplied in parallel to the switching element 113 provided in each semiconductor chip 106. Shed. As a result, a large current can flow through the power module 101.
  • the impedance between the module input terminal 105 to which the gate signal sent to the semiconductor chip 106 is input to the power module 101 and the gate electrode 115 of the switching element 113 provided in the semiconductor chip 106 is adjusted to a desired value. It is difficult. For this reason, the input waveform of the gate signal sent to the semiconductor chip 106 is disturbed, and the switching element 113 may malfunction or power loss may occur during switching by the switching element 113, so that the power converter can be operated at high speed or downsized. Disadvantageous.
  • the plurality of semiconductor chips 106 are arranged in the x-axis direction, and the chip group input terminal 108 is provided at a position away from the chip group 103. Therefore, the chip group input terminal 108 is not provided at a position overlapping the chip group 103 in plan view.
  • the electrode terminal 111 is formed on the peripheral portion of the semiconductor substrate 112, but is not formed on the peripheral portion of the semiconductor substrate 112 on the chip group input terminal 108 side.
  • the impedance R101 between the chip group input terminal 108 and each electrode terminal 111 of the plurality of semiconductor chips 106 is different. Therefore, the input waveform of the gate signal sent to each electrode terminal 111 of the plurality of semiconductor chips 106 may be disturbed. For example, vibration, that is, ringing may occur in the rising waveform of the voltage when switching from the off state to the on state. As described above, if the input waveform of the gate signal is disturbed, the switching element 113 may malfunction or power loss may occur during switching by the switching element 113, which is disadvantageous for high-speed operation and miniaturization of the power conversion device. Become.
  • an external resistor element R102 is provided between the chip group input terminal 108 and the module input terminal 105 and outside the chip group 103, and the chip group input terminal 108, It is also conceivable to electrically connect the module input terminal 105 via an external resistor element R102.
  • the external resistor element R102 for example, the gate signal sent to the chip group input terminal 108, that is, the absolute value of the gate voltage is reduced, and thus the switching element 113 provided in each semiconductor chip 106 is reduced. This is disadvantageous for ensuring the stability of the switching operation. Further, it is necessary to provide an external resistance element outside the chip group 103, and the power module cannot be reduced in size.
  • the chip group input terminal 8 is provided at a position overlapping the chip group 3 in plan view.
  • the electrode terminal 11 is disposed closer to the chip group input terminal 8 than the center of the semiconductor substrate 12 in a plan view, and is electrically connected to the chip group input terminal 8.
  • the impedance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be close to each other among the plurality of semiconductor chips 6. Therefore, the disturbance of the input waveform of the gate signal sent to each electrode terminal 11 of the plurality of semiconductor chips 6 can be prevented or suppressed. For example, it is possible to prevent or suppress the occurrence of vibration, that is, ringing, in the rising waveform of the voltage when switching from the off state to the on state. Therefore, it is possible to prevent or suppress the switching element 13 from malfunctioning or the occurrence of power loss during switching by the switching element 13.
  • an external resistance element is provided between the chip group input terminal 8 and the module input terminal 5 and outside the chip group 3. There is no need. Therefore, when an external resistance element is used, for example, the gate signal sent to the chip group input terminal 8, that is, the absolute value of the gate voltage can be prevented or suppressed. This is advantageous in stabilizing the switching operation of the switching element 13. Further, since it is not necessary to provide an external resistance element outside the chip group 3, the power module can be reduced in size.
  • the semiconductor chip 6 includes the resistance element 22 formed on the semiconductor substrate 12. Further, the gate electrode 15 of the switching element 13 and the electrode terminal 11 are electrically connected via a resistance element 22. By adjusting the resistance value of the resistance element 22, the impedance between the gate electrode 15 and the electrode terminal 11 can be adjusted to a desired value. Therefore, it is possible to prevent or suppress the disturbance of the input waveform of the gate signal sent to the electrode terminal 11 of the semiconductor chip 6.
  • the semiconductor chip 6 includes the resistance element 22, it is not necessary to prevent the above-described ringing, so that it is not necessary to provide an external resistance element outside the semiconductor chip 6. Therefore, when an external resistance element is used, for example, the gate signal sent to the chip group input terminal 8, that is, the absolute value of the gate voltage can be prevented or suppressed. This is advantageous in stabilizing the switching operation of the switching element 13. Further, since it is not necessary to provide an external resistance element outside the semiconductor chip 6, the power module can be reduced in size.
  • the power converter of Embodiment 2 is an inverter provided with the power module of Embodiment 1.
  • FIG. 15 is a diagram illustrating a configuration of the power conversion device according to the second embodiment.
  • the power conversion device 41 includes an inverter 42 as a three-phase inverter provided with the power module 1 of the first embodiment, a load 43 such as a motor, a DC power supply 44, and a capacity such as a capacitor. 45.
  • the load 43 is connected to the output side of the inverter 42, and the DC power supply 44 and the capacitor 45 are connected to the input side of the inverter 42.
  • the inverter 42 includes gate drive circuits 46u, 46v, 46w, 46x, 46y and 46z, and switching elements 47u, 47v, 47w, 47x, 47y and 47z.
  • the inverter 42 includes a drain node N1 and a source node N2 as a pair of DC input terminals.
  • Switching elements 47u and 47x are connected in series between drain node N1 and source node N2.
  • Switching elements 47v and 47y are connected in series between drain node N1 and source node N2.
  • Switching elements 47w and 47z are connected in series between drain node N1 and source node N2.
  • the switching elements 47u, 47v, and 47w are arranged on the upper arm side, that is, the high voltage side
  • the switching elements 47x, 47y, and 47z are arranged on the lower arm side, that is, the low voltage side.
  • the inverter 42 includes a U-phase output node N3, a V-phase output node N4, and a W-phase output node N5 as three-phase AC output terminals.
  • the output node N3 is connected to the switching element 47x side of the switching element 47u and the switching element 47u side of the switching element 47x.
  • the output node N4 is connected to the switching element 47y side of the switching element 47v and the switching element 47v side of the switching element 47y.
  • the output node N5 is connected to the switching element 47z side of the switching element 47w and the switching element 47w side of the switching element 47z. Therefore, switching elements 47u and 47x are U-phase switching elements, switching elements 47v and 47y are V-phase switching elements, and switching elements 47w and 47z are W-phase switching elements.
  • Each of the switching elements 47u, 47v, 47w, 47x, 47y and 47z includes a MISFET 48 and a body diode 49.
  • the power module 1 (see FIG. 1) according to the first embodiment can be used as each of the switching elements 47u, 47v, 47w, 47x, 47y, and 47z.
  • the MISFET 48 includes a drain electrode 31, a semiconductor substrate 12, an n ⁇ type epitaxial layer 32, a p type body region 33, an n + type source region 34, a p + type body contact region 35, an insulating film 16 as a gate insulating film, This is a vertical MOSFET formed by the gate electrode 15 and the source electrode 36 (see FIG. 10).
  • the body diode 49 is a diode formed by the drain electrode 31, the semiconductor substrate 12, the n ⁇ type epitaxial layer 32, the p type body region 33, the p + type body contact region 35 and the source electrode 36 (see FIG. 10). ).
  • the gate drive circuit 46u is connected to the gate electrode of the MISFET 48 of the switching element 47u and drives the switching element 47u.
  • the gate drive circuit 46x is connected to the gate electrode of the MISFET 48 of the switching element 47x, and drives the switching element 47x.
  • the gate drive circuit 46v is connected to the gate electrode of the MISFET 48 of the switching element 47v and drives the switching element 47v.
  • the gate drive circuit 46y is connected to the gate electrode of the MISFET 48 of the switching element 47y, and drives the switching element 47y.
  • the gate drive circuit 46w is connected to the gate electrode of the MISFET 48 of the switching element 47w and drives the switching element 47w.
  • the gate drive circuit 46z is connected to the gate electrode of the MISFET 48 of the switching element 47z, and drives the switching element 47z.
  • each of switching elements 47u, 47v and 47w provided on the upper arm side of the inverter 42 is connected to the drain node N1 arranged on the input side of the inverter 42 and on the upper arm side.
  • One end of each of the switching elements 47x, 47y and 47z on the lower arm side of the inverter 42 is connected to the source node N2 arranged on the input side of the inverter 42 and on the lower arm side.
  • a DC power supply 44 and a capacitor 45 are connected in parallel to each other. Therefore, a voltage is applied between the drain node N1 and the source node N2 by the DC power supply 44.
  • Each of the gate drive circuits 46u, 46v, 46w, 46x, 46y, and 46z has switching elements 47u, 47v, 47w, 47x, so that the ON state and the OFF state of the corresponding switching element are switched at a preset timing.
  • Each of 47y and 47z is driven.
  • three-phase AC signals having different phases that is, U-phase, V-phase, and W-phase AC signals are generated from the voltage that is a DC signal. That is, in each of the switching elements 47u, 47v, 47w, 47x, 47y, and 47z, power is converted by switching between the on state and the off state.
  • the load 43 is driven by the three-phase AC signal.
  • the body module 49 is built in the power module 1 (see FIG. 1), and the return current can be generated through the body diode 49 without using the antiparallel diode, that is, the return diode. It is possible to flow. Therefore, in power converter 41 of this Embodiment 2 which has inverter 42 provided with power module 1 of Embodiment 1 as each of switching elements 47u, 47v, 47w, 47x, 47y, and 47z, required parts Thus, the power converter 41 can be easily downsized.
  • the power module 1 of the first embodiment can be used as each of the switching elements 47u, 47v, 47w, 47x, 47y, and 47z in the inverter 42 included in the power conversion device 41 of the second embodiment.
  • the impedance between the input terminal into which the gate signal sent to the semiconductor chip is input to the power module and the gate electrode of the switching element provided in the semiconductor chip is set to a desired value. Can be adjusted.
  • the power conversion device 41 can be easily reduced in cost, size, or weight by reducing the size of the cooling device.
  • the automobile according to the third embodiment is an automobile including the power conversion device according to the second embodiment, and is an automobile such as a hybrid car and an electric car.
  • FIG. 16 is a diagram illustrating a configuration of an electric vehicle as a vehicle according to the third embodiment.
  • FIG. 17 is a circuit diagram showing an example of a boost converter in the automobile of the third embodiment.
  • a vehicle 50 as an electric vehicle drives a three-phase motor 53 that allows power to be input / output to / from a drive shaft 52 to which a drive wheel 51a and a drive wheel 51b are connected, and a three-phase motor 53.
  • An inverter 54 and a battery 55 are provided.
  • the automobile 50 includes a boost converter 58, a relay 59, and an electronic control unit 60.
  • the boost converter 58 includes a power line 56 to which an inverter 54 is connected, and a power line 57 to which a battery 55 is connected. It is connected to the.
  • the three-phase motor 53 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil.
  • the inverter 54 the inverter 42 (see FIG. 15) described in the second embodiment can be used.
  • the boost converter 58 has a configuration in which a reactor 61 and a smoothing capacitor 62 are connected to an inverter 63.
  • the inverter 63 is the same as the inverter 42 described in the second embodiment, and the configuration of the switching element 64 and the body diode 65 in the inverter 63 is the same as that of the MISFET 48 and the body diode 49 as the switching elements described in the second embodiment. Each is the same as the configuration.
  • the electronic control unit 60 includes a microprocessor, a storage device, and an input / output port, and receives a signal from a sensor that detects the rotor position of the three-phase motor 53, a charge / discharge value of the battery 55, and the like. . Electronic control unit 60 then outputs a signal for controlling inverter 54, boost converter 58, and relay 59.
  • the inverter 54 of the automobile 50 of the third embodiment the inverter 42 (see FIG. 15) included in the power conversion device 41 of the second embodiment can be used.
  • the power module 1 (see FIG. 1) of the first embodiment can be used.
  • power module 1 of the first embodiment can be used as switching element 64 and body diode 65 provided in inverter 63 in boost converter 58 of automobile 50 of the third embodiment.
  • the impedance between the input terminal into which the gate signal sent to the semiconductor chip is input to the power module and the gate electrode of the switching element provided in the semiconductor chip is set to a desired value. Can be adjusted. Thereby, it can prevent or suppress that the input waveform of the gate signal sent to each electrode terminal 11 (refer to Drawing 1) of semiconductor chip 6 is disturbed.
  • the loss at the time of power conversion in the inverter 54 and the boost converter 58 can be reduced, so that a large cooling device may not be provided. Therefore, by reducing the size of the cooling device, the inverter 54 and the boost converter 58 can be easily reduced in cost, size, or weight. As a result, the volume of the drive system occupying the vehicle 50 as an electric vehicle can be reduced, and the vehicle 50 as an electric vehicle can be easily reduced in cost, size, or weight. Alternatively, the degree of freedom in design of the vehicle 50 as an electric vehicle can be increased, for example, the interior of the vehicle 50 as the electric vehicle can be widened.
  • the example which applied the motor vehicle containing the power converter device of Embodiment 2 to the electric vehicle was demonstrated.
  • the vehicle including the power conversion device of the second embodiment can be similarly applied to a hybrid vehicle that also uses an engine.
  • the hybrid vehicle to which the power conversion device of the second embodiment is applied also has the same effect as the electric vehicle to which the power conversion device of the second embodiment is applied.
  • the railway vehicle according to the fourth embodiment is a railway vehicle including the power conversion device according to the second embodiment.
  • FIG. 18 is a diagram illustrating a configuration of the railway vehicle according to the fourth embodiment.
  • the railway vehicle 70 includes a pantograph 71 as a current collector, a transformer 72, a power converter 73, a load 74 that is an AC motor, and wheels 75.
  • the power conversion device 73 includes a converter 76, a capacitor 77 that is, for example, a capacitor, and an inverter 78.
  • Converter 76 has switching elements 79 and 80.
  • the switching element 79 is disposed on the upper arm side, that is, the high voltage side
  • the switching element 80 is disposed on the lower arm side, that is, the low voltage side.
  • switching elements 79 and 80 are shown for one phase among a plurality of phases.
  • the inverter 78 has switching elements 81 and 82.
  • the switching element 81 is disposed on the upper arm side, that is, the high voltage side
  • the switching element 82 is disposed on the lower arm side, that is, the low voltage side.
  • the switching elements 81 and 82 are shown for one of the three phases U phase, V phase, and W phase.
  • One end of the primary side of the transformer 72 is connected to the overhead line 71 a via the pantograph 71.
  • the other end of the primary side of the transformer 72 is connected to the track 75 a via the wheel 75.
  • One end of the secondary side of the transformer 72 is connected to a terminal on the upper arm side opposite to the load 74 of the converter 76.
  • the other end of the secondary side of the transformer 72 is connected to a terminal on the lower arm side opposite to the load 74 of the converter 76.
  • the terminal on the load 74 side and upper arm side of the converter 76 is connected to the terminal on the upper arm side opposite to the load 74 of the inverter 78. Further, the terminal on the load 74 side and the lower arm side of the converter 76 is connected to the terminal on the lower arm side opposite to the load 74 of the inverter 78. Further, a capacitor 77 is connected between a terminal on the side opposite to the load 74 of the inverter 78 on the upper arm side and a terminal on the side opposite to the load 74 of the inverter 78 and on the lower arm side. Although not shown in FIG. 18, each of the three terminals on the output side of the inverter 78 is connected to the load 74 as a U phase, a V phase, and a W phase.
  • railway vehicle 70 of the fourth embodiment includes inverter 42 (see FIG. 15) in the second embodiment as a power conversion device.
  • the AC power collected from the overhead line 71 a by the pantograph 71 is transformed into desired DC power by the converter 76 after the voltage is transformed by the transformer 72.
  • the DC power converted by the converter 76 is smoothed by the capacitor 77.
  • the DC power whose voltage has been smoothed by the capacitor 77 is converted into AC power by the inverter 78.
  • the AC power converted by the inverter 78 is supplied to the load 74.
  • the load 74 supplied with AC power drives the wheel 75 to rotate, thereby accelerating the railway vehicle.
  • the inverter 78 of the railway vehicle 70 of the fourth embodiment the inverter 42 (see FIG. 15) included in the power conversion device 41 of the second embodiment can be used.
  • the power module 1 (see FIG. 1) of the first embodiment is provided.
  • the impedance between the input terminal into which the gate signal sent to the semiconductor chip is input to the power module and the gate electrode of the switching element provided in the semiconductor chip is set to a desired value. Can be adjusted. Thereby, it can prevent or suppress that the input waveform of the gate signal sent to each electrode terminal 11 (refer to Drawing 1) of semiconductor chip 6 is disturbed.
  • the inverter 78 can be easily reduced in cost, size, or weight by reducing the size of the cooling device. Therefore, the cost of the railway vehicle 70 including the inverter 78 can be easily reduced, and the energy efficiency when operating the railway can be improved.
  • the converter 76 may include the power module 1 (see FIG. 1) of the first embodiment as the switching elements 79 and 80. Also in this case, since the loss at the time of power conversion in the converter 76 can be reduced, the converter 76 can be easily reduced in cost, size, or weight. Therefore, it is possible to easily reduce the cost of the railway vehicle 70 including the converter 76 and improve the energy efficiency when operating the railway.
  • the present invention is effective when applied to a power module and a power converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 A power module has a chip group (3) comprising a plurality of semiconductor chips (6), and a chip group input terminal (8) into which a signal to be sent to the chip group (3) is inputted. The chip group input terminal (8) is provided at a position overlapping the chip group (3) in plan view. Each of the semiconductor chips (6) includes a switching element (13) including a gate electrode (15) formed on a semiconductor substrate (12), and an electrode terminal (11) formed on the semiconductor substrate (12) and electrically connected to the gate electrode (15). The electrode terminal (11) is disposed further toward the chip group input terminal (8) relative to the center of the semiconductor substrate (12) in plan view, and electrically connected to the chip group input terminal (8).

Description

パワーモジュールおよび電力変換装置Power module and power converter
 本発明はパワーモジュールおよび電力変換装置に関し、スイッチング素子を備えたパワーモジュールおよび電力変換装置に関する。 The present invention relates to a power module and a power converter, and relates to a power module and a power converter provided with a switching element.
 モータ等を駆動するための電力を、直流と交流との間で変換する電力変換装置として、インバータが用いられている。従来のインバータでは、互いに逆並列に接続された絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor;IGBT)と、PIN(P-intrinsic-n)ダイオードとからなる素子対が、高電圧側の上アーム、および、低電圧側の下アームのそれぞれに、例えば1対ずつ設けられている。IGBTおよびPINダイオードの各々は、シリコン(Si)を用いたスイッチング素子である。すなわち、電力変換装置としてのインバータは、スイッチング素子を含むパワーモジュールを備えている。 An inverter is used as a power conversion device that converts electric power for driving a motor or the like between direct current and alternating current. In a conventional inverter, an element pair consisting of an insulated gate bipolar transistor (IGBT) and a PIN (P-intrinsic-n) diode connected in antiparallel to each other includes an upper arm on the high voltage side, and For example, one pair is provided on each of the lower arms on the low voltage side. Each of the IGBT and the PIN diode is a switching element using silicon (Si). That is, an inverter as a power conversion device includes a power module including a switching element.
 Siを用いたIGBTおよびPINダイオードが備えられたインバータにおける電力変換の際の損失は、Siの物性値から決定される理論値に等しい値近くまで低減されている。そのため、Siを用いたスイッチング素子が備えられたインバータにおける電力変換の際の損失をさらに低減することは、極めて困難である。 The loss at the time of power conversion in the inverter provided with the IGBT and the PIN diode using Si is reduced to a value close to the theoretical value determined from the physical property value of Si. Therefore, it is extremely difficult to further reduce the loss at the time of power conversion in the inverter provided with the switching element using Si.
 一方、炭化ケイ素(SiC)または窒化ガリウム(GaN)などのいわゆるワイドバンドギャップ半導体の絶縁破壊電界は、シリコン(Si)の絶縁破壊電界に比べて1桁程度大きい。特に、SiCを用いたスイッチング素子としての縦型MISFET(Metal Insulator Semiconductor Field Effect Transistor)の耐電圧は、数百Vから数kVの幅広い電圧の範囲にある。そのため、SiCを用いた縦型MISFETでは、Siを用いたスイッチング素子としての縦型MISFETに比べて、寄生抵抗が生じる電界を緩和するための領域を小さくすることができ、その結果、オン抵抗が大幅に低減される。したがって、スイッチング素子としての縦型MISFETに大電流を流すことができる。 On the other hand, the breakdown electric field of a so-called wide band gap semiconductor such as silicon carbide (SiC) or gallium nitride (GaN) is about an order of magnitude larger than that of silicon (Si). In particular, the withstand voltage of a vertical MISFET (Metal Insulator Semiconductor Field Effect Transistor) as a switching element using SiC is in a wide voltage range of several hundred volts to several kV. Therefore, in the vertical MISFET using SiC, the region for relaxing the electric field in which the parasitic resistance is generated can be reduced as compared with the vertical MISFET as a switching element using Si. It is greatly reduced. Therefore, a large current can be passed through the vertical MISFET as a switching element.
 国際公開第2010/073991号公報(特許文献1)には、SiCを用いた縦型MISFETについての技術が記載されている。このような縦型パワーMISFETでは、ドレイン電極とソース電極との間に、n型のドレイン領域、p型のボディ領域およびn型のソース領域が設けられ、p型のボディ領域の表面にゲート絶縁膜を介してゲート電極が設けられている。 International Publication No. 2010/073991 (Patent Document 1) describes a technique regarding a vertical MISFET using SiC. In such a vertical power MISFET, an n-type drain region, a p-type body region, and an n-type source region are provided between the drain electrode and the source electrode, and gate insulation is provided on the surface of the p-type body region. A gate electrode is provided through the film.
国際公開第2010/073991号公報International Publication No. 2010/073991
 炭化ケイ素(SiC)は化合物半導体であるため、シリコン(Si)に比べ、結晶欠陥が導入されやすい。SiCからなる半導体基板に結晶欠陥が導入されると、結晶欠陥が導入された部分の半導体基板に形成されたスイッチング素子は、例えば閾値電圧などの性能がばらついたり、接合耐圧不良となるため、いわゆる製造歩留りが低下しやすい。そこで、大きい面積を有する1つの半導体チップに代え、比較的小さい面積をそれぞれ有し、電気的に互いに並列に接続された複数の半導体チップを用いることにより、結晶欠陥が導入されて不良となる確率が減少するので、いわゆる製造歩留りを向上させることができる。 Since silicon carbide (SiC) is a compound semiconductor, crystal defects are more easily introduced than silicon (Si). When crystal defects are introduced into a semiconductor substrate made of SiC, the switching element formed on the semiconductor substrate in the portion where the crystal defects are introduced varies in performance such as threshold voltage, or has a poor junction breakdown voltage. Manufacturing yield tends to decrease. Therefore, the probability that a crystal defect is introduced and a defect is caused by using a plurality of semiconductor chips each having a relatively small area and electrically connected in parallel to each other instead of one semiconductor chip having a large area. Therefore, the so-called manufacturing yield can be improved.
 このような、比較的小さい面積をそれぞれ有し、互いに並列に接続された複数の半導体チップの各々に設けられたスイッチング素子に並列に電流を流すことにより、パワーモジュールに大電流を流すことができる。 A large current can be allowed to flow through the power module by flowing a current in parallel to the switching elements provided in each of the plurality of semiconductor chips each having a relatively small area and connected in parallel to each other. .
 ところが、半導体チップに送られるゲート信号がパワーモジュールに入力される入力端子と、複数の半導体チップに設けられたスイッチング素子のゲート電極との間のインピーダンスを所望の値に調整することは困難である。そのため、半導体チップに送られるゲート信号の入力波形が乱れ、スイッチング素子が誤動作するか、スイッチング素子によるスイッチングの際に電力損失が発生するおそれがあり、電力変換装置の高速動作や小型化に不利となる。 However, it is difficult to adjust the impedance between the input terminal to which the gate signal sent to the semiconductor chip is input to the power module and the gate electrodes of the switching elements provided in the plurality of semiconductor chips to a desired value. . Therefore, the input waveform of the gate signal sent to the semiconductor chip is disturbed, and the switching element may malfunction or power loss may occur when switching by the switching element, which is disadvantageous for high-speed operation and miniaturization of the power conversion device. Become.
 本発明の目的は、半導体チップに送られるゲート信号がパワーモジュールに入力される入力端子と、複数の半導体チップに設けられたスイッチング素子のゲート電極との間のインピーダンスを所望の値に調整することができるパワーモジュールを提供することにある。そして、本発明の目的は、上記のようなパワーモジュールを備え、容易に低コスト化、小型化または軽量化することができる電力変換装置を提供することにある。 An object of the present invention is to adjust an impedance between an input terminal into which a gate signal sent to a semiconductor chip is input to a power module and gate electrodes of switching elements provided in a plurality of semiconductor chips to a desired value. It is to provide a power module capable of performing the above. An object of the present invention is to provide a power conversion device that includes the power module as described above and can be easily reduced in cost, size, or weight.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 代表的な実施の形態によるパワーモジュールは、第1基板と、第1基板上に設けられた複数の半導体チップからなるチップ群と、チップ群に送られる信号が入力される第1入力端子と、を備える。複数の半導体チップは、平面視において、互いに間隔を空けて配置され、第1入力端子は、平面視において、チップ群と重なる位置に設けられている。また、複数の半導体チップの各々は、半導体基板と、半導体基板上に形成されたゲート電極を含むスイッチング素子と、半導体基板上に形成され、ゲート電極と電気的に接続された電極端子と、を有する。電極端子は、平面視において、半導体基板の中心よりも第1入力端子側に配置され、かつ、第1入力端子と電気的に接続されている。 A power module according to a representative embodiment includes a first substrate, a chip group including a plurality of semiconductor chips provided on the first substrate, a first input terminal to which a signal sent to the chip group is input, Is provided. The plurality of semiconductor chips are arranged at a distance from each other in plan view, and the first input terminal is provided at a position overlapping the chip group in plan view. Each of the plurality of semiconductor chips includes a semiconductor substrate, a switching element including a gate electrode formed on the semiconductor substrate, and an electrode terminal formed on the semiconductor substrate and electrically connected to the gate electrode. Have. The electrode terminal is disposed closer to the first input terminal than the center of the semiconductor substrate in plan view, and is electrically connected to the first input terminal.
 また、代表的な実施の形態によるパワーモジュールは、半導体基板と、半導体基板上に形成されたゲート電極を含むスイッチング素子と、半導体基板上に形成され、ゲート電極と電気的に接続された電極端子と、半導体基板上に形成された抵抗素子と、を有する。また、ゲート電極と電極端子とは、抵抗素子を介して電気的に接続されている。 A power module according to a representative embodiment includes a semiconductor substrate, a switching element including a gate electrode formed on the semiconductor substrate, and an electrode terminal formed on the semiconductor substrate and electrically connected to the gate electrode. And a resistance element formed on the semiconductor substrate. Further, the gate electrode and the electrode terminal are electrically connected via a resistance element.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 代表的な実施の形態によれば、パワーモジュールにおいて、半導体チップに送られるゲート信号がパワーモジュールに入力される入力端子と、半導体チップに設けられたスイッチング素子のゲート電極との間のインピーダンスを所望の値に調整することができる。 According to a typical embodiment, in a power module, an impedance between an input terminal to which a gate signal sent to the semiconductor chip is input to the power module and a gate electrode of a switching element provided in the semiconductor chip is desired. Can be adjusted.
実施の形態1のパワーモジュールの平面図である。FIG. 3 is a plan view of the power module according to the first embodiment. 実施の形態1のパワーモジュールの断面図である。FIG. 3 is a cross-sectional view of the power module according to the first embodiment. 実施の形態1のパワーモジュールの上部基板の平面図である。3 is a plan view of an upper substrate of the power module according to Embodiment 1. FIG. 実施の形態1のパワーモジュールにおけるチップ群の平面図である。FIG. 3 is a plan view of a chip group in the power module according to the first embodiment. 実施の形態1のパワーモジュールにおける半導体チップの平面図である。4 is a plan view of a semiconductor chip in the power module according to the first embodiment. FIG. 実施の形態1のパワーモジュールにおける半導体チップの要部断面図である。FIG. 3 is a main-portion cross-sectional view of the semiconductor chip in the power module according to the first embodiment. 実施の形態1のパワーモジュールにおける半導体チップの別の例の平面図である。FIG. 6 is a plan view of another example of a semiconductor chip in the power module according to the first embodiment. 実施の形態1のパワーモジュールにおけるスイッチング素子の平面図である。3 is a plan view of a switching element in the power module according to Embodiment 1. FIG. 実施の形態1のパワーモジュールにおけるスイッチング素子の平面図である。3 is a plan view of a switching element in the power module according to Embodiment 1. FIG. 実施の形態1のパワーモジュールにおけるスイッチング素子の要部断面図である。FIG. 3 is a cross-sectional view of a main part of a switching element in the power module according to the first embodiment. 実施の形態1のパワーモジュールにおける半導体チップの第1変形例の平面図である。FIG. 10 is a plan view of a first modification of the semiconductor chip in the power module according to the first embodiment. 実施の形態1のパワーモジュールにおける半導体チップの第1変形例のうち、さらに別の例の平面図である。It is a top view of another example among the 1st modifications of the semiconductor chip in the power module of Embodiment 1. FIG. 実施の形態1のパワーモジュールにおける半導体チップの第2変形例の平面図である。FIG. 11 is a plan view of a second modification of the semiconductor chip in the power module according to the first embodiment. 比較例のパワーモジュールにおけるチップ群の平面図である。It is a top view of the chip group in the power module of a comparative example. 実施の形態2の電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device of Embodiment 2. FIG. 実施の形態3の自動車としての電気自動車の構成を示す図である。FIG. 6 is a diagram showing a configuration of an electric vehicle as an automobile according to a third embodiment. 実施の形態3の自動車における昇圧コンバータの一例を示す回路図である。FIG. 6 is a circuit diagram illustrating an example of a boost converter in an automobile according to a third embodiment. 実施の形態4の鉄道車両の構成を示す図である。FIG. 10 is a diagram showing a configuration of a railway vehicle according to a fourth embodiment.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
 また、実施の形態で用いる図面においては、断面図であっても図面を見易くするためにハッチングを省略する場合もある。また、平面図であっても図面を見易くするためにハッチングを付す場合もある。 In the drawings used in the embodiments, hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
 (実施の形態1)
 <パワーモジュール>
 本発明の実施の形態1のパワーモジュールについて説明する。
(Embodiment 1)
<Power module>
A power module according to Embodiment 1 of the present invention will be described.
 図1は、実施の形態1のパワーモジュールの平面図である。図2は、実施の形態1のパワーモジュールの断面図である。図3は、実施の形態1のパワーモジュールの上部基板の平面図である。図1は、パワーモジュールを上面側から視た図である。図2は、図1のA-A線に沿った断面図である。図3は、上部基板を下面側から視た図である。なお、図1では、理解を簡単にするために、上部基板4(図2参照)を除去して透視した状態を示している。 FIG. 1 is a plan view of the power module according to the first embodiment. FIG. 2 is a cross-sectional view of the power module according to the first embodiment. FIG. 3 is a plan view of the upper substrate of the power module according to the first embodiment. FIG. 1 is a view of the power module as viewed from the upper surface side. FIG. 2 is a sectional view taken along line AA in FIG. FIG. 3 is a view of the upper substrate viewed from the lower surface side. In FIG. 1, for easy understanding, the upper substrate 4 (see FIG. 2) is removed and seen through.
 図1~図3に示すように、本実施の形態1のパワーモジュール1は、下部基板2と、複数のチップ群3と、上部基板4と、モジュール入力端子5を備えている。 As shown in FIGS. 1 to 3, the power module 1 according to the first embodiment includes a lower substrate 2, a plurality of chip groups 3, an upper substrate 4, and a module input terminal 5.
 複数のチップ群3は、下部基板2上に設けられた複数の半導体チップ6からなる。複数のチップ群3は、平面視において、互いに間隔を空けて配置されている。複数のチップ群3により、チップモジュール7が形成されている。モジュール入力端子5は、平面視において、チップモジュール7の中央部と重なる位置に設けられている。 The plurality of chip groups 3 includes a plurality of semiconductor chips 6 provided on the lower substrate 2. The plurality of chip groups 3 are arranged at intervals from each other in plan view. A chip module 7 is formed by the plurality of chip groups 3. The module input terminal 5 is provided at a position overlapping the central portion of the chip module 7 in plan view.
 なお、モジュール入力端子5が、平面視において、チップモジュール7の中央部と重なる位置に設けられていなくても、チップモジュール7と重なる位置に設けられていれば、程度は小さくなるものの、後述するゲート信号の入力波形が乱れることを防止または抑制する効果が得られる。したがって、モジュール入力端子5が、平面視において、チップモジュール7の中央部と重なる位置に設けられていなくてもよく、チップモジュール7と重なる位置に設けられているだけでもよい。 Even if the module input terminal 5 is not provided at a position overlapping the central portion of the chip module 7 in a plan view, if the module input terminal 5 is provided at a position overlapping the chip module 7, the degree will be small, but will be described later. An effect of preventing or suppressing the disturbance of the input waveform of the gate signal can be obtained. Therefore, the module input terminal 5 does not have to be provided at a position overlapping the central portion of the chip module 7 in plan view, and may be provided only at a position overlapping the chip module 7.
 また、本実施の形態1のパワーモジュール1は、複数のチップ群入力端子8を備えている。複数のチップ群入力端子8は、複数のチップ群3の各々に対応して設けられている。チップ群入力端子8は、チップ群3に送られるゲート信号が入力される入力端子である。モジュール入力端子5は、複数のチップ群入力端子8に送られる信号が入力される入力端子である。すなわち、モジュール入力端子5は、複数のチップ群3の各々に対応して設けられたチップ群入力端子8に送られるゲート信号が、パワーモジュール1の外部から入力される入力端子である。 Further, the power module 1 according to the first embodiment includes a plurality of chip group input terminals 8. The plurality of chip group input terminals 8 are provided corresponding to each of the plurality of chip groups 3. The chip group input terminal 8 is an input terminal to which a gate signal sent to the chip group 3 is input. The module input terminal 5 is an input terminal to which a signal sent to the plurality of chip group input terminals 8 is input. That is, the module input terminal 5 is an input terminal from which the gate signal sent to the chip group input terminal 8 provided corresponding to each of the plurality of chip groups 3 is input from the outside of the power module 1.
 なお、平面視において、とは、下部基板2の上面に垂直な方向から視た場合を意味する。また、図1に示すように、下部基板2の上面に平行であって、互いに交差、好適には直交する2つの方向をX軸方向およびY軸方向とする。このとき、平面視において、とは、X軸方向およびY軸方向のいずれにも垂直な方向から視た場合を意味する。 In the plan view, the term “viewed from a direction perpendicular to the upper surface of the lower substrate 2” means. Further, as shown in FIG. 1, two directions parallel to the upper surface of the lower substrate 2 and intersecting each other, preferably orthogonal, are defined as an X-axis direction and a Y-axis direction. At this time, in the plan view, it means a case when viewed from a direction perpendicular to both the X-axis direction and the Y-axis direction.
 下部基板2は、例えば銅(Cu)などの導電体からなる。図2では図示を省略するが、下部基板2は、例えば半田または銀ペーストなどの導電性接合材により、複数のチップ群3に含まれる複数の半導体チップ6の各々のドレイン電極31(後述する図10参照)と、電気的に接続されている。 The lower substrate 2 is made of a conductor such as copper (Cu). Although not shown in FIG. 2, the lower substrate 2 is made of, for example, a drain electrode 31 of each of the plurality of semiconductor chips 6 included in the plurality of chip groups 3 by using a conductive bonding material such as solder or silver paste. 10).
 上部基板4は、チップモジュール7上に設けられている。すなわち、上部基板4は、複数のチップ群3上に設けられている。 The upper substrate 4 is provided on the chip module 7. That is, the upper substrate 4 is provided on the plurality of chip groups 3.
 また、本実施の形態1のパワーモジュール1は、接続部材9を有する。接続部材9は、上部基板4の下面に形成されている。接続部材9は、複数のチップ群入力端子8と、モジュール入力端子5とを電気的に接続する。 Moreover, the power module 1 of the first embodiment has a connection member 9. The connection member 9 is formed on the lower surface of the upper substrate 4. The connection member 9 electrically connects the plurality of chip group input terminals 8 and the module input terminals 5.
 なお、図3に示す例では、モジュール入力端子5、チップ群入力端子8および接続部材9の各々は、上部基板4の下面に互いに同層に形成された導電膜からなる。すなわち、モジュール入力端子5、チップ群入力端子8および接続部材9は、上部基板4の下面に、一体的に形成されている。これにより、複数のチップ群入力端子8と、モジュール入力端子5とは、接続部材9を介して電気的に接続される。また、モジュール入力端子5、チップ群入力端子8および接続部材9を、チップモジュール7上に容易に配置することができる。 In the example shown in FIG. 3, each of the module input terminal 5, the chip group input terminal 8, and the connection member 9 is made of a conductive film formed in the same layer on the lower surface of the upper substrate 4. That is, the module input terminal 5, the chip group input terminal 8, and the connection member 9 are integrally formed on the lower surface of the upper substrate 4. Thereby, the plurality of chip group input terminals 8 and the module input terminals 5 are electrically connected via the connection member 9. Further, the module input terminal 5, the chip group input terminal 8 and the connection member 9 can be easily arranged on the chip module 7.
 なお、本願明細書では、ある基板の下面に形成されているということは、その基板の下面よりも下側に形成されていることを含むものとする。 In addition, in this specification, being formed on the lower surface of a certain substrate includes being formed below the lower surface of the substrate.
 上部基板4は、上部基板4の下面、すなわち接続部材9が形成された面が、下部基板2の上面、すなわちチップモジュール7が搭載された面と対向するように、チップモジュール7上に設けられている。具体的には、上部基板4に形成されたチップ群入力端子8と、チップ群3に含まれる複数の半導体チップ6の各々の電極端子11とが対向した状態で、下部基板2がチップモジュール7上に圧着されている。あるいは、上部基板4に形成されたチップ群入力端子8と、チップ群3に含まれる複数の半導体チップ6の各々の電極端子11とが、焼結接合または半田接合により接合されている。このような方法により、上部基板4に形成されたチップ群入力端子8と、チップ群3に含まれる複数の半導体チップ6の各々の電極端子11とが、電気的に接続されている。 The upper substrate 4 is provided on the chip module 7 so that the lower surface of the upper substrate 4, that is, the surface on which the connection member 9 is formed faces the upper surface of the lower substrate 2, that is, the surface on which the chip module 7 is mounted. ing. Specifically, with the chip group input terminal 8 formed on the upper substrate 4 and the electrode terminals 11 of the plurality of semiconductor chips 6 included in the chip group 3 facing each other, the lower substrate 2 is connected to the chip module 7. Crimped on top. Alternatively, the chip group input terminal 8 formed on the upper substrate 4 and the electrode terminals 11 of the plurality of semiconductor chips 6 included in the chip group 3 are bonded by sintering bonding or solder bonding. By such a method, the chip group input terminal 8 formed on the upper substrate 4 and the electrode terminals 11 of the plurality of semiconductor chips 6 included in the chip group 3 are electrically connected.
 なお、電極端子11は、ゲート電極15(後述する図4参照)と電気的に接続されている。 The electrode terminal 11 is electrically connected to the gate electrode 15 (see FIG. 4 described later).
 また、上部基板4の下面には、接続部材10が形成されていてもよい。接続部材10は、複数のチップ群3に含まれる複数の半導体チップ6の各々のソース電極36と電気的に接続されており、各ソース電極36をパワーモジュール1の外部とそれぞれ接続するためのものである。前述したように、例えば下部基板2がチップモジュール7上に圧着されることにより、上部基板4に形成された接続部材10と、チップ群3に含まれる複数の半導体チップ6の各々のソース電極36とが、電気的に接続されている。 Further, a connection member 10 may be formed on the lower surface of the upper substrate 4. The connection member 10 is electrically connected to each source electrode 36 of the plurality of semiconductor chips 6 included in the plurality of chip groups 3, and connects each source electrode 36 to the outside of the power module 1. It is. As described above, for example, the lower substrate 2 is pressure-bonded onto the chip module 7, whereby the connection member 10 formed on the upper substrate 4 and the source electrodes 36 of each of the plurality of semiconductor chips 6 included in the chip group 3. And are electrically connected.
 好適には、パワーモジュール1は、4つのチップ群3としてのチップ群3a、3b、3cおよび3dを備えている。そして、チップ群3a、3b、3cおよび3dは、X軸方向およびY軸方向にマトリクス状に配置されており、モジュール入力端子5は、平面視において、チップモジュール7の中央部と重なる位置に設けられている。 Preferably, the power module 1 includes chip groups 3 a, 3 b, 3 c and 3 d as the four chip groups 3. The chip groups 3a, 3b, 3c and 3d are arranged in a matrix in the X-axis direction and the Y-axis direction, and the module input terminal 5 is provided at a position overlapping the central portion of the chip module 7 in plan view. It has been.
 これにより、モジュール入力端子5と、複数のチップ群3の各々のチップ群入力端子8との間を接続部材9により接続するときの接続抵抗を、4つのチップ群3a、3b、3cおよび3dの間で互いに近づけるように調整することができる。したがって、モジュール入力端子5と、複数のチップ群3の各々のチップ群入力端子8との間のインピーダンスを互いに近づけるように調整することができるので、複数のチップ群3の各々のチップ群入力端子8に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 As a result, the connection resistance when connecting the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 by the connecting member 9 can be reduced between the four chip groups 3a, 3b, 3c and 3d. Can be adjusted to be close to each other. Accordingly, since the impedance between the module input terminal 5 and each chip group input terminal 8 of each of the plurality of chip groups 3 can be adjusted to be close to each other, each chip group input terminal of each of the plurality of chip groups 3 can be adjusted. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal sent to 8.
 なお、このとき、チップ群3aとチップ群3bとは、平面視において、モジュール入力端子5の中心CP1を通ってY軸方向に延在する直線LN1を挟んで互いに反対側に配置される。また、チップ群3aとチップ群3cとは、平面視において、モジュール入力端子5の中心CP1を通って、Y軸方向と交差するX軸方向に延在する直線LN2を挟んで互いに反対側に配置される。さらに、チップ群3cとチップ群3dとは、平面視において、直線LN1を挟んで互いに反対側に配置される。 At this time, the chip group 3a and the chip group 3b are arranged on opposite sides of the straight line LN1 extending in the Y-axis direction through the center CP1 of the module input terminal 5 in plan view. Further, the chip group 3a and the chip group 3c are arranged on the opposite sides of the straight line LN2 extending in the X-axis direction intersecting the Y-axis direction through the center CP1 of the module input terminal 5 in plan view. Is done. Furthermore, the chip group 3c and the chip group 3d are arranged on opposite sides of the straight line LN1 in plan view.
 さらに好適には、チップ群3aとチップ群3bとは、平面視において、モジュール入力端子5の中心CP1を通ってY軸方向に延在する直線LN1に対して互いに線対称に配置される。また、チップ群3aとチップ群3cとは、平面視において、モジュール入力端子5の中心CP1を通って、Y軸方向と直交するX軸方向に延在する直線LN2に対して互いに線対称に配置される。さらに、チップ群3cとチップ群3dとは、平面視において、直線LN1に対して互いに線対称に配置される。 More preferably, the chip group 3a and the chip group 3b are arranged symmetrically with respect to a straight line LN1 extending in the Y-axis direction through the center CP1 of the module input terminal 5 in plan view. The chip group 3a and the chip group 3c are arranged symmetrically with respect to a straight line LN2 extending in the X-axis direction orthogonal to the Y-axis direction through the center CP1 of the module input terminal 5 in plan view. Is done. Further, the chip group 3c and the chip group 3d are arranged symmetrically with respect to the straight line LN1 in plan view.
 これにより、モジュール入力端子5と、複数のチップ群3の各々のチップ群入力端子8との間を接続部材9により接続するときの接続抵抗を、4つのチップ群3a、3b、3cおよび3dの間で互いに等しくするように調整することができる。したがって、モジュール入力端子5と、複数のチップ群3の各々のチップ群入力端子8との間のインピーダンスを互いに等しくするように調整することができるので、複数のチップ群3の各々のチップ群入力端子8に送られるゲート信号の入力波形が乱れることを、容易に防止または抑制することができる。 As a result, the connection resistance when connecting the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 by the connecting member 9 can be reduced between the four chip groups 3a, 3b, 3c and 3d. Can be adjusted to be equal to each other. Therefore, since the impedance between the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 can be adjusted to be equal to each other, each chip group input of the plurality of chip groups 3 can be adjusted. It can be easily prevented or suppressed that the input waveform of the gate signal sent to the terminal 8 is disturbed.
 なお、チップモジュール7が、例えば2つ、3つまたは5つ以上など、4つ以外の複数のチップ群3からなる場合を考える。この場合でも、好適には、複数のチップ群3のうちいずれか2つのチップ群3は、平面視において、モジュール入力端子5の中心CP1に対して互いに点対称に配置されるか、または、モジュール入力端子5の中心CP1を通る直線に対して互いに線対称に配置される。 It is assumed that the chip module 7 is composed of a plurality of chip groups 3 other than four, such as two, three, five or more. Even in this case, preferably, any two of the plurality of chip groups 3 are arranged symmetrically with respect to the center CP1 of the module input terminal 5 in a plan view, or the module They are arranged symmetrically with respect to a straight line passing through the center CP1 of the input terminal 5.
 これにより、モジュール入力端子5と、複数のチップ群3の各々のチップ群入力端子8との間を接続部材9により接続するときの接続抵抗を、2つのチップ群3の間で互いに等しくするように調整することができる。したがって、モジュール入力端子5と、これらの2つのチップ群3の各々との間のインピーダンスを互いに等しくするように調整することができるので、複数のチップ群3の各々のチップ群入力端子8に送られるゲート信号の入力波形が乱れることを、容易に防止または抑制することができる。 Thereby, the connection resistance when connecting the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 by the connecting member 9 is made equal between the two chip groups 3. Can be adjusted. Accordingly, since the impedance between the module input terminal 5 and each of these two chip groups 3 can be adjusted to be equal to each other, the signals are sent to the chip group input terminals 8 of each of the plurality of chip groups 3. It can be easily prevented or suppressed that the input waveform of the gate signal is disturbed.
 <チップ群および半導体チップ>
 次に、本実施の形態1のパワーモジュールにおけるチップ群および半導体チップについて説明する。
<Chip group and semiconductor chip>
Next, a chip group and a semiconductor chip in the power module according to the first embodiment will be described.
 図4は、実施の形態1のパワーモジュールにおけるチップ群の平面図である。図5は、実施の形態1のパワーモジュールにおける半導体チップの平面図である。図6は、実施の形態1のパワーモジュールにおける半導体チップの要部断面図である。図6は、図5のB-B線に沿った断面図である。なお、図4は、チップ群入力端子8を除去して透視した状態を示しており、チップ群入力端子8の外周を二点鎖線により示している。また、図6では、理解を簡単にするために、半導体基板12の上層部に形成されたn型エピタキシャル層32(後述する図10参照)の図示を省略している。 FIG. 4 is a plan view of a chip group in the power module according to the first embodiment. FIG. 5 is a plan view of a semiconductor chip in the power module of the first embodiment. FIG. 6 is a cross-sectional view of main parts of the semiconductor chip in the power module according to the first embodiment. 6 is a cross-sectional view taken along the line BB in FIG. 4 shows a state in which the chip group input terminal 8 is removed and seen through, and the outer periphery of the chip group input terminal 8 is indicated by a two-dot chain line. In FIG. 6, for easy understanding, illustration of an n type epitaxial layer 32 (see FIG. 10 described later) formed in the upper layer portion of the semiconductor substrate 12 is omitted.
 図4に示すように、チップ群3は、複数の半導体チップ6からなる。複数の半導体チップ6は、下部基板2上に設けられており、平面視において、互いに間隔を空けて配置されている。また、チップ群入力端子8は、チップ群3に送られるゲート信号が入力される入力端子である。すなわち、チップ群入力端子8は、複数の半導体チップ6の各々の電極端子11に送られるゲート信号が、モジュール入力端子5から、すなわちチップ群3の外部から入力される入力端子である。 As shown in FIG. 4, the chip group 3 includes a plurality of semiconductor chips 6. The plurality of semiconductor chips 6 are provided on the lower substrate 2 and are arranged at intervals from each other in plan view. The chip group input terminal 8 is an input terminal to which a gate signal sent to the chip group 3 is input. That is, the chip group input terminal 8 is an input terminal to which a gate signal sent to each electrode terminal 11 of the plurality of semiconductor chips 6 is input from the module input terminal 5, that is, from the outside of the chip group 3.
 図4~図6に示すように、チップ群3に含まれる複数の半導体チップ6の各々は、半導体基板12と、スイッチング素子13と、電極端子11とを有する。スイッチング素子13は、半導体基板12上に形成されたゲート電極15を有する。 4 to 6, each of the plurality of semiconductor chips 6 included in the chip group 3 includes a semiconductor substrate 12, a switching element 13, and an electrode terminal 11. The switching element 13 has a gate electrode 15 formed on the semiconductor substrate 12.
 半導体基板12は、半導体基板12の主面としての上面の一部の領域であるゲートパッド領域AR1と、半導体基板12の主面としての上面の他の領域であるセルアレイ領域AR2とを有する。 The semiconductor substrate 12 has a gate pad region AR1 which is a partial region of the upper surface as the main surface of the semiconductor substrate 12, and a cell array region AR2 which is another region of the upper surface as the main surface of the semiconductor substrate 12.
 好適には、半導体基板12は、炭化ケイ素(SiC)からなる。前述したように、炭化ケイ素(SiC)などのいわゆるワイドバンドギャップ半導体の絶縁破壊電界は、シリコン(Si)の絶縁破壊電界に比べて1桁程度大きい。特に、SiCを用いた縦型MISFETの耐電圧は、数百Vから数kVの幅広い電圧の範囲にある。そのため、SiCを用いた縦型MISFETでは、Siを用いた縦型MISFETに比べて、オン抵抗が大幅に低減される。したがって、スイッチング素子13に大電流を流すことができる。 Preferably, the semiconductor substrate 12 is made of silicon carbide (SiC). As described above, the breakdown electric field of a so-called wide band gap semiconductor such as silicon carbide (SiC) is about one digit larger than the breakdown electric field of silicon (Si). In particular, the withstand voltage of a vertical MISFET using SiC is in a wide voltage range from several hundred volts to several kV. Therefore, in the vertical MISFET using SiC, the on-resistance is significantly reduced as compared with the vertical MISFET using Si. Therefore, a large current can be passed through the switching element 13.
 また、複数の半導体チップ6は、電気的に互いに並列に接続されている。比較的小さい面積をそれぞれ有し、互いに並列に接続された複数の半導体チップ6の各々に設けられたスイッチング素子13に並列に電流を流すことにより、パワーモジュール1に大電流を流すことができ、比較的大型のモータを駆動することができる。 The plurality of semiconductor chips 6 are electrically connected in parallel with each other. By flowing a current in parallel to the switching elements 13 provided in each of the plurality of semiconductor chips 6 each having a relatively small area and connected in parallel to each other, a large current can be passed through the power module 1. A relatively large motor can be driven.
 前述したように、炭化ケイ素(SiC)は化合物半導体であるため、シリコン(Si)に比べ、結晶欠陥が導入されやすい。SiCからなる半導体基板12に結晶欠陥が導入されると、結晶欠陥が導入された部分の半導体基板12に形成されたスイッチング素子13は、例えば閾値電圧などの性能がばらついて不良となるため、いわゆる製造歩留りが低下しやすい。そこで、大きい面積を有する1つの半導体チップに代え、比較的小さい面積をそれぞれ有し、電気的に互いに並列に接続された複数の半導体チップ6を用いることにより、結晶欠陥が導入されて不良となる確率が減少するので、いわゆる製造歩留りを向上させることができる。 As described above, since silicon carbide (SiC) is a compound semiconductor, crystal defects are more easily introduced than silicon (Si). When crystal defects are introduced into the semiconductor substrate 12 made of SiC, the switching element 13 formed on the semiconductor substrate 12 in the portion where the crystal defects are introduced becomes poor because performance such as threshold voltage varies. Manufacturing yield tends to decrease. Therefore, instead of one semiconductor chip having a large area, by using a plurality of semiconductor chips 6 each having a relatively small area and electrically connected in parallel to each other, a crystal defect is introduced to cause a defect. Since the probability is reduced, so-called manufacturing yield can be improved.
 ゲートパッド領域AR1において、半導体基板12上に、例えば酸化シリコン膜からなる絶縁膜16を介して、下敷き導電膜17が形成されている。下敷き導電膜17は、例えば多結晶シリコン(Si)膜からなる。また、下敷き導電膜17上には、下敷き導電膜17と電気的に接続された電極端子11が形成されている。電極端子11は、ゲート電極用の電極端子、すなわちゲートパッドである。したがって、ゲートパッド領域AR1では、ゲートパッドとしての電極端子11が形成されている。 In the gate pad region AR1, an underlying conductive film 17 is formed on the semiconductor substrate 12 via an insulating film 16 made of, for example, a silicon oxide film. The underlying conductive film 17 is made of, for example, a polycrystalline silicon (Si) film. An electrode terminal 11 that is electrically connected to the underlying conductive film 17 is formed on the underlying conductive film 17. The electrode terminal 11 is an electrode terminal for a gate electrode, that is, a gate pad. Therefore, in the gate pad region AR1, the electrode terminal 11 as a gate pad is formed.
 セルアレイ領域AR2において、半導体基板12上に、例えば酸化シリコン膜からなる絶縁膜16を介して、導電膜18からなるゲート電極15が形成されている。導電膜18は、下敷き導電膜17と同層に形成された導電膜であり、例えば高濃度に不純物をドーピングした多結晶シリコン(Si)膜からなる。 In the cell array region AR2, a gate electrode 15 made of a conductive film 18 is formed on the semiconductor substrate 12 via an insulating film 16 made of, for example, a silicon oxide film. The conductive film 18 is a conductive film formed in the same layer as the underlying conductive film 17 and is made of, for example, a polycrystalline silicon (Si) film doped with impurities at a high concentration.
 ゲートパッド領域AR1、および、セルアレイ領域AR2において、半導体基板12上には、下敷き導電膜17および導電膜18を覆うように、層間絶縁膜19が形成されている。ゲートパッド領域AR1において、層間絶縁膜19には、層間絶縁膜19を貫通して下敷き導電膜17に達する開口部20が形成されている。ゲートパッド領域AR1において、開口部20の内部を含めて層間絶縁膜19上には、導電膜21からなる電極端子11が形成されている。導電膜21は、例えばアルミニウム(Al)膜からなり、下敷き導電膜17および導電膜18のいずれの電気抵抗率よりも小さい電気抵抗率を有する。 In the gate pad region AR1 and the cell array region AR2, an interlayer insulating film 19 is formed on the semiconductor substrate 12 so as to cover the underlying conductive film 17 and the conductive film 18. In the gate pad area AR1, an opening 20 is formed in the interlayer insulating film 19 so as to penetrate the interlayer insulating film 19 and reach the underlying conductive film 17. In the gate pad region AR 1, the electrode terminal 11 made of the conductive film 21 is formed on the interlayer insulating film 19 including the inside of the opening 20. The conductive film 21 is made of, for example, an aluminum (Al) film, and has an electrical resistivity smaller than that of any of the underlying conductive film 17 and the conductive film 18.
 電極端子11と下敷き導電膜17とは電気的に接続されており、下敷き導電膜17とゲート電極15とは電気的に接続されているため、電極端子11とゲート電極15とは電気的に接続されている。 Since the electrode terminal 11 and the underlying conductive film 17 are electrically connected, and the underlying conductive film 17 and the gate electrode 15 are electrically connected, the electrode terminal 11 and the gate electrode 15 are electrically connected. Has been.
 スイッチング素子13として、例えば縦型MISFETとしての縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはIGBTを用いることができる。このうち、縦型MOSFETからなるスイッチング素子13の構造については、図8~図10を用いて後述する。 As the switching element 13, for example, a vertical MOSFET (MetalMetaOxide Semiconductor Field Effect Transistor) or IGBT as a vertical MISFET can be used. Among these, the structure of the switching element 13 made of a vertical MOSFET will be described later with reference to FIGS.
 なお、本願明細書において、MOSFETというときは、ゲート絶縁膜に酸化膜を用いたMISFETだけでなく、酸化膜以外の絶縁膜をゲート絶縁膜に用いたMISFETも含むものとする。 In the present specification, the term “MOSFET” includes not only a MISFET using an oxide film as a gate insulating film but also a MISFET using an insulating film other than an oxide film as a gate insulating film.
 チップ群入力端子8は、平面視において、チップ群3の中央部と重なる位置に設けられている。また、上部基板4(図2参照)は、チップ群3上に設けられており、チップ群入力端子8は、上部基板4の下面に形成されている。このような構成により、チップ群入力端子8を、チップ群3上に容易に配置することができる。 The chip group input terminal 8 is provided at a position overlapping the central portion of the chip group 3 in plan view. The upper substrate 4 (see FIG. 2) is provided on the chip group 3, and the chip group input terminal 8 is formed on the lower surface of the upper substrate 4. With such a configuration, the chip group input terminal 8 can be easily arranged on the chip group 3.
 前述したように、平面視において、とは、下部基板2の上面に垂直な方向から視た場合を意味する。また、図4に示すように、下部基板2の上面に平行であって、互いに交差、好適には直交する2つの方向をx軸方向およびy軸方向とする。このとき、平面視において、とは、x軸方向およびy軸方向のいずれにも垂直な方向から視た場合を意味する。なお、図4のx軸方向と図1のX軸方向は、同一方向であってもよく、互いに異なる方向であってもよい。また、図4のy軸方向と図1のY軸方向は、同一方向であってもよく、互いに異なる方向であってもよい。 As described above, in the plan view, the term “when viewed from a direction perpendicular to the upper surface of the lower substrate 2” is used. Also, as shown in FIG. 4, two directions that are parallel to the upper surface of the lower substrate 2 and intersect each other, preferably orthogonal, are defined as an x-axis direction and a y-axis direction. At this time, in the plan view, it means a case when viewed from a direction perpendicular to both the x-axis direction and the y-axis direction. Note that the x-axis direction in FIG. 4 and the X-axis direction in FIG. 1 may be the same direction or different directions. Further, the y-axis direction in FIG. 4 and the Y-axis direction in FIG. 1 may be the same direction or different directions.
 また、チップ群入力端子8が、平面視において、チップ群3の中央部と重なる位置に設けられていなくても、チップ群3と重なる位置に設けられていれば、程度は小さくなるものの、後述するゲート信号の入力波形が乱れることを防止または抑制する効果が得られる。したがって、チップ群入力端子8が、平面視において、チップ群3の中央部と重なる位置に設けられていなくてもよく、チップ群3と重なる位置に設けられているだけでもよい。 Even if the chip group input terminal 8 is not provided at a position overlapping the central portion of the chip group 3 in a plan view, if the chip group input terminal 8 is provided at a position overlapping the chip group 3, the degree will be small, but will be described later. The effect of preventing or suppressing the disturbance of the input waveform of the gate signal is obtained. Therefore, the chip group input terminal 8 may not be provided at a position overlapping the central portion of the chip group 3 in a plan view, and may be provided only at a position overlapping the chip group 3.
 好適には、チップ群3は、4つの半導体チップ6としての半導体チップ6a、6b、6cおよび6dを有する。そして、半導体チップ6a、6b、6cおよび6dは、x軸方向およびy軸方向にマトリクス状に配置されており、チップ群入力端子8は、平面視において、チップ群3の中央部と重なる位置に設けられている。 Preferably, the chip group 3 includes semiconductor chips 6 a, 6 b, 6 c and 6 d as four semiconductor chips 6. The semiconductor chips 6a, 6b, 6c, and 6d are arranged in a matrix in the x-axis direction and the y-axis direction, and the chip group input terminal 8 is located at a position that overlaps the central portion of the chip group 3 in plan view. Is provided.
 これにより、チップ群入力端子8と電極端子11との間の接続抵抗を、4つの半導体チップ6a、6b、6cおよび6dの間で互いに近づけるように調整することができる。したがって、チップ群入力端子8と、複数の半導体チップ6の各々の電極端子11との間のインピーダンスを互いに近づけるように調整することができるので、複数の半導体チップ6の各々の電極端子11に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 Thereby, the connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be close to each other among the four semiconductor chips 6a, 6b, 6c and 6d. Therefore, the impedance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted so as to be close to each other. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal.
 なお、このとき、半導体チップ6aと半導体チップ6bとは、平面視において、チップ群入力端子8の中心CP2を通ってy軸方向に延在する直線LN3を挟んで互いに反対側に配置される。また、半導体チップ6aと半導体チップ6cとは、平面視において、チップ群入力端子8の中心CP2を通って、y軸方向と交差するx軸方向に延在する直線LN4を挟んで互いに反対側に配置される。さらに、半導体チップ6cと半導体チップ6dとは、平面視において、直線LN3を挟んで互いに反対側に配置される。 At this time, the semiconductor chip 6a and the semiconductor chip 6b are arranged on opposite sides of the straight line LN3 extending in the y-axis direction through the center CP2 of the chip group input terminal 8 in plan view. Further, the semiconductor chip 6a and the semiconductor chip 6c are opposite to each other across a straight line LN4 extending in the x-axis direction intersecting the y-axis direction through the center CP2 of the chip group input terminal 8 in plan view. Be placed. Furthermore, the semiconductor chip 6c and the semiconductor chip 6d are disposed on opposite sides of the straight line LN3 in plan view.
 また、チップ群3が、4つの半導体チップ6としての半導体チップ6a、6b、6cおよび6dを有するとき、パワーモジュール1は、4の倍数の半導体チップ6を有することになる。 Further, when the chip group 3 includes the semiconductor chips 6 a, 6 b, 6 c, and 6 d as the four semiconductor chips 6, the power module 1 includes the semiconductor chips 6 that are multiples of four.
 さらに好適には、半導体チップ6aと半導体チップ6bとは、平面視において、チップ群入力端子8の中心CP2を通ってy軸方向に延在する直線LN3に対して互いに線対称に配置される。また、半導体チップ6aと半導体チップ6cとは、平面視において、チップ群入力端子8の中心CP2を通って、y軸方向と直交するx軸方向に延在する直線LN4に対して互いに線対称に配置される。さらに、半導体チップ6cと半導体チップ6dとは、平面視において、直線LN3に対して互いに線対称に配置される。 More preferably, the semiconductor chip 6a and the semiconductor chip 6b are arranged symmetrically with respect to a straight line LN3 extending in the y-axis direction through the center CP2 of the chip group input terminal 8 in plan view. Further, the semiconductor chip 6a and the semiconductor chip 6c are symmetrical with each other with respect to a straight line LN4 extending in the x-axis direction orthogonal to the y-axis direction through the center CP2 of the chip group input terminal 8 in plan view. Be placed. Furthermore, the semiconductor chip 6c and the semiconductor chip 6d are arranged symmetrically with respect to the straight line LN3 in plan view.
 これにより、チップ群入力端子8と電極端子11との間の接続抵抗を、4つの半導体チップ6a、6b、6cおよび6dの間で互いに等しくするように調整することができる。したがって、チップ群入力端子8と、複数の半導体チップ6の各々の電極端子11との間のインピーダンスを互いに等しくするように調整することができるので、複数の半導体チップ6の各々の電極端子11に送られるゲート信号の入力波形が乱れることを、容易に防止または抑制することができる。 Thereby, the connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be equal to each other among the four semiconductor chips 6a, 6b, 6c and 6d. Therefore, the impedance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted to be equal to each other. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal to be sent.
 このように、チップ群3が4つの半導体チップ6を有することにより、4つの半導体チップ6をチップ群入力端子8の中心CP2を中心として対称性よく配置することができる。そのため、パワーモジュール1に含まれるチップ群3の数が大きくなった場合でも、モジュール入力端子5と、複数のチップ群3の各々のチップ群入力端子8との間のインピーダンスを互いに近づけるように調整することができる。 As described above, since the chip group 3 includes the four semiconductor chips 6, the four semiconductor chips 6 can be arranged with good symmetry around the center CP2 of the chip group input terminal 8. Therefore, even when the number of chip groups 3 included in the power module 1 increases, the impedance between the module input terminal 5 and each chip group input terminal 8 of the plurality of chip groups 3 is adjusted so as to be close to each other. can do.
 なお、チップ群3が、例えば2つ、3つまたは5つ以上など、4つ以外の複数の半導体チップ6からなる場合を考える。この場合でも、好適には、複数の半導体チップ6のうちいずれか2つの半導体チップ6は、平面視において、チップ群入力端子8の中心CP2に対して互いに点対称に配置されるか、または、チップ群入力端子8の中心CP2を通る直線に対して互いに線対称に配置される。 It is assumed that the chip group 3 is composed of a plurality of semiconductor chips 6 other than four, such as two, three, five or more. Even in this case, preferably, any two of the plurality of semiconductor chips 6 are arranged symmetrically with respect to the center CP2 of the chip group input terminal 8 in plan view, or They are arranged symmetrically with respect to a straight line passing through the center CP2 of the chip group input terminal 8.
 これにより、チップ群入力端子8と、複数の半導体チップ6の各々の電極端子11との間の接続抵抗を、2つの半導体チップ6の間で互いに等しくするように調整することができる。したがって、チップ群入力端子8と、これらの2つの半導体チップ6の各々の電極端子11との間のインピーダンスを互いに等しくするように調整することができるので、複数の半導体チップ6の各々の電極端子11に送られるゲート信号の入力波形が乱れることを、容易に防止または抑制することができる。 Thereby, the connection resistance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted to be equal to each other between the two semiconductor chips 6. Therefore, since the impedance between the chip group input terminal 8 and the electrode terminals 11 of the two semiconductor chips 6 can be adjusted to be equal to each other, each electrode terminal of the plurality of semiconductor chips 6 can be adjusted. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal sent to 11.
 本実施の形態1では、複数の半導体チップ6の各々の電極端子11は、平面視において、半導体基板12の中心よりもチップ群入力端子8側に配置され、かつ、チップ群入力端子8と電気的に接続されている。 In the first embodiment, each electrode terminal 11 of the plurality of semiconductor chips 6 is arranged closer to the chip group input terminal 8 than the center of the semiconductor substrate 12 in plan view, and is electrically connected to the chip group input terminal 8. Connected.
 これにより、チップ群入力端子8と電極端子11との間の接続抵抗を、複数の半導体チップ6の間で互いに近づけるように調整することができる。したがって、チップ群入力端子8と、複数の半導体チップ6の各々の電極端子11との間のインピーダンスを互いに近づけるように調整することができるので、複数の半導体チップ6の各々の電極端子11に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 Thereby, the connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be close to each other among the plurality of semiconductor chips 6. Therefore, the impedance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted so as to be close to each other. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal.
 好適には、半導体基板12は、平面視において四角形状を有し、電極端子11は、半導体基板12の4つの角部のうち、チップ群入力端子8に最も近い角部CR1に形成される。 Preferably, the semiconductor substrate 12 has a quadrangular shape in plan view, and the electrode terminal 11 is formed at a corner CR1 closest to the chip group input terminal 8 among the four corners of the semiconductor substrate 12.
 これにより、チップ群入力端子8と電極端子11との間の接続抵抗を、複数の半導体チップ6の間で互いに等しくするように調整することができる。つまり、チップ群入力端子8と電極端子11との間の接続抵抗は、複数の半導体チップ6の間で互いに等しい。したがって、チップ群入力端子8と、複数の半導体チップ6の各々の電極端子11との間のインピーダンスを互いに等しくするように調整することができるので、複数の半導体チップ6の各々の電極端子11に送られるゲート信号の入力波形が乱れることを、容易に防止または抑制することができる。 Thereby, the connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be equal among the plurality of semiconductor chips 6. That is, the connection resistance between the chip group input terminal 8 and the electrode terminal 11 is equal among the plurality of semiconductor chips 6. Therefore, the impedance between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 can be adjusted to be equal to each other. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal to be sent.
 さらに、ゲート電極15は、平面視において、角部CR1を通る対角線DG1に対して線対称な形状を有してもよい。このとき、下敷き導電膜17が、ゲート電極15のうち対角線DG1に対して互いに反対側に位置する2つの部分15aおよび15bのいずれとも同様な構造により電気的に接続されている場合には、これらの2つの部分15aおよび15bの各々と電極端子11との間の接続抵抗を互いに等しくするように調整することができる。 Furthermore, the gate electrode 15 may have a shape that is line symmetric with respect to the diagonal line DG1 passing through the corner portion CR1 in plan view. At this time, when the underlying conductive film 17 is electrically connected to the two portions 15a and 15b of the gate electrode 15 opposite to each other with respect to the diagonal line DG1 by the same structure, The connection resistance between each of the two portions 15a and 15b and the electrode terminal 11 can be adjusted to be equal to each other.
 なお、チップ群入力端子8に最も近い、とは、例えばチップ群入力端子8の中心位置に最も近いことを意味し、チップ群入力端子8から最も遠い、とは、例えばチップ群入力端子8の中心位置から最も遠いことを意味する。 Note that “closest to the chip group input terminal 8” means, for example, closest to the center position of the chip group input terminal 8, and “farthest from the chip group input terminal 8” means, for example, that of the chip group input terminal 8. Means farthest from the center position.
 一方、半導体基板12が、平面視において四角形状を有しない場合を考える。この場合には、電極端子11は、半導体基板12のうちチップ群入力端子8に最も近い周縁部EP1に形成される。これにより、チップ群入力端子8と電極端子11との間の接続抵抗を、複数の半導体チップ6の間で互いに近づけるように調整することができる。 On the other hand, consider a case where the semiconductor substrate 12 does not have a quadrangular shape in plan view. In this case, the electrode terminal 11 is formed on the peripheral edge EP1 of the semiconductor substrate 12 that is closest to the chip group input terminal 8. Thereby, the connection resistance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted so as to be close to each other among the plurality of semiconductor chips 6.
 さらに、ゲート電極15は、平面視において、半導体基板12のうちチップ群入力端子8に最も近い周縁部EP1と、チップ群入力端子8から最も遠い周縁部EP2とを結ぶ直線LN5に対して線対称な形状を有してもよい。このとき、下敷き導電膜17が、ゲート電極15のうち直線LN5に対して互いに反対側に位置する2つの部分15aおよび15bのいずれとも同様な構造により電気的に接続されている場合には、これらの2つの部分15aおよび15bの各々と電極端子11との間の接続抵抗を互いに等しくするように調整することができる。 Further, the gate electrode 15 is symmetrical with respect to a straight line LN5 that connects the peripheral edge EP1 closest to the chip group input terminal 8 and the peripheral edge EP2 farthest from the chip group input terminal 8 of the semiconductor substrate 12 in plan view. It may have various shapes. At this time, when the underlying conductive film 17 is electrically connected to both of the two portions 15a and 15b located on the opposite sides of the straight line LN5 in the gate electrode 15 by the same structure, The connection resistance between each of the two portions 15a and 15b and the electrode terminal 11 can be adjusted to be equal to each other.
 好適には、半導体チップ6は、半導体基板12上に形成された抵抗素子22を有する。すなわち、半導体チップ6は、抵抗素子22を内蔵する。また、スイッチング素子13のゲート電極15と、電極端子11とは、抵抗素子22を介して電気的に接続されている。 Preferably, the semiconductor chip 6 has a resistance element 22 formed on the semiconductor substrate 12. That is, the semiconductor chip 6 incorporates the resistance element 22. Further, the gate electrode 15 of the switching element 13 and the electrode terminal 11 are electrically connected via a resistance element 22.
 ゲート電極15は、半導体基板12上に形成された例えば多結晶シリコン(Si)膜などの導電膜18からなる。また、抵抗素子22は、半導体基板12上に導電膜18と同層に形成された、例えば多結晶シリコン(Si)膜などの導電膜23からなる。つまり、抵抗素子22は、下敷き導電膜17および導電膜18と同層に形成された、例えば多結晶シリコン(Si)膜などの導電膜23からなる。抵抗素子22に含まれる導電膜23を、ゲート電極15に含まれる導電膜18と同層に形成することにより、製造工程数を削減することができ、製造工程の安定性を向上させることができる。 The gate electrode 15 is made of a conductive film 18 such as a polycrystalline silicon (Si) film formed on the semiconductor substrate 12. The resistance element 22 includes a conductive film 23 such as a polycrystalline silicon (Si) film formed on the semiconductor substrate 12 in the same layer as the conductive film 18. That is, the resistance element 22 is made of a conductive film 23 such as a polycrystalline silicon (Si) film formed in the same layer as the underlying conductive film 17 and the conductive film 18. By forming the conductive film 23 included in the resistance element 22 in the same layer as the conductive film 18 included in the gate electrode 15, the number of manufacturing steps can be reduced, and the stability of the manufacturing steps can be improved. .
 一方、電極端子11は、例えばアルミニウム(Al)など、下敷き導電膜17、導電膜23および導電膜18のいずれの電気抵抗率よりも小さい電気抵抗率を有する導電膜21からなる。 On the other hand, the electrode terminal 11 is made of a conductive film 21 having an electrical resistivity smaller than any of the electrical resistance of the underlying conductive film 17, the conductive film 23, and the conductive film 18, such as aluminum (Al).
 半導体チップ6が抵抗素子22を有する場合、下敷き導電膜17とゲート電極15とは抵抗素子22を介して電気的に接続されるため、電極端子11とゲート電極15とは、下敷き導電膜17および抵抗素子22を介して電気的に接続される。 When the semiconductor chip 6 has the resistance element 22, the underlying conductive film 17 and the gate electrode 15 are electrically connected via the resistance element 22, so that the electrode terminal 11 and the gate electrode 15 are connected to the underlying conductive film 17 and Electrical connection is made via the resistance element 22.
 したがって、抵抗素子22の抵抗値の可変範囲は、電極端子11の抵抗値の可変範囲よりも大きくなるため、抵抗素子22の抵抗値を調整することにより、ゲート電極15とチップ群入力端子8との間の接続抵抗を、複数の半導体チップ6の間で互いに近づけるように、容易に調整することができる。そのため、複数の半導体チップ6の各々のゲート電極15に送られるゲート信号の入力波形が乱れることを、容易に防止または抑制することができる。 Therefore, since the variable range of the resistance value of the resistance element 22 is larger than the variable range of the resistance value of the electrode terminal 11, the gate electrode 15, the chip group input terminal 8, The connection resistance between the plurality of semiconductor chips 6 can be easily adjusted so as to be close to each other. Therefore, it is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal sent to each gate electrode 15 of the plurality of semiconductor chips 6.
 好適には、半導体チップ6は、半導体基板12上に形成され、互いに並列に接続された複数の抵抗素子22を有する。また、スイッチング素子13のゲート電極15と、電極端子11とは、互いに並列に接続された複数の抵抗素子22を介して電気的に接続される。この場合、抵抗素子は、互いに並列に接続された複数の抵抗素子22に分割されることになる。 Preferably, the semiconductor chip 6 has a plurality of resistance elements 22 formed on the semiconductor substrate 12 and connected in parallel to each other. The gate electrode 15 of the switching element 13 and the electrode terminal 11 are electrically connected via a plurality of resistance elements 22 connected in parallel to each other. In this case, the resistance element is divided into a plurality of resistance elements 22 connected in parallel to each other.
 このような構成により、半導体チップ6が、一体的に形成された1つの抵抗素子22を有する場合に比べ、寄生インダクタンスを低減することができる。 With such a configuration, it is possible to reduce the parasitic inductance as compared with the case where the semiconductor chip 6 has one resistance element 22 formed integrally.
 例えば、ゲート電極15の抵抗値と、複数の抵抗素子22からなる合成抵抗の抵抗値との合計を内蔵抵抗とし、所望の内蔵抵抗の抵抗値を、10~70Ωとする。また、多結晶シリコン(Si)からなるゲート電極15の抵抗値を、20Ωとする。このとき、1つの抵抗素子22の抵抗値が数Ωになるような抵抗素子22を1つまたは複数設けることにより、内蔵抵抗の抵抗値を容易に所望の抵抗値に調整することができる。 For example, the sum of the resistance value of the gate electrode 15 and the combined resistance value of the plurality of resistance elements 22 is taken as the built-in resistance, and the resistance value of the desired built-in resistance is set to 10 to 70Ω. The resistance value of the gate electrode 15 made of polycrystalline silicon (Si) is 20Ω. At this time, by providing one or a plurality of resistance elements 22 such that the resistance value of one resistance element 22 is several Ω, the resistance value of the built-in resistor can be easily adjusted to a desired resistance value.
 なお、本実施の形態1のパワーモジュール1は、半導体チップ6を1つのみ有するものであってもよい。このような場合、半導体チップ6が抵抗素子22を内蔵し、ゲート電極15と電極端子11とが抵抗素子22を介して電気的に接続され、抵抗素子22の抵抗値を調整することにより、ゲート電極15と電極端子11との間の接続抵抗を、所望の値に調整することができる。したがって、半導体チップ6の電極端子11に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 Note that the power module 1 according to the first embodiment may have only one semiconductor chip 6. In such a case, the semiconductor chip 6 incorporates the resistance element 22, the gate electrode 15 and the electrode terminal 11 are electrically connected via the resistance element 22, and the resistance value of the resistance element 22 is adjusted, whereby the gate The connection resistance between the electrode 15 and the electrode terminal 11 can be adjusted to a desired value. Therefore, it is possible to prevent or suppress the disturbance of the input waveform of the gate signal sent to the electrode terminal 11 of the semiconductor chip 6.
 また、複数の半導体チップ6の各々は、抵抗素子を有していなくてもよい。このような抵抗素子を有しない半導体チップ6の例を、図7に示す。図7は、実施の形態1のパワーモジュールにおける半導体チップの別の例の平面図である。 Further, each of the plurality of semiconductor chips 6 may not have a resistance element. An example of the semiconductor chip 6 not having such a resistance element is shown in FIG. FIG. 7 is a plan view of another example of the semiconductor chip in the power module according to the first embodiment.
 図7に示す例では、下敷き導電膜17とゲート電極15とは電気的に直接接続されているため、電極端子11とゲート電極15とは、下敷き導電膜17のみを介して電気的に接続されている。 In the example shown in FIG. 7, since the underlying conductive film 17 and the gate electrode 15 are directly electrically connected, the electrode terminal 11 and the gate electrode 15 are electrically connected only through the underlying conductive film 17. ing.
 また、図7に示す例では、例えば、チップ群入力端子8と、複数の半導体チップ6の各々の電極端子11との間であって、それぞれの半導体チップ6の外部に、外付けの抵抗素子をそれぞれ設けてもよい。このとき、チップ群入力端子8と、複数の半導体チップ6の各々の電極端子11とは、それぞれの外付けの抵抗素子により電気的に接続される。このような場合、外付けの抵抗素子の抵抗値を調整することにより、ゲート電極15と電極端子11との間の接続抵抗を、所望の値に調整することができる。 In the example shown in FIG. 7, for example, an external resistance element is provided between the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 and outside each semiconductor chip 6. May be provided. At this time, the chip group input terminal 8 and each electrode terminal 11 of the plurality of semiconductor chips 6 are electrically connected by respective external resistance elements. In such a case, the connection resistance between the gate electrode 15 and the electrode terminal 11 can be adjusted to a desired value by adjusting the resistance value of the external resistance element.
 <スイッチング素子>
 次に、本実施の形態1のパワーモジュールにおけるスイッチング素子について説明する。前述したように、実施の形態1のパワーモジュールにおけるスイッチング素子は、炭化ケイ素(SiC)からなる縦型MISFETとしての縦型MOSFETである。
<Switching element>
Next, the switching element in the power module according to the first embodiment will be described. As described above, the switching element in the power module of the first embodiment is a vertical MOSFET as a vertical MISFET made of silicon carbide (SiC).
 なお、本実施の形態1では、パワーモジュールにおけるスイッチング素子として、縦型MOSFETを用いる例について説明する。しかし、パワーモジュールにおけるスイッチング素子として、縦型MOSFETに代え、IGBTを用いることもできる。 In the first embodiment, an example in which a vertical MOSFET is used as a switching element in a power module will be described. However, an IGBT can be used as a switching element in the power module instead of the vertical MOSFET.
 図8および図9は、実施の形態1のパワーモジュールにおけるスイッチング素子の平面図である。図10は、実施の形態1のパワーモジュールにおけるスイッチング素子の要部断面図である。図8および図9は、スイッチング素子13を上面側から視た図であり、図8は、図5に示すスイッチング素子13の一部を拡大して示す図であり、図9は、図8に示すスイッチング素子13の一部を拡大して示す図である。図10は、図9のC-C線に沿った断面図である。 8 and 9 are plan views of the switching element in the power module according to the first embodiment. FIG. 10 is a main-portion cross-sectional view of the switching element in the power module according to the first embodiment. 8 and 9 are views of the switching element 13 viewed from the upper surface side, FIG. 8 is an enlarged view of a part of the switching element 13 shown in FIG. 5, and FIG. It is a figure which expands and shows a part of switching element 13 to show. 10 is a cross-sectional view taken along the line CC of FIG.
 なお、図8においては、理解を簡単にするために、ソース電極36および層間絶縁膜19(図10参照)を除去、すなわち透視した状態を図示しており、層間絶縁膜19に形成されたソースコンタクト孔19aの外周を二点鎖線により示している。また、図9においては、理解を簡単にするために、ソース電極36、層間絶縁膜19、絶縁膜16(図10参照)およびゲート電極15を除去、すなわち透視した状態を図示しており、層間絶縁膜19に形成されたソースコンタクト孔19aの外周、および、ゲート電極15の外周を二点鎖線により示している。 In FIG. 8, for easy understanding, the source electrode 36 and the interlayer insulating film 19 (see FIG. 10) are removed, that is, seen through, and the source formed in the interlayer insulating film 19 is illustrated. The outer periphery of the contact hole 19a is indicated by a two-dot chain line. 9 shows a state in which the source electrode 36, the interlayer insulating film 19, the insulating film 16 (see FIG. 10) and the gate electrode 15 are removed, that is, seen through, for easy understanding. The outer periphery of the source contact hole 19a formed in the insulating film 19 and the outer periphery of the gate electrode 15 are indicated by a two-dot chain line.
 図8~図10に示すように、本実施の形態1のパワーモジュールにおけるスイッチング素子13は、縦型MOSFETであり、半導体基板12、ドレイン電極31、n型エピタキシャル層32、p型ボディ領域33、n型ソース領域34およびp型ボディコンタクト領域35を有する。また、本実施の形態1のスイッチング素子13は、ゲート絶縁膜としての絶縁膜16、ゲート電極15、ソース電極36および層間絶縁膜19を有する。 As shown in FIGS. 8 to 10, the switching element 13 in the power module according to the first embodiment is a vertical MOSFET, and includes a semiconductor substrate 12, a drain electrode 31, an n -type epitaxial layer 32, and a p-type body region 33. , N + -type source region 34 and p + -type body contact region 35. The switching element 13 according to the first embodiment includes an insulating film 16 as a gate insulating film, a gate electrode 15, a source electrode 36, and an interlayer insulating film 19.
 半導体基板12は、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型の半導体基板である。すなわち半導体基板12の導電型は、n型である。半導体基板12におけるn型の不純物濃度は、比較的大きく、例えば1×1018~1×1021cm-3程度である。また、半導体基板12の厚さは、例えば70~700μm程度である。 The semiconductor substrate 12 is an n-type semiconductor substrate made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. That is, the conductivity type of the semiconductor substrate 12 is n-type. The n-type impurity concentration in the semiconductor substrate 12 is relatively large, for example, about 1 × 10 18 to 1 × 10 21 cm −3 . The thickness of the semiconductor substrate 12 is, for example, about 70 to 700 μm.
 ドレイン電極31は、半導体基板12の下面に形成された電極である。ドレイン電極31は、半導体基板12と電気的に接続されている。ドレイン電極31として、例えばチタン(Ti)、ニッケル(Ni)または金(Au)などを積層した導電膜を用いることができる。このような導電膜を用いることで、ドレイン電極31と半導体基板12とを、低抵抗で電気的に接続することができる。 The drain electrode 31 is an electrode formed on the lower surface of the semiconductor substrate 12. The drain electrode 31 is electrically connected to the semiconductor substrate 12. As the drain electrode 31, for example, a conductive film in which titanium (Ti), nickel (Ni), gold (Au), or the like is stacked can be used. By using such a conductive film, the drain electrode 31 and the semiconductor substrate 12 can be electrically connected with low resistance.
 n型エピタキシャル層32は、半導体基板12の上面に形成されており、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型半導体層である。すなわち半導体層としてのn型エピタキシャル層32の導電型は、n型である。n型エピタキシャル層32におけるn型の不純物濃度は、半導体基板12におけるn型の不純物濃度よりも小さく、例えば1×1015~1×1016cm-3程度である。また、n型エピタキシャル層32の厚さは、例えば5~70μm程度である。この層が電界緩和層として働くため、スイッチング素子を使用する電圧により、破壊電圧に達しないよう、不純物濃度および厚さを設計すればよい。SiCはSiに比べ、絶縁破壊電界が1桁程度大きいため、この膜厚を薄くすることができる。そのため、この層の抵抗を小さなものにすることができ、スイッチング素子のオン抵抗を大幅に低減することができる。 The n type epitaxial layer 32 is formed on the upper surface of the semiconductor substrate 12 and is an n type semiconductor layer made of silicon carbide (SiC) into which an n type impurity such as nitrogen (N) or phosphorus (P) is introduced. . That is, the conductivity type of the n type epitaxial layer 32 as the semiconductor layer is n type. The n - type impurity concentration in the n -type epitaxial layer 32 is smaller than the n-type impurity concentration in the semiconductor substrate 12, for example, about 1 × 10 15 to 1 × 10 16 cm −3 . Further, the thickness of the n type epitaxial layer 32 is, for example, about 5 to 70 μm. Since this layer functions as an electric field relaxation layer, the impurity concentration and thickness may be designed so that the breakdown voltage is not reached by the voltage using the switching element. Since SiC has a breakdown electric field about one digit larger than Si, the film thickness can be reduced. Therefore, the resistance of this layer can be reduced, and the on-resistance of the switching element can be greatly reduced.
 n型エピタキシャル層32を、例えばエピタキシャル成長法により形成することができる。あるいは、例えばイオン注入法によりアルミニウム(Al)またはホウ素(B)などのp型不純物を半導体基板12の上面全面に注入し、半導体基板12におけるn型の不純物濃度を減少させる方法により、n型エピタキシャル層32を形成することもできる。 The n type epitaxial layer 32 can be formed by, for example, an epitaxial growth method. Alternatively, for example, a p-type impurity such as aluminum (Al) or boron (B) is implanted into the entire upper surface of the semiconductor substrate 12 by ion implantation, and the n -type impurity concentration in the semiconductor substrate 12 is reduced by a method of reducing the n-type impurity concentration. The epitaxial layer 32 can also be formed.
 なお、本願明細書では、ある基板の上面に形成されているということは、その基板の上面よりも上側に形成されていることを含むものとする。 In addition, in this specification, being formed on the upper surface of a certain substrate includes being formed above the upper surface of the substrate.
 p型ボディ領域33は、n型エピタキシャル層32の上層部に形成されており、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物が拡散した炭化ケイ素(SiC)からなるp型半導体領域である。すなわち半導体領域としてのp型ボディ領域33の導電型は、p型である。p型ボディ領域33におけるp型の不純物濃度は、例えば1×1017~1×1018cm-3程度である。また、p型ボディ領域33の厚さは、例えば1~2μm程度である。 The p-type body region 33 is formed in the upper layer portion of the n -type epitaxial layer 32, and is a p-type semiconductor made of silicon carbide (SiC) in which a p-type impurity such as aluminum (Al) or boron (B) is diffused. It is an area. That is, the conductivity type of the p-type body region 33 as a semiconductor region is p-type. The p-type impurity concentration in the p-type body region 33 is, for example, about 1 × 10 17 to 1 × 10 18 cm −3 . The thickness of the p-type body region 33 is, for example, about 1 to 2 μm.
 n型ソース領域34は、p型ボディ領域33の上層部に形成されており、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型半導体領域である。すなわち半導体領域としてのn型ソース領域34の導電型は、n型である。n型ソース領域34におけるn型の不純物濃度は、n型エピタキシャル層32におけるn型の不純物濃度よりも大きく、例えば1×1019~1×1020cm-3程度とすることができる。また、n型ソース領域34の厚さを、例えば100~700nm程度とすることができる。 The n + -type source region 34 is formed in the upper layer portion of the p-type body region 33 and is an n-type semiconductor made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. It is an area. That is, the conductivity type of the n + type source region 34 as a semiconductor region is n type. The n-type impurity concentration in the n + -type source region 34 is higher than the n-type impurity concentration in the n -type epitaxial layer 32, and can be, for example, about 1 × 10 19 to 1 × 10 20 cm −3 . Further, the thickness of the n + -type source region 34 can be set to about 100 to 700 nm, for example.
 p型ボディコンタクト領域35は、p型ボディ領域33の上層部に形成されており、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物が拡散した炭化ケイ素(SiC)からなるp型半導体領域である。すなわち半導体領域としてのp型ボディコンタクト領域35の導電型は、p型である。p型ボディコンタクト領域35におけるp型の不純物濃度は、p型ボディ領域33におけるp型の不純物濃度よりも大きく、例えば1×1019~1×1020cm-3程度である。また、p型ボディコンタクト領域35の厚さは、例えば100~700nm程度である。 The p + -type body contact region 35 is formed in the upper layer portion of the p-type body region 33 and is, for example, p-type made of silicon carbide (SiC) in which a p-type impurity such as aluminum (Al) or boron (B) is diffused. It is a semiconductor region. That is, the conductivity type of the p + type body contact region 35 as the semiconductor region is p-type. The p-type impurity concentration in the p + -type body contact region 35 is higher than the p-type impurity concentration in the p-type body region 33, for example, about 1 × 10 19 to 1 × 10 20 cm −3 . Further, the thickness of the p + type body contact region 35 is, for example, about 100 to 700 nm.
 隣り合う2つのp型ボディ領域33に挟まれたn型エピタキシャル層32の上層部は、JFET(Junction Field Effect Transistor)領域37である。すなわちp型ボディ領域33を挟んでn型ソース領域34と反対側のn型エピタキシャル層32の上層部は、JFET領域37である。また、n型ソース領域34とJFET領域37とに挟まれたp型ボディ領域33の上層部、すなわちn型ソース領域34とn型エピタキシャル層32とに挟まれたp型ボディ領域33の上層部は、チャネル領域38である。 An upper layer portion of the n -type epitaxial layer 32 sandwiched between two adjacent p-type body regions 33 is a JFET (Junction Field Effect Transistor) region 37. That is, the upper layer portion of the n -type epitaxial layer 32 opposite to the n + -type source region 34 across the p-type body region 33 is a JFET region 37. Further, the upper layer portion of the p-type body region 33 sandwiched between the n + -type source region 34 and the JFET region 37, that is, the p-type body region 33 sandwiched between the n + -type source region 34 and the n -type epitaxial layer 32. The upper layer portion is a channel region 38.
 ゲート絶縁膜としての絶縁膜16は、n型ソース領域34とn型エピタキシャル層32とに挟まれたp型ボディ領域33の上面上に、形成された絶縁膜である。絶縁膜16は、例えば酸化シリコン(SiO)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)または酸化ハフニウム(HfO)などからなり、例えば熱酸化法またはCVD(Chemical Vapor Deposition)法などにより形成されている。また、絶縁膜16の厚さは、例えば数十nm程度である。 The insulating film 16 as a gate insulating film is an insulating film formed on the upper surface of the p-type body region 33 sandwiched between the n + -type source region 34 and the n -type epitaxial layer 32. The insulating film 16 is made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like. For example, the thermal oxidation method or CVD (Chemical Vapor Deposition) is used. It is formed by law. Further, the thickness of the insulating film 16 is, for example, about several tens of nm.
 ゲート電極15は、ゲート絶縁膜としての絶縁膜16上に形成された電極である。すなわち、ゲート電極15は、n型ソース領域34とn型エピタキシャル層32とに挟まれたp型ボディ領域33の上面上に、絶縁膜16を介して形成された電極である。ゲート電極15は、前述したように、例えばCVD法などにより形成された、多結晶シリコン(Si)膜などの導電膜18(図10参照)からなる。 The gate electrode 15 is an electrode formed on the insulating film 16 as a gate insulating film. That is, the gate electrode 15 is an electrode formed on the upper surface of the p-type body region 33 sandwiched between the n + -type source region 34 and the n -type epitaxial layer 32 via the insulating film 16. As described above, the gate electrode 15 is made of the conductive film 18 (see FIG. 10) such as a polycrystalline silicon (Si) film formed by, for example, the CVD method.
 なお、JFET領域37上にはゲート絶縁膜としての絶縁膜16が形成され、JFET領域37上に形成された絶縁膜16上にはゲート電極15が形成されている。 Note that an insulating film 16 as a gate insulating film is formed on the JFET region 37, and a gate electrode 15 is formed on the insulating film 16 formed on the JFET region 37.
 ソース電極36は、n型ソース領域34上、および、p型ボディコンタクト領域35上に形成された電極である。ソース電極36として、例えばチタン(Ti)またはアルミニウム(Al)などからなる導電膜を用いることができる。このような導電膜を用いることにより、ソース電極36と、n型ソース領域34およびp型ボディコンタクト領域35とを、低抵抗で電気的に接続することができる。 The source electrode 36 is an electrode formed on the n + type source region 34 and the p + type body contact region 35. As the source electrode 36, for example, a conductive film made of titanium (Ti) or aluminum (Al) can be used. By using such a conductive film, the source electrode 36 can be electrically connected to the n + type source region 34 and the p + type body contact region 35 with low resistance.
 層間絶縁膜19は、ゲート電極15の表面を含めて半導体基板12上に形成されている。層間絶縁膜19の材料として、例えばPSG(Phospho Silicate Glass)または酸化シリコンなどを用いることができる。 The interlayer insulating film 19 is formed on the semiconductor substrate 12 including the surface of the gate electrode 15. As a material of the interlayer insulating film 19, for example, PSG (Phospho ま た は Silicate Glass) or silicon oxide can be used.
 層間絶縁膜19には、開口部としてのソースコンタクト孔19aが形成されている。ソースコンタクト孔19aは、層間絶縁膜19を貫通して、n型ソース領域34の上面、および、p型ボディコンタクト領域35の上面に達する。すなわちソースコンタクト孔19aの底面には、n型ソース領域34の上面、および、p型ボディコンタクト領域35の上面が露出している。 A source contact hole 19a as an opening is formed in the interlayer insulating film 19. Source contact hole 19 a penetrates interlayer insulating film 19 and reaches the upper surface of n + -type source region 34 and the upper surface of p + -type body contact region 35. That is, the upper surface of the n + -type source region 34 and the upper surface of the p + -type body contact region 35 are exposed at the bottom surface of the source contact hole 19a.
 ソース電極36は、ソースコンタクト孔19aの底面および側面を含めて層間絶縁膜19上に形成されている。このような構造により、ソース電極36は、層間絶縁膜19に形成されたソースコンタクト孔19aを介して、n型ソース領域34、および、p型ボディコンタクト領域35と、電気的に接続されている。 The source electrode 36 is formed on the interlayer insulating film 19 including the bottom and side surfaces of the source contact hole 19a. With such a structure, the source electrode 36 is electrically connected to the n + type source region 34 and the p + type body contact region 35 via the source contact hole 19 a formed in the interlayer insulating film 19. ing.
 図8および図9に示すように、半導体基板12の上面に平行であって、互いに交差、好適には直交する2つの方向をx1軸方向およびy1軸方向とする。このとき、平面視において、とは、x1軸方向およびy1軸方向のいずれにも垂直な方向から視た場合を意味する。なお、図8および図9のx1軸方向、図4のx軸方向、ならびに、図1のX軸方向は、同一方向であってもよく、互いに異なる方向であってもよい。また、図8および図9のy1軸方向、図4のy軸方向、ならびに、図1のY軸方向は、同一方向であってもよく、互いに異なる方向であってもよい。 As shown in FIG. 8 and FIG. 9, two directions that are parallel to the upper surface of the semiconductor substrate 12 and intersect each other, preferably orthogonal, are defined as an x1 axis direction and a y1 axis direction. At this time, in the plan view, it means a case when viewed from a direction perpendicular to both the x1 axis direction and the y1 axis direction. 8 and 9, the x-axis direction in FIG. 4, and the X-axis direction in FIG. 1 may be the same direction or different directions. 8 and 9, the y-axis direction in FIG. 4, and the Y-axis direction in FIG. 1 may be the same direction or different directions.
 図8および図9に示すように、スイッチング素子13は、複数のp型ボディ領域33と、複数のn型ソース領域34と、複数のp型ボディコンタクト領域35とを有する。複数のp型ボディ領域33は、n型エピタキシャル層32の上層部に、平面視において、x1軸方向およびy1軸方向にマトリクス状に配列するように、形成されている。複数のn型ソース領域34は、複数のp型ボディ領域33の各々の上層部に、それぞれ形成されている。複数のp型ボディコンタクト領域35は、複数のp型ボディ領域33の各々の上層部に、それぞれ形成されている。 As shown in FIGS. 8 and 9, switching element 13 has a plurality of p-type body regions 33, a plurality of n + -type source regions 34, and a plurality of p + -type body contact regions 35. The plurality of p-type body regions 33 are formed in the upper layer portion of the n -type epitaxial layer 32 so as to be arranged in a matrix in the x1 axis direction and the y1 axis direction in plan view. The plurality of n + -type source regions 34 are formed in the upper layer portion of each of the plurality of p-type body regions 33. The plurality of p + type body contact regions 35 are respectively formed in the upper layer portions of the plurality of p type body regions 33.
 このとき、ゲート電極15は、平面視において、y1軸方向にそれぞれ延在し、かつ、x1軸方向に配列された複数の延在部15cと、x1軸方向にそれぞれ延在し、複数の延在部15cとそれぞれ交差し、かつ、y1軸方向に配列された複数の延在部15dとを含み、格子状に形成されている。そして、マトリクス状に配列された複数のp型ボディ領域33は、格子状のゲート電極15により区画されている。ここで、格子状のゲート電極15により区画された複数の領域AR3の各々を、セルと称する。 At this time, the gate electrode 15 extends in the y1 axis direction and extends in the x1 axis direction in the plan view, and extends in the x1 axis direction. Each of the extending portions 15d intersects with the existing portions 15c and is arranged in the y1-axis direction, and is formed in a lattice shape. The plurality of p-type body regions 33 arranged in a matrix are partitioned by a lattice-shaped gate electrode 15. Here, each of the plurality of regions AR3 partitioned by the grid-like gate electrode 15 is referred to as a cell.
 本実施の形態1のパワーモジュール1に含まれるスイッチング素子13としての縦型MOSFETをオン状態にするオン動作においては、ゲート電極15に、ソース電極36に対して正のゲート電圧VGS(VGS>0V)を印加する。このとき、n型ソース領域34とn型エピタキシャル層32とに挟まれたp型ボディ領域33の上層部、すなわちチャネル領域38には、反転層が形成される。 In the on operation of turning on the vertical MOSFET as the switching element 13 included in the power module 1 of the first embodiment, the gate electrode 15 has a positive gate voltage VGS (VGS> 0 V with respect to the source electrode 36). ) Is applied. At this time, an inversion layer is formed in the upper layer portion of the p-type body region 33 sandwiched between the n + -type source region 34 and the n -type epitaxial layer 32, that is, the channel region 38.
 したがって、電子は、ソース電極36から、n型ソース領域34、チャネル領域38に形成された反転層、n型エピタキシャル層32、および、半導体基板12を通して、ドレイン電極31に流れる。すなわち電流は、ドレイン電極31から、半導体基板12、n型エピタキシャル層32、チャネル領域38に形成された反転層、および、n型ソース領域34を通して、ソース電極36に流れる。 Therefore, electrons flow from the source electrode 36 to the drain electrode 31 through the n + -type source region 34, the inversion layer formed in the channel region 38, the n -type epitaxial layer 32, and the semiconductor substrate 12. That is, current flows from the drain electrode 31 to the source electrode 36 through the semiconductor substrate 12, the n type epitaxial layer 32, the inversion layer formed in the channel region 38, and the n + type source region 34.
 一方、縦型MOSFETをオフ状態にするオフ動作においては、ゲート電極15に、ソース電極36に対して負または零のゲート電圧VGS(VGS≦0V)を印加する。このとき、チャネル領域38に形成されていた反転層を消滅させることで、電流が遮断される。 On the other hand, in the off operation for turning off the vertical MOSFET, a negative or zero gate voltage VGS (VGS ≦ 0 V) is applied to the gate electrode 15 with respect to the source electrode 36. At this time, the current is interrupted by eliminating the inversion layer formed in the channel region 38.
 <半導体チップの第1変形例>
 次に、半導体チップの第1変形例について説明する。図11は、実施の形態1のパワーモジュールにおける半導体チップの第1変形例の平面図である。図12は、実施の形態1のパワーモジュールにおける半導体チップの第1変形例のうち、さらに別の例の平面図である。
<First Modification of Semiconductor Chip>
Next, a first modification of the semiconductor chip will be described. FIG. 11 is a plan view of a first modification of the semiconductor chip in the power module according to the first embodiment. FIG. 12 is a plan view of still another example of the first modification of the semiconductor chip in the power module according to the first embodiment.
 図11および図12に示すように、本第1変形例の半導体チップ6は、配線39を有する。 As shown in FIG. 11 and FIG. 12, the semiconductor chip 6 of the first modification has a wiring 39.
 半導体基板12が平面視において四角形状を有し、電極端子11が、半導体基板12の4つの角部のうち、チップ群入力端子8に最も近い角部CR1上に形成される場合を考える。このとき、配線39は、ゲート電極15のうち対角線DG1を挟んで互いに反対側に位置する2つの部分15aおよび15bを、電気的に接続する。 Consider a case where the semiconductor substrate 12 has a quadrangular shape in plan view, and the electrode terminal 11 is formed on the corner CR1 closest to the chip group input terminal 8 among the four corners of the semiconductor substrate 12. At this time, the wiring 39 electrically connects two portions 15a and 15b located on opposite sides of the gate electrode 15 with the diagonal line DG1 interposed therebetween.
 これにより、図11および図12に示すように、下敷き導電膜17が、ゲート電極15のうち2つの部分15aおよび15bの一方のみと電気的に接続されている場合でも、これらの2つの部分15aおよび15bの各々と電極端子11との間の接続抵抗を互いに近づけるように調整することができる。したがって、電極端子11とゲート電極15との間の接続抵抗を、複数の半導体チップ6の間で互いに近づけるように調整することができるので、複数の半導体チップ6の各々のゲート電極15に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 Thus, as shown in FIGS. 11 and 12, even when the underlying conductive film 17 is electrically connected to only one of the two portions 15a and 15b of the gate electrode 15, these two portions 15a. And the connection resistance between each of 15b and the electrode terminal 11 can be adjusted to be close to each other. Accordingly, since the connection resistance between the electrode terminal 11 and the gate electrode 15 can be adjusted so as to be close to each other between the plurality of semiconductor chips 6, the connection resistance is sent to each gate electrode 15 of the plurality of semiconductor chips 6. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal.
 なお、配線39は、導電膜40からなる。導電膜40は、例えばアルミニウム(Al)膜からなり、ゲート電極15に含まれる導電膜18の電気抵抗率よりも小さい電気抵抗率を有することが好ましい。また、配線39は、配線39と平面視において重なるように形成されたプラグ39aを介して、ゲート電極15のうち2つの部分15aおよび15bの各々と電気的に接続される。一方、電極端子11は、プラグ39bを介して、下敷き導電膜17と電気的に接続される。 The wiring 39 is made of a conductive film 40. The conductive film 40 is made of, for example, an aluminum (Al) film, and preferably has an electrical resistivity smaller than that of the conductive film 18 included in the gate electrode 15. Further, the wiring 39 is electrically connected to each of the two portions 15a and 15b of the gate electrode 15 through a plug 39a formed so as to overlap the wiring 39 in plan view. On the other hand, the electrode terminal 11 is electrically connected to the underlying conductive film 17 through the plug 39b.
 また、ゲート電極15が、平面視において、角部CR1を通る対角線DG1に対して線対称な形状を有する場合、好適には、配線39は、平面視において、角部CR1を通る対角線DG1に対して線対称な形状を有する。 In addition, when the gate electrode 15 has a shape symmetrical with respect to the diagonal line DG1 passing through the corner portion CR1 in plan view, the wiring 39 is preferably connected to the diagonal line DG1 passing through the corner portion CR1 in plan view. And have a line-symmetric shape.
 これにより、図11および図12に示すように、下敷き導電膜17が、ゲート電極15のうち2つの部分15aおよび15bの一方のみと電気的に接続されている場合でも、これらの2つの部分15aおよび15bの各々と電極端子11との間の接続抵抗を互いに近づけるように容易に調整することができる。したがって、電極端子11とゲート電極15との間の接続抵抗を、複数の半導体チップ6の間で互いに近づけるように容易に調整することができるので、複数の半導体チップ6の各々のゲート電極15に送られるゲート信号の入力波形が乱れることを、容易に防止または抑制することができる。 Thus, as shown in FIGS. 11 and 12, even when the underlying conductive film 17 is electrically connected to only one of the two portions 15a and 15b of the gate electrode 15, these two portions 15a. And the connection resistance between each of 15b and the electrode terminal 11 can be easily adjusted so as to be close to each other. Accordingly, the connection resistance between the electrode terminal 11 and the gate electrode 15 can be easily adjusted so as to be close to each other between the plurality of semiconductor chips 6. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal to be sent.
 一方、半導体基板12が、平面視において四角形状を有しておらず、電極端子11が、半導体基板12のうちチップ群入力端子8に最も近い周縁部EP1に形成される場合を考える。また、半導体基板12のうちチップ群入力端子8に最も近い周縁部EP1と、チップ群入力端子8から最も遠い周縁部EP2とを結ぶ直線を、直線LN5とする。このとき、配線39は、ゲート電極15のうち直線LN5を挟んで互いに反対側に位置する2つの部分15aおよび15bを、電気的に接続することになる。 On the other hand, a case is considered in which the semiconductor substrate 12 does not have a quadrangular shape in plan view, and the electrode terminal 11 is formed on the peripheral edge EP1 closest to the chip group input terminal 8 in the semiconductor substrate 12. A straight line connecting the peripheral edge EP1 closest to the chip group input terminal 8 and the peripheral edge EP2 farthest from the chip group input terminal 8 in the semiconductor substrate 12 is defined as a straight line LN5. At this time, the wiring 39 electrically connects the two portions 15a and 15b located on the opposite sides of the gate electrode 15 across the straight line LN5.
 なお、図11に示す例では、配線39は、ゲート電極15のうち、平面視において電極端子11の周辺に位置する部分15eの上に形成される。また、図12に示す例では、配線39は、ゲート電極15のうち、平面視において電極端子11側と反対側に位置する部分15fの上、すなわち、ゲート電極15のうち、半導体基板12の外周に沿った部分15fの上に形成される。 In the example shown in FIG. 11, the wiring 39 is formed on a portion 15 e of the gate electrode 15 positioned around the electrode terminal 11 in a plan view. In the example shown in FIG. 12, the wiring 39 is on the portion 15 f of the gate electrode 15 located on the opposite side to the electrode terminal 11 side in plan view, that is, the outer periphery of the semiconductor substrate 12 in the gate electrode 15. Is formed on a portion 15f along the line.
 <半導体チップの第2変形例>
 次に、半導体チップの第2変形例について説明する。図13は、実施の形態1のパワーモジュールにおける半導体チップの第2変形例の平面図である。なお、図13では、理解を簡単にするために、電極端子11を除去して透視した状態を示しており、電極端子11の外周を二点鎖線により示している。
<Second Modification of Semiconductor Chip>
Next, a second modification of the semiconductor chip will be described. FIG. 13 is a plan view of a second modification of the semiconductor chip in the power module according to the first embodiment. In FIG. 13, for easy understanding, the electrode terminal 11 is removed and seen through, and the outer periphery of the electrode terminal 11 is indicated by a two-dot chain line.
 図13に示すように、本第2変形例の半導体チップでは、抵抗素子22が、平面視において電極端子11と重なる位置に形成されている。 As shown in FIG. 13, in the semiconductor chip of the second modified example, the resistance element 22 is formed at a position overlapping the electrode terminal 11 in plan view.
 抵抗素子22が、平面視において電極端子11と重なる位置に形成されることにより、例えばある方向に延在する抵抗素子22の長さを大きくすることができ、抵抗素子22の抵抗値を大きくすることができる。したがって、抵抗素子22の可変範囲をより大きくすることができる。なお、本第2変形例の半導体チップ6は、抵抗素子22として、互いに並列に接続された複数の抵抗素子22を有してもよい。 By forming the resistive element 22 at a position overlapping the electrode terminal 11 in plan view, for example, the length of the resistive element 22 extending in a certain direction can be increased, and the resistance value of the resistive element 22 is increased. be able to. Therefore, the variable range of the resistance element 22 can be further increased. Note that the semiconductor chip 6 of the second modified example may include a plurality of resistance elements 22 connected in parallel as the resistance elements 22.
 また、抵抗素子22が、平面視において電極端子11と重なるように形成されることにより、電極端子11の面積を大きくすることができる。したがって、電極端子11の抵抗値を小さくすることができる。 Moreover, the area of the electrode terminal 11 can be increased by forming the resistance element 22 so as to overlap the electrode terminal 11 in plan view. Therefore, the resistance value of the electrode terminal 11 can be reduced.
 なお、本第2変形例の半導体チップ6も、第1変形例の半導体チップ6と同様に、配線39を有してもよい。本第2変形例でも第1変形例と同様に、半導体基板12が平面視において四角形状を有し、電極端子11が、半導体基板12の4つの角部のうち、チップ群入力端子8に最も近い角部CR1上に形成される場合、配線39は、ゲート電極15のうち対角線DG1を挟んで互いに反対側に位置する2つの部分15aおよび15bを、電気的に接続する。 Note that the semiconductor chip 6 of the second modified example may also have the wiring 39 as in the semiconductor chip 6 of the first modified example. In the second modified example as well, as in the first modified example, the semiconductor substrate 12 has a quadrangular shape in plan view, and the electrode terminal 11 is the closest to the chip group input terminal 8 among the four corners of the semiconductor substrate 12. When formed on the near corner CR1, the wiring 39 electrically connects two portions 15a and 15b located on opposite sides of the gate electrode 15 with the diagonal line DG1 interposed therebetween.
 これにより、図13に示すように、下敷き導電膜17が、ゲート電極15のうち2つの部分15aおよび15bの一方のみと電気的に接続されている場合でも、これらの2つの部分15aおよび15bの各々と電極端子11との間の接続抵抗を互いに近づけるように調整することができる。したがって、電極端子11とゲート電極15との間の接続抵抗を、複数の半導体チップ6の間で互いに近づけるように調整することができるので、複数の半導体チップ6の各々のゲート電極15に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 Thus, as shown in FIG. 13, even when the underlying conductive film 17 is electrically connected to only one of the two portions 15a and 15b of the gate electrode 15, the two portions 15a and 15b The connection resistance between each and the electrode terminal 11 can be adjusted to be close to each other. Accordingly, since the connection resistance between the electrode terminal 11 and the gate electrode 15 can be adjusted so as to be close to each other between the plurality of semiconductor chips 6, the connection resistance is sent to each gate electrode 15 of the plurality of semiconductor chips 6. It is possible to prevent or suppress the disturbance of the input waveform of the gate signal.
 なお、配線39に含まれる導電膜40の電気抵抗率は、ゲート電極15に含まれる導電膜18の電気抵抗率よりも小さいことが好ましい。また、配線39は、配線39と平面視において重なるように形成されたプラグ39aを介して、ゲート電極15のうち2つの部分15aおよび15bの各々と電気的に接続される。一方、電極端子11は、プラグ39bを介して、下敷き導電膜17と電気的に接続される。 Note that the electrical resistivity of the conductive film 40 included in the wiring 39 is preferably smaller than the electrical resistivity of the conductive film 18 included in the gate electrode 15. Further, the wiring 39 is electrically connected to each of the two portions 15a and 15b of the gate electrode 15 through a plug 39a formed so as to overlap the wiring 39 in plan view. On the other hand, the electrode terminal 11 is electrically connected to the underlying conductive film 17 through the plug 39b.
 また、ゲート電極15が、平面視において、角部CR1を通る対角線DG1に対して線対称な形状を有する場合、好適には、配線39は、平面視において、角部CR1を通る対角線DG1に対して線対称な形状を有する。 In addition, when the gate electrode 15 has a shape symmetrical with respect to the diagonal line DG1 passing through the corner portion CR1 in plan view, the wiring 39 is preferably connected to the diagonal line DG1 passing through the corner portion CR1 in plan view. And have a line-symmetric shape.
 これにより、図13に示すように、下敷き導電膜17が、ゲート電極15のうち2つの部分15aおよび15bの一方のみと電気的に接続されている場合でも、これらの2つの部分15aおよび15bの各々と、電極端子11との間の接続抵抗を互いに近づけるように容易に調整することができる。したがって、電極端子11とゲート電極15との間の接続抵抗を、複数の半導体チップ6の間で互いに近づけるように容易に調整することができるので、複数の半導体チップ6の各々のゲート電極15に送られるゲート信号の入力波形が乱れることを、容易に防止または抑制することができる。 Thus, as shown in FIG. 13, even when the underlying conductive film 17 is electrically connected to only one of the two portions 15a and 15b of the gate electrode 15, the two portions 15a and 15b The connection resistance between each and the electrode terminal 11 can be easily adjusted to be close to each other. Accordingly, the connection resistance between the electrode terminal 11 and the gate electrode 15 can be easily adjusted so as to be close to each other between the plurality of semiconductor chips 6. It is possible to easily prevent or suppress the disturbance of the input waveform of the gate signal to be sent.
 <モジュール入力端子とゲート電極との間のインピーダンスについて>
 次に、モジュール入力端子とゲート電極との間のインピーダンスについて、比較例のパワーモジュールにおけるチップ群と比較しながら説明する。図14は、比較例のパワーモジュールにおけるチップ群の平面図である。
<Impedance between module input terminal and gate electrode>
Next, the impedance between the module input terminal and the gate electrode will be described in comparison with the chip group in the power module of the comparative example. FIG. 14 is a plan view of a chip group in the power module of the comparative example.
 図14に示すように、比較例のパワーモジュール101では、チップ群103は、複数の半導体チップ106と、チップ群入力端子108とを有する。チップ群入力端子108は、複数の半導体チップ106の各々の電極端子111に送られるゲート信号が、モジュール入力端子105から入力される入力端子である。 As shown in FIG. 14, in the power module 101 of the comparative example, the chip group 103 has a plurality of semiconductor chips 106 and a chip group input terminal 108. The chip group input terminal 108 is an input terminal through which a gate signal sent to each electrode terminal 111 of the plurality of semiconductor chips 106 is input from the module input terminal 105.
 図14に示すように、チップ群103に含まれる複数の半導体チップ106の各々は、半導体基板112と、スイッチング素子113と、電極端子111とを有する。スイッチング素子113は、半導体基板112上に形成されたゲート電極115を含む。 As shown in FIG. 14, each of the plurality of semiconductor chips 106 included in the chip group 103 includes a semiconductor substrate 112, a switching element 113, and an electrode terminal 111. The switching element 113 includes a gate electrode 115 formed on the semiconductor substrate 112.
 半導体基板112は、半導体基板112の主面としての上面の一部の領域であるゲートパッド領域AR101と、半導体基板112の主面としての上面の他の領域であるセルアレイ領域AR102とを有する。ゲートパッド領域AR101には、電極端子111が形成されている。セルアレイ領域AR102には、ゲート電極115が形成されている。 The semiconductor substrate 112 has a gate pad region AR101 that is a partial region of the upper surface as the main surface of the semiconductor substrate 112, and a cell array region AR102 that is another region of the upper surface as the main surface of the semiconductor substrate 112. An electrode terminal 111 is formed in the gate pad region AR101. A gate electrode 115 is formed in the cell array region AR102.
 比較例でも、実施の形態1と同様に、スイッチング素子113の両端に高電圧を印加した状態で大電流を流すため、半導体基板112は、炭化ケイ素(SiC)からなる。また、製造された半導体チップ106の製造歩留りを向上させるために、比較的小面積を有する半導体チップ106を複数並列に接続して、各半導体チップ106に設けられたスイッチング素子113に並列に電流を流す。これにより、パワーモジュール101に大電流を流すことができる。 Also in the comparative example, as in the first embodiment, the semiconductor substrate 112 is made of silicon carbide (SiC) in order to flow a large current with a high voltage applied to both ends of the switching element 113. In order to improve the manufacturing yield of the manufactured semiconductor chip 106, a plurality of semiconductor chips 106 having a relatively small area are connected in parallel, and a current is supplied in parallel to the switching element 113 provided in each semiconductor chip 106. Shed. As a result, a large current can flow through the power module 101.
 ところが、半導体チップ106に送られるゲート信号がパワーモジュール101に入力されるモジュール入力端子105と、半導体チップ106に設けられたスイッチング素子113のゲート電極115との間のインピーダンスを所望の値に調整することは困難である。そのため、半導体チップ106に送られるゲート信号の入力波形が乱れ、スイッチング素子113が誤動作するか、スイッチング素子113によるスイッチングの際に電力損失が発生するおそれがあり、電力変換装置の高速動作や小型化に不利となる。 However, the impedance between the module input terminal 105 to which the gate signal sent to the semiconductor chip 106 is input to the power module 101 and the gate electrode 115 of the switching element 113 provided in the semiconductor chip 106 is adjusted to a desired value. It is difficult. For this reason, the input waveform of the gate signal sent to the semiconductor chip 106 is disturbed, and the switching element 113 may malfunction or power loss may occur during switching by the switching element 113, so that the power converter can be operated at high speed or downsized. Disadvantageous.
 比較例では、複数の半導体チップ106は、x軸方向に配列されており、チップ群入力端子108は、チップ群103から離れた位置に設けられている。したがって、チップ群入力端子108は、平面視において、チップ群103と重なる位置には設けられていない。あるいは、比較例では、電極端子111は、半導体基板112の周縁部上に形成されているものの、半導体基板112のうちチップ群入力端子108側の周縁部上には形成されていない。 In the comparative example, the plurality of semiconductor chips 106 are arranged in the x-axis direction, and the chip group input terminal 108 is provided at a position away from the chip group 103. Therefore, the chip group input terminal 108 is not provided at a position overlapping the chip group 103 in plan view. Alternatively, in the comparative example, the electrode terminal 111 is formed on the peripheral portion of the semiconductor substrate 112, but is not formed on the peripheral portion of the semiconductor substrate 112 on the chip group input terminal 108 side.
 また、比較例では、図14に示すように、チップ群入力端子108と、複数の半導体チップ106の各々の電極端子111との間のインピーダンスR101が異なる。したがって、複数の半導体チップ106の各々の電極端子111に送られるゲート信号の入力波形が乱れるおそれがある。例えば、オフ状態からオン状態へのスイッチングの際の電圧の立ち上がり波形において振動、すなわちリンギングが発生するおそれがある。このように、ゲート信号の入力波形が乱れると、スイッチング素子113が誤動作するか、スイッチング素子113によるスイッチングの際に電力損失が発生するおそれがあり、電力変換装置の高速動作や小型化に不利となる。 Further, in the comparative example, as shown in FIG. 14, the impedance R101 between the chip group input terminal 108 and each electrode terminal 111 of the plurality of semiconductor chips 106 is different. Therefore, the input waveform of the gate signal sent to each electrode terminal 111 of the plurality of semiconductor chips 106 may be disturbed. For example, vibration, that is, ringing may occur in the rising waveform of the voltage when switching from the off state to the on state. As described above, if the input waveform of the gate signal is disturbed, the switching element 113 may malfunction or power loss may occur during switching by the switching element 113, which is disadvantageous for high-speed operation and miniaturization of the power conversion device. Become.
 このようなリンギングを防止するため、チップ群入力端子108と、モジュール入力端子105との間であって、チップ群103の外部に、外付けの抵抗素子R102を設け、チップ群入力端子108と、モジュール入力端子105とを、外付けの抵抗素子R102を介して電気的に接続することも考えられる。しかし、外付けの抵抗素子R102を用いた場合、例えばチップ群入力端子108に送られるゲート信号、すなわちゲート電圧の絶対値が小さくなることなどにより、各半導体チップ106に設けられたスイッチング素子113のスイッチング動作の安定性確保に不利となる。また、チップ群103の外部に、外付けの抵抗素子を設ける必要があり、パワーモジュールを小型化することができない。 In order to prevent such ringing, an external resistor element R102 is provided between the chip group input terminal 108 and the module input terminal 105 and outside the chip group 103, and the chip group input terminal 108, It is also conceivable to electrically connect the module input terminal 105 via an external resistor element R102. However, when the external resistor element R102 is used, for example, the gate signal sent to the chip group input terminal 108, that is, the absolute value of the gate voltage is reduced, and thus the switching element 113 provided in each semiconductor chip 106 is reduced. This is disadvantageous for ensuring the stability of the switching operation. Further, it is necessary to provide an external resistance element outside the chip group 103, and the power module cannot be reduced in size.
 <本実施の形態の主要な特徴と効果>
 一方、本実施の形態1のパワーモジュール1では、チップ群入力端子8は、平面視において、チップ群3と重なる位置に設けられている。また、電極端子11は、平面視において、半導体基板12の中心よりもチップ群入力端子8側に配置され、かつ、チップ群入力端子8と電気的に接続されている。
<Main features and effects of the present embodiment>
On the other hand, in the power module 1 according to the first embodiment, the chip group input terminal 8 is provided at a position overlapping the chip group 3 in plan view. In addition, the electrode terminal 11 is disposed closer to the chip group input terminal 8 than the center of the semiconductor substrate 12 in a plan view, and is electrically connected to the chip group input terminal 8.
 これにより、チップ群入力端子8と電極端子11との間のインピーダンスを、複数の半導体チップ6の間で互いに近づけるように調整することができる。そのため、複数の半導体チップ6の各々の電極端子11に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。例えば、オフ状態からオン状態へのスイッチングの際の電圧の立ち上がり波形において振動、すなわちリンギングが発生することを防止または抑制することができる。したがって、スイッチング素子13が誤動作するか、スイッチング素子13によるスイッチングの際に電力損失が発生することを防止または抑制することができる。 Thereby, the impedance between the chip group input terminal 8 and the electrode terminal 11 can be adjusted to be close to each other among the plurality of semiconductor chips 6. Therefore, the disturbance of the input waveform of the gate signal sent to each electrode terminal 11 of the plurality of semiconductor chips 6 can be prevented or suppressed. For example, it is possible to prevent or suppress the occurrence of vibration, that is, ringing, in the rising waveform of the voltage when switching from the off state to the on state. Therefore, it is possible to prevent or suppress the switching element 13 from malfunctioning or the occurrence of power loss during switching by the switching element 13.
 本実施の形態1では、前述したリンギングを防止する必要がないので、チップ群入力端子8と、モジュール入力端子5との間であって、チップ群3の外部に、外付けの抵抗素子を設ける必要がない。そのため、外付けの抵抗素子を用いた場合に、例えばチップ群入力端子8に送られるゲート信号、すなわちゲート電圧の絶対値が小さくなることを防止または抑制することができ、各半導体チップ6に設けられたスイッチング素子13のスイッチング動作の安定化に有利である。また、チップ群3の外部に、外付けの抵抗素子を設ける必要がないので、パワーモジュールを小型化することができる。 In the first embodiment, since it is not necessary to prevent the ringing described above, an external resistance element is provided between the chip group input terminal 8 and the module input terminal 5 and outside the chip group 3. There is no need. Therefore, when an external resistance element is used, for example, the gate signal sent to the chip group input terminal 8, that is, the absolute value of the gate voltage can be prevented or suppressed. This is advantageous in stabilizing the switching operation of the switching element 13. Further, since it is not necessary to provide an external resistance element outside the chip group 3, the power module can be reduced in size.
 あるいは、本実施の形態1のパワーモジュールでは、半導体チップ6は、半導体基板12上に形成された抵抗素子22を内蔵する。また、スイッチング素子13のゲート電極15と、電極端子11とは、抵抗素子22を介して電気的に接続されている。抵抗素子22の抵抗値を調整することにより、ゲート電極15と電極端子11との間のインピーダンスを、所望の値に調整することができる。したがって、半導体チップ6の電極端子11に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 Alternatively, in the power module according to the first embodiment, the semiconductor chip 6 includes the resistance element 22 formed on the semiconductor substrate 12. Further, the gate electrode 15 of the switching element 13 and the electrode terminal 11 are electrically connected via a resistance element 22. By adjusting the resistance value of the resistance element 22, the impedance between the gate electrode 15 and the electrode terminal 11 can be adjusted to a desired value. Therefore, it is possible to prevent or suppress the disturbance of the input waveform of the gate signal sent to the electrode terminal 11 of the semiconductor chip 6.
 また、半導体チップ6が抵抗素子22を内蔵する場合でも、前述したリンギングを防止する必要がないので、半導体チップ6の外部に、外付けの抵抗素子を設ける必要がない。そのため、外付けの抵抗素子を用いた場合に、例えばチップ群入力端子8に送られるゲート信号、すなわちゲート電圧の絶対値が小さくなることを防止または抑制することができ、各半導体チップ6に設けられたスイッチング素子13のスイッチング動作の安定化に有利である。また、半導体チップ6の外部に、外付けの抵抗素子を設ける必要がないので、パワーモジュールを小型化することができる。 Even when the semiconductor chip 6 includes the resistance element 22, it is not necessary to prevent the above-described ringing, so that it is not necessary to provide an external resistance element outside the semiconductor chip 6. Therefore, when an external resistance element is used, for example, the gate signal sent to the chip group input terminal 8, that is, the absolute value of the gate voltage can be prevented or suppressed. This is advantageous in stabilizing the switching operation of the switching element 13. Further, since it is not necessary to provide an external resistance element outside the semiconductor chip 6, the power module can be reduced in size.
 (実施の形態2)
 <電力変換装置>
 次に、本発明の実施の形態2の電力変換装置について説明する。実施の形態2の電力変換装置は、実施の形態1のパワーモジュールを備えたインバータである。
(Embodiment 2)
<Power conversion device>
Next, the power conversion device according to the second embodiment of the present invention will be described. The power converter of Embodiment 2 is an inverter provided with the power module of Embodiment 1.
 図15は、実施の形態2の電力変換装置の構成を示す図である。 FIG. 15 is a diagram illustrating a configuration of the power conversion device according to the second embodiment.
 図15に示すように、電力変換装置41は、実施の形態1のパワーモジュール1が備えられた三相インバータとしてのインバータ42と、モータ等の負荷43と、直流電源44と、コンデンサ等の容量45とを有する。負荷43は、インバータ42の出力側に接続されており、直流電源44および容量45は、インバータ42の入力側に接続されている。 As shown in FIG. 15, the power conversion device 41 includes an inverter 42 as a three-phase inverter provided with the power module 1 of the first embodiment, a load 43 such as a motor, a DC power supply 44, and a capacity such as a capacitor. 45. The load 43 is connected to the output side of the inverter 42, and the DC power supply 44 and the capacitor 45 are connected to the input side of the inverter 42.
 インバータ42は、ゲート駆動回路46u、46v、46w、46x、46yおよび46zと、スイッチング素子47u、47v、47w、47x、47yおよび47zとを備えている。 The inverter 42 includes gate drive circuits 46u, 46v, 46w, 46x, 46y and 46z, and switching elements 47u, 47v, 47w, 47x, 47y and 47z.
 インバータ42は、一対の直流の入力端子としてのドレインノードN1とソースノードN2とを備えている。スイッチング素子47uおよび47xは、ドレインノードN1とソースノードN2との間に、直列に接続されている。スイッチング素子47vおよび47yは、ドレインノードN1とソースノードN2との間に、直列に接続されている。スイッチング素子47wおよび47zは、ドレインノードN1とソースノードN2との間に、直列に接続されている。スイッチング素子47u、47vおよび47wは、上アーム側、すなわち高電圧側に配置されており、スイッチング素子47x、47yおよび47zは、下アーム側、すなわち低電圧側に配置されている。 The inverter 42 includes a drain node N1 and a source node N2 as a pair of DC input terminals. Switching elements 47u and 47x are connected in series between drain node N1 and source node N2. Switching elements 47v and 47y are connected in series between drain node N1 and source node N2. Switching elements 47w and 47z are connected in series between drain node N1 and source node N2. The switching elements 47u, 47v, and 47w are arranged on the upper arm side, that is, the high voltage side, and the switching elements 47x, 47y, and 47z are arranged on the lower arm side, that is, the low voltage side.
 インバータ42は、三相交流の出力端子として、U相の出力ノードN3と、V相の出力ノードN4と、W相の出力ノードN5とを備えている。出力ノードN3は、スイッチング素子47uのスイッチング素子47x側、および、スイッチング素子47xのスイッチング素子47u側に接続されている。出力ノードN4は、スイッチング素子47vのスイッチング素子47y側、および、スイッチング素子47yのスイッチング素子47v側に接続されている。出力ノードN5は、スイッチング素子47wのスイッチング素子47z側、および、スイッチング素子47zのスイッチング素子47w側に接続されている。したがって、スイッチング素子47uおよび47xは、U相用のスイッチング素子であり、スイッチング素子47vおよび47yは、V相用のスイッチング素子であり、スイッチング素子47wおよび47zは、W相用のスイッチング素子である。 The inverter 42 includes a U-phase output node N3, a V-phase output node N4, and a W-phase output node N5 as three-phase AC output terminals. The output node N3 is connected to the switching element 47x side of the switching element 47u and the switching element 47u side of the switching element 47x. The output node N4 is connected to the switching element 47y side of the switching element 47v and the switching element 47v side of the switching element 47y. The output node N5 is connected to the switching element 47z side of the switching element 47w and the switching element 47w side of the switching element 47z. Therefore, switching elements 47u and 47x are U-phase switching elements, switching elements 47v and 47y are V-phase switching elements, and switching elements 47w and 47z are W-phase switching elements.
 スイッチング素子47u、47v、47w、47x、47yおよび47zの各々は、MISFET48とボディダイオード49とを含む。そして、本実施の形態2では、スイッチング素子47u、47v、47w、47x、47yおよび47zの各々として、実施の形態1のパワーモジュール1(図1参照)を用いることができる。 Each of the switching elements 47u, 47v, 47w, 47x, 47y and 47z includes a MISFET 48 and a body diode 49. In the second embodiment, the power module 1 (see FIG. 1) according to the first embodiment can be used as each of the switching elements 47u, 47v, 47w, 47x, 47y, and 47z.
 このとき、モジュール入力端子5(図1参照)は、ゲート駆動回路46u、46v、46w、46x、46yおよび46zの各々と、スイッチング素子47u、47v、47w、47x、47yおよび47zのそれぞれとの間に位置することになる。また、MISFET48は、ドレイン電極31、半導体基板12、n型エピタキシャル層32、p型ボディ領域33、n型ソース領域34、p型ボディコンタクト領域35、ゲート絶縁膜としての絶縁膜16、ゲート電極15およびソース電極36により形成される縦型MOSFETである(図10参照)。さらに、ボディダイオード49は、ドレイン電極31、半導体基板12、n型エピタキシャル層32、p型ボディ領域33、p型ボディコンタクト領域35およびソース電極36により形成されるダイオードである(図10参照)。 At this time, the module input terminal 5 (see FIG. 1) is connected between each of the gate drive circuits 46u, 46v, 46w, 46x, 46y and 46z and each of the switching elements 47u, 47v, 47w, 47x, 47y and 47z. Will be located. The MISFET 48 includes a drain electrode 31, a semiconductor substrate 12, an n type epitaxial layer 32, a p type body region 33, an n + type source region 34, a p + type body contact region 35, an insulating film 16 as a gate insulating film, This is a vertical MOSFET formed by the gate electrode 15 and the source electrode 36 (see FIG. 10). Further, the body diode 49 is a diode formed by the drain electrode 31, the semiconductor substrate 12, the n type epitaxial layer 32, the p type body region 33, the p + type body contact region 35 and the source electrode 36 (see FIG. 10). ).
 ゲート駆動回路46uは、スイッチング素子47uのMISFET48のゲート電極に接続されており、スイッチング素子47uを駆動する。ゲート駆動回路46xは、スイッチング素子47xのMISFET48のゲート電極に接続されており、スイッチング素子47xを駆動する。ゲート駆動回路46vは、スイッチング素子47vのMISFET48のゲート電極に接続されており、スイッチング素子47vを駆動する。ゲート駆動回路46yは、スイッチング素子47yのMISFET48のゲート電極に接続されており、スイッチング素子47yを駆動する。ゲート駆動回路46wは、スイッチング素子47wのMISFET48のゲート電極に接続されており、スイッチング素子47wを駆動する。ゲート駆動回路46zは、スイッチング素子47zのMISFET48のゲート電極に接続されており、スイッチング素子47zを駆動する。 The gate drive circuit 46u is connected to the gate electrode of the MISFET 48 of the switching element 47u and drives the switching element 47u. The gate drive circuit 46x is connected to the gate electrode of the MISFET 48 of the switching element 47x, and drives the switching element 47x. The gate drive circuit 46v is connected to the gate electrode of the MISFET 48 of the switching element 47v and drives the switching element 47v. The gate drive circuit 46y is connected to the gate electrode of the MISFET 48 of the switching element 47y, and drives the switching element 47y. The gate drive circuit 46w is connected to the gate electrode of the MISFET 48 of the switching element 47w and drives the switching element 47w. The gate drive circuit 46z is connected to the gate electrode of the MISFET 48 of the switching element 47z, and drives the switching element 47z.
 インバータ42の入力側で、かつ、上アーム側に配置されたドレインノードN1には、インバータ42の上アーム側に設けられたスイッチング素子47u、47vおよび47wのそれぞれの一端が、接続されている。インバータ42の入力側で、かつ、下アーム側に配置されたソースノードN2には、インバータ42の下アーム側のスイッチング素子47x、47yおよび47zのそれぞれの一端が、接続されている。 One end of each of switching elements 47u, 47v and 47w provided on the upper arm side of the inverter 42 is connected to the drain node N1 arranged on the input side of the inverter 42 and on the upper arm side. One end of each of the switching elements 47x, 47y and 47z on the lower arm side of the inverter 42 is connected to the source node N2 arranged on the input side of the inverter 42 and on the lower arm side.
 ドレインノードN1とソースノードN2との間には、直流電源44と容量45とが、互いに並列に接続されている。したがって、ドレインノードN1とソースノードN2との間には、直流電源44により、電圧が印加されている。 Between the drain node N1 and the source node N2, a DC power supply 44 and a capacitor 45 are connected in parallel to each other. Therefore, a voltage is applied between the drain node N1 and the source node N2 by the DC power supply 44.
 ゲート駆動回路46u、46v、46w、46x、46yおよび46zの各々は、対応するスイッチング素子のオン状態とオフ状態とが予め設定されたタイミングで切り替わるように、スイッチング素子47u、47v、47w、47x、47yおよび47zのそれぞれを駆動する。これにより、直流信号である電圧から、位相がそれぞれ異なる三相、すなわちU相、V相およびW相の交流信号を生成する。すなわち、スイッチング素子47u、47v、47w、47x、47yおよび47zの各々において、オン状態とオフ状態とが切り替えられることで、電力が変換される。負荷43は、この三相の交流信号によって駆動される。 Each of the gate drive circuits 46u, 46v, 46w, 46x, 46y, and 46z has switching elements 47u, 47v, 47w, 47x, so that the ON state and the OFF state of the corresponding switching element are switched at a preset timing. Each of 47y and 47z is driven. Thus, three-phase AC signals having different phases, that is, U-phase, V-phase, and W-phase AC signals are generated from the voltage that is a DC signal. That is, in each of the switching elements 47u, 47v, 47w, 47x, 47y, and 47z, power is converted by switching between the on state and the off state. The load 43 is driven by the three-phase AC signal.
 前述したように、パワーモジュール1(図1参照)の内部には、ボディダイオード49が内蔵されており、逆並列のダイオード、すなわち還流ダイオードを用いなくても、ボディダイオード49を介して還流電流を流すことが可能である。したがって、実施の形態1のパワーモジュール1をスイッチング素子47u、47v、47w、47x、47yおよび47zの各々として備えたインバータ42を有する、本実施の形態2の電力変換装置41においては、必要な部品の数を削減することができ、電力変換装置41を容易に小型化することができる。 As described above, the body module 49 is built in the power module 1 (see FIG. 1), and the return current can be generated through the body diode 49 without using the antiparallel diode, that is, the return diode. It is possible to flow. Therefore, in power converter 41 of this Embodiment 2 which has inverter 42 provided with power module 1 of Embodiment 1 as each of switching elements 47u, 47v, 47w, 47x, 47y, and 47z, required parts Thus, the power converter 41 can be easily downsized.
 <本実施の形態の主要な特徴と効果>
 本実施の形態2の電力変換装置41に含まれるインバータ42におけるスイッチング素子47u、47v、47w、47x、47yおよび47zの各々として、実施の形態1のパワーモジュール1を用いることができる。実施の形態1のパワーモジュール1によれば、半導体チップに送られるゲート信号がパワーモジュールに入力される入力端子と、半導体チップに設けられたスイッチング素子のゲート電極との間のインピーダンスを所望の値に調整することができる。
<Main features and effects of the present embodiment>
The power module 1 of the first embodiment can be used as each of the switching elements 47u, 47v, 47w, 47x, 47y, and 47z in the inverter 42 included in the power conversion device 41 of the second embodiment. According to the power module 1 of the first embodiment, the impedance between the input terminal into which the gate signal sent to the semiconductor chip is input to the power module and the gate electrode of the switching element provided in the semiconductor chip is set to a desired value. Can be adjusted.
 そのため、半導体チップ6の各々の電極端子11(図1参照)に送られるゲート信号の入力波形が乱れることを防止または抑制することができ、インバータにおける電力変換の際の損失を小さくすることができるので、大型の冷却装置が設けられなくてもよい。したがって、冷却装置を小型化することなどにより、電力変換装置41を、容易に低コスト化、小型化または軽量化することができる。 Therefore, it is possible to prevent or suppress the disturbance of the input waveform of the gate signal sent to each electrode terminal 11 (see FIG. 1) of the semiconductor chip 6, and to reduce the loss during power conversion in the inverter. Therefore, a large cooling device may not be provided. Therefore, the power conversion device 41 can be easily reduced in cost, size, or weight by reducing the size of the cooling device.
 (実施の形態3)
 次に、本発明の実施の形態3の自動車について説明する。実施の形態3の自動車は、実施の形態2の電力変換装置を含む自動車であり、ハイブリッド車および電気自動車などの自動車である。
(Embodiment 3)
Next, an automobile according to Embodiment 3 of the present invention will be described. The automobile according to the third embodiment is an automobile including the power conversion device according to the second embodiment, and is an automobile such as a hybrid car and an electric car.
 図16は、実施の形態3の自動車としての電気自動車の構成を示す図である。図17は、実施の形態3の自動車における昇圧コンバータの一例を示す回路図である。 FIG. 16 is a diagram illustrating a configuration of an electric vehicle as a vehicle according to the third embodiment. FIG. 17 is a circuit diagram showing an example of a boost converter in the automobile of the third embodiment.
 図16に示すように、電気自動車としての自動車50は、駆動輪51aおよび駆動輪51bが接続された駆動軸52に動力を入出力可能とする三相モータ53と、三相モータ53を駆動するためのインバータ54と、バッテリ55と、を備える。また、自動車50は、昇圧コンバータ58と、リレー59と、電子制御ユニット60と、を備え、昇圧コンバータ58は、インバータ54が接続された電力ライン56と、バッテリ55が接続された電力ライン57とに接続されている。 As shown in FIG. 16, a vehicle 50 as an electric vehicle drives a three-phase motor 53 that allows power to be input / output to / from a drive shaft 52 to which a drive wheel 51a and a drive wheel 51b are connected, and a three-phase motor 53. An inverter 54 and a battery 55 are provided. The automobile 50 includes a boost converter 58, a relay 59, and an electronic control unit 60. The boost converter 58 includes a power line 56 to which an inverter 54 is connected, and a power line 57 to which a battery 55 is connected. It is connected to the.
 三相モータ53は、永久磁石が埋め込まれたロータと、三相コイルが巻回されたステータと、を備えた同期発電電動機である。インバータ54として、実施の形態2において説明したインバータ42(図15参照)を用いることができる。 The three-phase motor 53 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil. As the inverter 54, the inverter 42 (see FIG. 15) described in the second embodiment can be used.
 昇圧コンバータ58は、図17に示すように、インバータ63に、リアクトル61および平滑用コンデンサ62が接続された構成からなる。インバータ63は、実施の形態2において説明したインバータ42と同様であり、インバータ63内のスイッチング素子64およびボディダイオード65の構成も、実施の形態2において説明したスイッチング素子としてのMISFET48およびボディダイオード49の構成とそれぞれ同じである。 As shown in FIG. 17, the boost converter 58 has a configuration in which a reactor 61 and a smoothing capacitor 62 are connected to an inverter 63. The inverter 63 is the same as the inverter 42 described in the second embodiment, and the configuration of the switching element 64 and the body diode 65 in the inverter 63 is the same as that of the MISFET 48 and the body diode 49 as the switching elements described in the second embodiment. Each is the same as the configuration.
 電子制御ユニット60は、マイクロプロセッサと、記憶装置と、入出力ポートと、を備えており、三相モータ53のロータ位置を検出するセンサからの信号、またはバッテリ55の充放電値などを受信する。そして、電子制御ユニット60は、インバータ54、昇圧コンバータ58、およびリレー59を制御するための信号を出力する。 The electronic control unit 60 includes a microprocessor, a storage device, and an input / output port, and receives a signal from a sensor that detects the rotor position of the three-phase motor 53, a charge / discharge value of the battery 55, and the like. . Electronic control unit 60 then outputs a signal for controlling inverter 54, boost converter 58, and relay 59.
 <本実施の形態の主要な特徴と効果>
 本実施の形態3の自動車50のインバータ54として、実施の形態2の電力変換装置41に含まれるインバータ42(図15参照)を用いることができる。インバータ42に備えられたスイッチング素子47u、47v、47w、47x、47yおよび47zの各々として、実施の形態1のパワーモジュール1(図1参照)を用いることができる。あるいは、本実施の形態3の自動車50の昇圧コンバータ58内のインバータ63に備えられたスイッチング素子64およびボディダイオード65として、実施の形態1のパワーモジュール1を用いることができる。
<Main features and effects of the present embodiment>
As the inverter 54 of the automobile 50 of the third embodiment, the inverter 42 (see FIG. 15) included in the power conversion device 41 of the second embodiment can be used. As each of the switching elements 47u, 47v, 47w, 47x, 47y, and 47z provided in the inverter 42, the power module 1 (see FIG. 1) of the first embodiment can be used. Alternatively, power module 1 of the first embodiment can be used as switching element 64 and body diode 65 provided in inverter 63 in boost converter 58 of automobile 50 of the third embodiment.
 実施の形態1のパワーモジュール1によれば、半導体チップに送られるゲート信号がパワーモジュールに入力される入力端子と、半導体チップに設けられたスイッチング素子のゲート電極との間のインピーダンスを所望の値に調整することができる。これにより、半導体チップ6の各々の電極端子11(図1参照)に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 According to the power module 1 of the first embodiment, the impedance between the input terminal into which the gate signal sent to the semiconductor chip is input to the power module and the gate electrode of the switching element provided in the semiconductor chip is set to a desired value. Can be adjusted. Thereby, it can prevent or suppress that the input waveform of the gate signal sent to each electrode terminal 11 (refer to Drawing 1) of semiconductor chip 6 is disturbed.
 そのため、本実施の形態3の自動車50では、インバータ54および昇圧コンバータ58における電力変換の際の損失を小さくすることができるので、大型の冷却装置が設けられなくてもよい。したがって、冷却装置を小型化することなどにより、インバータ54および昇圧コンバータ58を、容易に低コスト化、小型化または軽量化することができる。これにより、電気自動車としての自動車50に占める駆動系の容積を低減することができ、電気自動車としての自動車50を、容易に低コスト化、小型化または軽量化することができる。あるいは、この電気自動車としての自動車50の室内を広くすることができるなど、電気自動車としての自動車50における設計の自由度を高めることができる。 Therefore, in the automobile 50 according to the third embodiment, the loss at the time of power conversion in the inverter 54 and the boost converter 58 can be reduced, so that a large cooling device may not be provided. Therefore, by reducing the size of the cooling device, the inverter 54 and the boost converter 58 can be easily reduced in cost, size, or weight. As a result, the volume of the drive system occupying the vehicle 50 as an electric vehicle can be reduced, and the vehicle 50 as an electric vehicle can be easily reduced in cost, size, or weight. Alternatively, the degree of freedom in design of the vehicle 50 as an electric vehicle can be increased, for example, the interior of the vehicle 50 as the electric vehicle can be widened.
 なお、本実施の形態3では、実施の形態2の電力変換装置を含む自動車を、電気自動車に適用した例について説明した。しかし、実施の形態2の電力変換装置を含む自動車を、エンジンも併用するハイブリッド自動車にも同様に適用することができる。また、実施の形態2の電力変換装置を適用したハイブリッド自動車も、実施の形態2の電力変換装置を適用した電気自動車と同様の効果を有する。 In addition, in this Embodiment 3, the example which applied the motor vehicle containing the power converter device of Embodiment 2 to the electric vehicle was demonstrated. However, the vehicle including the power conversion device of the second embodiment can be similarly applied to a hybrid vehicle that also uses an engine. The hybrid vehicle to which the power conversion device of the second embodiment is applied also has the same effect as the electric vehicle to which the power conversion device of the second embodiment is applied.
 (実施の形態4)
 <鉄道車両>
 次に、本発明の実施の形態4の鉄道車両について説明する。実施の形態4の鉄道車両は、実施の形態2の電力変換装置を含む鉄道車両である。
(Embodiment 4)
<Railway vehicle>
Next, a railway vehicle according to the fourth embodiment of the present invention will be described. The railway vehicle according to the fourth embodiment is a railway vehicle including the power conversion device according to the second embodiment.
 図18は、実施の形態4の鉄道車両の構成を示す図である。 FIG. 18 is a diagram illustrating a configuration of the railway vehicle according to the fourth embodiment.
 図18に示すように、鉄道車両70は、集電装置としてのパンタグラフ71と、変圧器72と、電力変換装置73と、交流電動機である負荷74と、車輪75とを含む。電力変換装置73は、コンバータ76と、例えばコンデンサである容量77と、インバータ78とを有する。 As shown in FIG. 18, the railway vehicle 70 includes a pantograph 71 as a current collector, a transformer 72, a power converter 73, a load 74 that is an AC motor, and wheels 75. The power conversion device 73 includes a converter 76, a capacitor 77 that is, for example, a capacitor, and an inverter 78.
 コンバータ76は、スイッチング素子79および80を有する。スイッチング素子79は、上アーム側、すなわち高電圧側に配置されており、スイッチング素子80は、下アーム側、すなわち低電圧側に配置されている。なお、図18では、スイッチング素子79および80については、複数相のうち一相について示している。 Converter 76 has switching elements 79 and 80. The switching element 79 is disposed on the upper arm side, that is, the high voltage side, and the switching element 80 is disposed on the lower arm side, that is, the low voltage side. In FIG. 18, switching elements 79 and 80 are shown for one phase among a plurality of phases.
 インバータ78は、スイッチング素子81および82を有する。スイッチング素子81は、上アーム側、すなわち高電圧側に配置されており、スイッチング素子82は、下アーム側、すなわち低電圧側に配置されている。なお、図18では、スイッチング素子81および82については、U相、V相およびW相の三相のうち一相について示している。 The inverter 78 has switching elements 81 and 82. The switching element 81 is disposed on the upper arm side, that is, the high voltage side, and the switching element 82 is disposed on the lower arm side, that is, the low voltage side. In FIG. 18, the switching elements 81 and 82 are shown for one of the three phases U phase, V phase, and W phase.
 変圧器72の一次側の一端は、パンタグラフ71を介して架線71aに接続されている。変圧器72の一次側の他端は、車輪75を介して線路75aに接続されている。変圧器72の二次側の一端は、コンバータ76の負荷74と反対側であって上アーム側の端子に接続されている。変圧器72の二次側の他端は、コンバータ76の負荷74と反対側であって下アーム側の端子に接続されている。 One end of the primary side of the transformer 72 is connected to the overhead line 71 a via the pantograph 71. The other end of the primary side of the transformer 72 is connected to the track 75 a via the wheel 75. One end of the secondary side of the transformer 72 is connected to a terminal on the upper arm side opposite to the load 74 of the converter 76. The other end of the secondary side of the transformer 72 is connected to a terminal on the lower arm side opposite to the load 74 of the converter 76.
 コンバータ76の負荷74側であって上アーム側の端子は、インバータ78の負荷74と反対側であって上アーム側の端子に接続されている。また、コンバータ76の負荷74側であって下アーム側の端子は、インバータ78の負荷74と反対側であって下アーム側の端子に接続されている。さらに、インバータ78の負荷74と反対側であって上アーム側の端子と、インバータ78の負荷74と反対側であって下アーム側の端子との間に、容量77が接続されている。また、図18では図示を省略するが、インバータ78の出力側の3つの端子の各々は、U相、V相およびW相のそれぞれとして、負荷74に接続されている。 The terminal on the load 74 side and upper arm side of the converter 76 is connected to the terminal on the upper arm side opposite to the load 74 of the inverter 78. Further, the terminal on the load 74 side and the lower arm side of the converter 76 is connected to the terminal on the lower arm side opposite to the load 74 of the inverter 78. Further, a capacitor 77 is connected between a terminal on the side opposite to the load 74 of the inverter 78 on the upper arm side and a terminal on the side opposite to the load 74 of the inverter 78 and on the lower arm side. Although not shown in FIG. 18, each of the three terminals on the output side of the inverter 78 is connected to the load 74 as a U phase, a V phase, and a W phase.
 本実施の形態4では、インバータ78として、実施の形態2の電力変換装置41に含まれるインバータ42(図15参照)を用いることができる。すなわち本実施の形態4の鉄道車両70は、電力変換装置として、実施の形態2におけるインバータ42(図15参照)を含む。 In this Embodiment 4, the inverter 42 (refer FIG. 15) contained in the power converter device 41 of Embodiment 2 can be used as the inverter 78. FIG. That is, railway vehicle 70 of the fourth embodiment includes inverter 42 (see FIG. 15) in the second embodiment as a power conversion device.
 架線71aからパンタグラフ71により集電された交流電力は、その電圧が変圧器72によって変圧された後、コンバータ76により所望の直流電力に変換される。コンバータ76により変換された直流電力は、その電圧が容量77により平滑化される。容量77により電圧が平滑化された直流電力は、インバータ78により交流電力に変換される。インバータ78により変換された交流電力は、負荷74に供給される。交流電力が供給された負荷74が車輪75を回転駆動することで、鉄道車両が加速される。 The AC power collected from the overhead line 71 a by the pantograph 71 is transformed into desired DC power by the converter 76 after the voltage is transformed by the transformer 72. The DC power converted by the converter 76 is smoothed by the capacitor 77. The DC power whose voltage has been smoothed by the capacitor 77 is converted into AC power by the inverter 78. The AC power converted by the inverter 78 is supplied to the load 74. The load 74 supplied with AC power drives the wheel 75 to rotate, thereby accelerating the railway vehicle.
 <本実施の形態の主要な特徴と効果>
 本実施の形態4の鉄道車両70のインバータ78として、実施の形態2の電力変換装置41に含まれるインバータ42(図15参照)を用いることができる。インバータ42に備えられたスイッチング素子47u、47v、47w、47x、47yおよび47zの各々として、実施の形態1のパワーモジュール1(図1参照)が備えられている。
<Main features and effects of the present embodiment>
As the inverter 78 of the railway vehicle 70 of the fourth embodiment, the inverter 42 (see FIG. 15) included in the power conversion device 41 of the second embodiment can be used. As each of the switching elements 47u, 47v, 47w, 47x, 47y, and 47z provided in the inverter 42, the power module 1 (see FIG. 1) of the first embodiment is provided.
 実施の形態1のパワーモジュール1によれば、半導体チップに送られるゲート信号がパワーモジュールに入力される入力端子と、半導体チップに設けられたスイッチング素子のゲート電極との間のインピーダンスを所望の値に調整することができる。これにより、半導体チップ6の各々の電極端子11(図1参照)に送られるゲート信号の入力波形が乱れることを防止または抑制することができる。 According to the power module 1 of the first embodiment, the impedance between the input terminal into which the gate signal sent to the semiconductor chip is input to the power module and the gate electrode of the switching element provided in the semiconductor chip is set to a desired value. Can be adjusted. Thereby, it can prevent or suppress that the input waveform of the gate signal sent to each electrode terminal 11 (refer to Drawing 1) of semiconductor chip 6 is disturbed.
 そのため、本実施の形態4の鉄道車両70では、インバータ78における電力変換の際の損失を小さくすることができるので、大型の冷却装置が設けられなくてもよい。したがって、冷却装置を小型化することなどにより、インバータ78を、容易に低コスト化、小型化または軽量化することができる。よって、このインバータ78を含む鉄道車両70を、容易に低コスト化し、鉄道を運行する際のエネルギー効率を向上させることができる。 Therefore, in the railway vehicle 70 according to the fourth embodiment, since the loss at the time of power conversion in the inverter 78 can be reduced, a large cooling device may not be provided. Therefore, the inverter 78 can be easily reduced in cost, size, or weight by reducing the size of the cooling device. Therefore, the cost of the railway vehicle 70 including the inverter 78 can be easily reduced, and the energy efficiency when operating the railway can be improved.
 あるいは、コンバータ76において、スイッチング素子79および80として、実施の形態1のパワーモジュール1(図1参照)が備えられてもよい。この場合にも、コンバータ76における電力変換の際の損失を小さくすることができるので、コンバータ76を、容易に低コスト化、小型化または軽量化することができる。よって、このコンバータ76を含む鉄道車両70を、容易に低コスト化し、鉄道を運行する際のエネルギー効率を向上させることができる。 Alternatively, the converter 76 may include the power module 1 (see FIG. 1) of the first embodiment as the switching elements 79 and 80. Also in this case, since the loss at the time of power conversion in the converter 76 can be reduced, the converter 76 can be easily reduced in cost, size, or weight. Therefore, it is possible to easily reduce the cost of the railway vehicle 70 including the converter 76 and improve the energy efficiency when operating the railway.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、パワーモジュールおよび電力変換装置に適用して有効である。 The present invention is effective when applied to a power module and a power converter.
 1 パワーモジュール
 2 下部基板
 3、3a~3d チップ群
 4 上部基板
 5 モジュール入力端子
 6、6a~6d 半導体チップ
 7 チップモジュール
 8 チップ群入力端子
 9、10 接続部材
11 電極端子
12 半導体基板
13 スイッチング素子
15 ゲート電極
15a、15b、15e、15f 部分
15c、15d 延在部
16 絶縁膜
17 下敷き導電膜
18 導電膜
19 層間絶縁膜
19a ソースコンタクト孔
20 開口部
21、23、40 導電膜
22 抵抗素子
31 ドレイン電極
32 n型エピタキシャル層
33 p型ボディ領域
34 n型ソース領域
35 p型ボディコンタクト領域
36 ソース電極
37 JFET領域
38 チャネル領域
39 配線
39a、39b プラグ
41 電力変換装置
42 インバータ
43 負荷
44 直流電源
45 容量
46u、46v、46w、46x、46y、46z ゲート駆動回路
47u、47v、47w、47x、47y、47z スイッチング素子
48 MISFET
49 ボディダイオード
50 自動車
51a、51b 駆動輪
52 駆動軸
53 三相モータ
54 インバータ
55 バッテリ
56、57 電力ライン
58 昇圧コンバータ
59 リレー
60 電子制御ユニット
61 リアクトル
62 平滑用コンデンサ
63 インバータ
64 スイッチング素子
65 ボディダイオード
70 鉄道車両
71 パンタグラフ
71a 架線
72 変圧器
73 電力変換装置
74 負荷
75 車輪
75a 線路
76 コンバータ
77 容量
78 インバータ
79~82 スイッチング素子
AR1 ゲートパッド領域
AR2 セルアレイ領域
AR3 領域
CP1、CP2 中心
CR1 角部
DG1 対角線
EP1、EP2 周縁部
LN1~LN5 直線
N1 ドレインノード
N2 ソースノード
N3~N5 出力ノード
DESCRIPTION OF SYMBOLS 1 Power module 2 Lower substrate 3, 3a-3d Chip group 4 Upper substrate 5 Module input terminal 6, 6a-6d Semiconductor chip 7 Chip module 8 Chip group input terminal 9, 10 Connection member 11 Electrode terminal 12 Semiconductor substrate 13 Switching element 15 Gate electrodes 15a, 15b, 15e, 15f Parts 15c, 15d Extension part 16 Insulating film 17 Underlying conductive film 18 Conductive film 19 Interlayer insulating film 19a Source contact hole 20 Openings 21, 23, 40 Conductive film 22 Resistance element 31 Drain electrode 32 n type epitaxial layer 33 p type body region 34 n + type source region 35 p + type body contact region 36 source electrode 37 JFET region 38 channel region 39 wiring 39a, 39b plug 41 power conversion device 42 inverter 43 load 44 DC power supply 45 capacity 4 6u, 46v, 46w, 46x, 46y, 46z Gate drive circuit 47u, 47v, 47w, 47x, 47y, 47z Switching element 48 MISFET
49 Body Diode 50 Automobile 51a, 51b Drive Wheel 52 Drive Shaft 53 Three-Phase Motor 54 Inverter 55 Battery 56, 57 Power Line 58 Boost Converter 59 Relay 60 Electronic Control Unit 61 Reactor 62 Smoothing Capacitor 63 Inverter 64 Switching Element 65 Body Diode 70 Railway vehicle 71 Pantograph 71a Overhead line 72 Transformer 73 Power converter 74 Load 75 Wheel 75a Line 76 Converter 77 Capacity 78 Inverter 79 to 82 Switching element AR1 Gate pad area AR2 Cell array area AR3 Area CP1, CP2 Center CR1 Corner portion DG1 Diagonal line EP1, EP2 Peripheral LN1 to LN5 Straight line N1 Drain node N2 Source node N3 to N5 Output node

Claims (15)

  1.  第1基板と、
     前記第1基板上に設けられた複数の半導体チップからなるチップ群と、
     前記チップ群に送られる信号が入力される第1入力端子と、
     を備え、
     前記複数の半導体チップは、平面視において、互いに間隔を空けて配置され、
     前記第1入力端子は、平面視において、前記チップ群と重なる位置に設けられ、
     前記複数の半導体チップの各々は、
     半導体基板と、
     前記半導体基板上に形成されたゲート電極を含むスイッチング素子と、
     前記半導体基板上に形成され、前記ゲート電極と電気的に接続された電極端子と、
     を有し、
     前記電極端子は、平面視において、前記半導体基板の中心よりも前記第1入力端子側に配置され、かつ、前記第1入力端子と電気的に接続されている、パワーモジュール。
    A first substrate;
    A chip group composed of a plurality of semiconductor chips provided on the first substrate;
    A first input terminal to which a signal sent to the chip group is input;
    With
    The plurality of semiconductor chips are arranged at intervals from each other in plan view,
    The first input terminal is provided at a position overlapping the chip group in plan view,
    Each of the plurality of semiconductor chips is
    A semiconductor substrate;
    A switching element including a gate electrode formed on the semiconductor substrate;
    An electrode terminal formed on the semiconductor substrate and electrically connected to the gate electrode;
    Have
    The power module, wherein the electrode terminal is disposed closer to the first input terminal than the center of the semiconductor substrate in a plan view and is electrically connected to the first input terminal.
  2.  請求項1記載のパワーモジュールにおいて、
     前記チップ群上に設けられた第2基板を備え、
     前記第1入力端子は、前記第2基板の下面に形成されている、パワーモジュール。
    The power module according to claim 1,
    A second substrate provided on the chip group;
    The first input terminal is a power module formed on a lower surface of the second substrate.
  3.  請求項1記載のパワーモジュールにおいて、
     前記複数の半導体チップの各々は、前記半導体基板上に形成された複数の抵抗素子を有し、
     前記複数の抵抗素子は、互いに並列に接続され、
     前記ゲート電極と前記電極端子とは、前記複数の抵抗素子を介して電気的に接続されている、パワーモジュール。
    The power module according to claim 1,
    Each of the plurality of semiconductor chips has a plurality of resistance elements formed on the semiconductor substrate,
    The plurality of resistance elements are connected in parallel to each other,
    The power module, wherein the gate electrode and the electrode terminal are electrically connected via the plurality of resistance elements.
  4.  請求項1記載のパワーモジュールにおいて、
     前記半導体基板は、平面視において四角形状を有し、
     前記電極端子は、前記半導体基板の4つの角部のうち、前記第1入力端子に最も近い第1角部に形成され、
     前記ゲート電極は、平面視において、前記第1角部を通る対角線に対して線対称な形状を有する、パワーモジュール。
    The power module according to claim 1,
    The semiconductor substrate has a quadrangular shape in plan view,
    The electrode terminal is formed at a first corner closest to the first input terminal among the four corners of the semiconductor substrate,
    The power module, wherein the gate electrode has a shape symmetrical with respect to a diagonal line passing through the first corner when viewed in a plan view.
  5.  請求項1記載のパワーモジュールにおいて、
     前記複数の半導体チップのうちいずれか2つの半導体チップは、平面視において、前記第1入力端子の中心に対して互いに点対称に配置されるか、または、前記第1入力端子の中心を通る第1直線に対して互いに線対称に配置されている、パワーモジュール。
    The power module according to claim 1,
    Any two of the plurality of semiconductor chips are arranged point-symmetrically with respect to the center of the first input terminal in plan view, or pass through the center of the first input terminal. A power module arranged symmetrically with respect to one straight line.
  6.  請求項1記載のパワーモジュールにおいて、
     前記複数の半導体チップとしての第1半導体チップ、第2半導体チップ、第3半導体チップおよび第4半導体チップからなる前記チップ群を備え、
     前記第1半導体チップ、前記第2半導体チップ、前記第3半導体チップおよび前記第4半導体チップは、平面視において、第1方向および前記第1方向に交差する第2方向にマトリクス状に配置され、
     前記第1入力端子は、平面視において、前記チップ群の中央部と重なる位置に設けられている、パワーモジュール。
    The power module according to claim 1,
    A chip group comprising a first semiconductor chip, a second semiconductor chip, a third semiconductor chip, and a fourth semiconductor chip as the plurality of semiconductor chips;
    The first semiconductor chip, the second semiconductor chip, the third semiconductor chip, and the fourth semiconductor chip are arranged in a matrix in a first direction and a second direction that intersects the first direction in plan view,
    The first input terminal is a power module provided at a position overlapping a central portion of the chip group in plan view.
  7.  請求項6記載のパワーモジュールにおいて、
     前記第1半導体チップと前記第2半導体チップとは、平面視において、前記第1入力端子の中心を通って前記第1方向に延在する第2直線に対して互いに線対称に配置され、
     前記第1半導体チップと前記第3半導体チップとは、平面視において、前記第1入力端子の中心を通って、前記第1方向と直交する前記第2方向に延在する第3直線に対して互いに線対称に配置され、
     前記第3半導体チップと前記第4半導体チップとは、平面視において、前記第2直線に対して互いに線対称に配置されている、パワーモジュール。
    The power module according to claim 6, wherein
    The first semiconductor chip and the second semiconductor chip are arranged symmetrically with respect to a second straight line extending in the first direction through the center of the first input terminal in plan view,
    The first semiconductor chip and the third semiconductor chip pass through a center of the first input terminal in a plan view with respect to a third straight line extending in the second direction orthogonal to the first direction. Arranged in line symmetry with each other,
    The power module, wherein the third semiconductor chip and the fourth semiconductor chip are arranged symmetrically with respect to the second straight line in plan view.
  8.  請求項2記載のパワーモジュールにおいて、
     複数の前記チップ群と、
     複数の前記第1入力端子と、
     前記複数の第1入力端子に送られる信号が入力される第2入力端子と、
     前記複数の第1入力端子と、前記第2入力端子とを電気的に接続する接続部材と、
     を備え、
     前記複数のチップ群は、平面視において、互いに間隔を空けて配置され、
     前記複数のチップ群により、チップモジュールが形成され、
     前記複数の第1入力端子は、平面視において、前記複数のチップ群の各々の中央部と重なる位置にそれぞれ設けられ、
     前記第2入力端子は、平面視において、前記チップモジュールの中央部と重なる位置に設けられ、
     前記第2基板は、前記チップモジュール上に設けられ、
     前記第2入力端子および前記接続部材は、前記第2基板の下面に形成されている、パワーモジュール。
    The power module according to claim 2, wherein
    A plurality of the chip groups;
    A plurality of the first input terminals;
    A second input terminal to which a signal sent to the plurality of first input terminals is input;
    A connecting member for electrically connecting the plurality of first input terminals and the second input terminal;
    With
    The plurality of chip groups are arranged spaced apart from each other in plan view,
    A chip module is formed by the plurality of chip groups,
    The plurality of first input terminals are respectively provided at positions overlapping with central portions of the plurality of chip groups in plan view,
    The second input terminal is provided at a position overlapping the central portion of the chip module in plan view,
    The second substrate is provided on the chip module;
    The power module, wherein the second input terminal and the connection member are formed on a lower surface of the second substrate.
  9.  請求項8記載のパワーモジュールにおいて、
     前記複数のチップ群としての第1チップ群、第2チップ群、第3チップ群および第4チップ群を備え、
     前記第1チップ群、前記第2チップ群、前記第3チップ群および前記第4チップ群は、平面視において、第3方向および前記第3方向に交差する第4方向にマトリクス状に配置されている、パワーモジュール。
    The power module according to claim 8, wherein
    The first chip group, the second chip group, the third chip group and the fourth chip group as the plurality of chip groups,
    The first chip group, the second chip group, the third chip group, and the fourth chip group are arranged in a matrix in a fourth direction that intersects the third direction and the third direction in plan view. The power module.
  10.  請求項9記載のパワーモジュールにおいて、
     前記第1チップ群と前記第2チップ群とは、平面視において、前記第2入力端子の中心を通って前記第3方向に延在する第4直線に対して互いに線対称に配置され、
     前記第1チップ群と前記第3チップ群とは、平面視において、前記第2入力端子の中心を通って、前記第3方向と直交する前記第4方向に延在する第5直線に対して互いに線対称に配置され、
     前記第3チップ群と前記第4チップ群とは、平面視において、前記第4直線に対して互いに線対称に配置されている、パワーモジュール。
    The power module according to claim 9, wherein
    The first chip group and the second chip group are arranged symmetrically with respect to a fourth straight line extending in the third direction through the center of the second input terminal in plan view,
    The first chip group and the third chip group pass through the center of the second input terminal in a plan view with respect to a fifth straight line extending in the fourth direction orthogonal to the third direction. Arranged in line symmetry with each other,
    The power module, wherein the third chip group and the fourth chip group are arranged symmetrically with respect to the fourth straight line in plan view.
  11.  請求項4記載のパワーモジュールにおいて、
     前記複数の半導体チップの各々は、前記ゲート電極上に形成され、前記ゲート電極のうち前記対角線を挟んで反対側に配置された2つの部分を電気的に接続する配線を有する、パワーモジュール。
    The power module according to claim 4, wherein
    Each of the plurality of semiconductor chips includes a wiring formed on the gate electrode and electrically connecting two portions of the gate electrode that are arranged on the opposite side across the diagonal line.
  12.  請求項1記載のパワーモジュールにおいて、
     前記半導体基板は、炭化ケイ素からなり、
     前記スイッチング素子は、縦型MOSFETである、パワーモジュール。
    The power module according to claim 1,
    The semiconductor substrate is made of silicon carbide,
    The power module, wherein the switching element is a vertical MOSFET.
  13.  請求項1記載のパワーモジュールを備えた電力変換装置。 A power conversion device comprising the power module according to claim 1.
  14.  半導体基板と、
     前記半導体基板上に形成されたゲート電極を含むスイッチング素子と、
     前記半導体基板上に形成され、前記ゲート電極と電気的に接続された電極端子と、
     前記半導体基板上に形成された抵抗素子と、
     を有し、
     前記ゲート電極と前記電極端子とは、前記抵抗素子を介して電気的に接続されている、パワーモジュール。
    A semiconductor substrate;
    A switching element including a gate electrode formed on the semiconductor substrate;
    An electrode terminal formed on the semiconductor substrate and electrically connected to the gate electrode;
    A resistance element formed on the semiconductor substrate;
    Have
    The power module, wherein the gate electrode and the electrode terminal are electrically connected via the resistance element.
  15.  請求項14記載のパワーモジュールにおいて、
     前記半導体基板は、平面視において四角形状を有し、
     前記電極端子は、前記半導体基板の4つの角部のうちの第1角部に形成され、
     前記ゲート電極は、平面視において、前記第1角部を通る対角線に対して線対称な形状を有し、
     前記パワーモジュールは、さらに、前記ゲート電極上に形成され、前記ゲート電極のうち前記対角線を挟んで反対側に配置された2つの部分を電気的に接続する配線を有する、パワーモジュール。
     
    The power module according to claim 14, wherein
    The semiconductor substrate has a quadrangular shape in plan view,
    The electrode terminal is formed at a first corner of the four corners of the semiconductor substrate,
    The gate electrode has a shape that is line symmetric with respect to a diagonal line passing through the first corner in a plan view;
    The power module further includes a wiring that is formed on the gate electrode and electrically connects two portions of the gate electrode that are arranged on the opposite side across the diagonal line.
PCT/JP2014/054757 2014-02-26 2014-02-26 Power module and power conversion device WO2015128975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054757 WO2015128975A1 (en) 2014-02-26 2014-02-26 Power module and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054757 WO2015128975A1 (en) 2014-02-26 2014-02-26 Power module and power conversion device

Publications (1)

Publication Number Publication Date
WO2015128975A1 true WO2015128975A1 (en) 2015-09-03

Family

ID=54008344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054757 WO2015128975A1 (en) 2014-02-26 2014-02-26 Power module and power conversion device

Country Status (1)

Country Link
WO (1) WO2015128975A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029748A1 (en) * 2015-08-20 2017-02-23 株式会社日立製作所 Semiconductor device, power module, power converter, vehicle, and train carriage
WO2017042963A1 (en) * 2015-09-11 2017-03-16 株式会社日立製作所 Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle
JP2017126604A (en) * 2016-01-12 2017-07-20 株式会社東芝 Semiconductor device, method of manufacturing the same, inverter circuit, drive device, vehicle, and elevator
WO2022038831A1 (en) * 2020-08-18 2022-02-24 株式会社日立パワーデバイス Power semiconductor module and power converter
CN115148709A (en) * 2022-06-28 2022-10-04 爱微(江苏)电力电子有限公司 Power module for electronic initial charging of battery pack and method for manufacturing same
WO2022264733A1 (en) * 2021-06-16 2022-12-22 株式会社デンソー Semiconductor device
US11728251B2 (en) 2019-10-29 2023-08-15 Mitsubishi Electric Corporation Semiconductor power module with temperature sensors and shaped top plate to equalize current paths
EP4297087A1 (en) * 2022-06-24 2023-12-27 Airbus S.A.S. Power electronic module with parallely connected power electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280475A (en) * 1991-03-08 1992-10-06 Fuji Electric Co Ltd Semiconductor switching device
JP2002246599A (en) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp Field effect semiconductor device and its manufacturing method
JP2006332182A (en) * 2005-05-24 2006-12-07 Denso Corp Insulation gate type bipolar transistor
JP2009135414A (en) * 2007-11-07 2009-06-18 Denso Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280475A (en) * 1991-03-08 1992-10-06 Fuji Electric Co Ltd Semiconductor switching device
JP2002246599A (en) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp Field effect semiconductor device and its manufacturing method
JP2006332182A (en) * 2005-05-24 2006-12-07 Denso Corp Insulation gate type bipolar transistor
JP2009135414A (en) * 2007-11-07 2009-06-18 Denso Corp Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029748A1 (en) * 2015-08-20 2017-02-23 株式会社日立製作所 Semiconductor device, power module, power converter, vehicle, and train carriage
WO2017042963A1 (en) * 2015-09-11 2017-03-16 株式会社日立製作所 Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle
JPWO2017042963A1 (en) * 2015-09-11 2018-04-05 株式会社日立製作所 Semiconductor device and method for manufacturing the same, power module, power conversion device, and railcar
JP2017126604A (en) * 2016-01-12 2017-07-20 株式会社東芝 Semiconductor device, method of manufacturing the same, inverter circuit, drive device, vehicle, and elevator
US11728251B2 (en) 2019-10-29 2023-08-15 Mitsubishi Electric Corporation Semiconductor power module with temperature sensors and shaped top plate to equalize current paths
WO2022038831A1 (en) * 2020-08-18 2022-02-24 株式会社日立パワーデバイス Power semiconductor module and power converter
DE112021003299T5 (en) 2020-08-18 2023-04-20 Hitachi Power Semiconductor Device, Ltd. POWER SEMICONDUCTOR MODULE AND POWER CONVERSION DEVICE
JP7407675B2 (en) 2020-08-18 2024-01-04 株式会社 日立パワーデバイス Power semiconductor modules and power conversion devices
WO2022264733A1 (en) * 2021-06-16 2022-12-22 株式会社デンソー Semiconductor device
JP7472859B2 (en) 2021-06-16 2024-04-23 株式会社デンソー Semiconductor Device
EP4297087A1 (en) * 2022-06-24 2023-12-27 Airbus S.A.S. Power electronic module with parallely connected power electronic devices
CN115148709A (en) * 2022-06-28 2022-10-04 爱微(江苏)电力电子有限公司 Power module for electronic initial charging of battery pack and method for manufacturing same

Similar Documents

Publication Publication Date Title
WO2015128975A1 (en) Power module and power conversion device
JP4603956B2 (en) Power converter
JP6584893B2 (en) Manufacturing method of semiconductor device
JP6514338B2 (en) Semiconductor device, power module, power converter, automobile and railway vehicle
US10403558B2 (en) Power module with multi-layer substrate
JP2018022849A (en) Power module and motor driving circuit
TW201709522A (en) Semiconductor device
WO2015177914A1 (en) Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car
JP2013162690A (en) Vvvf inverter and vehicle controller
JP6255111B2 (en) Semiconductor device, inverter module, inverter, railway vehicle, and manufacturing method of semiconductor device
JP6963982B2 (en) Semiconductor devices and their manufacturing methods
JP6564046B2 (en) Semiconductor device and manufacturing method thereof, power conversion device, three-phase motor system, automobile and railway vehicle
US10529813B2 (en) Semiconductor device, power module, and power conversion device
JPWO2017141407A1 (en) Power semiconductor module
JP2023070368A (en) Semiconductor device, power converter, and method for driving semiconductor device
JP5341824B2 (en) Semiconductor device
CN103259420A (en) Power module and air conditioner
JP3896940B2 (en) Semiconductor device
WO2015189929A1 (en) Semiconductor device, power module, power conversion device, and semiconductor device manufacturing method
WO2016084131A1 (en) Semiconductor device and power conversion device
WO2018066496A1 (en) Power module and electric power converter
JP7075876B2 (en) Silicon Carbide Semiconductor Equipment, Power Conversion Equipment, 3-Phase Motor Systems, Automobiles and Rail Vehicles
JP6556892B2 (en) Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and railway vehicle
JP2018046127A (en) Semiconductor device, power module and electric power conversion device
JP7407675B2 (en) Power semiconductor modules and power conversion devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP