WO2016002083A1 - Semiconductor device, power module and electric power converter - Google Patents

Semiconductor device, power module and electric power converter Download PDF

Info

Publication number
WO2016002083A1
WO2016002083A1 PCT/JP2014/067975 JP2014067975W WO2016002083A1 WO 2016002083 A1 WO2016002083 A1 WO 2016002083A1 JP 2014067975 W JP2014067975 W JP 2014067975W WO 2016002083 A1 WO2016002083 A1 WO 2016002083A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor
type
semiconductor device
semiconductor region
Prior art date
Application number
PCT/JP2014/067975
Other languages
French (fr)
Japanese (ja)
Inventor
三江子 松村
くみこ 小西
友紀 毛利
悠佳 清水
島 明生
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/067975 priority Critical patent/WO2016002083A1/en
Publication of WO2016002083A1 publication Critical patent/WO2016002083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a semiconductor device, a power module, and a power conversion device, and relates to a semiconductor device, a power module, and a power conversion device provided with a switching element.
  • An inverter device is used as a power conversion device for high power applications that converts electric power for driving a load for high power applications such as a motor between direct current and alternating current.
  • Such an inverter device as a power converter for high power use includes a power module as an inverter circuit.
  • This power module is a power module as an inverter circuit provided with a plurality of switching elements as semiconductor devices.
  • the breakdown electric field of a wide band gap semiconductor such as silicon carbide (SiC) is about 10 times larger than that of silicon (Si).
  • the withstand voltage hereinafter also simply referred to as a withstand voltage
  • a vertical MISFET Metal Insulator Semiconductor Field Field Effect Transistor
  • Patent Document 1 describes a technique for a semiconductor element including a semiconductor layer made of silicon carbide.
  • the semiconductor element described in Patent Document 1 includes a field effect transistor having a semiconductor layer made of silicon carbide and a first conductivity type, that is, an n-type drift region formed in the semiconductor layer.
  • each of the plurality of switching elements is switched from the on state to the off state. At this time, a return current in a direction opposite to the direction of the on-state current of the switching element flows through the inverter circuit. Therefore, in the inverter circuit, it is necessary to provide a diode connected in parallel with each switching element in order to flow a reflux current.
  • the vertical MISFET has a body diode built in between the source electrode and the drain electrode, and a reflux current can flow through the body diode. Therefore, in a power module provided with a vertical MISFET as a switching element, it is not necessary to provide an external diode separately from the vertical MISFET.
  • the vertical MISFET provided in the power module as the inverter circuit is a vertical MISFET made of SiC
  • a current flowing through the body diode built in the vertical MISFET causes a deterioration in energization.
  • the on-resistance of the type MISFET increases.
  • power loss in the power module as the inverter circuit increases.
  • An object of the present invention is to provide a semiconductor device capable of preventing or suppressing the deterioration of energization when a reflux current flows through a body diode built in a vertical MISFET made of SiC.
  • An object of the present invention is to provide a power module that includes the semiconductor device as described above and can reduce power loss due to energization deterioration, and a power conversion device including the power module.
  • a semiconductor device is formed on a first main surface of a semiconductor substrate of a first conductivity type having a first main surface and a second main surface opposite to the first main surface, and the first main surface of the semiconductor substrate.
  • a first conductivity type semiconductor layer, and a second conductivity type first semiconductor region that is formed in an upper layer portion of the semiconductor layer and is different from the first conductivity type.
  • the semiconductor device also includes a first conductivity type second semiconductor region formed in the upper layer portion of the first semiconductor region, and a second conductivity type third semiconductor formed in the upper layer portion of the first semiconductor region.
  • a gate electrode formed on a top surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer with a gate insulating film interposed therebetween.
  • the semiconductor device is formed on the second main surface of the semiconductor substrate, the first metal film formed on the second semiconductor region and the third semiconductor region, the source electrode formed on the first metal film, and the semiconductor substrate. And a drain electrode.
  • the semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, and the third semiconductor region are made of silicon carbide.
  • the first metal film is Schottky connected to the third semiconductor region.
  • a semiconductor device includes a first conductive type semiconductor substrate having a first main surface and a second main surface opposite to the first main surface, and a first main surface of the semiconductor substrate. Are formed on the first main surface of the semiconductor substrate in a first region of the semiconductor substrate and a second region which is a region on the outer peripheral side of the semiconductor substrate relative to the first region. And a first conductivity type semiconductor layer.
  • the semiconductor device is formed in an upper layer portion of the semiconductor layer in the first region, formed in a first semiconductor region of a second conductivity type different from the first conductivity type, and in an upper layer portion of the first semiconductor region.
  • a first conductivity type second semiconductor region; and a second conductivity type third semiconductor region formed in an upper layer portion of the first semiconductor region.
  • the semiconductor device includes a second conductivity type fourth semiconductor region formed in an upper layer portion of the semiconductor layer and a second conductivity type formed in an upper layer portion of the fourth semiconductor region in the second region.
  • the semiconductor device is formed on the first metal film formed on the second semiconductor region and the third semiconductor region, the second metal film formed on the fifth semiconductor region, and the first metal film.
  • the semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, the third semiconductor region, the fourth semiconductor region, and the fifth semiconductor region are made of silicon carbide, and the concentration of the p-type impurity in the fifth semiconductor region is The concentration is lower than the concentration of the p-type impurity in the three semiconductor regions.
  • a semiconductor device includes a first conductive type semiconductor substrate having a first main surface and a second main surface opposite to the first main surface, and a first main surface of the semiconductor substrate. Are formed on the first main surface of the semiconductor substrate in a first region of the semiconductor substrate and a second region which is a region on the outer peripheral side of the semiconductor substrate relative to the first region. And a first conductivity type semiconductor layer.
  • the semiconductor device is formed in an upper layer portion of the semiconductor layer in the first region, formed in a first semiconductor region of a second conductivity type different from the first conductivity type, and in an upper layer portion of the first semiconductor region.
  • a first conductivity type second semiconductor region; and a second conductivity type third semiconductor region formed in an upper layer portion of the first semiconductor region.
  • the semiconductor device includes a second conductivity type fourth semiconductor region formed in an upper layer portion of the semiconductor layer and a second conductivity type formed in an upper layer portion of the fourth semiconductor region in the second region.
  • the semiconductor device is formed on the second semiconductor region and the third semiconductor region, and includes a first metal film made of a metal silicide and a source electrode made of a first conductive film formed on the first metal film. And a contact electrode made of a second conductive film formed on the fifth semiconductor region, and a drain electrode formed on the second main surface of the semiconductor substrate.
  • the semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, the third semiconductor region, the fourth semiconductor region, and the fifth semiconductor region are made of silicon carbide.
  • the second conductive film is formed in the same layer as the first conductive film, and the contact electrode is in contact with the fifth semiconductor region.
  • a typical embodiment in a semiconductor device, it is possible to prevent or suppress the occurrence of deterioration of energization when a reflux current flows through a body diode built in a vertical MISFET made of SiC.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment.
  • 2 is a main-portion cross-sectional view of the semiconductor device of First Embodiment;
  • FIG. FIG. 4 is a flowchart showing a part of the manufacturing process of the semiconductor device of First Embodiment;
  • 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 4 is a flowchart showing a part of the manufacturing process
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 10 is a main-portion cross-sectional view of the semiconductor device of Embodiment 2;
  • FIG. 10 is a main-portion cross-sectional view of the semiconductor device of Embodiment 3;
  • FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Third Embodiment during a manufacturing step thereof.
  • FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Third Embodiment during a manufacturing step thereof.
  • FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Third Embodiment during a manufacturing step thereof. It is a figure which shows the structure of the three-phase motor system of Embodiment 4.
  • FIG. 10 is a diagram showing a configuration of an electric vehicle as an automobile according to a fifth embodiment.
  • FIG. 10 is a circuit diagram showing a boost converter device in an automobile according to a fifth embodiment.
  • FIG. 10 is a diagram showing a configuration of a railway vehicle according to a sixth embodiment.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
  • the semiconductor device according to the first embodiment includes a vertical MISFET made of silicon carbide (SiC).
  • FIG. 1 is a plan view of the semiconductor device of the first embodiment.
  • FIG. 2 is a cross-sectional view of a main part of the semiconductor device according to the first embodiment. 2 is a cross section of a portion located in the active region AR1 and the termination region AR2, and is a cross section taken along the line AA in FIG. 1, and a cross section of a portion located in the gate pad region AR3. A cross section along the line BB is shown.
  • the semiconductor device 1 of the first embodiment has an n + type SiC substrate 10 as a semiconductor substrate.
  • the n + -type SiC substrate 10 is an n-type semiconductor substrate made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. That is, the conductivity type of n + -type SiC substrate 10 as a semiconductor substrate is n-type.
  • the concentration of the n-type impurity in the n + -type SiC substrate 10 is relatively large, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the thickness of the n + type SiC substrate 10 is, for example, about 50 to 500 ⁇ m.
  • the n + -type SiC substrate 10 has an upper surface 10a as one main surface and a lower surface 10b as the other main surface.
  • the n + -type SiC substrate 10 is an active region AR1 that is a partial region of the upper surface 10a and another region of the upper surface 10a, and the n + -type SiC substrate is larger than the active region AR1 in plan view.
  • 10 has a termination region AR2 which is a region on the outer peripheral side, and a gate pad region AR3.
  • the active region AR ⁇ b> 1 is a region disposed on the center side of the upper surface 10 a of the n + type SiC substrate 10.
  • a plurality of cells CL1 made of vertical MISFETs are formed on the n + -type SiC substrate 10, and the plurality of cells CL1 are arranged in a matrix, for example, in plan view.
  • Termination region AR2 is a region arranged on the outer peripheral side of upper surface 10a of n + -type SiC substrate 10 so as to surround active region AR1.
  • a gate pad 19a is disposed in the gate pad region AR3.
  • the semiconductor device 1 in the active region AR1, includes an n + -type SiC substrate 10, an n ⁇ -type epitaxial layer 12, a p-type body region 13 and an n + -type source region 14. , P + type body contact region 15.
  • the semiconductor device 1 includes a gate insulating film 18, a gate electrode 19, an interlayer insulating film 20, a silicide film SIL1, a source electrode 21, and a drain electrode 22.
  • semiconductor device 1 includes n + type SiC substrate 10, n ⁇ type epitaxial layer 12, p type body regions 13a and 13b, n + type source region 14a, and n + type field stopper. Region 14b, p + type body contact region 15a, and contact region 15b are provided.
  • the semiconductor device 1 includes a field oxide film FO1, a gate insulating film 18, a gate electrode 19, an interlayer insulating film 20, a silicide film SIL2, a contact electrode 21a, a drain electrode 22, Have
  • N ⁇ type epitaxial layer 12, p type body region 13 a, n + type source region 14 a, p + type body contact region 15 a, gate insulating film 18, and gate electrode 19 form a dummy cell.
  • the dummy cell does not operate as a vertical MISFET, but adjusts the electric field in the cell CL1 formed of adjacent vertical MISFETs.
  • semiconductor device 1 has an n + type SiC substrate 10, an n ⁇ type epitaxial layer 12, and a p type body region 13c.
  • the semiconductor device 1 includes a field oxide film FO1, an insulating film 18a, a gate pad 19a, an interlayer insulating film 20, a gate contact electrode GC1, and a drain electrode 22.
  • the n ⁇ -type epitaxial layer 12 is formed on the upper surface 10a of the n + -type SiC substrate 10 in the active region AR1, the termination region AR2, and the gate pad region AR3.
  • the n ⁇ -type epitaxial layer 12 includes n (such as nitrogen (N) or phosphorus (P)).
  • n such as nitrogen (N) or phosphorus (P)
  • This is an n-type semiconductor layer made of silicon carbide (SiC) into which a type impurity is introduced. That is, the conductivity type of the n ⁇ type epitaxial layer 12 as the semiconductor layer is n type.
  • the concentration of the n-type impurity in the n ⁇ -type epitaxial layer 12 is lower than the concentration of the n-type impurity in the n + -type SiC substrate 10, for example, about 1 ⁇ 10 15 to 1 ⁇ 10 16 cm ⁇ 3 . Further, the thickness of the n ⁇ type epitaxial layer 12 is, for example, about 5 to 50 ⁇ m.
  • n ⁇ type epitaxial layer 12 is formed directly on the upper surface 10 a of the n + type SiC substrate 10.
  • n ⁇ type epitaxial layer 12 may be formed on upper surface 10a of n + type SiC substrate 10 via a buffer layer.
  • the n ⁇ type epitaxial layer 12 can be formed by, for example, an epitaxial growth method. Alternatively, for example, by ion implantation of p-type impurity such as aluminum (Al) or boron (B) was injected on the entire upper surface of the n + -type SiC substrate 10, reducing the concentration of n-type impurity in the n + -type SiC substrate 10 The n ⁇ type epitaxial layer 12 can also be formed by the method.
  • p-type impurity such as aluminum (Al) or boron (B)
  • the n ⁇ type epitaxial layer 12 is formed by, for example, an epitaxial growth method, and the interface between the n + type SiC substrate 10 and the n ⁇ type epitaxial layer 12 is displayed as the upper surface 10a of the n + type SiC substrate 10.
  • the n ⁇ type epitaxial layer 12 may be formed by, for example, an ion implantation method, and the upper surface of the n ⁇ type epitaxial layer 12 may be displayed as the upper surface 10a of the n + type SiC substrate 10.
  • a p-type body region 13 is formed in an upper layer portion of the n ⁇ -type epitaxial layer 12 in the active region AR1.
  • the p-type body region 13 is a p-type semiconductor region made of silicon carbide (SiC) into which a p-type impurity such as aluminum (Al) or boron (B) is introduced. That is, the conductivity type of the p-type body region 13 as a semiconductor region is p-type.
  • the concentration of the p-type impurity in the p-type body region 13 is, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the p-type body region 13 is, for example, about 1 to 2 ⁇ m.
  • p type body regions 13a and 13b are formed in the upper layer portion of n ⁇ type epitaxial layer 12.
  • a p-type body region 13c is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12.
  • the p-type body regions 13a, 13b and 13c are p-type semiconductor regions made of silicon carbide (SiC) into which a p-type impurity such as aluminum (Al) or boron (B) is introduced.
  • the p-type body region 13a is the termination region AR2 and is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12 that is located on the active region AR1 side in plan view.
  • the concentration of the p-type impurity in the p-type body region 13 a can be made the same as the concentration of the p-type impurity in the p-type body region 13, and the thickness of the p-type body region 13 a is equal to the thickness of the p-type body region 13. The same can be done.
  • the p-type body region 13b is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12 at a portion located on the opposite side of the active region AR1 side in plan view in the termination region AR2.
  • the concentration of the p-type impurity in the p-type body region 13b is, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the p-type body region 13b is, for example, about 1 to 2 ⁇ m.
  • the strength of the electric field in the vicinity of the n ⁇ -type epitaxial layer 12 in the termination region AR2 becomes larger than the strength of the electric field in the vicinity of the n ⁇ -type epitaxial layer 12 in the active region AR1, and the breakdown voltage of the semiconductor device 1 may be reduced. . Therefore, preferably, the concentration of p-type impurity in p-type body region 13b is lower than the concentration of p-type impurity in p-type body region 13.
  • the strength of the electric field in the vicinity of the p-type body region 13b in the termination region AR2 is prevented or suppressed from becoming larger than the strength of the electric field in the vicinity of the p-type body region 13 in the active region AR1, and the semiconductor device 1
  • the breakdown voltage can be improved.
  • the concentration of the p-type impurity in the p-type body region 13 c can be made the same as the concentration of the p-type impurity in the p-type body region 13, and the thickness of the p-type body region 13 c can be set to It can be similar to the thickness.
  • an n + type source region 14 is formed in an upper layer portion of the p type body region 13.
  • the n + -type source region 14 is an n-type semiconductor region made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. That is, the conductivity type of the n + type source region 14 as the semiconductor region is n type.
  • the concentration of the n-type impurity in the n + -type source region 14 is higher than the concentration of the n-type impurity in the n ⁇ -type epitaxial layer 12, for example, about 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3 .
  • the thickness of the n + -type source region 14 is, for example, about 100 to 500 nm.
  • an n + type source region 14a is formed in the upper layer portion of the p type body region 13a.
  • the n + -type source region 14a is an n-type semiconductor region made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced.
  • the concentration of the n-type impurity in the n + -type source region 14a can be similar to the concentration of the n-type impurity in the n + -type source region 14, the thickness of the n + -type source region 14a, n + -type source region A thickness of 14 can be used.
  • the n + -type field stopper region 14b is formed on the upper layer portion of the n ⁇ -type epitaxial layer 12 in a portion located on the outer peripheral side of the n + -type SiC substrate 10 with respect to the p-type body region 13b in plan view. Is formed.
  • the n + -type field stopper region 14b is an n-type semiconductor region made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced.
  • the concentration of the n-type impurity in the n + -type field stopper region 14 b is higher than the concentration of the n-type impurity in the n ⁇ -type epitaxial layer 12, for example, about 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3 . Further, the thickness of the n + -type field stopper region 14b is, for example, about 100 to 500 nm.
  • a p + type body contact region 15 is formed in an upper layer portion of the p type body region 13 in the active region AR1.
  • the p + -type body contact region 15 is a p-type semiconductor region made of silicon carbide (SiC) into which a p-type impurity such as aluminum (Al) or boron (B) is introduced. That is, the conductivity type of the p + -type body contact region 15 as the semiconductor region is p-type.
  • the concentration of the p-type impurity in the p + -type body contact region 15 is higher than the concentration of the p-type impurity in the p-type body region 13.
  • the thickness of the p + type body contact region 15 is, for example, about 100 to 500 nm. A suitable concentration of the p-type impurity in the p + -type body contact region 15 will be described later.
  • p + type body contact region 15a and contact region 15b are formed in the upper layer portion of p type body region 13a.
  • the p + type body contact region 15a and the contact region 15b are p type semiconductor regions made of silicon carbide (SiC) into which a p type impurity such as aluminum (Al) or boron (B) is introduced.
  • the p + -type body contact region 15a is the termination region AR2 and is formed in the upper layer portion of the p-type body region 13a that is located on the active region AR1 side in plan view.
  • the concentration of the p-type impurity in the p + -type body contact region 15a is higher than the concentration of the p-type impurity in the p-type body region 13a.
  • the concentration of the p-type impurity in the p + -type body contact region 15a can be similar to the concentration of the p-type impurity in the p + -type body contact region 15, the thickness of the p + -type body contact region 15a, The thickness can be the same as the thickness of the p + type body contact region 15.
  • the contact region 15b is the termination region AR2, and is formed in the upper layer portion of the p-type body region 13a that is located on the opposite side of the active region AR1 in plan view.
  • the concentration of p-type impurity in contact region 15b is higher than the concentration of p-type impurity in p-type body region 13a.
  • the thickness of the contact region 15b is, for example, about 100 to 500 nm. A suitable concentration of the p-type impurity in the contact region 15b will be described later.
  • the upper layer portion of the n ⁇ -type epitaxial layer 12 sandwiched between two adjacent p-type body regions 13 is a JFET (Junction Field Effect Transistor) region 16.
  • the JFET region 16 is the upper layer portion of the n ⁇ type epitaxial layer 12 that is located on the opposite side of the n + type source region 14 across the p type body region 13.
  • the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 is a channel region 17.
  • field oxide film FO1 is formed on n ⁇ type epitaxial layer 12, on p type body regions 13a and 13b, on n + type field stopper region 14b, and on contact region 15b.
  • the field oxide film FO1 is formed on the p-type body region 13c in the gate pad region AR3.
  • various films made of, for example, silicon oxide (SiO 2 ) can be used.
  • a gate insulating film 18 is formed on the upper surface of the p-type body region 13 in the active region AR1.
  • the gate insulating film 18 is an insulating film formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12.
  • the gate insulating film 18 is made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like, for example, thermal oxidation or CVD (Chemical Vapor Deposition). ) Method.
  • the thickness of the gate insulating film 18 is, for example, about several tens of nm.
  • the gate insulating film 18 is formed in the termination region AR2, for example, on the p-type body region 13 and the field oxide film FO1.
  • an insulating film 18a is formed on the field oxide film FO1.
  • the insulating film 18 a can be made of an insulating film formed in the same layer as the insulating film included in the gate insulating film 18.
  • a gate electrode 19 is formed on the gate insulating film 18 in the active region AR1.
  • the gate electrode 19 is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 via a gate insulating film 18.
  • the gate electrode 19 is made of, for example, polysilicon, and is a conductive film formed by, for example, a CVD method.
  • a gate pad 19a is formed on the insulating film 18a.
  • the gate pad 19 a can be made of a conductive film formed in the same layer as the conductive film included in the gate electrode 19.
  • a gate electrode 19 and a gate insulating film 18 are formed on the n ⁇ type epitaxial layer 12, the p type body region 13, the n + type source region 14, and the p + type body contact region 15 in the active region AR 1.
  • An interlayer insulating film 20 is formed so as to cover it. Interlayer insulating film 20 is in termination region AR2, on n ⁇ type epitaxial layer 12, on p type body region 13a, on n + type source region 14a, on p + type body contact region 15a, and in the field oxide film. On FO1, it forms so that the gate insulating film 18 may be covered.
  • the interlayer insulating film 20 is formed on the field oxide film FO1 so as to cover the gate pad 19a and the insulating film 18a in the gate pad region AR3.
  • a material of the interlayer insulating film 20 for example, PSG (Phospho Silicate Glass) or silicon oxide can be used.
  • a contact hole 20a as an opening is formed in the interlayer insulating film 20 in the active region AR1.
  • Contact hole 20 a penetrates interlayer insulating film 20 and gate insulating film 18 and reaches the upper surface of n + -type source region 14 and the upper surface of p + -type body contact region 15. That is, the upper surface of the n + type source region 14 and the upper surface of the p + type body contact region 15 are exposed at the bottom of the contact hole 20a.
  • a contact hole 20b as an opening is formed in the interlayer insulating film 20 in the termination region AR2.
  • Contact hole 20b penetrates through interlayer insulating film 20, gate insulating film 18 and field oxide film FO1, and reaches the upper surface of contact region 15b. That is, the upper surface of the contact region 15b is exposed at the bottom of the contact hole 20b.
  • contact hole 20b passes through interlayer insulating film 20, gate insulating film 18 and field oxide film FO1, and reaches the upper surface of p-type body region 13a adjacent to contact region 15b. May be. That is, the upper surface of the p-type body region 13a adjacent to the contact region 15b may be exposed at the bottom of the contact hole 20b.
  • the interlayer insulating film 20 has a contact hole 20c as an opening.
  • the contact hole 20c penetrates the interlayer insulating film 20 and reaches the upper surface of the gate pad 19a. That is, the upper surface of the gate pad 19a is exposed at the bottom of the contact hole 20c.
  • a silicide film SIL1 made of a metal silicide is formed as a metal film on the n + type source region 14 and the p + type body contact region 15 exposed at the bottom of the contact hole 20a. Is formed.
  • a suitable composition of the silicide film SIL1 will be described later.
  • a silicide film SIL2 made of a metal silicide is formed as a metal film on the contact region 15b exposed at the bottom of the contact hole 20b in the termination region AR2.
  • Silicide film SIL2 may be formed on a portion exposed at the bottom of contact hole 20b and on p-type body region 13a adjacent to contact region 15b.
  • a suitable composition of the silicide film SIL2 will be described later.
  • a source electrode 21 is formed in the contact hole 20a, on the silicide film SIL1, and on the interlayer insulating film 20.
  • the source electrode 21 is an electrode formed on the silicide film SIL1, and is electrically connected to the silicide film SIL1.
  • a conductive film made of, for example, titanium (Ti) or aluminum (Al) can be used. By using such a conductive film, the source electrode 21 and the silicide film SIL1 can be electrically connected with low resistance.
  • a contact electrode 21a is formed in the contact hole 20b, on the silicide film SIL2, and on the interlayer insulating film 20.
  • the contact electrode 21a is an electrode formed on the silicide film SIL2, and is electrically connected to the silicide film SIL2.
  • a conductive film made of titanium (Ti) or aluminum (Al) can be used as the contact electrode 21a. By using such a conductive film, the contact electrode 21a and the silicide film SIL2 can be electrically connected with low resistance.
  • the contact electrode 21 a may be formed in the same layer as the source electrode 21 or may be electrically connected to the source electrode 21.
  • a gate contact electrode GC1 is formed inside the contact hole 20c and on the interlayer insulating film 20.
  • the gate contact electrode GC1 is an electrode formed on the gate pad 19a and is electrically connected to the gate pad 19a.
  • a conductive film made of titanium (Ti) or aluminum (Al) can be used as the gate contact electrode GC1. By using such a conductive film, the gate contact electrode GC1 and the gate pad 19a can be electrically connected with low resistance.
  • a drain electrode 22 is formed on the lower surface 10b of the n + -type SiC substrate 10 in the active region AR1, the termination region AR2, and the gate pad region AR3.
  • the drain electrode 22 is electrically connected to the n + type SiC substrate 10.
  • a conductive film in which titanium (Ti), nickel (Ni), gold (Au), or the like is stacked can be used. By using such a conductive film, the drain electrode 22 and the n + -type SiC substrate 10 can be electrically connected with low resistance.
  • a passivation film is formed on the upper and lower surfaces of the semiconductor device 1 so as to cover the interlayer insulating film 20, the source electrode 21, the contact electrode 21a, the gate contact electrode GC1, and the drain electrode 22. May be. Further, in the passivation film, an opening may be formed in a portion where a pad region for electrically connecting the source electrode 21, the gate contact electrode GC1, and the drain electrode 22 to the outside is formed. .
  • a positive gate voltage VGS (VGS> 0V) is applied to the source electrode 21 to the gate electrode 19.
  • VGS positive gate voltage
  • an inversion layer is formed in the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12, that is, in the channel region 17.
  • electrons flow from the source electrode 21 to the drain electrode 22 through the n + type source region 14, the inversion layer formed in the channel region 17, the n ⁇ type epitaxial layer 12, and the n + type SiC substrate 10. That is, current flows from the drain electrode 22 to the source electrode 21 through the n + -type SiC substrate 10, the n ⁇ -type epitaxial layer 12, the inversion layer formed in the channel region 17, and the n + -type source region 14.
  • VGS negative or zero gate voltage
  • a diode, that is, a body built between the contact electrode 21a and the drain electrode 22 by the contact region 15b, the p-type body region 13a, the n ⁇ -type epitaxial layer 12 and the n + -type SiC substrate 10 is used.
  • a diode 23a is formed.
  • each vertical MISFET represented by a cell CL1 in each semiconductor device 1 is switched from an on state to an off state.
  • a reflux current flows through the body diodes 23 and 23a.
  • the silicide film SIL1 is provided between the p + type body contact region 15 and the source electrode 21 in the active region AR1.
  • the silicide film SIL1 is Schottky connected to the p + type body contact region 15.
  • the work function phi m silicide film SIL1 is, when the electron affinity ⁇ of the p + -type body contact region 15, smaller than the sum of the band gap E g of the p + -type body contact region 15, the silicide film SIL1 , P + type body contact region 15 and Schottky connection.
  • the silicide film SIL1 is Schottky connected to the p + type body contact region 15.
  • the silicide film SIL1 is made to be p + type body contact by setting the p type impurity concentration in the p + type body contact region 15 to be less than 1 ⁇ 10 20 cm ⁇ 3.
  • the area 15 can be connected to the Schottky.
  • the silicide film SIL1 can be easily Schottky connected to the p + type body contact region 15. it can.
  • the silicide film SIL1 and p + are formed by the source electrode 21 when the vertical MISFET is turned on.
  • the potential of p type body region 13 can be adjusted via type body contact region 15.
  • the silicide film SIL1 preferably includes nickel silicide such as Ni 2 Si or NiSi, that is, nickel silicide.
  • the silicide film SIL1 can be easily Schottky connected to the p + type body contact region 15. Note that since the p + type body contact region 15 and the n + type source region 14 are made of silicon carbide, the silicide film SIL1 also contains carbon.
  • the composition ratio of nickel to the sum of nickel and silicon in the silicide film SIL1 is larger than 0.4 and smaller than 0.7.
  • the ratio of the number of nickel atoms to the sum of the number of nickel atoms and the number of silicon atoms in the silicide film SIL1 is larger than 0.4 and smaller than 0.7.
  • the silicide film SIL2 is provided between the contact region 15b and the contact electrode 21a in the termination region AR2.
  • the silicide film SIL2 is Schottky connected to the contact region 15b.
  • the concentration of the p-type impurity in the contact regions 15b, 2 ⁇ 10 19 cm -3 to 1 ⁇ 10 preferably less than 20 cm -3, 2 ⁇ 10 19 cm -3 or more 7 ⁇ 10 19 cm -3 More preferably, it is less than.
  • the silicide film SIL2 is Schottky connected to the contact region 15b by setting the concentration of the p-type impurity in the contact region 15b to less than 1 ⁇ 10 20 cm ⁇ 3. Can do. Further, by making the concentration of the p-type impurity in the contact region 15b less than 7 ⁇ 10 19 cm ⁇ 3 , the silicide film SIL2 can be easily Schottky connected to the contact region 15b.
  • the contact electrode 21a causes the silicide film SIL2 and the contact region 15b to pass through.
  • the potential of p-type body region 13a can be adjusted.
  • the silicide film SIL2 includes nickel silicide such as Ni 2 Si or NiSi, that is, nickel silicide.
  • the silicide film SIL2 can be easily Schottky connected to the contact region 15b.
  • the silicide film SIL2 also contains carbon.
  • the composition ratio of nickel to the sum of nickel and silicon in the silicide film SIL2 is larger than 0.4 and smaller than 0.7.
  • the ratio of the number of nickel atoms to the sum of the number of nickel atoms and the number of silicon atoms in the silicide film SIL2 is larger than 0.4 and smaller than 0.7.
  • the source electrode 21, p + -type body contact region 15 only to be connected to the Schottky, between the source electrode 21 and the p + -type body contact region 15, instead of the silicide film SIL 1, other than the metal silicide A metal film can also be interposed.
  • the contact electrode 21a only needs to be Schottky connected to the contact region 15b, and a metal film other than the metal silicide can be interposed between the contact electrode 21a and the contact region 15b in place of the silicide film SIL2. .
  • FIG. 3 is a flowchart showing a part of the manufacturing process of the semiconductor device of the first embodiment.
  • 4 to 13 are fragmentary cross-sectional views of the semiconductor device of First Embodiment during the manufacturing process thereof.
  • FIG. 3 shows a manufacturing process in the active area AR1.
  • an n + type SiC substrate 10 is prepared (step S11 in FIG. 3).
  • step S11 as shown in FIG. 4, an n + type SiC substrate 10 made of silicon carbide (SiC) into which an n type impurity such as nitrogen (N) or phosphorus (P) is introduced is prepared.
  • the concentration of the n-type impurity in the n + -type SiC substrate 10 can be relatively high, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the thickness of the n + -type SiC substrate 10 can be set to, for example, about 50 to 500 ⁇ m.
  • the n ⁇ type epitaxial layer 12 is formed (step S12 in FIG. 3).
  • the n ⁇ type epitaxial layer 12 is formed on the upper surface 10a of the n + type SiC substrate 10 by the epitaxial growth method in the active region AR1, the termination region AR2 and the gate pad region AR3.
  • the substrate temperature of, for example, about 1500 to 1800 ° C., the n ⁇ type epitaxial layer 12 made of SiC is formed.
  • n-type impurity such as nitrogen (N) or phosphorus (P) is introduced into the n ⁇ -type epitaxial layer 12.
  • N nitrogen
  • P phosphorus
  • n - the density of the n-type impurity in the type epitaxial layer 12 for example, 1 ⁇ 10 15 can be a ⁇ 1 ⁇ 10 16 cm -3 approximately
  • n - the thickness of the type epitaxial layer 12 for example, the thickness can be about 5 to 50 ⁇ m.
  • step S13 the p-type body region 13 is formed (step S13 in FIG. 3).
  • step S13 as shown in FIG. 5, first, a resist film RF1 is formed on the n ⁇ type epitaxial layer 12 in the active region AR1. Then, the formed resist film RF1 is exposed and developed using a photolithography technique to penetrate the resist film RF1 in a region where the p-type body region 13 is formed in the active region AR1. Thus, an opening OP1 reaching the n ⁇ type epitaxial layer 12 is formed. At this time, a resist pattern RP1 made of the resist film RF1 in which the opening OP1 is formed is formed, and the n ⁇ type epitaxial layer 12 is exposed at the bottom of the opening OP1.
  • the resist film RF1 when the resist film RF1 is formed in the active region AR1, the resist film RF1 is formed on the n ⁇ type epitaxial layer 12 also in the termination region AR2.
  • an opening OP11 that penetrates the resist film RF1 and reaches the n ⁇ type epitaxial layer 12 is also formed in the termination region AR2 in the region where the p-type body region 13a is formed.
  • the resist pattern RP1 is made of the resist film RF1 in which the opening OP11 is formed, and the n ⁇ type epitaxial layer 12 is exposed at the bottom of the opening OP11.
  • the resist film RF1 when the resist film RF1 is formed in the active region AR1, the resist film RF1 is formed on the n ⁇ type epitaxial layer 12 also in the gate pad region AR3. Then, when the opening OP1 is formed, the resist film RF1 is removed in the gate pad region AR3.
  • a p-type impurity such as aluminum (Al) or boron (B) is applied to the n ⁇ -type epitaxial layer 12 by ion implantation using the resist pattern RP1 as a mask in the active region AR1.
  • the p-type body region 13 is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12.
  • the concentration of the p-type impurity in the p-type body region 13 can be set to, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3, and the thickness of the p-type body region 13 is set to, for example, 1 It can be about 2 ⁇ m.
  • the n ⁇ -type epitaxial layer 12 is also doped with, for example, aluminum (Al) in the termination region AR2 by ion implantation using the resist pattern RP1 as a mask.
  • Al aluminum
  • p-type impurities such as boron (B) are introduced.
  • the p-type body region 13a is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12 in the termination region AR2.
  • the concentration of the p-type impurity in the p-type body region 13 a can be made the same as the concentration of the p-type impurity in the p-type body region 13, and the thickness of the p-type body region 13 a is equal to the thickness of the p-type body region 13. The same can be done.
  • the n ⁇ type epitaxial layer 12 is also formed on the n ⁇ -type epitaxial layer 12 in the gate pad region AR3.
  • Type impurities are introduced.
  • the p-type body region 13c is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12 in the gate pad region AR3.
  • the concentration of the p-type impurity in the p-type body region 13c can be made the same as the concentration of the p-type impurity in the p-type body region 13, and the thickness of the p-type body region 13c is equal to the thickness of the p-type body region 13. The same can be done.
  • a resist film RF2 is formed on the n ⁇ type epitaxial layer 12 and the p type body region 13a in the termination region AR2. Then, the formed resist film RF2 is exposed and developed using a photolithography technique to penetrate the resist film RF2 in the region of the termination region AR2 where the p-type body region 13b is formed. Thus, an opening OP2 reaching the n ⁇ type epitaxial layer 12 is formed. At this time, a resist pattern RP2 made of the resist film RF2 in which the opening OP2 is formed is formed, and the n ⁇ type epitaxial layer 12 is exposed at the bottom of the opening OP2.
  • the active region AR1 and the gate pad region AR3 are also on the n ⁇ type epitaxial layer 12 and the p type body regions 13 and 13c. Then, a resist film RF2 is formed.
  • the opening OP1 is formed, no opening is formed in the active region AR1 and the gate pad region AR3, and the n ⁇ -type epitaxial layer 12 and the p-type body regions 13 and 13c are formed in the resist film RF2. Covered.
  • a p-type impurity such as aluminum (Al) or boron (B) is applied to the n ⁇ -type epitaxial layer 12 by ion implantation using the resist pattern RP2 as a mask.
  • a p-type body region 13 b is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12.
  • the concentration of the p-type impurity in the p-type body region 13b can be set to, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3
  • the thickness of the p-type body region 13b can be set to, for example, 1 It can be about 2 ⁇ m.
  • the concentration of the p-type impurity in the p-type body region 13b is lower than the concentration of the p-type impurity in the p-type body region 13.
  • the strength of the electric field in the vicinity of the p-type body region 13b in the termination region AR2 is prevented or suppressed from becoming larger than the strength of the electric field in the vicinity of the p-type body region 13 in the active region AR1, and the semiconductor device 1
  • the breakdown voltage can be improved.
  • step S14 the p + type body contact region 15 is formed (step S14 in FIG. 3).
  • step S14 as shown in FIG. 7, after removing the resist pattern RP2, a resist film RF3 is formed on the n ⁇ type epitaxial layer 12 and the p type body region 13 in the active region AR1. Then, by performing exposure and development processing on the formed resist film RF3 using photolithography technology, the resist film RF3 is formed in the active region AR1 in the region where the p + -type body contact region 15 is formed. Opening OP3 penetrating to reach p-type body region 13 is formed. At this time, a resist pattern RP3 made of the resist film RF3 in which the opening OP3 is formed is formed, and the p-type body region 13 is exposed at the bottom of the opening OP3.
  • the termination region AR2 is also on the n ⁇ type epitaxial layer 12, the p type body region 13a, and the p type body region 13b. Then, a resist film RF3 is formed.
  • an opening OP31 that penetrates the resist film RF3 and reaches the p-type body region 13a is formed.
  • the resist pattern RP3 is made of the resist film RF3 in which the opening OP31 is formed, and the p-type body region 13a is exposed at the bottom of the opening OP31.
  • the resist film RF3 when the resist film RF3 is formed in the active region AR1, the resist film RF3 is also formed on the p-type body region 13c in the gate pad region AR3.
  • the opening OP3 When the opening OP3 is formed, no opening is formed in the gate pad region AR3, and the p-type body region 13c is covered with the resist film RF3.
  • a p-type impurity such as aluminum (Al) or boron (B) is introduced into the p-type body region 13 by ion implantation using the resist pattern RP3 as a mask in the active region AR1.
  • the p + type body contact region 15 is formed in the upper layer portion of the p type body region 13 in the active region AR1.
  • the silicide film SIL1 can be Schottky-connected to the p + type body contact region 15.
  • the thickness of the p + -type body contact region 15 can be set to about 100 to 500 nm, for example.
  • Table 1 shows ion implantation conditions for setting the concentration of the p-type impurity in the p + -type body contact region 15 to 2 ⁇ 10 19 cm ⁇ 3 or more and less than 1 ⁇ 10 20 cm ⁇ 3 . That is, the conditions shown in Table 1 are conditions for Schottky connection of the silicide film SIL1 (see FIG. 11 described later) with the p + type body contact region 15.
  • Table 1 shows the implantation energy (keV) and dose (cm) in each step when the four steps of Step S21 to Step S24 are sequentially performed to implant ions of aluminum as a p-type impurity in four stages. -2 ).
  • the p-type impurity when the p-type impurity is introduced into the active region AR1, the p-type such as aluminum (Al) or boron (B) is added to the n ⁇ -type epitaxial layer 12 also in the termination region AR2. Impurities are introduced. As a result, in the termination region AR2, the p + type body contact region 15a is formed in the upper layer portion of the p type body region 13a.
  • the concentration of the p-type impurity in the p + -type body contact region 15a, the p + -type body contact region can be similar to the concentration of the p-type impurity at 15, the thickness of the p + -type body contact region 15a, p + The thickness of the mold body contact region 15 can be made the same.
  • a resist film RF4 is formed.
  • the formed resist film RF4 is exposed and developed using a photolithography technique, so that the resist film RF4 penetrates the resist film RF4 in the region of the termination region AR2 where the contact region 15b is formed.
  • An opening OP4 reaching the mold body region 13a is formed.
  • a resist pattern RP4 made of the resist film RF4 in which the opening OP4 is formed is formed, and the p-type body region 13a is exposed at the bottom of the opening OP4.
  • the active region AR1 and the gate pad region AR3 are also on the n ⁇ type epitaxial layer 12, the p type body regions 13 and 13c, and A resist film RF4 is formed on the p + type body contact region 15.
  • the opening OP4 is formed, no opening is formed in the active region AR1 and the gate pad region AR3, the n ⁇ type epitaxial layer 12, the p type body regions 13 and 13c, and the p + type body contact.
  • the region 15 is covered with the resist film RF4.
  • a p-type impurity such as aluminum (Al) or boron (B) is introduced into the p-type body region 13a by ion implantation using the resist pattern RP4 as a mask.
  • the contact region 15b is formed in the upper layer portion of the p-type body region 13a in the termination region AR2.
  • the concentration of the p-type impurity in the contact region 15b it is preferable that a 2 ⁇ 10 19 cm -3 or more less than 1 ⁇ 10 20 cm -3, 2 ⁇ 10 19 cm -3 or more 7 ⁇ 10 19 More preferably, it is less than cm ⁇ 3 .
  • the silicide film SIL2 can be Schottky connected to the contact region 15b.
  • the thickness of the contact region 15b can be set to about 100 to 500 nm, for example.
  • the conditions for ion implantation for setting the concentration of the p-type impurity in the contact region 15b to 2 ⁇ 10 19 cm ⁇ 3 or more and less than 1 ⁇ 10 20 cm ⁇ 3 are shown in Table 1 for Schottky connection. The same conditions can be used.
  • step S15 the n + type source region 14 is formed (step S15 in FIG. 3).
  • step S15 as shown in FIG. 9, after removing resist pattern RP4, in active region AR1, on n ⁇ type epitaxial layer 12, on p type body region 13, and on p + type body contact region 15
  • a resist film RF5 is formed.
  • the formed resist film RF5 is exposed and developed using a photolithography technique to penetrate the resist film RF5 in the region where the n + -type source region 14 is formed in the active region AR1.
  • an opening OP5 reaching the p-type body region 13 is formed.
  • a resist pattern RP5 made of the resist film RF5 in which the opening OP5 is formed is formed, and the p-type body region 13 is exposed at the bottom of the opening OP5.
  • the resist pattern RP5 is composed of the resist film RF5 in which the opening OP51 and the opening OP52 are formed.
  • the p-type body region 13a is exposed at the bottom of the opening OP51, and the bottom of the opening OP52 The n ⁇ type epitaxial layer 12 is exposed.
  • the resist film RF5 when the resist film RF5 is formed in the active region AR1, the resist film RF5 is formed on the p-type body region 13c also in the gate pad region AR3.
  • the opening OP5 is formed, no opening is formed in the gate pad region AR3, and the p-type body region 13c is covered with the resist film RF5.
  • n-type impurities such as nitrogen (N) or phosphorus (P) are introduced into the p-type body region 13 by ion implantation using the resist pattern RP5 as a mask in the active region AR1.
  • N nitrogen
  • P phosphorus
  • an n + type source region 14 is formed in the upper layer portion of the p type body region 13.
  • the concentration of n-type impurity in the n + -type source region 14 for example, be a 1 ⁇ 10 19 ⁇ 1 ⁇ 10 20 cm -3 or so
  • the thickness of the n + -type source region 14 For example, the thickness can be about 100 to 500 nm.
  • n-type impurity such as nitrogen (N) or phosphorus (P) is introduced into the p-type body region 13 also in the termination region AR2.
  • N nitrogen
  • P phosphorus
  • the concentration of the p-type impurity in the n + -type source region 14a and the n + -type field stop region 14b can be similar to the concentration of the n-type impurity in the n + -type source region 14, n + -type source region 14a and n
  • the thickness of the + type field stopper region 14 b can be made the same as the thickness of the n + type source region 14.
  • n + type source regions 14 and 14a, n + type field stopper region 14b, p + type body contact regions 15 and 15a, and contact region 15b are not limited to the steps described above.
  • the resist film may be formed in any order.
  • mask patterns made of various films can be used instead of any of the resist pattern made of the resist film RF3, the resist pattern made of the resist film RF4, and the resist pattern made of the resist film RF5.
  • the steps of forming the n + type source regions 14 and 14a, the n + type field stopper region 14b, the p + type body contact regions 15 and 15a, and the contact region 15b are performed after each step or all of the steps.
  • heat treatment can be performed at about 1700 ° C., for example, to activate the implanted impurities.
  • step S16 first, as shown in FIG. 10, in termination region AR2, on n ⁇ type epitaxial layer 12, on p type body regions 13a and 13b, on n + type field stopper region 14b, and contact region 15b.
  • a field oxide film FO1 is formed thereon.
  • the field oxide film FO1 various films made of, for example, silicon oxide (SiO 2 ) can be used.
  • the field oxide film FO1 can be formed by, for example, a CVD method.
  • the field oxide film FO1 is formed in the termination region AR2, the field oxide film FO1 is formed on the p-type body region 13c also in the gate pad region AR3.
  • an insulating film 18b is formed on regions 15 and 15a and on field oxide film FO1.
  • various films made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like can be preferably used.
  • a laminated film in which the above various films are suitably laminated can be used.
  • the insulating film 18b can be formed by, for example, a CVD method.
  • the insulating film 18b when the insulating film 18b is formed in the active region AR1 and the termination region AR2, the insulating film 18b is formed on the field oxide film FO1 also in the gate pad region AR3. As described above, the insulating film 18b is formed on the field oxide film FO1 also in the termination region AR2.
  • a conductive film 19b is formed on the insulating film 18b in the active region AR1 and the termination region AR2.
  • the conductive film 19b is made of, for example, polysilicon in which n-type impurities such as phosphorus (P) or arsenic (As) are diffused at a high concentration, or polysilicon in which p-type impurities such as boron (B) are diffused at a high concentration.
  • a conductive film can be used.
  • the conductive film 19b can be formed by, for example, a CVD method.
  • the conductive film 19b when the conductive film 19b is formed in the active region AR1 and the termination region AR2, the conductive film 19b is formed on the insulating film 18b also in the gate pad region AR3.
  • the conductive film 19b is patterned in the active region AR1 and the termination region AR2, and the gate electrode 19 is formed.
  • the gate electrode 19 made of the conductive film 19b is formed by patterning the conductive film 19b by a photolithography technique and a dry etching technique.
  • the gate electrode 19 is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 via the gate insulating film 18 made of the insulating film 18 b.
  • the gate electrode 19 and the gate insulating film 18 are formed in the active region AR1
  • the conductive film 19b is also patterned in the gate pad region AR3.
  • the gate pad 19a made of the conductive film 19b is formed in the gate pad region AR3.
  • the gate pad 19a is formed on the field oxide film FO1 via an insulating film 18a made of an insulating film 18b.
  • the insulating film 18b may be patterned together when the conductive film 19b is patterned.
  • step S17 in FIG. 3 the interlayer insulating film 20 is formed (step S17 in FIG. 3).
  • step S17 in the active region AR1, on the n ⁇ type epitaxial layer 12, on the p type body region 13, on the n + type source region 14 and on the p + type body contact region 15 Then, an interlayer insulating film 20 is formed so as to cover the gate electrode 19 and the gate insulating film 18.
  • step S17 in the termination region AR2, on the n ⁇ type epitaxial layer 12, on the p type body region 13a, on the n + type source region 14a, on the p + type body contact region 15a.
  • an interlayer insulating film 20 is formed so as to cover the gate electrode 19 and the gate insulating film 18. Further, in step S17, as shown in FIG. 11, an interlayer insulating film 20 is formed on the field oxide film FO1 so as to cover the gate pad 19a and the insulating film 18a in the gate pad region AR3.
  • a silicon oxide film can be used as the interlayer insulating film 20 and can be formed by, for example, a CVD method.
  • step S18 a silicide film SIL1 is formed (step S18 in FIG. 3).
  • step S18 first, as shown in FIG. 11, by using a photolithography technique and an etching technique, contact holes 20a and contacts as openings are formed in the interlayer insulating film 20 in the active region AR1 and the termination region AR2. Hole 20b is formed. At this time, the contact hole 20a and the contact hole 20b are formed so as to penetrate the gate insulating film 18 as well.
  • a contact hole 20a that penetrates through the interlayer insulating film 20 and the gate insulating film 18 and reaches the n + type source region 14 and the p + type body contact region 15 is formed.
  • the upper surface of the n + type source region 14 and the upper surface of the p + type body contact region 15 are exposed at the bottom of the contact hole 20a.
  • a contact hole 20b that penetrates the interlayer insulating film 20, the gate insulating film 18 and the field oxide film FO1 and reaches the contact region 15b is formed.
  • the upper surface of the contact region 15b is exposed at the bottom of the contact hole 20b.
  • the upper surface of the p-type body region 13a adjacent to the contact region 15b may be exposed at the bottom of the contact hole 20b.
  • a metal raw material film is formed using a sputtering method or the like.
  • the metal source film for example, a metal source film made of nickel (Ni), titanium (Ti), cobalt (Co), platinum (Pt), or the like can be formed.
  • the n + -type SiC substrate 10 is subjected to a heat treatment to cause the silicon contained in the p + -type body contact region 15 exposed at the bottom of the contact hole 20a to react with the metal contained in the metal source film, thereby causing the contact hole to react.
  • the silicon contained in the n + type source region 14 exposed at the bottom of 20a is reacted with the metal contained in the metal source film.
  • the metal film is formed on the p + type body contact region 15 exposed at the bottom of the contact hole 20a and on the n + type source region 14 exposed at the bottom of the contact hole 20a.
  • a silicide film SIL1 made of metal silicide is formed.
  • a silicide film SIL2 made of a metal silicide is formed as a metal film.
  • the metal source film is made of nickel (Ni), and the silicide films SIL1 and SIL2 include nickel silicide such as Ni 2 Si or NiSi, that is, nickel silicide.
  • the silicide film SIL1 can be easily Schottky connected to the p + type body contact region 15, and the silicide film SIL2 can be easily Schottky connected to the contact region 15b.
  • the composition ratio of nickel to the sum of nickel and silicon in the silicide films SIL1 and SIL2 is larger than 0.4 and smaller than 0.7.
  • the silicide film SIL1 can be more easily Schottky connected to the p + type body contact region 15, and the silicide film SIL2 can be more easily Schottky connected to the contact region 15b.
  • a contact hole 20c as an opening is formed in the interlayer insulating film 20 in the gate pad region AR3 by using a photolithography technique and an etching technique.
  • the contact hole 20c penetrates the interlayer insulating film 20 and reaches the gate pad 19a.
  • the upper surface of the gate pad 19a is exposed at the bottom of the contact hole 20c.
  • the source electrode 21 is formed (step S19 in FIG. 3).
  • step 19 as shown in FIG. 13, in the active region AR1, a conductive film made of, for example, titanium (Ti) or aluminum (Al) is formed inside the contact hole 20a and on the interlayer insulating film 20, for example.
  • the source electrode 21 is formed by depositing by vapor deposition or sputtering. That is, the source electrode 21 is formed on the silicide film SIL1.
  • step S19 in the termination region AR2, a conductive film made of, for example, titanium (Ti) or aluminum (Al) is formed in the contact hole 20b and on the interlayer insulating film 20.
  • the contact electrode 21a is formed by depositing, for example, by vapor deposition or sputtering. That is, the contact electrode 21a is formed on the silicide film SIL2. Note that the contact electrode 21 a may be formed in the same layer as the source electrode 21 or may be electrically connected to the source electrode 21.
  • step S19 a conductive film made of, for example, titanium (Ti) or aluminum (Al) is formed in the contact pad 20c and on the interlayer insulating film 20 in the gate pad region AR3. Is deposited by, for example, an evaporation method or a sputtering method to form the gate contact electrode GC1.
  • the drain electrode 22 is formed (step S20 in FIG. 3).
  • this step S20 in the active region AR1, the termination region AR2, and the gate pad region AR3, for example, a conductive material in which titanium (Ti), nickel (Ni), gold (Au), or the like is laminated on the lower surface 10b of the n + -type SiC substrate 10.
  • the film is deposited by, for example, vapor deposition or sputtering.
  • the drain electrode 22 can be formed on the lower surface 10b of the n + -type SiC substrate 10 in the active region AR1, the termination region AR2, and the gate pad region AR3.
  • the semiconductor device 1 as shown in FIG. Can be manufactured.
  • the upper surface of the semiconductor device 1 is covered so as to cover the interlayer insulating film 20, the source electrode 21, the contact electrode 21a, the gate contact electrode GC1, and the drain electrode 22.
  • a passivation film can be formed on the lower surface.
  • an opening is formed in a portion of the formed passivation film where a pad region for electrically connecting the source electrode 21, the gate contact electrode GC1, and the drain electrode 22 to the outside is formed. Can do.
  • the power module according to the first embodiment includes the semiconductor device according to the first embodiment.
  • FIG. 14 is a diagram illustrating a configuration of the motor system according to the first embodiment.
  • the motor system 30 includes a power conversion device 31 as an inverter device, a load 32 made of a motor or the like, a DC power source 33, and a capacitor 34 made of a capacitor or the like.
  • the power conversion device 31 includes a power module 35 as an inverter circuit and a control circuit 36.
  • the load 32 is connected to two output terminals of the power module 35, which are output terminals TO1 and TO2.
  • the DC power supply 33 and the capacitor 34 are connected in parallel between the input terminal TI1 and the input terminal TI2, which are the two input terminals of the power module 35.
  • the power module 35 as an inverter circuit has switching elements 37u, 37v, 37x and 37y.
  • the switching elements 37u and 37x are connected in series between the input terminal TI1 and the input terminal TI2.
  • the switching elements 37v and 37y are connected in series between the input terminal TI1 and the input terminal TI2.
  • Each of the switching elements 37u, 37v, 37x and 37y includes a MISFET 38 and a body diode 39 connected in parallel with the MISFET 38.
  • semiconductor device 1 see FIG. 2 of the first embodiment can be used.
  • the body diode 39 the body diode 23 incorporated in each vertical MISFET represented by the cell CL1 in each semiconductor device 1 can be used (see FIG. 2).
  • the gate electrodes of the plurality of MISFETs 38 provided in the switching elements 37u, 37v, 37x, and 37y are respectively connected to the control terminals TC1, TC2, TC3, and TC4 that are the four control terminals of the power module 35. .
  • the control circuit 36 is connected to each of the control terminals TC1, TC2, TC3, and TC4. Therefore, the control circuit 36 is connected to each gate electrode of the plurality of MISFETs 38 provided in the switching elements 37u, 37v, 37x and 37y, respectively.
  • the control circuit 36 drives the switching elements 37u, 37v, 37x and 37y.
  • the control circuit 36 switches the switching elements 37u and 37v so that the on state or off state of the pair of switching elements 37u and 37y and the on state or off state of the other pair of switching elements 37v and 37x are alternately switched. , 37x and 37y are driven.
  • the power module 35 as an inverter circuit generates an AC voltage from the DC voltage and converts the DC power into AC power.
  • the load 32 is driven by this AC power.
  • Np cm ⁇ 3
  • a silicide film SIL1 containing nickel silicide that is, nickel silicide. Five samples were prepared. For each sample, the specific contact resistance Rc ( ⁇ cm 2 ) between the p + type body contact region 15 and the silicide film SIL1 was measured.
  • the concentration Np of the p-type impurity is less than 1 ⁇ 10 20 cm ⁇ 3 , that is, the specific contact resistance Rc is larger than 0.005 ⁇ cm 2 .
  • the silicide film SIL1 can be Schottky connected to the p + type body contact region 15.
  • the concentration Np of the p-type impurity is less than 7 ⁇ 10 19 cm ⁇ 3 , that is, the specific contact resistance Rc is larger than 0.02 ⁇ cm 2 .
  • the silicide film SIL1 can be easily Schottky connected to the p + type body contact region 15.
  • the source is not formed on the p + -type body contact region 15 via the silicide film as will be described later in the third embodiment.
  • the metal film can be Schottky connected to the p + type body contact region 15.
  • FIG. 17 is a cross-sectional view of main parts of a semiconductor device of a comparative example.
  • the semiconductor device 101 of the comparative example includes a vertical MISFET made of silicon carbide.
  • the silicide film SIL1 has the p + type body contact region. 15 is not Schottky connected, but is ohmic connected. That is, the concentration of the p-type impurity in the p + -type body contact region 15 of the semiconductor device 101 of the comparative example is 1 ⁇ 10 20 cm ⁇ 3 or more.
  • Table 2 shows ion implantation conditions for setting the concentration of the p-type impurity in the p + -type body contact region 15 to 1 ⁇ 10 20 cm ⁇ 3 or more. That is, the conditions shown in Table 2 are conditions for making ohmic contact between the silicide film SIL1 and the p + type body contact region 15.
  • Table 2 shows the implantation energy (keV) and dose (cm) in each step when the four steps of steps S121 to S124 are sequentially performed to implant ions of aluminum as a p-type impurity in four stages. -2 ).
  • the semiconductor device 101 made of a vertical MISFET has body diodes 123 and 123a built between the source electrode 21 or the contact electrode 21a and the drain electrode 22 in the active region AR1 and the termination region AR2.
  • a reflux current can be passed through the body diode 123. Therefore, in the power module 35 provided with the vertical MISFET as the switching elements 37u, 37v, 37x and 37y, it is not necessary to provide an external diode separately from the vertical MISFET.
  • the vertical MISFET provided in the power module 35 as an inverter circuit is a vertical MISFET made of SiC
  • a reflux current flows through the body diode 123 built in the vertical MISFET.
  • holes flowing as a reflux current are indicated by “h” and a broken arrow
  • electrons flowing as a reflux current are indicated by “e” and a solid arrow.
  • a reflux current flows through the body diode 123 built in the semiconductor device 101 as a vertical MISFET made of SiC, the n ⁇ type epitaxial layer 12, the p type body region 13, and the p + type body contact region 15
  • various crystal defects such as stacking faults existing inside
  • holes and electrons flowing as a reflux current are recombined.
  • the energy released by recombination of holes and electrons expands various crystal defects such as stacking faults in the n ⁇ -type epitaxial layer 12 and increases the density of crystal defects. Is generated, and an electrical resistance when an on-current flows through the semiconductor device 101, that is, an on-resistance increases.
  • the semiconductor device 101 of the comparative example when used as a switching element, it is necessary to prevent a large amount of reflux current from flowing through the body diode 123. Therefore, for example, synchronous rectification such as switching each of the plurality of semiconductor devices 101 to the on state in synchronization with the timing at which the reflux current flows through the body diode 123 needs to be performed with extremely high accuracy by the control circuit 36. Therefore, the design margin of the power module 35 as an inverter circuit including the semiconductor device 101 of the comparative example cannot be expanded.
  • the power module 35 as an inverter circuit including the semiconductor device 101 of the comparative example cannot be reduced in size.
  • the semiconductor element includes a field effect transistor and a Schottky electrode.
  • the Schottky electrode is provided on the upper surface of the first conductivity type, that is, the n-type drift region so as to form a Schottky junction with the upper surface. Therefore, in the technique described in Patent Document 1, since the Schottky electrode is Schottky connected to the n-type semiconductor region, it is possible to prevent holes from being supplied from the Schottky electrode to the semiconductor element. Can not.
  • the Schottky electrode is provided on the upper surface of the drift region along the outer periphery of the region where the field effect transistor is formed. Therefore, the area of the semiconductor element may be increased, and the electric field may be concentrated on the outer periphery of the region where the field effect transistor is formed to increase the strength of the electric field.
  • the vertical MISFET provided in the power module 35 as the inverter circuit is a vertical MISFET made of SiC
  • the deterioration of energization is also caused by the return current flowing through the body diode 123a built in the termination region AR2. The occurrence is the same as when the return current flows through the body diode 123.
  • the silicide film SIL1 is Schottky connected to the p + type body contact region 15.
  • the design margin of the power module 35 as an inverter circuit including the semiconductor device 1 of the first embodiment and the power conversion device 31 including the power module 35 can be widened, and the power module 35 and the power conversion device can be expanded. The reliability of 31 can be improved.
  • the power module 35 and the power conversion device 31 can be reduced in size.
  • the silicide film SIL2 is Schottky connected to the contact region 15b.
  • a reflux current flows through the body diode 23a built in the semiconductor device 1 included in the power module 35 as an inverter circuit, holes are hardly supplied from the silicide film SIL2 to the contact region 15b, and electrons are not generated. It flows to the vicinity of the contact electrode 21a. This prevents or suppresses recombination of holes and electrons flowing as a reflux current in various crystal defects existing in n ⁇ type epitaxial layer 12, p type body region 13a, contact region 15b, and the like. can do.
  • the silicide film SIL1 is provided with the p + type body contact region 15 for each vertical MISFET represented by the cell CL1. Therefore, compared to the technique described in Patent Document 1, the area of the semiconductor device is less likely to increase, and the electric field is less likely to concentrate in the termination region AR2.
  • p + -type body contact region 15 may be adjusted to conditions in the p-type impurity is ion-implanted to form a silicide film SIL1 a p + -type body contact region 15
  • the first embodiment can also be applied to the case where the conductivity types of the semiconductor substrate, each semiconductor layer, and each semiconductor region are interchanged between p-type and n-type. Even in such a case, the same effect as that of the semiconductor device 1 of the first embodiment can be obtained, although the degree is less than that in the case where holes flow as the reflux current (the second embodiment and the second embodiment described later). The same applies to 3).
  • n + type SiC substrate instead of the n + type SiC substrate, a semiconductor substrate made of various semiconductor materials such as silicon (Si) or gallium nitride (GaN) is used, and the n ⁇ type epitaxial layer is made of Si or the like.
  • the present invention is also applicable when a semiconductor layer made of various semiconductor materials such as GaN is used. Even in such a case, the same effect as that of the semiconductor device of the first embodiment can be obtained, although the degree is less than that in the case of using silicon carbide (SiC) as the semiconductor material (the second embodiment and the implementation described later). The same applies to Form 3).
  • FIG. 18 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment.
  • the concentration of the p-type impurity in the contact region 15b is lower than the concentration of the p-type impurity in the p + -type body contact region 15.
  • each part other than the p + type body contact region 15 and the contact region 15b is the same as each part in the semiconductor device 1 of the first embodiment. Omitted.
  • the concentration of p-type impurity in the p + -type body contact region 15a is the same as the concentration of the p-type impurity in the p + -type body contact region 15 be able to.
  • the semiconductor device 1 of the second embodiment also has the p + type body contact region 15 and the silicide film SIL1 in the active region AR1, and the termination region AR2 Contact region 15b and silicide film SIL2.
  • the concentration of the p-type impurity in the contact region 15b is lower than the concentration of the p-type impurity in the p + -type body contact region 15.
  • the concentration of the p-type impurity in the p + -type body contact region 15 is higher than the concentration of the p-type impurity in the contact region 15b.
  • the silicide film SIL2 is Schottky connected to the contact region 15b as in the first embodiment. Similar to the first embodiment, the concentration of the p-type impurity in the contact region 15b in contact with the silicide film SIL2 is less than 1 ⁇ 10 20 cm ⁇ 3 , so that the silicide film SIL2 is connected to the contact region 15b in a Schottky connection. can do. Similarly to the first embodiment, the silicide film SIL2 can be easily separated from the contact region 15b by reducing the p-type impurity concentration in the contact region 15b in contact with the silicide film SIL2 to less than 7 ⁇ 10 19 cm ⁇ 3. Can be connected to Schottky.
  • the silicide film SIL2 preferably includes nickel silicide, and more preferably, the composition ratio of nickel with respect to the sum of nickel and silicon in the silicide film SIL2, as in the first embodiment. Is greater than 0.4 and less than 0.7. Thereby, the silicide film SIL2 can be more easily Schottky connected to the contact region 15b.
  • the silicide film SIL1 is not in Schottky connection with the p + type body contact region 15 but in ohmic connection.
  • the p + -type body contact region 15 in contact with the silicide film SIL1 has a p-type impurity concentration of 1 ⁇ 10 20 cm ⁇ 3 or more, so that the silicide film SIL1 is converted into the p + -type body contact region. 15 and an ohmic connection.
  • the composition of the silicide film SIL1 is not particularly limited.
  • the p.sup. + Type body contact regions 15 are not separated from each other and are arranged in a matrix at relatively small intervals. Therefore, when a reflux current flows through the semiconductor device 1, the current density in the p-type body region 13 at the periphery of each p + -type body contact region 15 is not so high, and current deterioration is unlikely to occur.
  • the contact regions 15b are separated from each other. Therefore, when a return current flows through the semiconductor device 1, the currents in the p-type body regions 13a and 13b in the portions located around the contact regions 15b. Density increases, and current deterioration tends to occur.
  • the potential of the p-type body region 13 is accurately adjusted by the source electrode 21 via the silicide film SIL1 and the p + -type body contact region 15 when the vertical MISFET is in the ON state. It is necessary to improve the switching characteristics of the vertical MISFET. From the viewpoint of improving the switching characteristics of the vertical MISFET, it is desirable that the concentration of the p-type impurity in the p + -type body contact region 15 is relatively high.
  • the concentration of the p-type impurity in the contact region 15b may be relatively low.
  • the concentration of p-type impurity in contact region 15 b is lower than the concentration of p-type impurity in p + -type body contact region 15.
  • the silicide film SIL2 is Schottky connected to the contact region 15b.
  • a reflux current flows through the body diode 23a
  • holes are hardly supplied from the silicide film SIL2 to the contact region 15b, and electrons flow to the vicinity of the contact electrode 21a. Therefore, recombination of holes and electrons flowing as a reflux current can be prevented or suppressed in various crystal defects existing in the n ⁇ type epitaxial layer 12 and the like in the termination region AR2.
  • the silicide film SIL1 is ohmically connected to the p + type body contact region 15 in the active region AR1. Therefore, when the vertical MISFET is in the ON state, the potential of the p-type body region 13 is accurately adjusted by the source electrode 21 via the silicide film SIL1 and the p + -type body contact region 15, thereby switching the vertical MISFET. Characteristics can be improved.
  • step S11 of FIG. 3 the manufacturing process of the semiconductor device of the first embodiment except for the process of forming the p + type body contact region 15 (step S14 of FIG. 3).
  • the semiconductor device of the second embodiment can be manufactured by performing the same process as in step S20).
  • the ion implantation conditions for forming the contact region 15b are different.
  • the conditions for ion implantation when forming the p + -type body contact region 15 can be the conditions for forming an ohmic connection as shown in Table 2, for example.
  • the ion implantation conditions for forming the contact region 15b in the termination region AR2 can be the conditions for forming the Schottky connection shown in Table 1, for example.
  • the concentration of the p-type impurity in the p + -type body contact region 15 can be set to 1 ⁇ 10 20 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less, and the concentration of the p-type impurity in the contact region 15b is set to 1 ⁇ 10 20 cm ⁇ 3. It can be 2 ⁇ 10 19 cm ⁇ 3 or more and less than 1 ⁇ 10 20 cm ⁇ 3 .
  • the silicide film SIL2 in the termination region AR2, can be schottky connected to the contact region 15b, and in the active region AR1, the silicide film SIL1 can be ohmically connected without being schottky connected to the contact region 15b.
  • ⁇ Power module, power converter and motor system The power module, power conversion device, and motor system including the semiconductor device 1 according to the second embodiment are also described with reference to FIG. 14. The power module, power conversion device, and motor including the semiconductor device 1 according to the first embodiment are also described. Can be similar to the system.
  • FIG. 19 is a fragmentary cross-sectional view of the semiconductor device of Third Embodiment.
  • the source electrode 21 in the active region AR1, is connected to the p + type body contact region 15 via the silicide film SIL1, but in the termination region AR2, the contact electrode 21a is formed directly on the contact region 15b.
  • each part other than the structure from the p + type body contact region 15 to the source electrode 21 and the structure from the contact region 15b to the contact electrode 21a is described in the first embodiment. This is the same as each part of the semiconductor device 1 of FIG.
  • the concentration of p-type impurity in the p + -type body contact region 15a is the same as the concentration of the p-type impurity in the p + -type body contact region 15 be able to.
  • the semiconductor device 1 according to the third embodiment similarly to the semiconductor device 1 according to the first embodiment, in the active region AR1, the portion exposed at the bottom of the contact hole 20a and on the n + type source region 14 and p + On the mold body contact region 15, a silicide film SIL1 made of a metal silicide is formed as a metal film.
  • the source electrode 21 made of the conductive film 21b is formed in the contact hole 20a, on the silicide film SIL1, and on the interlayer insulating film 20.
  • the semiconductor device 1 of the third embodiment unlike the semiconductor device 1 of the first embodiment, a silicide film is formed on the contact region 15b of the termination region AR2 exposed at the bottom of the contact hole 20b. It has not been. Therefore, in the semiconductor device 1 of the third embodiment, the contact electrode 21a made of the conductive film 21c is formed on the contact region 15b of the termination region AR2 exposed at the bottom of the contact hole 20b. The electrode 21a is in contact with the contact region 15b.
  • the contact electrode 21a is made of a conductive film 21c formed in the same layer as the conductive film 21b included in the source electrode 21. The contact electrode 21a may be electrically connected to the source electrode 21.
  • the silicide film SIL1 in the active region AR1, is not in Schottky connection with the p + type body contact region 15, but in ohmic connection.
  • the concentration of the p-type impurity in the p + -type body contact region 15 in contact with the silicide film SIL1 is 1 ⁇ 10 20 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less.
  • the silicide film SIL1 is The p + type body contact region 15 can be ohmically connected.
  • the composition of the silicide film SIL1 is not particularly limited.
  • the contact electrode 21a is Schottky connected to the contact region 15b.
  • the contact electrode 21a is formed directly on the contact region 15b, for example, insulation is provided between the contact electrode 21a made of, for example, titanium (Ti) or aluminum (Al) and the contact region 15b made of silicon carbide (SiC). An interfacial layer having a property is formed. Thereby, the contact electrode 21a can be Schottky connected to the contact region 15b.
  • the active region AR1 deterioration of energization is unlikely to occur when a return current flows in the semiconductor device 1, but in the termination region AR2, the return current flows in the semiconductor device 1. In addition, energization deterioration is likely to occur.
  • the concentration of the p-type impurity in the p + -type body contact region 15 is relatively high from the viewpoint of improving the switching characteristics of the vertical MISFET, but in the termination region AR2, the concentration in the contact region 15b is desirable.
  • the concentration of the p-type impurity may be relatively low.
  • the contact electrode 21a is Schottky connected to the contact region 15b in the termination region AR2.
  • the termination region AR2 when a reflux current flows through the body diode 23a, holes are hardly supplied from the contact electrode 21a to the contact region 15b, and electrons flow to the vicinity of the contact electrode 21a. Therefore, recombination of holes and electrons flowing as a reflux current can be prevented or suppressed in various crystal defects existing in the n ⁇ type epitaxial layer 12 and the like in the termination region AR2.
  • the silicide film SIL1 is ohmically connected to the p + type body contact region 15 in the active region AR1. Therefore, when the vertical MISFET is in the ON state, the potential of the p-type body region 13 is accurately adjusted by the source electrode 21 via the silicide film SIL1 and the p + -type body contact region 15, thereby switching the vertical MISFET. Characteristics can be improved.
  • the manufacturing process of the semiconductor device according to the first embodiment (steps S11 to S20 in FIG. 3), except for steps S14, S18 and S19 in FIG.
  • the semiconductor device of the third embodiment can be manufactured by performing the same process.
  • the steps S11 to S13 of FIG. 3 are performed, and the n ⁇ type epitaxial layer is formed on the upper surface 10a of the n + type SiC substrate 10 in the active region AR1 and the termination region AR2.
  • Layer 12 is formed, and p-type body region 13 is formed in the upper layer portion of n ⁇ -type epitaxial layer 12.
  • the p + type body contact region 15 is formed (step S14 in FIG. 3).
  • the ion implantation conditions for forming the p + -type body contact region 15, in the first embodiment are different.
  • the ion implantation conditions for forming the p + -type body contact region 15 can be the conditions for forming an ohmic connection as shown in Table 2, for example.
  • the concentration of the p-type impurity in the p + -type body contact region 15 can be set to 1 ⁇ 10 20 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less.
  • the concentration of the p-type impurity in the contact region 15b may be about 2 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 and is not particularly limited. Therefore, in step S14 of FIG. 3, the ion implantation conditions for forming the contact region 15b in the process shown in FIG. 8 are not particularly limited.
  • Steps S15 to S17 of FIG. 3 are performed to form the n + -type source region 14, the gate insulating film 18 and the gate electrode 19, and the interlayer insulating film 20.
  • a silicide film SIL1 is formed (step S18 in FIG. 3).
  • this step S18 first, as shown in FIG. 20, by using a photolithography technique and an etching technique, a contact hole as an opening is formed in the interlayer insulating film 20 in the active region AR1. 20a is formed.
  • the contact hole 20a is formed, no contact hole is formed in the termination region AR2.
  • a metal source film made of, for example, nickel (Ni) is formed on the upper surface of the p + -type body contact region 15 exposed at the bottom of the contact hole 20a by using a sputtering method or the like, as in the first embodiment. Thereafter, heat treatment is performed on the n + -type SiC substrate 10.
  • a silicide film SIL1 made of metal silicide is formed on the p + type body contact region 15 exposed at the bottom of the contact hole 20a.
  • the composition of the silicide film SIL1 is not particularly limited.
  • a contact hole 20c as an opening is formed in the interlayer insulating film 20 in the gate pad region AR3 by using a photolithography technique and an etching technique.
  • the contact hole 20b is formed in the termination region AR2.
  • no silicide film is formed on the contact region 15b exposed at the bottom of the contact hole 20b and on the p-type body region 13a adjacent to the contact region 15b exposed at the bottom of the contact hole 20b.
  • the step of forming the contact hole 20b which must be performed separately from the step of forming the contact hole 20a, can be performed by the same process as the process of forming the contact hole 20c. Therefore, even if the step of forming the contact hole 20b is performed separately from the step of forming the contact hole 20a, the number of steps in the semiconductor device manufacturing process does not increase.
  • the source electrode 21 is formed (step S19 in FIG. 3).
  • the source electrode 21 made of the conductive film 21b is formed in the contact hole 20a and on the interlayer insulating film 20.
  • a contact electrode 21a made of a conductive film 21c is formed inside the contact hole 20b and on the interlayer insulating film 20.
  • the contact electrode 21a made of the conductive film 21c is formed on the portion of the contact region 15b exposed at the bottom of the contact hole 20b, and the contact electrode 21a is in contact with the contact region 15b.
  • the contact electrode 21a is made of a conductive film 21c formed in the same layer as the conductive film 21b included in the source electrode 21.
  • the contact electrode 21a may be electrically connected to the source electrode 21.
  • the gate contact electrode GC1 is formed as in the first embodiment.
  • step S20 of FIG. 3 is performed to form the semiconductor device 1 of the third embodiment.
  • ⁇ Power module, power converter and motor system The power module, power converter, and motor system provided with the semiconductor device 1 according to the third embodiment are also described with reference to FIG. 14, and the power module, power converter, and motor provided with the semiconductor device 1 according to the first embodiment. Can be similar to the system.
  • the power module according to the fourth embodiment includes the semiconductor device according to the first embodiment.
  • the power module of the fourth embodiment is different from the power module of the first embodiment in that the semiconductor device of the first embodiment is applied to a three-phase inverter circuit.
  • the semiconductor devices of the second and third embodiments can be used in place of the semiconductor device of the first embodiment (the same applies to the fifth and sixth embodiments).
  • FIG. 23 is a diagram illustrating a configuration of a three-phase motor system according to the fourth embodiment.
  • the three-phase motor system 30a includes a power conversion device 31a as an inverter device, a load 32a composed of a three-phase motor or the like, a DC power source 33, and a capacitor 34 composed of a capacitor or the like.
  • the power converter 31a includes a power module 35a as a three-phase inverter circuit and a control circuit 36a.
  • the load 32a is connected to output terminals TO1, TO2, and TO3, which are three-phase output terminals of the power module 35a.
  • the DC power supply 33 and the capacitor 34 are connected in parallel between the input terminal TI1 and the input terminal TI2, which are the two input terminals of the power module 35a.
  • the power module 35a as an inverter circuit has switching elements 37u, 37v, 37w, 37x, 37y and 37z.
  • the switching elements 37u and 37x are connected in series between the input terminal TI1 and the input terminal TI2.
  • the switching elements 37v and 37y are connected in series between the input terminal TI1 and the input terminal TI2.
  • the switching elements 37w and 37z are connected in series between the input terminal TI1 and the input terminal TI2.
  • Each of the switching elements 37u, 37v, 37w, 37x, 37y and 37z includes a MISFET 38 and a body diode 39.
  • the semiconductor device 1 according to the first, second, or third embodiment (see FIG. 2, FIG. 18, or FIG. 19) is used. it can.
  • body diode 39 body diodes 23 and 23a (see FIG. 2, FIG. 18, or FIG. 19) built in the semiconductor device 1 can be used.
  • the gate electrodes of the plurality of MISFETs 38 provided in the switching elements 37u, 37v, 37w, 37x, 37y and 37z, respectively, are six control terminals of the power module 35a.
  • the control circuit 36a is connected to each of the control terminals TC1, TC2, TC3, TC4, TC5, and TC6. Therefore, the control circuit 36a is connected to each gate electrode of the plurality of MISFETs 38 provided in the switching elements 37u, 37v, 37w, 37x, 37y and 37z, respectively.
  • the control circuit 36a drives the switching elements 37u, 37v, 37w, 37x, 37y and 37z.
  • the control circuit 36a drives each of the switching elements 37u, 37v, 37w, 37x, 37y, and 37z so that the ON state and the OFF state of each switching element are alternately switched at a preset timing.
  • a U-phase, V-phase, and W-phase three-phase AC voltage is generated from the DC voltage, and the DC power is converted into three-phase AC power.
  • the load 32a is driven by this three-phase AC power.
  • the design margin of the power module 35a and the power converter 31a can be expanded, and the reliability of the power module 35a and the power converter 31a is improved. Can be made.
  • the power module 35a and the power conversion device 31a can be reduced in size.
  • the automobile of the fifth embodiment is an automobile including the power conversion device of the fourth embodiment, and is an automobile such as a hybrid car and an electric car.
  • FIG. 24 is a diagram showing a configuration of an electric vehicle as a vehicle according to the fifth embodiment.
  • FIG. 25 is a circuit diagram showing the boost converter device in the automobile of the fifth embodiment.
  • an automobile 40 as an electric vehicle drives a three-phase motor 43 that allows power to be input / output to / from a drive shaft 42 to which drive wheels 41a and 41b are connected, and a three-phase motor 43.
  • An inverter device 44 and a battery 45 are provided.
  • the automobile 40 includes a boost converter device 48, a relay 49, and an electronic control unit 50.
  • the boost converter device 48 includes an electric power line 46 to which an inverter device 44 is connected and electric power to which a battery 45 is connected. It is connected to the line 47.
  • the three-phase motor 43 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil.
  • the inverter device 44 the power conversion device 31a (see FIG. 23) described in the fourth embodiment can be used.
  • the boost converter device 48 has a configuration in which a reactor 51 and a smoothing capacitor 52 are connected to an inverter device 53.
  • the inverter device 53 is the same as a part of the inverter circuit included in the power module 35a described in the fourth embodiment.
  • MISFET 55 and body diode 56 included in switching element 54 in inverter device 53 are the same as MISFET 38 and body diode 39 described in the fourth embodiment.
  • the electronic control unit 50 includes a microprocessor, a storage device, and an input / output port, and receives a signal from a sensor that detects the rotor position of the three-phase motor 43 or a charge / discharge value of the battery 45. .
  • the electronic control unit 50 outputs a signal for controlling the inverter device 44, the boost converter device 48, and the relay 49.
  • the inverter device 44 of the automobile 40 of the fifth embodiment the power conversion device 31a (see FIG. 23) of the fourth embodiment can be used.
  • the semiconductor device 1 of the first embodiment, the second embodiment, or the third embodiment FIG. 2, FIG. 18 or FIG. 19
  • semiconductor device 1 of the first, second, or third embodiment is used as switching element 54 provided in inverter device 53 in boost converter device 48 of automobile 40 of the fifth embodiment. Can do.
  • the design margin of the power module 35a and the power converter 31a can be widened, and the reliability of the power module 35a and the power converter 31a is improved. Can be made.
  • the power module 35a and the power conversion device 31a can be reduced in size.
  • the power loss at the time of power conversion in the inverter device 44 and the boost converter device 48 can be reduced, so that a large cooling device may not be provided. . Therefore, the inverter device 44 and the boost converter device 48 can be easily reduced in cost, size, or weight by reducing the size of the cooling device.
  • the volume of the drive system occupying the automobile 40 as an electric vehicle can be reduced, and the automobile 40 as an electric car can be easily reduced in cost, size, or weight.
  • the degree of freedom in design of the vehicle 40 as an electric vehicle can be increased, for example, the interior of the vehicle 40 as the electric vehicle can be widened.
  • the example which applied the motor vehicle containing the power converter device 31a of Embodiment 4 to the electric vehicle was demonstrated.
  • the vehicle including the power conversion device 31a of the fourth embodiment can be similarly applied to a hybrid vehicle that also uses an engine.
  • the hybrid vehicle to which the power conversion device 31a of the fourth embodiment is applied has the same effect as the electric vehicle to which the power conversion device of the fourth embodiment is applied.
  • the railway vehicle according to the sixth embodiment is a railway vehicle including the power conversion device according to the fourth embodiment.
  • FIG. 26 is a diagram illustrating a configuration of the railway vehicle according to the sixth embodiment.
  • the railway vehicle 60 includes a pantograph 61 as a current collector, a transformer 62, a power converter 63, a load 64 that is an AC motor, and wheels 65.
  • the power conversion device 63 includes a converter device 66, a capacitor 67 that is, for example, a capacitor, and an inverter device 68.
  • the converter device 66 has switching elements 69 and 70.
  • the switching element 69 is disposed on the upper arm side, that is, the high voltage side
  • the switching element 70 is disposed on the lower arm side, that is, the low voltage side.
  • the switching elements 69 and 70 are shown for one phase among a plurality of phases.
  • the inverter device 68 has switching elements 71 and 72.
  • the switching element 71 is disposed on the upper arm side, that is, the high voltage side
  • the switching element 72 is disposed on the lower arm side, that is, the low voltage side.
  • the switching elements 71 and 72 are shown for one of the three phases U phase, V phase and W phase.
  • One end of the primary side of the transformer 62 is connected to the overhead line 61 a via the pantograph 61.
  • the other end of the primary side of the transformer 62 is connected to the line 65 a via the wheel 65.
  • One end of the secondary side of the transformer 62 is connected to a terminal on the upper arm side opposite to the load 64 of the converter device 66.
  • the other end of the secondary side of the transformer 62 is connected to a terminal on the lower arm side opposite to the load 64 of the converter device 66.
  • the terminal on the load 64 side and the upper arm side of the converter device 66 is connected to the terminal on the upper arm side opposite to the load 64 of the inverter device 68.
  • the terminal on the load 64 side of the converter device 66 on the lower arm side is connected to the terminal on the lower arm side opposite to the load 64 of the inverter device 68.
  • a capacitor 67 is connected between a terminal on the side opposite to the load 64 of the inverter device 68 and on the upper arm side, and a terminal on the side opposite to the load 64 of the inverter device 68 and on the lower arm side.
  • each of the three terminals on the output side of the inverter device 68 is connected to the load 64 as a U phase, a V phase, and a W phase.
  • the power conversion device 31a of the fourth embodiment can be used as the inverter device 68.
  • the AC power collected from the overhead wire 61 a by the pantograph 61 is transformed by the converter device 66 into desired DC power after the voltage is transformed by the transformer 62.
  • the DC power converted by the converter device 66 is smoothed by the capacitor 67.
  • the DC power whose voltage has been smoothed by the capacitor 67 is converted into AC power by the inverter device 68.
  • the AC power converted by the inverter device 68 is supplied to the load 64.
  • power conversion device 31a (see FIG. 23) of the fourth embodiment can be used.
  • the semiconductor device 1 of the first embodiment, the second embodiment, or the third embodiment (FIG. 2, FIG. 18 or FIG. 19) can be used.
  • the design margin of the power module 35a and the power converter 31a can be widened, and the reliability of the power module 35a and the power converter 31a is improved. Can be made.
  • the power module 35a and the power conversion device 31a can be reduced in size.
  • the power loss at the time of power conversion in the inverter device 68 can be reduced, so that a large cooling device may not be provided. Therefore, the inverter device 68 can be easily reduced in cost, size, or weight by reducing the size of the cooling device. Therefore, it is possible to easily reduce the cost of the railway vehicle 60 including the inverter device 68 and improve the energy efficiency when operating the railway.
  • switching elements 69 and 70 provided in converter device 66 semiconductor device 1 of the first, second, or third embodiment (see FIG. 2, FIG. 18, or FIG. 19) can be used.
  • the converter device 66 since the power loss at the time of power conversion in the converter device 66 can be reduced, the converter device 66 can be easily reduced in cost, size, or weight. Therefore, it is possible to easily reduce the cost of the railway vehicle 60 including the converter device 66 and improve the energy efficiency when operating the railway.
  • the present invention is effective when applied to a semiconductor device, a power module, and a power conversion device.

Abstract

This semiconductor device (1) comprises: a p-type body region (13) that is formed in an upper part of an n--type epitaxial layer (12); an n+-type source region (14) that is formed in an upper part of the p-type body region (13); and a p+-type body contact region (15) that is formed in an upper part of the p-type body region (13). This semiconductor device (1) also comprises: a silicide film (SIL1) that is formed on the n+-type source region (14) and the p+-type body contact region (15); and a source electrode (21) that is formed on the silicide film (SIL1). The silicide film (SIL1) is Schottky-connected to the p+-type body contact region (15).

Description

半導体装置、パワーモジュールおよび電力変換装置Semiconductor device, power module and power conversion device
 本発明は半導体装置、パワーモジュールおよび電力変換装置に関し、スイッチング素子を備えた半導体装置、パワーモジュールおよび電力変換装置に関する。 The present invention relates to a semiconductor device, a power module, and a power conversion device, and relates to a semiconductor device, a power module, and a power conversion device provided with a switching element.
 モータ等の大電力用途の負荷を駆動するための電力を直流と交流との間で変換する、大電力用途の電力変換装置として、インバータ装置が用いられている。このような大電力用途の電力変換装置としてのインバータ装置は、インバータ回路としてのパワーモジュールを備えている。このパワーモジュールは、半導体装置としてのスイッチング素子を複数個備えた、インバータ回路としてのパワーモジュールである。 2. Description of the Related Art An inverter device is used as a power conversion device for high power applications that converts electric power for driving a load for high power applications such as a motor between direct current and alternating current. Such an inverter device as a power converter for high power use includes a power module as an inverter circuit. This power module is a power module as an inverter circuit provided with a plurality of switching elements as semiconductor devices.
 また、炭化ケイ素(SiC)などのワイドバンドギャップ半導体の絶縁破壊電界は、シリコン(Si)の絶縁破壊電界に比べて10倍程度大きい。例えば、SiCからなるスイッチング素子としての縦型MISFET(Metal Insulator Semiconductor Field Effect Transistor)の耐電圧(以下、単に耐圧ともいう。)は、数百Vから数kVの幅広い電圧の範囲にある。そのため、上記した大電力用途の電力変換装置として、SiCからなる縦型MISFETを含むパワーモジュールを備えた電力変換装置の開発が進められている。 In addition, the breakdown electric field of a wide band gap semiconductor such as silicon carbide (SiC) is about 10 times larger than that of silicon (Si). For example, the withstand voltage (hereinafter also simply referred to as a withstand voltage) of a vertical MISFET (Metal Insulator Semiconductor Field Field Effect Transistor) as a switching element made of SiC is in a wide voltage range of several hundred volts to several kV. Therefore, development of a power conversion device including a power module including a vertical MISFET made of SiC has been underway as a power conversion device for high power applications described above.
 国際公開第2007/013367号(特許文献1)には、炭化ケイ素で構成された半導体層を備えた半導体素子についての技術が記載されている。特許文献1に記載された半導体素子は、炭化ケイ素で構成された半導体層と、半導体層に形成された第1導電型すなわちn型のドリフト領域と、を有する電界効果トランジスタを備えている。 International Publication No. 2007/013367 (Patent Document 1) describes a technique for a semiconductor element including a semiconductor layer made of silicon carbide. The semiconductor element described in Patent Document 1 includes a field effect transistor having a semiconductor layer made of silicon carbide and a first conductivity type, that is, an n-type drift region formed in the semiconductor layer.
国際公開第2007/013367号International Publication No. 2007/013367
 上記した、スイッチング素子を複数個備えた、インバータ回路としてのパワーモジュールでは、パワーモジュールの出力端子に接続された負荷が大きなインダクタンスを有する場合、複数のスイッチング素子の各々をオン状態からオフ状態に切り替える際に、インバータ回路に、当該スイッチング素子のオン電流の方向とは逆方向の還流電流が流れる。したがって、インバータ回路には、還流電流を流すために、各スイッチング素子と並列に接続されたダイオードを設ける必要がある。 In the power module as an inverter circuit having a plurality of switching elements as described above, when the load connected to the output terminal of the power module has a large inductance, each of the plurality of switching elements is switched from the on state to the off state. At this time, a return current in a direction opposite to the direction of the on-state current of the switching element flows through the inverter circuit. Therefore, in the inverter circuit, it is necessary to provide a diode connected in parallel with each switching element in order to flow a reflux current.
 一方で、縦型MISFETは、ソース電極とドレイン電極との間に内蔵されたボディダイオードを有しており、ボディダイオードには、還流電流を流すことができる。したがって、スイッチング素子として縦型MISFETが備えられたパワーモジュールでは、縦型MISFETとは別に外付けでダイオードを設ける必要がない。 On the other hand, the vertical MISFET has a body diode built in between the source electrode and the drain electrode, and a reflux current can flow through the body diode. Therefore, in a power module provided with a vertical MISFET as a switching element, it is not necessary to provide an external diode separately from the vertical MISFET.
 ところがインバータ回路としてのパワーモジュールに備えられた縦型MISFETが、SiCからなる縦型MISFETである場合、縦型MISFETに内蔵されたボディダイオードに還流電流が流れることにより、通電劣化が発生し、縦型MISFETのオン抵抗が増大する。このような通電劣化が発生すると、インバータ回路としてのパワーモジュールにおける電力損失が増加する。 However, in the case where the vertical MISFET provided in the power module as the inverter circuit is a vertical MISFET made of SiC, a current flowing through the body diode built in the vertical MISFET causes a deterioration in energization. The on-resistance of the type MISFET increases. When such energization deterioration occurs, power loss in the power module as the inverter circuit increases.
 本発明の目的は、SiCからなる縦型MISFETに内蔵されたボディダイオードに還流電流が流れる際に、通電劣化が発生することを防止または抑制することができる半導体装置を提供することにある。そして、本発明の目的は、上記のような半導体装置を備え、通電劣化による電力損失を低減することができるパワーモジュール、および、そのパワーモジュールを備えた電力変換装置を提供することにある。 An object of the present invention is to provide a semiconductor device capable of preventing or suppressing the deterioration of energization when a reflux current flows through a body diode built in a vertical MISFET made of SiC. An object of the present invention is to provide a power module that includes the semiconductor device as described above and can reduce power loss due to energization deterioration, and a power conversion device including the power module.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 代表的な実施の形態による半導体装置は、第1主面と、第1主面と反対側の第2主面とを有する第1導電型の半導体基板と、半導体基板の第1主面に形成された、第1導電型の半導体層と、半導体層の上層部に形成され、第1導電型と異なる第2導電型の第1半導体領域と、を有する。また、当該半導体装置は、第1半導体領域の上層部に形成された、第1導電型の第2半導体領域と、第1半導体領域の上層部に形成された、第2導電型の第3半導体領域と、第2半導体領域と半導体層とに挟まれた部分の第1半導体領域の上面上に、ゲート絶縁膜を介して形成されたゲート電極と、を有する。また、当該半導体装置は、第2半導体領域上および第3半導体領域上に形成された第1金属膜と、第1金属膜上に形成されたソース電極と、半導体基板の第2主面に形成されたドレイン電極と、を有する。半導体基板、半導体層、第1半導体領域、第2半導体領域および第3半導体領域は、炭化ケイ素からなる。第1金属膜は、第3半導体領域とショットキー接続されている。 A semiconductor device according to a representative embodiment is formed on a first main surface of a semiconductor substrate of a first conductivity type having a first main surface and a second main surface opposite to the first main surface, and the first main surface of the semiconductor substrate. A first conductivity type semiconductor layer, and a second conductivity type first semiconductor region that is formed in an upper layer portion of the semiconductor layer and is different from the first conductivity type. The semiconductor device also includes a first conductivity type second semiconductor region formed in the upper layer portion of the first semiconductor region, and a second conductivity type third semiconductor formed in the upper layer portion of the first semiconductor region. And a gate electrode formed on a top surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer with a gate insulating film interposed therebetween. The semiconductor device is formed on the second main surface of the semiconductor substrate, the first metal film formed on the second semiconductor region and the third semiconductor region, the source electrode formed on the first metal film, and the semiconductor substrate. And a drain electrode. The semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, and the third semiconductor region are made of silicon carbide. The first metal film is Schottky connected to the third semiconductor region.
 また、代表的な実施の形態による半導体装置は、第1主面と、第1主面と反対側の第2主面とを有する第1導電型の半導体基板と、半導体基板の第1主面の第1領域、および、半導体基板の第1主面の領域であって、第1領域よりも半導体基板の外周側の領域である第2領域で、半導体基板の第1主面に形成された、第1導電型の半導体層と、を有する。また、当該半導体装置は、第1領域で、半導体層の上層部に形成され、第1導電型と異なる第2導電型の第1半導体領域と、第1半導体領域の上層部に形成された、第1導電型の第2半導体領域と、第1半導体領域の上層部に形成された、第2導電型の第3半導体領域と、を有する。また、当該半導体装置は、第2領域で、半導体層の上層部に形成された、第2導電型の第4半導体領域と、第4半導体領域の上層部に形成された、第2導電型の第5半導体領域と、第2半導体領域と半導体層とに挟まれた部分の第1半導体領域の上面上に、ゲート絶縁膜を介して形成されたゲート電極と、を有する。また、当該半導体装置は、第2半導体領域上および第3半導体領域上に形成された第1金属膜と、第5半導体領域上に形成された第2金属膜と、第1金属膜上に形成されたソース電極と、第2金属膜上に形成されたコンタクト電極と、半導体基板の第2主面に形成されたドレイン電極と、を有する。半導体基板、半導体層、第1半導体領域、第2半導体領域、第3半導体領域、第4半導体領域および第5半導体領域は、炭化ケイ素からなり、第5半導体領域におけるp型不純物の濃度は、第3半導体領域におけるp型不純物の濃度よりも低い。 A semiconductor device according to a representative embodiment includes a first conductive type semiconductor substrate having a first main surface and a second main surface opposite to the first main surface, and a first main surface of the semiconductor substrate. Are formed on the first main surface of the semiconductor substrate in a first region of the semiconductor substrate and a second region which is a region on the outer peripheral side of the semiconductor substrate relative to the first region. And a first conductivity type semiconductor layer. The semiconductor device is formed in an upper layer portion of the semiconductor layer in the first region, formed in a first semiconductor region of a second conductivity type different from the first conductivity type, and in an upper layer portion of the first semiconductor region. A first conductivity type second semiconductor region; and a second conductivity type third semiconductor region formed in an upper layer portion of the first semiconductor region. The semiconductor device includes a second conductivity type fourth semiconductor region formed in an upper layer portion of the semiconductor layer and a second conductivity type formed in an upper layer portion of the fourth semiconductor region in the second region. A fifth semiconductor region; and a gate electrode formed on a top surface of the first semiconductor region between the second semiconductor region and the semiconductor layer with a gate insulating film interposed therebetween. Further, the semiconductor device is formed on the first metal film formed on the second semiconductor region and the third semiconductor region, the second metal film formed on the fifth semiconductor region, and the first metal film. A source electrode formed on the second metal film, a contact electrode formed on the second metal film, and a drain electrode formed on the second main surface of the semiconductor substrate. The semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, the third semiconductor region, the fourth semiconductor region, and the fifth semiconductor region are made of silicon carbide, and the concentration of the p-type impurity in the fifth semiconductor region is The concentration is lower than the concentration of the p-type impurity in the three semiconductor regions.
 また、代表的な実施の形態による半導体装置は、第1主面と、第1主面と反対側の第2主面とを有する第1導電型の半導体基板と、半導体基板の第1主面の第1領域、および、半導体基板の第1主面の領域であって、第1領域よりも半導体基板の外周側の領域である第2領域で、半導体基板の第1主面に形成された、第1導電型の半導体層と、を有する。また、当該半導体装置は、第1領域で、半導体層の上層部に形成され、第1導電型と異なる第2導電型の第1半導体領域と、第1半導体領域の上層部に形成された、第1導電型の第2半導体領域と、第1半導体領域の上層部に形成された、第2導電型の第3半導体領域と、を有する。また、当該半導体装置は、第2領域で、半導体層の上層部に形成された、第2導電型の第4半導体領域と、第4半導体領域の上層部に形成された、第2導電型の第5半導体領域と、第2半導体領域と半導体層とに挟まれた部分の第1半導体領域の上面上に、ゲート絶縁膜を介して形成されたゲート電極と、を有する。また、当該半導体装置は、第2半導体領域上および第3半導体領域上に形成され、金属ケイ化物からなる第1金属膜と、第1金属膜上に形成された第1導電膜からなるソース電極と、第5半導体領域上に形成された第2導電膜からなるコンタクト電極と、半導体基板の前記第2主面に形成されたドレイン電極と、を有する。半導体基板、半導体層、第1半導体領域、第2半導体領域、第3半導体領域、第4半導体領域および第5半導体領域は、炭化ケイ素からなる。第2導電膜は、第1導電膜と同層に形成され、コンタクト電極は、第5半導体領域と接触している。 A semiconductor device according to a representative embodiment includes a first conductive type semiconductor substrate having a first main surface and a second main surface opposite to the first main surface, and a first main surface of the semiconductor substrate. Are formed on the first main surface of the semiconductor substrate in a first region of the semiconductor substrate and a second region which is a region on the outer peripheral side of the semiconductor substrate relative to the first region. And a first conductivity type semiconductor layer. The semiconductor device is formed in an upper layer portion of the semiconductor layer in the first region, formed in a first semiconductor region of a second conductivity type different from the first conductivity type, and in an upper layer portion of the first semiconductor region. A first conductivity type second semiconductor region; and a second conductivity type third semiconductor region formed in an upper layer portion of the first semiconductor region. The semiconductor device includes a second conductivity type fourth semiconductor region formed in an upper layer portion of the semiconductor layer and a second conductivity type formed in an upper layer portion of the fourth semiconductor region in the second region. A fifth semiconductor region; and a gate electrode formed on a top surface of the first semiconductor region between the second semiconductor region and the semiconductor layer with a gate insulating film interposed therebetween. The semiconductor device is formed on the second semiconductor region and the third semiconductor region, and includes a first metal film made of a metal silicide and a source electrode made of a first conductive film formed on the first metal film. And a contact electrode made of a second conductive film formed on the fifth semiconductor region, and a drain electrode formed on the second main surface of the semiconductor substrate. The semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, the third semiconductor region, the fourth semiconductor region, and the fifth semiconductor region are made of silicon carbide. The second conductive film is formed in the same layer as the first conductive film, and the contact electrode is in contact with the fifth semiconductor region.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 代表的な実施の形態によれば、半導体装置において、SiCからなる縦型MISFETに内蔵されたボディダイオードに還流電流が流れる際に、通電劣化が発生することを防止または抑制することができる。 According to a typical embodiment, in a semiconductor device, it is possible to prevent or suppress the occurrence of deterioration of energization when a reflux current flows through a body diode built in a vertical MISFET made of SiC.
実施の形態1の半導体装置の平面図である。1 is a plan view of a semiconductor device according to a first embodiment. 実施の形態1の半導体装置の要部断面図である。2 is a main-portion cross-sectional view of the semiconductor device of First Embodiment; FIG. 実施の形態1の半導体装置の製造工程の一部を示すフロー図である。FIG. 4 is a flowchart showing a part of the manufacturing process of the semiconductor device of First Embodiment; 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1のモータシステムの構成を示す図である。It is a figure which shows the structure of the motor system of Embodiment 1. FIG. 型ボディコンタクト領域とシリサイド膜との間の固有接触抵抗を測定した結果を示すグラフである。It is a graph which shows the result of having measured the specific contact resistance between a p + type body contact region and a silicide film. 型ボディコンタクト領域とシリサイド膜との間の電流電圧曲線を測定した結果を示すグラフである。It is a graph which shows the result of having measured the current-voltage curve between a p + type body contact region and a silicide film. 比較例の半導体装置の要部断面図である。It is principal part sectional drawing of the semiconductor device of a comparative example. 実施の形態2の半導体装置の要部断面図である。FIG. 10 is a main-portion cross-sectional view of the semiconductor device of Embodiment 2; 実施の形態3の半導体装置の要部断面図である。FIG. 10 is a main-portion cross-sectional view of the semiconductor device of Embodiment 3; 実施の形態3の半導体装置の製造工程中の要部断面図である。FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Third Embodiment during a manufacturing step thereof. 実施の形態3の半導体装置の製造工程中の要部断面図である。FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Third Embodiment during a manufacturing step thereof. 実施の形態3の半導体装置の製造工程中の要部断面図である。FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Third Embodiment during a manufacturing step thereof. 実施の形態4の三相モータシステムの構成を示す図である。It is a figure which shows the structure of the three-phase motor system of Embodiment 4. FIG. 実施の形態5の自動車としての電気自動車の構成を示す図である。FIG. 10 is a diagram showing a configuration of an electric vehicle as an automobile according to a fifth embodiment. 実施の形態5の自動車における昇圧コンバータ装置を示す回路図である。FIG. 10 is a circuit diagram showing a boost converter device in an automobile according to a fifth embodiment. 実施の形態6の鉄道車両の構成を示す図である。FIG. 10 is a diagram showing a configuration of a railway vehicle according to a sixth embodiment.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
 また、実施の形態で用いる図面においては、断面図であっても図面を見易くするためにハッチングを省略する場合もある。また、平面図であっても図面を見易くするためにハッチングを付す場合もある。 In the drawings used in the embodiments, hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
 また、以下の実施の形態において、A~Bとして範囲を示す場合には、特に明示した場合を除き、A以上B以下を示すものとする。 Also, in the following embodiments, when ranges are indicated as A to B, A to B are indicated unless otherwise specified.
 (実施の形態1)
 <半導体装置>
 本発明の実施の形態1の半導体装置について説明する。実施の形態1の半導体装置は、炭化ケイ素(SiC)からなる縦型MISFETを備えたものである。
(Embodiment 1)
<Semiconductor device>
A semiconductor device according to the first embodiment of the present invention will be described. The semiconductor device according to the first embodiment includes a vertical MISFET made of silicon carbide (SiC).
 図1は、実施の形態1の半導体装置の平面図である。図2は、実施の形態1の半導体装置の要部断面図である。図2は、アクティブ領域AR1および終端領域AR2に位置する部分の断面であって図1のA-A線に沿った断面、および、ゲートパッド領域AR3に位置する部分の断面であって図1のB-B線に沿った断面を示す。 FIG. 1 is a plan view of the semiconductor device of the first embodiment. FIG. 2 is a cross-sectional view of a main part of the semiconductor device according to the first embodiment. 2 is a cross section of a portion located in the active region AR1 and the termination region AR2, and is a cross section taken along the line AA in FIG. 1, and a cross section of a portion located in the gate pad region AR3. A cross section along the line BB is shown.
 図1および図2に示すように、本実施の形態1の半導体装置1は、半導体基板としてのn型SiC基板10を有する。n型SiC基板10は、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型の半導体基板である。すなわち半導体基板としてのn型SiC基板10の導電型は、n型である。n型SiC基板10におけるn型不純物の濃度は、比較的大きく、例えば1×1018~1×1021cm-3程度である。また、n型SiC基板10の厚さは、例えば50~500μm程度である。 As shown in FIGS. 1 and 2, the semiconductor device 1 of the first embodiment has an n + type SiC substrate 10 as a semiconductor substrate. The n + -type SiC substrate 10 is an n-type semiconductor substrate made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. That is, the conductivity type of n + -type SiC substrate 10 as a semiconductor substrate is n-type. The concentration of the n-type impurity in the n + -type SiC substrate 10 is relatively large, for example, about 1 × 10 18 to 1 × 10 21 cm −3 . The thickness of the n + type SiC substrate 10 is, for example, about 50 to 500 μm.
 n型SiC基板10は、一方の主面としての上面10aと、他方の主面としての下面10bとを有する。また、n型SiC基板10は、上面10aの一部の領域であるアクティブ領域AR1と、上面10aの他の部分の領域であって、平面視において、アクティブ領域AR1よりもn型SiC基板10の外周側の領域である終端領域AR2と、ゲートパッド領域AR3と、を有する。 The n + -type SiC substrate 10 has an upper surface 10a as one main surface and a lower surface 10b as the other main surface. The n + -type SiC substrate 10 is an active region AR1 that is a partial region of the upper surface 10a and another region of the upper surface 10a, and the n + -type SiC substrate is larger than the active region AR1 in plan view. 10 has a termination region AR2 which is a region on the outer peripheral side, and a gate pad region AR3.
 なお、本願明細書では、平面視において、とは、n型SiC基板10の上面10aに垂直な方向から視た場合を意味する。 In the present specification, in the plan view, the term “when viewed from a direction perpendicular to the upper surface 10a of the n + -type SiC substrate 10” is meant.
 図1に示す例では、アクティブ領域AR1は、n型SiC基板10の上面10aの中心側に配置された領域である。アクティブ領域AR1では、n型SiC基板10に、縦型MISFETからなるセルCL1が複数個形成されており、平面視において、それらの複数のセルCL1は、例えばマトリクス状に配列されている。終端領域AR2は、アクティブ領域AR1を囲むように、n型SiC基板10の上面10aの外周側に配置された領域である。ゲートパッド領域AR3には、ゲートパッド19aが配置されている。 In the example shown in FIG. 1, the active region AR < b> 1 is a region disposed on the center side of the upper surface 10 a of the n + type SiC substrate 10. In the active region AR1, a plurality of cells CL1 made of vertical MISFETs are formed on the n + -type SiC substrate 10, and the plurality of cells CL1 are arranged in a matrix, for example, in plan view. Termination region AR2 is a region arranged on the outer peripheral side of upper surface 10a of n + -type SiC substrate 10 so as to surround active region AR1. A gate pad 19a is disposed in the gate pad region AR3.
 図1および図2に示すように、アクティブ領域AR1では、半導体装置1は、n型SiC基板10と、n型エピタキシャル層12と、p型ボディ領域13と、n型ソース領域14と、p型ボディコンタクト領域15と、を有する。また、アクティブ領域AR1では、半導体装置1は、ゲート絶縁膜18と、ゲート電極19と、層間絶縁膜20と、シリサイド膜SIL1と、ソース電極21と、ドレイン電極22と、を有する。 As shown in FIGS. 1 and 2, in the active region AR1, the semiconductor device 1 includes an n + -type SiC substrate 10, an n -type epitaxial layer 12, a p-type body region 13 and an n + -type source region 14. , P + type body contact region 15. In the active region AR1, the semiconductor device 1 includes a gate insulating film 18, a gate electrode 19, an interlayer insulating film 20, a silicide film SIL1, a source electrode 21, and a drain electrode 22.
 一方、終端領域AR2では、半導体装置1は、n型SiC基板10と、n型エピタキシャル層12と、p型ボディ領域13aおよび13bと、n型ソース領域14aと、n型フィールドストッパ領域14bと、p型ボディコンタクト領域15aと、コンタクト領域15bと、を有する。また、終端領域AR2では、半導体装置1は、フィールド酸化膜FO1と、ゲート絶縁膜18と、ゲート電極19と、層間絶縁膜20と、シリサイド膜SIL2と、コンタクト電極21aと、ドレイン電極22と、を有する。 On the other hand, in termination region AR2, semiconductor device 1 includes n + type SiC substrate 10, n type epitaxial layer 12, p type body regions 13a and 13b, n + type source region 14a, and n + type field stopper. Region 14b, p + type body contact region 15a, and contact region 15b are provided. In the termination region AR2, the semiconductor device 1 includes a field oxide film FO1, a gate insulating film 18, a gate electrode 19, an interlayer insulating film 20, a silicide film SIL2, a contact electrode 21a, a drain electrode 22, Have
 n型エピタキシャル層12と、p型ボディ領域13aと、n型ソース領域14aと、p型ボディコンタクト領域15aと、ゲート絶縁膜18と、ゲート電極19とは、ダミーセルを形成する。ダミーセルは、縦型MISFETとしては動作しないが、隣り合う縦型MISFETからなるセルCL1における電界を調整する。 N type epitaxial layer 12, p type body region 13 a, n + type source region 14 a, p + type body contact region 15 a, gate insulating film 18, and gate electrode 19 form a dummy cell. The dummy cell does not operate as a vertical MISFET, but adjusts the electric field in the cell CL1 formed of adjacent vertical MISFETs.
 さらに、ゲートパッド領域AR3では、半導体装置1は、n型SiC基板10と、n型エピタキシャル層12と、p型ボディ領域13cと、を有する。また、ゲートパッド領域AR3では、半導体装置1は、フィールド酸化膜FO1と、絶縁膜18aと、ゲートパッド19aと、層間絶縁膜20と、ゲートコンタクト電極GC1と、ドレイン電極22と、を有する。 Furthermore, in gate pad region AR3, semiconductor device 1 has an n + type SiC substrate 10, an n type epitaxial layer 12, and a p type body region 13c. In the gate pad region AR3, the semiconductor device 1 includes a field oxide film FO1, an insulating film 18a, a gate pad 19a, an interlayer insulating film 20, a gate contact electrode GC1, and a drain electrode 22.
 n型エピタキシャル層12は、アクティブ領域AR1、終端領域AR2およびゲートパッド領域AR3で、n型SiC基板10の上面10aに形成されており、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型半導体層である。すなわち半導体層としてのn型エピタキシャル層12の導電型は、n型である。n型エピタキシャル層12におけるn型不純物の濃度は、n型SiC基板10におけるn型不純物の濃度よりも低く、例えば1×1015~1×1016cm-3程度である。また、n型エピタキシャル層12の厚さは、例えば5~50μm程度である。 The n -type epitaxial layer 12 is formed on the upper surface 10a of the n + -type SiC substrate 10 in the active region AR1, the termination region AR2, and the gate pad region AR3. For example, the n -type epitaxial layer 12 includes n (such as nitrogen (N) or phosphorus (P)). This is an n-type semiconductor layer made of silicon carbide (SiC) into which a type impurity is introduced. That is, the conductivity type of the n type epitaxial layer 12 as the semiconductor layer is n type. The concentration of the n-type impurity in the n -type epitaxial layer 12 is lower than the concentration of the n-type impurity in the n + -type SiC substrate 10, for example, about 1 × 10 15 to 1 × 10 16 cm −3 . Further, the thickness of the n type epitaxial layer 12 is, for example, about 5 to 50 μm.
 図2に示す例では、n型エピタキシャル層12は、n型SiC基板10の上面10aに直接形成されている。しかし、n型エピタキシャル層12は、n型SiC基板10の上面10aに、バッファ層を介して形成されていてもよい。 In the example shown in FIG. 2, the n type epitaxial layer 12 is formed directly on the upper surface 10 a of the n + type SiC substrate 10. However, n type epitaxial layer 12 may be formed on upper surface 10a of n + type SiC substrate 10 via a buffer layer.
 n型エピタキシャル層12を、例えばエピタキシャル成長法により形成することができる。あるいは、例えばイオン注入法によりアルミニウム(Al)またはホウ素(B)などのp型不純物をn型SiC基板10の上面全面に注入し、n型SiC基板10におけるn型不純物の濃度を減少させる方法により、n型エピタキシャル層12を形成することもできる。 The n type epitaxial layer 12 can be formed by, for example, an epitaxial growth method. Alternatively, for example, by ion implantation of p-type impurity such as aluminum (Al) or boron (B) was injected on the entire upper surface of the n + -type SiC substrate 10, reducing the concentration of n-type impurity in the n + -type SiC substrate 10 The n type epitaxial layer 12 can also be formed by the method.
 以下では、n型エピタキシャル層12が、例えばエピタキシャル成長法により形成されたものとし、n型SiC基板10とn型エピタキシャル層12との界面を、n型SiC基板10の上面10aとして表示する。しかし、n型エピタキシャル層12が、例えばイオン注入法により形成されたものとし、n型エピタキシャル層12の上面を、n型SiC基板10の上面10aとして表示することもできる。 In the following, it is assumed that the n type epitaxial layer 12 is formed by, for example, an epitaxial growth method, and the interface between the n + type SiC substrate 10 and the n type epitaxial layer 12 is displayed as the upper surface 10a of the n + type SiC substrate 10. To do. However, the n type epitaxial layer 12 may be formed by, for example, an ion implantation method, and the upper surface of the n type epitaxial layer 12 may be displayed as the upper surface 10a of the n + type SiC substrate 10.
 アクティブ領域AR1で、n型エピタキシャル層12の上層部には、p型ボディ領域13が形成されている。p型ボディ領域13は、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入した炭化ケイ素(SiC)からなるp型半導体領域である。すなわち半導体領域としてのp型ボディ領域13の導電型は、p型である。p型ボディ領域13におけるp型不純物の濃度は、例えば1×1017~1×1018cm-3程度である。また、p型ボディ領域13の厚さは、例えば1~2μm程度である。 A p-type body region 13 is formed in an upper layer portion of the n -type epitaxial layer 12 in the active region AR1. The p-type body region 13 is a p-type semiconductor region made of silicon carbide (SiC) into which a p-type impurity such as aluminum (Al) or boron (B) is introduced. That is, the conductivity type of the p-type body region 13 as a semiconductor region is p-type. The concentration of the p-type impurity in the p-type body region 13 is, for example, about 1 × 10 17 to 1 × 10 18 cm −3 . The thickness of the p-type body region 13 is, for example, about 1 to 2 μm.
 終端領域AR2で、n型エピタキシャル層12の上層部には、p型ボディ領域13aおよび13bが形成されている。また、ゲートパッド領域AR3で、n型エピタキシャル層12の上層部には、p型ボディ領域13cが形成されている。p型ボディ領域13a、13bおよび13cは、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入した炭化ケイ素(SiC)からなるp型半導体領域である。 In termination region AR2, p type body regions 13a and 13b are formed in the upper layer portion of n type epitaxial layer 12. In the gate pad region AR3, a p-type body region 13c is formed in the upper layer portion of the n -type epitaxial layer 12. The p- type body regions 13a, 13b and 13c are p-type semiconductor regions made of silicon carbide (SiC) into which a p-type impurity such as aluminum (Al) or boron (B) is introduced.
 p型ボディ領域13aは、終端領域AR2で、平面視において、アクティブ領域AR1側に位置する部分のn型エピタキシャル層12の上層部に形成されている。p型ボディ領域13aにおけるp型不純物の濃度を、p型ボディ領域13におけるp型不純物の濃度と同様にすることができ、p型ボディ領域13aの厚さを、p型ボディ領域13の厚さと同様にすることができる。 The p-type body region 13a is the termination region AR2 and is formed in the upper layer portion of the n -type epitaxial layer 12 that is located on the active region AR1 side in plan view. The concentration of the p-type impurity in the p-type body region 13 a can be made the same as the concentration of the p-type impurity in the p-type body region 13, and the thickness of the p-type body region 13 a is equal to the thickness of the p-type body region 13. The same can be done.
 p型ボディ領域13bは、終端領域AR2で、平面視において、アクティブ領域AR1側と反対側の部分に位置する部分のn型エピタキシャル層12の上層部に形成されている。p型ボディ領域13bにおけるp型不純物の濃度は、例えば1×1017~1×1018cm-3程度である。また、p型ボディ領域13bの厚さは、例えば1~2μm程度である。 The p-type body region 13b is formed in the upper layer portion of the n -type epitaxial layer 12 at a portion located on the opposite side of the active region AR1 side in plan view in the termination region AR2. The concentration of the p-type impurity in the p-type body region 13b is, for example, about 1 × 10 17 to 1 × 10 18 cm −3 . The thickness of the p-type body region 13b is, for example, about 1 to 2 μm.
 終端領域AR2におけるn型エピタキシャル層12近傍での電界の強度が、アクティブ領域AR1におけるn型エピタキシャル層12近傍での電界の強度よりも大きくなり、半導体装置1の耐圧が低下するおそれがある。したがって、好適には、p型ボディ領域13bにおけるp型不純物の濃度は、p型ボディ領域13におけるp型不純物の濃度よりも低い。これにより、終端領域AR2におけるp型ボディ領域13b近傍での電界の強度が、アクティブ領域AR1におけるp型ボディ領域13近傍での電界の強度よりも大きくなることを防止または抑制し、半導体装置1の耐圧を向上させることができる。 The strength of the electric field in the vicinity of the n -type epitaxial layer 12 in the termination region AR2 becomes larger than the strength of the electric field in the vicinity of the n -type epitaxial layer 12 in the active region AR1, and the breakdown voltage of the semiconductor device 1 may be reduced. . Therefore, preferably, the concentration of p-type impurity in p-type body region 13b is lower than the concentration of p-type impurity in p-type body region 13. Thus, the strength of the electric field in the vicinity of the p-type body region 13b in the termination region AR2 is prevented or suppressed from becoming larger than the strength of the electric field in the vicinity of the p-type body region 13 in the active region AR1, and the semiconductor device 1 The breakdown voltage can be improved.
 なお、p型ボディ領域13cにおけるp型不純物の濃度を、p型ボディ領域13におけるp型不純物の濃度と同様にすることができ、p型ボディ領域13cの厚さを、p型ボディ領域13の厚さと同様にすることができる。 The concentration of the p-type impurity in the p-type body region 13 c can be made the same as the concentration of the p-type impurity in the p-type body region 13, and the thickness of the p-type body region 13 c can be set to It can be similar to the thickness.
 アクティブ領域AR1で、p型ボディ領域13の上層部には、n型ソース領域14が形成されている。n型ソース領域14は、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型半導体領域である。すなわち半導体領域としてのn型ソース領域14の導電型は、n型である。n型ソース領域14におけるn型不純物の濃度は、n型エピタキシャル層12におけるn型不純物の濃度よりも高く、例えば1×1019~1×1020cm-3程度である。また、n型ソース領域14の厚さは、例えば100~500nm程度である。 In the active region AR1, an n + type source region 14 is formed in an upper layer portion of the p type body region 13. The n + -type source region 14 is an n-type semiconductor region made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. That is, the conductivity type of the n + type source region 14 as the semiconductor region is n type. The concentration of the n-type impurity in the n + -type source region 14 is higher than the concentration of the n-type impurity in the n -type epitaxial layer 12, for example, about 1 × 10 19 to 1 × 10 20 cm −3 . Further, the thickness of the n + -type source region 14 is, for example, about 100 to 500 nm.
 終端領域AR2で、p型ボディ領域13aの上層部には、n型ソース領域14aが形成されている。n型ソース領域14aは、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型半導体領域である。n型ソース領域14aにおけるn型不純物の濃度を、n型ソース領域14におけるn型不純物の濃度と同様にすることができ、n型ソース領域14aの厚さを、n型ソース領域14の厚さと同様にすることができる。 In the termination region AR2, an n + type source region 14a is formed in the upper layer portion of the p type body region 13a. The n + -type source region 14a is an n-type semiconductor region made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. The concentration of the n-type impurity in the n + -type source region 14a, can be similar to the concentration of the n-type impurity in the n + -type source region 14, the thickness of the n + -type source region 14a, n + -type source region A thickness of 14 can be used.
 終端領域AR2で、平面視において、p型ボディ領域13bよりもn型SiC基板10の外周側に位置する部分のn型エピタキシャル層12の上層部には、n型フィールドストッパ領域14bが形成されている。n型フィールドストッパ領域14bは、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型半導体領域である。n型フィールドストッパ領域14bにおけるn型不純物の濃度は、n型エピタキシャル層12におけるn型不純物の濃度よりも高く、例えば1×1019~1×1020cm-3程度である。また、n型フィールドストッパ領域14bの厚さは、例えば100~500nm程度である。 In the termination region AR2, the n + -type field stopper region 14b is formed on the upper layer portion of the n -type epitaxial layer 12 in a portion located on the outer peripheral side of the n + -type SiC substrate 10 with respect to the p-type body region 13b in plan view. Is formed. The n + -type field stopper region 14b is an n-type semiconductor region made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. The concentration of the n-type impurity in the n + -type field stopper region 14 b is higher than the concentration of the n-type impurity in the n -type epitaxial layer 12, for example, about 1 × 10 19 to 1 × 10 20 cm −3 . Further, the thickness of the n + -type field stopper region 14b is, for example, about 100 to 500 nm.
 アクティブ領域AR1で、p型ボディ領域13の上層部には、p型ボディコンタクト領域15が形成されている。p型ボディコンタクト領域15は、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入した炭化ケイ素(SiC)からなるp型半導体領域である。すなわち半導体領域としてのp型ボディコンタクト領域15の導電型は、p型である。p型ボディコンタクト領域15におけるp型不純物の濃度は、p型ボディ領域13におけるp型不純物の濃度よりも高い。また、p型ボディコンタクト領域15の厚さは、例えば100~500nm程度である。p型ボディコンタクト領域15におけるp型不純物の好適な濃度については、後述する。 A p + type body contact region 15 is formed in an upper layer portion of the p type body region 13 in the active region AR1. The p + -type body contact region 15 is a p-type semiconductor region made of silicon carbide (SiC) into which a p-type impurity such as aluminum (Al) or boron (B) is introduced. That is, the conductivity type of the p + -type body contact region 15 as the semiconductor region is p-type. The concentration of the p-type impurity in the p + -type body contact region 15 is higher than the concentration of the p-type impurity in the p-type body region 13. The thickness of the p + type body contact region 15 is, for example, about 100 to 500 nm. A suitable concentration of the p-type impurity in the p + -type body contact region 15 will be described later.
 終端領域AR2で、p型ボディ領域13aの上層部には、p型ボディコンタクト領域15aおよびコンタクト領域15bが形成されている。p型ボディコンタクト領域15aおよびコンタクト領域15bは、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入した炭化ケイ素(SiC)からなるp型半導体領域である。 In termination region AR2, p + type body contact region 15a and contact region 15b are formed in the upper layer portion of p type body region 13a. The p + type body contact region 15a and the contact region 15b are p type semiconductor regions made of silicon carbide (SiC) into which a p type impurity such as aluminum (Al) or boron (B) is introduced.
 p型ボディコンタクト領域15aは、終端領域AR2で、平面視において、アクティブ領域AR1側に位置する部分のp型ボディ領域13aの上層部に形成されている。p型ボディコンタクト領域15aにおけるp型不純物の濃度は、p型ボディ領域13aにおけるp型不純物の濃度よりも高い。また、p型ボディコンタクト領域15aにおけるp型不純物の濃度を、p型ボディコンタクト領域15におけるp型不純物の濃度と同様にすることができ、p型ボディコンタクト領域15aの厚さを、p型ボディコンタクト領域15の厚さと同様にすることができる。 The p + -type body contact region 15a is the termination region AR2 and is formed in the upper layer portion of the p-type body region 13a that is located on the active region AR1 side in plan view. The concentration of the p-type impurity in the p + -type body contact region 15a is higher than the concentration of the p-type impurity in the p-type body region 13a. Further, the concentration of the p-type impurity in the p + -type body contact region 15a, can be similar to the concentration of the p-type impurity in the p + -type body contact region 15, the thickness of the p + -type body contact region 15a, The thickness can be the same as the thickness of the p + type body contact region 15.
 コンタクト領域15bは、終端領域AR2で、平面視において、アクティブ領域AR1側と反対側に位置する部分のp型ボディ領域13aの上層部に形成されている。コンタクト領域15bにおけるp型不純物の濃度は、p型ボディ領域13aにおけるp型不純物の濃度よりも高い。また、コンタクト領域15bの厚さは、例えば100~500nm程度である。コンタクト領域15bにおけるp型不純物の好適な濃度については、後述する。 The contact region 15b is the termination region AR2, and is formed in the upper layer portion of the p-type body region 13a that is located on the opposite side of the active region AR1 in plan view. The concentration of p-type impurity in contact region 15b is higher than the concentration of p-type impurity in p-type body region 13a. Further, the thickness of the contact region 15b is, for example, about 100 to 500 nm. A suitable concentration of the p-type impurity in the contact region 15b will be described later.
 アクティブ領域AR1で、隣り合う2つのp型ボディ領域13に挟まれたn型エピタキシャル層12の上層部は、JFET(Junction Field Effect Transistor)領域16である。言い換えれば、JFET領域16は、p型ボディ領域13を挟んでn型ソース領域14と反対側に位置する部分のn型エピタキシャル層12の上層部である。また、n型ソース領域14とn型エピタキシャル層12とに挟まれた部分のp型ボディ領域13の上層部は、チャネル領域17である。 In the active region AR1, the upper layer portion of the n -type epitaxial layer 12 sandwiched between two adjacent p-type body regions 13 is a JFET (Junction Field Effect Transistor) region 16. In other words, the JFET region 16 is the upper layer portion of the n type epitaxial layer 12 that is located on the opposite side of the n + type source region 14 across the p type body region 13. The upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 is a channel region 17.
 終端領域AR2で、n型エピタキシャル層12上、p型ボディ領域13aおよび13b上、n型フィールドストッパ領域14b上、ならびに、コンタクト領域15b上には、フィールド酸化膜FO1が形成されている。また、フィールド酸化膜FO1は、ゲートパッド領域AR3で、p型ボディ領域13c上に、形成されている。フィールド酸化膜FO1として、例えば酸化シリコン(SiO)などからなる各種の膜を用いることができる。 In termination region AR2, field oxide film FO1 is formed on n type epitaxial layer 12, on p type body regions 13a and 13b, on n + type field stopper region 14b, and on contact region 15b. The field oxide film FO1 is formed on the p-type body region 13c in the gate pad region AR3. As the field oxide film FO1, various films made of, for example, silicon oxide (SiO 2 ) can be used.
 アクティブ領域AR1で、p型ボディ領域13の上面上には、ゲート絶縁膜18が形成されている。ゲート絶縁膜18は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に、形成された絶縁膜である。ゲート絶縁膜18は、例えば酸化シリコン(SiO)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)または酸化ハフニウム(HfO)などからなり、例えば熱酸化法またはCVD(Chemical Vapor Deposition)法などにより形成されている。また、ゲート絶縁膜18の厚さは、例えば数十nm程度である。なお、ゲート絶縁膜18は、終端領域AR2で、例えばp型ボディ領域13上、および、フィールド酸化膜FO1上などに形成されている。 A gate insulating film 18 is formed on the upper surface of the p-type body region 13 in the active region AR1. The gate insulating film 18 is an insulating film formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. The gate insulating film 18 is made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like, for example, thermal oxidation or CVD (Chemical Vapor Deposition). ) Method. The thickness of the gate insulating film 18 is, for example, about several tens of nm. The gate insulating film 18 is formed in the termination region AR2, for example, on the p-type body region 13 and the field oxide film FO1.
 ゲートパッド領域AR3で、フィールド酸化膜FO1上には、絶縁膜18aが形成されている。絶縁膜18aを、ゲート絶縁膜18に含まれる絶縁膜と同層に形成された絶縁膜からなるものとすることができる。 In the gate pad region AR3, an insulating film 18a is formed on the field oxide film FO1. The insulating film 18 a can be made of an insulating film formed in the same layer as the insulating film included in the gate insulating film 18.
 アクティブ領域AR1で、ゲート絶縁膜18上には、ゲート電極19が形成されている。ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に、ゲート絶縁膜18を介して形成されている。ゲート電極19は、例えばポリシリコンなどからなり、例えばCVD法などにより形成された導電膜である。 A gate electrode 19 is formed on the gate insulating film 18 in the active region AR1. The gate electrode 19 is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 via a gate insulating film 18. The gate electrode 19 is made of, for example, polysilicon, and is a conductive film formed by, for example, a CVD method.
 ゲートパッド領域AR3で、絶縁膜18a上には、ゲートパッド19aが形成されている。ゲートパッド19aを、ゲート電極19に含まれる導電膜と同層に形成された導電膜からなるものとすることができる。 In the gate pad region AR3, a gate pad 19a is formed on the insulating film 18a. The gate pad 19 a can be made of a conductive film formed in the same layer as the conductive film included in the gate electrode 19.
 アクティブ領域AR1で、n型エピタキシャル層12上、p型ボディ領域13上、n型ソース領域14上、および、p型ボディコンタクト領域15上には、ゲート電極19およびゲート絶縁膜18を覆うように、層間絶縁膜20が形成されている。また、層間絶縁膜20は、終端領域AR2で、n型エピタキシャル層12上、p型ボディ領域13a上、n型ソース領域14a上、p型ボディコンタクト領域15a上、および、フィールド酸化膜FO1上に、ゲート絶縁膜18を覆うように、形成されている。また、層間絶縁膜20は、ゲートパッド領域AR3で、フィールド酸化膜FO1上に、ゲートパッド19aおよび絶縁膜18aを覆うように、形成されている。層間絶縁膜20の材料として、例えばPSG(Phospho Silicate Glass)または酸化シリコンなどを用いることができる。 A gate electrode 19 and a gate insulating film 18 are formed on the n type epitaxial layer 12, the p type body region 13, the n + type source region 14, and the p + type body contact region 15 in the active region AR 1. An interlayer insulating film 20 is formed so as to cover it. Interlayer insulating film 20 is in termination region AR2, on n type epitaxial layer 12, on p type body region 13a, on n + type source region 14a, on p + type body contact region 15a, and in the field oxide film. On FO1, it forms so that the gate insulating film 18 may be covered. The interlayer insulating film 20 is formed on the field oxide film FO1 so as to cover the gate pad 19a and the insulating film 18a in the gate pad region AR3. As a material of the interlayer insulating film 20, for example, PSG (Phospho Silicate Glass) or silicon oxide can be used.
 アクティブ領域AR1で、層間絶縁膜20には、開口部としてのコンタクト孔20aが形成されている。コンタクト孔20aは、層間絶縁膜20およびゲート絶縁膜18を貫通して、n型ソース領域14の上面、および、p型ボディコンタクト領域15の上面に達する。すなわち、コンタクト孔20aの底部には、n型ソース領域14の上面、および、p型ボディコンタクト領域15の上面が露出している。 A contact hole 20a as an opening is formed in the interlayer insulating film 20 in the active region AR1. Contact hole 20 a penetrates interlayer insulating film 20 and gate insulating film 18 and reaches the upper surface of n + -type source region 14 and the upper surface of p + -type body contact region 15. That is, the upper surface of the n + type source region 14 and the upper surface of the p + type body contact region 15 are exposed at the bottom of the contact hole 20a.
 終端領域AR2で、層間絶縁膜20には、開口部としてのコンタクト孔20bが形成されている。コンタクト孔20bは、層間絶縁膜20、ゲート絶縁膜18およびフィールド酸化膜FO1を貫通して、コンタクト領域15bの上面に達する。すなわち、コンタクト孔20bの底部には、コンタクト領域15bの上面が露出している。なお、図2に示すように、コンタクト孔20bは、層間絶縁膜20、ゲート絶縁膜18およびフィールド酸化膜FO1を貫通して、コンタクト領域15bと隣り合う部分のp型ボディ領域13aの上面に達してもよい。すなわち、コンタクト孔20bの底部には、コンタクト領域15bと隣り合う部分のp型ボディ領域13aの上面が露出していてもよい。 A contact hole 20b as an opening is formed in the interlayer insulating film 20 in the termination region AR2. Contact hole 20b penetrates through interlayer insulating film 20, gate insulating film 18 and field oxide film FO1, and reaches the upper surface of contact region 15b. That is, the upper surface of the contact region 15b is exposed at the bottom of the contact hole 20b. As shown in FIG. 2, contact hole 20b passes through interlayer insulating film 20, gate insulating film 18 and field oxide film FO1, and reaches the upper surface of p-type body region 13a adjacent to contact region 15b. May be. That is, the upper surface of the p-type body region 13a adjacent to the contact region 15b may be exposed at the bottom of the contact hole 20b.
 ゲートパッド領域AR3で、層間絶縁膜20には、開口部としてのコンタクト孔20cが形成されている。コンタクト孔20cは、層間絶縁膜20を貫通して、ゲートパッド19aの上面に達する。すなわち、コンタクト孔20cの底部には、ゲートパッド19aの上面が露出している。 In the gate pad region AR3, the interlayer insulating film 20 has a contact hole 20c as an opening. The contact hole 20c penetrates the interlayer insulating film 20 and reaches the upper surface of the gate pad 19a. That is, the upper surface of the gate pad 19a is exposed at the bottom of the contact hole 20c.
 アクティブ領域AR1で、コンタクト孔20aの底部に露出した部分のn型ソース領域14上、および、p型ボディコンタクト領域15上には、金属膜としての、金属ケイ化物からなるシリサイド膜SIL1が形成されている。シリサイド膜SIL1の好適な組成については、後述する。 In the active region AR1, a silicide film SIL1 made of a metal silicide is formed as a metal film on the n + type source region 14 and the p + type body contact region 15 exposed at the bottom of the contact hole 20a. Is formed. A suitable composition of the silicide film SIL1 will be described later.
 終端領域AR2で、コンタクト孔20bの底部に露出した部分のコンタクト領域15b上には、金属膜としての、金属ケイ化物からなるシリサイド膜SIL2が形成されている。シリサイド膜SIL2は、コンタクト孔20bの底部に露出した部分であって、コンタクト領域15bと隣り合う部分のp型ボディ領域13a上に形成されていてもよい。シリサイド膜SIL2の好適な組成については、後述する。 A silicide film SIL2 made of a metal silicide is formed as a metal film on the contact region 15b exposed at the bottom of the contact hole 20b in the termination region AR2. Silicide film SIL2 may be formed on a portion exposed at the bottom of contact hole 20b and on p-type body region 13a adjacent to contact region 15b. A suitable composition of the silicide film SIL2 will be described later.
 アクティブ領域AR1で、コンタクト孔20aの内部であって、シリサイド膜SIL1上の部分、および、層間絶縁膜20上には、ソース電極21が形成されている。ソース電極21は、シリサイド膜SIL1上に形成された電極であり、シリサイド膜SIL1と電気的に接続されている。ソース電極21として、例えばチタン(Ti)またはアルミニウム(Al)などからなる導電膜を用いることができる。このような導電膜を用いることで、ソース電極21と、シリサイド膜SIL1とを、電気的に低抵抗で接続することができる。 In the active region AR1, a source electrode 21 is formed in the contact hole 20a, on the silicide film SIL1, and on the interlayer insulating film 20. The source electrode 21 is an electrode formed on the silicide film SIL1, and is electrically connected to the silicide film SIL1. As the source electrode 21, a conductive film made of, for example, titanium (Ti) or aluminum (Al) can be used. By using such a conductive film, the source electrode 21 and the silicide film SIL1 can be electrically connected with low resistance.
 一方、終端領域AR2で、コンタクト孔20bの内部であって、シリサイド膜SIL2上の部分、および、層間絶縁膜20上には、コンタクト電極21aが形成されている。コンタクト電極21aは、シリサイド膜SIL2上に形成された電極であり、シリサイド膜SIL2と電気的に接続されている。コンタクト電極21aとして、例えばチタン(Ti)またはアルミニウム(Al)などからなる導電膜を用いることができる。このような導電膜を用いることで、コンタクト電極21aと、シリサイド膜SIL2とを、電気的に低抵抗で接続することができる。なお、図2に示すように、コンタクト電極21aは、ソース電極21と同層に形成されていてもよく、ソース電極21と電気的に接続されていてもよい。 On the other hand, in the termination region AR2, a contact electrode 21a is formed in the contact hole 20b, on the silicide film SIL2, and on the interlayer insulating film 20. The contact electrode 21a is an electrode formed on the silicide film SIL2, and is electrically connected to the silicide film SIL2. As the contact electrode 21a, for example, a conductive film made of titanium (Ti) or aluminum (Al) can be used. By using such a conductive film, the contact electrode 21a and the silicide film SIL2 can be electrically connected with low resistance. As shown in FIG. 2, the contact electrode 21 a may be formed in the same layer as the source electrode 21 or may be electrically connected to the source electrode 21.
 ゲートパッド領域AR3で、コンタクト孔20cの内部、および、層間絶縁膜20上には、ゲートコンタクト電極GC1が形成されている。ゲートコンタクト電極GC1は、ゲートパッド19a上に形成された電極であり、ゲートパッド19aと電気的に接続されている。ゲートコンタクト電極GC1として、例えばチタン(Ti)またはアルミニウム(Al)などからなる導電膜を用いることができる。このような導電膜を用いることで、ゲートコンタクト電極GC1と、ゲートパッド19aとを、電気的に低抵抗で接続することができる。 In the gate pad region AR3, a gate contact electrode GC1 is formed inside the contact hole 20c and on the interlayer insulating film 20. The gate contact electrode GC1 is an electrode formed on the gate pad 19a and is electrically connected to the gate pad 19a. As the gate contact electrode GC1, for example, a conductive film made of titanium (Ti) or aluminum (Al) can be used. By using such a conductive film, the gate contact electrode GC1 and the gate pad 19a can be electrically connected with low resistance.
 アクティブ領域AR1、終端領域AR2およびゲートパッド領域AR3で、n型SiC基板10の下面10bには、ドレイン電極22が形成されている。ドレイン電極22は、n型SiC基板10と電気的に接続されている。ドレイン電極22として、例えばチタン(Ti)、ニッケル(Ni)または金(Au)などを積層した導電膜を用いることができる。このような導電膜を用いることで、ドレイン電極22とn型SiC基板10とを、電気的に低抵抗で接続することができる。 A drain electrode 22 is formed on the lower surface 10b of the n + -type SiC substrate 10 in the active region AR1, the termination region AR2, and the gate pad region AR3. The drain electrode 22 is electrically connected to the n + type SiC substrate 10. As the drain electrode 22, for example, a conductive film in which titanium (Ti), nickel (Ni), gold (Au), or the like is stacked can be used. By using such a conductive film, the drain electrode 22 and the n + -type SiC substrate 10 can be electrically connected with low resistance.
 なお、図2では図示を省略するが、層間絶縁膜20、ソース電極21、コンタクト電極21a、ゲートコンタクト電極GC1およびドレイン電極22を覆うように、半導体装置1の上面および下面に、パッシベーション膜が形成されていてもよい。また、パッシベーション膜のうち、ソース電極21、ゲートコンタクト電極GC1およびドレイン電極22の各電極を外部と電気的に接続するためのパッド領域が形成される部分に、開口部が形成されていてもよい。 Although not shown in FIG. 2, a passivation film is formed on the upper and lower surfaces of the semiconductor device 1 so as to cover the interlayer insulating film 20, the source electrode 21, the contact electrode 21a, the gate contact electrode GC1, and the drain electrode 22. May be. Further, in the passivation film, an opening may be formed in a portion where a pad region for electrically connecting the source electrode 21, the gate contact electrode GC1, and the drain electrode 22 to the outside is formed. .
 半導体装置1においてセルCL1により表された縦型MISFETをオン状態にするオン動作においては、ゲート電極19に、ソース電極21に対して正のゲート電圧VGS(VGS>0V)を印加する。このとき、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上層部、すなわちチャネル領域17には、反転層が形成される。 In the ON operation of turning on the vertical MISFET represented by the cell CL1 in the semiconductor device 1, a positive gate voltage VGS (VGS> 0V) is applied to the source electrode 21 to the gate electrode 19. At this time, an inversion layer is formed in the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12, that is, in the channel region 17.
 したがって、電子は、ソース電極21から、n型ソース領域14、チャネル領域17に形成された反転層、n型エピタキシャル層12、および、n型SiC基板10を通して、ドレイン電極22に流れる。すなわち電流は、ドレイン電極22から、n型SiC基板10、n型エピタキシャル層12、チャネル領域17に形成された反転層、および、n型ソース領域14を通して、ソース電極21に流れる。 Therefore, electrons flow from the source electrode 21 to the drain electrode 22 through the n + type source region 14, the inversion layer formed in the channel region 17, the n type epitaxial layer 12, and the n + type SiC substrate 10. That is, current flows from the drain electrode 22 to the source electrode 21 through the n + -type SiC substrate 10, the n -type epitaxial layer 12, the inversion layer formed in the channel region 17, and the n + -type source region 14.
 一方、セルCL1により表された縦型MISFETをオフ状態にするオフ動作においては、ゲート電極19に、ソース電極21に対して負または零のゲート電圧VGS(VGS≦0V)を印加する。このとき、チャネル領域17に形成されていた反転層を消滅させることで、電流が遮断される。 On the other hand, in the off operation for turning off the vertical MISFET represented by the cell CL1, a negative or zero gate voltage VGS (VGS ≦ 0V) is applied to the gate electrode 19 with respect to the source electrode 21. At this time, the current is interrupted by eliminating the inversion layer formed in the channel region 17.
 アクティブ領域AR1で、p型ボディコンタクト領域15、p型ボディ領域13、n型エピタキシャル層12およびn型SiC基板10により、ソース電極21とドレイン電極22との間に内蔵されたダイオード、すなわちボディダイオード23が、形成されている。また、終端領域AR2で、コンタクト領域15b、p型ボディ領域13a、n型エピタキシャル層12およびn型SiC基板10により、コンタクト電極21aとドレイン電極22との間に内蔵されたダイオード、すなわちボディダイオード23aが、形成されている。 In the active region AR1, a diode embedded between the source electrode 21 and the drain electrode 22 by the p + type body contact region 15, the p type body region 13, the n type epitaxial layer 12 and the n + type SiC substrate 10, That is, the body diode 23 is formed. In the termination region AR2, a diode, that is, a body built between the contact electrode 21a and the drain electrode 22 by the contact region 15b, the p-type body region 13a, the n -type epitaxial layer 12 and the n + -type SiC substrate 10 is used. A diode 23a is formed.
 図14を用いて後述するように、複数の半導体装置1がインバータ回路に含まれる場合において、各半導体装置1においてセルCL1により表された各縦型MISFETがオン状態からオフ状態に切り替えられる際に、ボディダイオード23および23aに還流電流が流れる。また、図17を用いて後述する比較例の半導体装置101では、ボディダイオードに還流電流が流れることにより、半導体装置1の通電劣化が発生するおそれがある。 As will be described later with reference to FIG. 14, when a plurality of semiconductor devices 1 are included in an inverter circuit, each vertical MISFET represented by a cell CL1 in each semiconductor device 1 is switched from an on state to an off state. A reflux current flows through the body diodes 23 and 23a. In addition, in the semiconductor device 101 of the comparative example which will be described later with reference to FIG.
 一方、本実施の形態1の半導体装置1では、アクティブ領域AR1で、p型ボディコンタクト領域15とソース電極21との間に、シリサイド膜SIL1が設けられている。そして、シリサイド膜SIL1は、p型ボディコンタクト領域15とショットキー接続されている。 On the other hand, in the semiconductor device 1 of the first embodiment, the silicide film SIL1 is provided between the p + type body contact region 15 and the source electrode 21 in the active region AR1. The silicide film SIL1 is Schottky connected to the p + type body contact region 15.
 これにより、アクティブ領域AR1で、ボディダイオード23に還流電流が流れる際に、シリサイド膜SIL1からp型ボディコンタクト領域15には正孔が供給されにくくなり、電子がソース電極21の近傍まで流れる。そのため、アクティブ領域AR1で、n型エピタキシャル層12中などに存在する各種の結晶欠陥において、還流電流として流れる正孔と電子とが再結合することを、防止または抑制することができる。したがって、n型エピタキシャル層12中などに各種の結晶欠陥が拡大することを防止または抑制し、半導体装置1にオン電流が流れる際の電気抵抗、すなわちオン抵抗が増大することを防止または抑制することができる。そのため、インバータ回路としてのパワーモジュールに含まれる半導体装置1に内蔵されたボディダイオード23に還流電流が流れる際に、半導体装置1の通電劣化が発生することを、防止または抑制することができる。 Thus, when a reflux current flows through the body diode 23 in the active region AR1, holes are not easily supplied from the silicide film SIL1 to the p + -type body contact region 15, and electrons flow to the vicinity of the source electrode 21. Therefore, recombination of holes and electrons flowing as a reflux current can be prevented or suppressed in various crystal defects existing in the n type epitaxial layer 12 and the like in the active region AR1. Accordingly, various crystal defects are prevented or suppressed from expanding in the n -type epitaxial layer 12 and the like, and an electrical resistance when an on-current flows through the semiconductor device 1, that is, an on-resistance is prevented or suppressed from increasing. be able to. Therefore, it is possible to prevent or suppress the occurrence of energization deterioration of the semiconductor device 1 when the return current flows through the body diode 23 incorporated in the semiconductor device 1 included in the power module as the inverter circuit.
 例えば、シリサイド膜SIL1の仕事関数φが、p型ボディコンタクト領域15の電子親和力χと、p型ボディコンタクト領域15のバンドギャップEとの和よりも小さい場合に、シリサイド膜SIL1が、p型ボディコンタクト領域15とショットキー接続される。このようなシリサイド膜SIL1の仕事関数φ、p型ボディコンタクト領域15の電子親和力χ、および、p型ボディコンタクト領域15のバンドギャップEについては、X線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)または紫外線光電子分光法(Ultraviolet Photoelectron Spectroscopy;UPS)などにより測定することができる。 For example, the work function phi m silicide film SIL1 is, when the electron affinity χ of the p + -type body contact region 15, smaller than the sum of the band gap E g of the p + -type body contact region 15, the silicide film SIL1 , P + type body contact region 15 and Schottky connection. The electron affinity χ work function phi m, p + -type body contact region 15 in such a silicide layer SIL 1, and, for the band gap E g of the p + -type body contact region 15, X-ray photoelectron spectroscopy (X-ray It can be measured by Photoelectron Spectroscopy (XPS) or Ultraviolet Photoelectron Spectroscopy (UPS).
 あるいは、シリサイド膜SIL1の組成、または、p型ボディコンタクト領域15の組成が以下の場合に、シリサイド膜SIL1が、p型ボディコンタクト領域15とショットキー接続される。 Alternatively, when the composition of the silicide film SIL1 or the composition of the p + type body contact region 15 is as follows, the silicide film SIL1 is Schottky connected to the p + type body contact region 15.
 例えば、p型ボディコンタクト領域15におけるp型不純物の濃度を、2×1019cm-3以上1×1020cm-3未満とすることが好ましく、2×1019cm-3以上7×1019cm-3未満とすることがより好ましい。図15および図16を用いて後述するように、p型ボディコンタクト領域15におけるp型不純物の濃度を1×1020cm-3未満とすることにより、シリサイド膜SIL1を、p型ボディコンタクト領域15とショットキー接続することができる。また、p型ボディコンタクト領域15におけるp型不純物の濃度を7×1019cm-3未満とすることにより、シリサイド膜SIL1を、p型ボディコンタクト領域15と容易にショットキー接続することができる。 For example, the concentration of the p-type impurity in the p + -type body contact region 15, preferably to 2 × 10 19 cm -3 or more less than 1 × 10 20 cm -3, 2 × 10 19 cm -3 or more 7 × 10 More preferably, it is less than 19 cm −3 . As will be described later with reference to FIGS. 15 and 16, the silicide film SIL1 is made to be p + type body contact by setting the p type impurity concentration in the p + type body contact region 15 to be less than 1 × 10 20 cm −3. The area 15 can be connected to the Schottky. Further, by setting the concentration of the p-type impurity in the p + type body contact region 15 to be less than 7 × 10 19 cm −3 , the silicide film SIL1 can be easily Schottky connected to the p + type body contact region 15. it can.
 一方、p型ボディコンタクト領域15におけるp型不純物の濃度を2×1019cm-3以上とすることにより、縦型MISFETがオン状態のときに、ソース電極21により、シリサイド膜SIL1およびp型ボディコンタクト領域15を介してp型ボディ領域13の電位を調整することができる。 On the other hand, by setting the concentration of the p-type impurity in the p + -type body contact region 15 to 2 × 10 19 cm −3 or more, the silicide film SIL1 and p + are formed by the source electrode 21 when the vertical MISFET is turned on. The potential of p type body region 13 can be adjusted via type body contact region 15.
 例えば、好適には、シリサイド膜SIL1は、例えばNiSiまたはNiSiなどのニッケルシリサイド、すなわちケイ化ニッケルを含む。これにより、シリサイド膜SIL1を、p型ボディコンタクト領域15と容易にショットキー接続することができる。なお、p型ボディコンタクト領域15およびn型ソース領域14は炭化ケイ素からなるため、シリサイド膜SIL1中には炭素も含まれている。 For example, the silicide film SIL1 preferably includes nickel silicide such as Ni 2 Si or NiSi, that is, nickel silicide. Thereby, the silicide film SIL1 can be easily Schottky connected to the p + type body contact region 15. Note that since the p + type body contact region 15 and the n + type source region 14 are made of silicon carbide, the silicide film SIL1 also contains carbon.
 さらに好適には、シリサイド膜SIL1における、ニッケルとシリコンとの和に対するニッケルの組成比は、0.4よりも大きく、0.7よりも小さい。言い換えれば、シリサイド膜SIL1における、ニッケル原子の原子数とシリコン原子の原子数との和に対するニッケル原子の原子数の比は、0.4よりも大きく、0.7よりも小さい。これにより、シリサイド膜SIL1を、p型ボディコンタクト領域15とさらに容易にショットキー接続することができる。 More preferably, the composition ratio of nickel to the sum of nickel and silicon in the silicide film SIL1 is larger than 0.4 and smaller than 0.7. In other words, the ratio of the number of nickel atoms to the sum of the number of nickel atoms and the number of silicon atoms in the silicide film SIL1 is larger than 0.4 and smaller than 0.7. Thereby, the silicide film SIL1 can be more easily Schottky connected to the p + type body contact region 15.
 また、本実施の形態1の半導体装置1では、終端領域AR2で、コンタクト領域15bとコンタクト電極21aとの間に、シリサイド膜SIL2が設けられている。そして、シリサイド膜SIL2は、コンタクト領域15bとショットキー接続されている。 Further, in the semiconductor device 1 of the first embodiment, the silicide film SIL2 is provided between the contact region 15b and the contact electrode 21a in the termination region AR2. The silicide film SIL2 is Schottky connected to the contact region 15b.
 これにより、終端領域AR2で、ボディダイオード23aに還流電流が流れる際に、シリサイド膜SIL2からコンタクト領域15bには正孔が供給されにくくなり、電子がコンタクト電極21aの近傍まで流れる。そのため、終端領域AR2で、n型エピタキシャル層12中などに存在する各種の結晶欠陥などにおいて、還流電流として流れる正孔と電子とが再結合することを、防止または抑制することができる。したがって、n型エピタキシャル層12中などに各種の結晶欠陥が拡大することを防止または抑制し、半導体装置1にオン電流が流れる際の電気抵抗、すなわちオン抵抗が増大することを防止または抑制することができる。そのため、インバータ回路としてのパワーモジュールに含まれる半導体装置1に内蔵されたボディダイオード23aに還流電流が流れる際に、半導体装置1の通電劣化が発生することを、防止または抑制することができる。 As a result, when a return current flows through the body diode 23a in the termination region AR2, it is difficult for holes to be supplied from the silicide film SIL2 to the contact region 15b, and electrons flow to the vicinity of the contact electrode 21a. Therefore, in the termination region AR2, recombination of holes and electrons flowing as a reflux current can be prevented or suppressed in various crystal defects existing in the n type epitaxial layer 12 and the like. Accordingly, various crystal defects are prevented or suppressed from expanding in the n -type epitaxial layer 12 and the like, and an electrical resistance when an on-current flows through the semiconductor device 1, that is, an on-resistance is prevented or suppressed from increasing. be able to. Therefore, it is possible to prevent or suppress the occurrence of deterioration in energization of the semiconductor device 1 when the return current flows through the body diode 23a built in the semiconductor device 1 included in the power module as the inverter circuit.
 例えば、コンタクト領域15bにおけるp型不純物の濃度を、2×1019cm-3以上1×1020cm-3未満とすることが好ましく、2×1019cm-3以上7×1019cm-3未満とすることがより好ましい。図15および図16を用いて後述するように、コンタクト領域15bにおけるp型不純物の濃度を1×1020cm-3未満とすることにより、シリサイド膜SIL2を、コンタクト領域15bとショットキー接続することができる。また、コンタクト領域15bにおけるp型不純物の濃度を7×1019cm-3未満とすることにより、シリサイド膜SIL2を、コンタクト領域15bと容易にショットキー接続することができる。 For example, the concentration of the p-type impurity in the contact regions 15b, 2 × 10 19 cm -3 to 1 × 10 preferably less than 20 cm -3, 2 × 10 19 cm -3 or more 7 × 10 19 cm -3 More preferably, it is less than. As will be described later with reference to FIGS. 15 and 16, the silicide film SIL2 is Schottky connected to the contact region 15b by setting the concentration of the p-type impurity in the contact region 15b to less than 1 × 10 20 cm −3. Can do. Further, by making the concentration of the p-type impurity in the contact region 15b less than 7 × 10 19 cm −3 , the silicide film SIL2 can be easily Schottky connected to the contact region 15b.
 一方、コンタクト領域15bにおけるp型不純物の濃度を2×1019cm-3以上とすることにより、縦型MISFETがオン状態のときに、コンタクト電極21aにより、シリサイド膜SIL2およびコンタクト領域15bを介してp型ボディ領域13aの電位を調整することができる。 On the other hand, by setting the concentration of the p-type impurity in the contact region 15b to 2 × 10 19 cm −3 or more, when the vertical MISFET is in the on state, the contact electrode 21a causes the silicide film SIL2 and the contact region 15b to pass through. The potential of p-type body region 13a can be adjusted.
 好適には、シリサイド膜SIL2は、例えばNiSiまたはNiSiなどのニッケルシリサイド、すなわちケイ化ニッケルを含む。これにより、シリサイド膜SIL2を、コンタクト領域15bと容易にショットキー接続することができる。なお、シリサイド膜SIL1中と同様に、シリサイド膜SIL2中には炭素も含まれている。 Preferably, the silicide film SIL2 includes nickel silicide such as Ni 2 Si or NiSi, that is, nickel silicide. Thereby, the silicide film SIL2 can be easily Schottky connected to the contact region 15b. As in the silicide film SIL1, the silicide film SIL2 also contains carbon.
 さらに好適には、シリサイド膜SIL2における、ニッケルとシリコンとの和に対するニッケルの組成比は、0.4よりも大きく、0.7よりも小さい。言い換えれば、シリサイド膜SIL2における、ニッケル原子の原子数とシリコン原子の原子数との和に対するニッケル原子の原子数の比は、0.4よりも大きく、0.7よりも小さい。これにより、シリサイド膜SIL2を、コンタクト領域15bとさらに容易にショットキー接続することができる。 More preferably, the composition ratio of nickel to the sum of nickel and silicon in the silicide film SIL2 is larger than 0.4 and smaller than 0.7. In other words, the ratio of the number of nickel atoms to the sum of the number of nickel atoms and the number of silicon atoms in the silicide film SIL2 is larger than 0.4 and smaller than 0.7. Thereby, the silicide film SIL2 can be more easily Schottky connected to the contact region 15b.
 なお、ソース電極21が、p型ボディコンタクト領域15とショットキー接続されればよく、ソース電極21とp型ボディコンタクト領域15との間に、シリサイド膜SIL1に代え、金属ケイ化物以外の金属膜を介在させることもできる。また、コンタクト電極21aが、コンタクト領域15bとショットキー接続されればよく、コンタクト電極21aとコンタクト領域15bとの間に、シリサイド膜SIL2に代え、金属ケイ化物以外の金属膜を介在させることもできる。 Note that the source electrode 21, p + -type body contact region 15 only to be connected to the Schottky, between the source electrode 21 and the p + -type body contact region 15, instead of the silicide film SIL 1, other than the metal silicide A metal film can also be interposed. The contact electrode 21a only needs to be Schottky connected to the contact region 15b, and a metal film other than the metal silicide can be interposed between the contact electrode 21a and the contact region 15b in place of the silicide film SIL2. .
 <半導体装置の製造工程>
 次に、本実施の形態1の半導体装置の製造工程の例を、図面を参照して説明する。図3は、実施の形態1の半導体装置の製造工程の一部を示すフロー図である。図4~図13は、実施の形態1の半導体装置の製造工程中の要部断面図である。なお、図3は、アクティブ領域AR1における製造工程を示している。
<Manufacturing process of semiconductor device>
Next, an example of a manufacturing process of the semiconductor device according to the first embodiment will be described with reference to the drawings. FIG. 3 is a flowchart showing a part of the manufacturing process of the semiconductor device of the first embodiment. 4 to 13 are fragmentary cross-sectional views of the semiconductor device of First Embodiment during the manufacturing process thereof. FIG. 3 shows a manufacturing process in the active area AR1.
 まず、n型SiC基板10を用意する(図3のステップS11)。このステップS11では、図4に示すように、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型SiC基板10を用意する。前述したように、n型SiC基板10におけるn型不純物の濃度は、比較的高く、例えば1×1018~1×1021cm-3程度とすることができる。また、n型SiC基板10の厚さを、例えば50~500μm程度とすることができる。 First, an n + type SiC substrate 10 is prepared (step S11 in FIG. 3). In step S11, as shown in FIG. 4, an n + type SiC substrate 10 made of silicon carbide (SiC) into which an n type impurity such as nitrogen (N) or phosphorus (P) is introduced is prepared. As described above, the concentration of the n-type impurity in the n + -type SiC substrate 10 can be relatively high, for example, about 1 × 10 18 to 1 × 10 21 cm −3 . In addition, the thickness of the n + -type SiC substrate 10 can be set to, for example, about 50 to 500 μm.
 次いで、n型エピタキシャル層12を形成する(図3のステップS12)。このステップS12では、図4に示すように、アクティブ領域AR1、終端領域AR2およびゲートパッド領域AR3で、n型SiC基板10の上面10aに、エピタキシャル成長法によりn型エピタキシャル層12を形成する。例えばシリコン(Si)原子含有ガス(SiHガス)、塩素(Cl)原子含有ガス(HClガス)、炭素(C)原子含有ガス(Cガス)および還元ガス(Hガス)等を用い、基板温度を例えば1500~1800℃程度にすることで、SiCからなるn型エピタキシャル層12を形成する。 Next, the n type epitaxial layer 12 is formed (step S12 in FIG. 3). In this step S12, as shown in FIG. 4, the n type epitaxial layer 12 is formed on the upper surface 10a of the n + type SiC substrate 10 by the epitaxial growth method in the active region AR1, the termination region AR2 and the gate pad region AR3. For example, silicon (Si) atom-containing gas (SiH 4 gas), chlorine (Cl) atom-containing gas (HCl gas), carbon (C) atom-containing gas (C 3 H 8 gas), reducing gas (H 2 gas), etc. By using the substrate temperature of, for example, about 1500 to 1800 ° C., the n type epitaxial layer 12 made of SiC is formed.
 n型エピタキシャル層12には、例えば窒素(N)またはリン(P)などのn型不純物が導入される。前述したように、n型エピタキシャル層12におけるn型不純物の濃度を、例えば1×1015~1×1016cm-3程度とすることができ、n型エピタキシャル層12の厚さを、例えば5~50μm程度とすることができる。 An n-type impurity such as nitrogen (N) or phosphorus (P) is introduced into the n -type epitaxial layer 12. As described above, n - the density of the n-type impurity in the type epitaxial layer 12, for example, 1 × 10 15 can be a ~ 1 × 10 16 cm -3 approximately, n - the thickness of the type epitaxial layer 12, For example, the thickness can be about 5 to 50 μm.
 次いで、p型ボディ領域13を形成する(図3のステップS13)。このステップS13では、図5に示すように、まず、アクティブ領域AR1で、n型エピタキシャル層12上にレジスト膜RF1を形成する。そして、形成されたレジスト膜RF1に対してフォトリソグラフィ技術を用いて露光および現像処理を施すことにより、アクティブ領域AR1のうち、p型ボディ領域13が形成される領域で、レジスト膜RF1を貫通してn型エピタキシャル層12に達する開口部OP1を形成する。このとき、開口部OP1が形成されたレジスト膜RF1からなるレジストパターンRP1が形成され、開口部OP1の底部にn型エピタキシャル層12が露出する。 Next, the p-type body region 13 is formed (step S13 in FIG. 3). In step S13, as shown in FIG. 5, first, a resist film RF1 is formed on the n type epitaxial layer 12 in the active region AR1. Then, the formed resist film RF1 is exposed and developed using a photolithography technique to penetrate the resist film RF1 in a region where the p-type body region 13 is formed in the active region AR1. Thus, an opening OP1 reaching the n type epitaxial layer 12 is formed. At this time, a resist pattern RP1 made of the resist film RF1 in which the opening OP1 is formed is formed, and the n type epitaxial layer 12 is exposed at the bottom of the opening OP1.
 図5に示す例では、アクティブ領域AR1で、レジスト膜RF1を形成する際に、終端領域AR2でも、n型エピタキシャル層12上に、レジスト膜RF1を形成する。そして、開口部OP1を形成する際に、終端領域AR2でも、p型ボディ領域13aが形成される領域で、レジスト膜RF1を貫通してn型エピタキシャル層12に達する開口部OP11を形成する。このとき、終端領域AR2では、レジストパターンRP1は、開口部OP11が形成されたレジスト膜RF1からなり、開口部OP11の底部にn型エピタキシャル層12が露出する。 In the example shown in FIG. 5, when the resist film RF1 is formed in the active region AR1, the resist film RF1 is formed on the n type epitaxial layer 12 also in the termination region AR2. When the opening OP1 is formed, an opening OP11 that penetrates the resist film RF1 and reaches the n type epitaxial layer 12 is also formed in the termination region AR2 in the region where the p-type body region 13a is formed. At this time, in the termination region AR2, the resist pattern RP1 is made of the resist film RF1 in which the opening OP11 is formed, and the n type epitaxial layer 12 is exposed at the bottom of the opening OP11.
 また、図5に示す例では、アクティブ領域AR1で、レジスト膜RF1を形成する際に、ゲートパッド領域AR3でも、n型エピタキシャル層12上に、レジスト膜RF1を形成する。そして、開口部OP1を形成する際に、ゲートパッド領域AR3では、レジスト膜RF1を除去する。 In the example shown in FIG. 5, when the resist film RF1 is formed in the active region AR1, the resist film RF1 is formed on the n type epitaxial layer 12 also in the gate pad region AR3. Then, when the opening OP1 is formed, the resist film RF1 is removed in the gate pad region AR3.
 次いで、図5に示すように、アクティブ領域AR1で、レジストパターンRP1をマスクにしたイオン注入法により、n型エピタキシャル層12に、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入する。これにより、n型エピタキシャル層12の上層部に、p型ボディ領域13が形成される。前述したように、p型ボディ領域13におけるp型不純物の濃度を、例えば1×1017~1×1018cm-3程度とすることができ、p型ボディ領域13の厚さを、例えば1~2μm程度とすることができる。 Next, as shown in FIG. 5, a p-type impurity such as aluminum (Al) or boron (B) is applied to the n -type epitaxial layer 12 by ion implantation using the resist pattern RP1 as a mask in the active region AR1. Introduce. As a result, the p-type body region 13 is formed in the upper layer portion of the n -type epitaxial layer 12. As described above, the concentration of the p-type impurity in the p-type body region 13 can be set to, for example, about 1 × 10 17 to 1 × 10 18 cm −3, and the thickness of the p-type body region 13 is set to, for example, 1 It can be about 2 μm.
 図5に示す例では、アクティブ領域AR1で、p型不純物を導入する際に、終端領域AR2でも、レジストパターンRP1をマスクにしたイオン注入法により、n型エピタキシャル層12に、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入する。これにより、終端領域AR2で、n型エピタキシャル層12の上層部に、p型ボディ領域13aが形成される。p型ボディ領域13aにおけるp型不純物の濃度を、p型ボディ領域13におけるp型不純物の濃度と同様にすることができ、p型ボディ領域13aの厚さを、p型ボディ領域13の厚さと同様にすることができる。 In the example shown in FIG. 5, when p-type impurities are introduced into the active region AR1, the n -type epitaxial layer 12 is also doped with, for example, aluminum (Al) in the termination region AR2 by ion implantation using the resist pattern RP1 as a mask. ) Or p-type impurities such as boron (B) are introduced. As a result, the p-type body region 13a is formed in the upper layer portion of the n -type epitaxial layer 12 in the termination region AR2. The concentration of the p-type impurity in the p-type body region 13 a can be made the same as the concentration of the p-type impurity in the p-type body region 13, and the thickness of the p-type body region 13 a is equal to the thickness of the p-type body region 13. The same can be done.
 また、図5に示す例では、アクティブ領域AR1で、p型不純物を導入する際に、ゲートパッド領域AR3でも、n型エピタキシャル層12に、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入する。これにより、ゲートパッド領域AR3で、n型エピタキシャル層12の上層部に、p型ボディ領域13cが形成される。p型ボディ領域13cにおけるp型不純物の濃度を、p型ボディ領域13におけるp型不純物の濃度と同様にすることができ、p型ボディ領域13cの厚さを、p型ボディ領域13の厚さと同様にすることができる。 Further, in the example shown in FIG. 5, when the p-type impurity is introduced into the active region AR1, the n type epitaxial layer 12 is also formed on the n -type epitaxial layer 12 in the gate pad region AR3. Type impurities are introduced. As a result, the p-type body region 13c is formed in the upper layer portion of the n -type epitaxial layer 12 in the gate pad region AR3. The concentration of the p-type impurity in the p-type body region 13c can be made the same as the concentration of the p-type impurity in the p-type body region 13, and the thickness of the p-type body region 13c is equal to the thickness of the p-type body region 13. The same can be done.
 次いで、図6に示すように、レジストパターンRP1を除去した後、終端領域AR2で、n型エピタキシャル層12上、および、p型ボディ領域13a上に、レジスト膜RF2を形成する。そして、形成されたレジスト膜RF2に対してフォトリソグラフィ技術を用いて露光および現像処理を施すことにより、終端領域AR2のうち、p型ボディ領域13bが形成される領域で、レジスト膜RF2を貫通してn型エピタキシャル層12に達する開口部OP2を形成する。このとき、開口部OP2が形成されたレジスト膜RF2からなるレジストパターンRP2が形成され、開口部OP2の底部にn型エピタキシャル層12が露出する。 Next, as shown in FIG. 6, after removing the resist pattern RP1, a resist film RF2 is formed on the n type epitaxial layer 12 and the p type body region 13a in the termination region AR2. Then, the formed resist film RF2 is exposed and developed using a photolithography technique to penetrate the resist film RF2 in the region of the termination region AR2 where the p-type body region 13b is formed. Thus, an opening OP2 reaching the n type epitaxial layer 12 is formed. At this time, a resist pattern RP2 made of the resist film RF2 in which the opening OP2 is formed is formed, and the n type epitaxial layer 12 is exposed at the bottom of the opening OP2.
 図6に示す例では、終端領域AR2で、レジスト膜RF2を形成する際に、アクティブ領域AR1およびゲートパッド領域AR3でも、n型エピタキシャル層12上、ならびに、p型ボディ領域13および13c上に、レジスト膜RF2を形成する。そして、開口部OP1を形成する際に、アクティブ領域AR1およびゲートパッド領域AR3では、開口部が形成されず、n型エピタキシャル層12、ならびに、p型ボディ領域13および13cは、レジスト膜RF2に覆われている。 In the example shown in FIG. 6, when the resist film RF2 is formed in the termination region AR2, the active region AR1 and the gate pad region AR3 are also on the n type epitaxial layer 12 and the p type body regions 13 and 13c. Then, a resist film RF2 is formed. When the opening OP1 is formed, no opening is formed in the active region AR1 and the gate pad region AR3, and the n -type epitaxial layer 12 and the p- type body regions 13 and 13c are formed in the resist film RF2. Covered.
 次いで、図6に示すように、終端領域AR2で、レジストパターンRP2をマスクにしたイオン注入法により、n型エピタキシャル層12に、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入する。これにより、n型エピタキシャル層12の上層部に、p型ボディ領域13bが形成される。前述したように、p型ボディ領域13bにおけるp型不純物の濃度を、例えば1×1017~1×1018cm-3程度とすることができ、p型ボディ領域13bの厚さを、例えば1~2μm程度とすることができる。 Next, as shown in FIG. 6, in the termination region AR2, a p-type impurity such as aluminum (Al) or boron (B) is applied to the n -type epitaxial layer 12 by ion implantation using the resist pattern RP2 as a mask. Introduce. As a result, a p-type body region 13 b is formed in the upper layer portion of the n -type epitaxial layer 12. As described above, the concentration of the p-type impurity in the p-type body region 13b can be set to, for example, about 1 × 10 17 to 1 × 10 18 cm −3, and the thickness of the p-type body region 13b can be set to, for example, 1 It can be about 2 μm.
 好適には、p型ボディ領域13bにおけるp型不純物の濃度は、p型ボディ領域13におけるp型不純物の濃度よりも低い。これにより、終端領域AR2におけるp型ボディ領域13b近傍での電界の強度が、アクティブ領域AR1におけるp型ボディ領域13近傍での電界の強度よりも大きくなることを防止または抑制し、半導体装置1の耐圧を向上させることができる。 Preferably, the concentration of the p-type impurity in the p-type body region 13b is lower than the concentration of the p-type impurity in the p-type body region 13. Thus, the strength of the electric field in the vicinity of the p-type body region 13b in the termination region AR2 is prevented or suppressed from becoming larger than the strength of the electric field in the vicinity of the p-type body region 13 in the active region AR1, and the semiconductor device 1 The breakdown voltage can be improved.
 なお、p型ボディ領域13、13a、13bおよび13cを形成する工程については、それらの工程の後、例えば1700℃程度で熱処理を行い、注入した不純物を活性化させることができる。また、レジスト膜RF1からなるレジストパターン、および、レジスト膜RF2からなるレジストパターンのいずれかに代え、各種の膜からなるマスクパターンを用いることができる。 In addition, about the process of forming p-type body area | regions 13, 13a, 13b, and 13c, after these processes, it can heat-process at about 1700 degreeC, for example, and can implant | stimulate the implanted impurity. Further, mask patterns made of various films can be used in place of either the resist pattern made of the resist film RF1 or the resist pattern made of the resist film RF2.
 次いで、p型ボディコンタクト領域15を形成する(図3のステップS14)。このステップS14では、図7に示すように、レジストパターンRP2を除去した後、アクティブ領域AR1で、n型エピタキシャル層12上、および、p型ボディ領域13上に、レジスト膜RF3を形成する。そして、形成されたレジスト膜RF3に対してフォトリソグラフィ技術を用いて露光および現像処理を施すことにより、アクティブ領域AR1のうち、p型ボディコンタクト領域15が形成される領域で、レジスト膜RF3を貫通してp型ボディ領域13に達する開口部OP3を形成する。このとき、開口部OP3が形成されたレジスト膜RF3からなるレジストパターンRP3が形成され、開口部OP3の底部にp型ボディ領域13が露出する。 Next, the p + type body contact region 15 is formed (step S14 in FIG. 3). In step S14, as shown in FIG. 7, after removing the resist pattern RP2, a resist film RF3 is formed on the n type epitaxial layer 12 and the p type body region 13 in the active region AR1. Then, by performing exposure and development processing on the formed resist film RF3 using photolithography technology, the resist film RF3 is formed in the active region AR1 in the region where the p + -type body contact region 15 is formed. Opening OP3 penetrating to reach p-type body region 13 is formed. At this time, a resist pattern RP3 made of the resist film RF3 in which the opening OP3 is formed is formed, and the p-type body region 13 is exposed at the bottom of the opening OP3.
 図7に示す例では、アクティブ領域AR1で、レジスト膜RF3を形成する際に、終端領域AR2でも、n型エピタキシャル層12上、p型ボディ領域13a上、および、p型ボディ領域13b上に、レジスト膜RF3を形成する。そして、開口部OP3を形成する際に、終端領域AR2では、レジスト膜RF3を貫通してp型ボディ領域13aに達する開口部OP31を形成する。このとき、終端領域AR2では、レジストパターンRP3は、開口部OP31が形成されたレジスト膜RF3からなり、開口部OP31の底部にp型ボディ領域13aが露出する。 In the example shown in FIG. 7, when the resist film RF3 is formed in the active region AR1, the termination region AR2 is also on the n type epitaxial layer 12, the p type body region 13a, and the p type body region 13b. Then, a resist film RF3 is formed. When the opening OP3 is formed, in the termination region AR2, an opening OP31 that penetrates the resist film RF3 and reaches the p-type body region 13a is formed. At this time, in the termination region AR2, the resist pattern RP3 is made of the resist film RF3 in which the opening OP31 is formed, and the p-type body region 13a is exposed at the bottom of the opening OP31.
 また、図7に示す例では、アクティブ領域AR1で、レジスト膜RF3を形成する際に、ゲートパッド領域AR3でも、p型ボディ領域13c上に、レジスト膜RF3を形成する。そして、開口部OP3を形成する際に、ゲートパッド領域AR3では、開口部が形成されず、p型ボディ領域13cは、レジスト膜RF3に覆われている。 In the example shown in FIG. 7, when the resist film RF3 is formed in the active region AR1, the resist film RF3 is also formed on the p-type body region 13c in the gate pad region AR3. When the opening OP3 is formed, no opening is formed in the gate pad region AR3, and the p-type body region 13c is covered with the resist film RF3.
 次いで、図7に示すように、アクティブ領域AR1で、レジストパターンRP3をマスクにしたイオン注入法により、p型ボディ領域13に、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入する。これにより、アクティブ領域AR1で、p型ボディ領域13の上層部に、p型ボディコンタクト領域15が形成される。 Next, as shown in FIG. 7, a p-type impurity such as aluminum (Al) or boron (B) is introduced into the p-type body region 13 by ion implantation using the resist pattern RP3 as a mask in the active region AR1. To do. As a result, the p + type body contact region 15 is formed in the upper layer portion of the p type body region 13 in the active region AR1.
 前述したように、p型ボディコンタクト領域15におけるp型不純物の濃度を、2×1019cm-3以上1×1020cm-3未満とすることが好ましく、2×1019cm-3以上7×1019cm-3未満とすることがより好ましい。これにより、図15および図16を用いて後述するように、シリサイド膜SIL1を、p型ボディコンタクト領域15とショットキー接続することができる。また、p型ボディコンタクト領域15の厚さを、例えば100~500nm程度とすることができる。 As described above, p + the concentration of the p-type impurity in the mold body contact region 15, preferably to 2 × 10 19 cm -3 or more less than 1 × 10 20 cm -3, 2 × 10 19 cm -3 or more More preferably, it is less than 7 × 10 19 cm −3 . Thereby, as described later with reference to FIGS. 15 and 16, the silicide film SIL1 can be Schottky-connected to the p + type body contact region 15. Further, the thickness of the p + -type body contact region 15 can be set to about 100 to 500 nm, for example.
 ここで、p型ボディコンタクト領域15におけるp型不純物の濃度を、2×1019cm-3以上1×1020cm-3未満にするためのイオン注入の条件を、表1に示す。すなわち、表1に示す条件は、シリサイド膜SIL1(後述する図11参照)を、p型ボディコンタクト領域15とショットキー接続するための条件である。 Here, Table 1 shows ion implantation conditions for setting the concentration of the p-type impurity in the p + -type body contact region 15 to 2 × 10 19 cm −3 or more and less than 1 × 10 20 cm −3 . That is, the conditions shown in Table 1 are conditions for Schottky connection of the silicide film SIL1 (see FIG. 11 described later) with the p + type body contact region 15.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、ステップS21~ステップS24の4つの工程を順次行って、p型不純物としてのアルミニウムのイオンを4段階でイオン注入する際の、各工程における注入エネルギー(keV)と、ドーズ量(cm-2)とを示す。 Table 1 shows the implantation energy (keV) and dose (cm) in each step when the four steps of Step S21 to Step S24 are sequentially performed to implant ions of aluminum as a p-type impurity in four stages. -2 ).
 また、図7に示す例では、アクティブ領域AR1で、p型不純物を導入する際に、終端領域AR2でも、n型エピタキシャル層12に、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入する。これにより、終端領域AR2で、p型ボディ領域13aの上層部に、p型ボディコンタクト領域15aが形成される。p型ボディコンタクト領域15aにおけるp型不純物の濃度を、p型ボディコンタクト領域15におけるp型不純物の濃度と同様にすることができ、p型ボディコンタクト領域15aの厚さを、p型ボディコンタクト領域15の厚さと同様にすることができる。 Further, in the example shown in FIG. 7, when the p-type impurity is introduced into the active region AR1, the p-type such as aluminum (Al) or boron (B) is added to the n -type epitaxial layer 12 also in the termination region AR2. Impurities are introduced. As a result, in the termination region AR2, the p + type body contact region 15a is formed in the upper layer portion of the p type body region 13a. The concentration of the p-type impurity in the p + -type body contact region 15a, the p + -type body contact region can be similar to the concentration of the p-type impurity at 15, the thickness of the p + -type body contact region 15a, p + The thickness of the mold body contact region 15 can be made the same.
 次いで、図8に示すように、レジストパターンRP3を除去した後、終端領域AR2で、n型エピタキシャル層12上、p型ボディ領域13aおよび13b上、ならびに、p型ボディコンタクト領域15a上に、レジスト膜RF4を形成する。そして、形成されたレジスト膜RF4に対してフォトリソグラフィ技術を用いて露光および現像処理を施すことにより、終端領域AR2のうち、コンタクト領域15bが形成される領域で、レジスト膜RF4を貫通してp型ボディ領域13aに達する開口部OP4を形成する。このとき、開口部OP4が形成されたレジスト膜RF4からなるレジストパターンRP4が形成され、開口部OP4の底部にp型ボディ領域13aが露出する。 Next, as shown in FIG. 8, after removing resist pattern RP3, in termination region AR2, on n type epitaxial layer 12, on p type body regions 13a and 13b, and on p + type body contact region 15a. Then, a resist film RF4 is formed. Then, the formed resist film RF4 is exposed and developed using a photolithography technique, so that the resist film RF4 penetrates the resist film RF4 in the region of the termination region AR2 where the contact region 15b is formed. An opening OP4 reaching the mold body region 13a is formed. At this time, a resist pattern RP4 made of the resist film RF4 in which the opening OP4 is formed is formed, and the p-type body region 13a is exposed at the bottom of the opening OP4.
 図8に示す例では、終端領域AR2で、レジスト膜RF4を形成する際に、アクティブ領域AR1およびゲートパッド領域AR3でも、n型エピタキシャル層12上、p型ボディ領域13および13c上、ならびに、p型ボディコンタクト領域15上に、レジスト膜RF4を形成する。そして、開口部OP4を形成する際に、アクティブ領域AR1およびゲートパッド領域AR3では、開口部が形成されず、n型エピタキシャル層12、p型ボディ領域13および13c、ならびに、p型ボディコンタクト領域15は、レジスト膜RF4に覆われている。 In the example shown in FIG. 8, when the resist film RF4 is formed in the termination region AR2, the active region AR1 and the gate pad region AR3 are also on the n type epitaxial layer 12, the p type body regions 13 and 13c, and A resist film RF4 is formed on the p + type body contact region 15. When the opening OP4 is formed, no opening is formed in the active region AR1 and the gate pad region AR3, the n type epitaxial layer 12, the p type body regions 13 and 13c, and the p + type body contact. The region 15 is covered with the resist film RF4.
 次いで、図8に示すように、終端領域AR2で、レジストパターンRP4をマスクにしたイオン注入法により、p型ボディ領域13aに、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入する。これにより、終端領域AR2で、p型ボディ領域13aの上層部に、コンタクト領域15bが形成される。前述したように、コンタクト領域15bにおけるp型不純物の濃度を、2×1019cm-3以上1×1020cm-3未満とすることが好ましく、2×1019cm-3以上7×1019cm-3未満とすることがより好ましい。これにより、図15および図16を用いて後述するように、シリサイド膜SIL2を、コンタクト領域15bとショットキー接続することができる。また、コンタクト領域15bの厚さを、例えば100~500nm程度とすることができる。 Next, as shown in FIG. 8, in the termination region AR2, a p-type impurity such as aluminum (Al) or boron (B) is introduced into the p-type body region 13a by ion implantation using the resist pattern RP4 as a mask. To do. Thereby, the contact region 15b is formed in the upper layer portion of the p-type body region 13a in the termination region AR2. As described above, the concentration of the p-type impurity in the contact region 15b, it is preferable that a 2 × 10 19 cm -3 or more less than 1 × 10 20 cm -3, 2 × 10 19 cm -3 or more 7 × 10 19 More preferably, it is less than cm −3 . Thereby, as described later with reference to FIGS. 15 and 16, the silicide film SIL2 can be Schottky connected to the contact region 15b. Further, the thickness of the contact region 15b can be set to about 100 to 500 nm, for example.
 なお、コンタクト領域15bにおけるp型不純物の濃度を、2×1019cm-3以上1×1020cm-3未満にするためのイオン注入の条件は、表1に示した、ショットキー接続するための条件と、同様にすることができる。 The conditions for ion implantation for setting the concentration of the p-type impurity in the contact region 15b to 2 × 10 19 cm −3 or more and less than 1 × 10 20 cm −3 are shown in Table 1 for Schottky connection. The same conditions can be used.
 次いで、n型ソース領域14を形成する(図3のステップS15)。このステップS15では、図9に示すように、レジストパターンRP4を除去した後、アクティブ領域AR1で、n型エピタキシャル層12上、p型ボディ領域13上、および、p型ボディコンタクト領域15上に、レジスト膜RF5を形成する。そして、形成されたレジスト膜RF5に対してフォトリソグラフィ技術を用いて露光および現像処理を施すことにより、アクティブ領域AR1のうち、n型ソース領域14が形成される領域で、レジスト膜RF5を貫通してp型ボディ領域13に達する開口部OP5を形成する。このとき、開口部OP5が形成されたレジスト膜RF5からなるレジストパターンRP5が形成され、開口部OP5の底部にp型ボディ領域13が露出する。 Next, the n + type source region 14 is formed (step S15 in FIG. 3). In step S15, as shown in FIG. 9, after removing resist pattern RP4, in active region AR1, on n type epitaxial layer 12, on p type body region 13, and on p + type body contact region 15 Next, a resist film RF5 is formed. Then, the formed resist film RF5 is exposed and developed using a photolithography technique to penetrate the resist film RF5 in the region where the n + -type source region 14 is formed in the active region AR1. Thus, an opening OP5 reaching the p-type body region 13 is formed. At this time, a resist pattern RP5 made of the resist film RF5 in which the opening OP5 is formed is formed, and the p-type body region 13 is exposed at the bottom of the opening OP5.
 図9に示す例では、アクティブ領域AR1で、レジスト膜RF5を形成する際に、終端領域AR2でも、n型エピタキシャル層12上、p型ボディ領域13aおよび13b上、p型ボディコンタクト領域15a上、ならびに、コンタクト領域15b上に、レジスト膜RF5を形成する。そして、開口部OP5を形成する際に、終端領域AR2では、レジスト膜RF5を貫通してp型ボディ領域13aに達する開口部OP51、および、レジスト膜RF5を貫通してn型エピタキシャル層12に達する開口部OP52を形成する。このとき、終端領域AR2では、レジストパターンRP5は、開口部OP51および開口部OP52が形成されたレジスト膜RF5からなり、開口部OP51の底部にp型ボディ領域13aが露出し、開口部OP52の底部にn型エピタキシャル層12が露出する。 In the example shown in FIG. 9, when the resist film RF5 is formed in the active region AR1, even in the termination region AR2, the n type epitaxial layer 12, the p type body regions 13a and 13b, and the p + type body contact region 15a. A resist film RF5 is formed above and on the contact region 15b. When the opening OP5 is formed, in the termination region AR2, the opening OP51 that reaches the p-type body region 13a through the resist film RF5 and the n -type epitaxial layer 12 through the resist film RF5 are formed. A reaching opening OP52 is formed. At this time, in the termination region AR2, the resist pattern RP5 is composed of the resist film RF5 in which the opening OP51 and the opening OP52 are formed. The p-type body region 13a is exposed at the bottom of the opening OP51, and the bottom of the opening OP52 The n type epitaxial layer 12 is exposed.
 また、図9に示す例では、アクティブ領域AR1で、レジスト膜RF5を形成する際に、ゲートパッド領域AR3でも、p型ボディ領域13c上に、レジスト膜RF5を形成する。そして、開口部OP5を形成する際に、ゲートパッド領域AR3では、開口部が形成されず、p型ボディ領域13cは、レジスト膜RF5に覆われている。 In the example shown in FIG. 9, when the resist film RF5 is formed in the active region AR1, the resist film RF5 is formed on the p-type body region 13c also in the gate pad region AR3. When the opening OP5 is formed, no opening is formed in the gate pad region AR3, and the p-type body region 13c is covered with the resist film RF5.
 次いで、図9に示すように、アクティブ領域AR1で、レジストパターンRP5をマスクにしたイオン注入法により、p型ボディ領域13に、例えば窒素(N)またはリン(P)などのn型不純物を導入する。これにより、p型ボディ領域13の上層部に、n型ソース領域14が形成される。前述したように、n型ソース領域14におけるn型不純物の濃度を、例えば1×1019~1×1020cm-3程度とすることができ、n型ソース領域14の厚さを、例えば100~500nm程度とすることができる。 Next, as shown in FIG. 9, n-type impurities such as nitrogen (N) or phosphorus (P) are introduced into the p-type body region 13 by ion implantation using the resist pattern RP5 as a mask in the active region AR1. To do. As a result, an n + type source region 14 is formed in the upper layer portion of the p type body region 13. As described above, the concentration of n-type impurity in the n + -type source region 14, for example, be a 1 × 10 19 ~ 1 × 10 20 cm -3 or so, the thickness of the n + -type source region 14, For example, the thickness can be about 100 to 500 nm.
 図9に示す例では、アクティブ領域AR1で、n型不純物を導入する際に、終端領域AR2でも、p型ボディ領域13に、例えば窒素(N)またはリン(P)などのn型不純物を導入する。これにより、終端領域AR2で、p型ボディ領域13aの上層部に、n型ソース領域14aが形成され、n型エピタキシャル層12の上層部に、n型フィールドストッパ領域14bが形成される。n型ソース領域14aおよびn型フィールドストッパ領域14bにおけるp型不純物の濃度を、n型ソース領域14におけるn型不純物の濃度と同様にすることができ、n型ソース領域14aおよびn型フィールドストッパ領域14bの厚さを、n型ソース領域14の厚さと同様にすることができる。 In the example shown in FIG. 9, when an n-type impurity is introduced into the active region AR1, an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced into the p-type body region 13 also in the termination region AR2. To do. Thereby, in termination region AR2, n + type source region 14a is formed in the upper layer portion of p type body region 13a, and n + type field stopper region 14b is formed in the upper layer portion of n type epitaxial layer 12. . The concentration of the p-type impurity in the n + -type source region 14a and the n + -type field stop region 14b, can be similar to the concentration of the n-type impurity in the n + -type source region 14, n + -type source region 14a and n The thickness of the + type field stopper region 14 b can be made the same as the thickness of the n + type source region 14.
 なお、n型ソース領域14および14a、n型フィールドストッパ領域14b、p型ボディコンタクト領域15および15a、ならびに、コンタクト領域15bを形成する工程については、上記した順番で行う場合に限られず、適切にパターニングされたレジスト膜をマスクに用いるものであれば、いずれの順番で行ってもよい。また、レジスト膜RF3からなるレジストパターン、レジスト膜RF4からなるレジストパターン、および、レジスト膜RF5からなるレジストパターンのいずれかに代え、各種の膜からなるマスクパターンを用いることができる。さらに、n型ソース領域14および14a、n型フィールドストッパ領域14b、p型ボディコンタクト領域15および15a、ならびに、コンタクト領域15bを形成する工程については、各工程の後、または、全ての工程が終わった後、例えば1700℃程度で熱処理を行い、注入した不純物を活性化させることができる。 Note that the steps of forming n + type source regions 14 and 14a, n + type field stopper region 14b, p + type body contact regions 15 and 15a, and contact region 15b are not limited to the steps described above. As long as a resist film that is appropriately patterned is used as a mask, the resist film may be formed in any order. Also, mask patterns made of various films can be used instead of any of the resist pattern made of the resist film RF3, the resist pattern made of the resist film RF4, and the resist pattern made of the resist film RF5. Further, the steps of forming the n + type source regions 14 and 14a, the n + type field stopper region 14b, the p + type body contact regions 15 and 15a, and the contact region 15b are performed after each step or all of the steps. After the process is completed, heat treatment can be performed at about 1700 ° C., for example, to activate the implanted impurities.
 次いで、ゲート絶縁膜18およびゲート電極19を形成する(図3のステップS16)。このステップS16では、まず、図10に示すように、終端領域AR2で、n型エピタキシャル層12上、p型ボディ領域13aおよび13b上、n型フィールドストッパ領域14b上、ならびに、コンタクト領域15b上に、フィールド酸化膜FO1を形成する。フィールド酸化膜FO1として、例えば酸化シリコン(SiO)などからなる各種の膜を用いることができる。また、フィールド酸化膜FO1を、例えばCVD法により形成することができる。また、終端領域AR2で、フィールド酸化膜FO1を形成する際に、ゲートパッド領域AR3でも、p型ボディ領域13c上に、フィールド酸化膜FO1を形成する。 Next, the gate insulating film 18 and the gate electrode 19 are formed (Step S16 in FIG. 3). In step S16, first, as shown in FIG. 10, in termination region AR2, on n type epitaxial layer 12, on p type body regions 13a and 13b, on n + type field stopper region 14b, and contact region 15b. A field oxide film FO1 is formed thereon. As the field oxide film FO1, various films made of, for example, silicon oxide (SiO 2 ) can be used. Further, the field oxide film FO1 can be formed by, for example, a CVD method. Further, when the field oxide film FO1 is formed in the termination region AR2, the field oxide film FO1 is formed on the p-type body region 13c also in the gate pad region AR3.
 次いで、図10に示すように、アクティブ領域AR1および終端領域AR2で、n型エピタキシャル層12上、p型ボディ領域13および13a上、n型ソース領域14および14a上、p型ボディコンタクト領域15および15a上、ならびに、フィールド酸化膜FO1上に、絶縁膜18bを形成する。絶縁膜18bとして、好適には、例えば酸化シリコン(SiO)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)または酸化ハフニウム(HfO)などからなる各種の膜を用いることができる。あるいは、絶縁膜18bとして、好適には、上記の各種の膜が積層された積層膜を用いることができる。また、絶縁膜18bを、例えばCVD法により形成することができる。 Next, as shown in FIG. 10, in the active region AR1 and the termination region AR2, on the n type epitaxial layer 12, on the p type body regions 13 and 13a, on the n + type source regions 14 and 14a, and the p + type body contact. An insulating film 18b is formed on regions 15 and 15a and on field oxide film FO1. As the insulating film 18b, various films made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like can be preferably used. . Alternatively, as the insulating film 18b, a laminated film in which the above various films are suitably laminated can be used. The insulating film 18b can be formed by, for example, a CVD method.
 図10に示す例では、アクティブ領域AR1および終端領域AR2で、絶縁膜18bを形成する際に、ゲートパッド領域AR3でも、フィールド酸化膜FO1上に、絶縁膜18bを形成する。なお、前述したように、終端領域AR2でも、フィールド酸化膜FO1上に、絶縁膜18bを形成する。 In the example shown in FIG. 10, when the insulating film 18b is formed in the active region AR1 and the termination region AR2, the insulating film 18b is formed on the field oxide film FO1 also in the gate pad region AR3. As described above, the insulating film 18b is formed on the field oxide film FO1 also in the termination region AR2.
 次いで、アクティブ領域AR1および終端領域AR2で、絶縁膜18b上に導電膜19bを形成する。導電膜19bとして、例えばリン(P)もしくは砒素(As)などのn型不純物が高濃度で拡散したポリシリコン、または、ホウ素(B)などのp型不純物が高濃度で拡散したポリシリコンなどからなる導電膜を用いることができる。また、導電膜19bを、例えばCVD法などにより形成することができる。 Next, a conductive film 19b is formed on the insulating film 18b in the active region AR1 and the termination region AR2. The conductive film 19b is made of, for example, polysilicon in which n-type impurities such as phosphorus (P) or arsenic (As) are diffused at a high concentration, or polysilicon in which p-type impurities such as boron (B) are diffused at a high concentration. A conductive film can be used. The conductive film 19b can be formed by, for example, a CVD method.
 図10に示す例では、アクティブ領域AR1および終端領域AR2で、導電膜19bを形成する際に、ゲートパッド領域AR3でも、絶縁膜18b上に導電膜19bを形成する。 In the example shown in FIG. 10, when the conductive film 19b is formed in the active region AR1 and the termination region AR2, the conductive film 19b is formed on the insulating film 18b also in the gate pad region AR3.
 そして、図10に示すように、アクティブ領域AR1および終端領域AR2で、導電膜19bをパターニングして、ゲート電極19を形成する。このゲート電極19を形成する工程では、フォトリソグラフィ技術およびドライエッチング技術により、導電膜19bをパターニングすることにより、導電膜19bからなるゲート電極19を形成する。ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に、絶縁膜18bからなるゲート絶縁膜18を介して形成される。 Then, as shown in FIG. 10, the conductive film 19b is patterned in the active region AR1 and the termination region AR2, and the gate electrode 19 is formed. In the step of forming the gate electrode 19, the gate electrode 19 made of the conductive film 19b is formed by patterning the conductive film 19b by a photolithography technique and a dry etching technique. The gate electrode 19 is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 via the gate insulating film 18 made of the insulating film 18 b.
 図10に示す例では、アクティブ領域AR1で、ゲート電極19およびゲート絶縁膜18を形成する際に、ゲートパッド領域AR3でも、導電膜19bをパターニングする。これにより、ゲートパッド領域AR3で、導電膜19bからなるゲートパッド19aを形成する。ゲートパッド19aは、フィールド酸化膜FO1上に、絶縁膜18bからなる絶縁膜18aを介して形成される。 In the example shown in FIG. 10, when the gate electrode 19 and the gate insulating film 18 are formed in the active region AR1, the conductive film 19b is also patterned in the gate pad region AR3. Thereby, the gate pad 19a made of the conductive film 19b is formed in the gate pad region AR3. The gate pad 19a is formed on the field oxide film FO1 via an insulating film 18a made of an insulating film 18b.
 なお、アクティブ領域AR1、終端領域AR2およびゲートパッド領域AR3では、導電膜19bをパターニングする際に、絶縁膜18bが共にパターニングされてもよい。 In the active region AR1, the termination region AR2, and the gate pad region AR3, the insulating film 18b may be patterned together when the conductive film 19b is patterned.
 次いで、層間絶縁膜20を形成する(図3のステップS17)。このステップS17では、図11に示すように、アクティブ領域AR1で、n型エピタキシャル層12上、p型ボディ領域13上、n型ソース領域14上、および、p型ボディコンタクト領域15上に、ゲート電極19およびゲート絶縁膜18を覆うように、層間絶縁膜20を形成する。また、このステップS17では、図11に示すように、終端領域AR2で、n型エピタキシャル層12上、p型ボディ領域13a上、n型ソース領域14a上、p型ボディコンタクト領域15a上、および、フィールド酸化膜FO1上に、ゲート電極19およびゲート絶縁膜18を覆うように、層間絶縁膜20を形成する。さらに、このステップS17では、図11に示すように、ゲートパッド領域AR3で、フィールド酸化膜FO1上に、ゲートパッド19aおよび絶縁膜18aを覆うように、層間絶縁膜20を形成する。層間絶縁膜20として、例えば酸化シリコン膜を用いることができ、例えばCVD法により形成することができる。 Next, the interlayer insulating film 20 is formed (step S17 in FIG. 3). In this step S17, as shown in FIG. 11, in the active region AR1, on the n type epitaxial layer 12, on the p type body region 13, on the n + type source region 14 and on the p + type body contact region 15 Then, an interlayer insulating film 20 is formed so as to cover the gate electrode 19 and the gate insulating film 18. In step S17, as shown in FIG. 11, in the termination region AR2, on the n type epitaxial layer 12, on the p type body region 13a, on the n + type source region 14a, on the p + type body contact region 15a. On the field oxide film FO1, an interlayer insulating film 20 is formed so as to cover the gate electrode 19 and the gate insulating film 18. Further, in step S17, as shown in FIG. 11, an interlayer insulating film 20 is formed on the field oxide film FO1 so as to cover the gate pad 19a and the insulating film 18a in the gate pad region AR3. For example, a silicon oxide film can be used as the interlayer insulating film 20 and can be formed by, for example, a CVD method.
 次いで、シリサイド膜SIL1を形成する(図3のステップS18)。このステップS18では、まず、図11に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、アクティブ領域AR1および終端領域AR2で、層間絶縁膜20に、開口部としてのコンタクト孔20aおよびコンタクト孔20bを形成する。この際に、コンタクト孔20aおよびコンタクト孔20bは、ゲート絶縁膜18も貫通するように、形成される。 Next, a silicide film SIL1 is formed (step S18 in FIG. 3). In step S18, first, as shown in FIG. 11, by using a photolithography technique and an etching technique, contact holes 20a and contacts as openings are formed in the interlayer insulating film 20 in the active region AR1 and the termination region AR2. Hole 20b is formed. At this time, the contact hole 20a and the contact hole 20b are formed so as to penetrate the gate insulating film 18 as well.
 アクティブ領域AR1では、層間絶縁膜20およびゲート絶縁膜18を貫通して、n型ソース領域14およびp型ボディコンタクト領域15に達するコンタクト孔20aを形成する。コンタクト孔20aの底部には、n型ソース領域14の上面、および、p型ボディコンタクト領域15の上面が露出する。 In the active region AR1, a contact hole 20a that penetrates through the interlayer insulating film 20 and the gate insulating film 18 and reaches the n + type source region 14 and the p + type body contact region 15 is formed. The upper surface of the n + type source region 14 and the upper surface of the p + type body contact region 15 are exposed at the bottom of the contact hole 20a.
 一方、終端領域AR2では、層間絶縁膜20、ゲート絶縁膜18およびフィールド酸化膜FO1を貫通して、コンタクト領域15bに達するコンタクト孔20bを形成する。コンタクト孔20bの底部には、コンタクト領域15bの上面が露出する。なお、コンタクト孔20bの底部に、コンタクト領域15bと隣り合う部分のp型ボディ領域13aの上面が露出してもよい。 On the other hand, in the termination region AR2, a contact hole 20b that penetrates the interlayer insulating film 20, the gate insulating film 18 and the field oxide film FO1 and reaches the contact region 15b is formed. The upper surface of the contact region 15b is exposed at the bottom of the contact hole 20b. Note that the upper surface of the p-type body region 13a adjacent to the contact region 15b may be exposed at the bottom of the contact hole 20b.
 次いで、コンタクト孔20aの底部に露出したp型ボディコンタクト領域15上、コンタクト孔20aの底部に露出したn型ソース領域14上、および、コンタクト孔20bの底部に露出したコンタクト領域15b上に、金属原料膜を、スパッタリング法などを用いて形成する。なお、コンタクト孔20bの底部に、コンタクト領域15bと隣り合う部分のp型ボディ領域13aの上面が露出している場合には、コンタクト孔20bの底部に露出した、コンタクト領域15bと隣り合う部分のp型ボディ領域13a上に、金属原料膜を形成する。金属原料膜として、例えばニッケル(Ni)、チタン(Ti)、コバルト(Co)、またはプラチナ(Pt)などからなる金属原料膜を形成することができる。 Next, on the p + type body contact region 15 exposed at the bottom of the contact hole 20a, on the n + type source region 14 exposed at the bottom of the contact hole 20a, and on the contact region 15b exposed at the bottom of the contact hole 20b. Then, a metal raw material film is formed using a sputtering method or the like. When the upper surface of the p-type body region 13a adjacent to the contact region 15b is exposed at the bottom of the contact hole 20b, the portion adjacent to the contact region 15b exposed at the bottom of the contact hole 20b. A metal source film is formed on p type body region 13a. As the metal source film, for example, a metal source film made of nickel (Ni), titanium (Ti), cobalt (Co), platinum (Pt), or the like can be formed.
 次いで、n型SiC基板10に対して熱処理を施し、コンタクト孔20aの底部に露出したp型ボディコンタクト領域15に含まれるシリコンと、金属原料膜に含まれる金属とを反応させ、コンタクト孔20aの底部に露出したn型ソース領域14に含まれるシリコンと、金属原料膜に含まれる金属とを反応させる。これにより、図11に示すように、コンタクト孔20aの底部に露出したp型ボディコンタクト領域15上、および、コンタクト孔20aの底部に露出したn型ソース領域14上に、金属膜としての、金属ケイ化物からなるシリサイド膜SIL1が形成される。 Next, the n + -type SiC substrate 10 is subjected to a heat treatment to cause the silicon contained in the p + -type body contact region 15 exposed at the bottom of the contact hole 20a to react with the metal contained in the metal source film, thereby causing the contact hole to react. The silicon contained in the n + type source region 14 exposed at the bottom of 20a is reacted with the metal contained in the metal source film. As a result, as shown in FIG. 11, the metal film is formed on the p + type body contact region 15 exposed at the bottom of the contact hole 20a and on the n + type source region 14 exposed at the bottom of the contact hole 20a. A silicide film SIL1 made of metal silicide is formed.
 このとき、コンタクト孔20bの底部に露出したコンタクト領域15bに含まれるシリコンと、金属原料膜に含まれる金属とを反応させ、コンタクト孔20bの底部に露出した、コンタクト領域15bと隣り合う部分のp型ボディ領域13aに含まれるシリコンと、金属原料膜に含まれる金属とを反応させる。これにより、図11に示すように、コンタクト孔20bの底部に露出したコンタクト領域15b上、および、コンタクト孔20bの底部に露出した、コンタクト領域15bと隣り合う部分のp型ボディ領域13a上に、金属膜としての、金属ケイ化物からなるシリサイド膜SIL2を形成する。 At this time, the silicon contained in the contact region 15b exposed at the bottom of the contact hole 20b reacts with the metal contained in the metal source film, and the p adjacent to the contact region 15b exposed at the bottom of the contact hole 20b. The silicon contained in the mold body region 13a is reacted with the metal contained in the metal source film. Thus, as shown in FIG. 11, on the contact region 15b exposed at the bottom of the contact hole 20b and on the p-type body region 13a adjacent to the contact region 15b exposed at the bottom of the contact hole 20b, A silicide film SIL2 made of a metal silicide is formed as a metal film.
 好適には、金属原料膜は、ニッケル(Ni)からなり、シリサイド膜SIL1およびSIL2は、例えばNiSiまたはNiSiなどのニッケルシリサイド、すなわちケイ化ニッケルを含む。これにより、シリサイド膜SIL1を、p型ボディコンタクト領域15と容易にショットキー接続することができ、シリサイド膜SIL2を、コンタクト領域15bと容易にショットキー接続することができる。 Preferably, the metal source film is made of nickel (Ni), and the silicide films SIL1 and SIL2 include nickel silicide such as Ni 2 Si or NiSi, that is, nickel silicide. Thereby, the silicide film SIL1 can be easily Schottky connected to the p + type body contact region 15, and the silicide film SIL2 can be easily Schottky connected to the contact region 15b.
 好適には、シリサイド膜SIL1およびSIL2における、ニッケルとシリコンとの和に対するニッケルの組成比は、0.4よりも大きく、0.7よりも小さい。これにより、シリサイド膜SIL1を、p型ボディコンタクト領域15とさらに容易にショットキー接続することができ、シリサイド膜SIL2を、コンタクト領域15bとさらに容易にショットキー接続することができる。 Preferably, the composition ratio of nickel to the sum of nickel and silicon in the silicide films SIL1 and SIL2 is larger than 0.4 and smaller than 0.7. Thereby, the silicide film SIL1 can be more easily Schottky connected to the p + type body contact region 15, and the silicide film SIL2 can be more easily Schottky connected to the contact region 15b.
 次いで、図12に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、ゲートパッド領域AR3で、層間絶縁膜20に、開口部としてのコンタクト孔20cを形成する。コンタクト孔20cは、層間絶縁膜20を貫通して、ゲートパッド19aに達する。コンタクト孔20cの底部には、ゲートパッド19aの上面が露出する。 Next, as shown in FIG. 12, a contact hole 20c as an opening is formed in the interlayer insulating film 20 in the gate pad region AR3 by using a photolithography technique and an etching technique. The contact hole 20c penetrates the interlayer insulating film 20 and reaches the gate pad 19a. The upper surface of the gate pad 19a is exposed at the bottom of the contact hole 20c.
 次いで、ソース電極21を形成する(図3のステップS19)。このステップ19では、図13に示すように、アクティブ領域AR1で、コンタクト孔20aの内部、および、層間絶縁膜20上に、例えばチタン(Ti)またはアルミニウム(Al)などからなる導電膜を、例えば蒸着法またはスパッタ法などにより堆積することにより、ソース電極21を形成する。すなわち、ソース電極21は、シリサイド膜SIL1上に形成される。 Next, the source electrode 21 is formed (step S19 in FIG. 3). In step 19, as shown in FIG. 13, in the active region AR1, a conductive film made of, for example, titanium (Ti) or aluminum (Al) is formed inside the contact hole 20a and on the interlayer insulating film 20, for example. The source electrode 21 is formed by depositing by vapor deposition or sputtering. That is, the source electrode 21 is formed on the silicide film SIL1.
 一方、このステップS19では、図13に示すように、終端領域AR2で、コンタクト孔20bの内部、および、層間絶縁膜20上に、例えばチタン(Ti)またはアルミニウム(Al)などからなる導電膜を、例えば蒸着法またはスパッタ法などにより堆積することにより、コンタクト電極21aを形成する。すなわち、コンタクト電極21aは、シリサイド膜SIL2上に形成される。なお、コンタクト電極21aは、ソース電極21と同層に形成されてもよく、ソース電極21と電気的に接続されてもよい。 On the other hand, in step S19, as shown in FIG. 13, in the termination region AR2, a conductive film made of, for example, titanium (Ti) or aluminum (Al) is formed in the contact hole 20b and on the interlayer insulating film 20. The contact electrode 21a is formed by depositing, for example, by vapor deposition or sputtering. That is, the contact electrode 21a is formed on the silicide film SIL2. Note that the contact electrode 21 a may be formed in the same layer as the source electrode 21 or may be electrically connected to the source electrode 21.
 一方、このステップS19では、図13に示すように、ゲートパッド領域AR3で、コンタクト孔20cの内部、および、層間絶縁膜20上に、例えばチタン(Ti)またはアルミニウム(Al)などからなる導電膜を、例えば蒸着法またはスパッタ法などにより堆積することにより、ゲートコンタクト電極GC1を形成する。 On the other hand, in step S19, as shown in FIG. 13, a conductive film made of, for example, titanium (Ti) or aluminum (Al) is formed in the contact pad 20c and on the interlayer insulating film 20 in the gate pad region AR3. Is deposited by, for example, an evaporation method or a sputtering method to form the gate contact electrode GC1.
 次いで、ドレイン電極22を形成する(図3のステップS20)。このステップS20では、アクティブ領域AR1、終端領域AR2およびゲートパッド領域AR3で、n型SiC基板10の下面10bに、例えばチタン(Ti)、ニッケル(Ni)または金(Au)などを積層した導電膜を、例えば蒸着法またはスパッタ法などにより堆積する。これにより、アクティブ領域AR1、終端領域AR2およびゲートパッド領域AR3で、n型SiC基板10の下面10bに、ドレイン電極22を形成することができ、図2に示したような、半導体装置1を製造することができる。 Next, the drain electrode 22 is formed (step S20 in FIG. 3). In this step S20, in the active region AR1, the termination region AR2, and the gate pad region AR3, for example, a conductive material in which titanium (Ti), nickel (Ni), gold (Au), or the like is laminated on the lower surface 10b of the n + -type SiC substrate 10. The film is deposited by, for example, vapor deposition or sputtering. Thereby, the drain electrode 22 can be formed on the lower surface 10b of the n + -type SiC substrate 10 in the active region AR1, the termination region AR2, and the gate pad region AR3. The semiconductor device 1 as shown in FIG. Can be manufactured.
 なお、図2では図示を省略するが、ドレイン電極22を形成した後、層間絶縁膜20、ソース電極21、コンタクト電極21a、ゲートコンタクト電極GC1およびドレイン電極22を覆うように、半導体装置1の上面および下面に、パッシベーション膜を形成することができる。次いで、形成されたパッシベーション膜のうち、ソース電極21、ゲートコンタクト電極GC1およびドレイン電極22の各電極を外部と電気的に接続するためのパッド領域が形成される部分に、開口部を形成することができる。 Although not shown in FIG. 2, after the drain electrode 22 is formed, the upper surface of the semiconductor device 1 is covered so as to cover the interlayer insulating film 20, the source electrode 21, the contact electrode 21a, the gate contact electrode GC1, and the drain electrode 22. A passivation film can be formed on the lower surface. Next, an opening is formed in a portion of the formed passivation film where a pad region for electrically connecting the source electrode 21, the gate contact electrode GC1, and the drain electrode 22 to the outside is formed. Can do.
 <パワーモジュール、電力変換装置およびモータシステム>
 次に、実施の形態1のパワーモジュール、電力変換装置およびモータシステムについて説明する。実施の形態1のパワーモジュールは、実施の形態1の半導体装置を備えている。図14は、実施の形態1のモータシステムの構成を示す図である。
<Power module, power converter and motor system>
Next, the power module, power converter, and motor system of Embodiment 1 will be described. The power module according to the first embodiment includes the semiconductor device according to the first embodiment. FIG. 14 is a diagram illustrating a configuration of the motor system according to the first embodiment.
 図14に示すように、モータシステム30は、インバータ装置としての電力変換装置31と、モータ等からなる負荷32と、直流電源33と、コンデンサ等からなる容量34と、を備えている。電力変換装置31は、インバータ回路としてのパワーモジュール35と、制御回路36と、を備えている。負荷32は、パワーモジュール35の2つの出力端子である、出力端子TO1およびTO2に接続されている。また、直流電源33および容量34は、パワーモジュール35の2つの入力端子である、入力端子TI1と入力端子TI2との間に、互いに並列に接続されている。 As shown in FIG. 14, the motor system 30 includes a power conversion device 31 as an inverter device, a load 32 made of a motor or the like, a DC power source 33, and a capacitor 34 made of a capacitor or the like. The power conversion device 31 includes a power module 35 as an inverter circuit and a control circuit 36. The load 32 is connected to two output terminals of the power module 35, which are output terminals TO1 and TO2. The DC power supply 33 and the capacitor 34 are connected in parallel between the input terminal TI1 and the input terminal TI2, which are the two input terminals of the power module 35.
 インバータ回路としてのパワーモジュール35は、スイッチング素子37u、37v、37xおよび37yを有する。スイッチング素子37uおよび37xは、入力端子TI1と入力端子TI2との間に、直列に接続されている。スイッチング素子37vおよび37yは、入力端子TI1と入力端子TI2との間に、直列に接続されている。 The power module 35 as an inverter circuit has switching elements 37u, 37v, 37x and 37y. The switching elements 37u and 37x are connected in series between the input terminal TI1 and the input terminal TI2. The switching elements 37v and 37y are connected in series between the input terminal TI1 and the input terminal TI2.
 スイッチング素子37u、37v、37xおよび37yの各々は、MISFET38と、MISFET38と並列に接続されたボディダイオード39とを含む。スイッチング素子37u、37v、37xおよび37yの各々として、実施の形態1の半導体装置1(図2参照)を用いることができる。このとき、ボディダイオード39として、各半導体装置1においてセルCL1により表された各縦型MISFETに内蔵されたボディダイオード23を用いることができる(図2参照)。 Each of the switching elements 37u, 37v, 37x and 37y includes a MISFET 38 and a body diode 39 connected in parallel with the MISFET 38. As each of switching elements 37u, 37v, 37x and 37y, semiconductor device 1 (see FIG. 2) of the first embodiment can be used. At this time, as the body diode 39, the body diode 23 incorporated in each vertical MISFET represented by the cell CL1 in each semiconductor device 1 can be used (see FIG. 2).
 スイッチング素子37u、37v、37xおよび37yにそれぞれ設けられた複数のMISFET38の各々のゲート電極は、パワーモジュール35の4つの制御端子である、制御端子TC1、TC2、TC3およびTC4にそれぞれ接続されている。また、制御回路36は、制御端子TC1、TC2、TC3およびTC4の各々に接続されている。したがって、制御回路36は、スイッチング素子37u、37v、37xおよび37yにそれぞれ設けられた複数のMISFET38の各々のゲート電極に接続されている。制御回路36は、スイッチング素子37u、37v、37xおよび37yを駆動する。 The gate electrodes of the plurality of MISFETs 38 provided in the switching elements 37u, 37v, 37x, and 37y are respectively connected to the control terminals TC1, TC2, TC3, and TC4 that are the four control terminals of the power module 35. . The control circuit 36 is connected to each of the control terminals TC1, TC2, TC3, and TC4. Therefore, the control circuit 36 is connected to each gate electrode of the plurality of MISFETs 38 provided in the switching elements 37u, 37v, 37x and 37y, respectively. The control circuit 36 drives the switching elements 37u, 37v, 37x and 37y.
 制御回路36は、一組のスイッチング素子37uおよび37yのオン状態またはオフ状態と、もう一組のスイッチング素子37vおよび37xのオン状態またはオフ状態とが、交互に切り替わるように、スイッチング素子37u、37v、37xおよび37yを駆動する。これにより、インバータ回路としてのパワーモジュール35は、直流電圧から交流電圧を生成し、直流電力を交流電力に変換する。負荷32は、この交流電力によって駆動される。 The control circuit 36 switches the switching elements 37u and 37v so that the on state or off state of the pair of switching elements 37u and 37y and the on state or off state of the other pair of switching elements 37v and 37x are alternately switched. , 37x and 37y are driven. Thereby, the power module 35 as an inverter circuit generates an AC voltage from the DC voltage and converts the DC power into AC power. The load 32 is driven by this AC power.
 <ショットキー接続されるときのp型不純物の濃度>
 次に、シリサイド膜SIL1とp型ボディコンタクト領域15とがショットキー接続されるときの、p型ボディコンタクト領域15におけるp型不純物の濃度について、説明する。
<P-type impurity concentration when Schottky connection>
Next, the concentration of the p-type impurity in the p + type body contact region 15 when the silicide film SIL1 and the p + type body contact region 15 are Schottky connected will be described.
 以下では、互いに異なる濃度Np(cm-3)のp型不純物としてのアルミニウムが導入された炭化ケイ素からなるp型ボディコンタクト領域15と、ニッケルシリサイドすなわちケイ化ニッケルを含むシリサイド膜SIL1とを有する5つの試料を準備した。そして、各試料について、p型ボディコンタクト領域15とシリサイド膜SIL1との間の固有接触抵抗Rc(Ωcm)を測定した。 In the following, it has a p + type body contact region 15 made of silicon carbide into which aluminum as a p type impurity having different concentrations Np (cm −3 ) is introduced, and a silicide film SIL1 containing nickel silicide, that is, nickel silicide. Five samples were prepared. For each sample, the specific contact resistance Rc (Ωcm 2 ) between the p + type body contact region 15 and the silicide film SIL1 was measured.
 具体的には、5つの試料の各々で、p型ボディコンタクト領域15におけるp型不純物としてのアルミニウムの濃度Npを、Np=Np1、Np=Np2、Np=Np3、Np=Np4およびNp=Np5とした。Np=Np1、Np=Np2、Np=Np3およびNp=Np4のいずれの場合でも、濃度Npは、1×1020cm-3以上である。Np=Np5の場合には、濃度Npは、1×1020cm-3未満であり、かつ、7×1019cm-3未満である。各試料について、p型ボディコンタクト領域15と、シリサイド膜SIL1とからなるケルビンパターンにおける接触抵抗Rと接触面積Aとを乗じて得た値を、固有接触抵抗Rcとして求めた。その結果を、図15のグラフに示す。 Specifically, in each of the five samples, the concentration Np of aluminum as a p-type impurity in the p + -type body contact region 15 is set to Np = Np1, Np = Np2, Np = Np3, Np = Np4, and Np = Np5. It was. In any case of Np = Np1, Np = Np2, Np = Np3 and Np = Np4, the concentration Np is 1 × 10 20 cm −3 or more. In the case of Np = Np5, the concentration Np is less than 1 × 10 20 cm −3 and less than 7 × 10 19 cm −3 . For each sample, a value obtained by multiplying the contact resistance R and the contact area A in the Kelvin pattern composed of the p + type body contact region 15 and the silicide film SIL1 was obtained as the specific contact resistance Rc. The result is shown in the graph of FIG.
 また、濃度NpがNp=Np4またはNp=Np5である場合における、p型ボディコンタクト領域15とシリサイド膜SIL1との間に流れる電流I(μA)の電圧V(V)依存性、すなわち電流電圧曲線を測定した結果を、図16のグラフに示す。 Further, when the concentration Np is Np = Np4 or Np = Np5, the current I (μA) flowing between the p + type body contact region 15 and the silicide film SIL1 depends on the voltage V (V), that is, the current voltage. The result of measuring the curve is shown in the graph of FIG.
 なお、p型ボディコンタクト領域15におけるp型不純物の濃度Npを、p型ボディコンタクト領域15の表面から100nmの深さ位置までの各深さ位置におけるp型不純物の濃度の平均値とした。 Incidentally, the density Np of the p-type impurity in the p + -type body contact region 15, and the average value of the concentration of p-type impurity at each depth position from the surface of the p + -type body contact region 15 to a depth position of 100nm .
 Np=Np1、Np=Np2、Np=Np3およびNp=Np4のいずれの場合でも、p型不純物の濃度Npが1×1020cm-3以上の場合、図15に示すように、固有接触抵抗Rcは、0.005Ωcm以下であった。また、図16にNp=Np4の場合を代表例として示すように、Np=Np1、Np=Np2、Np=Np3およびNp=Np4のいずれの場合でも、電流電圧曲線は、直線性を有しており、シリサイド膜SIL1が、p型ボディコンタクト領域15とショットキー接続されておらず、オーミック接続されていることが分かった。 In any case of Np = Np1, Np = Np2, Np = Np3, and Np = Np4, when the p-type impurity concentration Np is 1 × 10 20 cm −3 or more, as shown in FIG. 15, the specific contact resistance Rc Was 0.005 Ωcm 2 or less. In addition, as shown in FIG. 16 as a representative example of Np = Np4, the current-voltage curve has linearity in any of Np = Np1, Np = Np2, Np = Np3, and Np = Np4. Thus, it was found that the silicide film SIL1 is not in Schottky connection with the p + type body contact region 15 but in ohmic connection.
 一方、Np=Np5の場合、すなわち、p型不純物の濃度Npが1×1020cm-3未満の場合には、図15に示すように、固有接触抵抗Rcは、0.005Ωcmよりも大きかった。また、図16に示すように、Np=Np5の場合には、電流電圧曲線は、直線性を有しておらず、シリサイド膜SIL1が、p型ボディコンタクト領域15とショットキー接続されていることが分かった。 On the other hand, when Np = Np5, that is, when the concentration Np of the p-type impurity is less than 1 × 10 20 cm −3 , the specific contact resistance Rc is larger than 0.005 Ωcm 2 as shown in FIG. It was. Further, as shown in FIG. 16, when Np = Np5, the current-voltage curve does not have linearity, and the silicide film SIL1 is Schottky-connected to the p + type body contact region 15. I understood that.
 したがって、図15に示すように、p型不純物の濃度Npが1×1020cm-3未満であること、すなわち、固有接触抵抗Rcが0.005Ωcmよりも大きいことが好ましい。これにより、シリサイド膜SIL1を、p型ボディコンタクト領域15とショットキー接続することができる。また、p型不純物の濃度Npが7×1019cm-3未満であること、すなわち、固有接触抵抗Rcが0.02Ωcmよりも大きいことが、より好ましい。これにより、シリサイド膜SIL1を、p型ボディコンタクト領域15と容易にショットキー接続することができる。 Therefore, as shown in FIG. 15, it is preferable that the concentration Np of the p-type impurity is less than 1 × 10 20 cm −3 , that is, the specific contact resistance Rc is larger than 0.005 Ωcm 2 . Thereby, the silicide film SIL1 can be Schottky connected to the p + type body contact region 15. Further, it is more preferable that the concentration Np of the p-type impurity is less than 7 × 10 19 cm −3 , that is, the specific contact resistance Rc is larger than 0.02 Ωcm 2 . Thereby, the silicide film SIL1 can be easily Schottky connected to the p + type body contact region 15.
 なお、p型不純物の濃度Npが1×1020cm-3以上であっても、実施の形態3で後述するように、p型ボディコンタクト領域15上に、シリサイド膜を介さずに、ソース電極21と同様な材料からなる金属膜が直接形成されることにより、金属膜をp型ボディコンタクト領域15とショットキー接続することもできる。 Even if the p-type impurity concentration Np is 1 × 10 20 cm −3 or more, the source is not formed on the p + -type body contact region 15 via the silicide film as will be described later in the third embodiment. By directly forming a metal film made of the same material as the electrode 21, the metal film can be Schottky connected to the p + type body contact region 15.
 <還流電流による通電劣化>
 次に、半導体装置に還流電流が流れることによる半導体装置の通電劣化について、図17を参照し、比較例の半導体装置と比較しながら説明する。図17は、比較例の半導体装置の要部断面図である。
<Energization deterioration due to reflux current>
Next, energization deterioration of the semiconductor device due to the return current flowing through the semiconductor device will be described with reference to FIG. 17 and compared with the semiconductor device of the comparative example. FIG. 17 is a cross-sectional view of main parts of a semiconductor device of a comparative example.
 比較例の半導体装置101は、実施の形態1の半導体装置1と同様に、炭化ケイ素からなる縦型MISFETを備えたものである。しかし、比較例の半導体装置101では、図15を用いて説明した、Np=Np1、Np=Np2、Np=Np3およびNp=Np4の場合と同様に、シリサイド膜SIL1が、p型ボディコンタクト領域15とショットキー接続されておらず、オーミック接続されている。すなわち、比較例の半導体装置101のp型ボディコンタクト領域15におけるp型不純物の濃度は、1×1020cm-3以上である。 Similar to the semiconductor device 1 of the first embodiment, the semiconductor device 101 of the comparative example includes a vertical MISFET made of silicon carbide. However, in the semiconductor device 101 of the comparative example, as in the case of Np = Np1, Np = Np2, Np = Np3, and Np = Np4 described with reference to FIG. 15, the silicide film SIL1 has the p + type body contact region. 15 is not Schottky connected, but is ohmic connected. That is, the concentration of the p-type impurity in the p + -type body contact region 15 of the semiconductor device 101 of the comparative example is 1 × 10 20 cm −3 or more.
 ここで、p型ボディコンタクト領域15におけるp型不純物の濃度を、1×1020cm-3以上にするためのイオン注入の条件を、表2に示す。すなわち、表2に示す条件は、シリサイド膜SIL1を、p型ボディコンタクト領域15とオーミック接続するための条件である。 Here, Table 2 shows ion implantation conditions for setting the concentration of the p-type impurity in the p + -type body contact region 15 to 1 × 10 20 cm −3 or more. That is, the conditions shown in Table 2 are conditions for making ohmic contact between the silicide film SIL1 and the p + type body contact region 15.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2は、ステップS121~ステップS124の4つの工程を順次行って、p型不純物としてのアルミニウムのイオンを4段階でイオン注入する際の、各工程における注入エネルギー(keV)と、ドーズ量(cm-2)とを示す。 Table 2 shows the implantation energy (keV) and dose (cm) in each step when the four steps of steps S121 to S124 are sequentially performed to implant ions of aluminum as a p-type impurity in four stages. -2 ).
 以下では、比較例の半導体装置101が、図14を用いて説明したインバータ回路としてのパワーモジュール35の複数のスイッチング素子37u、37v、37xおよび37yとして用いられる場合を考える。 Hereinafter, a case where the semiconductor device 101 of the comparative example is used as a plurality of switching elements 37u, 37v, 37x, and 37y of the power module 35 as the inverter circuit described with reference to FIG.
 パワーモジュール35の出力端子TO1およびTO2に接続された負荷32が大きなインダクタンスを有する場合、複数のスイッチング素子37u、37v、37xおよび37yの各々をオン状態からオフ状態に切り替える際に、インバータ回路に、各スイッチング素子のオン電流の方向とは逆方向の還流電流が流れる。したがって、インバータ回路としてのパワーモジュール35には、還流電流を流すために、複数のスイッチング素子37u、37v、37xおよび37yの各々のMISFET38と並列に接続されたダイオードを設ける必要がある。 When the load 32 connected to the output terminals TO1 and TO2 of the power module 35 has a large inductance, when switching each of the plurality of switching elements 37u, 37v, 37x and 37y from the on state to the off state, A reflux current flows in a direction opposite to the direction of the on-current of each switching element. Therefore, in the power module 35 as an inverter circuit, it is necessary to provide a diode connected in parallel with each of the MISFETs 38 of the plurality of switching elements 37u, 37v, 37x, and 37y in order to flow the return current.
 一方で、縦型MISFETからなる半導体装置101は、アクティブ領域AR1および終端領域AR2で、ソース電極21またはコンタクト電極21aとドレイン電極22との間に内蔵されたボディダイオード123および123aを有しており、ボディダイオード123には、還流電流を流すことができる。したがって、スイッチング素子37u、37v、37xおよび37yとして縦型MISFETが備えられたパワーモジュール35では、縦型MISFETとは別に外付けでダイオードを設ける必要がない。 On the other hand, the semiconductor device 101 made of a vertical MISFET has body diodes 123 and 123a built between the source electrode 21 or the contact electrode 21a and the drain electrode 22 in the active region AR1 and the termination region AR2. A reflux current can be passed through the body diode 123. Therefore, in the power module 35 provided with the vertical MISFET as the switching elements 37u, 37v, 37x and 37y, it is not necessary to provide an external diode separately from the vertical MISFET.
 ところがインバータ回路としてのパワーモジュール35に備えられた縦型MISFETが、SiCからなる縦型MISFETである場合、縦型MISFETに内蔵されたボディダイオード123に還流電流が流れる。図17では、還流電流として流れる正孔を、「h」および破線の矢印により示し、還流電流として流れる電子を、「e」および実線の矢印により示している。このように、ボディダイオード123に還流電流が流れると、通電劣化が発生し、縦型MISFETのオン抵抗が増大する。このような通電劣化が発生すると、インバータ回路としてのパワーモジュール35における電力損失が増加する。 However, when the vertical MISFET provided in the power module 35 as an inverter circuit is a vertical MISFET made of SiC, a reflux current flows through the body diode 123 built in the vertical MISFET. In FIG. 17, holes flowing as a reflux current are indicated by “h” and a broken arrow, and electrons flowing as a reflux current are indicated by “e” and a solid arrow. Thus, when a reflux current flows through the body diode 123, energization deterioration occurs, and the on-resistance of the vertical MISFET increases. When such energization deterioration occurs, power loss in the power module 35 as an inverter circuit increases.
 これは、SiCからなる縦型MISFETとしての半導体装置101に内蔵されたボディダイオード123に還流電流が流れる際に、例えばSiCからなる半導体中を流れる正孔が、SiCからなる半導体中の結晶欠陥において電子と再結合することにより、結晶欠陥密度が増加することによる。 This is because, when a reflux current flows through the body diode 123 built in the semiconductor device 101 as a vertical MISFET made of SiC, for example, holes flowing in the semiconductor made of SiC are caused by crystal defects in the semiconductor made of SiC. This is because the crystal defect density is increased by recombination with electrons.
 例えば、SiCからなる縦型MISFETとしての半導体装置101に内蔵されたボディダイオード123に還流電流が流れる際に、n型エピタキシャル層12中、p型ボディ領域13中およびp型ボディコンタクト領域15中などに存在する積層欠陥などの各種の結晶欠陥において、還流電流として流れる正孔と電子とが再結合する。この正孔と電子とが再結合して放出されたエネルギーにより、n型エピタキシャル層12中などで積層欠陥などの各種の結晶欠陥が拡大して、結晶欠陥密度が増加するために、通電劣化が発生し、半導体装置101にオン電流が流れる際の電気抵抗、すなわちオン抵抗が増大する。 For example, when a reflux current flows through the body diode 123 built in the semiconductor device 101 as a vertical MISFET made of SiC, the n type epitaxial layer 12, the p type body region 13, and the p + type body contact region 15 In various crystal defects such as stacking faults existing inside, holes and electrons flowing as a reflux current are recombined. The energy released by recombination of holes and electrons expands various crystal defects such as stacking faults in the n -type epitaxial layer 12 and increases the density of crystal defects. Is generated, and an electrical resistance when an on-current flows through the semiconductor device 101, that is, an on-resistance increases.
 したがって、比較例の半導体装置101がスイッチング素子として用いられる場合には、ボディダイオード123に還流電流をあまり流さないようにする必要がある。そのため、例えばボディダイオード123に還流電流が流れるタイミングと同期して複数の半導体装置101の各々をオン状態に切り替える、などの同期整流を、制御回路36により極めて高い精度で行う必要がある。したがって、比較例の半導体装置101を備えたインバータ回路としてのパワーモジュール35の設計マージンを広げることができない。 Therefore, when the semiconductor device 101 of the comparative example is used as a switching element, it is necessary to prevent a large amount of reflux current from flowing through the body diode 123. Therefore, for example, synchronous rectification such as switching each of the plurality of semiconductor devices 101 to the on state in synchronization with the timing at which the reflux current flows through the body diode 123 needs to be performed with extremely high accuracy by the control circuit 36. Therefore, the design margin of the power module 35 as an inverter circuit including the semiconductor device 101 of the comparative example cannot be expanded.
 あるいは、半導体装置101に内蔵されたボディダイオード123に還流電流をあまり流さないようにするために、ボディダイオード123とは別に外付けのダイオードを設ける必要がある。そのため、比較例の半導体装置101を備えたインバータ回路としてのパワーモジュール35を、小型化することができない。 Alternatively, it is necessary to provide an external diode separately from the body diode 123 so as not to allow a large amount of reflux current to flow through the body diode 123 built in the semiconductor device 101. Therefore, the power module 35 as an inverter circuit including the semiconductor device 101 of the comparative example cannot be reduced in size.
 上記特許文献1に記載された技術では、半導体素子は、電界効果トランジスタと、ショットキー電極と、を備えている。しかし、上記特許文献1に記載された技術では、ショットキー電極は、第1導電型すなわちn型のドリフト領域の上面に、該上面とショットキー接合を形成するように設けられている。したがって、上記特許文献1に記載された技術では、ショットキー電極は、n型の半導体領域とショットキー接続されているため、ショットキー電極から半導体素子へ正孔が供給されないようにすることは、できない。 In the technique described in Patent Document 1, the semiconductor element includes a field effect transistor and a Schottky electrode. However, in the technique described in Patent Document 1, the Schottky electrode is provided on the upper surface of the first conductivity type, that is, the n-type drift region so as to form a Schottky junction with the upper surface. Therefore, in the technique described in Patent Document 1, since the Schottky electrode is Schottky connected to the n-type semiconductor region, it is possible to prevent holes from being supplied from the Schottky electrode to the semiconductor element. Can not.
 また、上記特許文献1に記載された技術では、ショットキー電極は、ドリフト領域の上面に、電界効果トランジスタが形成された領域の外周に沿うように設けられている。そのため、半導体素子の面積が増加するおそれがあり、電界効果トランジスタが形成された領域の外周において、電界が集中して電界の強度が増加するおそれがある。 In the technique described in Patent Document 1, the Schottky electrode is provided on the upper surface of the drift region along the outer periphery of the region where the field effect transistor is formed. Therefore, the area of the semiconductor element may be increased, and the electric field may be concentrated on the outer periphery of the region where the field effect transistor is formed to increase the strength of the electric field.
 さらに、上記特許文献1に記載された技術では、n型のドリフト領域の上面に、ショットキー電極を形成する工程を、他の工程と別に行う必要があるので、半導体装置の製造工程の工程数が増加するおそれがあり、用いるマスクの数が増加するおそれがある。 Furthermore, in the technique described in Patent Document 1, since the step of forming the Schottky electrode on the upper surface of the n-type drift region needs to be performed separately from the other steps, the number of manufacturing steps of the semiconductor device May increase, and the number of masks used may increase.
 なお、インバータ回路としてのパワーモジュール35に備えられた縦型MISFETが、SiCからなる縦型MISFETである場合、終端領域AR2で内蔵されたボディダイオード123aに還流電流が流れることによっても、通電劣化が発生することは、ボディダイオード123に還流電流が流れる場合と同様である。 In addition, when the vertical MISFET provided in the power module 35 as the inverter circuit is a vertical MISFET made of SiC, the deterioration of energization is also caused by the return current flowing through the body diode 123a built in the termination region AR2. The occurrence is the same as when the return current flows through the body diode 123.
 <本実施の形態の主要な特徴と効果>
 本実施の形態1の半導体装置1では、シリサイド膜SIL1は、p型ボディコンタクト領域15とショットキー接続されている。
<Main features and effects of the present embodiment>
In the semiconductor device 1 of the first embodiment, the silicide film SIL1 is Schottky connected to the p + type body contact region 15.
 このような本実施の形態1の半導体装置1が、図14を用いて説明したインバータ回路としてのパワーモジュール35の複数のスイッチング素子37u、37v、37xおよび37yとして用いられる場合を考える。このような場合、ボディダイオード23に還流電流が流れる際に、シリサイド膜SIL1からp型ボディコンタクト領域15には正孔が供給されにくくなり、電子がソース電極21の近傍まで流れる。そのため、n型エピタキシャル層12中、p型ボディ領域13中およびp型ボディコンタクト領域15中などに存在する各種の結晶欠陥において、還流電流として流れる正孔と電子とが再結合することを、防止または抑制することができる。そのため、n型エピタキシャル層12中などで各種の結晶欠陥が拡大すること、すなわち結晶欠陥密度が増加することを防止または抑制することができ、半導体装置1の通電劣化が発生することを防止または抑制することができる。 Consider a case where such a semiconductor device 1 according to the first embodiment is used as a plurality of switching elements 37u, 37v, 37x and 37y of the power module 35 as the inverter circuit described with reference to FIG. In such a case, when a reflux current flows through the body diode 23, holes are hardly supplied from the silicide film SIL1 to the p + -type body contact region 15, and electrons flow to the vicinity of the source electrode 21. Therefore, in various crystal defects existing in the n type epitaxial layer 12, the p type body region 13, the p + type body contact region 15, etc., recombination of holes and electrons flowing as a reflux current is recombined. Can be prevented or suppressed. Therefore, it is possible to prevent or suppress various crystal defects from expanding in the n -type epitaxial layer 12, that is, to increase the crystal defect density, and to prevent the conduction deterioration of the semiconductor device 1 or Can be suppressed.
 また、本実施の形態1では、半導体装置1に内蔵されたボディダイオード23に還流電流を流しても通電劣化が発生しにくいため、例えばボディダイオード23に還流電流が流れるタイミングと同期して複数の半導体装置101の各々をオン状態に切り替える、などの同期整流を、制御回路36によりそれほど高い精度で行う必要がない。したがって、本実施の形態1の半導体装置1を備えたインバータ回路としてのパワーモジュール35、および、パワーモジュール35を備えた電力変換装置31の設計マージンを広げることができ、パワーモジュール35および電力変換装置31の信頼性を向上させることができる。 In the first embodiment, even if a reflux current is passed through the body diode 23 built in the semiconductor device 1, current deterioration is unlikely to occur. There is no need to perform synchronous rectification such as switching each of the semiconductor devices 101 to the ON state with such high accuracy by the control circuit 36. Therefore, the design margin of the power module 35 as an inverter circuit including the semiconductor device 1 of the first embodiment and the power conversion device 31 including the power module 35 can be widened, and the power module 35 and the power conversion device can be expanded. The reliability of 31 can be improved.
 あるいは、本実施の形態1では、半導体装置1に内蔵されたボディダイオード23に還流電流を流しても通電劣化が発生しにくいため、半導体装置1に内蔵されたボディダイオード23とは別に外付けのダイオードを設ける必要がない。そのため、パワーモジュール35および電力変換装置31を、小型化することができる。 Alternatively, in the first embodiment, even if a reflux current is passed through the body diode 23 built in the semiconductor device 1, current deterioration is unlikely to occur. Therefore, an external connection is provided separately from the body diode 23 built in the semiconductor device 1. There is no need to provide a diode. Therefore, the power module 35 and the power conversion device 31 can be reduced in size.
 好適には、終端領域AR2で、シリサイド膜SIL2は、コンタクト領域15bとショットキー接続されている。これにより、インバータ回路としてのパワーモジュール35に含まれる半導体装置1に内蔵されたボディダイオード23aに還流電流が流れる際に、シリサイド膜SIL2からコンタクト領域15bには正孔が供給されにくくなり、電子がコンタクト電極21aの近傍まで流れる。そのため、n型エピタキシャル層12中、p型ボディ領域13a中およびコンタクト領域15b中などに存在する各種の結晶欠陥において、還流電流として流れる正孔と電子とが再結合することを、防止または抑制することができる。そのため、n型エピタキシャル層12中などで積層欠陥などの各種の結晶欠陥が拡大すること、すなわち結晶欠陥密度が増加することを防止または抑制することができ、半導体装置1の通電劣化が発生することを防止または抑制することができる。 Preferably, in the termination region AR2, the silicide film SIL2 is Schottky connected to the contact region 15b. As a result, when a reflux current flows through the body diode 23a built in the semiconductor device 1 included in the power module 35 as an inverter circuit, holes are hardly supplied from the silicide film SIL2 to the contact region 15b, and electrons are not generated. It flows to the vicinity of the contact electrode 21a. This prevents or suppresses recombination of holes and electrons flowing as a reflux current in various crystal defects existing in n type epitaxial layer 12, p type body region 13a, contact region 15b, and the like. can do. Therefore, it is possible to prevent or suppress the expansion of various crystal defects such as stacking faults in the n -type epitaxial layer 12, that is, increase in the crystal defect density, and the semiconductor device 1 is deteriorated in energization. This can be prevented or suppressed.
 本実施の形態1では、シリサイド膜SIL1は、p型ボディコンタクト領域15が、セルCL1により表された縦型MISFETごとに設けられている。そのため、上記特許文献1に記載された技術に比べ、半導体装置の面積が増加しにくくなり、終端領域AR2において、電界が集中しにくくなる。 In the first embodiment, the silicide film SIL1 is provided with the p + type body contact region 15 for each vertical MISFET represented by the cell CL1. Therefore, compared to the technique described in Patent Document 1, the area of the semiconductor device is less likely to increase, and the electric field is less likely to concentrate in the termination region AR2.
 さらに、本実施の形態1では、例えばp型ボディコンタクト領域15を形成するためにp型不純物をイオン注入する際の条件を調整すればよく、シリサイド膜SIL1をp型ボディコンタクト領域15とショットキー接続するための工程を、他の工程とは別に行う必要がない。そのため、上記特許文献1に記載された技術に比べ、半導体装置の製造工程において、工程数が増加せず、用いるマスクの数も増加しない。 Further, in the first embodiment, for example p + -type body contact region 15 may be adjusted to conditions in the p-type impurity is ion-implanted to form a silicide film SIL1 a p + -type body contact region 15 There is no need to perform a process for Schottky connection separately from other processes. Therefore, compared with the technique described in Patent Document 1, the number of steps is not increased and the number of masks used is not increased in the manufacturing process of the semiconductor device.
 なお、本実施の形態1については、半導体基板、各半導体層および各半導体領域の導電型をp型とn型との間で互いに入れ替えた場合にも適用可能である。このような場合でも、還流電流として正孔が流れる場合に比べれば程度は少なくなるものの、本実施の形態1の半導体装置1と同様の効果が得られる(後述する実施の形態2および実施の形態3においても同様)。 The first embodiment can also be applied to the case where the conductivity types of the semiconductor substrate, each semiconductor layer, and each semiconductor region are interchanged between p-type and n-type. Even in such a case, the same effect as that of the semiconductor device 1 of the first embodiment can be obtained, although the degree is less than that in the case where holes flow as the reflux current (the second embodiment and the second embodiment described later). The same applies to 3).
 また、本実施の形態1については、n型SiC基板に代え、例えばシリコン(Si)または窒化ガリウム(GaN)など各種の半導体材料からなる半導体基板を用い、n型エピタキシャル層として例えばSiまたはGaNなど各種の半導体材料からなる半導体層を用いた場合にも適用可能である。このような場合でも、半導体材料として炭化ケイ素(SiC)を用いる場合に比べれば程度は少なくなるものの、本実施の形態1の半導体装置と同様の効果が得られる(後述する実施の形態2および実施の形態3においても同様)。 In the first embodiment, instead of the n + type SiC substrate, a semiconductor substrate made of various semiconductor materials such as silicon (Si) or gallium nitride (GaN) is used, and the n type epitaxial layer is made of Si or the like. The present invention is also applicable when a semiconductor layer made of various semiconductor materials such as GaN is used. Even in such a case, the same effect as that of the semiconductor device of the first embodiment can be obtained, although the degree is less than that in the case of using silicon carbide (SiC) as the semiconductor material (the second embodiment and the implementation described later). The same applies to Form 3).
 (実施の形態2)
 <半導体装置>
 次に、本発明の実施の形態2の半導体装置について説明する。図18は、実施の形態2の半導体装置の要部断面図である。
(Embodiment 2)
<Semiconductor device>
Next, a semiconductor device according to the second embodiment of the present invention will be described. FIG. 18 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment.
 本実施の形態2の半導体装置1では、コンタクト領域15bにおけるp型不純物の濃度は、p型ボディコンタクト領域15におけるp型不純物の濃度よりも低い。また、本実施の形態2の半導体装置1における、p型ボディコンタクト領域15およびコンタクト領域15b以外の各部分は、実施の形態1の半導体装置1における、各部分と同様であり、その説明を省略する。なお、p型ボディコンタクト領域15aについても、説明を省略するが、p型ボディコンタクト領域15aにおけるp型不純物の濃度は、p型ボディコンタクト領域15におけるp型不純物の濃度と同様にすることができる。 In the semiconductor device 1 of the second embodiment, the concentration of the p-type impurity in the contact region 15b is lower than the concentration of the p-type impurity in the p + -type body contact region 15. In the semiconductor device 1 of the second embodiment, each part other than the p + type body contact region 15 and the contact region 15b is the same as each part in the semiconductor device 1 of the first embodiment. Omitted. Here, also for the p + -type body contact region 15a, is omitted, the concentration of p-type impurity in the p + -type body contact region 15a is the same as the concentration of the p-type impurity in the p + -type body contact region 15 be able to.
 本実施の形態2の半導体装置1も、実施の形態1の半導体装置1と同様に、アクティブ領域AR1で、p型ボディコンタクト領域15と、シリサイド膜SIL1と、を有し、終端領域AR2で、コンタクト領域15bと、シリサイド膜SIL2と、を有する。 Similarly to the semiconductor device 1 of the first embodiment, the semiconductor device 1 of the second embodiment also has the p + type body contact region 15 and the silicide film SIL1 in the active region AR1, and the termination region AR2 Contact region 15b and silicide film SIL2.
 一方、本実施の形態2の半導体装置1では、コンタクト領域15bにおけるp型不純物の濃度は、p型ボディコンタクト領域15におけるp型不純物の濃度よりも低い。言い換えれば、p型ボディコンタクト領域15におけるp型不純物の濃度は、コンタクト領域15bにおけるp型不純物の濃度よりも高い。 On the other hand, in the semiconductor device 1 of the second embodiment, the concentration of the p-type impurity in the contact region 15b is lower than the concentration of the p-type impurity in the p + -type body contact region 15. In other words, the concentration of the p-type impurity in the p + -type body contact region 15 is higher than the concentration of the p-type impurity in the contact region 15b.
 本実施の形態2では、終端領域AR2では、実施の形態1と同様に、シリサイド膜SIL2は、コンタクト領域15bとショットキー接続されている。実施の形態1と同様に、シリサイド膜SIL2と接しているコンタクト領域15bにおけるp型不純物の濃度を1×1020cm-3未満とすることにより、シリサイド膜SIL2を、コンタクト領域15bとショットキー接続することができる。また、実施の形態1と同様に、シリサイド膜SIL2と接しているコンタクト領域15bにおけるp型不純物の濃度を7×1019cm-3未満とすることにより、シリサイド膜SIL2を、コンタクト領域15bと容易にショットキー接続することができる。 In the second embodiment, in the termination region AR2, the silicide film SIL2 is Schottky connected to the contact region 15b as in the first embodiment. Similar to the first embodiment, the concentration of the p-type impurity in the contact region 15b in contact with the silicide film SIL2 is less than 1 × 10 20 cm −3 , so that the silicide film SIL2 is connected to the contact region 15b in a Schottky connection. can do. Similarly to the first embodiment, the silicide film SIL2 can be easily separated from the contact region 15b by reducing the p-type impurity concentration in the contact region 15b in contact with the silicide film SIL2 to less than 7 × 10 19 cm −3. Can be connected to Schottky.
 本実施の形態2では、シリサイド膜SIL2は、実施の形態1と同様に、好適には、ニッケルシリサイドを含み、さらに好適には、シリサイド膜SIL2における、ニッケルとシリコンとの和に対するニッケルの組成比は、0.4よりも大きく、0.7よりも小さい。これにより、シリサイド膜SIL2を、コンタクト領域15bとさらに容易にショットキー接続することができる。 In the second embodiment, the silicide film SIL2 preferably includes nickel silicide, and more preferably, the composition ratio of nickel with respect to the sum of nickel and silicon in the silicide film SIL2, as in the first embodiment. Is greater than 0.4 and less than 0.7. Thereby, the silicide film SIL2 can be more easily Schottky connected to the contact region 15b.
 本実施の形態2では、アクティブ領域AR1では、実施の形態1と異なり、シリサイド膜SIL1は、p型ボディコンタクト領域15とショットキー接続されておらず、オーミック接続されている。好適には、シリサイド膜SIL1と接しているp型ボディコンタクト領域15におけるp型不純物の濃度を、1×1020cm-3以上とすることにより、シリサイド膜SIL1を、p型ボディコンタクト領域15とオーミック接続することができる。また、本実施の形態2では、シリサイド膜SIL1の組成は、特に限定されない。 In the second embodiment, in the active region AR1, unlike the first embodiment, the silicide film SIL1 is not in Schottky connection with the p + type body contact region 15 but in ohmic connection. Preferably, the p + -type body contact region 15 in contact with the silicide film SIL1 has a p-type impurity concentration of 1 × 10 20 cm −3 or more, so that the silicide film SIL1 is converted into the p + -type body contact region. 15 and an ohmic connection. In the second embodiment, the composition of the silicide film SIL1 is not particularly limited.
 アクティブ領域AR1では、p型ボディコンタクト領域15は、互いに離れておらず、比較的狭い間隔でマトリクス状に配列されている。そのため、半導体装置1に還流電流が流れる際に、各々のp型ボディコンタクト領域15の周辺に位置する部分のp型ボディ領域13における電流密度はそれほど高くならず、通電劣化が発生しにくい。 In the active region AR1, the p.sup. + Type body contact regions 15 are not separated from each other and are arranged in a matrix at relatively small intervals. Therefore, when a reflux current flows through the semiconductor device 1, the current density in the p-type body region 13 at the periphery of each p + -type body contact region 15 is not so high, and current deterioration is unlikely to occur.
 一方、終端領域AR2では、コンタクト領域15bは、互いに離れているため、半導体装置1に還流電流が流れる際に、各々のコンタクト領域15bの周辺に位置する部分のp型ボディ領域13aおよび13bにおける電流密度が高くなり、通電劣化が発生しやすい。 On the other hand, in the termination region AR2, the contact regions 15b are separated from each other. Therefore, when a return current flows through the semiconductor device 1, the currents in the p- type body regions 13a and 13b in the portions located around the contact regions 15b. Density increases, and current deterioration tends to occur.
 また、アクティブ領域AR1では、縦型MISFETがオン状態のときに、ソース電極21により、シリサイド膜SIL1およびp型ボディコンタクト領域15を介してp型ボディ領域13の電位を精度よく調整して、縦型MISFETのスイッチング特性を向上させる必要がある。この縦型MISFETのスイッチング特性を向上させる観点からは、p型ボディコンタクト領域15におけるp型不純物の濃度が比較的高いことが、望ましい。 In the active region AR1, the potential of the p-type body region 13 is accurately adjusted by the source electrode 21 via the silicide film SIL1 and the p + -type body contact region 15 when the vertical MISFET is in the ON state. It is necessary to improve the switching characteristics of the vertical MISFET. From the viewpoint of improving the switching characteristics of the vertical MISFET, it is desirable that the concentration of the p-type impurity in the p + -type body contact region 15 is relatively high.
 一方、終端領域AR2では、縦型MISFETがオン状態のときに、コンタクト電極21aにより、シリサイド膜SIL2およびコンタクト領域15bを介してp型ボディ領域13aおよび13bの電位をそれほど精度よく調整する必要はない。したがって、コンタクト領域15bにおけるp型不純物の濃度は、比較的低くてもよい。 On the other hand, in the termination region AR2, it is not necessary to adjust the potentials of the p- type body regions 13a and 13b by the contact electrode 21a via the silicide film SIL2 and the contact region 15b when the vertical MISFET is on. . Therefore, the concentration of the p-type impurity in the contact region 15b may be relatively low.
 本実施の形態2では、コンタクト領域15bにおけるp型不純物の濃度は、p型ボディコンタクト領域15におけるp型不純物の濃度よりも低い。これにより、終端領域AR2では、シリサイド膜SIL2が、コンタクト領域15bとショットキー接続される。そして、終端領域AR2では、ボディダイオード23aに還流電流が流れる際に、シリサイド膜SIL2からコンタクト領域15bには正孔が供給されにくくなり、電子がコンタクト電極21aの近傍まで流れる。そのため、終端領域AR2で、n型エピタキシャル層12中などに存在する各種の結晶欠陥において、還流電流として流れる正孔と電子とが再結合することを、防止または抑制することができる。 In the second embodiment, the concentration of p-type impurity in contact region 15 b is lower than the concentration of p-type impurity in p + -type body contact region 15. Thereby, in the termination region AR2, the silicide film SIL2 is Schottky connected to the contact region 15b. In the termination region AR2, when a reflux current flows through the body diode 23a, holes are hardly supplied from the silicide film SIL2 to the contact region 15b, and electrons flow to the vicinity of the contact electrode 21a. Therefore, recombination of holes and electrons flowing as a reflux current can be prevented or suppressed in various crystal defects existing in the n type epitaxial layer 12 and the like in the termination region AR2.
 したがって、n型エピタキシャル層12中などで各種の結晶欠陥が拡大することを防止または抑制し、半導体装置1のオン抵抗が増大することを防止または抑制することができる。そのため、インバータ回路としてのパワーモジュールに含まれる半導体装置1に内蔵されたボディダイオード23aに還流電流が流れる際に、半導体装置1の通電劣化が発生することを、防止または抑制することができる。また、制御回路を用いて高い精度で同期整流を行う必要がなく、半導体装置1に内蔵されたボディダイオード23aとは別に外付けのダイオードを設ける必要がない。 Therefore, it is possible to prevent or suppress the growth of various crystal defects in the n type epitaxial layer 12 and the like, and to prevent or suppress the increase of the on-resistance of the semiconductor device 1. Therefore, it is possible to prevent or suppress the occurrence of deterioration in energization of the semiconductor device 1 when the return current flows through the body diode 23a built in the semiconductor device 1 included in the power module as the inverter circuit. Further, it is not necessary to perform synchronous rectification with high accuracy using a control circuit, and it is not necessary to provide an external diode separately from the body diode 23a built in the semiconductor device 1.
 さらに、本実施の形態2では、アクティブ領域AR1では、シリサイド膜SIL1が、p型ボディコンタクト領域15とオーミック接続される。そのため、縦型MISFETがオン状態のときに、ソース電極21により、シリサイド膜SIL1およびp型ボディコンタクト領域15を介してp型ボディ領域13の電位を精度よく調整して、縦型MISFETのスイッチング特性を向上させることができる。 Further, in the second embodiment, the silicide film SIL1 is ohmically connected to the p + type body contact region 15 in the active region AR1. Therefore, when the vertical MISFET is in the ON state, the potential of the p-type body region 13 is accurately adjusted by the source electrode 21 via the silicide film SIL1 and the p + -type body contact region 15, thereby switching the vertical MISFET. Characteristics can be improved.
 <半導体装置の製造工程>
 本実施の形態2の半導体装置の製造工程では、p型ボディコンタクト領域15を形成する工程(図3のステップS14)を除き、実施の形態1の半導体装置の製造工程(図3のステップS11~ステップS20)と同様の工程を行って、本実施の形態2の半導体装置を製造することができる。
<Manufacturing process of semiconductor device>
In the manufacturing process of the semiconductor device of the second embodiment, the manufacturing process of the semiconductor device of the first embodiment (step S11 of FIG. 3) except for the process of forming the p + type body contact region 15 (step S14 of FIG. 3). The semiconductor device of the second embodiment can be manufactured by performing the same process as in step S20).
 本実施の形態2の半導体装置の製造工程では、図3のステップS14のうち、図7に示した工程で、p型ボディコンタクト領域15を形成する際のイオン注入の条件と、図8に示した工程で、コンタクト領域15bを形成する際のイオン注入の条件とは、異なる。p型ボディコンタクト領域15を形成する際のイオン注入の条件を、例えば表2に示した、オーミック接続を形成するための条件とすることができる。また、終端領域AR2で、コンタクト領域15bを形成する際のイオン注入の条件を、例えば表1に示した、ショットキー接続を形成するための条件とすることができる。 In the manufacturing process of the semiconductor device according to the second embodiment, the ion implantation conditions for forming the p + type body contact region 15 in the process shown in FIG. 7 in step S14 in FIG. In the illustrated process, the ion implantation conditions for forming the contact region 15b are different. The conditions for ion implantation when forming the p + -type body contact region 15 can be the conditions for forming an ohmic connection as shown in Table 2, for example. Further, the ion implantation conditions for forming the contact region 15b in the termination region AR2 can be the conditions for forming the Schottky connection shown in Table 1, for example.
 このとき、p型ボディコンタクト領域15におけるp型不純物の濃度を、1×1020cm-3以上1×1021cm-3以下とすることができ、コンタクト領域15bにおけるp型不純物の濃度を、2×1019cm-3以上1×1020cm-3未満とすることができる。 At this time, the concentration of the p-type impurity in the p + -type body contact region 15 can be set to 1 × 10 20 cm −3 or more and 1 × 10 21 cm −3 or less, and the concentration of the p-type impurity in the contact region 15b is set to 1 × 10 20 cm −3. It can be 2 × 10 19 cm −3 or more and less than 1 × 10 20 cm −3 .
 これにより、終端領域AR2では、シリサイド膜SIL2を、コンタクト領域15bとショットキー接続し、アクティブ領域AR1では、シリサイド膜SIL1を、コンタクト領域15bとショットキー接続せず、オーミック接続することができる。 Thereby, in the termination region AR2, the silicide film SIL2 can be schottky connected to the contact region 15b, and in the active region AR1, the silicide film SIL1 can be ohmically connected without being schottky connected to the contact region 15b.
 <パワーモジュール、電力変換装置およびモータシステム>
 本実施の形態2の半導体装置1を備えたパワーモジュール、電力変換装置およびモータシステムも、図14を用いて説明した、実施の形態1の半導体装置1を備えたパワーモジュール、電力変換装置およびモータシステムと同様にすることができる。
<Power module, power converter and motor system>
The power module, power conversion device, and motor system including the semiconductor device 1 according to the second embodiment are also described with reference to FIG. 14. The power module, power conversion device, and motor including the semiconductor device 1 according to the first embodiment are also described. Can be similar to the system.
 (実施の形態3)
 <半導体装置>
 次に、本発明の実施の形態3の半導体装置について説明する。図19は、実施の形態3の半導体装置の要部断面図である。
(Embodiment 3)
<Semiconductor device>
Next, a semiconductor device according to the third embodiment of the present invention will be described. FIG. 19 is a fragmentary cross-sectional view of the semiconductor device of Third Embodiment.
 本実施の形態3の半導体装置1では、アクティブ領域AR1で、ソース電極21は、p型ボディコンタクト領域15上に、シリサイド膜SIL1を介して接続されているが、終端領域AR2で、コンタクト電極21aは、コンタクト領域15b上に直接形成されている。 In the semiconductor device 1 according to the third embodiment, in the active region AR1, the source electrode 21 is connected to the p + type body contact region 15 via the silicide film SIL1, but in the termination region AR2, the contact electrode 21a is formed directly on the contact region 15b.
 本実施の形態3の半導体装置1のうち、p型ボディコンタクト領域15からソース電極21にかけての構造、および、コンタクト領域15bからコンタクト電極21aにかけての構造以外の各部分については、実施の形態1の半導体装置1の各部分と同様であり、その説明を省略する。なお、p型ボディコンタクト領域15aについても、説明を省略するが、p型ボディコンタクト領域15aにおけるp型不純物の濃度は、p型ボディコンタクト領域15におけるp型不純物の濃度と同様にすることができる。 In the semiconductor device 1 according to the third embodiment, each part other than the structure from the p + type body contact region 15 to the source electrode 21 and the structure from the contact region 15b to the contact electrode 21a is described in the first embodiment. This is the same as each part of the semiconductor device 1 of FIG. Here, also for the p + -type body contact region 15a, is omitted, the concentration of p-type impurity in the p + -type body contact region 15a is the same as the concentration of the p-type impurity in the p + -type body contact region 15 be able to.
 本実施の形態3の半導体装置1でも、実施の形態1の半導体装置1と同様に、アクティブ領域AR1で、コンタクト孔20aの底部に露出した部分のn型ソース領域14上、および、p型ボディコンタクト領域15上には、金属膜としての、金属ケイ化物からなるシリサイド膜SIL1が形成されている。アクティブ領域AR1で、コンタクト孔20aの内部であって、シリサイド膜SIL1上の部分、および、層間絶縁膜20上には、導電膜21bからなるソース電極21が形成されている。 Also in the semiconductor device 1 according to the third embodiment, similarly to the semiconductor device 1 according to the first embodiment, in the active region AR1, the portion exposed at the bottom of the contact hole 20a and on the n + type source region 14 and p + On the mold body contact region 15, a silicide film SIL1 made of a metal silicide is formed as a metal film. In the active region AR1, the source electrode 21 made of the conductive film 21b is formed in the contact hole 20a, on the silicide film SIL1, and on the interlayer insulating film 20.
 一方、本実施の形態3の半導体装置1では、実施の形態1の半導体装置1と異なり、終端領域AR2で、コンタクト孔20bの底部に露出した部分のコンタクト領域15b上には、シリサイド膜が形成されていない。したがって、本実施の形態3の半導体装置1では、終端領域AR2で、コンタクト孔20bの底部に露出した部分のコンタクト領域15b上には、導電膜21cからなるコンタクト電極21aが形成されており、コンタクト電極21aは、コンタクト領域15bと接触している。コンタクト電極21aは、ソース電極21に含まれる導電膜21bと同層に形成された導電膜21cからなる。また、コンタクト電極21aは、ソース電極21と電気的に接続されていてもよい。 On the other hand, in the semiconductor device 1 of the third embodiment, unlike the semiconductor device 1 of the first embodiment, a silicide film is formed on the contact region 15b of the termination region AR2 exposed at the bottom of the contact hole 20b. It has not been. Therefore, in the semiconductor device 1 of the third embodiment, the contact electrode 21a made of the conductive film 21c is formed on the contact region 15b of the termination region AR2 exposed at the bottom of the contact hole 20b. The electrode 21a is in contact with the contact region 15b. The contact electrode 21a is made of a conductive film 21c formed in the same layer as the conductive film 21b included in the source electrode 21. The contact electrode 21a may be electrically connected to the source electrode 21.
 本実施の形態3では、実施の形態2と同様に、アクティブ領域AR1では、シリサイド膜SIL1は、p型ボディコンタクト領域15とショットキー接続されておらず、オーミック接続されている。例えば、シリサイド膜SIL1と接しているp型ボディコンタクト領域15におけるp型不純物の濃度を、1×1020cm-3以上1×1021cm-3以下とすることにより、シリサイド膜SIL1を、p型ボディコンタクト領域15とオーミック接続することができる。また、本実施の形態3では、シリサイド膜SIL1の組成は、特に限定されない。 In the third embodiment, as in the second embodiment, in the active region AR1, the silicide film SIL1 is not in Schottky connection with the p + type body contact region 15, but in ohmic connection. For example, by setting the concentration of the p-type impurity in the p + -type body contact region 15 in contact with the silicide film SIL1 to 1 × 10 20 cm −3 or more and 1 × 10 21 cm −3 or less, the silicide film SIL1 is The p + type body contact region 15 can be ohmically connected. In the third embodiment, the composition of the silicide film SIL1 is not particularly limited.
 一方、終端領域AR2では、コンタクト電極21aは、コンタクト領域15bとショットキー接続されている。コンタクト電極21aがコンタクト領域15b上に直接形成される場合、例えばチタン(Ti)またはアルミニウム(Al)などからなるコンタクト電極21aと、炭化ケイ素(SiC)からなるコンタクト領域15bとの間に、例えば絶縁性を有する界面層などが形成される。これにより、コンタクト電極21aを、コンタクト領域15bとショットキー接続することができる。 On the other hand, in the termination region AR2, the contact electrode 21a is Schottky connected to the contact region 15b. When the contact electrode 21a is formed directly on the contact region 15b, for example, insulation is provided between the contact electrode 21a made of, for example, titanium (Ti) or aluminum (Al) and the contact region 15b made of silicon carbide (SiC). An interfacial layer having a property is formed. Thereby, the contact electrode 21a can be Schottky connected to the contact region 15b.
 実施の形態2で説明したのと同様に、アクティブ領域AR1では、半導体装置1に還流電流が流れる際に、通電劣化が発生しにくいが、終端領域AR2では、半導体装置1に還流電流が流れる際に、通電劣化が発生しやすい。また、アクティブ領域AR1では、縦型MISFETのスイッチング特性を向上させる観点から、p型ボディコンタクト領域15におけるp型不純物の濃度が比較的高いことが望ましいが、終端領域AR2では、コンタクト領域15bにおけるp型不純物の濃度は、比較的低くてもよい。 Similarly to the description in the second embodiment, in the active region AR1, deterioration of energization is unlikely to occur when a return current flows in the semiconductor device 1, but in the termination region AR2, the return current flows in the semiconductor device 1. In addition, energization deterioration is likely to occur. In the active region AR1, it is desirable that the concentration of the p-type impurity in the p + -type body contact region 15 is relatively high from the viewpoint of improving the switching characteristics of the vertical MISFET, but in the termination region AR2, the concentration in the contact region 15b is desirable. The concentration of the p-type impurity may be relatively low.
 本実施の形態3では、終端領域AR2では、コンタクト電極21aが、コンタクト領域15bとショットキー接続されている。これにより、終端領域AR2では、ボディダイオード23aに還流電流が流れる際に、コンタクト電極21aからコンタクト領域15bには正孔が供給されにくくなり、電子がコンタクト電極21aの近傍まで流れる。そのため、終端領域AR2で、n型エピタキシャル層12中などに存在する各種の結晶欠陥において、還流電流として流れる正孔と電子とが再結合することを、防止または抑制することができる。 In the third embodiment, the contact electrode 21a is Schottky connected to the contact region 15b in the termination region AR2. Thus, in the termination region AR2, when a reflux current flows through the body diode 23a, holes are hardly supplied from the contact electrode 21a to the contact region 15b, and electrons flow to the vicinity of the contact electrode 21a. Therefore, recombination of holes and electrons flowing as a reflux current can be prevented or suppressed in various crystal defects existing in the n type epitaxial layer 12 and the like in the termination region AR2.
 したがって、n型エピタキシャル層12中などで各種の結晶欠陥が拡大することを防止または抑制し、半導体装置1のオン抵抗が増大することを防止または抑制することができる。そのため、インバータ回路としてのパワーモジュールに含まれる半導体装置1に内蔵されたボディダイオード23aに還流電流が流れる際に、半導体装置1の通電劣化が発生することを、防止または抑制することができる。また、制御回路を用いて高い精度で同期整流を行う必要がなく、半導体装置1に内蔵されたボディダイオード23aとは別に外付けのダイオードを設ける必要がない。 Therefore, it is possible to prevent or suppress the growth of various crystal defects in the n type epitaxial layer 12 and the like, and to prevent or suppress the increase of the on-resistance of the semiconductor device 1. Therefore, it is possible to prevent or suppress the occurrence of deterioration in energization of the semiconductor device 1 when the return current flows through the body diode 23a built in the semiconductor device 1 included in the power module as the inverter circuit. Further, it is not necessary to perform synchronous rectification with high accuracy using a control circuit, and it is not necessary to provide an external diode separately from the body diode 23a built in the semiconductor device 1.
 さらに、本実施の形態3では、アクティブ領域AR1では、シリサイド膜SIL1が、p型ボディコンタクト領域15とオーミック接続されている。そのため、縦型MISFETがオン状態のときに、ソース電極21により、シリサイド膜SIL1およびp型ボディコンタクト領域15を介してp型ボディ領域13の電位を精度よく調整して、縦型MISFETのスイッチング特性を向上させることができる。 Furthermore, in the third embodiment, the silicide film SIL1 is ohmically connected to the p + type body contact region 15 in the active region AR1. Therefore, when the vertical MISFET is in the ON state, the potential of the p-type body region 13 is accurately adjusted by the source electrode 21 via the silicide film SIL1 and the p + -type body contact region 15, thereby switching the vertical MISFET. Characteristics can be improved.
 <半導体装置の製造工程>
 次に、本実施の形態3の半導体装置の製造工程の例を、図面を参照して説明する。図20~図22は、実施の形態3の半導体装置の製造工程中の要部断面図である。
<Manufacturing process of semiconductor device>
Next, an example of a manufacturing process of the semiconductor device according to the third embodiment will be described with reference to the drawings. 20 to 22 are fragmentary cross-sectional views of the semiconductor device according to the third embodiment during the manufacturing steps thereof.
 本実施の形態3の半導体装置の製造工程では、図3のステップS14、ステップS18およびステップS19の工程を除き、実施の形態1の半導体装置の製造工程(図3のステップS11~ステップS20)と同様の工程を行って、本実施の形態3の半導体装置を製造することができる。 In the manufacturing process of the semiconductor device according to the third embodiment, the manufacturing process of the semiconductor device according to the first embodiment (steps S11 to S20 in FIG. 3), except for steps S14, S18 and S19 in FIG. The semiconductor device of the third embodiment can be manufactured by performing the same process.
 本実施の形態3でも、実施の形態1と同様に、図3のステップS11~ステップS13を行って、アクティブ領域AR1および終端領域AR2で、n型SiC基板10の上面10aにn型エピタキシャル層12を形成し、n型エピタキシャル層12の上層部に、p型ボディ領域13を形成する。 Also in the third embodiment, similarly to the first embodiment, the steps S11 to S13 of FIG. 3 are performed, and the n type epitaxial layer is formed on the upper surface 10a of the n + type SiC substrate 10 in the active region AR1 and the termination region AR2. Layer 12 is formed, and p-type body region 13 is formed in the upper layer portion of n -type epitaxial layer 12.
 次いで、p型ボディコンタクト領域15を形成する(図3のステップS14)。本実施の形態3では、図3のステップS14のうち、図7に示した工程で、p型ボディコンタクト領域15を形成する際のイオン注入の条件は、実施の形態1で、p型ボディコンタクト領域15を形成する際のイオン注入の条件とは、異なる。本実施の形態3では、p型ボディコンタクト領域15を形成する際のイオン注入の条件を、例えば表2に示した、オーミック接続を形成するための条件とすることができる。このとき、p型ボディコンタクト領域15におけるp型不純物の濃度を、1×1020cm-3以上1×1021cm-3以下とすることができる。 Next, the p + type body contact region 15 is formed (step S14 in FIG. 3). In the third embodiment, among the step S14 in FIG. 3, in the step shown in FIG. 7, the ion implantation conditions for forming the p + -type body contact region 15, in the first embodiment, the p + -type The ion implantation conditions for forming the body contact region 15 are different. In the third embodiment, the ion implantation conditions for forming the p + -type body contact region 15 can be the conditions for forming an ohmic connection as shown in Table 2, for example. At this time, the concentration of the p-type impurity in the p + -type body contact region 15 can be set to 1 × 10 20 cm −3 or more and 1 × 10 21 cm −3 or less.
 なお、本実施の形態3では、終端領域AR2では、コンタクト電極21aとコンタクト領域15bとの間にシリサイド膜が介在せず、コンタクト電極21aとコンタクト領域15bとが接触することにより、コンタクト電極21aが、コンタクト領域15bとショットキー接続される。そのため、コンタクト領域15bにおけるp型不純物の濃度は、2×1019cm-3以上1×1021cm-3以下程度であればよく、特に限定されない。したがって、図3のステップS14のうち、図8に示した工程で、コンタクト領域15bを形成する際のイオン注入の条件については、特に限定されない。 In the third embodiment, in the termination region AR2, no silicide film is interposed between the contact electrode 21a and the contact region 15b, and the contact electrode 21a and the contact region 15b come into contact with each other, so that the contact electrode 21a The Schottky connection is made with the contact region 15b. Therefore, the concentration of the p-type impurity in the contact region 15b may be about 2 × 10 19 cm −3 to 1 × 10 21 cm −3 and is not particularly limited. Therefore, in step S14 of FIG. 3, the ion implantation conditions for forming the contact region 15b in the process shown in FIG. 8 are not particularly limited.
 次いで、実施の形態1と同様に、図3のステップS15~ステップS17を行って、n型ソース領域14、ゲート絶縁膜18およびゲート電極19、ならびに、層間絶縁膜20を形成する。 Next, similarly to Embodiment 1, Steps S15 to S17 of FIG. 3 are performed to form the n + -type source region 14, the gate insulating film 18 and the gate electrode 19, and the interlayer insulating film 20.
 次いで、シリサイド膜SIL1を形成する(図3のステップS18)。本実施の形態3では、このステップS18において、まず、図20に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、アクティブ領域AR1で、層間絶縁膜20に、開口部としてのコンタクト孔20aを形成する。ただし、本実施の形態3では、実施の形態1と異なり、コンタクト孔20aを形成する際に、終端領域AR2では、コンタクト孔を形成しない。 Next, a silicide film SIL1 is formed (step S18 in FIG. 3). In the third embodiment, in this step S18, first, as shown in FIG. 20, by using a photolithography technique and an etching technique, a contact hole as an opening is formed in the interlayer insulating film 20 in the active region AR1. 20a is formed. However, in the third embodiment, unlike the first embodiment, when the contact hole 20a is formed, no contact hole is formed in the termination region AR2.
 次いで、コンタクト孔20aの底部に露出したp型ボディコンタクト領域15の上面上に、実施の形態1と同様に、例えばニッケル(Ni)からなる金属原料膜を、スパッタリング法などを用いて形成した後、n型SiC基板10に対して熱処理を施す。これにより、図20に示すように、コンタクト孔20aの底部に露出したp型ボディコンタクト領域15上に、金属シリサイドからなるシリサイド膜SIL1が形成される。ただし、本実施の形態3では、シリサイド膜SIL1の組成は、特に限定されない。 Next, a metal source film made of, for example, nickel (Ni) is formed on the upper surface of the p + -type body contact region 15 exposed at the bottom of the contact hole 20a by using a sputtering method or the like, as in the first embodiment. Thereafter, heat treatment is performed on the n + -type SiC substrate 10. Thus, as shown in FIG. 20, a silicide film SIL1 made of metal silicide is formed on the p + type body contact region 15 exposed at the bottom of the contact hole 20a. However, in the third embodiment, the composition of the silicide film SIL1 is not particularly limited.
 次いで、図21に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、ゲートパッド領域AR3で、層間絶縁膜20に、開口部としてのコンタクト孔20cを形成する。ただし、本実施の形態3では、実施の形態1と異なり、コンタクト孔20cを形成する際に、終端領域AR2で、コンタクト孔20bを形成する。また、コンタクト孔20bの底部に露出したコンタクト領域15b上、および、コンタクト孔20bの底部に露出した、コンタクト領域15bと隣り合う部分のp型ボディ領域13a上には、シリサイド膜を形成しない。 Next, as shown in FIG. 21, a contact hole 20c as an opening is formed in the interlayer insulating film 20 in the gate pad region AR3 by using a photolithography technique and an etching technique. However, in the third embodiment, unlike the first embodiment, when the contact hole 20c is formed, the contact hole 20b is formed in the termination region AR2. Further, no silicide film is formed on the contact region 15b exposed at the bottom of the contact hole 20b and on the p-type body region 13a adjacent to the contact region 15b exposed at the bottom of the contact hole 20b.
 本実施の形態3では、コンタクト孔20aを形成する工程とは別に行わなければならないコンタクト孔20bを形成する工程を、コンタクト孔20cを形成する工程と同一の工程により行うことができる。そのため、コンタクト孔20bを形成する工程をコンタクト孔20aを形成する工程とは別に行っても、半導体装置の製造工程における工程数は増加しない。 In the third embodiment, the step of forming the contact hole 20b, which must be performed separately from the step of forming the contact hole 20a, can be performed by the same process as the process of forming the contact hole 20c. Therefore, even if the step of forming the contact hole 20b is performed separately from the step of forming the contact hole 20a, the number of steps in the semiconductor device manufacturing process does not increase.
 次いで、ソース電極21を形成する(図3のステップS19)。本実施の形態3では、このステップS19において、図22に示すように、アクティブ領域AR1で、コンタクト孔20aの内部、および、層間絶縁膜20上に、導電膜21bからなるソース電極21を形成する。また、終端領域AR2で、コンタクト孔20bの内部、および、層間絶縁膜20上に、導電膜21cからなるコンタクト電極21aを形成する。このとき、コンタクト孔20bの底部に露出した部分のコンタクト領域15b上には、導電膜21cからなるコンタクト電極21aが形成され、コンタクト電極21aは、コンタクト領域15bと接触する。コンタクト電極21aは、ソース電極21に含まれる導電膜21bと同層に形成された導電膜21cからなる。また、コンタクト電極21aは、ソース電極21と電気的に接続されてもよい。なお、ゲートパッド領域AR3では、実施の形態1と同様に、ゲートコンタクト電極GC1が形成される。 Next, the source electrode 21 is formed (step S19 in FIG. 3). In the third embodiment, in this step S19, as shown in FIG. 22, in the active region AR1, the source electrode 21 made of the conductive film 21b is formed in the contact hole 20a and on the interlayer insulating film 20. . In the termination region AR2, a contact electrode 21a made of a conductive film 21c is formed inside the contact hole 20b and on the interlayer insulating film 20. At this time, the contact electrode 21a made of the conductive film 21c is formed on the portion of the contact region 15b exposed at the bottom of the contact hole 20b, and the contact electrode 21a is in contact with the contact region 15b. The contact electrode 21a is made of a conductive film 21c formed in the same layer as the conductive film 21b included in the source electrode 21. The contact electrode 21a may be electrically connected to the source electrode 21. In the gate pad region AR3, the gate contact electrode GC1 is formed as in the first embodiment.
 その後、図3のステップS20を行って、本実施の形態3の半導体装置1を形成する。 Thereafter, step S20 of FIG. 3 is performed to form the semiconductor device 1 of the third embodiment.
 <パワーモジュール、電力変換装置およびモータシステム>
 本実施の形態3の半導体装置1を備えたパワーモジュール、電力変換装置およびモータシステムも、図14を用いて説明した、実施の形態1の半導体装置1を備えたパワーモジュール、電力変換装置およびモータシステムと同様にすることができる。
<Power module, power converter and motor system>
The power module, power converter, and motor system provided with the semiconductor device 1 according to the third embodiment are also described with reference to FIG. 14, and the power module, power converter, and motor provided with the semiconductor device 1 according to the first embodiment. Can be similar to the system.
 (実施の形態4)
 <パワーモジュール、電力変換装置および三相モータシステム>
 次に、実施の形態4のパワーモジュール、電力変換装置、および、その電力変換装置を備えた三相モータシステムについて説明する。実施の形態4のパワーモジュールは、実施の形態1の半導体装置を備えている。なお、実施の形態4のパワーモジュールは、実施の形態1のパワーモジュールと異なり、実施の形態1の半導体装置を三相インバータ回路に適用したものである。また、以下では、実施の形態1の半導体装置に代えて、実施の形態2および実施の形態3の半導体装置を用いることができる(実施の形態5および実施の形態6においても同様)。
(Embodiment 4)
<Power module, power converter and three-phase motor system>
Next, a power module, a power conversion device, and a three-phase motor system including the power conversion device according to the fourth embodiment will be described. The power module according to the fourth embodiment includes the semiconductor device according to the first embodiment. The power module of the fourth embodiment is different from the power module of the first embodiment in that the semiconductor device of the first embodiment is applied to a three-phase inverter circuit. In the following, the semiconductor devices of the second and third embodiments can be used in place of the semiconductor device of the first embodiment (the same applies to the fifth and sixth embodiments).
 図23は、実施の形態4の三相モータシステムの構成を示す図である。図23に示すように、三相モータシステム30aは、インバータ装置としての電力変換装置31aと、三相モータ等からなる負荷32aと、直流電源33と、コンデンサ等からなる容量34と、を備えている。電力変換装置31aは、三相インバータ回路としてのパワーモジュール35aと、制御回路36aと、を備えている。負荷32aは、パワーモジュール35aの三相の出力端子である、出力端子TO1、TO2およびTO3に接続されている。また、直流電源33および容量34は、パワーモジュール35aの2つの入力端子である、入力端子TI1と入力端子TI2との間に、互いに並列に接続されている。 FIG. 23 is a diagram illustrating a configuration of a three-phase motor system according to the fourth embodiment. As shown in FIG. 23, the three-phase motor system 30a includes a power conversion device 31a as an inverter device, a load 32a composed of a three-phase motor or the like, a DC power source 33, and a capacitor 34 composed of a capacitor or the like. Yes. The power converter 31a includes a power module 35a as a three-phase inverter circuit and a control circuit 36a. The load 32a is connected to output terminals TO1, TO2, and TO3, which are three-phase output terminals of the power module 35a. The DC power supply 33 and the capacitor 34 are connected in parallel between the input terminal TI1 and the input terminal TI2, which are the two input terminals of the power module 35a.
 インバータ回路としてのパワーモジュール35aは、スイッチング素子37u、37v、37w、37x、37yおよび37zを有する。スイッチング素子37uおよび37xは、入力端子TI1と入力端子TI2との間に、直列に接続されている。スイッチング素子37vおよび37yは、入力端子TI1と入力端子TI2との間に、直列に接続されている。スイッチング素子37wおよび37zは、入力端子TI1と入力端子TI2との間に、直列に接続されている。 The power module 35a as an inverter circuit has switching elements 37u, 37v, 37w, 37x, 37y and 37z. The switching elements 37u and 37x are connected in series between the input terminal TI1 and the input terminal TI2. The switching elements 37v and 37y are connected in series between the input terminal TI1 and the input terminal TI2. The switching elements 37w and 37z are connected in series between the input terminal TI1 and the input terminal TI2.
 スイッチング素子37u、37v、37w、37x、37yおよび37zの各々は、MISFET38とボディダイオード39とを含む。スイッチング素子37u、37v、37w、37x、37yおよび37zの各々として、実施の形態1、実施の形態2または実施の形態3の半導体装置1(図2、図18または図19参照)を用いることができる。また、ボディダイオード39として、半導体装置1に内蔵されたボディダイオード23および23a(図2、図18または図19参照)を用いることができる。 Each of the switching elements 37u, 37v, 37w, 37x, 37y and 37z includes a MISFET 38 and a body diode 39. As each of the switching elements 37u, 37v, 37w, 37x, 37y, and 37z, the semiconductor device 1 according to the first, second, or third embodiment (see FIG. 2, FIG. 18, or FIG. 19) is used. it can. As the body diode 39, body diodes 23 and 23a (see FIG. 2, FIG. 18, or FIG. 19) built in the semiconductor device 1 can be used.
 スイッチング素子37u、37v、37w、37x、37yおよび37zにそれぞれ設けられた複数のMISFET38の各々のゲート電極は、パワーモジュール35aの6つの制御端子である、制御端子TC1、TC2、TC3、TC4、TC5およびTC6にそれぞれ接続されている。また、制御回路36aは、制御端子TC1、TC2、TC3、TC4、TC5およびTC6の各々に接続されている。したがって、制御回路36aは、スイッチング素子37u、37v、37w、37x、37yおよび37zにそれぞれ設けられた複数のMISFET38の各々のゲート電極に接続されている。制御回路36aは、スイッチング素子37u、37v、37w、37x、37yおよび37zを駆動する。 The gate electrodes of the plurality of MISFETs 38 provided in the switching elements 37u, 37v, 37w, 37x, 37y and 37z, respectively, are six control terminals of the power module 35a. Control terminals TC1, TC2, TC3, TC4, TC5 And TC6, respectively. The control circuit 36a is connected to each of the control terminals TC1, TC2, TC3, TC4, TC5, and TC6. Therefore, the control circuit 36a is connected to each gate electrode of the plurality of MISFETs 38 provided in the switching elements 37u, 37v, 37w, 37x, 37y and 37z, respectively. The control circuit 36a drives the switching elements 37u, 37v, 37w, 37x, 37y and 37z.
 制御回路36aは、各スイッチング素子のオン状態とオフ状態とが予め設定されたタイミングで交互に切り替わるように、スイッチング素子37u、37v、37w、37x、37yおよび37zのそれぞれを駆動する。これにより、直流電圧から、U相、V相およびW相の三相の交流電圧を生成し、直流電力を三相の交流電力に変換する。負荷32aは、この三相の交流電力によって駆動される。 The control circuit 36a drives each of the switching elements 37u, 37v, 37w, 37x, 37y, and 37z so that the ON state and the OFF state of each switching element are alternately switched at a preset timing. As a result, a U-phase, V-phase, and W-phase three-phase AC voltage is generated from the DC voltage, and the DC power is converted into three-phase AC power. The load 32a is driven by this three-phase AC power.
 <本実施の形態の主要な特徴と効果>
 本実施の形態4の電力変換装置31aに含まれるパワーモジュール35aにおけるスイッチング素子37u、37v、37w、37x、37yおよび37zの各々として、実施の形態1、実施の形態2または実施の形態3の半導体装置1を用いることができる。
<Main features and effects of the present embodiment>
As each of the switching elements 37u, 37v, 37w, 37x, 37y, and 37z in the power module 35a included in the power conversion device 31a of the fourth embodiment, the semiconductor of the first embodiment, the second embodiment, or the third embodiment. The device 1 can be used.
 これにより、半導体装置1に内蔵されたボディダイオード23および23aに還流電流が流れる際に、半導体装置1に通電劣化が発生することを防止または抑制することができるので、電力変換の際の電力損失を小さくすることができる。また、制御回路36aを用いて高い精度で同期整流を行う必要がないため、パワーモジュール35aおよび電力変換装置31aの設計マージンを広げることができ、パワーモジュール35aおよび電力変換装置31aの信頼性を向上させることができる。あるいは、ボディダイオード23および23aとは別に外付けのダイオードを設ける必要がないため、パワーモジュール35aおよび電力変換装置31aを、小型化することができる。 As a result, it is possible to prevent or suppress the deterioration of energization of the semiconductor device 1 when the return current flows through the body diodes 23 and 23a incorporated in the semiconductor device 1, so that power loss during power conversion can be prevented. Can be reduced. In addition, since it is not necessary to perform synchronous rectification with high accuracy using the control circuit 36a, the design margin of the power module 35a and the power converter 31a can be expanded, and the reliability of the power module 35a and the power converter 31a is improved. Can be made. Alternatively, since it is not necessary to provide an external diode separately from the body diodes 23 and 23a, the power module 35a and the power conversion device 31a can be reduced in size.
 (実施の形態5)
 次に、本発明の実施の形態5の自動車について説明する。実施の形態5の自動車は、実施の形態4の電力変換装置を含む自動車であり、ハイブリッド車および電気自動車などの自動車である。
(Embodiment 5)
Next, an automobile according to a fifth embodiment of the present invention will be described. The automobile of the fifth embodiment is an automobile including the power conversion device of the fourth embodiment, and is an automobile such as a hybrid car and an electric car.
 図24は、実施の形態5の自動車としての電気自動車の構成を示す図である。図25は、実施の形態5の自動車における昇圧コンバータ装置を示す回路図である。 FIG. 24 is a diagram showing a configuration of an electric vehicle as a vehicle according to the fifth embodiment. FIG. 25 is a circuit diagram showing the boost converter device in the automobile of the fifth embodiment.
 図24に示すように、電気自動車としての自動車40は、駆動輪41aおよび駆動輪41bが接続された駆動軸42に動力を入出力可能とする三相モータ43と、三相モータ43を駆動するためのインバータ装置44と、バッテリ45と、を備える。また、自動車40は、昇圧コンバータ装置48と、リレー49と、電子制御ユニット50と、を備え、昇圧コンバータ装置48は、インバータ装置44が接続された電力ライン46と、バッテリ45が接続された電力ライン47とに接続されている。 As shown in FIG. 24, an automobile 40 as an electric vehicle drives a three-phase motor 43 that allows power to be input / output to / from a drive shaft 42 to which drive wheels 41a and 41b are connected, and a three-phase motor 43. An inverter device 44 and a battery 45 are provided. In addition, the automobile 40 includes a boost converter device 48, a relay 49, and an electronic control unit 50. The boost converter device 48 includes an electric power line 46 to which an inverter device 44 is connected and electric power to which a battery 45 is connected. It is connected to the line 47.
 三相モータ43は、永久磁石が埋め込まれたロータと、三相コイルが巻回されたステータと、を備えた同期発電電動機である。インバータ装置44として、実施の形態4において説明した電力変換装置31a(図23参照)を用いることができる。 The three-phase motor 43 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil. As the inverter device 44, the power conversion device 31a (see FIG. 23) described in the fourth embodiment can be used.
 昇圧コンバータ装置48は、図25に示すように、インバータ装置53に、リアクトル51および平滑用コンデンサ52が接続された構成からなる。インバータ装置53は、実施の形態4において説明したパワーモジュール35aに含まれるインバータ回路の一部と同様である。また、インバータ装置53内のスイッチング素子54に含まれるMISFET55およびボディダイオード56は、実施の形態4において説明したMISFET38およびボディダイオード39と、それぞれ同様である。 As shown in FIG. 25, the boost converter device 48 has a configuration in which a reactor 51 and a smoothing capacitor 52 are connected to an inverter device 53. The inverter device 53 is the same as a part of the inverter circuit included in the power module 35a described in the fourth embodiment. In addition, MISFET 55 and body diode 56 included in switching element 54 in inverter device 53 are the same as MISFET 38 and body diode 39 described in the fourth embodiment.
 電子制御ユニット50は、マイクロプロセッサと、記憶装置と、入出力ポートと、を備えており、三相モータ43のロータ位置を検出するセンサからの信号、またはバッテリ45の充放電値などを受信する。そして、電子制御ユニット50は、インバータ装置44、昇圧コンバータ装置48、およびリレー49を制御するための信号を出力する。 The electronic control unit 50 includes a microprocessor, a storage device, and an input / output port, and receives a signal from a sensor that detects the rotor position of the three-phase motor 43 or a charge / discharge value of the battery 45. . The electronic control unit 50 outputs a signal for controlling the inverter device 44, the boost converter device 48, and the relay 49.
 <本実施の形態の主要な特徴と効果>
 本実施の形態5の自動車40のインバータ装置44として、実施の形態4の電力変換装置31a(図23参照)を用いることができる。電力変換装置31aに備えられたスイッチング素子37u、37v、37w、37x、37yおよび37zの各々として、実施の形態1、実施の形態2または実施の形態3の半導体装置1(図2、図18または図19参照)を用いることができる。あるいは、本実施の形態5の自動車40の昇圧コンバータ装置48内のインバータ装置53に備えられたスイッチング素子54として、実施の形態1、実施の形態2または実施の形態3の半導体装置1を用いることができる。
<Main features and effects of the present embodiment>
As the inverter device 44 of the automobile 40 of the fifth embodiment, the power conversion device 31a (see FIG. 23) of the fourth embodiment can be used. As each of the switching elements 37u, 37v, 37w, 37x, 37y, and 37z provided in the power conversion device 31a, the semiconductor device 1 of the first embodiment, the second embodiment, or the third embodiment (FIG. 2, FIG. 18 or FIG. 19) can be used. Alternatively, semiconductor device 1 of the first, second, or third embodiment is used as switching element 54 provided in inverter device 53 in boost converter device 48 of automobile 40 of the fifth embodiment. Can do.
 これにより、半導体装置1に内蔵されたボディダイオード23および23aに還流電流が流れる際に、半導体装置1に通電劣化が発生することを防止または抑制することができるので、電力変換の際の電力損失を小さくすることができる。また、制御回路36を用いて高い精度で同期整流を行う必要がないため、パワーモジュール35aおよび電力変換装置31aの設計マージンを広げることができ、パワーモジュール35aおよび電力変換装置31aの信頼性を向上させることができる。あるいは、ボディダイオード23および23aとは別に外付けのダイオードを設ける必要がないため、パワーモジュール35aおよび電力変換装置31aを、小型化することができる。 As a result, it is possible to prevent or suppress the deterioration of energization of the semiconductor device 1 when the return current flows through the body diodes 23 and 23a incorporated in the semiconductor device 1, so that power loss during power conversion can be prevented. Can be reduced. In addition, since it is not necessary to perform synchronous rectification with high accuracy using the control circuit 36, the design margin of the power module 35a and the power converter 31a can be widened, and the reliability of the power module 35a and the power converter 31a is improved. Can be made. Alternatively, since it is not necessary to provide an external diode separately from the body diodes 23 and 23a, the power module 35a and the power conversion device 31a can be reduced in size.
 これらに伴って、本実施の形態5の自動車40では、インバータ装置44および昇圧コンバータ装置48における電力変換の際の電力損失を小さくすることができるので、大型の冷却装置が設けられなくてもよい。したがって、冷却装置を小型化することなどにより、インバータ装置44および昇圧コンバータ装置48を、容易に低コスト化、小型化または軽量化することができる。これにより、電気自動車としての自動車40に占める駆動系の容積を低減することができ、電気自動車としての自動車40を、容易に低コスト化、小型化または軽量化することができる。あるいは、この電気自動車としての自動車40の室内を広くすることができるなど、電気自動車としての自動車40における設計の自由度を高めることができる。 Accordingly, in the automobile 40 of the fifth embodiment, the power loss at the time of power conversion in the inverter device 44 and the boost converter device 48 can be reduced, so that a large cooling device may not be provided. . Therefore, the inverter device 44 and the boost converter device 48 can be easily reduced in cost, size, or weight by reducing the size of the cooling device. As a result, the volume of the drive system occupying the automobile 40 as an electric vehicle can be reduced, and the automobile 40 as an electric car can be easily reduced in cost, size, or weight. Alternatively, the degree of freedom in design of the vehicle 40 as an electric vehicle can be increased, for example, the interior of the vehicle 40 as the electric vehicle can be widened.
 なお、本実施の形態5では、実施の形態4の電力変換装置31aを含む自動車を、電気自動車に適用した例について説明した。しかし、実施の形態4の電力変換装置31aを含む自動車を、エンジンも併用するハイブリッド自動車にも同様に適用することができる。また、実施の形態4の電力変換装置31aを適用したハイブリッド自動車も、実施の形態4の電力変換装置を適用した電気自動車と同様の効果を有する。 In addition, in this Embodiment 5, the example which applied the motor vehicle containing the power converter device 31a of Embodiment 4 to the electric vehicle was demonstrated. However, the vehicle including the power conversion device 31a of the fourth embodiment can be similarly applied to a hybrid vehicle that also uses an engine. Further, the hybrid vehicle to which the power conversion device 31a of the fourth embodiment is applied has the same effect as the electric vehicle to which the power conversion device of the fourth embodiment is applied.
 (実施の形態6)
 <鉄道車両>
 次に、本発明の実施の形態6の鉄道車両について説明する。実施の形態6の鉄道車両は、実施の形態4の電力変換装置を含む鉄道車両である。
(Embodiment 6)
<Railway vehicle>
Next, a railway vehicle according to a sixth embodiment of the present invention will be described. The railway vehicle according to the sixth embodiment is a railway vehicle including the power conversion device according to the fourth embodiment.
 図26は、実施の形態6の鉄道車両の構成を示す図である。図26に示すように、鉄道車両60は、集電装置としてのパンタグラフ61と、変圧器62と、電力変換装置63と、交流電動機である負荷64と、車輪65とを含む。電力変換装置63は、コンバータ装置66と、例えばコンデンサである容量67と、インバータ装置68とを有する。 FIG. 26 is a diagram illustrating a configuration of the railway vehicle according to the sixth embodiment. As shown in FIG. 26, the railway vehicle 60 includes a pantograph 61 as a current collector, a transformer 62, a power converter 63, a load 64 that is an AC motor, and wheels 65. The power conversion device 63 includes a converter device 66, a capacitor 67 that is, for example, a capacitor, and an inverter device 68.
 コンバータ装置66は、スイッチング素子69および70を有する。スイッチング素子69は、上アーム側、すなわち高電圧側に配置されており、スイッチング素子70は、下アーム側、すなわち低電圧側に配置されている。なお、図26では、スイッチング素子69および70については、複数相のうち一相について示している。 The converter device 66 has switching elements 69 and 70. The switching element 69 is disposed on the upper arm side, that is, the high voltage side, and the switching element 70 is disposed on the lower arm side, that is, the low voltage side. In FIG. 26, the switching elements 69 and 70 are shown for one phase among a plurality of phases.
 インバータ装置68は、スイッチング素子71および72を有する。スイッチング素子71は、上アーム側、すなわち高電圧側に配置されており、スイッチング素子72は、下アーム側、すなわち低電圧側に配置されている。なお、図26では、スイッチング素子71および72については、U相、V相およびW相の三相のうち一相について示している。 The inverter device 68 has switching elements 71 and 72. The switching element 71 is disposed on the upper arm side, that is, the high voltage side, and the switching element 72 is disposed on the lower arm side, that is, the low voltage side. In FIG. 26, the switching elements 71 and 72 are shown for one of the three phases U phase, V phase and W phase.
 変圧器62の一次側の一端は、パンタグラフ61を介して架線61aに接続されている。変圧器62の一次側の他端は、車輪65を介して線路65aに接続されている。変圧器62の二次側の一端は、コンバータ装置66の負荷64と反対側であって上アーム側の端子に接続されている。変圧器62の二次側の他端は、コンバータ装置66の負荷64と反対側であって下アーム側の端子に接続されている。 One end of the primary side of the transformer 62 is connected to the overhead line 61 a via the pantograph 61. The other end of the primary side of the transformer 62 is connected to the line 65 a via the wheel 65. One end of the secondary side of the transformer 62 is connected to a terminal on the upper arm side opposite to the load 64 of the converter device 66. The other end of the secondary side of the transformer 62 is connected to a terminal on the lower arm side opposite to the load 64 of the converter device 66.
 コンバータ装置66の負荷64側であって上アーム側の端子は、インバータ装置68の負荷64と反対側であって上アーム側の端子に接続されている。また、コンバータ装置66の負荷64側であって下アーム側の端子は、インバータ装置68の負荷64と反対側であって下アーム側の端子に接続されている。さらに、インバータ装置68の負荷64と反対側であって上アーム側の端子と、インバータ装置68の負荷64と反対側であって下アーム側の端子との間に、容量67が接続されている。また、図26では図示を省略するが、インバータ装置68の出力側の3つの端子の各々は、U相、V相およびW相のそれぞれとして、負荷64に接続されている。 The terminal on the load 64 side and the upper arm side of the converter device 66 is connected to the terminal on the upper arm side opposite to the load 64 of the inverter device 68. The terminal on the load 64 side of the converter device 66 on the lower arm side is connected to the terminal on the lower arm side opposite to the load 64 of the inverter device 68. Further, a capacitor 67 is connected between a terminal on the side opposite to the load 64 of the inverter device 68 and on the upper arm side, and a terminal on the side opposite to the load 64 of the inverter device 68 and on the lower arm side. . Although not shown in FIG. 26, each of the three terminals on the output side of the inverter device 68 is connected to the load 64 as a U phase, a V phase, and a W phase.
 本実施の形態6では、インバータ装置68として、実施の形態4の電力変換装置31a(図23参照)を用いることができる。 In the sixth embodiment, the power conversion device 31a of the fourth embodiment (see FIG. 23) can be used as the inverter device 68.
 架線61aからパンタグラフ61により集電された交流電力は、その電圧が変圧器62によって変圧された後、コンバータ装置66により所望の直流電力に変換される。コンバータ装置66により変換された直流電力は、その電圧が容量67により平滑化される。容量67により電圧が平滑化された直流電力は、インバータ装置68により交流電力に変換される。インバータ装置68により変換された交流電力は、負荷64に供給される。交流電力が供給された負荷64が車輪65を回転駆動することで、鉄道車両が加速される。 The AC power collected from the overhead wire 61 a by the pantograph 61 is transformed by the converter device 66 into desired DC power after the voltage is transformed by the transformer 62. The DC power converted by the converter device 66 is smoothed by the capacitor 67. The DC power whose voltage has been smoothed by the capacitor 67 is converted into AC power by the inverter device 68. The AC power converted by the inverter device 68 is supplied to the load 64. The load 64 supplied with AC power rotationally drives the wheels 65, whereby the railway vehicle is accelerated.
 <本実施の形態の主要な特徴と効果>
 本実施の形態6の鉄道車両60のインバータ装置68として、実施の形態4の電力変換装置31a(図23参照)を用いることができる。電力変換装置31aに備えられたスイッチング素子37u、37v、37w、37x、37yおよび37zの各々として、実施の形態1、実施の形態2または実施の形態3の半導体装置1(図2、図18または図19参照)を用いることができる。
<Main features and effects of the present embodiment>
As inverter device 68 of railway vehicle 60 of the sixth embodiment, power conversion device 31a (see FIG. 23) of the fourth embodiment can be used. As each of the switching elements 37u, 37v, 37w, 37x, 37y, and 37z provided in the power conversion device 31a, the semiconductor device 1 of the first embodiment, the second embodiment, or the third embodiment (FIG. 2, FIG. 18 or FIG. 19) can be used.
 これにより、半導体装置1に内蔵されたボディダイオード23および23aに還流電流が流れる際に、半導体装置1に通電劣化が発生することを防止または抑制することができるので、電力変換の際の電力損失を小さくすることができる。また、制御回路36を用いて高い精度で同期整流を行う必要がないため、パワーモジュール35aおよび電力変換装置31aの設計マージンを広げることができ、パワーモジュール35aおよび電力変換装置31aの信頼性を向上させることができる。あるいは、ボディダイオード23および23aとは別に外付けのダイオードを設ける必要がないため、パワーモジュール35aおよび電力変換装置31aを、小型化することができる。 As a result, it is possible to prevent or suppress the deterioration of energization of the semiconductor device 1 when the return current flows through the body diodes 23 and 23a incorporated in the semiconductor device 1, so that power loss during power conversion can be prevented. Can be reduced. In addition, since it is not necessary to perform synchronous rectification with high accuracy using the control circuit 36, the design margin of the power module 35a and the power converter 31a can be widened, and the reliability of the power module 35a and the power converter 31a is improved. Can be made. Alternatively, since it is not necessary to provide an external diode separately from the body diodes 23 and 23a, the power module 35a and the power conversion device 31a can be reduced in size.
 これらに伴って、本実施の形態6の鉄道車両60では、インバータ装置68における電力変換の際の電力損失を小さくすることができるので、大型の冷却装置が設けられなくてもよい。したがって、冷却装置を小型化することなどにより、インバータ装置68を、容易に低コスト化、小型化または軽量化することができる。よって、このインバータ装置68を含む鉄道車両60を、容易に低コスト化し、鉄道を運行する際のエネルギー効率を向上させることができる。 Accordingly, in the railway vehicle 60 of the sixth embodiment, the power loss at the time of power conversion in the inverter device 68 can be reduced, so that a large cooling device may not be provided. Therefore, the inverter device 68 can be easily reduced in cost, size, or weight by reducing the size of the cooling device. Therefore, it is possible to easily reduce the cost of the railway vehicle 60 including the inverter device 68 and improve the energy efficiency when operating the railway.
 あるいは、コンバータ装置66に備えられたスイッチング素子69および70として、実施の形態1、実施の形態2または実施の形態3の半導体装置1(図2、図18または図19参照)を用いることができる。この場合にも、コンバータ装置66における電力変換の際の電力損失を小さくすることができるので、コンバータ装置66を、容易に低コスト化、小型化または軽量化することができる。よって、このコンバータ装置66を含む鉄道車両60を、容易に低コスト化し、鉄道を運行する際のエネルギー効率を向上させることができる。 Alternatively, as switching elements 69 and 70 provided in converter device 66, semiconductor device 1 of the first, second, or third embodiment (see FIG. 2, FIG. 18, or FIG. 19) can be used. . Also in this case, since the power loss at the time of power conversion in the converter device 66 can be reduced, the converter device 66 can be easily reduced in cost, size, or weight. Therefore, it is possible to easily reduce the cost of the railway vehicle 60 including the converter device 66 and improve the energy efficiency when operating the railway.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、半導体装置、パワーモジュールおよび電力変換装置に適用して有効である。 The present invention is effective when applied to a semiconductor device, a power module, and a power conversion device.
 1 半導体装置
10 n型SiC基板
10a 上面
10b 下面
12 n型エピタキシャル層
13、13a、13b、13c p型ボディ領域
14、14a n型ソース領域
14b n型フィールドストッパ領域
15、15a p型ボディコンタクト領域
15b コンタクト領域
16 JFET領域
17 チャネル領域
18 ゲート絶縁膜
18a、18b 絶縁膜
19 ゲート電極
19a ゲートパッド
19b、21b、21c 導電膜
20 層間絶縁膜
20a、20b、20c コンタクト孔
21 ソース電極
21a コンタクト電極
22 ドレイン電極
23、23a ボディダイオード
30 モータシステム
30a 三相モータシステム
31、31a 電力変換装置
32、32a 負荷
33 直流電源
34 容量
35、35a パワーモジュール
36、36a 制御回路
37u、37v、37w、37x、37y、37z スイッチング素子
38 MISFET
39 ボディダイオード
40 自動車
41a、41b 駆動輪
42 駆動軸
43 三相モータ
44 インバータ装置
45 バッテリ
46、47 電力ライン
48 昇圧コンバータ装置
49 リレー
50 電子制御ユニット
51 リアクトル
52 平滑用コンデンサ
53 インバータ装置
54 スイッチング素子
55 MISFET
56 ボディダイオード
60 鉄道車両
61 パンタグラフ
61a 架線
62 変圧器
63 電力変換装置
64 負荷
65 車輪
65a 線路
66 コンバータ装置
67 容量
68 インバータ装置
69~72 スイッチング素子
AR1 アクティブ領域
AR2 終端領域
AR3 ゲートパッド領域
CL1 セル
FO1 フィールド酸化膜
GC1 ゲートコンタクト電極
OP1、OP11、OP2、OP3、OP31 開口部
OP4、OP5、OP51、OP52 開口部
RF1~RF5 レジスト膜
RP1~RP5 レジストパターン
SIL1、SIL2 シリサイド膜
TC1~TC6 制御端子
TI1、TI2 入力端子
TO1~TO3 出力端子
 
1 semiconductor device 10 n + -type SiC substrate 10a upper surface 10b lower surface 12 n - - type epitaxial layer 13,13a, 13b, 13c p- type body region 14, 14a n + -type source region 14b n + -type field stop region 15, 15a p + Type body contact region 15b Contact region 16 JFET region 17 Channel region 18 Gate insulating film 18a, 18b Insulating film 19 Gate electrode 19a Gate pads 19b, 21b, 21c Conductive film 20 Interlayer insulating films 20a, 20b, 20c Contact hole 21 Source electrode 21a Contact electrode 22 Drain electrode 23, 23a Body diode 30 Motor system 30a Three- phase motor system 31, 31a Power converter 32, 32a Load 33 DC power supply 34 Capacity 35, 35a Power module 36, 36a Control circuit 37u, 37v, 37w, 37x, 37y, 37z switching element 38 MISFET
39 body diode 40 automobile 41a, 41b drive wheel 42 drive shaft 43 three-phase motor 44 inverter device 45 battery 46, 47 power line 48 boost converter device 49 relay 50 electronic control unit 51 reactor 52 smoothing capacitor 53 inverter device 54 switching element 55 MISFET
56 Body diode 60 Railway vehicle 61 Pantograph 61a Overhead line 62 Transformer 63 Power conversion device 64 Load 65 Wheel 65a Line 66 Converter device 67 Capacity 68 Inverter device 69 to 72 Switching element AR1 Active area AR2 Termination area AR3 Gate pad area CL1 Cell FO1 Field Oxide film GC1 Gate contact electrodes OP1, OP11, OP2, OP3, OP31 Openings OP4, OP5, OP51, OP52 Openings RF1 to RF5 Resist films RP1 to RP5 Resist patterns SIL1, SIL2 Silicide films TC1 to TC6 Control terminals TI1, TI2 Input Terminals TO1 to TO3 Output terminals

Claims (15)

  1.  第1主面と、前記第1主面と反対側の第2主面とを有する第1導電型の半導体基板と、
     前記半導体基板の前記第1主面に形成された、前記第1導電型の半導体層と、
     前記半導体層の上層部に形成され、前記第1導電型と異なる第2導電型の第1半導体領域と、
     前記第1半導体領域の上層部に形成された、前記第1導電型の第2半導体領域と、
     前記第1半導体領域の上層部に形成された、前記第2導電型の第3半導体領域と、
     前記第2半導体領域と前記半導体層とに挟まれた部分の前記第1半導体領域の上面上に、ゲート絶縁膜を介して形成されたゲート電極と、
     前記第2半導体領域上および前記第3半導体領域上に形成された第1金属膜と、
     前記第1金属膜上に形成されたソース電極と、
     前記半導体基板の前記第2主面に形成されたドレイン電極と、
     を有し、
     前記半導体基板、前記半導体層、前記第1半導体領域、前記第2半導体領域および前記第3半導体領域は、炭化ケイ素からなり、
     前記第1金属膜は、前記第3半導体領域とショットキー接続されている、半導体装置。
    A first conductivity type semiconductor substrate having a first main surface and a second main surface opposite to the first main surface;
    A semiconductor layer of the first conductivity type formed on the first main surface of the semiconductor substrate;
    A first semiconductor region of a second conductivity type different from the first conductivity type formed in an upper layer portion of the semiconductor layer;
    A second semiconductor region of the first conductivity type formed in an upper layer portion of the first semiconductor region;
    A third semiconductor region of the second conductivity type formed in an upper layer portion of the first semiconductor region;
    A gate electrode formed on a top surface of the first semiconductor region in a portion sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film;
    A first metal film formed on the second semiconductor region and the third semiconductor region;
    A source electrode formed on the first metal film;
    A drain electrode formed on the second main surface of the semiconductor substrate;
    Have
    The semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, and the third semiconductor region are made of silicon carbide,
    The semiconductor device, wherein the first metal film is Schottky connected to the third semiconductor region.
  2.  請求項1記載の半導体装置において、
     前記第3半導体領域におけるp型不純物の濃度は、1×1020cm-3未満である、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device, wherein the concentration of the p-type impurity in the third semiconductor region is less than 1 × 10 20 cm −3 .
  3.  請求項2記載の半導体装置において、
     前記第1金属膜は、ケイ化ニッケルを含む、半導体装置。
    The semiconductor device according to claim 2,
    The first metal film is a semiconductor device containing nickel silicide.
  4.  請求項3記載の半導体装置において、
     前記第1金属膜における、ニッケルとシリコンとの和に対するニッケルの組成比は、0.4よりも大きい、半導体装置。
    The semiconductor device according to claim 3.
    The semiconductor device in which the composition ratio of nickel to the sum of nickel and silicon in the first metal film is greater than 0.4.
  5.  請求項1記載の半導体装置において、
     前記半導体層は、前記半導体基板の前記第1主面の第1領域、および、前記半導体基板の前記第1主面の領域であって、前記第1領域よりも前記半導体基板の外周側の領域である第2領域で、前記半導体基板の前記第1主面に形成され、
     前記第1半導体領域は、前記第1領域で、前記半導体層の上層部に形成され、
     前記半導体装置は、さらに、
     前記第2領域で、前記半導体層の上層部に形成された、前記第2導電型の第4半導体領域と、
     前記第4半導体領域の上層部に形成された、前記第2導電型の第5半導体領域と、
     前記第5半導体領域上に形成された第2金属膜と、
     前記第2金属膜上に形成されたコンタクト電極と、
     を有し、
     前記第4半導体領域および前記第5半導体領域は、炭化ケイ素からなり、
     前記第2金属膜は、前記第5半導体領域とショットキー接続されている、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor layer is a first region of the first main surface of the semiconductor substrate and a region of the first main surface of the semiconductor substrate, and is a region closer to the outer periphery of the semiconductor substrate than the first region The second region is formed on the first main surface of the semiconductor substrate,
    The first semiconductor region is formed in an upper layer portion of the semiconductor layer in the first region,
    The semiconductor device further includes:
    A second semiconductor region of the second conductivity type formed in an upper layer of the semiconductor layer in the second region;
    A fifth semiconductor region of the second conductivity type formed in an upper layer portion of the fourth semiconductor region;
    A second metal film formed on the fifth semiconductor region;
    A contact electrode formed on the second metal film;
    Have
    The fourth semiconductor region and the fifth semiconductor region are made of silicon carbide,
    The semiconductor device, wherein the second metal film is Schottky connected to the fifth semiconductor region.
  6.  請求項5記載の半導体装置において、
     前記第5半導体領域におけるp型不純物の濃度は、1×1020cm-3未満である、半導体装置。
    The semiconductor device according to claim 5.
    The semiconductor device, wherein the concentration of the p-type impurity in the fifth semiconductor region is less than 1 × 10 20 cm −3 .
  7.  請求項6記載の半導体装置において、
     前記第2金属膜は、ケイ化ニッケルを含む、半導体装置。
    The semiconductor device according to claim 6.
    The semiconductor device, wherein the second metal film includes nickel silicide.
  8.  請求項7記載の半導体装置において、
     前記第2金属膜における、ニッケルとシリコンとの和に対するニッケルの組成比は、0.4よりも大きい、半導体装置。
    The semiconductor device according to claim 7.
    In the semiconductor device, the composition ratio of nickel to the sum of nickel and silicon in the second metal film is greater than 0.4.
  9.  請求項1記載の半導体装置を備えたパワーモジュール。 A power module comprising the semiconductor device according to claim 1.
  10.  請求項9記載のパワーモジュールを備えた電力変換装置。 A power converter comprising the power module according to claim 9.
  11.  第1主面と、前記第1主面と反対側の第2主面とを有する第1導電型の半導体基板と、
     前記半導体基板の前記第1主面の第1領域、および、前記半導体基板の前記第1主面の領域であって、前記第1領域よりも前記半導体基板の外周側の領域である第2領域で、前記半導体基板の前記第1主面に形成された、前記第1導電型の半導体層と、
     前記第1領域で、前記半導体層の上層部に形成され、前記第1導電型と異なる第2導電型の第1半導体領域と、
     前記第1半導体領域の上層部に形成された、前記第1導電型の第2半導体領域と、
     前記第1半導体領域の上層部に形成された、前記第2導電型の第3半導体領域と、
     前記第2領域で、前記半導体層の上層部に形成された、前記第2導電型の第4半導体領域と、
     前記第4半導体領域の上層部に形成された、前記第2導電型の第5半導体領域と、
     前記第2半導体領域と前記半導体層とに挟まれた部分の前記第1半導体領域の上面上に、ゲート絶縁膜を介して形成されたゲート電極と、
     前記第2半導体領域上および前記第3半導体領域上に形成された第1金属膜と、
     前記第5半導体領域上に形成された第2金属膜と、
     前記第1金属膜上に形成されたソース電極と、
     前記第2金属膜上に形成されたコンタクト電極と、
     前記半導体基板の前記第2主面に形成されたドレイン電極と、
     を有し、
     前記半導体基板、前記半導体層、前記第1半導体領域、前記第2半導体領域、前記第3半導体領域、前記第4半導体領域および前記第5半導体領域は、炭化ケイ素からなり、
     前記第5半導体領域におけるp型不純物の濃度は、前記第3半導体領域におけるp型不純物の濃度よりも低い、半導体装置。
    A first conductivity type semiconductor substrate having a first main surface and a second main surface opposite to the first main surface;
    The first region of the first main surface of the semiconductor substrate and the second region of the first main surface of the semiconductor substrate, which is a region closer to the outer periphery of the semiconductor substrate than the first region The semiconductor layer of the first conductivity type formed on the first main surface of the semiconductor substrate,
    A first semiconductor region of a second conductivity type different from the first conductivity type formed in an upper layer portion of the semiconductor layer in the first region;
    A second semiconductor region of the first conductivity type formed in an upper layer portion of the first semiconductor region;
    A third semiconductor region of the second conductivity type formed in an upper layer portion of the first semiconductor region;
    A second semiconductor region of the second conductivity type formed in an upper layer of the semiconductor layer in the second region;
    A fifth semiconductor region of the second conductivity type formed in an upper layer portion of the fourth semiconductor region;
    A gate electrode formed on a top surface of the first semiconductor region in a portion sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film;
    A first metal film formed on the second semiconductor region and the third semiconductor region;
    A second metal film formed on the fifth semiconductor region;
    A source electrode formed on the first metal film;
    A contact electrode formed on the second metal film;
    A drain electrode formed on the second main surface of the semiconductor substrate;
    Have
    The semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, the third semiconductor region, the fourth semiconductor region, and the fifth semiconductor region are made of silicon carbide,
    The semiconductor device, wherein the concentration of the p-type impurity in the fifth semiconductor region is lower than the concentration of the p-type impurity in the third semiconductor region.
  12.  請求項11記載の半導体装置において、
     前記第5半導体領域におけるp型不純物の濃度は、1×1020cm-3未満であり、
     前記第3半導体領域におけるp型不純物の濃度は、1×1020cm-3以上である、半導体装置。
    The semiconductor device according to claim 11.
    The concentration of the p-type impurity in the fifth semiconductor region is less than 1 × 10 20 cm −3 ;
    The semiconductor device, wherein the concentration of the p-type impurity in the third semiconductor region is 1 × 10 20 cm −3 or more.
  13.  請求項12記載の半導体装置において、
     前記第2金属膜は、ケイ化ニッケルを含む、半導体装置。
    The semiconductor device according to claim 12, wherein
    The semiconductor device, wherein the second metal film includes nickel silicide.
  14.  請求項13記載の半導体装置において、
     前記第2金属膜における、ニッケルとシリコンとの和に対するニッケルの組成比は、0.4よりも大きい、半導体装置。
    The semiconductor device according to claim 13.
    In the semiconductor device, the composition ratio of nickel to the sum of nickel and silicon in the second metal film is greater than 0.4.
  15.  第1主面と、前記第1主面と反対側の第2主面とを有する第1導電型の半導体基板と、
     前記半導体基板の前記第1主面の第1領域、および、前記半導体基板の前記第1主面の領域であって、前記第1領域よりも前記半導体基板の外周側の領域である第2領域で、前記半導体基板の前記第1主面に形成された、前記第1導電型の半導体層と、
     前記第1領域で、前記半導体層の上層部に形成され、前記第1導電型と異なる第2導電型の第1半導体領域と、
     前記第1半導体領域の上層部に形成された、前記第1導電型の第2半導体領域と、
     前記第1半導体領域の上層部に形成された、前記第2導電型の第3半導体領域と、
     前記第2領域で、前記半導体層の上層部に形成された、前記第2導電型の第4半導体領域と、
     前記第4半導体領域の上層部に形成された、前記第2導電型の第5半導体領域と、
     前記第2半導体領域と前記半導体層とに挟まれた部分の前記第1半導体領域の上面上に、ゲート絶縁膜を介して形成されたゲート電極と、
     前記第2半導体領域上および前記第3半導体領域上に形成され、金属ケイ化物からなる第1金属膜と、
     前記第1金属膜上に形成された第1導電膜からなるソース電極と、
     前記第5半導体領域上に形成された第2導電膜からなるコンタクト電極と、
     前記半導体基板の前記第2主面に形成されたドレイン電極と、
     を有し、
     前記半導体基板、前記半導体層、前記第1半導体領域、前記第2半導体領域、前記第3半導体領域、前記第4半導体領域および前記第5半導体領域は、炭化ケイ素からなり、
     前記第2導電膜は、前記第1導電膜と同層に形成され、
     前記コンタクト電極は、前記第5半導体領域と接触している、半導体装置。
    A first conductivity type semiconductor substrate having a first main surface and a second main surface opposite to the first main surface;
    The first region of the first main surface of the semiconductor substrate and the second region of the first main surface of the semiconductor substrate, which is a region closer to the outer periphery of the semiconductor substrate than the first region The semiconductor layer of the first conductivity type formed on the first main surface of the semiconductor substrate,
    A first semiconductor region of a second conductivity type different from the first conductivity type formed in an upper layer portion of the semiconductor layer in the first region;
    A second semiconductor region of the first conductivity type formed in an upper layer portion of the first semiconductor region;
    A third semiconductor region of the second conductivity type formed in an upper layer portion of the first semiconductor region;
    A second semiconductor region of the second conductivity type formed in an upper layer of the semiconductor layer in the second region;
    A fifth semiconductor region of the second conductivity type formed in an upper layer portion of the fourth semiconductor region;
    A gate electrode formed on a top surface of the first semiconductor region in a portion sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film;
    A first metal film formed on the second semiconductor region and the third semiconductor region and made of a metal silicide;
    A source electrode made of a first conductive film formed on the first metal film;
    A contact electrode made of a second conductive film formed on the fifth semiconductor region;
    A drain electrode formed on the second main surface of the semiconductor substrate;
    Have
    The semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, the third semiconductor region, the fourth semiconductor region, and the fifth semiconductor region are made of silicon carbide,
    The second conductive film is formed in the same layer as the first conductive film,
    The semiconductor device, wherein the contact electrode is in contact with the fifth semiconductor region.
PCT/JP2014/067975 2014-07-04 2014-07-04 Semiconductor device, power module and electric power converter WO2016002083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067975 WO2016002083A1 (en) 2014-07-04 2014-07-04 Semiconductor device, power module and electric power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067975 WO2016002083A1 (en) 2014-07-04 2014-07-04 Semiconductor device, power module and electric power converter

Publications (1)

Publication Number Publication Date
WO2016002083A1 true WO2016002083A1 (en) 2016-01-07

Family

ID=55018679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067975 WO2016002083A1 (en) 2014-07-04 2014-07-04 Semiconductor device, power module and electric power converter

Country Status (1)

Country Link
WO (1) WO2016002083A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167537A (en) * 2015-03-10 2016-09-15 富士電機株式会社 Vertical mosfet
JP2017135175A (en) * 2016-01-26 2017-08-03 豊田合成株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device
WO2020031971A1 (en) * 2018-08-07 2020-02-13 ローム株式会社 SiC SEMICONDUCTOR DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236099A (en) * 1999-02-17 2000-08-29 Fuji Electric Co Ltd SiC SCHOTTKY DIODE MANUFACTURE METHOD
JP2002076343A (en) * 2000-08-23 2002-03-15 Toshiba Corp Semiconductor device
JP2009194127A (en) * 2008-02-14 2009-08-27 Panasonic Corp Semiconductor device and manufacturing method thereof
JP2010081536A (en) * 2008-09-29 2010-04-08 Sanken Electric Co Ltd Switching device for electric circuit
JP2011009387A (en) * 2009-06-24 2011-01-13 Renesas Electronics Corp Semiconductor device, method of manufacturing the same, and dc-dc converter using the same
JP2012216577A (en) * 2011-03-31 2012-11-08 Semiconductor Components Industries Llc Insulated gate type semiconductor device
JP2012234848A (en) * 2011-04-28 2012-11-29 Sanken Electric Co Ltd Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236099A (en) * 1999-02-17 2000-08-29 Fuji Electric Co Ltd SiC SCHOTTKY DIODE MANUFACTURE METHOD
JP2002076343A (en) * 2000-08-23 2002-03-15 Toshiba Corp Semiconductor device
JP2009194127A (en) * 2008-02-14 2009-08-27 Panasonic Corp Semiconductor device and manufacturing method thereof
JP2010081536A (en) * 2008-09-29 2010-04-08 Sanken Electric Co Ltd Switching device for electric circuit
JP2011009387A (en) * 2009-06-24 2011-01-13 Renesas Electronics Corp Semiconductor device, method of manufacturing the same, and dc-dc converter using the same
JP2012216577A (en) * 2011-03-31 2012-11-08 Semiconductor Components Industries Llc Insulated gate type semiconductor device
JP2012234848A (en) * 2011-04-28 2012-11-29 Sanken Electric Co Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167537A (en) * 2015-03-10 2016-09-15 富士電機株式会社 Vertical mosfet
JP2017135175A (en) * 2016-01-26 2017-08-03 豊田合成株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device
WO2020031971A1 (en) * 2018-08-07 2020-02-13 ローム株式会社 SiC SEMICONDUCTOR DEVICE
JPWO2020031971A1 (en) * 2018-08-07 2021-08-10 ローム株式会社 SiC semiconductor device

Similar Documents

Publication Publication Date Title
CN110709997B (en) Semiconductor device and power conversion device
CN107112361B (en) Semiconductor device and method for manufacturing the same, power conversion device, three-phase motor system, automobile, and railway vehicle
TW201709522A (en) Semiconductor device
JP6290457B2 (en) Semiconductor device and manufacturing method thereof, power conversion device, three-phase motor system, automobile, and railway vehicle
US10790386B2 (en) Silicon carbide semiconductor device with horizontal and vertical current flow
JPWO2018084020A1 (en) Silicon carbide semiconductor device and power converter
JP6995209B2 (en) Semiconductor devices and power converters
EP3352225B1 (en) Semiconductor device and method of manufacturing same, electric power converting device, three-phase motor system, automobile and railway vehicle
WO2016002057A1 (en) Semiconductor device, power module, power conversion device, three-phase motor system, automobile, and railway vehicle
WO2016002083A1 (en) Semiconductor device, power module and electric power converter
WO2015189929A1 (en) Semiconductor device, power module, power conversion device, and semiconductor device manufacturing method
CN113330579B (en) Semiconductor device and power conversion device
WO2011089861A1 (en) Semiconductor device and method for manufacturing same
JP6473512B2 (en) Semiconductor device and method for manufacturing the same, power module, power conversion device, and railcar
JP2018037621A (en) Semiconductor device and manufacturing method of the same, and power conversion equipment
CN111162073B (en) Silicon carbide semiconductor device and power conversion device
JP6325743B2 (en) Semiconductor device, method of manufacturing the same, and power conversion device
JP7127748B2 (en) Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
WO2015033406A1 (en) Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle
JP7023818B2 (en) Semiconductor devices, inverter circuits, drives, vehicles, and elevators
JP7002998B2 (en) Semiconductor devices and their manufacturing methods, power conversion devices, three-phase motor systems, automobiles, and railroad vehicles
WO2016143126A1 (en) Semiconductor device and power conversion device
US20220254906A1 (en) Silicon carbide semiconductor device and power converter
JP7459292B2 (en) Semiconductor device and power conversion device
WO2023189164A1 (en) Semiconductor device and electric power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP