WO2015033406A1 - Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle - Google Patents

Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle Download PDF

Info

Publication number
WO2015033406A1
WO2015033406A1 PCT/JP2013/073836 JP2013073836W WO2015033406A1 WO 2015033406 A1 WO2015033406 A1 WO 2015033406A1 JP 2013073836 W JP2013073836 W JP 2013073836W WO 2015033406 A1 WO2015033406 A1 WO 2015033406A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
semiconductor
region
type
film
Prior art date
Application number
PCT/JP2013/073836
Other languages
French (fr)
Japanese (ja)
Inventor
石垣 隆士
宏行 松島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/073836 priority Critical patent/WO2015033406A1/en
Publication of WO2015033406A1 publication Critical patent/WO2015033406A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Definitions

  • the present invention relates to a semiconductor device and a manufacturing technology thereof, and relates to a semiconductor device including a vertical MISFET and a manufacturing technology thereof, and a power conversion device and a railway vehicle including such a semiconductor device.
  • An inverter is used as a power conversion device that converts electric power for driving a motor or the like between direct current and alternating current.
  • a pair of elements composed of IGBTs (Insulated Gate Bipolar Transistors) and PIN (P-intrinsic-n) diodes connected in antiparallel to each other are connected to the upper arm on the high voltage side and the low voltage side. For example, a pair of lower arms is provided.
  • IGBTs Insulated Gate Bipolar Transistors
  • PIN P-intrinsic-n diodes connected in antiparallel to each other are connected to the upper arm on the high voltage side and the low voltage side.
  • a pair of lower arms is provided.
  • Each of the IGBT and the PIN diode is a semiconductor device using silicon (Si).
  • the loss at the time of power conversion in the inverter provided with the IGBT and PIN diode using Si has been reduced to a value equal to the theoretical value determined from the physical property value of Si. Therefore, it is extremely difficult to further reduce the loss during power conversion in the inverter provided with the semiconductor device using Si.
  • the breakdown electric field of a so-called wide band gap semiconductor such as silicon carbide (SiC) or gallium nitride (GaN) is about an order of magnitude larger than that of silicon (Si).
  • the withstand voltage of a vertical MISFET (Metal Insulator Semiconductor Field Effect Transistor) using SiC is in a wide voltage range from several hundred volts to several kV. Therefore, in the vertical MISFET using SiC, the on-resistance is expected to be significantly reduced as compared with the vertical MISFET using Si. Further, since the vertical MISFET is a unipolar element, the on / off state can be switched at a higher speed than an IGBT that is not a unipolar element.
  • Patent Document 1 describes a technique regarding a vertical MISFET using Si, and International Publication No. 2010/073991 relates to a vertical MISFET using SiC. The technology is described.
  • an n-type drain region, a p-type body region, and an n-type source region are provided between the drain electrode and the source electrode, and gate insulation is provided on the surface of the p-type body region.
  • a gate electrode is provided through the film.
  • the breakdown electric field of silicon carbide (SiC) is about one digit larger than the breakdown electric field of silicon (Si). Therefore, the vertical MISFET using SiC is designed so that the electric field in the n-type drain region is about one digit larger than that of the vertical MISFET using Si. Specifically, in the vertical MISFET using SiC, the impurity concentration in the n-type drain region is increased as compared with the vertical MISFET using Si. Further, in the vertical MISFET using SiC, the thickness of the n-type drain region is made smaller than that of the vertical MISFET using Si. At this time, the on-resistance of the vertical MISFET is reduced by reducing the thickness of the n-type drain region.
  • the n-type drain region opposite to the n-type source region across the p-type body region that is, the gate on the JFET (Junction-Field-Effect-Transistor) region
  • the strength of the electric field in the insulating film increases.
  • the reliability of the gate insulating film decreases due to, for example, non-uniform threshold voltages.
  • the feedback capacitance which is the capacitance between the gate electrode and the drain electrode, increases. If the feedback capacity is large, for example, the power converter may not be operated at high speed.
  • a vertical MISFET provided in an inverter that is used at a relatively high voltage such as for a railway vehicle the strength of the electric field in the gate insulating film on the JFET region is reduced, the feedback capacitance is reduced, Widening is not compatible. Therefore, for example, the loss of power conversion in the inverter increases due to the fact that the width of the JFET region cannot be increased so much, and the amount of heat generated by the inverter increases. Therefore, it is necessary to provide a large cooling device. Therefore, it is not possible to reduce the manufacturing cost of the power conversion device including the vertical MISFET or the railway vehicle including the power conversion device. Alternatively, a power converter provided with a vertical MISFET or a railway vehicle including the power converter cannot be easily reduced in size or weight.
  • An object of the present invention is to provide a semiconductor device that can reduce the strength of an electric field in an insulating film on a JFET region, improve the reliability of the insulating film, reduce the feedback capacitance, and reduce the on-resistance. It is to provide.
  • An object of the present invention is to provide a power converter that includes the semiconductor device as described above and can be easily reduced in cost, reduced in size, or reduced in weight, or includes such a power converter.
  • the object is to provide a railway vehicle that can be reduced in cost, size, or weight.
  • a semiconductor device includes a first conductivity type semiconductor substrate, a drain electrode formed on a lower surface of the semiconductor substrate, and a first conductivity type semiconductor layer formed on an upper surface of the semiconductor substrate. Have.
  • the semiconductor device is formed in an upper layer portion of the semiconductor layer and has a second conductivity type first semiconductor region different from the first conductivity type, and a first conductivity type formed in the upper layer portion of the first semiconductor region.
  • the semiconductor device includes a first film portion made of a first insulating film formed on the upper surface of the semiconductor layer opposite to the second semiconductor region across the first semiconductor region, and a second film on the second semiconductor region.
  • the semiconductor device includes a gate electrode formed on a top surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film, the second semiconductor region, and the third semiconductor.
  • a source electrode formed on the region.
  • the gate electrode is continuously formed from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the first film portion.
  • the first conductivity type semiconductor layer is formed on the upper surface of the first conductivity type semiconductor substrate, and the upper layer portion of the semiconductor layer is different from the first conductivity type.
  • a second conductivity type first semiconductor region is formed, and a first conductivity type second semiconductor region and a second conductivity type third semiconductor region are formed in an upper layer portion of the first semiconductor region.
  • a first insulating film is formed over the semiconductor layer.
  • a first film portion made of the first insulating film is formed on the upper surface of the semiconductor layer opposite to the second semiconductor region with the first semiconductor region interposed therebetween.
  • a second film portion made of the first insulating film is formed on the semiconductor region.
  • a gate electrode is formed on the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film.
  • a source electrode is formed on the second semiconductor region and the third semiconductor region, and a drain electrode is formed on the lower surface of the semiconductor substrate. Then, when forming the gate electrode, the gate electrode is continuously formed from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the first film portion.
  • the strength of the electric field in the insulating film on the JFET region is reduced to improve the reliability of the insulating film, the feedback capacitance is reduced, and the on-resistance is increased. Can be lowered.
  • the power converter device provided with the said semiconductor device, or a railway vehicle including such a power converter device can be reduced in cost, size, or weight easily.
  • FIG. 2 is a main-portion cross-sectional view of the semiconductor device of First Embodiment;
  • FIG. 2 is a top view of the semiconductor device of First Embodiment.
  • FIG. 10 is a main-portion cross-sectional view of the semiconductor device in the first modification example of the first embodiment;
  • FIG. 10 is a top view of a semiconductor device according to a first modification example of the first embodiment.
  • FIG. 4 is a flowchart showing a part of the manufacturing process of the semiconductor device of First Embodiment; 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. 7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof;
  • FIG. FIG. 10 is a cross-sectional view of a principal part of a semiconductor device of Comparative Example 1.
  • FIG. 10 is a main-portion cross-sectional view of the semiconductor device of Embodiment 2;
  • FIG. 6 is a cross-sectional view of the outer periphery of the semiconductor device of the second embodiment.
  • FIG. 10 is a flowchart showing a part of the manufacturing process of the semiconductor device of the second embodiment.
  • FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment during a manufacturing step thereof.
  • FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment during a manufacturing step thereof.
  • FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment during a manufacturing step thereof.
  • FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment during a manufacturing step thereof.
  • FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment.
  • FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment.
  • FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment.
  • FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment.
  • FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment. It is a figure which shows the structure of the power converter device of Embodiment 3.
  • FIG. 10 is a diagram showing a configuration of a railway vehicle according to a fourth embodiment.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
  • the semiconductor device according to the first embodiment includes a vertical MISFET made of silicon carbide (SiC).
  • FIG. 1 is a cross-sectional view of a main part of the semiconductor device of the first embodiment.
  • FIG. 2 is a top view of the semiconductor device of the first embodiment.
  • FIG. 1 is a cross-sectional view taken along line AA in FIG.
  • the gate insulating film 18 see FIG. 1
  • the gate electrode 19 see FIG. 1
  • the source electrode 20 see FIG. 1
  • the interlayer insulating film 21 see FIG. 1). (See) is removed, that is, it is seen through.
  • the portion formed in the region AR1 (see FIG. 1) on the upper surface side and the center side of the n + -type SiC substrate 10, that is, the central portion of the semiconductor device will be described.
  • the semiconductor device 1 is a semiconductor device including a vertical MISFET, and includes an n + type SiC substrate 10, a drain electrode 11, an n ⁇ type epitaxial layer 12, p type body region 13, n + type source region 14 and p + type body contact region 15.
  • the semiconductor device 1 of the first embodiment includes a gate insulating film 18, a gate electrode 19, a source electrode 20, and an interlayer insulating film 21.
  • the n + -type SiC substrate 10 is an n-type semiconductor substrate made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. That is, the conductivity type of n + -type SiC substrate 10 as a semiconductor substrate is n-type.
  • the n type impurity concentration in the n + type SiC substrate 10 is relatively large, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the thickness of the n + type SiC substrate 10 is, for example, about 50 to 500 ⁇ m.
  • the drain electrode 11 is an electrode formed on the lower surface of the n + type SiC substrate 10. Drain electrode 11 is electrically connected to n + type SiC substrate 10.
  • a conductive film in which titanium (Ti), nickel (Ni), gold (Au), or the like is stacked can be used as the drain electrode 11, for example, a conductive film in which titanium (Ti), nickel (Ni), gold (Au), or the like is stacked can be used. By using such a conductive film, the drain electrode 11 and the n + -type SiC substrate 10 can be electrically connected with low resistance.
  • being formed on the lower surface of a certain substrate or on the lower surface of a certain layer means forming below the lower surface of the substrate or lower than the lower surface of the layer. Is included.
  • the n ⁇ type epitaxial layer 12 is formed on the upper surface of the n + type SiC substrate 10, and is an n type semiconductor made of silicon carbide (SiC) into which an n type impurity such as nitrogen (N) or phosphorus (P) is introduced. Is a layer. That is, the conductivity type of the n ⁇ type epitaxial layer 12 as the semiconductor layer is n type.
  • the n - type impurity concentration in the n ⁇ -type epitaxial layer 12 is smaller than the n-type impurity concentration in the n + -type SiC substrate 10, for example, about 1 ⁇ 10 15 to 1 ⁇ 10 16 cm ⁇ 3 . Further, n - the thickness of the type epitaxial layer 12 is, for example, about 5 ⁇ 50 [mu] m.
  • the n ⁇ type epitaxial layer 12 can be formed by, for example, an epitaxial growth method.
  • a p-type impurity such as aluminum (Al) or boron (B) by ion implantation implanted on the entire upper surface of the n + -type SiC substrate 10, reducing the impurity concentration of the n-type in the n + -type SiC substrate 10
  • the n ⁇ type epitaxial layer 12 can also be formed by the method (the same applies to the second embodiment described later).
  • being formed on the upper surface of a certain substrate or on the upper surface of a certain layer means being formed above the upper surface of the substrate or above the upper surface of the layer. It is included.
  • the p-type body region 13 is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12, and is a p-type semiconductor made of silicon carbide (SiC) in which a p-type impurity such as aluminum (Al) or boron (B) is diffused. It is an area. That is, the conductivity type of the p-type body region 13 as a semiconductor region is p-type.
  • the p-type impurity concentration in the p-type body region 13 is, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the p-type body region 13 is, for example, about 1 to 2 ⁇ m.
  • the n + -type source region 14 is formed in the upper layer portion of the p-type body region 13, and is an n-type semiconductor made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. It is an area. That is, the conductivity type of the n + type source region 14 as the semiconductor region is n type.
  • the n-type impurity concentration in the n + -type source region 14 is higher than the n-type impurity concentration in the n ⁇ -type epitaxial layer 12, and can be, for example, about 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3 .
  • the thickness of the n + -type source region 14 can be set to about 100 to 500 nm, for example.
  • the p + -type body contact region 15 is formed in the upper layer portion of the p-type body region 13 and is, for example, p-type made of silicon carbide (SiC) in which p-type impurities such as aluminum (Al) or boron (B) are diffused. It is a semiconductor region. That is, the conductivity type of the p + -type body contact region 15 as the semiconductor region is p-type.
  • the p-type impurity concentration in the p + -type body contact region 15 is higher than the p-type impurity concentration in the p-type body region 13, for example, about 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3 .
  • the thickness of the p + type body contact region 15 is, for example, about 100 to 500 nm.
  • the upper layer portion of the n ⁇ -type epitaxial layer 12 sandwiched between two adjacent p-type body regions 13 is a JFET region 16. That is, the upper layer portion of the n ⁇ type epitaxial layer 12 opposite to the n + type source region 14 across the p type body region 13 is the JFET region 16. Further, the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the JFET region 16, that is, the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12. The upper layer portion is a channel region 17.
  • the gate insulating film 18 is an insulating film formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12.
  • the gate insulating film 18 is made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like, for example, thermal oxidation or CVD (Chemical Vapor Deposition). ) Method.
  • the thickness of the gate insulating film 18 is, for example, about several tens of nm.
  • the gate electrode 19 is an electrode formed on the gate insulating film 18. That is, the gate electrode 19 is an electrode formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 via the gate insulating film 18.
  • the gate electrode 19 is made of, for example, polysilicon, and is a conductive film formed by, for example, a CVD method.
  • the source electrode 20 is an electrode formed on the n + type source region 14 and the p + type body contact region 15.
  • a conductive film made of titanium (Ti) or aluminum (Al) can be used as the source electrode 20. By using such a conductive film, the source electrode 20 and the n + type source region 14 and the p + type body contact region 15 can be electrically connected with low resistance.
  • film portions 22 a and 22 b made of protective insulating film 22 are formed on the upper surface of n ⁇ type epitaxial layer 12 and on n + type source region 14. Yes.
  • the film portion 22 a is formed of a protective insulating film 22 formed on the upper surface of the n ⁇ type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween.
  • the film part 22 b is formed of a protective insulating film 22 formed on the n + type source region 14.
  • the protective insulating film 22 constituting the film part 22b is an insulating film formed in the same layer as the protective insulating film 22 constituting the film part 22a.
  • the protective insulating film 22 is patterned, that is, processed to form the opening 22c, whereby the film portions 22a and 22b are formed.
  • the opening 22 c penetrates the protective insulating film 22 and reaches the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12. Therefore, the upper surface of the p-type body region 13 is exposed at the bottom of the opening 22c.
  • the gate insulating film 18 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film portion 22a.
  • the gate electrode 19 is formed on the gate insulating film 18 from above the portion 18 a formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12.
  • the insulating film 18 is continuously formed over the portion 18b formed on the upper surface of the film portion 22a.
  • the gate electrode 19 extends from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film portion 22a via the gate insulating film 18. It is formed continuously.
  • the gate insulating film 18 is formed directly on the JFET region 16 instead of the film portion 22a, and the gate electrode 19 is formed on the gate insulating film 18 formed directly on the JFET region 16.
  • the strength of the electric field in the insulating film between the region 16 and the gate electrode 19 can be reduced and the reliability of the insulating film can be improved.
  • the thickness TH1 of the gate insulating film 18 is smaller than the thickness TH2 of the film part 22a and smaller than the thickness TH3 of the film part 22b. Thereby, the strength of the electric field in the insulating film between the JFET region 16 and the gate electrode 19 can be further reduced, and the reliability of the insulating film can be further improved.
  • the gate insulating film 18 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film portion 22b. Is formed.
  • the gate electrode 19 is formed on the gate insulating film 18 from above the portion 18 a formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12.
  • the insulating film 18 is continuously formed over a portion 18c formed on the upper surface of the film portion 22b.
  • the gate electrode 19 extends from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film portion 22b via the gate insulating film 18. It is formed continuously.
  • the end 19a of the gate electrode 19 on the film part 22b side is disposed on a portion 18c of the gate insulating film 18 formed on the upper surface of the film part 22b. That is, the gate electrode 19 is terminated on the film part 22b.
  • the semiconductor region such as the n + type source region 14 and the n ⁇ type epitaxial layer 12, and the n + type SiC substrate. It is possible to prevent or suppress damage to 10. In addition, it is possible to prevent or suppress an increase in electric field strength in the vicinity of the end portion 19a due to concentration of electric lines of force toward the end portion 19a of the gate electrode 19.
  • the opening 22c penetrates the protective insulating film 22, and not only the upper surface of the p-type body region 13, but also the upper surface of the n ⁇ -type epitaxial layer 12 and the n + -type source region.
  • the upper surface of 14 is reached. That is, consider the case where not only the upper surface of p-type body region 13 but also the upper surface of n ⁇ -type epitaxial layer 12 and the upper surface of n + -type source region 14 are exposed at the bottom of opening 22c.
  • the gate insulating film 18 is formed on the upper surface of the n ⁇ type epitaxial layer 12 sandwiched between the film portions 22a and 22b, and on the upper surface of the p-type body region 13 sandwiched between the film portions 22a and 22b. It is formed on the entire surface and on the upper surface of the n + -type source region 14 sandwiched between the film part 22a and the film part 22b.
  • the gate electrode 19 is formed on the upper surface of the n ⁇ type epitaxial layer 12 sandwiched between the film portions 22a and 22b and on the entire upper surface of the p-type body region 13 sandwiched between the film portions 22a and 22b.
  • the gate insulating film 18 is formed on the upper surface of the n + -type source region 14 sandwiched between the film part 22a and the film part 22b. That is, the gate electrode 19 does not contact the n ⁇ type epitaxial layer 12 sandwiched between the film part 22a and the film part 22b and the n + type source region 14 sandwiched between the film part 22a and the film part 22b. So that it is formed.
  • the gate insulating film 18 may not be formed on the upper surface of the film part 22a and the upper surface of the film part 22b, and the gate electrode 19 may be directly formed.
  • the gate electrode 19 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film part 22a. Yes.
  • the gate electrode 19 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film part 22b. .
  • the interlayer insulating film 21 is formed on the gate insulating film 18 including the surface of the gate electrode 19.
  • a material of the interlayer insulating film 21 for example, PSG (Phospho ⁇ ⁇ ⁇ Silicate Glass) or silicon oxide can be used.
  • the gate insulating film 18 is not formed on the upper surface of the film part 22a and on the upper surface of the film part 22b, the interlayer insulating film 21 covers the gate electrode 19 and the film parts 22a and 22b. Is formed.
  • a source contact hole 21 a as an opening is formed in the interlayer insulating film 21, the gate insulating film 18, and the protective insulating film 22.
  • Source contact hole 21 a penetrates interlayer insulating film 21, gate insulating film 18, and protective insulating film 22, and reaches the upper surface of n + -type source region 14 and the upper surface of p + -type body contact region 15. That is, the upper surface of the n + type source region 14 and the upper surface of the p + type body contact region 15 are exposed at the bottom surface of the source contact hole 21a.
  • the source electrode 20 is formed on the interlayer insulating film 21 including the bottom and side surfaces of the source contact hole 21a. With such a structure, the source electrode 20 includes the n + -type source region 14 and the p + -type body through the source contact hole 21 a formed in the interlayer insulating film 21, the gate insulating film 18 and the protective insulating film 22. The contact region 15 is electrically connected.
  • each of two directions that intersect each other, preferably orthogonally, in a plan view is defined as an X direction and a Y direction, respectively.
  • the term “when viewed from a direction perpendicular to the upper surface of the n + -type SiC substrate 10” is meant.
  • the X direction and the Y direction are two directions that intersect with each other and preferably are orthogonal to each other within the upper surface of the n + -type SiC substrate 10.
  • the semiconductor device 1 has a plurality of p-type body regions 13, a plurality of n + -type source regions 14, and a plurality of p + -type body contact regions 15.
  • the plurality of p-type body regions 13 are formed in the upper layer portion of the n ⁇ -type epitaxial layer 12 so as to be arranged in a matrix in the X direction and the Y direction in plan view.
  • the plurality of n + -type source regions 14 are respectively formed in the upper layer portions of the plurality of p-type body regions 13.
  • the plurality of p + type body contact regions 15 are respectively formed in the upper layer portions of the plurality of p type body regions 13.
  • the film portion 22a extends in the Y direction and extends in the X direction in a plan view, and extends in the X direction, and extends in the X direction. And a plurality of extending portions 22e arranged in the Y direction, and are formed in a lattice shape.
  • the plurality of n ⁇ -type epitaxial layers 12 arranged in a matrix are partitioned by a lattice-shaped film portion 22a.
  • each of the plurality of regions partitioned by the lattice-like film portion 22a is referred to as a cell.
  • FIG. 2 shows four n ⁇ type epitaxial layers 12 arranged in a matrix in the X and Y directions.
  • the film part 22 a has one extending part 22 d extending in the Y direction and one extending part extending in the X direction and intersecting the extending part 22 d in a plan view.
  • Part 22e and is formed in a cross shape.
  • the four n ⁇ -type epitaxial layers 12 arranged in a matrix are partitioned by a cross-shaped film portion 22a.
  • An area partitioned by the cross-shaped film portion 22a is referred to as a cell.
  • FIG. 3 is a diagram schematically showing a path through which electrons flow when the vertical MISFET is in the ON state in FIG.
  • a positive gate voltage VGS (VGS> 0 V) is applied to the gate electrode 19 with respect to the source electrode 20.
  • VGS positive gate voltage
  • an inversion layer is formed in the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12, that is, in the channel region 17.
  • path PS ⁇ b> 1 from the source electrode 20 to the n + -type source region 14, the inversion layer formed in the channel region 17, the n ⁇ -type epitaxial layer 12, and , Flows to the drain electrode 11 through the n + -type SiC substrate 10. That is, current flows from the drain electrode 11 to the source electrode 20 through the n + -type SiC substrate 10, the n ⁇ -type epitaxial layer 12, the inversion layer formed in the channel region 17, and the n + -type source region 14.
  • VGS negative or zero gate voltage
  • FIG. 4 is a cross-sectional view of main parts of a semiconductor device according to a first modification of the first embodiment.
  • FIG. 5 is a top view of the semiconductor device according to the first modification of the first embodiment. 4 is a cross-sectional view taken along line BB in FIG.
  • the gate insulating film 18 see FIG. 4
  • the gate electrode 19 see FIG. 4
  • the source electrode 20 see FIG. 4
  • the interlayer insulating film 21 FIG. 5
  • FIG. 5 for easy understanding, a region AR11 on the intersection 22f where the film part 22a is not formed is illustrated by a two-dot chain line.
  • a portion formed in the region AR1 (see FIG. 4) on the upper surface side and the center side of the n + -type SiC substrate 10, that is, the central portion of the semiconductor device will be described.
  • the semiconductor device 1 a of the first modification is a semiconductor device including a vertical MISFET, like the semiconductor device 1 of the first embodiment, and an n + type SiC substrate 10.
  • the semiconductor device 1a of the first modification example of the first embodiment includes the gate insulating film 18, the gate electrode 19, the source electrode 20, and the interlayer insulating film 21, like the semiconductor device 1 of the first embodiment.
  • FIG. 5 shows four n ⁇ -type epitaxial layers 12 arranged in a matrix in the X and Y directions, as in FIG.
  • the film part 22 a has one extension part 22 d extending in the Y direction and one extension extending in the X direction and intersecting the extension part 22 d in a plan view. Part 22e, and is formed in a cross shape.
  • the four n ⁇ -type epitaxial layers 12 arranged in a matrix are partitioned by a cross-shaped film portion 22a. As described above, a region defined by the cross-shaped film portion 22a is referred to as a cell.
  • the gate electrode 19 two n adjacent in the X direction - -type epitaxial layer 12 sandwiched by the extending portion 22d on, and two n adjacent in the Y direction - -type epitaxial layer 12
  • the gate insulating film 18 is formed on the extending portion 22e sandwiched between the gate insulating film 18 and the gate insulating film 18.
  • the gate electrode 19 is not formed in the area AR11 on the intersection 22f where the extension 22d and the extension 22e intersect.
  • the gate electrode 19 is not formed in the region AR11 on the intersection 22f as the corner of the cell.
  • the line BB in FIG. 5 is in a direction connecting the centers of cells located on opposite sides of the intersection 22f, for example, a direction inclined 45 degrees from both the X and Y directions orthogonal to each other. Extend.
  • the electric field strength in the JFET region 16 increases as the width of the JFET region 16 increases.
  • the width of the JFET region 16 in the direction along the line BB is larger than the width of the JFET region 16 in the X direction and the Y direction. Therefore, the strength of the electric field in the intersecting portion 22f is larger than the strength of the electric field in the extending portion 22d sandwiched between two n ⁇ type epitaxial layers 12 adjacent in the X direction. Further, the electric field strength in the intersecting portion 22f is larger than the electric field strength in the extending portion 22e sandwiched between two n ⁇ -type epitaxial layers 12 adjacent in the Y direction.
  • the electric field strength in the insulating film constituting the intersection 22f can be reduced, and the JFET at the corner of the cell The reliability of the insulating film on the region 16 can be improved. Further, the feedback capacitance that is the capacitance between the gate electrode 19 and the drain electrode 11 can be reduced.
  • FIG. 6 is a flowchart showing a part of the manufacturing process of the semiconductor device of the first embodiment.
  • 7 to 20 are fragmentary cross-sectional views of the semiconductor device of First Embodiment during the manufacturing steps thereof. In the following, the manufacturing process in the region AR1 on the upper surface side and the center side of the n + type SiC substrate 10 will be described.
  • an n + type SiC substrate 10 is prepared (step S11 in FIG. 6).
  • step S11 as shown in FIG. 7, for example, an n + type SiC substrate 10 made of silicon carbide (SiC) into which an n type impurity such as nitrogen (N) or phosphorus (P) is introduced is prepared.
  • the n type impurity concentration in the n + type SiC substrate 10 is relatively high, and can be, for example, about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the thickness of the n + -type SiC substrate 10 can be set to, for example, about 50 to 500 ⁇ m.
  • the n ⁇ type epitaxial layer 12 is formed (step S12 in FIG. 6).
  • an n ⁇ type epitaxial layer 12 is formed on the upper surface of the n + type SiC substrate 10 by an epitaxial growth method.
  • SiH 4 gas silicon
  • Cl chlorine
  • Cl carbon
  • C 3 H 8 gas carbon
  • reducing gas H 2 gas
  • n-type impurity such as nitrogen (N), phosphorus (P) or arsenic (As) is introduced into the n ⁇ -type epitaxial layer 12.
  • n - a n-type impurity concentration of the type epitaxial layer 12 for example, 1 ⁇ 10 15 can be a ⁇ 1 ⁇ 10 16 cm -3 approximately, n - the thickness of the type epitaxial layer 12, For example, the thickness can be about 5 to 50 ⁇ m.
  • step S13 in FIG. 6 a resist film R 1 is applied on the n ⁇ type epitaxial layer 12. Then, the resist film R1 is patterned by exposing and developing the applied resist film R1 using a photolithography technique, as shown in FIG. The patterning of the resist film R1 is performed so that the region where the p-type body region 13 is formed in the n ⁇ -type epitaxial layer 12 is exposed.
  • a p-type impurity such as aluminum (Al) or boron (B) is introduced into the n ⁇ -type epitaxial layer 12 by ion implantation using the patterned resist film R1 as a mask.
  • the p-type body region 13 is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12.
  • the p-type impurity concentration in the p-type body region 13 can be set to about 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 , for example.
  • the thickness of the p-type body region 13 can be set to about 1 to 2 ⁇ m, for example.
  • region 13 it can heat-process, for example at about 1700 degreeC after the process, and can implant
  • the n + type source region 14 is formed (step S14 in FIG. 6).
  • a resist film R2 is applied on the n ⁇ -type epitaxial layer 12. Then, the applied resist film R2 is subjected to exposure and development using a photolithography technique, thereby patterning the resist film R2 as shown in FIG. The patterning of the resist film R2 is performed so that the region where the n + -type source region 14 is formed in the p-type body region 13 is exposed.
  • an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced into the p-type body region 13 by ion implantation using the patterned resist film R2 as a mask.
  • an n + type source region 14 is formed in the upper layer portion of the p type body region 13.
  • the n-type impurity concentration in the n + -type source region 14 can be set to about 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3 , for example.
  • the thickness of the n + -type source region 14 can be set to about 100 to 500 nm, for example.
  • step S15 the p + type body contact region 15 is formed (step S15 in FIG. 6).
  • a resist film R3 is applied onto the n ⁇ type epitaxial layer 12. Then, the applied resist film R3 is exposed and developed using a photolithography technique to pattern the resist film R3 as shown in FIG. The patterning of the resist film R3 is performed so that a region where the p + type body contact region 15 is formed in the p type body region 13 or the n + type source region 14 is exposed.
  • a p-type impurity made of, for example, aluminum (Al) or boron (B) is introduced into the p-type body region 13 or the n + -type source region 14 by an ion implantation method using the patterned resist film R3 as a mask.
  • p + type body contact region 15 is formed in the upper layer portion of p type body region 13.
  • the p-type impurity concentration in the p + -type body contact region 15 can be set to, for example, about 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3 as described above. Further, the thickness of the p + -type body contact region 15 can be set to about 100 to 500 nm, for example.
  • FIG. 12 shows a state where the resist film R3 is removed.
  • the step of forming the n + -type source region 14 and the p + -type body contact region 15 is not limited to the above-described order, and any process can be used as long as a resist film that is appropriately patterned is used as a mask. You may carry out in order.
  • a heat treatment is performed at, for example, about 1700 ° C. Can be activated.
  • step S16 the protective insulating film 22 is formed (Step S16 in FIG. 6).
  • step S16 as shown in FIG. 13, on the upper surface of n ⁇ type epitaxial layer 12, on the upper surface of p type body region 13, on n + type source region 14 and on p + type body contact region 15. Then, the protective insulating film 22 is formed. That is, the protective insulating film 22 is formed on the n ⁇ type epitaxial layer 12.
  • the protective insulating film 22 is for reducing the strength of the electric field in the insulating film on the n ⁇ type epitaxial layer 12 on the opposite side of the n + type source region 14 across the p type body region 13.
  • the protective insulating film 22 is for reducing the capacitance generated by sandwiching the insulating film on the n ⁇ type epitaxial layer 12 on the opposite side of the n + type source region 14 with the p type body region 13 in between. .
  • the protective insulating film 22 various films made of, for example, silicon oxide (SiO 2 ) or silicon oxynitride (SiON) having a low density can be used.
  • various films made of carbon-containing silicon oxide (SiOC) as a low-k film having a dielectric constant lower than that of silicon oxide (SiO 2 ) are preferably used as the protective insulating film 22.
  • a laminated film in which the above various films are suitably laminated can be used as the protective insulating film 22.
  • Such a protective insulating film 22 can be formed by a CVD method at a relatively low temperature of, for example, 800 ° C. or lower. Further, the thickness of the protective insulating film 22 can be set to, for example, about several hundred nm.
  • step S17 the protective insulating film 22 is patterned (step S17 in FIG. 6).
  • step S17 the protective insulating film 22 is processed, that is, patterned by the photolithography technique and the dry etching technique to form the opening 22c, thereby forming the film parts 22a and 22b.
  • the opening 22 c penetrates the protective insulating film 22 and reaches the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12. Therefore, the upper surface of the p-type body region 13 is exposed at the bottom of the opening 22c.
  • the film portion 22 a is formed of a protective insulating film 22 formed on the upper surface of the n ⁇ type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween.
  • the film part 22 b is formed of a protective insulating film 22 formed on the n + type source region 14. That is, the protective insulating film 22 constituting the film part 22b is an insulating film formed in the same layer as the protective insulating film 22 constituting the film part 22a.
  • the opening 22 c penetrates the protective insulating film 22 and reaches at least the upper surface of the p-type body region 13. Therefore, the opening 22c may reach the upper surface of the n ⁇ -type epitaxial layer 12 on the opposite side of the n + -type source region 14 with the p-type body region 13 interposed therebetween, and reach the upper surface of the n + -type source region 14. Also good. That is, at the bottom of the opening 22c, the upper surface of the n ⁇ type epitaxial layer 12 opposite to the n + type source region 14 across the p type body region 13 may be exposed, and the upper surface of the n + type source region 14 may be exposed. May be exposed.
  • the cross-sectional shape of the opening 22c is a taper shape, and the width of the opening 22c decreases from the top to the bottom, that is, the bottom of the opening 22c.
  • the upper portion of the protective insulating film 22 is processed and removed by the dry etching technique, and then the lower portion of the protective insulating film 22 is processed and removed by the wet etching technique.
  • An opening 22c having a shape can be formed.
  • the strength of the electric field can be prevented from increasing in the vicinity of the gate electrode 19 (see FIG. 17 described later) formed at the end of the opening 22c on the film portion 22a side.
  • the gate insulating film 18 is formed (Step S18 in FIG. 6).
  • the gate insulating film 18 is formed on the upper surface of the p-type body region 13 exposed at the bottom of the opening 22c.
  • the density of the gate insulating film 18 is larger than the density of the protective insulating film 22.
  • the dielectric constant of the gate insulating film 18 is larger than the dielectric constant of the protective insulating film 22.
  • the gate insulating film 18 for example, an insulating film formed at a relatively high temperature can be used.
  • an insulating film formed by heat-treating a film deposited at a relatively low temperature at a high temperature can be used.
  • a gate insulating film 18 various films made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), or hafnium oxide (HfO 2 ) are preferably used. Can be used.
  • a laminated film in which the above various films are suitably laminated can be used. Further, such a gate insulating film 18 can be formed by, for example, a CVD method.
  • the thickness TH1 of the gate insulating film 18 is smaller than the thickness TH2 of the film part 22a and smaller than the thickness TH3 of the film part 22b. Thereby, the strength of the electric field in the insulating film between the JFET region 16 and the gate electrode 19 can be reduced, and the reliability of the insulating film can be improved.
  • the thickness TH2 of the protective insulating film 22 constituting the film portion 22a is, for example, about several hundred nm
  • the thickness TH1 of the gate insulating film 18 can be, for example, about several tens of nm. .
  • the gate insulating film 18 is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12.
  • the gate insulating film 18 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film part 22a.
  • the gate insulating film 18 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film portion 22b. .
  • step S19 the gate electrode 19 is formed (step S19 in FIG. 6).
  • a conductive film 19b is formed on the gate insulating film 18, as shown in FIG.
  • the conductive film 19b is made of, for example, polysilicon in which n-type impurities such as phosphorus (P) or arsenic (As) are diffused at a high concentration, or polysilicon in which p-type impurities such as boron (B) are diffused at a high concentration.
  • the conductive film 19b can be formed by, for example, a CVD method.
  • the conductive film 19b is patterned to form the gate electrode 19.
  • the conductive film 19b is patterned, that is, processed by a photolithography technique and a dry etching technique. For example, patterning is performed by a dry etching technique using a resist film patterned by a photolithography technique as a mask, thereby forming a gate electrode 19 made of a conductive film 19b as shown in FIG.
  • the gate electrode 19 is formed on a portion 18a of the gate insulating film 18 formed on the upper surface of the p-type body region 13 sandwiched between the film part 22a and the film part 22b.
  • the gate electrode 19 is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 via the gate insulating film 18.
  • the gate electrode 19 is formed continuously from the portion 18a of the gate insulating film 18 to the portion 18b formed on the upper surface of the film portion 22a. That is, the gate electrode 19 extends from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film portion 22a via the gate insulating film 18. It is formed continuously. As a result, the strength of the electric field in the insulating film between the n ⁇ type epitaxial layer 12 and the gate electrode 19 can be reduced, and the reliability of the insulating film can be improved.
  • the gate electrode 19 is formed continuously from the portion 18a of the gate insulating film 18 to the portion 18c formed on the upper surface of the film portion 22b. That is, the gate electrode 19 extends from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 to the upper surface of the film portion 22b via the gate insulating film 18. It is formed continuously.
  • the end portion 19a on the film portion 22b side of the gate electrode 19 is disposed on a portion 18c of the gate insulating film 18 formed on the surface of the film portion 22b. That is, the gate electrode 19 is formed so that the gate electrode 19 is terminated on the film part 22b.
  • the conductive film 19b is processed on the film portion 22b, that is, on the protective insulating film 22, so that the semiconductor regions such as the n + -type source region 14 and the p-type body region 13 are formed. And damage to the n + -type SiC substrate 10 can be prevented or suppressed. In addition, it is possible to prevent or suppress an increase in electric field strength in the vicinity of the end portion 19a due to concentration of electric lines of force toward the end portion 19a of the gate electrode 19.
  • the gate electrode 19 By forming the gate electrode 19 in this way, the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 becomes the channel region 17. Further, the upper layer portion of the n ⁇ -type epitaxial layer 12 on the opposite side of the n + -type source region 14 with the p-type body region 13 interposed therebetween becomes the JFET region 16.
  • the gate insulating film 18 is formed by, for example, a thermal oxidation method, the gate insulating film 18 is not formed on the upper surface of the film portion 22a and the upper surface of the film portion 22b, and the gate electrode 19 is directly It is formed.
  • an interlayer insulating film 21 is formed (Step S20 in FIG. 6).
  • an interlayer insulating film 21 is formed on the gate insulating film 18 including the surface of the gate electrode 19 as shown in FIG.
  • a silicon oxide film can be used as the interlayer insulating film 21, and can be formed by, for example, a CVD method.
  • the source contact hole 21a is formed (step S21 in FIG. 6).
  • a source contact hole 21a as an opening is formed in the interlayer insulating film 21, the gate insulating film 18 and the protective insulating film 22 by using a photolithography technique and an etching technique. To do. That is, a source contact hole 21 a that penetrates the interlayer insulating film 21, the gate insulating film 18, and the protective insulating film 22 and reaches the n + type source region 14 and the p + type body contact region 15 is formed. The upper surface of the n + -type source region 14 and the upper surface of the p + -type body contact region 15 are exposed on the bottom surface of the source contact hole 21a.
  • the source electrode 20 is formed (step S22 in FIG. 6).
  • a conductive film made of, for example, aluminum (Al) is formed on the interlayer insulating film 21 and so as to cover the bottom surface and the inner wall of the source contact hole 21a, for example, by vapor deposition or
  • the source electrode 20 is formed by depositing by sputtering or the like.
  • the drain electrode 11 is formed (step S23 in FIG. 6).
  • a metal film made of, for example, any one of titanium (Ti), nickel (Ni), gold (Au), and silver (Ag), or any two of them is formed on the lower surface of the n + -type SiC substrate 10.
  • the drain electrode 11 is formed by depositing a laminated film in which metal films of seeds or more are laminated, for example, by vapor deposition or sputtering. Thereby, the semiconductor device 1 as shown in FIG. 1 can be manufactured.
  • a passivation film can be formed on the upper surface and the lower surface of the semiconductor device 1.
  • an opening can be formed in a portion to be a pad region for electrically connecting the drain electrode 11, the gate electrode 19, and the source electrode 20 to the outside.
  • FIG. 21 is a main-portion cross-sectional view of the semiconductor device of Comparative Example 1.
  • n + -type SiC substrate 10 of the semiconductor device 101 of Comparative Example 1 the drain electrode 11 and the n - each type epitaxial layer 12, the semiconductor device 1 of the n + -type SiC substrate 10, the drain electrode 11 and the n
  • each of the p-type body region 13, n + -type source region 14 and p + -type body contact region 15 of the semiconductor device 101, p-type body region 13 of the semiconductor device 1, n + -type source region 14 and p + corresponds to each of the mold body contact regions 15 (see FIG. 1).
  • each of the JFET region 16 and the channel region 17 of the semiconductor device 101 corresponds to each of the JFET region 16 and the channel region 17 of the semiconductor device 1 (see FIG. 1).
  • the gate insulating film 18, the gate electrode 19, the source electrode 20, and the interlayer insulating film 21 of the semiconductor device 101 are the same as the gate insulating film 18, the gate electrode 19, the source electrode 20, and the interlayer insulating film 21 of the semiconductor device 1. These correspond to each (see FIG. 1).
  • the film part 22a (see FIG. 1) and the film part 22b (see FIG. 1) formed in the semiconductor device 1 are not formed.
  • the breakdown electric field of silicon carbide (SiC) is about one digit larger than the breakdown electric field of silicon (Si). Therefore, the vertical MISFET using SiC is designed so that the electric field in the n ⁇ -type epitaxial layer 12 is increased by about one digit compared to the vertical MISFET using Si. Specifically, in the vertical MISFET using SiC, the impurity concentration in the n ⁇ type epitaxial layer 12 is increased as compared with the vertical MISFET using Si. In addition, in the vertical MISFET using SiC, the thickness of the n ⁇ type epitaxial layer 12 is made smaller than that in the vertical MISFET using Si. At this time, the on-resistance of the vertical MISFET is reduced by reducing the thickness of the n ⁇ type epitaxial layer 12.
  • the on-resistance of the vertical MISFET is reduced, reducing the thickness of the n ⁇ -type epitaxial layer 12 increases the strength of the electric field in the gate insulating film 18 on the JFET region 16. As a result, the reliability of the gate insulating film 18 decreases due to, for example, non-uniform threshold voltages.
  • the feedback capacitance Cgd that is the capacitance between the gate electrode 19 and the drain electrode 11 increases. When the feedback capacitance Cgd is large, the power converter cannot be operated at high speed, or the control process when driving the motor or the like by the power converter may be complicated.
  • an inverter that is used at a relatively high voltage such as for a railway vehicle is desirably provided with a vertical MISFET having a high withstand voltage of about several kV.
  • the impurity concentration in the n ⁇ -type epitaxial layer 12 is relatively small.
  • the width of the JFET region 16 is narrow, the ratio of the resistance of the JFET region 16 to the entire on-resistance of the vertical MISFET increases. It becomes difficult to reduce the on-resistance of the MISFET. For this reason, the width of the JFET region 16 is designed to be wide.
  • the strength of the electric field in the gate insulating film 18 on the JFET region 16 is reduced, and the feedback capacitance is reduced.
  • the widening of the JFET region 16 is not compatible. Therefore, for example, the width of the JFET region 16 cannot be increased so much that the loss at the time of power conversion in the inverter increases, and the amount of heat generated in the inverter increases. Therefore, in order to sufficiently cool the inverter corresponding to this large amount of heat generation, it is necessary to provide a large cooling device having a large cooling capacity.
  • a power converter provided with a vertical MISFET or a railway vehicle including the power converter cannot be easily reduced in size or weight.
  • the portion of the gate insulating film on the JFET region 16 is large and is sandwiched between the n + type source region 14 and the n ⁇ type epitaxial layer 12. Further, the thickness of the portion formed on the upper surface of p-type body region 13 is small.
  • the gate insulating film is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12. It is difficult to process the portion and leave a thin gate insulating film having a thickness of, for example, about several tens of nanometers. In particular, it is difficult to make the thickness of the portion thinned by processing uniform. Further, when forming the gate insulating film, the p-type body region 13 under the gate insulating film may be damaged.
  • the p-type body region 13 and the n ⁇ -type epitaxial layers 12 and n under the p-type body region 13 are interposed through the thin gate insulating film.
  • the + type SiC substrate 10 may be damaged.
  • film portions 22a and 22b are formed.
  • the gate electrode 19 is formed on the JFET region 16 via at least the film part 22a.
  • the gate insulating film 18 is formed directly on the JFET region 16 instead of the film portion 22a, and the gate electrode 19 is formed on the gate insulating film 18 formed directly on the JFET region 16.
  • the strength of the electric field in the insulating film between the region 16 and the gate electrode 19 can be reduced and the reliability of the insulating film can be improved. Further, the feedback capacitance Cgd can be reduced.
  • the electric field in the insulating film on the JFET region 16 is increased.
  • the strength of the electric field in the insulating film on the JFET region 16 can be reduced to improve the reliability of the insulating film, and the width of the JFET region 16 can be increased while reducing the feedback capacitance Cgd.
  • the gate electrode 19 is formed on the channel region 17 via only the gate insulating film 18 and not via the film part 22a. Accordingly, after the thick gate insulating film is formed, the gate insulating film is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12. There is no need to process the part to leave a thin gate insulating film having a thickness of about several tens of nanometers, for example. Therefore, when the gate insulating film 18 is formed, it is possible to prevent the p-type body region 13 under the gate insulating film 18 from being damaged.
  • the gate electrode 19 is processed after the gate insulating film 18 is formed, the p-type body region 13 and the n ⁇ -type epitaxial layer under the p-type body region 13 are interposed via the thin gate insulating film 18. It is possible to prevent the 12 and n + type SiC substrate 10 from being damaged.
  • the first embodiment can also be applied to the case where the conductivity types of the semiconductor substrate and each semiconductor region are interchanged between p-type and n-type. Even in such a case, the same effect as that of the semiconductor device 1 of the first embodiment can be obtained (the same applies to the second embodiment described later).
  • n + type SiC substrate instead of the n + type SiC substrate, a semiconductor substrate made of various semiconductor materials such as silicon (Si) or gallium nitride (GaN) is used, and the n ⁇ type epitaxial layer is made of Si or the like.
  • the present invention is also applicable when a semiconductor layer made of various semiconductor materials such as GaN is used. Even in such a case, the effect similar to that of the semiconductor device of the first embodiment can be obtained to some extent, although the degree is less than that in the case of using silicon carbide (SiC) as the semiconductor material (second embodiment described later). The same applies to the above).
  • FIG. 22 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment.
  • a portion formed in the region AR1 (see FIG. 22) on the upper surface side and the center side of the n + -type SiC substrate 10, that is, the central portion of the semiconductor device will be described.
  • the semiconductor device 1b of the second embodiment is a semiconductor device including a vertical MISFET, like the semiconductor device 1 of the first embodiment, and includes an n + -type SiC substrate 10 and a drain electrode. 11, an n ⁇ type epitaxial layer 12, a p type body region 13, an n + type source region 14 and a p + type body contact region 15.
  • the semiconductor device 1b of the second embodiment includes the gate insulating film 18, the gate electrode 19, the source electrode 20, and the interlayer insulating film 21, like the semiconductor device 1 of the first embodiment.
  • the upper layer portion of the n ⁇ type epitaxial layer 12 on the opposite side of the n + type source region 14 across the p type body region 13 is a JFET region 16. Further, as in the first embodiment, the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n ⁇ -type epitaxial layer 12 is a channel region 17.
  • Portions 22a and 22b are formed.
  • the film part 22 a is formed of a protective insulating film 22 formed above the upper part of the n ⁇ -type epitaxial layer 12, that is, above the JFET region 16, on the opposite side of the n + -type source region 14 across the p-type body region 13.
  • the film part 22 b is composed of a protective insulating film 22 formed above the n + -type source region 14.
  • the protective insulating film 22 constituting the film part 22b is an insulating film formed in the same layer as the protective insulating film 22 constituting the film part 22a.
  • the thickness TH1 of the gate insulating film 18 is smaller than the thickness TH2 of the film part 22a and smaller than the thickness TH3 of the film part 22b. Thereby, the strength of the electric field in the insulating film between the JFET region 16 and the gate electrode 19 can be reduced, and the reliability of the insulating film can be improved.
  • the insulating film 23 is formed between the JFET region 16 and the film portion 22a made of the protective insulating film 22. That is, the insulating film 23 is formed on the upper surface of the n ⁇ type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween. Therefore, the film portion 22 a is formed from the protective insulating film 22 formed on the upper surface of the n ⁇ type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween via the insulating film 23. Become.
  • the insulating film 23 is made of silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like, for example, like the gate insulating film 18. It is formed by the method or the CVD method. Further, the thickness of the insulating film 23 is, for example, about several tens of nm.
  • Film portions 22a and 22b are formed by patterning the protective insulating film 22 to form the opening 22c.
  • the opening 22 c penetrates the protective insulating film 22 and reaches the insulating film 23. Further, when the protective insulating film 22 is patterned to form the opening 22c, the insulating film 23 is patterned to form the opening 23c. Opening 23 c communicates with opening 22 c and penetrates insulating film 23 to reach p type body region 13.
  • the insulating film 23 is a higher quality film than the protective insulating film 22.
  • the density of the insulating film 23 is larger than the density of the protective insulating film 22.
  • the dielectric constant of the insulating film 23 is larger than the dielectric constant of the protective insulating film 22. At this time, the density of levels in the insulating film 23 is smaller than the density of levels in the protective insulating film 22.
  • the JFET region 16 is a region where electrons as carriers move.
  • the portion in contact with the JFET region 16 is a portion where the intensity of the electric field in the insulating film is maximized. Therefore, by forming the insulating film 23 having a level lower than the density of the levels in the protective insulating film 22 at the interface portion between the JFET region 16 and the protective insulating film 22, It is possible to prevent or suppress the carriers that move in the JFET region 16 from being captured by the existing levels. Therefore, the reliability of the insulating film on the JFET region 16 can be further improved.
  • the insulating film 23 is also formed between the n + type source region 14 and the film part 22 b made of the protective insulating film 22. That is, the insulating film 23 is also formed on the n + type source region 14. Therefore, the film part 22 b is composed of the protective insulating film 22 formed on the n + type source region 14 via the insulating film 23.
  • the insulating film 23 under the film part 22b is an insulating film formed in the same layer as the insulating film 23 under the film part 22a. Thereby, like the insulating film on the JFET region 16, the reliability of the insulating film on the n + -type source region 14 can be improved.
  • FIG. 23 is a cross-sectional view of the outer periphery of the semiconductor device of the second embodiment.
  • the central portion of the semiconductor device 1 b according to the second embodiment is formed on the upper surface side of the n + -type SiC substrate 10 and in the central region AR ⁇ b > 1.
  • the outer peripheral portion of the semiconductor device 1b of the second embodiment is formed in the area AR2 on the upper surface side of the n + type SiC substrate 10 and on the outer peripheral side of the area AR1. Yes.
  • semiconductor device 1b of the second embodiment has electric field relaxation region 24.
  • the electric field relaxation region 24 is formed in the upper layer portion of the n ⁇ -type epitaxial layer 12 in the region AR2 on the upper surface side of the n + -type SiC substrate 10 and on the outer peripheral side of the region AR1, for example, aluminum (Al)
  • it is a p-type semiconductor region made of silicon carbide (SiC) in which a p-type impurity such as boron (B) is diffused. That is, the conductivity type of the electric field relaxation region 24 as a semiconductor region is p-type.
  • Drain electrode 11 is formed on the entire bottom surface of n + -type SiC substrate 10 in regions AR1 and AR2.
  • source electrode 20 is formed in region AR2 so as to recede from the outer peripheral portion of the upper surface of n + -type SiC substrate 10 toward the center. Therefore, when a high voltage is applied to the drain electrode 11, electric lines of force from the drain electrode 11 toward the source electrode 20 are concentrated on the outer peripheral end 20a on the lower surface of the source electrode 20, and the n ⁇ type epitaxial layer in the vicinity of the outer peripheral end 20a. 12, the electric field strength is higher than that in the n ⁇ type epitaxial layer 12 (see FIG. 22) in the region AR 1.
  • an electric field relaxation region 24 for relaxing the electric field is formed in the upper layer portion of n ⁇ type epitaxial layer 12 in place of p type body region 13.
  • the electric field relaxation region 24 is formed such that the outer peripheral edge 20a of the lower surface of the source electrode 20 is included in the electric field relaxation region 24 in plan view.
  • the p-type impurity concentration in the electric field relaxation region 24 is smaller than the p-type impurity concentration in the p-type body region 13.
  • the p-type impurity concentration in the electric field relaxation region 24 is, for example, about 1 ⁇ 10 16 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the thickness of the electric field relaxation region 24 is, for example, about 1 to 2 ⁇ m.
  • the p-type impurity concentration in electric field relaxation region 24 decreases from the center side of the upper surface of n + -type SiC substrate 10 toward the outer peripheral side.
  • ap + type body contact region 15 is formed in the upper layer portion of electric field relaxation region 24.
  • An insulating film 23, a protective insulating film 22, a gate insulating film 18, and an interlayer insulating film 21 are formed on the upper surface of the n ⁇ type epitaxial layer 12, the upper surface of the electric field relaxation region 24, and the p + type body contact region 15. They are formed in order from bottom to top.
  • the film part 22g made of the protective insulating film 22 formed via the insulating film 23 is formed on the electric field relaxation region 24.
  • the insulating film 23 under the film part 22g is an insulating film formed in the same layer as the insulating film 23 under the film part 22a (see FIG. 22) in the region AR1, and the protective insulating film 22 constituting the film part 22g. Is an insulating film formed in the same layer as the protective insulating film 22 (see FIG. 22) constituting the film part 22a in the region AR1.
  • the gate insulating film 18 when the gate insulating film 18 is formed by a thermal oxidation method, the gate insulating film 18 may not be formed on the protective insulating film 22. At this time, the interlayer insulating film 21 is directly formed on the protective insulating film 22.
  • a source contact hole 21b as an opening is formed in the interlayer insulating film 21, the gate insulating film 18, the protective insulating film 22, and the insulating film 23.
  • Source contact hole 21 b passes through interlayer insulating film 21, gate insulating film 18, protective insulating film 22, and insulating film 23 and reaches the upper surface of p + -type body contact region 15. That is, the upper surface of the p + type body contact region 15 is exposed at the bottom surface of the source contact hole 21b.
  • the source electrode 20 is formed on the interlayer insulating film 21 including the bottom and side surfaces of the source contact hole 21b.
  • the source electrode 20 is electrically connected to the p + -type body contact region 15 via the source contact hole 21b formed in the interlayer insulating film 21, the gate insulating film 18, the protective insulating film 22, and the insulating film 23.
  • the p + type body contact region 15 is electrically connected to the electric field relaxation region 24. Therefore, the source electrode 20 is electrically connected to the electric field relaxation region 24 through the p + type body contact region 15.
  • the p + -type body contact region 15 may not be formed in the upper layer portion of the electric field relaxation region 24, and the source electrode 20 may be electrically connected directly to the electric field relaxation region 24.
  • an insulating film 23 of higher quality than the protective insulating film 22 is formed between the upper surface of the electric field relaxation region 24 and the protective insulating film 22 in the region AR2.
  • the protective insulating film 22 is not in contact with the electric field relaxation region 24, which is a region where current flows, it is possible to prevent or suppress carriers from being trapped in the levels existing in the protective insulating film 22. it can. Therefore, the performance of the semiconductor device 1b can be maintained even when the strength of the electric field applied to the electric field relaxation region 24 and the n ⁇ -type epitaxial layer 12 is larger than when the insulating film 23 is not formed.
  • the insulating film 23 by forming the insulating film 23, the area of the region where the electric field relaxation region 24 is formed can be reduced while maintaining the performance of the semiconductor device 1b, and the area of the semiconductor device 1b can be reduced. it can.
  • FIG. 24 is a flowchart showing a part of the manufacturing process of the semiconductor device of Second Embodiment.
  • 25 to 28 are cross-sectional views of relevant parts in the manufacturing process of the semiconductor device of the second embodiment.
  • the manufacturing process in the region AR1 on the upper surface side and the center side of the n + type SiC substrate 10 will be described.
  • steps S11 to S15 and steps S18 to S23 in the second embodiment are the same as steps S11 to S15 and steps S18 to S23 in the first embodiment. It is the same as each process (refer FIG. 6).
  • n ⁇ type epitaxial layer 12 p type body region 13, n + type source region 14 and p + type body contact region 15 are formed on the upper surface of n + type SiC substrate 10. (Step S11 to Step S15 in FIG. 24).
  • a two-layer insulating film including the insulating film 23 and the protective insulating film 22 is formed (step S26 in FIG. 24).
  • step S26 first, as shown in FIG. 25, on the upper surface of the n ⁇ type epitaxial layer 12, on the p type body region 13, on the n + type source region 14 and on the p + type body contact region 15. Then, the insulating film 23 is formed.
  • the density of the insulating film 23 is larger than the density of the protective insulating film 22 (see FIG. 26 described later). Further, the dielectric constant of the insulating film 23 is larger than the dielectric constant of the protective insulating film 22.
  • an insulating film formed at a relatively high temperature can be used.
  • an insulating film formed by heat-treating a film deposited at a relatively low temperature at a high temperature can be used.
  • an insulating film 23 preferably, for example, silicon oxide (SiO 2), silicon oxynitride (SiON), use various films made of aluminum oxide (Al 2 O 3) or hafnium oxide (HfO 2) be able to.
  • a laminated film in which the above various films are suitably laminated can be used.
  • an insulating film 23 can be formed by a thermal oxidation method or a CVD method at a temperature of, for example, 800 ° C. or higher.
  • the thickness of the insulating film 23 can be set to, for example, about several tens of nm.
  • a protective insulating film 22 is formed on the insulating film 23 as shown in FIG.
  • the process of forming this protective insulating film 22 can be the same as the process of step S16 in the first embodiment.
  • a two-layer insulating film composed of the insulating film 23 and the protective insulating film 22 is patterned (step S27 in FIG. 24).
  • the protective insulating film 22 is processed, that is, patterned by the photolithography technique and the dry etching technique to form the opening 22c, and the film part 22a and the film part 22b are formed.
  • the step of forming the opening 22c can be the same as the step S17 in the first embodiment. However, in the second embodiment, the opening 22 c penetrates the protective insulating film 22 and reaches the insulating film 23.
  • step S27 the opening 23c is formed by processing, that is, patterning, the insulating film 23 by a photolithography technique and a dry etching technique. Opening 23 c communicates with opening 22 c and penetrates insulating film 23 to reach the upper surface of p-type body region 13.
  • a film portion 22a is formed on the upper surface of the n ⁇ type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween via the insulating film 23, and the n + type source region
  • a film portion 22 b is formed on the insulating film 23 on the upper surface 14. Further, the upper surface of the p-type body region 13 is exposed at the bottom of the opening 23c.
  • step S18 in FIG. 24 the gate insulating film 18 is formed (step S18 in FIG. 24).
  • step S18 as shown in FIG. 28, the gate insulating film 18 is formed on the upper surface of the p-type body region 13 exposed in the opening 23c.
  • the process of step S18 can be the same as the process of step S18 in the first embodiment except that the insulating film 23 is formed under the film portions 22a and 22b.
  • steps similar to the steps S19 and S20 in FIG. 6 are performed to form the gate electrode 19 and the interlayer insulating film 21 as shown in FIG. 22 (steps S19 and S20 in FIG. 24). .
  • a step similar to the step S21 in FIG. 6 is performed to form the source contact hole 21a as shown in FIG. 22 (step S21 in FIG. 24).
  • a source contact hole 21 a as an opening is formed in the insulating film 23. . That is, a source contact hole 21 a that penetrates the interlayer insulating film 21, the gate insulating film 18, the protective insulating film 22 and the insulating film 23 and reaches the n + type source region 14 and the p + type body contact region 15 is formed.
  • step S22 and step S23 in FIG. 24 are performed to form the source electrode 20 and the drain electrode 11, and as shown in FIG.
  • the semiconductor device 1b can be manufactured.
  • ⁇ Method for Manufacturing Semiconductor Device in Outer Periphery> 29 to 32 are cross-sectional views of the outer periphery during the manufacturing process of the semiconductor device of the second embodiment.
  • the manufacturing steps of the semiconductor device in the region AR2 on the upper surface side of the n + -type SiC substrate 10 and on the outer peripheral side of the region AR1 there are differences from the manufacturing steps of the semiconductor device in the region AR1 described above. ,explain.
  • step S13 of FIG. 24 an electric field relaxation region 24 is formed in the region AR2 in place of the p-type body region 13 (see FIG. 22) in the upper layer portion of the n ⁇ -type epitaxial layer 12, as shown in FIG. Thereafter, in step S15 of FIG. 24, ap + type body contact region 15 is formed in the upper portion of electric field relaxation region 24 in region AR2, as shown in FIG.
  • step S26 of FIG. 24 in the region AR2, as shown in FIG. 30, first, on the upper surface of the n ⁇ type epitaxial layer 12, on the upper surface of the electric field relaxation region 24, and on the p + type body contact region 15 Then, an insulating film 23 is formed. Then, in the region AR2, as shown in FIG. 31, the protective insulating film 22 is formed on the insulating film 23.
  • step S27 of FIG. 24 the two-layer insulating film including the insulating film 23 and the protective insulating film 22 is not patterned in the area AR2.
  • step S18 of FIG. 24 the gate insulating film 18 is formed on the protective insulating film 22 in the area AR2 as shown in FIG. Note that when the gate insulating film 18 is formed in the region AR1, for example, by a thermal oxidation method, the gate insulating film 18 is not formed on the protective insulating film 22 in the region AR2.
  • step S19 of FIG. 24 as shown in FIG. 23, the gate electrode 19 (see FIG. 22) is not formed in the area AR2.
  • step S20 of FIG. 24 the interlayer insulating film 21 is formed on the gate insulating film 18 in the region AR2 as shown in FIG.
  • step S21 of FIG. 24 the source contact hole 21b is formed in the area AR2 as shown in FIG. In this region AR2, a source contact hole 21b that penetrates through the interlayer insulating film 21, the gate insulating film 18, the protective insulating film 22 and the insulating film 23 and reaches the p + type body contact region 15 is formed.
  • step S22 of FIG. 24 in the region AR2, the source electrode 20 is formed on the interlayer insulating film 21 so as to cover the bottom surface and the inner wall of the source contact hole 21b.
  • film portions 22a and 22b are formed as in the semiconductor device 1 of the first embodiment.
  • the gate electrode 19 is formed on the JFET region 16 via at least the film part 22a.
  • an insulating film 23 of higher quality than the protective insulating film 22 constituting the film part 22a is formed between the JFET region 16 and the film part 22a.
  • Embodiment 3 Power conversion device
  • the power converter of Embodiment 3 is an inverter provided with the semiconductor device of Embodiment 1.
  • FIG. 33 is a diagram illustrating a configuration of the power conversion device according to the third embodiment.
  • the power conversion device 31 includes an inverter 32 as a three-phase inverter provided with the semiconductor device 1 of the first embodiment, a load 33 such as a motor, a DC power supply 34, and a capacity such as a capacitor. 35.
  • the load 33 is connected to the output side of the inverter 32, and the DC power supply 34 and the capacitor 35 are connected to the input side of the inverter 32.
  • the inverter 32 includes gate drive circuits 36u, 36v, 36w, 36x, 36y, and 36z, and switch elements 37u, 37v, 37w, 37x, 37y, and 37z.
  • the inverter 32 includes a drain node N1 and a source node N2 as a pair of DC input terminals.
  • Switch elements 37u and 37x are connected in series between drain node N1 and source node N2.
  • Switch elements 37v and 37y are connected in series between drain node N1 and source node N2.
  • Switch elements 37w and 37z are connected in series between drain node N1 and source node N2.
  • the switch elements 37u, 37v, and 37w are disposed on the upper arm side, that is, the high voltage side
  • the switch elements 37x, 37y, and 37z are disposed on the lower arm side, that is, the low voltage side.
  • the inverter 32 includes a U-phase output node N3, a V-phase output node N4, and a W-phase output node N5 as three-phase AC output terminals.
  • the output node N3 is connected to the switch element 37x side of the switch element 37u and the switch element 37u side of the switch element 37x.
  • the output node N4 is connected to the switch element 37y side of the switch element 37v and the switch element 37v side of the switch element 37y.
  • the output node N5 is connected to the switch element 37z side of the switch element 37w and the switch element 37w side of the switch element 37z. Therefore, switch elements 37u and 37x are U-phase switch elements, switch elements 37v and 37y are V-phase switch elements, and switch elements 37w and 37z are W-phase switch elements.
  • Each of switch elements 37u, 37v, 37w, 37x, 37y and 37z includes a MISFET 38 and a body diode 39.
  • the semiconductor device 1 (see FIG. 1) of the first embodiment can be used as each of the switch elements 37u, 37v, 37w, 37x, 37y, and 37z.
  • the MISFET 38 includes the drain electrode 11, the n + type SiC substrate 10, the n ⁇ type epitaxial layer 12, the p type body region 13, the n + type source region 14, the p + type body contact region 15, the gate insulating film 18, This is a vertical MISFET formed by the gate electrode 19 and the source electrode 20 (see FIG. 1).
  • the body diode 39 is a diode formed by the drain electrode 11, the n + type SiC substrate 10, the n ⁇ type epitaxial layer 12, the p type body region 13, the p + type body contact region 15 and the source electrode 20 ( (See FIG. 1).
  • the gate drive circuit 36u is connected to the gate electrode of the MISFET 38 of the switch element 37u, and drives the switch element 37u.
  • the gate drive circuit 36x is connected to the gate electrode of the MISFET 38 of the switch element 37x, and drives the switch element 37x.
  • the gate drive circuit 36v is connected to the gate electrode of the MISFET 38 of the switch element 37v and drives the switch element 37v.
  • the gate drive circuit 36y is connected to the gate electrode of the MISFET 38 of the switch element 37y, and drives the switch element 37y.
  • the gate drive circuit 36w is connected to the gate electrode of the MISFET 38 of the switch element 37w, and drives the switch element 37w.
  • the gate drive circuit 36z is connected to the gate electrode of the MISFET 38 of the switch element 37z, and drives the switch element 37z.
  • each of the switch elements 37u, 37v and 37w provided on the upper arm side of the inverter 32 is connected to the drain node N1 arranged on the input side of the inverter 32 and on the upper arm side.
  • One end of each of the switching elements 37x, 37y and 37z on the lower arm side of the inverter 32 is connected to the source node N2 arranged on the input side of the inverter 32 and on the lower arm side.
  • a DC power supply 34 and a capacitor 35 are connected in parallel with each other between the drain node N1 and the source node N2. Therefore, the voltage VPP is applied between the drain node N1 and the source node N2 by the DC power supply 34.
  • Each of the gate drive circuits 36u, 36v, 36w, 36x, 36y, and 36z has switching elements 37u, 37v, 37w, 37x, so that the corresponding switch elements are switched on and off at preset timings.
  • Each of 37y and 37z is driven.
  • three-phase AC signals having different phases that is, U-phase, V-phase, and W-phase AC signals are generated from the voltage VPP that is a DC signal. That is, in each of the switch elements 37u, 37v, 37w, 37x, 37y, and 37z, the power is converted by switching between the on state and the off state.
  • the load 33 is driven by the three-phase AC signal.
  • the body diode 39 is built in the semiconductor device 1, and it is possible to flow a reflux current through the body diode 39 without using an antiparallel diode, that is, a reflux diode. is there. Therefore, in the power conversion device 31 of the third embodiment having the inverter 32 provided with the semiconductor device 1 of the first embodiment as each of the switch elements 37u, 37v, 37w, 37x, 37y, and 37z, necessary components Thus, the power converter 31 can be easily downsized.
  • the power conversion device 31 according to the third embodiment includes the semiconductor device 1 according to the first embodiment as each of the switch elements 37u, 37v, 37w, 37x, 37y, and 37z. According to the semiconductor device 1 of the first embodiment, the strength of the electric field in the insulating film on the JFET region 16 is reduced, the reliability of the insulating film is improved, the feedback capacitance is reduced, and the width of the JFET region 16 is reduced. Since the loss at the time of power conversion in the inverter can be reduced, a large cooling device may not be provided. Therefore, the power conversion device 31 can be easily reduced in cost, size, or weight by reducing the size of the cooling device.
  • the semiconductor device 1a of the first modification of the first embodiment or the semiconductor device 1b of the second embodiment is provided instead of the semiconductor device 1 of the first embodiment. Also good. In this case, since the effect of reducing the strength of the electric field in the insulating film on the JFET region 16 to improve the reliability of the insulating film and the effect of reducing the feedback capacitance are further increased, Further, it can be easily reduced in cost, size, or weight.
  • the railway vehicle according to the fourth embodiment is a railway vehicle including the power conversion device according to the third embodiment.
  • FIG. 34 is a diagram illustrating a configuration of the railway vehicle according to the fourth embodiment.
  • the railway vehicle 40 includes a pantograph 41 as a current collector, a transformer 42, a power converter 43, a load 44 that is an AC motor, and wheels 45.
  • the power conversion device 43 includes a converter 46, a capacitor 47 that is a capacitor, for example, and an inverter 48.
  • the converter 46 has switch elements 49 and 50.
  • the switch element 49 is disposed on the upper arm side, that is, the high voltage side
  • the switch element 50 is disposed on the lower arm side, that is, the low voltage side.
  • the switch elements 49 and 50 are shown for one phase among a plurality of phases.
  • the inverter 48 has switch elements 51 and 52.
  • the switch element 51 is arranged on the upper arm side, that is, the high voltage side
  • the switch element 52 is arranged on the lower arm side, that is, the low voltage side.
  • the switch elements 51 and 52 are shown for one of the three phases U phase, V phase and W phase.
  • One end of the primary side of the transformer 42 is connected to the overhead line 41 a via the pantograph 41.
  • the other end of the primary side of the transformer 42 is connected to the line 45 a via the wheel 45.
  • One end of the secondary side of the transformer 42 is connected to a terminal on the upper arm side opposite to the load 44 of the converter 46.
  • the other end of the secondary side of the transformer 42 is connected to a terminal on the lower arm side opposite to the load 44 of the converter 46.
  • the terminal on the load 44 side and the upper arm side of the converter 46 is connected to the terminal on the upper arm side opposite to the load 44 of the inverter 48. Further, the terminal on the load 44 side and the lower arm side of the converter 46 is connected to the terminal on the lower arm side opposite to the load 44 of the inverter 48. Further, a capacitor 47 is connected between a terminal on the side opposite to the load 44 of the inverter 48 on the upper arm side and a terminal on the side opposite to the load 44 of the inverter 48 and on the lower arm side. Although not shown in FIG. 34, each of the three terminals on the output side of the inverter 48 is connected to the load 44 as a U phase, a V phase, and a W phase.
  • the inverter 32 (refer FIG. 33) contained in the power converter device 31 of Embodiment 3 can be used as the inverter 48.
  • the AC power collected from the overhead line 41 a by the pantograph 41 is transformed into desired DC power by the converter 46 after the voltage is transformed by the transformer 42.
  • the DC power converted by the converter 46 is smoothed by the capacitor 47.
  • the DC power whose voltage is smoothed by the capacitor 47 is converted into AC power by the inverter 48.
  • the AC power converted by the inverter 48 is supplied to the load 44.
  • the load 44 supplied with AC power rotates the wheel 45, thereby accelerating the railway vehicle.
  • the inverter 48 of the railway vehicle 40 of the fourth embodiment the inverter 32 (see FIG. 33) included in the power conversion device 31 of the third embodiment can be used.
  • the switching element such as the switching element 37u provided in the inverter 32
  • a film part 22a (see FIG. 1) and a film part 22b (see FIG. 1) are formed.
  • the semiconductor device 1 of the first embodiment the strength of the electric field in the insulating film on the JFET region 16 is reduced, the reliability of the insulating film is improved, the feedback capacitance is reduced, and the width of the JFET region 16 is reduced. Since the loss at the time of power conversion in the inverter can be reduced, a large cooling device may not be provided. Therefore, the inverter 32 can be easily reduced in cost, size, or weight by reducing the size of the cooling device. Therefore, the railway vehicle 40 including the inverter 32 as the inverter 48 can be easily reduced in cost, size, or weight.
  • the semiconductor device 1a of the first modification of the first embodiment is used instead of the semiconductor device 1 of the first embodiment.
  • the semiconductor device 1b of the second embodiment may be provided.
  • the effect of reducing the strength of the electric field in the insulating film on the JFET region 16 to improve the reliability of the insulating film and the effect of reducing the feedback capacitance are further increased.
  • the cost, size and weight can be reduced. Therefore, the railway vehicle 40 including the inverter 48 can be more easily reduced in cost, size, or weight.
  • the semiconductor device 1 of the first embodiment may be provided as the switch elements 49 and 50.
  • converter 46 may be provided with semiconductor device 1a of the first modification example of the first embodiment or semiconductor device 1b of the second embodiment instead of semiconductor device 1 of the first embodiment.
  • the switch elements 49 and 50 the effect of reducing the strength of the electric field in the insulating film on the JFET region 16 to improve the reliability of the insulating film and the effect of reducing the feedback capacitance are further increased. Therefore, the converter 46 can be further easily reduced in cost, size, or weight. Therefore, the railway vehicle 40 including the converter 46 can be more easily reduced in cost, size, or weight.
  • the power conversion device of the third embodiment can be applied to various electric devices other than railroad vehicles such as an electric vehicle or a solar power generation device.
  • the power conversion device according to the third embodiment can be easily reduced in cost, size, or weight. Therefore, an electric vehicle including the power conversion device can be reduced. Cost reduction, size reduction or weight reduction can be achieved.
  • it is possible to increase the degree of freedom of design in the electric vehicle for example, the interior of the electric vehicle including the power conversion device can be widened.
  • the present invention is effective when applied to a semiconductor device, a manufacturing method thereof, a power conversion device, and a railway vehicle.

Abstract

A semiconductor device (1) has: a p-type body region (13) formed as an upper layer portion of an n--type epitaxial layer (12); and an n+-type source region (14) and a p+-type body contact region (15), which are formed as upper layer portions of the p-type body region (13). The semiconductor device (1) also has: a film section (22a) formed on an upper surface of the n--type epitaxial layer (12); and a film section (22b) formed on the n+-type source region (14). Furthermore, the semiconductor device (1) has, on an upper surface of the p-type body region (13), a gate electrode (19) that is formed with a gate insulating film (18) therebetween. The gate electrode (19) is continuously formed from above the upper surface of the p-type body region (13) to above the upper surface of the film section (22a).

Description

半導体装置およびその製造方法、電力変換装置ならびに鉄道車両Semiconductor device and manufacturing method thereof, power conversion device, and railcar
 本発明は半導体装置およびその製造技術に関し、縦型MISFETを備えた半導体装置およびその製造技術、ならびに、そのような半導体装置を備えた電力変換装置および鉄道車両に関する。 The present invention relates to a semiconductor device and a manufacturing technology thereof, and relates to a semiconductor device including a vertical MISFET and a manufacturing technology thereof, and a power conversion device and a railway vehicle including such a semiconductor device.
 モータ等を駆動するための電力を、直流と交流との間で変換する電力変換装置として、インバータが用いられている。従来のインバータでは、互いに逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)と、PIN(P-intrinsic-n)ダイオードとからなる素子対が、高電圧側の上アーム、および、低電圧側の下アームのそれぞれに、例えば1対ずつ設けられている。IGBTおよびPINダイオードの各々は、シリコン(Si)を用いた半導体装置である。 An inverter is used as a power conversion device that converts electric power for driving a motor or the like between direct current and alternating current. In a conventional inverter, a pair of elements composed of IGBTs (Insulated Gate Bipolar Transistors) and PIN (P-intrinsic-n) diodes connected in antiparallel to each other are connected to the upper arm on the high voltage side and the low voltage side. For example, a pair of lower arms is provided. Each of the IGBT and the PIN diode is a semiconductor device using silicon (Si).
 Siを用いたIGBTおよびPINダイオードが備えられたインバータにおける電力変換の際の損失は、Siの物性値から決定される理論値に等しい値まで低減されている。そのため、Siを用いた半導体装置が備えられたインバータにおける電力変換の際の損失をさらに低減することは、極めて困難である。 The loss at the time of power conversion in the inverter provided with the IGBT and PIN diode using Si has been reduced to a value equal to the theoretical value determined from the physical property value of Si. Therefore, it is extremely difficult to further reduce the loss during power conversion in the inverter provided with the semiconductor device using Si.
 一方、炭化ケイ素(SiC)または窒化ガリウム(GaN)などのいわゆるワイドバンドギャップ半導体の絶縁破壊電界は、シリコン(Si)の絶縁破壊電界に比べて1桁程度大きい。特に、SiCを用いた縦型MISFET(Metal Insulator Semiconductor Field Effect Transistor)の耐電圧は、数百Vから数kVの幅広い電圧の範囲にある。そのため、SiCを用いた縦型MISFETでは、Siを用いた縦型MISFETに比べて、オン抵抗が大幅に低減されることが予想される。また、縦型MISFETはユニポーラ素子であるため、ユニポーラ素子ではないIGBTに比べて、オンオフ状態を高速に切り替えることができる。 On the other hand, the breakdown electric field of a so-called wide band gap semiconductor such as silicon carbide (SiC) or gallium nitride (GaN) is about an order of magnitude larger than that of silicon (Si). In particular, the withstand voltage of a vertical MISFET (Metal Insulator Semiconductor Field Effect Transistor) using SiC is in a wide voltage range from several hundred volts to several kV. Therefore, in the vertical MISFET using SiC, the on-resistance is expected to be significantly reduced as compared with the vertical MISFET using Si. Further, since the vertical MISFET is a unipolar element, the on / off state can be switched at a higher speed than an IGBT that is not a unipolar element.
 特開平8-288303号公報(特許文献1)には、Siを用いた縦型MISFETについての技術が記載されており、国際公開第2010/073991号公報には、SiCを用いた縦型MISFETについての技術が記載されている。このような縦型パワーMISFETでは、ドレイン電極とソース電極との間に、n型のドレイン領域、p型のボディ領域およびn型のソース領域が設けられ、p型のボディ領域の表面にゲート絶縁膜を介してゲート電極が設けられている。 Japanese Patent Application Laid-Open No. 8-288303 (Patent Document 1) describes a technique regarding a vertical MISFET using Si, and International Publication No. 2010/073991 relates to a vertical MISFET using SiC. The technology is described. In such a vertical power MISFET, an n-type drain region, a p-type body region, and an n-type source region are provided between the drain electrode and the source electrode, and gate insulation is provided on the surface of the p-type body region. A gate electrode is provided through the film.
特開平8-288303号公報JP-A-8-288303 国際公開第2010/073991号公報International Publication No. 2010/073991
 前述したように、炭化ケイ素(SiC)の絶縁破壊電界は、シリコン(Si)の絶縁破壊電界よりも1桁程度大きい。そのため、SiCを用いた縦型MISFETは、Siを用いた縦型MISFETに比べて、n型のドレイン領域中の電界が1桁程度大きくなるように設計される。具体的には、SiCを用いた縦型MISFETでは、Siを用いた縦型MISFETに比べて、n型のドレイン領域中の不純物濃度を大きくする。また、SiCを用いた縦型MISFETでは、Siを用いた縦型MISFETに比べて、n型のドレイン領域の厚さを小さくする。このとき、n型のドレイン領域の厚さを小さくすることで、縦型MISFETのオン抵抗は、低減される。 As described above, the breakdown electric field of silicon carbide (SiC) is about one digit larger than the breakdown electric field of silicon (Si). Therefore, the vertical MISFET using SiC is designed so that the electric field in the n-type drain region is about one digit larger than that of the vertical MISFET using Si. Specifically, in the vertical MISFET using SiC, the impurity concentration in the n-type drain region is increased as compared with the vertical MISFET using Si. Further, in the vertical MISFET using SiC, the thickness of the n-type drain region is made smaller than that of the vertical MISFET using Si. At this time, the on-resistance of the vertical MISFET is reduced by reducing the thickness of the n-type drain region.
 ところが、縦型MISFETのオン抵抗が低減される一方で、p型のボディ領域を挟んでn型のソース領域と反対側のn型のドレイン領域、すなわちJFET(Junction Field Effect Transistor)領域上のゲート絶縁膜中の電界の強度が増大する。その結果、例えば閾値電圧が不均一になることなどにより、ゲート絶縁膜の信頼性が低下する。また、ゲート電極とドレイン電極との間の容量である帰還容量が、増大する。この帰還容量が大きい場合には、例えば電力変換装置を高速に動作させることができないおそれがある。 However, while the on-resistance of the vertical MISFET is reduced, the n-type drain region opposite to the n-type source region across the p-type body region, that is, the gate on the JFET (Junction-Field-Effect-Transistor) region The strength of the electric field in the insulating film increases. As a result, the reliability of the gate insulating film decreases due to, for example, non-uniform threshold voltages. In addition, the feedback capacitance, which is the capacitance between the gate electrode and the drain electrode, increases. If the feedback capacity is large, for example, the power converter may not be operated at high speed.
 例えば、鉄道車両用など比較的高い電圧で用いられるインバータに備えられた縦型MISFETでは、JFET領域上のゲート絶縁膜中の電界の強度を小さくし、帰還容量を小さくすることと、JFET領域の幅を広くすることとは、両立しない。したがって、例えばJFET領域の幅をあまり広くすることができないことなどにより、インバータにおける電力変換の際の損失が大きくなり、インバータの発熱量が大きくなる。そのため、大型の冷却装置が設けられる必要が生ずる。よって、縦型MISFETを備えた電力変換装置、または、この電力変換装置を含む鉄道車両についての製造コストを低減することができない。あるいは、縦型MISFETを備えた電力変換装置、または、この電力変換装置を含む鉄道車両を、容易に小型化または軽量化することができない。 For example, in a vertical MISFET provided in an inverter that is used at a relatively high voltage such as for a railway vehicle, the strength of the electric field in the gate insulating film on the JFET region is reduced, the feedback capacitance is reduced, Widening is not compatible. Therefore, for example, the loss of power conversion in the inverter increases due to the fact that the width of the JFET region cannot be increased so much, and the amount of heat generated by the inverter increases. Therefore, it is necessary to provide a large cooling device. Therefore, it is not possible to reduce the manufacturing cost of the power conversion device including the vertical MISFET or the railway vehicle including the power conversion device. Alternatively, a power converter provided with a vertical MISFET or a railway vehicle including the power converter cannot be easily reduced in size or weight.
 本発明の目的は、JFET領域上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させ、帰還容量を小さくし、かつ、オン抵抗を低くすることができる半導体装置を提供することにある。そして、本発明の目的は、上記のような半導体装置を備え、容易に低コスト化、小型化もしくは軽量化することができる電力変換装置、または、このような電力変換装置を含み、容易に低コスト化、小型化もしくは軽量化することができる鉄道車両を提供することにある。 An object of the present invention is to provide a semiconductor device that can reduce the strength of an electric field in an insulating film on a JFET region, improve the reliability of the insulating film, reduce the feedback capacitance, and reduce the on-resistance. It is to provide. An object of the present invention is to provide a power converter that includes the semiconductor device as described above and can be easily reduced in cost, reduced in size, or reduced in weight, or includes such a power converter. The object is to provide a railway vehicle that can be reduced in cost, size, or weight.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 代表的な実施の形態による半導体装置は、第1導電型の半導体基板と、半導体基板の下面に形成されたドレイン電極と、半導体基板の上面に形成された、第1導電型の半導体層とを有する。また、当該半導体装置は、半導体層の上層部に形成され、第1導電型と異なる第2導電型の第1半導体領域と、第1半導体領域の上層部に形成された、第1導電型の第2半導体領域と、第1半導体領域の上層部に形成された、第2導電型の第3半導体領域とを有する。さらに、当該半導体装置は、第1半導体領域を挟んで第2半導体領域と反対側の半導体層の上面上に形成された第1絶縁膜からなる第1膜部と、第2半導体領域上に第1絶縁膜と同層に形成された第2絶縁膜からなる第2膜部とを有する。また、当該半導体装置は、第2半導体領域と半導体層とに挟まれた第1半導体領域の上面上に、ゲート絶縁膜を介して形成されたゲート電極と、第2半導体領域上および第3半導体領域上に形成されたソース電極とを有する。ゲート電極は、第2半導体領域と半導体層とに挟まれた第1半導体領域の上面上から、第1膜部の上面上にかけて、連続的に形成されている。 A semiconductor device according to a representative embodiment includes a first conductivity type semiconductor substrate, a drain electrode formed on a lower surface of the semiconductor substrate, and a first conductivity type semiconductor layer formed on an upper surface of the semiconductor substrate. Have. In addition, the semiconductor device is formed in an upper layer portion of the semiconductor layer and has a second conductivity type first semiconductor region different from the first conductivity type, and a first conductivity type formed in the upper layer portion of the first semiconductor region. A second semiconductor region; and a third semiconductor region of a second conductivity type formed in an upper layer portion of the first semiconductor region. Further, the semiconductor device includes a first film portion made of a first insulating film formed on the upper surface of the semiconductor layer opposite to the second semiconductor region across the first semiconductor region, and a second film on the second semiconductor region. And a second film portion made of a second insulating film formed in the same layer as the first insulating film. In addition, the semiconductor device includes a gate electrode formed on a top surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film, the second semiconductor region, and the third semiconductor. A source electrode formed on the region. The gate electrode is continuously formed from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the first film portion.
 また、代表的な実施の形態による半導体装置の製造方法では、第1導電型の半導体基板の上面に第1導電型の半導体層を形成し、半導体層の上層部に、第1導電型と異なる第2導電型の第1半導体領域を形成し、第1半導体領域の上層部に、第1導電型の第2半導体領域、および、第2導電型の第3半導体領域を形成する。次いで、半導体層上に、第1絶縁膜を形成する。次いで、第1絶縁膜をパターニングすることで、第1半導体領域を挟んで第2半導体領域と反対側の半導体層の上面上に、第1絶縁膜からなる第1膜部を形成し、第2半導体領域上に、第1絶縁膜からなる第2膜部を形成する。次いで、第2半導体領域と半導体層とに挟まれた第1半導体領域の上面上に、ゲート絶縁膜を介してゲート電極を形成する。次いで、第2半導体領域上および第3半導体領域上にソース電極を形成し、半導体基板の下面にドレイン電極を形成する。そして、ゲート電極を形成する際に、第2半導体領域と半導体層とに挟まれた第1半導体領域の上面上から、第1膜部の上面上にかけて、連続的にゲート電極を形成する。 Further, in the method of manufacturing a semiconductor device according to the representative embodiment, the first conductivity type semiconductor layer is formed on the upper surface of the first conductivity type semiconductor substrate, and the upper layer portion of the semiconductor layer is different from the first conductivity type. A second conductivity type first semiconductor region is formed, and a first conductivity type second semiconductor region and a second conductivity type third semiconductor region are formed in an upper layer portion of the first semiconductor region. Next, a first insulating film is formed over the semiconductor layer. Next, by patterning the first insulating film, a first film portion made of the first insulating film is formed on the upper surface of the semiconductor layer opposite to the second semiconductor region with the first semiconductor region interposed therebetween. A second film portion made of the first insulating film is formed on the semiconductor region. Next, a gate electrode is formed on the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film. Next, a source electrode is formed on the second semiconductor region and the third semiconductor region, and a drain electrode is formed on the lower surface of the semiconductor substrate. Then, when forming the gate electrode, the gate electrode is continuously formed from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the first film portion.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 代表的な実施の形態によれば、半導体装置において、JFET領域上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させ、帰還容量を小さくし、かつ、オン抵抗を低くすることができる。そして、当該半導体装置を備えた電力変換装置、または、このような電力変換装置を含む鉄道車両を、容易に低コスト化、小型化または軽量化することができる。 According to a typical embodiment, in a semiconductor device, the strength of the electric field in the insulating film on the JFET region is reduced to improve the reliability of the insulating film, the feedback capacitance is reduced, and the on-resistance is increased. Can be lowered. And the power converter device provided with the said semiconductor device, or a railway vehicle including such a power converter device can be reduced in cost, size, or weight easily.
実施の形態1の半導体装置の要部断面図である。2 is a main-portion cross-sectional view of the semiconductor device of First Embodiment; FIG. 実施の形態1の半導体装置の上面図である。2 is a top view of the semiconductor device of First Embodiment. FIG. 図1において、縦型MISFETがオン状態のときに電子が流れる経路を模式的に示した図である。In FIG. 1, it is the figure which showed typically the path | route through which an electron flows, when a vertical MISFET is an ON state. 実施の形態1の第1変形例の半導体装置の要部断面図である。FIG. 10 is a main-portion cross-sectional view of the semiconductor device in the first modification example of the first embodiment; 実施の形態1の第1変形例の半導体装置の上面図である。FIG. 10 is a top view of a semiconductor device according to a first modification example of the first embodiment. 実施の形態1の半導体装置の製造工程の一部を示すフロー図である。FIG. 4 is a flowchart showing a part of the manufacturing process of the semiconductor device of First Embodiment; 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 実施の形態1の半導体装置の製造工程中の要部断面図である。7 is a fragmentary cross-sectional view of the semiconductor device of First Embodiment during a manufacturing step thereof; FIG. 比較例1の半導体装置の要部断面図である。FIG. 10 is a cross-sectional view of a principal part of a semiconductor device of Comparative Example 1. 実施の形態2の半導体装置の要部断面図である。FIG. 10 is a main-portion cross-sectional view of the semiconductor device of Embodiment 2; 実施の形態2の半導体装置の外周部における断面図である。FIG. 6 is a cross-sectional view of the outer periphery of the semiconductor device of the second embodiment. 実施の形態2の半導体装置の製造工程の一部を示すフロー図である。FIG. 10 is a flowchart showing a part of the manufacturing process of the semiconductor device of the second embodiment. 実施の形態2の半導体装置の製造工程中の要部断面図である。FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment during a manufacturing step thereof. 実施の形態2の半導体装置の製造工程中の要部断面図である。FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment during a manufacturing step thereof. 実施の形態2の半導体装置の製造工程中の要部断面図である。FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment during a manufacturing step thereof. 実施の形態2の半導体装置の製造工程中の要部断面図である。FIG. 10 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment during a manufacturing step thereof. 実施の形態2の半導体装置の製造工程中の外周部における断面図である。FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment. 実施の形態2の半導体装置の製造工程中の外周部における断面図である。FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment. 実施の形態2の半導体装置の製造工程中の外周部における断面図である。FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment. 実施の形態2の半導体装置の製造工程中の外周部における断面図である。FIG. 10 is a cross-sectional view of the outer periphery during the manufacturing process of the semiconductor device of Second Embodiment. 実施の形態3の電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device of Embodiment 3. FIG. 実施の形態4の鉄道車両の構成を示す図である。FIG. 10 is a diagram showing a configuration of a railway vehicle according to a fourth embodiment.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
 また、実施の形態で用いる図面においては、断面図であっても図面を見易くするためにハッチングを省略する場合もある。また、平面図であっても図面を見易くするためにハッチングを付す場合もある。 In the drawings used in the embodiments, hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
 (実施の形態1)
 <半導体装置>
 本発明の実施の形態1の半導体装置について説明する。実施の形態1の半導体装置は、炭化ケイ素(SiC)からなる縦型MISFETを備えたものである。
(Embodiment 1)
<Semiconductor device>
A semiconductor device according to the first embodiment of the present invention will be described. The semiconductor device according to the first embodiment includes a vertical MISFET made of silicon carbide (SiC).
 図1は、実施の形態1の半導体装置の要部断面図である。図2は、実施の形態1の半導体装置の上面図である。図1は、図2のA-A線に沿った断面図である。なお、図2においては、理解を簡単にするために、ゲート絶縁膜18(図1参照)、ゲート電極19(図1参照)、ソース電極20(図1参照)および層間絶縁膜21(図1参照)を除去、すなわち透視した状態を図示している。また、以下では、n型SiC基板10の上面側で、かつ、中心側の領域AR1(図1参照)に形成された部分、すなわち半導体装置の中心部について、説明する。 FIG. 1 is a cross-sectional view of a main part of the semiconductor device of the first embodiment. FIG. 2 is a top view of the semiconductor device of the first embodiment. FIG. 1 is a cross-sectional view taken along line AA in FIG. In FIG. 2, for easy understanding, the gate insulating film 18 (see FIG. 1), the gate electrode 19 (see FIG. 1), the source electrode 20 (see FIG. 1), and the interlayer insulating film 21 (see FIG. 1). (See) is removed, that is, it is seen through. In the following, the portion formed in the region AR1 (see FIG. 1) on the upper surface side and the center side of the n + -type SiC substrate 10, that is, the central portion of the semiconductor device will be described.
 図1および図2に示すように、本実施の形態1の半導体装置1は、縦型MISFETを備えた半導体装置であり、n型SiC基板10、ドレイン電極11、n型エピタキシャル層12、p型ボディ領域13、n型ソース領域14およびp型ボディコンタクト領域15を有する。また、本実施の形態1の半導体装置1は、ゲート絶縁膜18、ゲート電極19、ソース電極20および層間絶縁膜21を有する。 As shown in FIGS. 1 and 2, the semiconductor device 1 according to the first embodiment is a semiconductor device including a vertical MISFET, and includes an n + type SiC substrate 10, a drain electrode 11, an n type epitaxial layer 12, p type body region 13, n + type source region 14 and p + type body contact region 15. In addition, the semiconductor device 1 of the first embodiment includes a gate insulating film 18, a gate electrode 19, a source electrode 20, and an interlayer insulating film 21.
 n型SiC基板10は、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型の半導体基板である。すなわち半導体基板としてのn型SiC基板10の導電型は、n型である。n型SiC基板10におけるn型の不純物濃度は、比較的大きく、例えば1×1018~1×1021cm-3程度である。また、n型SiC基板10の厚さは、例えば50~500μm程度である。 The n + -type SiC substrate 10 is an n-type semiconductor substrate made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. That is, the conductivity type of n + -type SiC substrate 10 as a semiconductor substrate is n-type. The n type impurity concentration in the n + type SiC substrate 10 is relatively large, for example, about 1 × 10 18 to 1 × 10 21 cm −3 . The thickness of the n + type SiC substrate 10 is, for example, about 50 to 500 μm.
 ドレイン電極11は、n型SiC基板10の下面に形成された電極である。ドレイン電極11は、n型SiC基板10と電気的に接続されている。ドレイン電極11として、例えばチタン(Ti)、ニッケル(Ni)または金(Au)などを積層した導電膜を用いることができる。このような導電膜を用いることで、ドレイン電極11とn型SiC基板10とを、低抵抗で電気的に接続することができる。 The drain electrode 11 is an electrode formed on the lower surface of the n + type SiC substrate 10. Drain electrode 11 is electrically connected to n + type SiC substrate 10. As the drain electrode 11, for example, a conductive film in which titanium (Ti), nickel (Ni), gold (Au), or the like is stacked can be used. By using such a conductive film, the drain electrode 11 and the n + -type SiC substrate 10 can be electrically connected with low resistance.
 なお、本願明細書では、ある基板の下面に、または、ある層の下面に形成されているということは、その基板の下面よりも下側に、または、その層の下面よりも下側に形成されていることを含むものとする。 In the specification of the present application, being formed on the lower surface of a certain substrate or on the lower surface of a certain layer means forming below the lower surface of the substrate or lower than the lower surface of the layer. Is included.
 n型エピタキシャル層12は、n型SiC基板10の上面に形成されており、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型半導体層である。すなわち半導体層としてのn型エピタキシャル層12の導電型は、n型である。n型エピタキシャル層12におけるn型の不純物濃度は、n型SiC基板10におけるn型の不純物濃度よりも小さく、例えば1×1015~1×1016cm-3程度である。また、n型エピタキシャル層12の厚さは、例えば5~50μm程度である。 The n type epitaxial layer 12 is formed on the upper surface of the n + type SiC substrate 10, and is an n type semiconductor made of silicon carbide (SiC) into which an n type impurity such as nitrogen (N) or phosphorus (P) is introduced. Is a layer. That is, the conductivity type of the n type epitaxial layer 12 as the semiconductor layer is n type. The n - type impurity concentration in the n -type epitaxial layer 12 is smaller than the n-type impurity concentration in the n + -type SiC substrate 10, for example, about 1 × 10 15 to 1 × 10 16 cm −3 . Further, n - the thickness of the type epitaxial layer 12 is, for example, about 5 ~ 50 [mu] m.
 n型エピタキシャル層12を、例えばエピタキシャル成長法により形成することができる。あるいは、例えばイオン注入法によりアルミニウム(Al)またはホウ素(B)などのp型不純物をn型SiC基板10の上面全面に注入し、n型SiC基板10におけるn型の不純物濃度を減少させる方法により、n型エピタキシャル層12を形成することもできる(後述する実施の形態2においても同様)。 The n type epitaxial layer 12 can be formed by, for example, an epitaxial growth method. Alternatively, for example, a p-type impurity such as aluminum (Al) or boron (B) by ion implantation implanted on the entire upper surface of the n + -type SiC substrate 10, reducing the impurity concentration of the n-type in the n + -type SiC substrate 10 The n type epitaxial layer 12 can also be formed by the method (the same applies to the second embodiment described later).
 なお、本願明細書では、ある基板の上面に、または、ある層の上面に形成されているということは、その基板の上面よりも上側に、または、その層の上面よりも上側に形成されていることを含むものとする。 Note that in this specification, being formed on the upper surface of a certain substrate or on the upper surface of a certain layer means being formed above the upper surface of the substrate or above the upper surface of the layer. It is included.
 p型ボディ領域13は、n型エピタキシャル層12の上層部に形成されており、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物が拡散した炭化ケイ素(SiC)からなるp型半導体領域である。すなわち半導体領域としてのp型ボディ領域13の導電型は、p型である。p型ボディ領域13におけるp型の不純物濃度は、例えば1×1017~1×1018cm-3程度である。また、p型ボディ領域13の厚さは、例えば1~2μm程度である。 The p-type body region 13 is formed in the upper layer portion of the n -type epitaxial layer 12, and is a p-type semiconductor made of silicon carbide (SiC) in which a p-type impurity such as aluminum (Al) or boron (B) is diffused. It is an area. That is, the conductivity type of the p-type body region 13 as a semiconductor region is p-type. The p-type impurity concentration in the p-type body region 13 is, for example, about 1 × 10 17 to 1 × 10 18 cm −3 . The thickness of the p-type body region 13 is, for example, about 1 to 2 μm.
 n型ソース領域14は、p型ボディ領域13の上層部に形成されており、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型半導体領域である。すなわち半導体領域としてのn型ソース領域14の導電型は、n型である。n型ソース領域14におけるn型の不純物濃度は、n型エピタキシャル層12におけるn型の不純物濃度よりも大きく、例えば1×1019~1×1020cm-3程度とすることができる。また、n型ソース領域14の厚さを、例えば100~500nm程度とすることができる。 The n + -type source region 14 is formed in the upper layer portion of the p-type body region 13, and is an n-type semiconductor made of silicon carbide (SiC) into which an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced. It is an area. That is, the conductivity type of the n + type source region 14 as the semiconductor region is n type. The n-type impurity concentration in the n + -type source region 14 is higher than the n-type impurity concentration in the n -type epitaxial layer 12, and can be, for example, about 1 × 10 19 to 1 × 10 20 cm −3 . In addition, the thickness of the n + -type source region 14 can be set to about 100 to 500 nm, for example.
 p型ボディコンタクト領域15は、p型ボディ領域13の上層部に形成されており、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物が拡散した炭化ケイ素(SiC)からなるp型半導体領域である。すなわち半導体領域としてのp型ボディコンタクト領域15の導電型は、p型である。p型ボディコンタクト領域15におけるp型の不純物濃度は、p型ボディ領域13におけるp型の不純物濃度よりも大きく、例えば1×1019~1×1020cm-3程度である。また、p型ボディコンタクト領域15の厚さは、例えば100~500nm程度である。 The p + -type body contact region 15 is formed in the upper layer portion of the p-type body region 13 and is, for example, p-type made of silicon carbide (SiC) in which p-type impurities such as aluminum (Al) or boron (B) are diffused. It is a semiconductor region. That is, the conductivity type of the p + -type body contact region 15 as the semiconductor region is p-type. The p-type impurity concentration in the p + -type body contact region 15 is higher than the p-type impurity concentration in the p-type body region 13, for example, about 1 × 10 19 to 1 × 10 20 cm −3 . The thickness of the p + type body contact region 15 is, for example, about 100 to 500 nm.
 隣り合う2つのp型ボディ領域13に挟まれたn型エピタキシャル層12の上層部は、JFET領域16である。すなわちp型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上層部は、JFET領域16である。また、n型ソース領域14とJFET領域16とに挟まれたp型ボディ領域13の上層部、すなわちn型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上層部は、チャネル領域17である。 The upper layer portion of the n -type epitaxial layer 12 sandwiched between two adjacent p-type body regions 13 is a JFET region 16. That is, the upper layer portion of the n type epitaxial layer 12 opposite to the n + type source region 14 across the p type body region 13 is the JFET region 16. Further, the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the JFET region 16, that is, the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. The upper layer portion is a channel region 17.
 ゲート絶縁膜18は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に、形成された絶縁膜である。ゲート絶縁膜18は、例えば酸化シリコン(SiO)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)または酸化ハフニウム(HfO)などからなり、例えば熱酸化法またはCVD(Chemical Vapor Deposition)法などにより形成されている。また、ゲート絶縁膜18の厚さは、例えば数十nm程度である。 The gate insulating film 18 is an insulating film formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. The gate insulating film 18 is made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like, for example, thermal oxidation or CVD (Chemical Vapor Deposition). ) Method. The thickness of the gate insulating film 18 is, for example, about several tens of nm.
 ゲート電極19は、ゲート絶縁膜18上に形成された電極である。すなわち、ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に、ゲート絶縁膜18を介して形成された電極である。ゲート電極19は、例えばポリシリコンなどからなり、例えばCVD法などにより形成された導電膜である。 The gate electrode 19 is an electrode formed on the gate insulating film 18. That is, the gate electrode 19 is an electrode formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 via the gate insulating film 18. The gate electrode 19 is made of, for example, polysilicon, and is a conductive film formed by, for example, a CVD method.
 ソース電極20は、n型ソース領域14上、および、p型ボディコンタクト領域15上に形成された電極である。ソース電極20として、例えばチタン(Ti)またはアルミニウム(Al)などからなる導電膜を用いることができる。このような導電膜を用いることで、ソース電極20と、n型ソース領域14およびp型ボディコンタクト領域15とを、低抵抗で電気的に接続することができる。 The source electrode 20 is an electrode formed on the n + type source region 14 and the p + type body contact region 15. As the source electrode 20, for example, a conductive film made of titanium (Ti) or aluminum (Al) can be used. By using such a conductive film, the source electrode 20 and the n + type source region 14 and the p + type body contact region 15 can be electrically connected with low resistance.
 図1に示すように、本実施の形態1では、n型エピタキシャル層12の上面上、および、n型ソース領域14上に、保護絶縁膜22からなる膜部22aおよび22bが形成されている。膜部22aは、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上面上に形成された保護絶縁膜22からなる。膜部22bは、n型ソース領域14上に形成された保護絶縁膜22からなる。膜部22bを構成する保護絶縁膜22は、膜部22aを構成する保護絶縁膜22と同層に形成された絶縁膜である。保護絶縁膜22をパターニング、すなわち加工し、開口部22cを形成することで、膜部22aおよび22bが形成されている。開口部22cは、保護絶縁膜22を貫通して、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面に達する。したがって、開口部22cの底部には、p型ボディ領域13の上面が露出している。 As shown in FIG. 1, in the first embodiment, film portions 22 a and 22 b made of protective insulating film 22 are formed on the upper surface of n type epitaxial layer 12 and on n + type source region 14. Yes. The film portion 22 a is formed of a protective insulating film 22 formed on the upper surface of the n type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween. The film part 22 b is formed of a protective insulating film 22 formed on the n + type source region 14. The protective insulating film 22 constituting the film part 22b is an insulating film formed in the same layer as the protective insulating film 22 constituting the film part 22a. The protective insulating film 22 is patterned, that is, processed to form the opening 22c, whereby the film portions 22a and 22b are formed. The opening 22 c penetrates the protective insulating film 22 and reaches the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. Therefore, the upper surface of the p-type body region 13 is exposed at the bottom of the opening 22c.
 好適には、ゲート絶縁膜18は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22aの上面上にかけて、連続的に形成されている。そして、ゲート電極19は、ゲート絶縁膜18のうち、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に形成された部分18a上から、ゲート絶縁膜18のうち、膜部22aの上面上に形成された部分18b上にかけて、連続的に形成されている。すなわち、ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22aの上面上にかけて、ゲート絶縁膜18を介して連続的に形成されている。 Preferably, the gate insulating film 18 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film portion 22a. Has been. The gate electrode 19 is formed on the gate insulating film 18 from above the portion 18 a formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. The insulating film 18 is continuously formed over the portion 18b formed on the upper surface of the film portion 22a. That is, the gate electrode 19 extends from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film portion 22a via the gate insulating film 18. It is formed continuously.
 これにより、JFET領域16上に膜部22aに代えてゲート絶縁膜18が直接形成され、JFET領域16上に直接形成されたゲート絶縁膜18上にゲート電極19が形成された場合に比べ、JFET領域16とゲート電極19との間の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させることができる。 As a result, the gate insulating film 18 is formed directly on the JFET region 16 instead of the film portion 22a, and the gate electrode 19 is formed on the gate insulating film 18 formed directly on the JFET region 16. The strength of the electric field in the insulating film between the region 16 and the gate electrode 19 can be reduced and the reliability of the insulating film can be improved.
 ゲート絶縁膜18の厚さTH1は、膜部22aの厚さTH2よりも小さく、かつ、膜部22bの厚さTH3よりも小さい。これにより、JFET領域16とゲート電極19との間の絶縁膜中の電界の強度をさらに小さくして当該絶縁膜の信頼性をさらに向上させることができる。 The thickness TH1 of the gate insulating film 18 is smaller than the thickness TH2 of the film part 22a and smaller than the thickness TH3 of the film part 22b. Thereby, the strength of the electric field in the insulating film between the JFET region 16 and the gate electrode 19 can be further reduced, and the reliability of the insulating film can be further improved.
 さらに好適には、ゲート絶縁膜18は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22bの上面上にかけて、連続的に形成されている。そして、ゲート電極19は、ゲート絶縁膜18のうち、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に形成された部分18a上から、ゲート絶縁膜18のうち、膜部22bの上面上に形成された部分18c上にかけて、連続的に形成されている。すなわち、ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22bの上面上にかけて、ゲート絶縁膜18を介して連続的に形成されている。そして、ゲート電極19の膜部22b側の端部19aは、ゲート絶縁膜18のうち、膜部22bの上面上に形成された部分18c上に配置されている。すなわち、ゲート電極19は、膜部22b上で終端されている。 More preferably, the gate insulating film 18 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film portion 22b. Is formed. The gate electrode 19 is formed on the gate insulating film 18 from above the portion 18 a formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. The insulating film 18 is continuously formed over a portion 18c formed on the upper surface of the film portion 22b. That is, the gate electrode 19 extends from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film portion 22b via the gate insulating film 18. It is formed continuously. The end 19a of the gate electrode 19 on the film part 22b side is disposed on a portion 18c of the gate insulating film 18 formed on the upper surface of the film part 22b. That is, the gate electrode 19 is terminated on the film part 22b.
 これにより、後述する図17を用いて説明するように、導電膜19bを加工する際に、例えばn型ソース領域14、n型エピタキシャル層12などの半導体領域、および、n型SiC基板10に損傷が加えられることを、防止または抑制することができる。また、ゲート電極19の端部19aに向かう電気力線が集中し、端部19aの近傍で電界の強度が大きくなることを、防止または抑制することができる。 Thus, as will be described with reference to FIG. 17 described later, when the conductive film 19b is processed, for example, the semiconductor region such as the n + type source region 14 and the n type epitaxial layer 12, and the n + type SiC substrate. It is possible to prevent or suppress damage to 10. In addition, it is possible to prevent or suppress an increase in electric field strength in the vicinity of the end portion 19a due to concentration of electric lines of force toward the end portion 19a of the gate electrode 19.
 なお、図1に示すように、開口部22cが、保護絶縁膜22を貫通して、p型ボディ領域13の上面のみならず、n型エピタキシャル層12の上面、および、n型ソース領域14の上面に達する場合を考える。すなわち開口部22cの底部に、p型ボディ領域13の上面のみならず、n型エピタキシャル層12の上面、および、n型ソース領域14の上面が露出する場合を考える。この場合、ゲート絶縁膜18は、膜部22aと膜部22bとに挟まれたn型エピタキシャル層12の上面上、膜部22aと膜部22bとに挟まれたp型ボディ領域13の上面全面上、および、膜部22aと膜部22bとに挟まれたn型ソース領域14の上面上に、形成されている。そして、ゲート電極19は、膜部22aと膜部22bとに挟まれたn型エピタキシャル層12の上面上、膜部22aと膜部22bとに挟まれたp型ボディ領域13の上面全面上、および、膜部22aと膜部22bとに挟まれたn型ソース領域14の上面上に、ゲート絶縁膜18を介して形成されている。つまり、ゲート電極19は、膜部22aと膜部22bとに挟まれたn型エピタキシャル層12、および、膜部22aと膜部22bとに挟まれたn型ソース領域14には接触しないように、形成されている。 As shown in FIG. 1, the opening 22c penetrates the protective insulating film 22, and not only the upper surface of the p-type body region 13, but also the upper surface of the n -type epitaxial layer 12 and the n + -type source region. Consider the case where the upper surface of 14 is reached. That is, consider the case where not only the upper surface of p-type body region 13 but also the upper surface of n -type epitaxial layer 12 and the upper surface of n + -type source region 14 are exposed at the bottom of opening 22c. In this case, the gate insulating film 18 is formed on the upper surface of the n type epitaxial layer 12 sandwiched between the film portions 22a and 22b, and on the upper surface of the p-type body region 13 sandwiched between the film portions 22a and 22b. It is formed on the entire surface and on the upper surface of the n + -type source region 14 sandwiched between the film part 22a and the film part 22b. The gate electrode 19 is formed on the upper surface of the n type epitaxial layer 12 sandwiched between the film portions 22a and 22b and on the entire upper surface of the p-type body region 13 sandwiched between the film portions 22a and 22b. In addition, the gate insulating film 18 is formed on the upper surface of the n + -type source region 14 sandwiched between the film part 22a and the film part 22b. That is, the gate electrode 19 does not contact the n type epitaxial layer 12 sandwiched between the film part 22a and the film part 22b and the n + type source region 14 sandwiched between the film part 22a and the film part 22b. So that it is formed.
 あるいは、膜部22aの上面上、および、膜部22bの上面上に、ゲート絶縁膜18が形成されず、ゲート電極19が、直接形成されていてもよい。このとき、ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22aの上面上にかけて、連続的に形成されている。また、ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22bの上面上にかけて、連続的に形成されている。 Alternatively, the gate insulating film 18 may not be formed on the upper surface of the film part 22a and the upper surface of the film part 22b, and the gate electrode 19 may be directly formed. At this time, the gate electrode 19 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film part 22a. Yes. The gate electrode 19 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film part 22b. .
 層間絶縁膜21は、ゲート電極19の表面を含めてゲート絶縁膜18上に形成されている。層間絶縁膜21の材料として、例えばPSG(Phospho Silicate Glass)または酸化シリコンなどを用いることができる。なお、膜部22aの上面上、および、膜部22bの上面上にゲート絶縁膜18が形成されていないときは、層間絶縁膜21は、ゲート電極19、ならびに、膜部22aおよび22bを覆うように、形成されている。 The interlayer insulating film 21 is formed on the gate insulating film 18 including the surface of the gate electrode 19. As a material of the interlayer insulating film 21, for example, PSG (Phospho ま た は Silicate Glass) or silicon oxide can be used. When the gate insulating film 18 is not formed on the upper surface of the film part 22a and on the upper surface of the film part 22b, the interlayer insulating film 21 covers the gate electrode 19 and the film parts 22a and 22b. Is formed.
 層間絶縁膜21、ゲート絶縁膜18および保護絶縁膜22には、開口部としてのソースコンタクト孔21aが形成されている。ソースコンタクト孔21aは、層間絶縁膜21、ゲート絶縁膜18および保護絶縁膜22を貫通して、n型ソース領域14の上面、および、p型ボディコンタクト領域15の上面に達する。すなわちソースコンタクト孔21aの底面には、n型ソース領域14の上面、および、p型ボディコンタクト領域15の上面が露出している。 A source contact hole 21 a as an opening is formed in the interlayer insulating film 21, the gate insulating film 18, and the protective insulating film 22. Source contact hole 21 a penetrates interlayer insulating film 21, gate insulating film 18, and protective insulating film 22, and reaches the upper surface of n + -type source region 14 and the upper surface of p + -type body contact region 15. That is, the upper surface of the n + type source region 14 and the upper surface of the p + type body contact region 15 are exposed at the bottom surface of the source contact hole 21a.
 ソース電極20は、ソースコンタクト孔21aの底面および側面を含めて層間絶縁膜21上に形成されている。このような構造により、ソース電極20は、層間絶縁膜21、ゲート絶縁膜18および保護絶縁膜22に形成されたソースコンタクト孔21aを介して、n型ソース領域14、および、p型ボディコンタクト領域15と、電気的に接続されている。 The source electrode 20 is formed on the interlayer insulating film 21 including the bottom and side surfaces of the source contact hole 21a. With such a structure, the source electrode 20 includes the n + -type source region 14 and the p + -type body through the source contact hole 21 a formed in the interlayer insulating film 21, the gate insulating film 18 and the protective insulating film 22. The contact region 15 is electrically connected.
 図2に示すように、平面視において、互いに交差、好適には直交する2つの方向の各々を、X方向およびY方向のそれぞれとする。なお、平面視において、とは、n型SiC基板10の上面に垂直な方向から視た場合を意味する。言い換えれば、X方向およびY方向は、n型SiC基板10の上面内で互いに交差、好適には直交する2つの方向である。 As shown in FIG. 2, each of two directions that intersect each other, preferably orthogonally, in a plan view is defined as an X direction and a Y direction, respectively. In the plan view, the term “when viewed from a direction perpendicular to the upper surface of the n + -type SiC substrate 10” is meant. In other words, the X direction and the Y direction are two directions that intersect with each other and preferably are orthogonal to each other within the upper surface of the n + -type SiC substrate 10.
 本実施の形態1の半導体装置1は、複数のp型ボディ領域13と、複数のn型ソース領域14と、複数のp型ボディコンタクト領域15とを有する。複数のp型ボディ領域13は、n型エピタキシャル層12の上層部に、平面視において、X方向およびY方向にマトリクス状に配列するように、形成されている。複数のn型ソース領域14は、複数のp型ボディ領域13の各々の上層部に、それぞれ形成されている。複数のp型ボディコンタクト領域15は、複数のp型ボディ領域13の各々の上層部に、それぞれ形成されている。 The semiconductor device 1 according to the first embodiment has a plurality of p-type body regions 13, a plurality of n + -type source regions 14, and a plurality of p + -type body contact regions 15. The plurality of p-type body regions 13 are formed in the upper layer portion of the n -type epitaxial layer 12 so as to be arranged in a matrix in the X direction and the Y direction in plan view. The plurality of n + -type source regions 14 are respectively formed in the upper layer portions of the plurality of p-type body regions 13. The plurality of p + type body contact regions 15 are respectively formed in the upper layer portions of the plurality of p type body regions 13.
 このとき、膜部22aは、平面視において、Y方向にそれぞれ延在し、かつ、X方向に配列された複数の延在部22dと、X方向にそれぞれ延在し、複数の延在部22dとそれぞれ交差し、かつ、Y方向に配列された複数の延在部22eとを含み、格子状に形成されている。そして、マトリクス状に配列された複数のn型エピタキシャル層12は、格子状の膜部22aにより区画されている。ここで、格子状の膜部22aにより区画された複数の領域の各々を、セルと称する。 At this time, the film portion 22a extends in the Y direction and extends in the X direction in a plan view, and extends in the X direction, and extends in the X direction. And a plurality of extending portions 22e arranged in the Y direction, and are formed in a lattice shape. The plurality of n -type epitaxial layers 12 arranged in a matrix are partitioned by a lattice-shaped film portion 22a. Here, each of the plurality of regions partitioned by the lattice-like film portion 22a is referred to as a cell.
 なお、図2には、X方向およびY方向にマトリクス状に配列された4つのn型エピタキシャル層12を示している。図2に示す範囲では、膜部22aは、平面視において、Y方向に延在する1つの延在部22dと、X方向に延在し、かつ、延在部22dと交差する1つの延在部22eとを含み、十字状に形成されている。そして、図2に示す範囲では、マトリクス状に配列された4つのn型エピタキシャル層12は、十字状の膜部22aにより区画されている。また、十字状の膜部22aにより区画された領域を、セルと称することになる。 FIG. 2 shows four n type epitaxial layers 12 arranged in a matrix in the X and Y directions. In the range shown in FIG. 2, the film part 22 a has one extending part 22 d extending in the Y direction and one extending part extending in the X direction and intersecting the extending part 22 d in a plan view. Part 22e, and is formed in a cross shape. In the range shown in FIG. 2, the four n -type epitaxial layers 12 arranged in a matrix are partitioned by a cross-shaped film portion 22a. An area partitioned by the cross-shaped film portion 22a is referred to as a cell.
 <半導体装置の動作>
 続いて、本実施の形態1の半導体装置1に含まれる縦型MISFETの動作について説明する。図3は、図1において、縦型MISFETがオン状態のときに電子が流れる経路を模式的に示した図である。
<Operation of semiconductor device>
Subsequently, the operation of the vertical MISFET included in the semiconductor device 1 of the first embodiment will be described. FIG. 3 is a diagram schematically showing a path through which electrons flow when the vertical MISFET is in the ON state in FIG.
 本実施の形態1の半導体装置1に含まれる縦型MISFETをオン状態にするオン動作においては、ゲート電極19に、ソース電極20に対して正のゲート電圧VGS(VGS>0V)を印加する。このとき、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上層部、すなわちチャネル領域17には、反転層が形成される。 In the on operation for turning on the vertical MISFET included in the semiconductor device 1 of the first embodiment, a positive gate voltage VGS (VGS> 0 V) is applied to the gate electrode 19 with respect to the source electrode 20. At this time, an inversion layer is formed in the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12, that is, in the channel region 17.
 したがって、電子は、図3に一部の経路を経路PS1として示すように、ソース電極20から、n型ソース領域14、チャネル領域17に形成された反転層、n型エピタキシャル層12、および、n型SiC基板10を通して、ドレイン電極11に流れる。すなわち電流は、ドレイン電極11から、n型SiC基板10、n型エピタキシャル層12、チャネル領域17に形成された反転層、および、n型ソース領域14を通して、ソース電極20に流れる。 Therefore, as shown in FIG. 3, a part of the path is shown as path PS < b> 1 , from the source electrode 20 to the n + -type source region 14, the inversion layer formed in the channel region 17, the n -type epitaxial layer 12, and , Flows to the drain electrode 11 through the n + -type SiC substrate 10. That is, current flows from the drain electrode 11 to the source electrode 20 through the n + -type SiC substrate 10, the n -type epitaxial layer 12, the inversion layer formed in the channel region 17, and the n + -type source region 14.
 一方、縦型MISFETをオフ状態にするオフ動作においては、ゲート電極19に、ソース電極20に対して負または零のゲート電圧VGS(VGS≦0V)を印加する。このとき、チャネル領域17に形成されていた反転層を消滅させることで、電流が遮断される。 On the other hand, in the off operation for turning off the vertical MISFET, a negative or zero gate voltage VGS (VGS ≦ 0 V) is applied to the gate electrode 19 with respect to the source electrode 20. At this time, the current is interrupted by eliminating the inversion layer formed in the channel region 17.
 <半導体装置の第1変形例>
 次に、実施の形態1の第1変形例の半導体装置について説明する。
<First Modification of Semiconductor Device>
Next, the semiconductor device of the 1st modification of Embodiment 1 is demonstrated.
 図4は、実施の形態1の第1変形例の半導体装置の要部断面図である。図5は、実施の形態1の第1変形例の半導体装置の上面図である。図4は、図5のB-B線に沿った断面図である。なお、図5においては、理解を簡単にするために、ゲート絶縁膜18(図4参照)、ゲート電極19(図4参照)、ソース電極20(図4参照)および層間絶縁膜21(図4参照)を除去、すなわち透視した状態を図示している。また、図5においては、理解を簡単にするために、交差部22f上であって、膜部22aが形成されない領域AR11を二点鎖線により図示している。なお、以下では、n型SiC基板10の上面側で、かつ、中心側の領域AR1(図4参照)に形成された部分、すなわち半導体装置の中心部について、説明する。 FIG. 4 is a cross-sectional view of main parts of a semiconductor device according to a first modification of the first embodiment. FIG. 5 is a top view of the semiconductor device according to the first modification of the first embodiment. 4 is a cross-sectional view taken along line BB in FIG. In FIG. 5, for easy understanding, the gate insulating film 18 (see FIG. 4), the gate electrode 19 (see FIG. 4), the source electrode 20 (see FIG. 4), and the interlayer insulating film 21 (FIG. 4). (See) is removed, that is, it is seen through. In FIG. 5, for easy understanding, a region AR11 on the intersection 22f where the film part 22a is not formed is illustrated by a two-dot chain line. Hereinafter, a portion formed in the region AR1 (see FIG. 4) on the upper surface side and the center side of the n + -type SiC substrate 10, that is, the central portion of the semiconductor device will be described.
 図4および図5に示すように、本第1変形例の半導体装置1aは、実施の形態1の半導体装置1と同様に、縦型MISFETを備えた半導体装置であり、n型SiC基板10、ドレイン電極11、n型エピタキシャル層12、p型ボディ領域13、n型ソース領域14およびp型ボディコンタクト領域15を有する。また、本実施の形態1の第1変形例の半導体装置1aは、実施の形態1の半導体装置1と同様に、ゲート絶縁膜18、ゲート電極19、ソース電極20および層間絶縁膜21を有する。 As shown in FIGS. 4 and 5, the semiconductor device 1 a of the first modification is a semiconductor device including a vertical MISFET, like the semiconductor device 1 of the first embodiment, and an n + type SiC substrate 10. A drain electrode 11, an n type epitaxial layer 12, a p type body region 13, an n + type source region 14 and a p + type body contact region 15. Further, the semiconductor device 1a of the first modification example of the first embodiment includes the gate insulating film 18, the gate electrode 19, the source electrode 20, and the interlayer insulating film 21, like the semiconductor device 1 of the first embodiment.
 図5には、図2と同様に、X方向およびY方向にマトリクス状に配列された4つのn型エピタキシャル層12を示している。図5に示す範囲では、膜部22aは、平面視において、Y方向に延在する1つの延在部22dと、X方向に延在し、かつ、延在部22dと交差する1つの延在部22eとを含み、十字状に形成されている。そして、図5に示す範囲では、マトリクス状に配列された4つのn型エピタキシャル層12は、十字状の膜部22aにより区画されている。前述したように、十字状の膜部22aにより区画された領域を、セルと称する。 FIG. 5 shows four n -type epitaxial layers 12 arranged in a matrix in the X and Y directions, as in FIG. In the range shown in FIG. 5, the film part 22 a has one extension part 22 d extending in the Y direction and one extension extending in the X direction and intersecting the extension part 22 d in a plan view. Part 22e, and is formed in a cross shape. In the range shown in FIG. 5, the four n -type epitaxial layers 12 arranged in a matrix are partitioned by a cross-shaped film portion 22a. As described above, a region defined by the cross-shaped film portion 22a is referred to as a cell.
 本第1変形例では、ゲート電極19は、X方向で隣り合う2つのn型エピタキシャル層12に挟まれた延在部22d上、および、Y方向で隣り合う2つのn型エピタキシャル層12に挟まれた延在部22e上には、ゲート絶縁膜18を介して形成されている。 In the first modification, the gate electrode 19, two n adjacent in the X direction - -type epitaxial layer 12 sandwiched by the extending portion 22d on, and two n adjacent in the Y direction - -type epitaxial layer 12 The gate insulating film 18 is formed on the extending portion 22e sandwiched between the gate insulating film 18 and the gate insulating film 18.
 一方、本第1変形例では、ゲート電極19は、延在部22dと延在部22eとが交差する交差部22f上の領域AR11には、形成されていない。言い換えれば、交差部22fが前述したセルの角部であると定義した場合、ゲート電極19は、セルの角部としての交差部22f上の領域AR11には、形成されていない。なお、図5におけるB-B線は、交差部22fを挟んで互いに反対側に位置するセルの中心を結ぶ方向、例えば互いに直交するX方向およびY方向のいずれからも45度傾斜した方向に、延在する。 On the other hand, in the first modification, the gate electrode 19 is not formed in the area AR11 on the intersection 22f where the extension 22d and the extension 22e intersect. In other words, when it is defined that the intersection 22f is the aforementioned corner of the cell, the gate electrode 19 is not formed in the region AR11 on the intersection 22f as the corner of the cell. Note that the line BB in FIG. 5 is in a direction connecting the centers of cells located on opposite sides of the intersection 22f, for example, a direction inclined 45 degrees from both the X and Y directions orthogonal to each other. Extend.
 後述する図21を用いて説明するように、JFET領域16の幅が広くなるほど、JFET領域16中の電界の強度が大きくなる。また、セルの角部としての交差部22fにおいては、例えばB-B線に沿った方向のJFET領域16の幅は、X方向およびY方向のJFET領域16の幅よりも大きい。したがって、交差部22f中の電界の強度は、X方向で隣り合う2つのn型エピタキシャル層12に挟まれた延在部22d中の電界の強度よりも大きくなる。また、交差部22f中の電界の強度は、Y方向で隣り合う2つのn型エピタキシャル層12に挟まれた延在部22e中の電界の強度よりも大きくなる。 As described later with reference to FIG. 21, the electric field strength in the JFET region 16 increases as the width of the JFET region 16 increases. At the intersection 22f as the corner of the cell, for example, the width of the JFET region 16 in the direction along the line BB is larger than the width of the JFET region 16 in the X direction and the Y direction. Therefore, the strength of the electric field in the intersecting portion 22f is larger than the strength of the electric field in the extending portion 22d sandwiched between two n type epitaxial layers 12 adjacent in the X direction. Further, the electric field strength in the intersecting portion 22f is larger than the electric field strength in the extending portion 22e sandwiched between two n -type epitaxial layers 12 adjacent in the Y direction.
 本第1変形例では、交差部22f上の領域AR11にゲート電極19を形成しないことで、交差部22fを構成する絶縁膜中の電界の強度を小さくすることができ、セルの角部におけるJFET領域16上の絶縁膜の信頼性を向上させることができる。また、ゲート電極19とドレイン電極11との間の容量である帰還容量を、小さくすることができる。 In the first modification, by not forming the gate electrode 19 in the region AR11 on the intersection 22f, the electric field strength in the insulating film constituting the intersection 22f can be reduced, and the JFET at the corner of the cell The reliability of the insulating film on the region 16 can be improved. Further, the feedback capacitance that is the capacitance between the gate electrode 19 and the drain electrode 11 can be reduced.
 <半導体装置の製造工程>
 次に、本実施の形態1の半導体装置の製造工程の例を、図面を参照して説明する。図6は、実施の形態1の半導体装置の製造工程の一部を示すフロー図である。図7~図20は、実施の形態1の半導体装置の製造工程中の要部断面図である。なお、以下では、n型SiC基板10の上面側で、かつ、中心側の領域AR1における製造工程について、説明する。
<Manufacturing process of semiconductor device>
Next, an example of a manufacturing process of the semiconductor device according to the first embodiment will be described with reference to the drawings. FIG. 6 is a flowchart showing a part of the manufacturing process of the semiconductor device of the first embodiment. 7 to 20 are fragmentary cross-sectional views of the semiconductor device of First Embodiment during the manufacturing steps thereof. In the following, the manufacturing process in the region AR1 on the upper surface side and the center side of the n + type SiC substrate 10 will be described.
 まず、n型SiC基板10を用意する(図6のステップS11)。このステップS11では、図7に示すように、例えば窒素(N)またはリン(P)などのn型不純物を導入した炭化ケイ素(SiC)からなるn型SiC基板10を用意する。前述したように、n型SiC基板10におけるn型の不純物濃度は、比較的大きく、例えば1×1018~1×1021cm-3程度とすることができる。また、n型SiC基板10の厚さを、例えば50~500μm程度とすることができる。 First, an n + type SiC substrate 10 is prepared (step S11 in FIG. 6). In step S11, as shown in FIG. 7, for example, an n + type SiC substrate 10 made of silicon carbide (SiC) into which an n type impurity such as nitrogen (N) or phosphorus (P) is introduced is prepared. As described above, the n type impurity concentration in the n + type SiC substrate 10 is relatively high, and can be, for example, about 1 × 10 18 to 1 × 10 21 cm −3 . In addition, the thickness of the n + -type SiC substrate 10 can be set to, for example, about 50 to 500 μm.
 次いで、n型エピタキシャル層12を形成する(図6のステップS12)。このステップS12では、図8に示すように、n型SiC基板10の上面に、エピタキシャル成長法によりn型エピタキシャル層12を形成する。例えばシリコン(Si)原子含有ガス(SiHガス)、塩素(Cl)原子含有ガス(HClガス)、炭素(C)原子含有ガス(Cガス)および還元ガス(Hガス)等を用い、基板温度を例えば1500~1800℃程度にすることで、SiCからなるn型エピタキシャル層12を形成する。 Next, the n type epitaxial layer 12 is formed (step S12 in FIG. 6). In this step S12, as shown in FIG. 8, an n type epitaxial layer 12 is formed on the upper surface of the n + type SiC substrate 10 by an epitaxial growth method. For example, silicon (Si) atom-containing gas (SiH 4 gas), chlorine (Cl) atom-containing gas (HCl gas), carbon (C) atom-containing gas (C 3 H 8 gas), reducing gas (H 2 gas), etc. By using the substrate temperature of, for example, about 1500 to 1800 ° C., the n type epitaxial layer 12 made of SiC is formed.
 n型エピタキシャル層12には、例えば窒素(N)、リン(P)または砒素(As)などのn型不純物が導入される。前述したように、n型エピタキシャル層12におけるn型の不純物濃度を、例えば1×1015~1×1016cm-3程度とすることができ、n型エピタキシャル層12の厚さを、例えば5~50μm程度とすることができる。 An n-type impurity such as nitrogen (N), phosphorus (P) or arsenic (As) is introduced into the n -type epitaxial layer 12. As described above, n - a n-type impurity concentration of the type epitaxial layer 12, for example, 1 × 10 15 can be a ~ 1 × 10 16 cm -3 approximately, n - the thickness of the type epitaxial layer 12, For example, the thickness can be about 5 to 50 μm.
 次いで、p型ボディ領域13を形成する(図6のステップS13)。このステップS13では、n型エピタキシャル層12上にレジスト膜R1を塗布する。そして、塗布されたレジスト膜R1に対してフォトリソグラフィ技術を用いて露光および現像処理を施すことにより、図9に示すように、レジスト膜R1をパターニングする。レジスト膜R1のパターニングは、n型エピタキシャル層12のうち、p型ボディ領域13が形成される領域が露出するように行われる。 Next, the p-type body region 13 is formed (step S13 in FIG. 6). In this step S 13, a resist film R 1 is applied on the n type epitaxial layer 12. Then, the resist film R1 is patterned by exposing and developing the applied resist film R1 using a photolithography technique, as shown in FIG. The patterning of the resist film R1 is performed so that the region where the p-type body region 13 is formed in the n -type epitaxial layer 12 is exposed.
 そして、パターニングされたレジスト膜R1をマスクにしたイオン注入法により、n型エピタキシャル層12に例えばアルミニウム(Al)またはホウ素(B)などのp型不純物を導入する。これにより、n型エピタキシャル層12の上層部に、p型ボディ領域13が形成される。p型ボディ領域13におけるp型の不純物濃度については、前述したように、例えば1×1017~1×1018cm-3程度とすることができる。また、p型ボディ領域13の厚さを、例えば1~2μm程度とすることができる。 Then, a p-type impurity such as aluminum (Al) or boron (B) is introduced into the n -type epitaxial layer 12 by ion implantation using the patterned resist film R1 as a mask. As a result, the p-type body region 13 is formed in the upper layer portion of the n -type epitaxial layer 12. As described above, the p-type impurity concentration in the p-type body region 13 can be set to about 1 × 10 17 to 1 × 10 18 cm −3 , for example. Further, the thickness of the p-type body region 13 can be set to about 1 to 2 μm, for example.
 なお、p型ボディ領域13を形成する工程については、その工程の後、例えば1700℃程度で熱処理を行い、注入した不純物を活性化させることができる。 In addition, about the process of forming the p-type body area | region 13, it can heat-process, for example at about 1700 degreeC after the process, and can implant | stimulate the implanted impurity.
 次いで、n型ソース領域14を形成する(図6のステップS14)。このステップS14では、パターニングされたレジスト膜R1を除去した後、n型エピタキシャル層12上にレジスト膜R2を塗布する。そして、塗布されたレジスト膜R2に対してフォトリソグラフィ技術を用いて露光および現像処理を施すことにより、図10に示すように、レジスト膜R2をパターニングする。レジスト膜R2のパターニングは、p型ボディ領域13のうち、n型ソース領域14が形成される領域が露出するように行われる。 Next, the n + type source region 14 is formed (step S14 in FIG. 6). In this step S14, after removing the patterned resist film R1, a resist film R2 is applied on the n -type epitaxial layer 12. Then, the applied resist film R2 is subjected to exposure and development using a photolithography technique, thereby patterning the resist film R2 as shown in FIG. The patterning of the resist film R2 is performed so that the region where the n + -type source region 14 is formed in the p-type body region 13 is exposed.
 そして、パターニングされたレジスト膜R2をマスクにしたイオン注入法により、p型ボディ領域13に例えば窒素(N)またはリン(P)などのn型不純物を導入する。これにより、図10に示すように、p型ボディ領域13の上層部に、n型ソース領域14が形成される。n型ソース領域14におけるn型の不純物濃度については、前述したように、例えば1×1019~1×1020cm-3程度とすることができる。また、n型ソース領域14の厚さを、例えば100~500nm程度とすることができる。 Then, an n-type impurity such as nitrogen (N) or phosphorus (P) is introduced into the p-type body region 13 by ion implantation using the patterned resist film R2 as a mask. Thereby, as shown in FIG. 10, an n + type source region 14 is formed in the upper layer portion of the p type body region 13. As described above, the n-type impurity concentration in the n + -type source region 14 can be set to about 1 × 10 19 to 1 × 10 20 cm −3 , for example. In addition, the thickness of the n + -type source region 14 can be set to about 100 to 500 nm, for example.
 次いで、p型ボディコンタクト領域15を形成する(図6のステップS15)。このステップS15では、パターニングされたレジスト膜R2を除去した後、n型エピタキシャル層12上にレジスト膜R3を塗布する。そして、塗布されたレジスト膜R3に対してフォトリソグラフィ技術を用いて露光および現像処理を施すことにより、図11に示すように、レジスト膜R3をパターニングする。レジスト膜R3のパターニングは、p型ボディ領域13またはn型ソース領域14のうち、p型ボディコンタクト領域15が形成される領域が露出するように行われる。 Next, the p + type body contact region 15 is formed (step S15 in FIG. 6). In this step S15, after removing the patterned resist film R2, a resist film R3 is applied onto the n type epitaxial layer 12. Then, the applied resist film R3 is exposed and developed using a photolithography technique to pattern the resist film R3 as shown in FIG. The patterning of the resist film R3 is performed so that a region where the p + type body contact region 15 is formed in the p type body region 13 or the n + type source region 14 is exposed.
 そして、パターニングされたレジスト膜R3をマスクにしたイオン注入法により、p型ボディ領域13またはn型ソース領域14に、例えばアルミニウム(Al)またはホウ素(B)からなるp型不純物を導入する。これにより、図11に示すように、p型ボディ領域13の上層部に、p型ボディコンタクト領域15が形成される。p型ボディコンタクト領域15におけるp型の不純物濃度については、前述したように、例えば1×1019~1×1020cm-3程度とすることができる。また、p型ボディコンタクト領域15の厚さを、例えば100~500nm程度とすることができる。 Then, a p-type impurity made of, for example, aluminum (Al) or boron (B) is introduced into the p-type body region 13 or the n + -type source region 14 by an ion implantation method using the patterned resist film R3 as a mask. Thereby, as shown in FIG. 11, p + type body contact region 15 is formed in the upper layer portion of p type body region 13. The p-type impurity concentration in the p + -type body contact region 15 can be set to, for example, about 1 × 10 19 to 1 × 10 20 cm −3 as described above. Further, the thickness of the p + -type body contact region 15 can be set to about 100 to 500 nm, for example.
 その後、パターニングされたレジスト膜R3を除去する。このレジスト膜R3を除去した状態を、図12に示す。 Thereafter, the patterned resist film R3 is removed. FIG. 12 shows a state where the resist film R3 is removed.
 なお、n型ソース領域14およびp型ボディコンタクト領域15を形成する工程については、上記した順番で行う場合に限られず、適切にパターニングされたレジスト膜をマスクに用いるものであれば、いずれの順番で行ってもよい。また、n型ソース領域14およびp型ボディコンタクト領域15を形成する工程については、各工程の後、または、全ての工程が終わった後、例えば1700℃程度で熱処理を行い、注入した不純物を活性化させることができる。 Note that the step of forming the n + -type source region 14 and the p + -type body contact region 15 is not limited to the above-described order, and any process can be used as long as a resist film that is appropriately patterned is used as a mask. You may carry out in order. In addition, with respect to the process of forming the n + -type source region 14 and the p + -type body contact region 15, after each process or after all the processes are completed, a heat treatment is performed at, for example, about 1700 ° C. Can be activated.
 次いで、保護絶縁膜22を形成する(図6のステップS16)。このステップS16では、図13に示すように、n型エピタキシャル層12の上面上、p型ボディ領域13の上面上、n型ソース領域14上、および、p型ボディコンタクト領域15上に、保護絶縁膜22を形成する。すなわちn型エピタキシャル層12上に、保護絶縁膜22を形成する。 Next, the protective insulating film 22 is formed (Step S16 in FIG. 6). In step S16, as shown in FIG. 13, on the upper surface of n type epitaxial layer 12, on the upper surface of p type body region 13, on n + type source region 14 and on p + type body contact region 15. Then, the protective insulating film 22 is formed. That is, the protective insulating film 22 is formed on the n type epitaxial layer 12.
 保護絶縁膜22は、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12上の絶縁膜中における電界の強度を小さくするためのものである。また、保護絶縁膜22は、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12上の絶縁膜を挟んで発生する容量を低減するためのものである。 The protective insulating film 22 is for reducing the strength of the electric field in the insulating film on the n type epitaxial layer 12 on the opposite side of the n + type source region 14 across the p type body region 13. The protective insulating film 22 is for reducing the capacitance generated by sandwiching the insulating film on the n type epitaxial layer 12 on the opposite side of the n + type source region 14 with the p type body region 13 in between. .
 そのため、保護絶縁膜22として、好適には、例えば密度が小さい酸化シリコン(SiO)または酸窒化シリコン(SiON)からなる各種の膜を用いることができる。または、保護絶縁膜22として、好適には、例えば酸化シリコン(SiO)の誘電率よりも低い誘電率を有するlow-k膜としての炭素含有酸化シリコン(SiOC)からなる各種の膜を用いることができる。あるいは、保護絶縁膜22として、好適には、上記の各種の膜が積層された積層膜を用いることができる。このような保護絶縁膜22を、例えば800℃以下の比較的低い温度で、CVD法により形成することができる。また、保護絶縁膜22の厚さを、例えば数百nm程度とすることができる。 Therefore, as the protective insulating film 22, various films made of, for example, silicon oxide (SiO 2 ) or silicon oxynitride (SiON) having a low density can be used. Alternatively, for example, various films made of carbon-containing silicon oxide (SiOC) as a low-k film having a dielectric constant lower than that of silicon oxide (SiO 2 ) are preferably used as the protective insulating film 22. Can do. Alternatively, as the protective insulating film 22, a laminated film in which the above various films are suitably laminated can be used. Such a protective insulating film 22 can be formed by a CVD method at a relatively low temperature of, for example, 800 ° C. or lower. Further, the thickness of the protective insulating film 22 can be set to, for example, about several hundred nm.
 次いで、保護絶縁膜22をパターニングする(図6のステップS17)。このステップS17では、図14に示すように、フォトリソグラフィ技術およびドライエッチング技術により、保護絶縁膜22を加工、すなわちパターニングし、開口部22cを形成することで、膜部22aおよび22bを形成する。開口部22cは、保護絶縁膜22を貫通して、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面に達する。したがって、開口部22cの底部には、p型ボディ領域13の上面が露出する。膜部22aは、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上面上に形成された保護絶縁膜22からなる。膜部22bは、n型ソース領域14上に形成された保護絶縁膜22からなる。すなわち膜部22bを構成する保護絶縁膜22は、膜部22aを構成する保護絶縁膜22と同層に形成された絶縁膜である。 Next, the protective insulating film 22 is patterned (step S17 in FIG. 6). In step S17, as shown in FIG. 14, the protective insulating film 22 is processed, that is, patterned by the photolithography technique and the dry etching technique to form the opening 22c, thereby forming the film parts 22a and 22b. The opening 22 c penetrates the protective insulating film 22 and reaches the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. Therefore, the upper surface of the p-type body region 13 is exposed at the bottom of the opening 22c. The film portion 22 a is formed of a protective insulating film 22 formed on the upper surface of the n type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween. The film part 22 b is formed of a protective insulating film 22 formed on the n + type source region 14. That is, the protective insulating film 22 constituting the film part 22b is an insulating film formed in the same layer as the protective insulating film 22 constituting the film part 22a.
 開口部22cは、保護絶縁膜22を貫通して、少なくともp型ボディ領域13の上面に達する。したがって、開口部22cは、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上面に達してもよく、n型ソース領域14の上面に達してもよい。すなわち開口部22cの底部には、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上面が露出してもよく、n型ソース領域14の上面が露出してもよい。 The opening 22 c penetrates the protective insulating film 22 and reaches at least the upper surface of the p-type body region 13. Therefore, the opening 22c may reach the upper surface of the n -type epitaxial layer 12 on the opposite side of the n + -type source region 14 with the p-type body region 13 interposed therebetween, and reach the upper surface of the n + -type source region 14. Also good. That is, at the bottom of the opening 22c, the upper surface of the n type epitaxial layer 12 opposite to the n + type source region 14 across the p type body region 13 may be exposed, and the upper surface of the n + type source region 14 may be exposed. May be exposed.
 好適には、開口部22cの断面形状は、テーパ形状であり、開口部22cの幅は、開口部22cの上部から下部、すなわち底部に向かって減少している。開口部22cを形成する領域において、保護絶縁膜22の上部をドライエッチング技術により加工して除去した後、保護絶縁膜22の下部をウェットエッチング技術により加工して除去することで、このようなテーパ形状を有する開口部22cを形成することができる。これにより、保護絶縁膜22を加工する際に、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上層部、すなわちチャネル領域17(後述する図17参照)となる部分、に損傷を与えないようにすることができる。また、開口部22cの底部の膜部22a側の端部に形成されるゲート電極19(後述する図17参照)の近傍で電界の強度が大きくならないようにすることができる。 Preferably, the cross-sectional shape of the opening 22c is a taper shape, and the width of the opening 22c decreases from the top to the bottom, that is, the bottom of the opening 22c. In the region where the opening 22c is to be formed, the upper portion of the protective insulating film 22 is processed and removed by the dry etching technique, and then the lower portion of the protective insulating film 22 is processed and removed by the wet etching technique. An opening 22c having a shape can be formed. Thus, when processing the protective insulating film 22, n + -type source region 14 and n - upper part -type epitaxial layer 12 and sandwiched by p-type body region 13, i.e. see Fig. 17 to the channel region 17 (described later ) Can be prevented from being damaged. In addition, the strength of the electric field can be prevented from increasing in the vicinity of the gate electrode 19 (see FIG. 17 described later) formed at the end of the opening 22c on the film portion 22a side.
 次いで、ゲート絶縁膜18を形成する(図6のステップS18)。このステップS18では、図15に示すように、開口部22cの底部に露出したp型ボディ領域13の上面上に、ゲート絶縁膜18を形成する。ゲート絶縁膜18の密度は、保護絶縁膜22の密度よりも大きい。また、ゲート絶縁膜18の誘電率は、保護絶縁膜22の誘電率よりも大きい。好適には、ゲート絶縁膜18として、例えば比較的高温で形成された絶縁膜を用いることができる。または、好適には、ゲート絶縁膜18として、比較的低温で堆積された膜を高温で熱処理することにより形成された絶縁膜を用いることができる。 Next, the gate insulating film 18 is formed (Step S18 in FIG. 6). In this step S18, as shown in FIG. 15, the gate insulating film 18 is formed on the upper surface of the p-type body region 13 exposed at the bottom of the opening 22c. The density of the gate insulating film 18 is larger than the density of the protective insulating film 22. Further, the dielectric constant of the gate insulating film 18 is larger than the dielectric constant of the protective insulating film 22. Preferably, as the gate insulating film 18, for example, an insulating film formed at a relatively high temperature can be used. Alternatively, as the gate insulating film 18, an insulating film formed by heat-treating a film deposited at a relatively low temperature at a high temperature can be used.
 このようなゲート絶縁膜18として、好適には、例えば酸化シリコン(SiO)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)または酸化ハフニウム(HfO)などからなる各種の膜を用いることができる。あるいは、ゲート絶縁膜18として、好適には、上記の各種の膜が積層された積層膜を用いることができる。また、このようなゲート絶縁膜18を、例えばCVD法により形成することができる。 As such a gate insulating film 18, various films made of, for example, silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), or hafnium oxide (HfO 2 ) are preferably used. Can be used. Alternatively, as the gate insulating film 18, a laminated film in which the above various films are suitably laminated can be used. Further, such a gate insulating film 18 can be formed by, for example, a CVD method.
 ゲート絶縁膜18の厚さTH1は、膜部22aの厚さTH2よりも小さく、かつ、膜部22bの厚さTH3よりも小さい。これにより、JFET領域16とゲート電極19との間の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させることができる。前述したように、膜部22aを構成する保護絶縁膜22の厚さTH2を、例えば数百nm程度とした場合、ゲート絶縁膜18の厚さTH1を、例えば数十nm程度とすることができる。 The thickness TH1 of the gate insulating film 18 is smaller than the thickness TH2 of the film part 22a and smaller than the thickness TH3 of the film part 22b. Thereby, the strength of the electric field in the insulating film between the JFET region 16 and the gate electrode 19 can be reduced, and the reliability of the insulating film can be improved. As described above, when the thickness TH2 of the protective insulating film 22 constituting the film portion 22a is, for example, about several hundred nm, the thickness TH1 of the gate insulating film 18 can be, for example, about several tens of nm. .
 図15に示す例では、ゲート絶縁膜18は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に、形成される。また、ゲート絶縁膜18は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22aの上面上にかけて、連続的に形成される。さらに、ゲート絶縁膜18は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22bの上面上にかけて、連続的に形成される。 In the example shown in FIG. 15, the gate insulating film 18 is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. The gate insulating film 18 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film part 22a. . Furthermore, the gate insulating film 18 is continuously formed from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film portion 22b. .
 次いで、ゲート電極19を形成する(図6のステップS19)。このステップS19では、まず、図16に示すように、ゲート絶縁膜18上に導電膜19bを形成する。導電膜19bは、例えばリン(P)もしくは砒素(As)などのn型不純物が大きな濃度で拡散したポリシリコン、または、ホウ素(B)などのp型不純物が大きな濃度で拡散したポリシリコンなどからなる。導電膜19bを、例えばCVD法などにより形成することができる。 Next, the gate electrode 19 is formed (step S19 in FIG. 6). In step S19, first, a conductive film 19b is formed on the gate insulating film 18, as shown in FIG. The conductive film 19b is made of, for example, polysilicon in which n-type impurities such as phosphorus (P) or arsenic (As) are diffused at a high concentration, or polysilicon in which p-type impurities such as boron (B) are diffused at a high concentration. Become. The conductive film 19b can be formed by, for example, a CVD method.
 そして、図17に示すように、導電膜19bをパターニングしてゲート電極19を形成する。このゲート電極19を形成する工程では、フォトリソグラフィ技術およびドライエッチング技術により、導電膜19bをパターニング、すなわち加工する。例えばフォトリソグラフィ技術によりパターニングされたレジスト膜をマスクにしたドライエッチング技術によりパターニングすることで、図17に示すように、導電膜19bからなるゲート電極19を形成する。 Then, as shown in FIG. 17, the conductive film 19b is patterned to form the gate electrode 19. In the step of forming the gate electrode 19, the conductive film 19b is patterned, that is, processed by a photolithography technique and a dry etching technique. For example, patterning is performed by a dry etching technique using a resist film patterned by a photolithography technique as a mask, thereby forming a gate electrode 19 made of a conductive film 19b as shown in FIG.
 図17に示すように、ゲート電極19は、ゲート絶縁膜18のうち、膜部22aと膜部22bとに挟まれたp型ボディ領域13の上面上に形成された部分18a上に、形成される。言い換えれば、ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に、ゲート絶縁膜18を介して形成される。 As shown in FIG. 17, the gate electrode 19 is formed on a portion 18a of the gate insulating film 18 formed on the upper surface of the p-type body region 13 sandwiched between the film part 22a and the film part 22b. The In other words, the gate electrode 19 is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 via the gate insulating film 18.
 好適には、ゲート電極19は、ゲート絶縁膜18のうち、部分18a上から、膜部22aの上面上に形成された部分18b上にかけて、連続的に形成される。すなわち、ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22aの上面上にかけて、ゲート絶縁膜18を介して連続的に形成される。これにより、n型エピタキシャル層12とゲート電極19との間の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させることができる。 Preferably, the gate electrode 19 is formed continuously from the portion 18a of the gate insulating film 18 to the portion 18b formed on the upper surface of the film portion 22a. That is, the gate electrode 19 extends from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film portion 22a via the gate insulating film 18. It is formed continuously. As a result, the strength of the electric field in the insulating film between the n type epitaxial layer 12 and the gate electrode 19 can be reduced, and the reliability of the insulating film can be improved.
 さらに好適には、ゲート電極19は、ゲート絶縁膜18のうち、部分18a上から、膜部22bの上面上に形成された部分18c上にかけて、連続的に形成される。すなわち、ゲート電極19は、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上から、膜部22bの上面上にかけて、ゲート絶縁膜18を介して連続的に形成される。そして、ゲート電極19の膜部22b側の端部19aは、ゲート絶縁膜18のうち、膜部22bの表面に形成された部分18c上に配置される。すなわち、ゲート電極19は、ゲート電極19が、膜部22b上で終端されるように、形成される。 More preferably, the gate electrode 19 is formed continuously from the portion 18a of the gate insulating film 18 to the portion 18c formed on the upper surface of the film portion 22b. That is, the gate electrode 19 extends from the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 to the upper surface of the film portion 22b via the gate insulating film 18. It is formed continuously. The end portion 19a on the film portion 22b side of the gate electrode 19 is disposed on a portion 18c of the gate insulating film 18 formed on the surface of the film portion 22b. That is, the gate electrode 19 is formed so that the gate electrode 19 is terminated on the film part 22b.
 これにより、導電膜19bを加工する際に、導電膜19bが膜部22b上、すなわち保護絶縁膜22上で加工されるので、例えばn型ソース領域14、p型ボディ領域13などの半導体領域、および、n型SiC基板10に損傷が与えられることを、防止または抑制することができる。また、ゲート電極19の端部19aに向かう電気力線が集中し、端部19aの近傍で電界の強度が大きくなることを、防止または抑制することができる。 Thus, when the conductive film 19b is processed, the conductive film 19b is processed on the film portion 22b, that is, on the protective insulating film 22, so that the semiconductor regions such as the n + -type source region 14 and the p-type body region 13 are formed. And damage to the n + -type SiC substrate 10 can be prevented or suppressed. In addition, it is possible to prevent or suppress an increase in electric field strength in the vicinity of the end portion 19a due to concentration of electric lines of force toward the end portion 19a of the gate electrode 19.
 このようにしてゲート電極19を形成することで、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上層部が、チャネル領域17となる。また、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上層部が、JFET領域16となる。 By forming the gate electrode 19 in this way, the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 becomes the channel region 17. Further, the upper layer portion of the n -type epitaxial layer 12 on the opposite side of the n + -type source region 14 with the p-type body region 13 interposed therebetween becomes the JFET region 16.
 なお、ゲート絶縁膜18を、例えば熱酸化法により形成するときは、膜部22aの上面上、および、膜部22bの上面上に、ゲート絶縁膜18が形成されず、ゲート電極19が、直接形成される。 When the gate insulating film 18 is formed by, for example, a thermal oxidation method, the gate insulating film 18 is not formed on the upper surface of the film portion 22a and the upper surface of the film portion 22b, and the gate electrode 19 is directly It is formed.
 次いで、層間絶縁膜21を形成する(図6のステップS20)。このステップS21では、図18に示すように、ゲート電極19の表面を含めてゲート絶縁膜18上に、層間絶縁膜21を形成する。層間絶縁膜21として、例えば酸化シリコン膜を用いることができ、例えばCVD法により形成することができる。 Next, an interlayer insulating film 21 is formed (Step S20 in FIG. 6). In step S21, an interlayer insulating film 21 is formed on the gate insulating film 18 including the surface of the gate electrode 19 as shown in FIG. For example, a silicon oxide film can be used as the interlayer insulating film 21, and can be formed by, for example, a CVD method.
 次いで、ソースコンタクト孔21aを形成する(図6のステップS21)。このステップS21では、図19に示すように、フォトリソグラフィ技術およびエッチング技術を使用することにより、層間絶縁膜21、ゲート絶縁膜18および保護絶縁膜22に、開口部としてのソースコンタクト孔21aを形成する。すなわち層間絶縁膜21、ゲート絶縁膜18および保護絶縁膜22を貫通し、n型ソース領域14およびp型ボディコンタクト領域15に達するソースコンタクト孔21aを形成する。ソースコンタクト孔21aの底面には、n型ソース領域14の上面、および、p型ボディコンタクト領域15の上面が露出する。 Next, the source contact hole 21a is formed (step S21 in FIG. 6). In this step S21, as shown in FIG. 19, a source contact hole 21a as an opening is formed in the interlayer insulating film 21, the gate insulating film 18 and the protective insulating film 22 by using a photolithography technique and an etching technique. To do. That is, a source contact hole 21 a that penetrates the interlayer insulating film 21, the gate insulating film 18, and the protective insulating film 22 and reaches the n + type source region 14 and the p + type body contact region 15 is formed. The upper surface of the n + -type source region 14 and the upper surface of the p + -type body contact region 15 are exposed on the bottom surface of the source contact hole 21a.
 次いで、ソース電極20を形成する(図6のステップS22)。このステップS22では、図20に示すように、層間絶縁膜21上に、ならびに、ソースコンタクト孔21aの底面および内壁を覆うように、例えばアルミニウム(Al)などからなる導電膜を、例えば蒸着法またはスパッタ法などにより堆積することで、ソース電極20を形成する。 Next, the source electrode 20 is formed (step S22 in FIG. 6). In this step S22, as shown in FIG. 20, a conductive film made of, for example, aluminum (Al) is formed on the interlayer insulating film 21 and so as to cover the bottom surface and the inner wall of the source contact hole 21a, for example, by vapor deposition or The source electrode 20 is formed by depositing by sputtering or the like.
 次いで、ドレイン電極11を形成する(図6のステップS23)。このステップS23では、n型SiC基板10の下面に、例えばチタン(Ti)、ニッケル(Ni)、金(Au)および銀(Ag)のいずれかからなる金属膜、または、これらのいずれか2種以上の金属膜が積層された積層膜を、例えば蒸着法またはスパッタ法などにより堆積することで、ドレイン電極11を形成する。これにより、図1に示したような、半導体装置1を製造することができる。 Next, the drain electrode 11 is formed (step S23 in FIG. 6). In this step S23, a metal film made of, for example, any one of titanium (Ti), nickel (Ni), gold (Au), and silver (Ag), or any two of them is formed on the lower surface of the n + -type SiC substrate 10. The drain electrode 11 is formed by depositing a laminated film in which metal films of seeds or more are laminated, for example, by vapor deposition or sputtering. Thereby, the semiconductor device 1 as shown in FIG. 1 can be manufactured.
 なお、図1では図示を省略するが、ドレイン電極11を形成した後、半導体装置1の上面および下面にパッシベーション膜を形成することができる。次いで、形成されたパッシベーション膜のうち、ドレイン電極11、ゲート電極19およびソース電極20の各電極を外部と電気的に接続するためのパッド領域となる部分に開口部を形成することができる。 Although not shown in FIG. 1, after forming the drain electrode 11, a passivation film can be formed on the upper surface and the lower surface of the semiconductor device 1. Next, in the formed passivation film, an opening can be formed in a portion to be a pad region for electrically connecting the drain electrode 11, the gate electrode 19, and the source electrode 20 to the outside.
 <JFET領域上の絶縁膜中の電界の強度について>
 次に、JFET領域上の絶縁膜中の電界の強度について、比較例1の半導体装置と比較しながら説明する。図21は、比較例1の半導体装置の要部断面図である。
<Intensity of electric field in insulating film on JFET region>
Next, the intensity of the electric field in the insulating film on the JFET region will be described in comparison with the semiconductor device of Comparative Example 1. FIG. 21 is a main-portion cross-sectional view of the semiconductor device of Comparative Example 1.
 図21において、比較例1の半導体装置101のn型SiC基板10、ドレイン電極11およびn型エピタキシャル層12の各々は、上記半導体装置1のn型SiC基板10、ドレイン電極11およびn型エピタキシャル層12のそれぞれに相当するものである(図1参照)。また、半導体装置101のp型ボディ領域13、n型ソース領域14およびp型ボディコンタクト領域15の各々は、上記半導体装置1のp型ボディ領域13、n型ソース領域14およびp型ボディコンタクト領域15のそれぞれに相当するものである(図1参照)。 In Figure 21, n + -type SiC substrate 10 of the semiconductor device 101 of Comparative Example 1, the drain electrode 11 and the n - each type epitaxial layer 12, the semiconductor device 1 of the n + -type SiC substrate 10, the drain electrode 11 and the n This corresponds to each of the type epitaxial layers 12 (see FIG. 1). Each of the p-type body region 13, n + -type source region 14 and p + -type body contact region 15 of the semiconductor device 101, p-type body region 13 of the semiconductor device 1, n + -type source region 14 and p + This corresponds to each of the mold body contact regions 15 (see FIG. 1).
 また、半導体装置101のJFET領域16およびチャネル領域17の各々は、上記半導体装置1のJFET領域16およびチャネル領域17のそれぞれに相当するものである(図1参照)。また、半導体装置101のゲート絶縁膜18、ゲート電極19、ソース電極20および層間絶縁膜21の各々は、上記半導体装置1のゲート絶縁膜18、ゲート電極19、ソース電極20および層間絶縁膜21のそれぞれに相当するものである(図1参照)。 Further, each of the JFET region 16 and the channel region 17 of the semiconductor device 101 corresponds to each of the JFET region 16 and the channel region 17 of the semiconductor device 1 (see FIG. 1). The gate insulating film 18, the gate electrode 19, the source electrode 20, and the interlayer insulating film 21 of the semiconductor device 101 are the same as the gate insulating film 18, the gate electrode 19, the source electrode 20, and the interlayer insulating film 21 of the semiconductor device 1. These correspond to each (see FIG. 1).
 しかし、比較例1の半導体装置101には、上記半導体装置1に形成されていた膜部22a(図1参照)および膜部22b(図1参照)が形成されていない。 However, in the semiconductor device 101 of Comparative Example 1, the film part 22a (see FIG. 1) and the film part 22b (see FIG. 1) formed in the semiconductor device 1 are not formed.
 前述したように、炭化ケイ素(SiC)の絶縁破壊電界は、シリコン(Si)の絶縁破壊電界よりも1桁程度大きい。そのため、SiCを用いた縦型MISFETは、Siを用いた縦型MISFETに比べて、n型エピタキシャル層12中の電界が1桁程度大きくなるように、設計される。具体的には、SiCを用いた縦型MISFETでは、Siを用いた縦型MISFETに比べて、n型エピタキシャル層12における不純物濃度を大きくする。また、SiCを用いた縦型MISFETでは、Siを用いた縦型MISFETに比べて、n型エピタキシャル層12の厚さを小さくする。このとき、n型エピタキシャル層12の厚さを小さくすることで、縦型MISFETのオン抵抗は、低減される。 As described above, the breakdown electric field of silicon carbide (SiC) is about one digit larger than the breakdown electric field of silicon (Si). Therefore, the vertical MISFET using SiC is designed so that the electric field in the n -type epitaxial layer 12 is increased by about one digit compared to the vertical MISFET using Si. Specifically, in the vertical MISFET using SiC, the impurity concentration in the n type epitaxial layer 12 is increased as compared with the vertical MISFET using Si. In addition, in the vertical MISFET using SiC, the thickness of the n type epitaxial layer 12 is made smaller than that in the vertical MISFET using Si. At this time, the on-resistance of the vertical MISFET is reduced by reducing the thickness of the n type epitaxial layer 12.
 ところが、縦型MISFETのオン抵抗が低減される一方で、n型エピタキシャル層12の厚さを小さくすることで、JFET領域16上のゲート絶縁膜18中の電界の強度が増大する。その結果、例えば閾値電圧が不均一になることなどにより、ゲート絶縁膜18の信頼性が低下する。また、ゲート電極19とドレイン電極11との間の容量である帰還容量Cgdが、増大する。この帰還容量Cgdが大きい場合には、電力変換装置を高速に動作させることができないか、または、電力変換装置によりモータ等を駆動する際の制御工程が複雑になるおそれがある。 However, while the on-resistance of the vertical MISFET is reduced, reducing the thickness of the n -type epitaxial layer 12 increases the strength of the electric field in the gate insulating film 18 on the JFET region 16. As a result, the reliability of the gate insulating film 18 decreases due to, for example, non-uniform threshold voltages. In addition, the feedback capacitance Cgd that is the capacitance between the gate electrode 19 and the drain electrode 11 increases. When the feedback capacitance Cgd is large, the power converter cannot be operated at high speed, or the control process when driving the motor or the like by the power converter may be complicated.
 上記した、ゲート絶縁膜中の電界の強度が増大するという課題、および、帰還容量が増大するという課題は、JFET領域16の幅が広いほど、顕著である。これは、JFET領域16の幅が広くなるほど、p型ボディ領域13の下のn型エピタキシャル層12中の電界の強度よりもJFET領域16中の電界の強度が大きくなるからである。また、JFET領域16の幅が広くなるほど、ドレイン電極11のうちゲート電極19と対向する部分の面積が大きくなるからである。 The above-described problem that the electric field strength in the gate insulating film increases and the problem that the feedback capacitance increases increase as the width of the JFET region 16 increases. This is because the electric field strength in the JFET region 16 becomes larger as the width of the JFET region 16 becomes wider than the electric field strength in the n -type epitaxial layer 12 below the p-type body region 13. This is also because the area of the drain electrode 11 facing the gate electrode 19 increases as the width of the JFET region 16 increases.
 例えば、鉄道車両用など比較的高い電圧で用いられるインバータには、数kV程度の高い耐電圧を有する縦型MISFETが備えられることが望まれる。また、耐電圧を高くするために、n型エピタキシャル層12における不純物濃度は、比較的小さくなる。このようにn型エピタキシャル層12における不純物濃度が小さい場合には、JFET領域16の幅が狭いとき、縦型MISFETのオン抵抗の全体に対する、JFET領域16の抵抗の割合が大きくなり、縦型MISFETのオン抵抗を小さくすることが困難となる。そのため、JFET領域16の幅は、広くなるように、設計される。 For example, an inverter that is used at a relatively high voltage such as for a railway vehicle is desirably provided with a vertical MISFET having a high withstand voltage of about several kV. In order to increase the withstand voltage, the impurity concentration in the n -type epitaxial layer 12 is relatively small. As described above, when the impurity concentration in the n -type epitaxial layer 12 is small, when the width of the JFET region 16 is narrow, the ratio of the resistance of the JFET region 16 to the entire on-resistance of the vertical MISFET increases. It becomes difficult to reduce the on-resistance of the MISFET. For this reason, the width of the JFET region 16 is designed to be wide.
 このように、鉄道車両用など比較的高い電圧で用いられるインバータに備えられた縦型MISFETでは、JFET領域16上のゲート絶縁膜18中の電界の強度を小さくし、帰還容量を小さくすることと、JFET領域16の幅を広くすることとは、両立しない。したがって、例えばJFET領域16の幅をあまり広くすることができないことなどにより、インバータにおける電力変換の際の損失が大きくなり、インバータの発熱量が大きくなる。そのため、この大きな発熱量に対応して、インバータを十分冷却するために、大きな冷却能力を有する、大型の冷却装置が設けられる必要が生ずる。よって、縦型MISFETを備えた電力変換装置、または、この電力変換装置を備えた鉄道車両の製造コストを低減することができない。あるいは、縦型MISFETを備えた電力変換装置、または、この電力変換装置を含む鉄道車両を、容易に小型化または軽量化することができない。 As described above, in the vertical MISFET provided in an inverter used for a railway vehicle or the like at a relatively high voltage, the strength of the electric field in the gate insulating film 18 on the JFET region 16 is reduced, and the feedback capacitance is reduced. The widening of the JFET region 16 is not compatible. Therefore, for example, the width of the JFET region 16 cannot be increased so much that the loss at the time of power conversion in the inverter increases, and the amount of heat generated in the inverter increases. Therefore, in order to sufficiently cool the inverter corresponding to this large amount of heat generation, it is necessary to provide a large cooling device having a large cooling capacity. Therefore, it is not possible to reduce the manufacturing cost of the power conversion device provided with the vertical MISFET or the railway vehicle provided with this power conversion device. Alternatively, a power converter provided with a vertical MISFET or a railway vehicle including the power converter cannot be easily reduced in size or weight.
 上記特許文献1および2に記載された技術を用いる場合、ゲート絶縁膜のうち、JFET領域16上の部分の厚さが大きく、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に形成された部分の厚さが小さい。 When the techniques described in Patent Documents 1 and 2 are used, the portion of the gate insulating film on the JFET region 16 is large and is sandwiched between the n + type source region 14 and the n type epitaxial layer 12. Further, the thickness of the portion formed on the upper surface of p-type body region 13 is small.
 しかし、厚いゲート絶縁膜を形成した後、形成されたゲート絶縁膜のうち、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に形成された部分を加工して、例えば数十nm程度の厚さを有する薄いゲート絶縁膜を残すことは、困難である。特に、加工により薄くされる部分の厚さを均一にすることは、困難である。また、ゲート絶縁膜を形成する際に、ゲート絶縁膜の下のp型ボディ領域13に損傷が与えられるおそれがある。また、ゲート絶縁膜を形成した後、ゲート電極を加工する際に、薄いゲート絶縁膜を介して、p型ボディ領域13、ならびに、p型ボディ領域13の下のn型エピタキシャル層12およびn型SiC基板10に損傷が与えられるおそれがある。 However, after the thick gate insulating film is formed, the gate insulating film is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. It is difficult to process the portion and leave a thin gate insulating film having a thickness of, for example, about several tens of nanometers. In particular, it is difficult to make the thickness of the portion thinned by processing uniform. Further, when forming the gate insulating film, the p-type body region 13 under the gate insulating film may be damaged. When the gate electrode is processed after forming the gate insulating film, the p-type body region 13 and the n -type epitaxial layers 12 and n under the p-type body region 13 are interposed through the thin gate insulating film. The + type SiC substrate 10 may be damaged.
 <本実施の形態の主要な特徴と効果>
 一方、本実施の形態1の半導体装置1には、膜部22aおよび22bが形成されている。ゲート電極19は、JFET領域16上に、少なくとも膜部22aを介して形成されている。これにより、JFET領域16上に膜部22aに代えてゲート絶縁膜18が直接形成され、JFET領域16上に直接形成されたゲート絶縁膜18上にゲート電極19が形成された場合に比べ、JFET領域16とゲート電極19との間の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させることができる。また、帰還容量Cgdを小さくすることができる。
<Main features and effects of the present embodiment>
On the other hand, in the semiconductor device 1 of the first embodiment, film portions 22a and 22b are formed. The gate electrode 19 is formed on the JFET region 16 via at least the film part 22a. As a result, the gate insulating film 18 is formed directly on the JFET region 16 instead of the film portion 22a, and the gate electrode 19 is formed on the gate insulating film 18 formed directly on the JFET region 16. The strength of the electric field in the insulating film between the region 16 and the gate electrode 19 can be reduced and the reliability of the insulating film can be improved. Further, the feedback capacitance Cgd can be reduced.
 また、耐電圧を高くするために、n型エピタキシャル層12における不純物濃度を小さくし、JFET領域16の幅が広くなるように設計された場合でも、JFET領域16上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させ、帰還容量Cgdを容易に小さくすることができる。つまり、JFET領域16上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させ、帰還容量Cgdを小さくしつつ、JFET領域16の幅を広くすることができる。よって、インバータにおける電力変換の際の損失を小さくすることができるので、インバータを十分冷却するために、大きな冷却能力を有する、大型の冷却装置が設けられなくてもよい。そのため、冷却装置を小型化することなどにより、電力変換装置、または、この電力変換装置を含む鉄道車両を、容易に低コスト化、小型化または軽量化することができる。 Even when the impurity concentration in the n -type epitaxial layer 12 is decreased and the width of the JFET region 16 is increased in order to increase the withstand voltage, the electric field in the insulating film on the JFET region 16 is increased. By reducing the strength, the reliability of the insulating film can be improved, and the feedback capacitance Cgd can be easily reduced. That is, the strength of the electric field in the insulating film on the JFET region 16 can be reduced to improve the reliability of the insulating film, and the width of the JFET region 16 can be increased while reducing the feedback capacitance Cgd. Therefore, since the loss at the time of the power conversion in an inverter can be made small, in order to fully cool an inverter, it is not necessary to provide a large-sized cooling device having a large cooling capacity. Therefore, it is possible to easily reduce the cost, size, or weight of the power conversion device or the railway vehicle including the power conversion device by downsizing the cooling device.
 一方、ゲート電極19は、チャネル領域17上に、膜部22aを介さず、ゲート絶縁膜18のみを介して形成されている。したがって、厚いゲート絶縁膜を形成した後、形成されたゲート絶縁膜のうち、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上面上に形成された部分を加工して、例えば数十nm程度の厚さを有する薄いゲート絶縁膜を残す工程を行う必要がない。そのため、ゲート絶縁膜18を形成する際に、ゲート絶縁膜18の下のp型ボディ領域13に損傷が与えられることを防止することができる。また、ゲート絶縁膜18を形成した後、ゲート電極19を加工する際に、薄いゲート絶縁膜18を介して、p型ボディ領域13、ならびに、p型ボディ領域13の下のn型エピタキシャル層12およびn型SiC基板10に損傷が与えられることを防止することができる。 On the other hand, the gate electrode 19 is formed on the channel region 17 via only the gate insulating film 18 and not via the film part 22a. Accordingly, after the thick gate insulating film is formed, the gate insulating film is formed on the upper surface of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12. There is no need to process the part to leave a thin gate insulating film having a thickness of about several tens of nanometers, for example. Therefore, when the gate insulating film 18 is formed, it is possible to prevent the p-type body region 13 under the gate insulating film 18 from being damaged. In addition, when the gate electrode 19 is processed after the gate insulating film 18 is formed, the p-type body region 13 and the n -type epitaxial layer under the p-type body region 13 are interposed via the thin gate insulating film 18. It is possible to prevent the 12 and n + type SiC substrate 10 from being damaged.
 なお、本実施の形態1については、半導体基板および各半導体領域の導電型をp型とn型との間で互いに入れ替えた場合にも適用可能である。このような場合でも、本実施の形態1の半導体装置1と同様の効果が得られる(後述する実施の形態2においても同様)。 The first embodiment can also be applied to the case where the conductivity types of the semiconductor substrate and each semiconductor region are interchanged between p-type and n-type. Even in such a case, the same effect as that of the semiconductor device 1 of the first embodiment can be obtained (the same applies to the second embodiment described later).
 また、本実施の形態1については、n型SiC基板に代え、例えばシリコン(Si)または窒化ガリウム(GaN)など各種の半導体材料からなる半導体基板を用い、n型エピタキシャル層として例えばSiまたはGaNなど各種の半導体材料からなる半導体層を用いた場合にも適用可能である。このような場合でも、半導体材料として炭化ケイ素(SiC)を用いる場合に比べれば程度は少なくなるものの、本実施の形態1の半導体装置と同様の効果が、ある程度得られる(後述する実施の形態2においても同様)。 In the first embodiment, instead of the n + type SiC substrate, a semiconductor substrate made of various semiconductor materials such as silicon (Si) or gallium nitride (GaN) is used, and the n type epitaxial layer is made of Si or the like. The present invention is also applicable when a semiconductor layer made of various semiconductor materials such as GaN is used. Even in such a case, the effect similar to that of the semiconductor device of the first embodiment can be obtained to some extent, although the degree is less than that in the case of using silicon carbide (SiC) as the semiconductor material (second embodiment described later). The same applies to the above).
 (実施の形態2)
 <半導体装置>
 次に、本発明の実施の形態2の半導体装置について説明する。実施の形態1では、JFET領域上には、保護絶縁膜が形成されていた。それに対して、実施の形態2では、JFET領域上に、保護絶縁膜とは別の絶縁膜を介して、保護絶縁膜が形成されている。
(Embodiment 2)
<Semiconductor device>
Next, a semiconductor device according to the second embodiment of the present invention will be described. In the first embodiment, a protective insulating film is formed on the JFET region. In contrast, in the second embodiment, a protective insulating film is formed on the JFET region via an insulating film different from the protective insulating film.
 図22は、実施の形態2の半導体装置の要部断面図である。なお、以下では、n型SiC基板10の上面側で、かつ、中心側の領域AR1(図22参照)に形成された部分、すなわち半導体装置の中心部について、説明する。 FIG. 22 is a fragmentary cross-sectional view of the semiconductor device of Second Embodiment. Hereinafter, a portion formed in the region AR1 (see FIG. 22) on the upper surface side and the center side of the n + -type SiC substrate 10, that is, the central portion of the semiconductor device will be described.
 図22に示すように、本実施の形態2の半導体装置1bは、実施の形態1の半導体装置1と同様に、縦型MISFETを備えた半導体装置であり、n型SiC基板10、ドレイン電極11、n型エピタキシャル層12、p型ボディ領域13、n型ソース領域14およびp型ボディコンタクト領域15を有する。また、本実施の形態2の半導体装置1bは、実施の形態1の半導体装置1と同様に、ゲート絶縁膜18、ゲート電極19、ソース電極20および層間絶縁膜21を有する。また、実施の形態1と同様に、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上層部は、JFET領域16である。さらに、実施の形態1と同様に、n型ソース領域14とn型エピタキシャル層12とに挟まれたp型ボディ領域13の上層部は、チャネル領域17である。 As shown in FIG. 22, the semiconductor device 1b of the second embodiment is a semiconductor device including a vertical MISFET, like the semiconductor device 1 of the first embodiment, and includes an n + -type SiC substrate 10 and a drain electrode. 11, an n type epitaxial layer 12, a p type body region 13, an n + type source region 14 and a p + type body contact region 15. In addition, the semiconductor device 1b of the second embodiment includes the gate insulating film 18, the gate electrode 19, the source electrode 20, and the interlayer insulating film 21, like the semiconductor device 1 of the first embodiment. Similarly to the first embodiment, the upper layer portion of the n type epitaxial layer 12 on the opposite side of the n + type source region 14 across the p type body region 13 is a JFET region 16. Further, as in the first embodiment, the upper layer portion of the p-type body region 13 sandwiched between the n + -type source region 14 and the n -type epitaxial layer 12 is a channel region 17.
 図22に示すように、本実施の形態2では、実施の形態1と同様に、n型エピタキシャル層12の上方、および、n型ソース領域14の上方に、保護絶縁膜22からなる膜部22aおよび22bが形成されている。膜部22aは、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上層部、すなわちJFET領域16の上方に形成された保護絶縁膜22からなる。膜部22bは、n型ソース領域14の上方に形成された保護絶縁膜22からなる。膜部22bを構成する保護絶縁膜22は、膜部22aを構成する保護絶縁膜22と同層に形成された絶縁膜である。 As shown in FIG. 22, in the second embodiment, as in the first embodiment, a film made of the protective insulating film 22 above the n type epitaxial layer 12 and above the n + type source region 14. Portions 22a and 22b are formed. The film part 22 a is formed of a protective insulating film 22 formed above the upper part of the n -type epitaxial layer 12, that is, above the JFET region 16, on the opposite side of the n + -type source region 14 across the p-type body region 13. The film part 22 b is composed of a protective insulating film 22 formed above the n + -type source region 14. The protective insulating film 22 constituting the film part 22b is an insulating film formed in the same layer as the protective insulating film 22 constituting the film part 22a.
 ゲート絶縁膜18の厚さTH1は、膜部22aの厚さTH2よりも小さく、かつ、膜部22bの厚さTH3よりも小さい。これにより、JFET領域16とゲート電極19との間の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させることができる。 The thickness TH1 of the gate insulating film 18 is smaller than the thickness TH2 of the film part 22a and smaller than the thickness TH3 of the film part 22b. Thereby, the strength of the electric field in the insulating film between the JFET region 16 and the gate electrode 19 can be reduced, and the reliability of the insulating film can be improved.
 ただし、本実施の形態2では、実施の形態1と異なり、JFET領域16と、保護絶縁膜22からなる膜部22aとの間に、絶縁膜23が形成されている。すなわち絶縁膜23は、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上面上に、形成されている。したがって、膜部22aは、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上面上に、絶縁膜23を介して形成された保護絶縁膜22からなる。 However, in the second embodiment, unlike the first embodiment, the insulating film 23 is formed between the JFET region 16 and the film portion 22a made of the protective insulating film 22. That is, the insulating film 23 is formed on the upper surface of the n type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween. Therefore, the film portion 22 a is formed from the protective insulating film 22 formed on the upper surface of the n type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween via the insulating film 23. Become.
 絶縁膜23は、例えばゲート絶縁膜18と同様に、酸化シリコン(SiO)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)または酸化ハフニウム(HfO)などからなり、例えば熱酸化法またはCVD法などにより形成されている。また、絶縁膜23の厚さは、例えば数十nm程度である。 The insulating film 23 is made of silicon oxide (SiO 2 ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), or the like, for example, like the gate insulating film 18. It is formed by the method or the CVD method. Further, the thickness of the insulating film 23 is, for example, about several tens of nm.
 保護絶縁膜22をパターニングして開口部22cを形成することで、膜部22aおよび22bが形成されている。開口部22cは、保護絶縁膜22を貫通して絶縁膜23に達する。また、保護絶縁膜22をパターニングして開口部22cを形成する際に、絶縁膜23をパターニングして開口部23cを形成する。開口部23cは、開口部22cと連通し、絶縁膜23を貫通してp型ボディ領域13に達する。 Film portions 22a and 22b are formed by patterning the protective insulating film 22 to form the opening 22c. The opening 22 c penetrates the protective insulating film 22 and reaches the insulating film 23. Further, when the protective insulating film 22 is patterned to form the opening 22c, the insulating film 23 is patterned to form the opening 23c. Opening 23 c communicates with opening 22 c and penetrates insulating film 23 to reach p type body region 13.
 絶縁膜23は、保護絶縁膜22よりも高品質の膜である。好適には、絶縁膜23の密度は、保護絶縁膜22の密度よりも大きい。また、好適には、絶縁膜23の誘電率は、保護絶縁膜22の誘電率よりも大きい。このとき、絶縁膜23中の準位の密度は、保護絶縁膜22中の準位の密度よりも小さい。 The insulating film 23 is a higher quality film than the protective insulating film 22. Preferably, the density of the insulating film 23 is larger than the density of the protective insulating film 22. Preferably, the dielectric constant of the insulating film 23 is larger than the dielectric constant of the protective insulating film 22. At this time, the density of levels in the insulating film 23 is smaller than the density of levels in the protective insulating film 22.
 JFET領域16は、キャリアとしての電子が移動する領域である。また、JFET領域16上に形成される絶縁膜のうち、JFET領域16と接触する部分は、当該絶縁膜中の電界の強度が最大になる部分である。したがって、JFET領域16と保護絶縁膜22との界面部分に、保護絶縁膜22中の準位の密度よりも小さい密度の準位を有する絶縁膜23を形成することで、保護絶縁膜22中に存在する準位に、JFET領域16中を移動するキャリアが捕獲されることを、防止または抑制することができる。よって、JFET領域16上の絶縁膜の信頼性をさらに向上させることができる。 The JFET region 16 is a region where electrons as carriers move. In addition, in the insulating film formed on the JFET region 16, the portion in contact with the JFET region 16 is a portion where the intensity of the electric field in the insulating film is maximized. Therefore, by forming the insulating film 23 having a level lower than the density of the levels in the protective insulating film 22 at the interface portion between the JFET region 16 and the protective insulating film 22, It is possible to prevent or suppress the carriers that move in the JFET region 16 from being captured by the existing levels. Therefore, the reliability of the insulating film on the JFET region 16 can be further improved.
 なお、図22に示す例では、n型ソース領域14と、保護絶縁膜22からなる膜部22bとの間にも、絶縁膜23が形成されている。すなわち絶縁膜23は、n型ソース領域14上にも、形成されている。したがって、膜部22bは、n型ソース領域14上に、絶縁膜23を介して形成された保護絶縁膜22からなる。膜部22bの下の絶縁膜23は、膜部22aの下の絶縁膜23と同層に形成された絶縁膜である。これにより、JFET領域16上の絶縁膜と同様に、n型ソース領域14上の絶縁膜の信頼性を向上させることができる。 In the example shown in FIG. 22, the insulating film 23 is also formed between the n + type source region 14 and the film part 22 b made of the protective insulating film 22. That is, the insulating film 23 is also formed on the n + type source region 14. Therefore, the film part 22 b is composed of the protective insulating film 22 formed on the n + type source region 14 via the insulating film 23. The insulating film 23 under the film part 22b is an insulating film formed in the same layer as the insulating film 23 under the film part 22a. Thereby, like the insulating film on the JFET region 16, the reliability of the insulating film on the n + -type source region 14 can be improved.
 <半導体装置の動作>
 実施の形態2の半導体装置1bの動作については、実施の形態1の半導体装置1の動作と同様であるため、その説明を省略する。
<Operation of semiconductor device>
Since the operation of the semiconductor device 1b of the second embodiment is the same as that of the semiconductor device 1 of the first embodiment, the description thereof is omitted.
 <半導体装置の外周部>
 次に、実施の形態2の半導体装置の外周部について説明する。図23は、実施の形態2の半導体装置の外周部における断面図である。
<Outer peripheral portion of semiconductor device>
Next, the outer peripheral part of the semiconductor device of Embodiment 2 is demonstrated. FIG. 23 is a cross-sectional view of the outer periphery of the semiconductor device of the second embodiment.
 図22を用いて前述したように、本実施の形態2の半導体装置1bの中心部は、n型SiC基板10の上面側で、かつ、中心側の領域AR1に、形成されている。一方、図23に示すように、本実施の形態2の半導体装置1bの外周部は、n型SiC基板10の上面側で、かつ、領域AR1よりも外周側の領域AR2に、形成されている。 As described above with reference to FIG. 22, the central portion of the semiconductor device 1 b according to the second embodiment is formed on the upper surface side of the n + -type SiC substrate 10 and in the central region AR < b > 1. On the other hand, as shown in FIG. 23, the outer peripheral portion of the semiconductor device 1b of the second embodiment is formed in the area AR2 on the upper surface side of the n + type SiC substrate 10 and on the outer peripheral side of the area AR1. Yes.
 図23に示すように、領域AR2で、実施の形態2の半導体装置1bは、電界緩和領域24を有する。電界緩和領域24は、n型SiC基板10の上面側で、かつ、領域AR1よりも外周側の領域AR2において、n型エピタキシャル層12の上層部に形成されており、例えばアルミニウム(Al)またはホウ素(B)などのp型不純物が拡散した炭化ケイ素(SiC)からなるp型半導体領域である。すなわち半導体領域としての電界緩和領域24の導電型は、p型である。 As shown in FIG. 23, in region AR2, semiconductor device 1b of the second embodiment has electric field relaxation region 24. The electric field relaxation region 24 is formed in the upper layer portion of the n -type epitaxial layer 12 in the region AR2 on the upper surface side of the n + -type SiC substrate 10 and on the outer peripheral side of the region AR1, for example, aluminum (Al) Alternatively, it is a p-type semiconductor region made of silicon carbide (SiC) in which a p-type impurity such as boron (B) is diffused. That is, the conductivity type of the electric field relaxation region 24 as a semiconductor region is p-type.
 ドレイン電極11は、領域AR1およびAR2で、n型SiC基板10の下面全面に形成されている。一方、ソース電極20は、領域AR2で、n型SiC基板10の上面の外周部よりも中心部側に後退して形成されている。そのため、ドレイン電極11に高電圧が印加された場合、ドレイン電極11からソース電極20に向かう電気力線がソース電極20の下面の外周端20aに集中し、外周端20a近傍のn型エピタキシャル層12中で、領域AR1でのn型エピタキシャル層12(図22参照)中に比べ、電界の強度が大きくなる。そこで、領域AR2で、n型エピタキシャル層12の上層部に、p型ボディ領域13に代え、電界を緩和、すなわち電界の強度を小さくするための電界緩和領域24が形成されている。好適には、電界緩和領域24は、ソース電極20の下面の外周端20aが、平面視において、電界緩和領域24に内包されるように、形成される。 Drain electrode 11 is formed on the entire bottom surface of n + -type SiC substrate 10 in regions AR1 and AR2. On the other hand, source electrode 20 is formed in region AR2 so as to recede from the outer peripheral portion of the upper surface of n + -type SiC substrate 10 toward the center. Therefore, when a high voltage is applied to the drain electrode 11, electric lines of force from the drain electrode 11 toward the source electrode 20 are concentrated on the outer peripheral end 20a on the lower surface of the source electrode 20, and the n type epitaxial layer in the vicinity of the outer peripheral end 20a. 12, the electric field strength is higher than that in the n type epitaxial layer 12 (see FIG. 22) in the region AR 1. Therefore, in region AR2, an electric field relaxation region 24 for relaxing the electric field, that is, reducing the strength of the electric field, is formed in the upper layer portion of n type epitaxial layer 12 in place of p type body region 13. Preferably, the electric field relaxation region 24 is formed such that the outer peripheral edge 20a of the lower surface of the source electrode 20 is included in the electric field relaxation region 24 in plan view.
 電界緩和領域24におけるp型の不純物濃度は、p型ボディ領域13におけるp型の不純物濃度よりも小さい。電界緩和領域24におけるp型の不純物濃度は、例えば1×1016~1×1017cm-3程度である。また、電界緩和領域24の厚さは、例えば1~2μm程度である。好適には、電界緩和領域24におけるp型の不純物濃度は、n型SiC基板10の上面の中心部側から外周部側に向かって減少している。 The p-type impurity concentration in the electric field relaxation region 24 is smaller than the p-type impurity concentration in the p-type body region 13. The p-type impurity concentration in the electric field relaxation region 24 is, for example, about 1 × 10 16 to 1 × 10 17 cm −3 . Further, the thickness of the electric field relaxation region 24 is, for example, about 1 to 2 μm. Preferably, the p-type impurity concentration in electric field relaxation region 24 decreases from the center side of the upper surface of n + -type SiC substrate 10 toward the outer peripheral side.
 領域AR2で、電界緩和領域24の上層部に、p型ボディコンタクト領域15が形成されている。n型エピタキシャル層12の上面上、電界緩和領域24の上面上、および、p型ボディコンタクト領域15上には、絶縁膜23、保護絶縁膜22、ゲート絶縁膜18および層間絶縁膜21が、下から上に向かって順に形成されている。 In region AR2, ap + type body contact region 15 is formed in the upper layer portion of electric field relaxation region 24. An insulating film 23, a protective insulating film 22, a gate insulating film 18, and an interlayer insulating film 21 are formed on the upper surface of the n type epitaxial layer 12, the upper surface of the electric field relaxation region 24, and the p + type body contact region 15. They are formed in order from bottom to top.
 言い換えれば、領域AR2では、電界緩和領域24上に、絶縁膜23を介して形成された保護絶縁膜22からなる膜部22gが形成されている。膜部22gの下の絶縁膜23は、領域AR1で膜部22aの下の絶縁膜23(図22参照)と同層に形成された絶縁膜であり、膜部22gを構成する保護絶縁膜22は、領域AR1で膜部22aを構成する保護絶縁膜22(図22参照)と同層に形成された絶縁膜である。 In other words, in the region AR2, the film part 22g made of the protective insulating film 22 formed via the insulating film 23 is formed on the electric field relaxation region 24. The insulating film 23 under the film part 22g is an insulating film formed in the same layer as the insulating film 23 under the film part 22a (see FIG. 22) in the region AR1, and the protective insulating film 22 constituting the film part 22g. Is an insulating film formed in the same layer as the protective insulating film 22 (see FIG. 22) constituting the film part 22a in the region AR1.
 なお、例えば熱酸化法によりゲート絶縁膜18を形成する場合、保護絶縁膜22上にゲート絶縁膜18が形成されないこともある。このとき、保護絶縁膜22上に、層間絶縁膜21が直接形成される。 For example, when the gate insulating film 18 is formed by a thermal oxidation method, the gate insulating film 18 may not be formed on the protective insulating film 22. At this time, the interlayer insulating film 21 is directly formed on the protective insulating film 22.
 領域AR2で、層間絶縁膜21、ゲート絶縁膜18、保護絶縁膜22および絶縁膜23には、開口部としてのソースコンタクト孔21bが形成されている。ソースコンタクト孔21bは、層間絶縁膜21、ゲート絶縁膜18、保護絶縁膜22および絶縁膜23を貫通して、p型ボディコンタクト領域15の上面に達する。すなわちソースコンタクト孔21bの底面には、p型ボディコンタクト領域15の上面が露出している。 In the region AR2, a source contact hole 21b as an opening is formed in the interlayer insulating film 21, the gate insulating film 18, the protective insulating film 22, and the insulating film 23. Source contact hole 21 b passes through interlayer insulating film 21, gate insulating film 18, protective insulating film 22, and insulating film 23 and reaches the upper surface of p + -type body contact region 15. That is, the upper surface of the p + type body contact region 15 is exposed at the bottom surface of the source contact hole 21b.
 領域AR2で、ソース電極20は、ソースコンタクト孔21bの底面および側面を含めて層間絶縁膜21上に形成されている。このような構造により、ソース電極20は、層間絶縁膜21、ゲート絶縁膜18、保護絶縁膜22および絶縁膜23に形成されたソースコンタクト孔21bを介して、p型ボディコンタクト領域15と電気的に接続されている。そして、p型ボディコンタクト領域15は、電界緩和領域24と電気的に接続されている。そのため、ソース電極20は、p型ボディコンタクト領域15を介して電界緩和領域24と電気的に接続されている。なお、電界緩和領域24の上層部にp型ボディコンタクト領域15が形成されていなくてもよく、ソース電極20が、電界緩和領域24と電気的に直接接続されていてもよい。 In the region AR2, the source electrode 20 is formed on the interlayer insulating film 21 including the bottom and side surfaces of the source contact hole 21b. With such a structure, the source electrode 20 is electrically connected to the p + -type body contact region 15 via the source contact hole 21b formed in the interlayer insulating film 21, the gate insulating film 18, the protective insulating film 22, and the insulating film 23. Connected. The p + type body contact region 15 is electrically connected to the electric field relaxation region 24. Therefore, the source electrode 20 is electrically connected to the electric field relaxation region 24 through the p + type body contact region 15. Note that the p + -type body contact region 15 may not be formed in the upper layer portion of the electric field relaxation region 24, and the source electrode 20 may be electrically connected directly to the electric field relaxation region 24.
 本実施の形態2では、領域AR2で、電界緩和領域24の上面と保護絶縁膜22との間に、保護絶縁膜22よりも高品質な絶縁膜23が形成されている。このとき、保護絶縁膜22が、電流が流れる領域である電界緩和領域24に接触していないので、保護絶縁膜22中に存在する準位にキャリアが捕獲されることを防止または抑制することができる。したがって、絶縁膜23が形成されない場合に比べ、電界緩和領域24およびn型エピタキシャル層12に印加される電界の強度がより大きい場合でも、半導体装置1bの性能を維持することができる。言い換えれば、絶縁膜23を形成することで、半導体装置1bの性能を維持しつつ、電界緩和領域24が形成される領域の面積を小さくすることができ、半導体装置1bの面積を小さくすることができる。 In the second embodiment, an insulating film 23 of higher quality than the protective insulating film 22 is formed between the upper surface of the electric field relaxation region 24 and the protective insulating film 22 in the region AR2. At this time, since the protective insulating film 22 is not in contact with the electric field relaxation region 24, which is a region where current flows, it is possible to prevent or suppress carriers from being trapped in the levels existing in the protective insulating film 22. it can. Therefore, the performance of the semiconductor device 1b can be maintained even when the strength of the electric field applied to the electric field relaxation region 24 and the n -type epitaxial layer 12 is larger than when the insulating film 23 is not formed. In other words, by forming the insulating film 23, the area of the region where the electric field relaxation region 24 is formed can be reduced while maintaining the performance of the semiconductor device 1b, and the area of the semiconductor device 1b can be reduced. it can.
 <半導体装置の製造工程>
 次に、本実施の形態2の半導体装置の製造工程の例を、図面を参照して説明する。図24は、実施の形態2の半導体装置の製造工程の一部を示すフロー図である。図25~図28は、実施の形態2の半導体装置の製造工程中の要部断面図である。なお、以下では、n型SiC基板10の上面側で、かつ、中心側の領域AR1における製造工程について、説明する。
<Manufacturing process of semiconductor device>
Next, an example of a manufacturing process of the semiconductor device according to the second embodiment will be described with reference to the drawings. FIG. 24 is a flowchart showing a part of the manufacturing process of the semiconductor device of Second Embodiment. 25 to 28 are cross-sectional views of relevant parts in the manufacturing process of the semiconductor device of the second embodiment. In the following, the manufacturing process in the region AR1 on the upper surface side and the center side of the n + type SiC substrate 10 will be described.
 図24に示すように、本実施の形態2におけるステップS11~ステップS15、および、ステップS18~ステップS23の各工程は、実施の形態1におけるステップS11~ステップS15、および、ステップS18~ステップS23の各工程(図6参照)と同様である。 As shown in FIG. 24, steps S11 to S15 and steps S18 to S23 in the second embodiment are the same as steps S11 to S15 and steps S18 to S23 in the first embodiment. It is the same as each process (refer FIG. 6).
 本実施の形態2では、まず、図6のステップS11~ステップS15の各工程と同様の工程を行う。そして、図12に示したように、n型SiC基板10の上面に、n型エピタキシャル層12、p型ボディ領域13、n型ソース領域14およびp型ボディコンタクト領域15を形成する(図24のステップS11~ステップS15)。 In the second embodiment, first, processes similar to those in steps S11 to S15 in FIG. 6 are performed. Then, as shown in FIG. 12, n type epitaxial layer 12, p type body region 13, n + type source region 14 and p + type body contact region 15 are formed on the upper surface of n + type SiC substrate 10. (Step S11 to Step S15 in FIG. 24).
 次いで、絶縁膜23および保護絶縁膜22からなる2層の絶縁膜を形成する(図24のステップS26)。 Next, a two-layer insulating film including the insulating film 23 and the protective insulating film 22 is formed (step S26 in FIG. 24).
 このステップS26では、まず、図25に示すように、n型エピタキシャル層12の上面上、p型ボディ領域13上、n型ソース領域14上、および、p型ボディコンタクト領域15上に、絶縁膜23を形成する。絶縁膜23の密度は、保護絶縁膜22(後述する図26参照)の密度よりも大きい。また、絶縁膜23の誘電率は、保護絶縁膜22の誘電率よりも大きい。 In this step S26, first, as shown in FIG. 25, on the upper surface of the n type epitaxial layer 12, on the p type body region 13, on the n + type source region 14 and on the p + type body contact region 15. Then, the insulating film 23 is formed. The density of the insulating film 23 is larger than the density of the protective insulating film 22 (see FIG. 26 described later). Further, the dielectric constant of the insulating film 23 is larger than the dielectric constant of the protective insulating film 22.
 好適には、絶縁膜23として、例えば比較的高温で形成された絶縁膜を用いることができる。または、好適には、絶縁膜23として、比較的低温で堆積された膜を高温で熱処理することにより形成された絶縁膜を用いることができる。このような絶縁膜23として、好適には、例えば酸化シリコン(SiO)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)または酸化ハフニウム(HfO)などからなる各種の膜を用いることができる。あるいは、絶縁膜23として、好適には、上記の各種の膜が積層された積層膜を用いることができる。また、このような絶縁膜23を、例えば800℃以上の温度で、熱酸化法またはCVD法により形成することができる。そして、絶縁膜23の厚さを、例えば数十nm程度とすることができる。 Preferably, as the insulating film 23, for example, an insulating film formed at a relatively high temperature can be used. Alternatively, as the insulating film 23, an insulating film formed by heat-treating a film deposited at a relatively low temperature at a high temperature can be used. As such an insulating film 23, preferably, for example, silicon oxide (SiO 2), silicon oxynitride (SiON), use various films made of aluminum oxide (Al 2 O 3) or hafnium oxide (HfO 2) be able to. Alternatively, as the insulating film 23, a laminated film in which the above various films are suitably laminated can be used. Further, such an insulating film 23 can be formed by a thermal oxidation method or a CVD method at a temperature of, for example, 800 ° C. or higher. The thickness of the insulating film 23 can be set to, for example, about several tens of nm.
 このようにして絶縁膜23を形成した後、図26に示すように、絶縁膜23上に、保護絶縁膜22を形成する。この保護絶縁膜22を形成する工程は、実施の形態1におけるステップS16の工程と同様にすることができる。 After forming the insulating film 23 in this manner, a protective insulating film 22 is formed on the insulating film 23 as shown in FIG. The process of forming this protective insulating film 22 can be the same as the process of step S16 in the first embodiment.
 次いで、絶縁膜23および保護絶縁膜22からなる2層の絶縁膜をパターニングする(図24のステップS27)。このステップS27では、図27に示すように、フォトリソグラフィ技術およびドライエッチング技術により、保護絶縁膜22を加工、すなわちパターニングすることで、開口部22cを形成し、膜部22aおよび膜部22bを形成する。この開口部22cを形成する工程は、実施の形態1におけるステップS17の工程と同様にすることができる。ただし、本実施の形態2では、開口部22cは、保護絶縁膜22を貫通して絶縁膜23に達する。 Next, a two-layer insulating film composed of the insulating film 23 and the protective insulating film 22 is patterned (step S27 in FIG. 24). In this step S27, as shown in FIG. 27, the protective insulating film 22 is processed, that is, patterned by the photolithography technique and the dry etching technique to form the opening 22c, and the film part 22a and the film part 22b are formed. To do. The step of forming the opening 22c can be the same as the step S17 in the first embodiment. However, in the second embodiment, the opening 22 c penetrates the protective insulating film 22 and reaches the insulating film 23.
 また、ステップS27では、図27に示すように、フォトリソグラフィ技術およびドライエッチング技術により、絶縁膜23を加工、すなわちパターニングすることで、開口部23cを形成する。開口部23cは、開口部22cと連通し、絶縁膜23を貫通してp型ボディ領域13の上面に達する。これにより、p型ボディ領域13を挟んでn型ソース領域14と反対側のn型エピタキシャル層12の上面上に、絶縁膜23を介して膜部22aが形成され、n型ソース領域14上に、絶縁膜23を介して膜部22bが形成される。また、開口部23cの底部には、p型ボディ領域13の上面が露出する。 In step S27, as shown in FIG. 27, the opening 23c is formed by processing, that is, patterning, the insulating film 23 by a photolithography technique and a dry etching technique. Opening 23 c communicates with opening 22 c and penetrates insulating film 23 to reach the upper surface of p-type body region 13. As a result, a film portion 22a is formed on the upper surface of the n type epitaxial layer 12 opposite to the n + type source region 14 with the p type body region 13 interposed therebetween via the insulating film 23, and the n + type source region A film portion 22 b is formed on the insulating film 23 on the upper surface 14. Further, the upper surface of the p-type body region 13 is exposed at the bottom of the opening 23c.
 次いで、ゲート絶縁膜18を形成する(図24のステップS18)。このステップS18では、図28に示すように、開口部23cに露出したp型ボディ領域13の上面上に、ゲート絶縁膜18を形成する。このステップS18の工程は、膜部22aおよび22bの下に絶縁膜23が形成されている点を除き、実施の形態1におけるステップS18の工程と同様にすることができる。 Next, the gate insulating film 18 is formed (step S18 in FIG. 24). In this step S18, as shown in FIG. 28, the gate insulating film 18 is formed on the upper surface of the p-type body region 13 exposed in the opening 23c. The process of step S18 can be the same as the process of step S18 in the first embodiment except that the insulating film 23 is formed under the film portions 22a and 22b.
 次いで、図6のステップS19およびステップS20の各工程と同様の工程を行って、図22に示したように、ゲート電極19および層間絶縁膜21を形成する(図24のステップS19およびステップS20)。 Next, steps similar to the steps S19 and S20 in FIG. 6 are performed to form the gate electrode 19 and the interlayer insulating film 21 as shown in FIG. 22 (steps S19 and S20 in FIG. 24). .
 次いで、図6のステップS21の工程と同様の工程を行って、図22に示したように、ソースコンタクト孔21aを形成する(図24のステップS21)。ただし、本実施の形態2では、実施の形態1と異なり、層間絶縁膜21、ゲート絶縁膜18および保護絶縁膜22に加え、さらに絶縁膜23に、開口部としてのソースコンタクト孔21aを形成する。すなわち層間絶縁膜21、ゲート絶縁膜18、保護絶縁膜22および絶縁膜23を貫通し、n型ソース領域14およびp型ボディコンタクト領域15に達するソースコンタクト孔21aを形成する。 Next, a step similar to the step S21 in FIG. 6 is performed to form the source contact hole 21a as shown in FIG. 22 (step S21 in FIG. 24). However, in the second embodiment, unlike the first embodiment, in addition to the interlayer insulating film 21, the gate insulating film 18 and the protective insulating film 22, a source contact hole 21 a as an opening is formed in the insulating film 23. . That is, a source contact hole 21 a that penetrates the interlayer insulating film 21, the gate insulating film 18, the protective insulating film 22 and the insulating film 23 and reaches the n + type source region 14 and the p + type body contact region 15 is formed.
 その後、図6のステップS22およびステップS23の各工程と同様の工程(図24のステップS22およびステップS23)を行って、ソース電極20およびドレイン電極11を形成することで、図22に示したような、半導体装置1bを製造することができる。 Thereafter, the same processes (step S22 and step S23 in FIG. 24) as the respective processes in step S22 and step S23 in FIG. 6 are performed to form the source electrode 20 and the drain electrode 11, and as shown in FIG. In addition, the semiconductor device 1b can be manufactured.
 <外周部における半導体装置の製造方法>
 図29~図32は、実施の形態2の半導体装置の製造工程中の外周部における断面図である。なお、以下では、n型SiC基板10の上面側で、かつ、領域AR1よりも外周側の領域AR2における半導体装置の製造工程のうち、前述した領域AR1における半導体装置の製造工程と異なる点について、説明する。
<Method for Manufacturing Semiconductor Device in Outer Periphery>
29 to 32 are cross-sectional views of the outer periphery during the manufacturing process of the semiconductor device of the second embodiment. In the following, among the manufacturing steps of the semiconductor device in the region AR2 on the upper surface side of the n + -type SiC substrate 10 and on the outer peripheral side of the region AR1, there are differences from the manufacturing steps of the semiconductor device in the region AR1 described above. ,explain.
 図24のステップS13では、領域AR2において、図29に示すように、n型エピタキシャル層12の上層部に、p型ボディ領域13(図22参照)に代え、電界緩和領域24を形成する。その後、図24のステップS15では、領域AR2において、図29に示すように、電界緩和領域24の上層部に、p型ボディコンタクト領域15を形成する。 In step S13 of FIG. 24, an electric field relaxation region 24 is formed in the region AR2 in place of the p-type body region 13 (see FIG. 22) in the upper layer portion of the n -type epitaxial layer 12, as shown in FIG. Thereafter, in step S15 of FIG. 24, ap + type body contact region 15 is formed in the upper portion of electric field relaxation region 24 in region AR2, as shown in FIG.
 次いで、図24のステップS26では、領域AR2において、まず、図30に示すように、n型エピタキシャル層12の上面上、電界緩和領域24の上面上、および、p型ボディコンタクト領域15上に、絶縁膜23を形成する。そして、領域AR2において、図31に示すように、絶縁膜23上に、保護絶縁膜22を形成する。 Next, in step S26 of FIG. 24, in the region AR2, as shown in FIG. 30, first, on the upper surface of the n type epitaxial layer 12, on the upper surface of the electric field relaxation region 24, and on the p + type body contact region 15 Then, an insulating film 23 is formed. Then, in the region AR2, as shown in FIG. 31, the protective insulating film 22 is formed on the insulating film 23.
 次いで、図24のステップS27では、領域AR2において、絶縁膜23および保護絶縁膜22からなる2層の絶縁膜は、パターニングされない。次いで、図24のステップS18では、領域AR2において、図32に示すように、保護絶縁膜22上に、ゲート絶縁膜18を形成する。なお、領域AR1において、例えば熱酸化法によりゲート絶縁膜18を形成する場合、領域AR2において、保護絶縁膜22上には、ゲート絶縁膜18が形成されない。 Next, in step S27 of FIG. 24, the two-layer insulating film including the insulating film 23 and the protective insulating film 22 is not patterned in the area AR2. Next, in step S18 of FIG. 24, the gate insulating film 18 is formed on the protective insulating film 22 in the area AR2 as shown in FIG. Note that when the gate insulating film 18 is formed in the region AR1, for example, by a thermal oxidation method, the gate insulating film 18 is not formed on the protective insulating film 22 in the region AR2.
 次いで、図24のステップS19では、領域AR2において、図23に示したように、ゲート電極19(図22参照)を形成しない。次いで、図24のステップS20では、領域AR2において、図23に示したように、ゲート絶縁膜18上に、層間絶縁膜21を形成する。 Next, in step S19 of FIG. 24, as shown in FIG. 23, the gate electrode 19 (see FIG. 22) is not formed in the area AR2. Next, in step S20 of FIG. 24, the interlayer insulating film 21 is formed on the gate insulating film 18 in the region AR2 as shown in FIG.
 次いで、図24のステップS21では、領域AR2において、図23に示したように、ソースコンタクト孔21bを形成する。この領域AR2においては、層間絶縁膜21、ゲート絶縁膜18、保護絶縁膜22および絶縁膜23を貫通し、p型ボディコンタクト領域15に達するソースコンタクト孔21bを形成する。次いで、図24のステップS22では、領域AR2において、層間絶縁膜21上に、ならびに、ソースコンタクト孔21bの底面および内壁を覆うように、ソース電極20を形成する。 Next, in step S21 of FIG. 24, the source contact hole 21b is formed in the area AR2 as shown in FIG. In this region AR2, a source contact hole 21b that penetrates through the interlayer insulating film 21, the gate insulating film 18, the protective insulating film 22 and the insulating film 23 and reaches the p + type body contact region 15 is formed. Next, in step S22 of FIG. 24, in the region AR2, the source electrode 20 is formed on the interlayer insulating film 21 so as to cover the bottom surface and the inner wall of the source contact hole 21b.
 <本実施の形態の主要な特徴と効果>
 本実施の形態2の半導体装置1bには、実施の形態1の半導体装置1と同様に、膜部22aおよび22bが形成されている。ゲート電極19は、JFET領域16上に、少なくとも膜部22aを介して形成されている。これにより、実施の形態1の半導体装置1と同様に、JFET領域16上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させ、帰還容量を小さくしつつ、JFET領域16の幅を広くすることができ、インバータにおける電力変換の際の損失を小さくすることができる。したがって、大型の冷却装置が設けられなくてもよく、電力変換装置、または、この電力変換装置を備えた鉄道車両を、容易に低コスト化、小型化または軽量化することができる。
<Main features and effects of the present embodiment>
In the semiconductor device 1b of the second embodiment, film portions 22a and 22b are formed as in the semiconductor device 1 of the first embodiment. The gate electrode 19 is formed on the JFET region 16 via at least the film part 22a. Thus, as in the semiconductor device 1 of the first embodiment, the strength of the electric field in the insulating film on the JFET region 16 is reduced to improve the reliability of the insulating film, and the feedback capacitance is reduced, while reducing the feedback capacitance. The width of 16 can be widened, and the loss during power conversion in the inverter can be reduced. Therefore, it is not necessary to provide a large-sized cooling device, and the power conversion device or the railway vehicle including the power conversion device can be easily reduced in cost, size, or weight.
 一方、本実施の形態2の半導体装置1bでは、JFET領域16と膜部22aとの間に、膜部22aを構成する保護絶縁膜22よりも高品質の絶縁膜23が形成されている。これにより、保護絶縁膜22中に存在する準位にキャリアが捕獲されることを防止または抑制することができ、JFET領域16上の絶縁膜の信頼性をさらに向上させることができる。 On the other hand, in the semiconductor device 1b of the second embodiment, an insulating film 23 of higher quality than the protective insulating film 22 constituting the film part 22a is formed between the JFET region 16 and the film part 22a. As a result, carriers can be prevented or suppressed from being trapped at the level present in the protective insulating film 22, and the reliability of the insulating film on the JFET region 16 can be further improved.
 (実施の形態3)
 <電力変換装置>
 次に、本発明の実施の形態3の電力変換装置について説明する。実施の形態3の電力変換装置は、実施の形態1の半導体装置を備えたインバータである。
(Embodiment 3)
<Power conversion device>
Next, a power conversion device according to Embodiment 3 of the present invention will be described. The power converter of Embodiment 3 is an inverter provided with the semiconductor device of Embodiment 1.
 図33は、実施の形態3の電力変換装置の構成を示す図である。 FIG. 33 is a diagram illustrating a configuration of the power conversion device according to the third embodiment.
 図33に示すように、電力変換装置31は、実施の形態1の半導体装置1が備えられた三相インバータとしてのインバータ32と、モータ等の負荷33と、直流電源34と、コンデンサ等の容量35とを有する。負荷33は、インバータ32の出力側に接続されており、直流電源34および容量35は、インバータ32の入力側に接続されている。 As shown in FIG. 33, the power conversion device 31 includes an inverter 32 as a three-phase inverter provided with the semiconductor device 1 of the first embodiment, a load 33 such as a motor, a DC power supply 34, and a capacity such as a capacitor. 35. The load 33 is connected to the output side of the inverter 32, and the DC power supply 34 and the capacitor 35 are connected to the input side of the inverter 32.
 インバータ32は、ゲート駆動回路36u、36v、36w、36x、36yおよび36zと、スイッチ素子37u、37v、37w、37x、37yおよび37zとを備えている。 The inverter 32 includes gate drive circuits 36u, 36v, 36w, 36x, 36y, and 36z, and switch elements 37u, 37v, 37w, 37x, 37y, and 37z.
 インバータ32は、一対の直流の入力端子としてのドレインノードN1とソースノードN2とを備えている。スイッチ素子37uおよび37xは、ドレインノードN1とソースノードN2との間に、直列に接続されている。スイッチ素子37vおよび37yは、ドレインノードN1とソースノードN2との間に、直列に接続されている。スイッチ素子37wおよび37zは、ドレインノードN1とソースノードN2との間に、直列に接続されている。スイッチ素子37u、37vおよび37wは、上アーム側、すなわち高電圧側に配置されており、スイッチ素子37x、37yおよび37zは、下アーム側、すなわち低電圧側に配置されている。 The inverter 32 includes a drain node N1 and a source node N2 as a pair of DC input terminals. Switch elements 37u and 37x are connected in series between drain node N1 and source node N2. Switch elements 37v and 37y are connected in series between drain node N1 and source node N2. Switch elements 37w and 37z are connected in series between drain node N1 and source node N2. The switch elements 37u, 37v, and 37w are disposed on the upper arm side, that is, the high voltage side, and the switch elements 37x, 37y, and 37z are disposed on the lower arm side, that is, the low voltage side.
 インバータ32は、三相交流の出力端子として、U相の出力ノードN3と、V相の出力ノードN4と、W相の出力ノードN5とを備えている。出力ノードN3は、スイッチ素子37uのスイッチ素子37x側、および、スイッチ素子37xのスイッチ素子37u側に接続されている。出力ノードN4は、スイッチ素子37vのスイッチ素子37y側、および、スイッチ素子37yのスイッチ素子37v側に接続されている。出力ノードN5は、スイッチ素子37wのスイッチ素子37z側、および、スイッチ素子37zのスイッチ素子37w側に接続されている。したがって、スイッチ素子37uおよび37xは、U相用のスイッチ素子であり、スイッチ素子37vおよび37yは、V相用のスイッチ素子であり、スイッチ素子37wおよび37zは、W相用のスイッチ素子である。 The inverter 32 includes a U-phase output node N3, a V-phase output node N4, and a W-phase output node N5 as three-phase AC output terminals. The output node N3 is connected to the switch element 37x side of the switch element 37u and the switch element 37u side of the switch element 37x. The output node N4 is connected to the switch element 37y side of the switch element 37v and the switch element 37v side of the switch element 37y. The output node N5 is connected to the switch element 37z side of the switch element 37w and the switch element 37w side of the switch element 37z. Therefore, switch elements 37u and 37x are U-phase switch elements, switch elements 37v and 37y are V-phase switch elements, and switch elements 37w and 37z are W-phase switch elements.
 スイッチ素子37u、37v、37w、37x、37yおよび37zの各々は、MISFET38とボディダイオード39とを含む。そして、本実施の形態3では、スイッチ素子37u、37v、37w、37x、37yおよび37zの各々として、実施の形態1の半導体装置1(図1参照)を用いることができる。このとき、MISFET38は、ドレイン電極11、n型SiC基板10、n型エピタキシャル層12、p型ボディ領域13、n型ソース領域14、p型ボディコンタクト領域15、ゲート絶縁膜18、ゲート電極19およびソース電極20により形成される縦型MISFETである(図1参照)。また、ボディダイオード39は、ドレイン電極11、n型SiC基板10、n型エピタキシャル層12、p型ボディ領域13、p型ボディコンタクト領域15およびソース電極20により形成されるダイオードである(図1参照)。 Each of switch elements 37u, 37v, 37w, 37x, 37y and 37z includes a MISFET 38 and a body diode 39. In the third embodiment, the semiconductor device 1 (see FIG. 1) of the first embodiment can be used as each of the switch elements 37u, 37v, 37w, 37x, 37y, and 37z. At this time, the MISFET 38 includes the drain electrode 11, the n + type SiC substrate 10, the n type epitaxial layer 12, the p type body region 13, the n + type source region 14, the p + type body contact region 15, the gate insulating film 18, This is a vertical MISFET formed by the gate electrode 19 and the source electrode 20 (see FIG. 1). The body diode 39 is a diode formed by the drain electrode 11, the n + type SiC substrate 10, the n type epitaxial layer 12, the p type body region 13, the p + type body contact region 15 and the source electrode 20 ( (See FIG. 1).
 ゲート駆動回路36uは、スイッチ素子37uのMISFET38のゲート電極に接続されており、スイッチ素子37uを駆動する。ゲート駆動回路36xは、スイッチ素子37xのMISFET38のゲート電極に接続されており、スイッチ素子37xを駆動する。ゲート駆動回路36vは、スイッチ素子37vのMISFET38のゲート電極に接続されており、スイッチ素子37vを駆動する。ゲート駆動回路36yは、スイッチ素子37yのMISFET38のゲート電極に接続されており、スイッチ素子37yを駆動する。ゲート駆動回路36wは、スイッチ素子37wのMISFET38のゲート電極に接続されており、スイッチ素子37wを駆動する。ゲート駆動回路36zは、スイッチ素子37zのMISFET38のゲート電極に接続されており、スイッチ素子37zを駆動する。 The gate drive circuit 36u is connected to the gate electrode of the MISFET 38 of the switch element 37u, and drives the switch element 37u. The gate drive circuit 36x is connected to the gate electrode of the MISFET 38 of the switch element 37x, and drives the switch element 37x. The gate drive circuit 36v is connected to the gate electrode of the MISFET 38 of the switch element 37v and drives the switch element 37v. The gate drive circuit 36y is connected to the gate electrode of the MISFET 38 of the switch element 37y, and drives the switch element 37y. The gate drive circuit 36w is connected to the gate electrode of the MISFET 38 of the switch element 37w, and drives the switch element 37w. The gate drive circuit 36z is connected to the gate electrode of the MISFET 38 of the switch element 37z, and drives the switch element 37z.
 インバータ32の入力側で、かつ、上アーム側に配置されたドレインノードN1には、インバータ32の上アーム側に設けられたスイッチ素子37u、37vおよび37wのそれぞれの一端が、接続されている。インバータ32の入力側で、かつ、下アーム側に配置されたソースノードN2には、インバータ32の下アーム側のスイッチ素子37x、37yおよび37zのそれぞれの一端が、接続されている。 One end of each of the switch elements 37u, 37v and 37w provided on the upper arm side of the inverter 32 is connected to the drain node N1 arranged on the input side of the inverter 32 and on the upper arm side. One end of each of the switching elements 37x, 37y and 37z on the lower arm side of the inverter 32 is connected to the source node N2 arranged on the input side of the inverter 32 and on the lower arm side.
 ドレインノードN1とソースノードN2との間には、直流電源34と容量35とが、互いに並列に接続されている。したがって、ドレインノードN1とソースノードN2との間には、直流電源34により、電圧VPPが印加されている。 A DC power supply 34 and a capacitor 35 are connected in parallel with each other between the drain node N1 and the source node N2. Therefore, the voltage VPP is applied between the drain node N1 and the source node N2 by the DC power supply 34.
 ゲート駆動回路36u、36v、36w、36x、36yおよび36zの各々は、対応するスイッチ素子のオン状態とオフ状態とが予め設定されたタイミングで切り替わるように、スイッチ素子37u、37v、37w、37x、37yおよび37zのそれぞれを駆動する。これにより、直流信号である電圧VPPから、位相がそれぞれ異なる三相、すなわちU相、V相およびW相の交流信号を生成する。すなわち、スイッチ素子37u、37v、37w、37x、37yおよび37zの各々において、オン状態とオフ状態とが切り替えられることで、電力が変換される。負荷33は、この三相の交流信号によって駆動される。 Each of the gate drive circuits 36u, 36v, 36w, 36x, 36y, and 36z has switching elements 37u, 37v, 37w, 37x, so that the corresponding switch elements are switched on and off at preset timings. Each of 37y and 37z is driven. Thus, three-phase AC signals having different phases, that is, U-phase, V-phase, and W-phase AC signals are generated from the voltage VPP that is a DC signal. That is, in each of the switch elements 37u, 37v, 37w, 37x, 37y, and 37z, the power is converted by switching between the on state and the off state. The load 33 is driven by the three-phase AC signal.
 前述したように、半導体装置1の内部には、ボディダイオード39が内蔵されており、逆並列のダイオード、すなわち還流ダイオードを用いなくても、ボディダイオード39を介して還流電流を流すことが可能である。したがって、実施の形態1の半導体装置1をスイッチ素子37u、37v、37w、37x、37yおよび37zの各々として備えたインバータ32を有する、本実施の形態3の電力変換装置31においては、必要な部品の数を削減することができ、電力変換装置31を容易に小型化することができる。 As described above, the body diode 39 is built in the semiconductor device 1, and it is possible to flow a reflux current through the body diode 39 without using an antiparallel diode, that is, a reflux diode. is there. Therefore, in the power conversion device 31 of the third embodiment having the inverter 32 provided with the semiconductor device 1 of the first embodiment as each of the switch elements 37u, 37v, 37w, 37x, 37y, and 37z, necessary components Thus, the power converter 31 can be easily downsized.
 <本実施の形態の主要な特徴と効果>
 本実施の形態3の電力変換装置31には、スイッチ素子37u、37v、37w、37x、37yおよび37zの各々として、実施の形態1の半導体装置1が備えられている。実施の形態1の半導体装置1によれば、JFET領域16上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させ、帰還容量を小さくしつつ、JFET領域16の幅を広くすることができ、インバータにおける電力変換の際の損失を小さくすることができるので、大型の冷却装置が設けられなくてもよい。したがって、冷却装置を小型化することなどにより、電力変換装置31を、容易に低コスト化、小型化または軽量化することができる。
<Main features and effects of the present embodiment>
The power conversion device 31 according to the third embodiment includes the semiconductor device 1 according to the first embodiment as each of the switch elements 37u, 37v, 37w, 37x, 37y, and 37z. According to the semiconductor device 1 of the first embodiment, the strength of the electric field in the insulating film on the JFET region 16 is reduced, the reliability of the insulating film is improved, the feedback capacitance is reduced, and the width of the JFET region 16 is reduced. Since the loss at the time of power conversion in the inverter can be reduced, a large cooling device may not be provided. Therefore, the power conversion device 31 can be easily reduced in cost, size, or weight by reducing the size of the cooling device.
 なお、スイッチ素子37uなどのスイッチ素子として、実施の形態1の半導体装置1に代え、実施の形態1の第1変形例の半導体装置1a、または、実施の形態2の半導体装置1bが備えられてもよい。この場合、JFET領域16上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させる効果、および、帰還容量を小さくする効果がさらに増加するので、電力変換装置31を、さらに容易に低コスト化、小型化または軽量化することができる。 In addition, as a switching element such as the switching element 37u, the semiconductor device 1a of the first modification of the first embodiment or the semiconductor device 1b of the second embodiment is provided instead of the semiconductor device 1 of the first embodiment. Also good. In this case, since the effect of reducing the strength of the electric field in the insulating film on the JFET region 16 to improve the reliability of the insulating film and the effect of reducing the feedback capacitance are further increased, Further, it can be easily reduced in cost, size, or weight.
 (実施の形態4)
 <鉄道車両>
 次に、本発明の実施の形態4の鉄道車両について説明する。実施の形態4の鉄道車両は、実施の形態3の電力変換装置を含む鉄道車両である。
(Embodiment 4)
<Railway vehicle>
Next, a railway vehicle according to the fourth embodiment of the present invention will be described. The railway vehicle according to the fourth embodiment is a railway vehicle including the power conversion device according to the third embodiment.
 図34は、実施の形態4の鉄道車両の構成を示す図である。 FIG. 34 is a diagram illustrating a configuration of the railway vehicle according to the fourth embodiment.
 図34に示すように、鉄道車両40は、集電装置としてのパンタグラフ41と、変圧器42と、電力変換装置43と、交流電動機である負荷44と、車輪45とを含む。電力変換装置43は、コンバータ46と、例えばコンデンサである容量47と、インバータ48とを有する。 As shown in FIG. 34, the railway vehicle 40 includes a pantograph 41 as a current collector, a transformer 42, a power converter 43, a load 44 that is an AC motor, and wheels 45. The power conversion device 43 includes a converter 46, a capacitor 47 that is a capacitor, for example, and an inverter 48.
 コンバータ46は、スイッチ素子49および50を有する。スイッチ素子49は、上アーム側、すなわち高電圧側に配置されており、スイッチ素子50は、下アーム側、すなわち低電圧側に配置されている。なお、図34では、スイッチ素子49および50については、複数相のうち一相について示している。 The converter 46 has switch elements 49 and 50. The switch element 49 is disposed on the upper arm side, that is, the high voltage side, and the switch element 50 is disposed on the lower arm side, that is, the low voltage side. In FIG. 34, the switch elements 49 and 50 are shown for one phase among a plurality of phases.
 インバータ48は、スイッチ素子51および52を有する。スイッチ素子51は、上アーム側、すなわち高電圧側に配置されており、スイッチ素子52は、下アーム側、すなわち低電圧側に配置されている。なお、図34では、スイッチ素子51および52については、U相、V相およびW相の三相のうち一相について示している。 The inverter 48 has switch elements 51 and 52. The switch element 51 is arranged on the upper arm side, that is, the high voltage side, and the switch element 52 is arranged on the lower arm side, that is, the low voltage side. In FIG. 34, the switch elements 51 and 52 are shown for one of the three phases U phase, V phase and W phase.
 変圧器42の一次側の一端は、パンタグラフ41を介して架線41aに接続されている。変圧器42の一次側の他端は、車輪45を介して線路45aに接続されている。変圧器42の二次側の一端は、コンバータ46の負荷44と反対側であって上アーム側の端子に接続されている。変圧器42の二次側の他端は、コンバータ46の負荷44と反対側であって下アーム側の端子に接続されている。 One end of the primary side of the transformer 42 is connected to the overhead line 41 a via the pantograph 41. The other end of the primary side of the transformer 42 is connected to the line 45 a via the wheel 45. One end of the secondary side of the transformer 42 is connected to a terminal on the upper arm side opposite to the load 44 of the converter 46. The other end of the secondary side of the transformer 42 is connected to a terminal on the lower arm side opposite to the load 44 of the converter 46.
 コンバータ46の負荷44側であって上アーム側の端子は、インバータ48の負荷44と反対側であって上アーム側の端子に接続されている。また、コンバータ46の負荷44側であって下アーム側の端子は、インバータ48の負荷44と反対側であって下アーム側の端子に接続されている。さらに、インバータ48の負荷44と反対側であって上アーム側の端子と、インバータ48の負荷44と反対側であって下アーム側の端子との間に、容量47が接続されている。また、図34では図示を省略するが、インバータ48の出力側の3つの端子の各々は、U相、V相およびW相のそれぞれとして、負荷44に接続されている。 The terminal on the load 44 side and the upper arm side of the converter 46 is connected to the terminal on the upper arm side opposite to the load 44 of the inverter 48. Further, the terminal on the load 44 side and the lower arm side of the converter 46 is connected to the terminal on the lower arm side opposite to the load 44 of the inverter 48. Further, a capacitor 47 is connected between a terminal on the side opposite to the load 44 of the inverter 48 on the upper arm side and a terminal on the side opposite to the load 44 of the inverter 48 and on the lower arm side. Although not shown in FIG. 34, each of the three terminals on the output side of the inverter 48 is connected to the load 44 as a U phase, a V phase, and a W phase.
 本実施の形態4では、インバータ48として、実施の形態3の電力変換装置31に含まれるインバータ32(図33参照)を用いることができる。すなわち本実施の形態4の鉄道車両40は、電力変換装置として、実施の形態3におけるインバータ32(図33参照)を含む。 In this Embodiment 4, the inverter 32 (refer FIG. 33) contained in the power converter device 31 of Embodiment 3 can be used as the inverter 48. FIG. That is, railway vehicle 40 of the fourth embodiment includes inverter 32 (see FIG. 33) in the third embodiment as a power conversion device.
 架線41aからパンタグラフ41により集電された交流電力は、その電圧が変圧器42によって変圧された後、コンバータ46により所望の直流電力に変換される。コンバータ46により変換された直流電力は、その電圧が容量47により平滑化される。容量47により電圧が平滑化された直流電力は、インバータ48により交流電力に変換される。インバータ48により変換された交流電力は、負荷44に供給される。交流電力が供給された負荷44が車輪45を回転駆動することで、鉄道車両が加速される。 The AC power collected from the overhead line 41 a by the pantograph 41 is transformed into desired DC power by the converter 46 after the voltage is transformed by the transformer 42. The DC power converted by the converter 46 is smoothed by the capacitor 47. The DC power whose voltage is smoothed by the capacitor 47 is converted into AC power by the inverter 48. The AC power converted by the inverter 48 is supplied to the load 44. The load 44 supplied with AC power rotates the wheel 45, thereby accelerating the railway vehicle.
 <本実施の形態の主要な特徴と効果>
 本実施の形態4の鉄道車両40のインバータ48として、実施の形態3の電力変換装置31に含まれるインバータ32(図33参照)を用いることができる。インバータ32に備えられたスイッチ素子37uなどのスイッチ素子には、膜部22a(図1参照)および膜部22b(図1参照)が形成されている。実施の形態1の半導体装置1によれば、JFET領域16上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させ、帰還容量を小さくしつつ、JFET領域16の幅を広くすることができ、インバータにおける電力変換の際の損失を小さくすることができるので、大型の冷却装置が設けられなくてもよい。したがって、冷却装置を小型化することなどにより、インバータ32を、容易に低コスト化、小型化または軽量化することができる。よって、このインバータ32をインバータ48として含む鉄道車両40を、容易に低コスト化、小型化または軽量化することができる。
<Main features and effects of the present embodiment>
As the inverter 48 of the railway vehicle 40 of the fourth embodiment, the inverter 32 (see FIG. 33) included in the power conversion device 31 of the third embodiment can be used. In the switching element such as the switching element 37u provided in the inverter 32, a film part 22a (see FIG. 1) and a film part 22b (see FIG. 1) are formed. According to the semiconductor device 1 of the first embodiment, the strength of the electric field in the insulating film on the JFET region 16 is reduced, the reliability of the insulating film is improved, the feedback capacitance is reduced, and the width of the JFET region 16 is reduced. Since the loss at the time of power conversion in the inverter can be reduced, a large cooling device may not be provided. Therefore, the inverter 32 can be easily reduced in cost, size, or weight by reducing the size of the cooling device. Therefore, the railway vehicle 40 including the inverter 32 as the inverter 48 can be easily reduced in cost, size, or weight.
 なお、インバータ48としてのインバータ32(図33参照)には、スイッチ素子37uなどのスイッチ素子として、実施の形態1の半導体装置1に代え、実施の形態1の第1変形例の半導体装置1a、または、実施の形態2の半導体装置1bが備えられてもよい。この場合、JFET領域16上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させる効果、および、帰還容量を小さくする効果がさらに増加するので、インバータ48を、さらに容易に低コスト化、小型化または軽量化することができる。よって、このインバータ48を含む鉄道車両40を、さらに容易に低コスト化、小型化または軽量化することができる。 Note that, in the inverter 32 (see FIG. 33) as the inverter 48, as a switching element such as the switching element 37u, the semiconductor device 1a of the first modification of the first embodiment is used instead of the semiconductor device 1 of the first embodiment. Alternatively, the semiconductor device 1b of the second embodiment may be provided. In this case, the effect of reducing the strength of the electric field in the insulating film on the JFET region 16 to improve the reliability of the insulating film and the effect of reducing the feedback capacitance are further increased. In addition, the cost, size and weight can be reduced. Therefore, the railway vehicle 40 including the inverter 48 can be more easily reduced in cost, size, or weight.
 さらに、コンバータ46において、スイッチ素子49および50として、実施の形態1の半導体装置1が備えられてもよい。そして、コンバータ46に、実施の形態1の半導体装置1に代え、実施の形態1の第1変形例の半導体装置1a、または、実施の形態2の半導体装置1bが備えられてもよい。この場合にも、スイッチ素子49および50において、JFET領域16上の絶縁膜中の電界の強度を小さくして当該絶縁膜の信頼性を向上させる効果、および、帰還容量を小さくする効果がさらに増加するので、コンバータ46を、さらに容易に低コスト化、小型化または軽量化することができる。よって、このコンバータ46を含む鉄道車両40を、さらに容易に低コスト化、小型化または軽量化することができる。 Furthermore, in the converter 46, the semiconductor device 1 of the first embodiment may be provided as the switch elements 49 and 50. Then, converter 46 may be provided with semiconductor device 1a of the first modification example of the first embodiment or semiconductor device 1b of the second embodiment instead of semiconductor device 1 of the first embodiment. Also in this case, in the switch elements 49 and 50, the effect of reducing the strength of the electric field in the insulating film on the JFET region 16 to improve the reliability of the insulating film and the effect of reducing the feedback capacitance are further increased. Therefore, the converter 46 can be further easily reduced in cost, size, or weight. Therefore, the railway vehicle 40 including the converter 46 can be more easily reduced in cost, size, or weight.
 なお、本実施の形態4では、実施の形態3の電力変換装置を、鉄道車両に適用した例について説明した。しかし、実施の形態3の電力変換装置は、電気自動車または太陽光発電装置など鉄道車両以外の各種の電気機器に適用可能である。例えば実施の形態3の電力変換装置を電気自動車に適用する場合には、電力変換装置を、容易に低コスト化、小型化または軽量化することができるので、この電力変換装置を含む電気自動車を、低コスト化、小型化または軽量化することができる。あるいは、この電力変換装置を含む電気自動車の室内を広くすることができるなど、電気自動車における設計の自由度を高めることができる。 In the fourth embodiment, the example in which the power conversion device of the third embodiment is applied to a railway vehicle has been described. However, the power conversion device according to the third embodiment can be applied to various electric devices other than railroad vehicles such as an electric vehicle or a solar power generation device. For example, when the power conversion device according to the third embodiment is applied to an electric vehicle, the power conversion device can be easily reduced in cost, size, or weight. Therefore, an electric vehicle including the power conversion device can be reduced. Cost reduction, size reduction or weight reduction can be achieved. Alternatively, it is possible to increase the degree of freedom of design in the electric vehicle, for example, the interior of the electric vehicle including the power conversion device can be widened.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、半導体装置およびその製造方法、電力変換装置ならびに鉄道車両に適用して有効である。 The present invention is effective when applied to a semiconductor device, a manufacturing method thereof, a power conversion device, and a railway vehicle.
 1、1a、1b 半導体装置
10 n型SiC基板
11 ドレイン電極
12 n型エピタキシャル層
13 p型ボディ領域
14 n型ソース領域
15 p型ボディコンタクト領域
16 JFET領域
17 チャネル領域
18 ゲート絶縁膜
18a~18c 部分
19 ゲート電極
19a 端部
19b 導電膜
20 ソース電極
20a 外周端
21 層間絶縁膜
21a、21b ソースコンタクト孔
22 保護絶縁膜
22a、22b、22g 膜部
22c、23c 開口部
22d、22e 延在部
22f 交差部
23 絶縁膜
24 電界緩和領域
31 電力変換装置
32 インバータ
33 負荷
34 直流電源
35 容量
36u、36v、36w、36x、36y、36z ゲート駆動回路
37u、37v、37w、37x、37y、37z スイッチ素子
38 MISFET
39 ボディダイオード
40 鉄道車両
41 パンタグラフ
41a 架線
42 変圧器
43 電力変換装置
44 負荷
45 車輪
45a 線路
46 コンバータ
47 容量
48 インバータ
49~52 スイッチ素子
AR1、AR2、AR11 領域
N1 ドレインノード
N2 ソースノード
N3~N5 出力ノード
PS1 経路
R1~R3 レジスト膜
TH1~TH3 厚さ
 
1, 1a, 1b Semiconductor device 10 n + type SiC substrate 11 Drain electrode 12 n type epitaxial layer 13 p type body region 14 n + type source region 15 p + type body contact region 16 JFET region 17 channel region 18 Gate insulating film 18a to 18c portion 19 gate electrode 19a end 19b conductive film 20 source electrode 20a outer peripheral end 21 interlayer insulating film 21a, 21b source contact hole 22 protective insulating films 22a, 22b, 22g film parts 22c, 23c openings 22d, 22e extending Portion 22f Intersection 23 Insulating film 24 Electric field relaxation region 31 Power converter 32 Inverter 33 Load 34 DC power supply 35 Capacitors 36u, 36v, 36w, 36x, 36y, 36z Gate drive circuits 37u, 37v, 37w, 37x, 37y, 37z switch Element 38 MISFET
39 Body diode 40 Railway vehicle 41 Pantograph 41a Overhead line 42 Transformer 43 Power converter 44 Load 45 Wheel 45a Line 46 Converter 47 Capacity 48 Inverter 49 to 52 Switch elements AR1, AR2, AR11 Region N1 Drain node N2 Source nodes N3 to N5 Output Node PS1 path R1 to R3 resist film TH1 to TH3 thickness

Claims (15)

  1.  第1導電型の半導体基板と、
     前記半導体基板の下面に形成されたドレイン電極と、
     前記半導体基板の上面に形成された、前記第1導電型の半導体層と、
     前記半導体層の上層部に形成され、前記第1導電型と異なる第2導電型の第1半導体領域と、
     前記第1半導体領域の上層部に形成された、前記第1導電型の第2半導体領域と、
     前記第1半導体領域の上層部に形成された、前記第2導電型の第3半導体領域と、
     前記第1半導体領域を挟んで前記第2半導体領域と反対側の前記半導体層の上面上に形成された第1絶縁膜からなる第1膜部と、
     前記第2半導体領域上に前記第1絶縁膜と同層に形成された第2絶縁膜からなる第2膜部と、
     前記第2半導体領域と前記半導体層とに挟まれた前記第1半導体領域の上面上に、ゲート絶縁膜を介して形成されたゲート電極と、
     前記第2半導体領域上および前記第3半導体領域上に形成されたソース電極と、
     を有し、
     前記ゲート電極は、前記第2半導体領域と前記半導体層とに挟まれた前記第1半導体領域の上面上から、前記第1膜部の上面上にかけて、連続的に形成されている、半導体装置。
    A first conductivity type semiconductor substrate;
    A drain electrode formed on the lower surface of the semiconductor substrate;
    A semiconductor layer of the first conductivity type formed on an upper surface of the semiconductor substrate;
    A first semiconductor region of a second conductivity type different from the first conductivity type formed in an upper layer portion of the semiconductor layer;
    A second semiconductor region of the first conductivity type formed in an upper layer portion of the first semiconductor region;
    A third semiconductor region of the second conductivity type formed in an upper layer portion of the first semiconductor region;
    A first film portion made of a first insulating film formed on an upper surface of the semiconductor layer opposite to the second semiconductor region across the first semiconductor region;
    A second film portion made of a second insulating film formed in the same layer as the first insulating film on the second semiconductor region;
    A gate electrode formed on a top surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film;
    A source electrode formed on the second semiconductor region and the third semiconductor region;
    Have
    The semiconductor device, wherein the gate electrode is continuously formed from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the first film portion.
  2.  請求項1記載の半導体装置において、
     前記ゲート電極は、前記第2半導体領域と前記半導体層とに挟まれた前記第1半導体領域の上面上から、前記第2膜部の上面上にかけて、連続的に形成され、
     前記ゲート電極は、前記第2膜部上で終端されている、半導体装置。
    The semiconductor device according to claim 1,
    The gate electrode is continuously formed from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the second film part,
    The semiconductor device, wherein the gate electrode is terminated on the second film part.
  3.  請求項1記載の半導体装置において、
     前記第1絶縁膜および前記第2絶縁膜の各々の誘電率は、前記ゲート絶縁膜の誘電率よりも小さい、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device, wherein a dielectric constant of each of the first insulating film and the second insulating film is smaller than a dielectric constant of the gate insulating film.
  4.  請求項1記載の半導体装置において、
     前記半導体層の上層部に、平面視において、第1方向および前記第1方向と交差する第2方向にマトリクス状に配列するように形成された、4つの前記第1半導体領域と、
     4つの前記第1半導体領域の各々の上層部にそれぞれ形成された、4つの前記第2半導体領域と、
     4つの前記第1半導体領域の各々の上層部にそれぞれ形成された、4つの前記第3半導体領域と、
     を有し、
     前記第1絶縁膜は、平面視において、前記第1方向に延在する第1延在部と、前記第2方向に延在し、前記第1延在部と交差する第2延在部とを含み、十字状に形成され、
     マトリクス状に配列された4つの前記第1半導体領域は、十字状の前記第1絶縁膜により区画され、
     前記第2方向で隣り合う2つの前記第1半導体領域に挟まれた前記第1延在部上、および、前記第1方向で隣り合う2つの前記第1半導体領域に挟まれた前記第2延在部上には、前記ゲート電極が形成されているが、
     前記第1延在部と前記第2延在部とが交差する交差部上には、前記ゲート電極は形成されていない、半導体装置。
    The semiconductor device according to claim 1,
    Four first semiconductor regions formed on the upper layer portion of the semiconductor layer so as to be arranged in a matrix in a first direction and a second direction intersecting the first direction in plan view;
    Four second semiconductor regions formed on the upper layer of each of the four first semiconductor regions;
    Four third semiconductor regions respectively formed in an upper layer portion of each of the four first semiconductor regions;
    Have
    The first insulating film includes a first extension portion extending in the first direction and a second extension portion extending in the second direction and intersecting the first extension portion in plan view. Is formed in a cross shape,
    The four first semiconductor regions arranged in a matrix are partitioned by the cross-shaped first insulating film,
    On the first extension portion sandwiched between two first semiconductor regions adjacent in the second direction, and on the second extension sandwiched between two first semiconductor regions adjacent in the first direction. The gate electrode is formed on the existing portion,
    A semiconductor device, wherein the gate electrode is not formed on an intersecting portion where the first extending portion and the second extending portion intersect.
  5.  請求項1記載の半導体装置において、
     前記第1膜部は、前記第1半導体領域を挟んで前記第2半導体領域と反対側の前記半導体層の上面上に、第3絶縁膜を介して形成された前記第1絶縁膜からなり、
     前記第2膜部は、前記第2半導体領域上に、前記第3絶縁膜と同層に形成された第4絶縁膜を介して形成された前記第2絶縁膜からなり、
     前記第3絶縁膜の密度は、前記第1絶縁膜の密度よりも大きく、
     前記第4絶縁膜の密度は、前記第2絶縁膜の密度よりも大きい、半導体装置。
    The semiconductor device according to claim 1,
    The first film portion is composed of the first insulating film formed on the upper surface of the semiconductor layer opposite to the second semiconductor region with the first semiconductor region interposed therebetween via a third insulating film,
    The second film portion includes the second insulating film formed on the second semiconductor region via a fourth insulating film formed in the same layer as the third insulating film,
    The density of the third insulating film is greater than the density of the first insulating film,
    The density of the fourth insulating film is a semiconductor device greater than the density of the second insulating film.
  6.  請求項5記載の半導体装置において、
     前記半導体層は、前記半導体基板の前記上面側の第1領域、および、前記半導体基板の前記上面側で、かつ、前記第1領域よりも外周側の第2領域で、前記半導体基板の前記上面に形成され、
     前記第1半導体領域は、前記第1領域で、前記半導体層の上層部に形成されており、
     前記第1膜部は、前記第1領域で、前記第1半導体領域を挟んで前記第2半導体領域と反対側の前記半導体層の上面上に、前記第3絶縁膜を介して形成された前記第1絶縁膜からなり、
     前記第2膜部は、前記第1領域で、前記第2半導体領域上に、前記第4絶縁膜を介して形成された前記第2絶縁膜からなり、
     さらに、
     前記第2領域で、前記半導体層の上層部に形成された前記第2導電型の第4半導体領域と、
     前記第4半導体領域上に、前記第3絶縁膜と同層に形成された第5絶縁膜を介して、前記第1絶縁膜と同層に形成された第6絶縁膜からなる第3膜部と、
     を有し、
     前記第4半導体領域における前記第2導電型の不純物濃度は、前記第1半導体領域における前記第2導電型の不純物濃度よりも小さく、
     前記ソース電極は、前記第4半導体領域と電気的に接続されている、半導体装置。
    The semiconductor device according to claim 5.
    The semiconductor layer is a first region on the upper surface side of the semiconductor substrate, and a second region on the upper surface side of the semiconductor substrate and on the outer peripheral side of the first region, and the upper surface of the semiconductor substrate. Formed into
    The first semiconductor region is formed in an upper layer portion of the semiconductor layer in the first region,
    The first film portion is formed in the first region on the upper surface of the semiconductor layer opposite to the second semiconductor region with the first semiconductor region interposed therebetween via the third insulating film. A first insulating film;
    The second film portion includes the second insulating film formed on the second semiconductor region via the fourth insulating film in the first region,
    further,
    A second semiconductor region of the second conductivity type formed in an upper layer portion of the semiconductor layer in the second region;
    A third film portion formed of a sixth insulating film formed in the same layer as the first insulating film via a fifth insulating film formed in the same layer as the third insulating film on the fourth semiconductor region When,
    Have
    The impurity concentration of the second conductivity type in the fourth semiconductor region is smaller than the impurity concentration of the second conductivity type in the first semiconductor region,
    The semiconductor device, wherein the source electrode is electrically connected to the fourth semiconductor region.
  7.  請求項1記載の半導体装置において、
     前記ゲート電極は、前記第2半導体領域と前記半導体層とに挟まれた前記第1半導体領域の上面上から、前記第1膜部の上面上にかけて、前記ゲート絶縁膜を介して連続的に形成されている、半導体装置。
    The semiconductor device according to claim 1,
    The gate electrode is continuously formed through the gate insulating film from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the first film portion. A semiconductor device.
  8.  請求項2記載の半導体装置において、
     前記ゲート電極は、前記第2半導体領域と前記半導体層とに挟まれた前記第1半導体領域の上面上から、前記第2膜部の上面上にかけて、前記ゲート絶縁膜を介して連続的に形成されている、半導体装置。
    The semiconductor device according to claim 2,
    The gate electrode is continuously formed through the gate insulating film from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the second film portion. A semiconductor device.
  9.  請求項1記載の半導体装置において、
     前記第1導電型はn型であり、
     前記第2導電型はp型である、半導体装置。
    The semiconductor device according to claim 1,
    The first conductivity type is n-type;
    The semiconductor device, wherein the second conductivity type is p-type.
  10.  請求項1記載の半導体装置において、
     前記半導体基板、前記半導体層、前記第1半導体領域、前記第2半導体領域および前記第3半導体領域は、炭化ケイ素からなる、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device, wherein the semiconductor substrate, the semiconductor layer, the first semiconductor region, the second semiconductor region, and the third semiconductor region are made of silicon carbide.
  11.  請求項1記載の半導体装置を備えた電力変換装置。 A power conversion device comprising the semiconductor device according to claim 1.
  12.  請求項11記載の電力変換装置を含む鉄道車両。 A railway vehicle including the power conversion device according to claim 11.
  13.  (a)第1導電型の半導体基板の上面に、前記第1導電型の半導体層を形成する工程、
     (b)前記半導体層の上層部に、前記第1導電型と異なる第2導電型の第1半導体領域を形成する工程、
     (c)前記第1半導体領域の上層部に、前記第1導電型の第2半導体領域を形成する工程、
     (d)前記第1半導体領域の上層部に、前記第2導電型の第3半導体領域を形成する工程、
     (e)前記(c)工程および前記(d)工程の後、前記半導体層上に、第1絶縁膜を形成する工程、
     (f)前記第1絶縁膜をパターニングすることで、前記第1半導体領域を挟んで前記第2半導体領域と反対側の前記半導体層の上面上に、前記第1絶縁膜からなる第1膜部を形成し、前記第2半導体領域上に、前記第1絶縁膜からなる第2膜部を形成する工程、
     (g)前記(f)工程の後、前記第2半導体領域と前記半導体層とに挟まれた前記第1半導体領域の上面上に、ゲート絶縁膜を介してゲート電極を形成する工程、
     (h)前記第2半導体領域上および前記第3半導体領域上にソース電極を形成する工程、
     (i)前記半導体基板の下面にドレイン電極を形成する工程、
     を有し、
     前記(g)工程では、前記第2半導体領域と前記半導体層とに挟まれた前記第1半導体領域の上面上から、前記第1膜部の上面上にかけて、連続的に前記ゲート電極を形成する、半導体装置の製造方法。
    (A) forming a first conductivity type semiconductor layer on an upper surface of a first conductivity type semiconductor substrate;
    (B) forming a first semiconductor region of a second conductivity type different from the first conductivity type in an upper layer portion of the semiconductor layer;
    (C) forming a second semiconductor region of the first conductivity type in an upper layer portion of the first semiconductor region;
    (D) forming a third semiconductor region of the second conductivity type in an upper layer portion of the first semiconductor region;
    (E) a step of forming a first insulating film on the semiconductor layer after the step (c) and the step (d);
    (F) A first film portion made of the first insulating film on the upper surface of the semiconductor layer opposite to the second semiconductor region with the first semiconductor region sandwiched by patterning the first insulating film. Forming a second film portion made of the first insulating film on the second semiconductor region,
    (G) After the step (f), forming a gate electrode on the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer via a gate insulating film;
    (H) forming a source electrode on the second semiconductor region and the third semiconductor region;
    (I) forming a drain electrode on the lower surface of the semiconductor substrate;
    Have
    In the step (g), the gate electrode is continuously formed from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the first film portion. A method for manufacturing a semiconductor device.
  14.  請求項13記載の半導体装置の製造方法において、
     前記(g)工程では、
     前記第2半導体領域と前記半導体層とに挟まれた前記第1半導体領域の上面上から、前記第2膜部の上面上にかけて、連続的に前記ゲート電極を形成し、
     前記ゲート電極が、前記第2膜部上で終端されるように、前記ゲート電極を形成する、半導体装置の製造方法。
    14. The method of manufacturing a semiconductor device according to claim 13,
    In the step (g),
    Forming the gate electrode continuously from the upper surface of the first semiconductor region sandwiched between the second semiconductor region and the semiconductor layer to the upper surface of the second film portion;
    A method of manufacturing a semiconductor device, wherein the gate electrode is formed so that the gate electrode is terminated on the second film portion.
  15.  請求項13記載の半導体装置の製造方法において、
     前記第1導電型はn型であり、
     前記第2導電型はp型である、半導体装置の製造方法。
     
    14. The method of manufacturing a semiconductor device according to claim 13,
    The first conductivity type is n-type;
    The method for manufacturing a semiconductor device, wherein the second conductivity type is a p-type.
PCT/JP2013/073836 2013-09-04 2013-09-04 Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle WO2015033406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073836 WO2015033406A1 (en) 2013-09-04 2013-09-04 Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073836 WO2015033406A1 (en) 2013-09-04 2013-09-04 Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle

Publications (1)

Publication Number Publication Date
WO2015033406A1 true WO2015033406A1 (en) 2015-03-12

Family

ID=52627916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073836 WO2015033406A1 (en) 2013-09-04 2013-09-04 Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle

Country Status (1)

Country Link
WO (1) WO2015033406A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042963A1 (en) * 2015-09-11 2017-03-16 株式会社日立製作所 Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle
JP2017112244A (en) * 2015-12-17 2017-06-22 株式会社日立製作所 Silicon carbide switching element, power module and electric power conversion device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247163A (en) * 1985-08-27 1987-02-28 Matsushita Electric Works Ltd Insulated gate field effect transistor
JPH08288303A (en) * 1995-04-11 1996-11-01 Sharp Corp Vertical field-effect transistor and fabrication thereof
JPH0936352A (en) * 1995-07-21 1997-02-07 Rohm Co Ltd Semiconductor device
JP2001111052A (en) * 1999-08-04 2001-04-20 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2002016251A (en) * 2000-06-29 2002-01-18 Toshiba Corp Semiconductor device
JP2002261284A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Semiconductor device
WO2011074237A1 (en) * 2009-12-16 2011-06-23 国立大学法人奈良先端科学技術大学院大学 Sic semiconductor element and manufacturing method for same
JP2011129547A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247163A (en) * 1985-08-27 1987-02-28 Matsushita Electric Works Ltd Insulated gate field effect transistor
JPH08288303A (en) * 1995-04-11 1996-11-01 Sharp Corp Vertical field-effect transistor and fabrication thereof
JPH0936352A (en) * 1995-07-21 1997-02-07 Rohm Co Ltd Semiconductor device
JP2001111052A (en) * 1999-08-04 2001-04-20 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2002016251A (en) * 2000-06-29 2002-01-18 Toshiba Corp Semiconductor device
JP2002261284A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Semiconductor device
JP2011129547A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
WO2011074237A1 (en) * 2009-12-16 2011-06-23 国立大学法人奈良先端科学技術大学院大学 Sic semiconductor element and manufacturing method for same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042963A1 (en) * 2015-09-11 2017-03-16 株式会社日立製作所 Semiconductor device, method for manufacturing same, power module, power conversion device, and rail vehicle
JPWO2017042963A1 (en) * 2015-09-11 2018-04-05 株式会社日立製作所 Semiconductor device and method for manufacturing the same, power module, power conversion device, and railcar
JP2017112244A (en) * 2015-12-17 2017-06-22 株式会社日立製作所 Silicon carbide switching element, power module and electric power conversion device

Similar Documents

Publication Publication Date Title
JP6929404B2 (en) Silicon carbide semiconductor device and power conversion device
JP7041086B2 (en) Silicon carbide semiconductor device and power conversion device
US9312332B2 (en) Semiconductor device and method for manufacturing the same
JP7068916B2 (en) Silicon Carbide Semiconductor Device, Power Conversion Device, and Method for Manufacturing Silicon Carbide Semiconductor Device
WO2016104264A1 (en) Semiconductor device
JP6710589B2 (en) Semiconductor device, manufacturing method of semiconductor device, inverter circuit, drive device, vehicle, and elevator
JP6145165B2 (en) Semiconductor device
JPWO2018084020A1 (en) Silicon carbide semiconductor device and power converter
JP7175374B2 (en) power converter
WO2015128975A1 (en) Power module and power conversion device
JP2022016286A (en) Semiconductor device, inverter circuit, drive device, vehicle, and elevator
JP2005223349A (en) High breakdown voltage semiconductor device and electric power transducer using it
JP6564046B2 (en) Semiconductor device and manufacturing method thereof, power conversion device, three-phase motor system, automobile and railway vehicle
JP6592083B2 (en) Semiconductor device, manufacturing method thereof, and power module
WO2015189929A1 (en) Semiconductor device, power module, power conversion device, and semiconductor device manufacturing method
WO2016194116A1 (en) Semiconductor device, substrate and power conversion device
WO2015033406A1 (en) Semiconductor device, method for manufacturing same, power conversion apparatus, and rail vehicle
JP7258239B2 (en) SILICON CARBIDE SEMICONDUCTOR DEVICE AND POWER CONVERTER
JP7458257B2 (en) Semiconductor devices, inverter circuits, drive devices, vehicles, and elevators
JP7278902B2 (en) Semiconductor devices, inverter circuits, drive devices, vehicles, and elevators
JP6473512B2 (en) Semiconductor device and method for manufacturing the same, power module, power conversion device, and railcar
WO2016002083A1 (en) Semiconductor device, power module and electric power converter
WO2016038695A1 (en) Semiconductor device, power module, power conversion device, and railroad vehicle
JP7023818B2 (en) Semiconductor devices, inverter circuits, drives, vehicles, and elevators
JP7043750B2 (en) SiC- MOSFET

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP