WO2022190269A1 - Silicon carbide semiconductor device, method for manufacturing same, and power conversion device - Google Patents

Silicon carbide semiconductor device, method for manufacturing same, and power conversion device Download PDF

Info

Publication number
WO2022190269A1
WO2022190269A1 PCT/JP2021/009567 JP2021009567W WO2022190269A1 WO 2022190269 A1 WO2022190269 A1 WO 2022190269A1 JP 2021009567 W JP2021009567 W JP 2021009567W WO 2022190269 A1 WO2022190269 A1 WO 2022190269A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
schottky
semiconductor device
trench
carbide semiconductor
Prior art date
Application number
PCT/JP2021/009567
Other languages
French (fr)
Japanese (ja)
Inventor
基 吉田
梨菜 田中
裕 福井
英之 八田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023504972A priority Critical patent/JPWO2022190269A1/ja
Priority to PCT/JP2021/009567 priority patent/WO2022190269A1/en
Publication of WO2022190269A1 publication Critical patent/WO2022190269A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present disclosure relates to a silicon carbide semiconductor device having a trench gate, a manufacturing method thereof, and a power conversion device using the silicon carbide semiconductor device having a trench gate.
  • a unipolar switching element such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor) and a unipolar freewheeling diode such as a Schottky Barrier Diode (SBD) are incorporated.
  • Power semiconductor devices are known. Such a semiconductor device can be realized by arranging a MOSFET cell and an SBD cell in parallel on the same chip. It can be realized by making
  • a freewheeling diode By incorporating a freewheeling diode into the switching element chip, the cost can be reduced compared to attaching a freewheeling diode to the switching element externally.
  • SiC silicon carbide
  • a trench-gate MOSFET having a structure in which a gate electrode is embedded in a trench formed in a semiconductor layer compared to a planar-type MOSFET having a structure in which a gate electrode is formed on the surface of a semiconductor layer, the side wall of the trench Since the channel can be formed in the region, the channel width density can be improved and the on-resistance can be reduced. Therefore, a structure is known in which an SBD is incorporated in a trench gate type MOSFET (for example, Patent Document 1).
  • a Schottky interface is formed on the sidewall of the trench, but in some cases the Schottky interface cannot be formed uniformly. If the Schottky interface cannot be formed uniformly, the height of the Schottky barrier will be uneven, resulting in uneven flow of leakage current during reverse bias and occurrence of locations where the adhesion between the Schottky electrode and the semiconductor layer is reduced. In some cases, the Schottky electrode was partially peeled off.
  • An object of the present invention is to provide a highly reliable silicon carbide semiconductor device.
  • a silicon carbide semiconductor device of the present disclosure includes a drift layer made of first conductivity type silicon carbide formed on a first main surface of a semiconductor substrate made of first conductivity type silicon carbide, and a drift layer formed on the drift layer.
  • a reaction layer formed between the formed Schottky electrode containing Ti as a main component and a drift layer in contact with the Schottky electrode and the side surface of the Schottky trench and made of TiSi having an atomic composition ratio of Ti to Si of 0.5 or more.
  • silicon carbide semiconductor device According to the silicon carbide semiconductor device according to the present disclosure, a highly reliable silicon carbide semiconductor device can be obtained.
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device according to a first embodiment
  • FIG. 1 is a plan view of a silicon carbide semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment
  • FIG. 3 is a cross-sectional SEM view of the Schottky interface of the silicon carbide semiconductor device according to Embodiment 1
  • FIG. 3 is a reference cross-sectional SEM view of the Schottky interface of the silicon carbide semiconductor device related to the first embodiment
  • FIG. FIG. 9 is a cross-sectional view of a silicon carbide semiconductor device according to a second embodiment
  • FIG. 11 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a second embodiment;
  • FIG. 11 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a second embodiment;
  • FIG. 11 is a cross-sectional view of a silicon carbide semiconductor device according to a third embodiment;
  • FIG. 11 is a cross-sectional view of a silicon carbide semiconductor device according to a fourth embodiment;
  • FIG. 11 is a schematic diagram showing the configuration of a power converter diagram according to Embodiment 5;
  • the first conductivity type is n-type and the second conductivity type is p-type, but the conductivity types may be reversed.
  • FIG. 1 is a cross-sectional view of a part of an active region of a trench type silicon carbide MOSFET with built-in Schottky barrier diode (SiC trench MOSFET with built-in SBD), which is a silicon carbide semiconductor device according to a first embodiment.
  • FIG. 2 is a plan view of the SBD-embedded SiC trench MOSFET shown in FIG. 1, and is a plan view at a certain depth where the trench is formed.
  • a drift layer 20 made of n-type silicon carbide is formed on the surface of a semiconductor substrate 10 made of n-type low-resistance silicon carbide.
  • Body region 30 made of p-type silicon carbide is provided on drift layer 20 .
  • Gate trenches 91 and Schottky trenches 92 are arranged alternately and in parallel in drift layer 20 in which body region 30 is formed.
  • a source region 40 made of n-type silicon carbide is provided in a surface layer portion of body region 30 adjacent to gate trench 91 .
  • a low-resistance p-type contact region 35 is formed in the surface layer portion of the body region 30 between the gate trench 91 and the Schottky trench 92 .
  • Gate trench 91 is formed to reach drift layer 20 from the surface of source region 40 through source region 40 and body region 30 .
  • Schottky trench 92 is formed to extend from the surface of body region 30 through body region 30 to reach drift layer 20 .
  • a gate electrode 60 is formed in the gate trench 91 with a gate insulating film 50 made of silicon oxide interposed therebetween.
  • the gate electrode 60 is made of low resistance polycrystalline silicon with a high impurity concentration.
  • An interlayer insulating film 55 made of silicon oxide is formed on the gate electrode 60 .
  • a Schottky electrode 81 containing Ti is formed in Schottky trench 92 , and a reaction layer 71 made of TiSi is formed at the interface between Schottky trench 92 and drift layer 20 and body region 30 .
  • the reaction layer 71 and the Schottky electrode 81 are in Schottky contact with the drift layer 20 as a whole.
  • a p-type first protection region 31 is formed in the drift layer 20 at the bottom of the gate trench 91 .
  • a p-type second protection region 32 is formed in the drift layer 20 at the bottom of the Schottky trench 92 .
  • the first protection region 31 and the second protection region 32 have the same depth and the same impurity concentration.
  • a drain electrode 82 is formed on the back surface side of the semiconductor substrate 10 .
  • Ohmic electrode 70 is formed on contact region 35 and source region 40
  • source electrode 80 is formed on ohmic electrode 70 and Schottky electrode 81 .
  • p-type connection regions are formed at regular intervals along the longitudinal direction of the striped gate trenches 91 and Schottky trenches 92 .
  • a p-type connection region formed for the gate trench 91 is the first connection region 33
  • the first connection region 33 is formed on the drift layer 20 so as to connect the first protection region 31 and the body region 30 . formed within.
  • a p-type connection region formed for the Schottky trench 92 is the second connection region 34
  • the second connection region 34 connects the second protection region 32 and the body region 30 to the drift layer 20 . formed within.
  • the reaction layer 71 is a layer formed by reaction of Ti and Si, and the atomic composition ratio of Ti to Si is 0.5 or more and 2.0 or less. Also, the thickness of the reaction layer 71 is 1 nm or more and 50 nm or less. Also, the reaction layer 71 between the drift layer 20 and the Schottky electrode 81 is formed uniformly.
  • the Schottky electrode 81 may be made of Ti, but at least the part closest to the semiconductor layer is made of Ti, and may have a laminated structure of Ti and other metals.
  • a semiconductor substrate 10 made of n-type low-resistance silicon carbide having a 4H polytype and a (0001) plane whose first main surface is inclined by 1° or more in the ⁇ 11-20> direction Silicon carbide having an impurity concentration of 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less and an n-type silicon carbide thickness of 5 ⁇ m or more and 50 ⁇ m or less by chemical vapor deposition (CVD method).
  • a drift layer 20 made of is epitaxially grown. The surface of the drift layer 20 is also the (0001) plane inclined by 1° or more in the ⁇ 11-20> direction.
  • ions of Al which is a p-type impurity
  • the depth of the Al ion implantation is about 0.5 ⁇ m or more and 3 ⁇ m or less, which does not exceed the thickness of the drift layer 20 .
  • the impurity concentration of ion-implanted Al is in the range of 1 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 19 cm ⁇ 3 or less, which is higher than the impurity concentration of the drift layer 20 .
  • a region implanted with Al ions in this step becomes the body region 30 .
  • an implantation mask is formed with a photoresist or the like so that a predetermined portion of the body region 30 on the surface of the drift layer 20 is opened, and an n-type impurity N (nitrogen) is ion-implanted.
  • the N ion implantation depth is assumed to be shallower than the thickness of the body region 30 .
  • the impurity concentration of ion-implanted N is in the range of 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 and exceeds the p-type impurity concentration of the body region 30 .
  • the region exhibiting the n-type becomes the source region 40 .
  • the implantation mask is removed.
  • impurities in a range of 1 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 higher than the impurity concentration of the body region 30 are added to a predetermined region of the body region 30 adjacent to the source region 40 .
  • a contact region 35 is formed by ion-implanting Al so as to obtain a concentration.
  • a resist mask is formed to partially open the region where the source region 40 is formed, and a gate trench 91 is formed by dry etching to reach the drift layer 20 through the source region 40 and the body region 30 .
  • a resist mask is formed to partially open a region where the source region 40 is not formed, and a Schottky trench 92 that penetrates the body region 30 and reaches the drift layer 20 is formed by dry etching.
  • the gate trench 91 and the Schottky trench 92 are formed so that their longitudinal directions are along the ⁇ 11-20> direction.
  • the longitudinal sidewalls of the gate trench 91 and the Schottky trench 92 are aligned with the (1-100) plane. ( ⁇ 1100) plane.
  • the longitudinal sidewalls of the gate trench 91 and the Schottky trench 92 face the first main surface, which is the surface of the drift layer 20 or the surface of the semiconductor substrate 10 .
  • the angle forms an angle in the range of 80 degrees or more and 90 degrees or less. Therefore, the side walls of the gate trench 91 and the Schottky trench 92 in the longitudinal direction are inclined within 10 degrees from the (1-100) plane and the (-1100) plane.
  • the gate trench 91 and the Schottky trench 92 may be formed to the same depth by the same dry etching process. Through these steps, the structure of the cross-sectional view shown in FIG. 4 is obtained.
  • p-type impurity ions are implanted into the drift layer 20 at the bottom of the gate trench 91 and the Schottky trench 92 to form a first protection region 31 and a second protection region, respectively. form 32;
  • the p-type impurity concentration of the first protection region 31 and the second protection region 32 may be in the range of 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • a resist mask is formed with openings at locations where the first connection region 33 and the second connection region 34 are to be formed, and p-type impurities are obliquely ion-implanted to form the first connection region 33 and the second connection region 34 .
  • the p-type impurity concentration of the first connection region 33 and the second connection region 34 may be in the range of 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the resist mask is removed.
  • annealing is performed in an inert gas atmosphere such as argon (Ar) gas at a temperature of 1300 to 1900° C. for 30 seconds to 1 hour using a heat treatment apparatus. This annealing electrically activates the implanted N and Al ions.
  • the gate insulating film 50 made of silicon oxide is formed in the gate trench 91 with a thickness of 10 nm or more and 300 nm or less.
  • a gate electrode 60 is formed by forming a conductive polycrystalline silicon film having a thickness of 300 nm or more and 2000 nm or less in the gate insulating film 50 by low pressure CVD and patterning. After removing the protective insulating film, the cross-sectional view shown in FIG. 6 is formed.
  • an interlayer insulating film 55 made of silicon oxide and having a thickness of 500 nm or more and 3000 nm or less is formed by low pressure CVD.
  • the interlayer insulating film 55 is etched so as to open above the region where the source region 40 and the contact region 35 are formed, and a metal such as Ni is deposited inside and annealed.
  • an ohmic electrode 70 made of a NiSi alloy layer (silicide) is formed on the source region 40 and the contact region 35. As shown in FIG.
  • a Schottky electrode 81 made of Ti is formed in the Schottky trench 92, on the ohmic electrode 70 and on the interlayer insulating film 55. Then, as shown in FIG. is formed by sputtering. Further, a source electrode 80 containing Al is formed thereon by a sputtering method. The source electrode 80 may have a laminated structure of Al/Ti. A cross-sectional view of this state is shown in FIG. Thereafter, with the Schottky electrode 81 formed in the Schottky trench 92, the temperature is raised from room temperature to 400° C.
  • the heating time for annealing at a temperature of 400° C. or more and 600° C. or less may be 5 minutes or more and 30 minutes or less.
  • a reaction layer 71 made of TiSi is formed at the interface between the drift layer 20 and the Schottky electrode 81, as shown in the sectional view of FIG.
  • the atomic composition ratio of Ti to Si in the reaction layer 71 is 0.5 or more and 2.0 or less.
  • the thickness of the reaction layer 71 is 5 nm or more and 50 nm or less.
  • the reaction layer 71 is formed uniformly in the region where the reaction layer 71 is formed. Since the reaction layer 71 is heated in the inert gas, the oxygen concentration in the reaction layer 71 is low, and the atomic composition concentration of oxygen in the reaction layer 71 is 5% or less.
  • the reaction layer 71 is formed in a state with less oxygen, it is possible to prevent unevenness from being formed on the interface, and the reaction layer 71 is formed uniformly. Further, the longitudinal side walls of the gate trench 91 and the Schottky trench 92 are not affected by the off direction of the semiconductor substrate 10 (1-100) plane and ( ⁇ 1100) plane, or are inclined within 10 degrees from these planes. Therefore, the reaction layer 71 can be uniformly formed on both side wall surfaces of the Schottky trench 92 in the longitudinal direction regardless of the off-angle of the semiconductor substrate 10 .
  • FIG. 11 shows a cross-sectional SEM (Scanning Electron Microscope) view from source electrode 80 to drift layer 20 of the silicon carbide semiconductor device of the present embodiment.
  • SEM Sccanning Electron Microscope
  • the SBD-embedded SiC trench MOSFET whose cross-sectional view is shown in FIG. 1 can be manufactured.
  • an n-type low resistance region may be formed here.
  • the silicon carbide semiconductor device of the present embodiment not only is the Schottky barrier height of the SBD formed between Schottky electrode 81 and drift layer 20 constant within each Schottky trench 92, but also Variations in the Schottky barrier heights of the SBDs of the other Schottky trenches 92 are also reduced. Therefore, it is possible to suppress leakage current from flowing from a portion where the Schottky barrier height is partially reduced in the off state. In addition, the adhesion between Schottky electrode 81 and drift layer 20 on the side wall of Schottky trench 92 is improved, and partial separation of Schottky electrode 81 can be prevented, so that a highly reliable silicon carbide semiconductor device can be obtained. can.
  • a reaction layer 71 having the same properties and thickness can be formed on both longitudinal side walls of the .
  • FIG. 13 is a cross-sectional view of part of the active region in the silicon carbide semiconductor device of the second embodiment.
  • the silicon carbide semiconductor device of the present embodiment further includes an ohmic electrode 70 between Schottky trench 92 and body region 30 in contact with Schottky trench 92 . That is, ohmic electrode 70 formed on contact region 35 and source region 40 extends to the upper portion of the sidewall of Schottky trench 92 . Since other points are the same as those of the first embodiment, detailed description thereof will be omitted.
  • the Schottky interface of SBD formed between Schottky electrode 81 and drift layer 20 may be homogeneously formed, and between body region 30 and Schottky electrode 81
  • the reaction layer 71 may be omitted.
  • Schottky trench 92 is formed through contact region 35 and body region 30 .
  • the ohmic electrode 70 is formed in the entire region where the contact region 35 faces the Schottky trench 92 and part of the region where the body region 30 faces the Schottky trench 92.
  • Reactive layer 71 is formed in a region of Schottky trench 92 facing below body region 30 and drift layer 20 .
  • interlayer insulating film 55 is patterned so that interlayer insulating film 55 remains only on gate trench 91 and on the bottom of Schottky trench 92, as shown in the cross-sectional view of FIG.
  • the ohmic electrode 70 is formed in a portion where the interlayer insulating film 55 is not formed, and the interlayer insulating film at the bottom of the Schottky trench 92 is removed in the same manner as in the first embodiment. .
  • a Schottky electrode 81 is formed, and annealing is performed in the same manner as in the first embodiment.
  • a drain electrode 82 is formed on the back surface side of semiconductor substrate 10, thereby forming the structure of the present embodiment having the cross-sectional view of FIG. A silicon carbide semiconductor device can be manufactured.
  • the contact area between contact region 35 and ohmic electrode 70 can be increased. Contact resistance can be reduced. Further, since it is not necessary to form a region between the contact region 35 and the Schottky trench 92, it is possible to reduce the width of the contact region 35 between the end of the source region 40 and the Schottky trench 92 in the lateral direction of the cross section. can. Therefore, the width of the unit cell shown in FIG. 13 can be reduced, and as a result, the amount of current flowing per unit area can be increased. That is, the on-resistance of the chip can be reduced.
  • the ohmic electrode 70 formed by reacting a layer of silicon carbide and a metal such as Ni is formed on the upper end of the Schottky trench 92, the corners of the upper end of the Schottky trench 92 are rounded. Therefore, the embedding property when embedding the Schottky electrode 81 in the Schottky trench 92 is improved, and the manufacturing yield can be further increased.
  • FIG. 16 is a cross-sectional view of part of the active region in the silicon carbide semiconductor device of the third embodiment.
  • the silicon carbide semiconductor device of the present embodiment of FIG. 16 differs from the silicon carbide semiconductor device of the first embodiment in that reaction layer 71 is not uniformly formed within Schottky trench 92 . Since other points are the same as those of the first embodiment, detailed description thereof will be omitted.
  • the Schottky interface of SBD formed between Schottky electrode 81 and drift layer 20 only needs to be homogeneously formed, and the reaction between body region 30 and Schottky electrode 81 Layer 71 need not be the same thickness as reaction layer 71 formed between Schottky electrode 81 and drift layer 20 . Also, the reaction layer 71 between the body region 30 and the Schottky electrode 81 may be omitted.
  • Schottky electrode 81 does not have to be buried in the entire region where body region 30 is in contact with Schottky trench 92 .
  • the silicon carbide semiconductor device of the present embodiment can be manufactured by not filling Schottky trench 92 entirely, or by removing the upper portion after filling Schottky trench 92 .
  • the upper portion of the Schottky trench 92, which is not filled with the Schottky electrode 81, may be filled with the source electrode 80 to be formed later.
  • homogeneous reaction layer 71 is formed between drift layer 20 and Schottky electrode 81 even when Schottky electrode 81 is not embedded up to the upper portion of Schottky trench 92 . and can be manufactured more easily.
  • FIG. 17 is a cross-sectional view of part of the active region in the silicon carbide semiconductor device of the fourth embodiment.
  • an inclined surface 92T is formed on the side wall at the lower portion of Schottky trench 92 . Since other points are the same as those of the first embodiment, detailed description thereof will be omitted.
  • inclined surface 92T is inclined at an angle of 45 degrees with respect to the silicon carbide layer surface. is inclined at an angle of A reaction layer 71 having a constant thickness is formed between the Schottky electrode 81 and the drift layer 20 .
  • the boundary between body region 30 and Schottky electrode 81 is a plane perpendicular to the surface of the silicon carbide layer, and reaction layer 71 is also formed at that interface.
  • the silicon carbide semiconductor device of the present embodiment can be manufactured by etching Schottky trench 92 in two stages.
  • the area of the Schottky interface can be increased for trenches of the same depth, and the unipolar current density that can be flowed per unit area can be increased. .
  • the angle formed by the corners at both ends of the bottom of the Schottky trench 92 is obtuse, the filling property of the Schottky electrode 81 into the Schottky trench 92 is improved, and the probability of forming a void-like space in the Schottky trench 92 is increased. can be reduced.
  • the voltage is applied to gate insulating film 50 near the bottom of Schottky trench 92 .
  • the applied electric field can be reduced, and a more reliable silicon carbide silicon carbide semiconductor device can be obtained.
  • the silicon carbide semiconductor device of the present embodiment includes an SBD with a large area and uniform Schottky barrier height, and is a highly reliable silicon carbide semiconductor device.
  • the inclined surface 92T of the Schottky trench 92 has been described as inclined at an angle of 45 degrees with respect to the surface of the silicon carbide layer, but this angle is not necessarily 45 degrees. The angle need not be equal, and may be 35 degrees or more and 60 degrees or less. Furthermore, in the silicon carbide silicon carbide semiconductor device of the present embodiment, the case where the Schottky interface where the reaction layer 71 is formed is entirely the inclined surface 92T has been described. Even if it is formed on a plane substantially perpendicular to the surface of the silicon carbide layer, the same effect can be obtained as long as the reaction layer 71 is formed uniformly on both.
  • Embodiments 1 to 4 an example in which the Schottky electrode 81 and the source electrode 80 are separately formed has been described. may be the same electrode in one piece. At this time, it may be a laminated structure as a whole.
  • the method of forming the body region 30 and the source region 40 by ion implantation has been described, but the body region 30 and the source region 40 may be formed by other methods. For example, it may be formed by an epitaxial method.
  • the body region 30 may be formed in part of the upper layer portion of the drift layer 20 .
  • the Schottky trench 92 may be provided directly from the surface of the drift layer 20 instead of penetrating the body region 30 .
  • first protection region 31 and the second protection region 32 are provided under the trench have been described, but the first protection region 31 and the second protection region 32 may be may be omitted. At this time, neither the first connection region 33 nor the second connection region 34 may be provided.
  • the gate trenches 91 and the Schottky trenches 92 may be provided in a grid pattern instead of in a stripe pattern.
  • the p-type impurity may be boron (B) or gallium (Ga).
  • the n-type impurity may be phosphorus (P) instead of nitrogen (N).
  • the gate insulating film does not necessarily have to be an oxide film such as SiO 2 . may be a combination of Further, in the above-described embodiments, the crystal structure, the plane orientation of the main surface, the off-angle, the implantation conditions, and the like have been described using specific examples, but the scope of application is not limited to these numerical ranges.
  • the SBD is incorporated in a so-called vertical MOSFET silicon carbide semiconductor device in which the drain electrode 85 is formed on the back surface of the semiconductor substrate 10 . It can also be used for a so-called lateral MOSFET such as a RESURF (REduced SURface Field) type MOSFET formed on the surface, in which an SBD is built.
  • the silicon carbide semiconductor device may be an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor) with an SBD built therein. It can also be applied to MOSFETs and IGBTs having a superjunction structure with built-in SBDs.
  • Embodiment 5 applies the silicon carbide semiconductor devices according to the first to fourth embodiments described above to a power converter. Although the present disclosure is not limited to a specific power converter, a case where the present disclosure is applied to a three-phase inverter will be described below as a fifth embodiment.
  • FIG. 18 is a block diagram showing the configuration of a power conversion system to which the power conversion device according to this embodiment is applied.
  • the power conversion system shown in FIG. 18 is composed of a power supply 100, a power converter 200, and a load 300.
  • the power supply 100 is a DC power supply and supplies DC power to the power converter 200 .
  • the power supply 100 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. good too.
  • the power supply 100 may be configured by a DC/DC converter that converts DC power output from the DC system into predetermined power.
  • Power converter 200 is a three-phase inverter connected between power supply 100 and load 300 , converts DC power supplied from power supply 100 into AC power, and supplies AC power to load 300 .
  • the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a drive circuit 202 that outputs a drive signal for driving each switching element of the main conversion circuit 201. , and a control circuit 203 that outputs a control signal for controlling the drive circuit 202 to the drive circuit 202 .
  • the drive circuit 202 turns off each normally-off switching element by setting the voltage of the gate electrode and the voltage of the source electrode to the same potential.
  • the load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200 .
  • the load 300 is not limited to a specific application, but is an electric motor mounted on various electrical equipment, such as a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an electric motor for air conditioning equipment.
  • the main conversion circuit 201 includes a switching element and a freewheeling diode (not shown). By switching the switching element, the DC power supplied from the power supply 100 is converted into AC power and supplied to the load 300 .
  • the main conversion circuit 201 is a two-level three-phase full bridge circuit, and has six switching elements and It can consist of six freewheeling diodes in anti-parallel.
  • a silicon carbide semiconductor device manufactured by the method for manufacturing a silicon carbide semiconductor device according to any one of the first to third embodiments described above is applied to each switching element of main conversion circuit 201 .
  • each upper and lower arm forms each phase (U phase, V phase, W phase) of the full bridge circuit.
  • Output terminals of the upper and lower arms, that is, three output terminals of the main conversion circuit 201 are connected to the load 300 .
  • the drive circuit 202 generates a drive signal for driving the switching element of the main converter circuit 201 and supplies it to the control electrode of the switching element of the main converter circuit 201 .
  • a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrode of each switching element.
  • the driving signal is a voltage signal (ON signal) equal to or higher than the threshold voltage of the switching element, and when maintaining the switching element in the OFF state, the driving signal is a voltage equal to or less than the threshold voltage of the switching element. signal (off signal).
  • the control circuit 203 controls the switching elements of the main converter circuit 201 so that desired power is supplied to the load 300 . Specifically, based on the power to be supplied to the load 300, the time (on time) during which each switching element of the main conversion circuit 201 should be in the ON state is calculated. For example, the main conversion circuit 201 can be controlled by PWM control that modulates the ON time of the switching element according to the voltage to be output. Then, a control command (control signal) is output to the drive circuit 202 so that an ON signal is output to the switching element that should be in the ON state at each time point, and an OFF signal is output to the switching element that should be in the OFF state.
  • a control command control signal
  • the drive circuit 202 outputs an ON signal or an OFF signal as a drive signal to the control electrode of each switching element according to this control signal.
  • the silicon carbide semiconductor device according to the first to fourth embodiments is applied as the switching element of the main conversion circuit 201, low loss and high-speed switching reliability are improved.
  • a conversion device can be implemented.
  • the present disclosure is not limited to this, and can be applied to various power converters.
  • a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used. You can apply it.
  • the present disclosure can be applied to a DC/DC converter or an AC/DC converter when power is supplied to a DC load or the like.
  • the power conversion device to which the present disclosure is applied is not limited to the case where the above-described load is an electric motor. It can also be used as a device, and can also be used as a power conditioner for a photovoltaic power generation system, an electric storage system, or the like.

Abstract

A silicon carbide semiconductor device according to the present disclosure comprises: an n-type drift layer (20) on an n-type semiconductor substrate (10); a p-type body region (30) on the drift layer (20); an n-type source region (40) on the body region (30); a gate trench (91) penetrating the source region (40) and the body region (30); a gate electrode (50) formed in the gate trench (91) so as to face the body region (30) via a gate insulating film (60); a Schottky trench (20) formed so as to have a lower end in the drift layer (92); a Schottky electrode (81) which is formed within the Schottky trench (81) and which has Ti as the main component; and a reaction layer (92) which is formed between the Schottky electrode (20) and the drift layer (20) in contact with the side surface of the Schottky trench (92), and which is composed of TiSi having an atomic composition ratio of Ti to Si of at least 0.5. According to the present disclosure, a highly reliable silicon carbide semiconductor device can be obtained.

Description

炭化珪素半導体装置とその製造方法、および、電力変換装置SILICON CARBIDE SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND POWER CONVERTER
 本開示は、トレンチゲートを有する炭化珪素半導体装置とその製造方法、および、トレンチゲートを有する炭化珪素半導体装置を用いた電力変換装置に関するものである。 The present disclosure relates to a silicon carbide semiconductor device having a trench gate, a manufacturing method thereof, and a power conversion device using the silicon carbide semiconductor device having a trench gate.
 MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor:絶縁ゲート型電界効果トランジスタ)等のユニポーラ型のスイッチング素子と、ショットキバリアダイオード(SBD:Schottky Barrier Diode)等のユニポーラ型の還流ダイオードとを内蔵する電力用の半導体装置が知られている。そのような半導体装置は、同一のチップにMOSFETセルとSBDセルとを並列に配置することで実現でき、一般的には、チップ内の特定の領域にショットキ電極を設け、その領域をSBDとして動作させることで実現できる。 A unipolar switching element such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor) and a unipolar freewheeling diode such as a Schottky Barrier Diode (SBD) are incorporated. Power semiconductor devices are known. Such a semiconductor device can be realized by arranging a MOSFET cell and an SBD cell in parallel on the same chip. It can be realized by making
 スイッチング素子のチップに還流ダイオードを内蔵させることで、スイッチング素子に還流ダイオードを外付けする場合に比べてコストを低減できる。特に、炭化珪素(SiC)を母材として用いたMOSFETでは、SBDを内蔵させることにより寄生pnダイオードによるバイポーラ動作を抑制できることもメリットの一つとなる。炭化珪素半導体装置では寄生pnダイオード動作によるキャリアの再結合エネルギーに起因する結晶欠陥の拡張により、素子の信頼性が損なわれることがあるからである。 By incorporating a freewheeling diode into the switching element chip, the cost can be reduced compared to attaching a freewheeling diode to the switching element externally. In particular, in a MOSFET using silicon carbide (SiC) as a base material, it is one of the merits that a bipolar operation due to a parasitic pn diode can be suppressed by incorporating an SBD. This is because, in a silicon carbide semiconductor device, the reliability of the device may be impaired due to expansion of crystal defects caused by recombination energy of carriers due to parasitic pn diode operation.
 また、半導体層に形成されたトレンチ内にゲート電極が埋め込まれた構造を有するトレンチゲート型MOSFETでは、半導体層の表面上にゲート電極が形成された構造を有するプレーナー型MOSFETに比べ、トレンチの側壁にチャネルを形成できる分、チャネル幅密度を向上でき、オン抵抗を低減できる。そこで、トレンチゲート型MOSFETにSBDを内蔵させる構造が知られている(例えば特許文献1)。 In addition, in a trench-gate MOSFET having a structure in which a gate electrode is embedded in a trench formed in a semiconductor layer, compared to a planar-type MOSFET having a structure in which a gate electrode is formed on the surface of a semiconductor layer, the side wall of the trench Since the channel can be formed in the region, the channel width density can be improved and the on-resistance can be reduced. Therefore, a structure is known in which an SBD is incorporated in a trench gate type MOSFET (for example, Patent Document 1).
特開2019-218224号公報JP 2019-218224 A
 このような、SBD内蔵のトレンチ型MOSFETではショットキ界面がトレンチ側壁に形成されるが、ショットキ界面を均一に形成できない場合があった。ショットキ界面を均一に形成できないと、ショットキバリア高さが不均一になり、そのため、逆バイアス時のリーク電流が不均一に流れたり、ショットキ電極と半導体層との密着力が低下する箇所が発生して部分的にショットキ電極が剥離したりする場合があった。 In such an SBD-embedded trench type MOSFET, a Schottky interface is formed on the sidewall of the trench, but in some cases the Schottky interface cannot be formed uniformly. If the Schottky interface cannot be formed uniformly, the height of the Schottky barrier will be uneven, resulting in uneven flow of leakage current during reverse bias and occurrence of locations where the adhesion between the Schottky electrode and the semiconductor layer is reduced. In some cases, the Schottky electrode was partially peeled off.
 本開示は、上記のような課題を解決するためになされたものであり、ショットキ界面を均一に形成することにより、ショットキ界面のリーク電流を均一化し、ショットキ界面におけるショットキ電極の剥離を抑制することにより、信頼性の高い炭化珪素半導体装置を提供することを目的とする。 The present disclosure has been made to solve the above-described problems, and aims to uniformize the leakage current at the Schottky interface and suppress the separation of the Schottky electrode at the Schottky interface by forming the Schottky interface uniformly. An object of the present invention is to provide a highly reliable silicon carbide semiconductor device.
 本開示の炭化珪素半導体装置は、第1導電型の炭化珪素からなる半導体基板の第1の主面上に形成された第1導電型の炭化珪素からなるドリフト層と、ドリフト層上に形成された第2導電型の炭化珪素からなるボディ領域と、ボディ領域の少なくとも一部の上に形成された第1導電型の炭化珪素からなるソース領域と、ソース領域およびボディ領域とを貫通してドリフト層に達するゲートトレンチと、ゲートトレンチにゲート絶縁膜を介してボディ領域と対向して形成されたゲート電極と、少なくともドリフト層内に下端があるように形成されたショットキトレンチと、ショットキトレンチ内に形成されたTiを主成分とするショットキ電極と、ショットキ電極とショットキトレンチの側面に接するドリフト層との間に形成され、Siに対するTiの原子組成比率が0.5以上であるTiSiからなる反応層とを備えたものである。 A silicon carbide semiconductor device of the present disclosure includes a drift layer made of first conductivity type silicon carbide formed on a first main surface of a semiconductor substrate made of first conductivity type silicon carbide, and a drift layer formed on the drift layer. a body region made of silicon carbide of the second conductivity type, a source region made of silicon carbide of the first conductivity type formed on at least a part of the body region, and drift through the source region and the body region a gate trench reaching a layer; a gate electrode formed in the gate trench so as to face the body region with a gate insulating film interposed therebetween; A reaction layer formed between the formed Schottky electrode containing Ti as a main component and a drift layer in contact with the Schottky electrode and the side surface of the Schottky trench and made of TiSi having an atomic composition ratio of Ti to Si of 0.5 or more. and
 本開示にかかる炭化珪素半導体装置によれば、信頼性の高い炭化珪素半導体装置を得ることができる。 According to the silicon carbide semiconductor device according to the present disclosure, a highly reliable silicon carbide semiconductor device can be obtained.
実施の形態1に係る炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device according to a first embodiment; FIG. 実施の形態1に係る炭化珪素半導体装置の平面図である。1 is a plan view of a silicon carbide semiconductor device according to a first embodiment; FIG. 実施の形態1に係る製造中の炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment; FIG. 実施の形態1に係る製造中の炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment; FIG. 実施の形態1に係る製造中の炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment; FIG. 実施の形態1に係る製造中の炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment; FIG. 実施の形態1に係る製造中の炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment; FIG. 実施の形態1に係る製造中の炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment; FIG. 実施の形態1に係る製造中の炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment; FIG. 実施の形態1に係る製造中の炭化珪素半導体装置の断面図である。1 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a first embodiment; FIG. 実施の形態1に係る炭化珪素半導体装置のショットキ界面の断面SEM 図である。3 is a cross-sectional SEM view of the Schottky interface of the silicon carbide semiconductor device according to Embodiment 1; FIG. 実施の形態1に関連する炭化珪素半導体装置のショットキ界面の参考断面SEM図である。3 is a reference cross-sectional SEM view of the Schottky interface of the silicon carbide semiconductor device related to the first embodiment; FIG. 実施の形態2に係る炭化珪素半導体装置の断面図である。FIG. 9 is a cross-sectional view of a silicon carbide semiconductor device according to a second embodiment; 実施の形態2に係る製造中の炭化珪素半導体装置の断面図である。FIG. 11 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a second embodiment; 実施の形態2に係る製造中の炭化珪素半導体装置の断面図である。FIG. 11 is a cross-sectional view of a silicon carbide semiconductor device under manufacture according to a second embodiment; 実施の形態3に係る炭化珪素半導体装置の断面図である。FIG. 11 is a cross-sectional view of a silicon carbide semiconductor device according to a third embodiment; 実施の形態4に係る炭化珪素半導体装置の断面図である。FIG. 11 is a cross-sectional view of a silicon carbide semiconductor device according to a fourth embodiment; 実施の形態5に係る電力変換装置図の構成を示す模式図である。FIG. 11 is a schematic diagram showing the configuration of a power converter diagram according to Embodiment 5;
 以下、添付の図面を参照しながら実施の形態について説明する。なお、図面は模式的に示されるものであり、異なる図面にそれぞれ示されている画像のサイズ及び位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得る。また、以下の説明では、同様の構成要素には同じ符号を付して図示し、それらの名称及び機能も同様のものとする。よって、それらについての詳細な説明を省略する場合がある。
 以下の実施の形態では、第1導電型をn型、第2導電型をp型として説明するが、導電型は反対であってもよい。
Embodiments will be described below with reference to the accompanying drawings. It should be noted that the drawings are shown schematically, and the mutual relationship between the sizes and positions of the images shown in different drawings is not necessarily described accurately and may be changed as appropriate. Moreover, in the following description, the same components are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed descriptions thereof may be omitted.
In the following embodiments, the first conductivity type is n-type and the second conductivity type is p-type, but the conductivity types may be reversed.
 実施の形態1.
 まず、本開示の実施の形態1にかかる炭化珪素半導体装置について説明する。
 図1は、実施の形態1にかかる炭化珪素半導体装置であるショットキバリアダイオード内蔵トレンチ型炭化珪素MOSFET(SBD内蔵SiCトレンチMOSFET)の活性領域の一部分の断面図である。また、図2は、図1に示すSBD内蔵SiCトレンチMOSFETの平面図であり、トレンチが形成されている、ある深さにおける平面図である。
Embodiment 1.
First, a silicon carbide semiconductor device according to a first embodiment of the present disclosure will be described.
FIG. 1 is a cross-sectional view of a part of an active region of a trench type silicon carbide MOSFET with built-in Schottky barrier diode (SiC trench MOSFET with built-in SBD), which is a silicon carbide semiconductor device according to a first embodiment. FIG. 2 is a plan view of the SBD-embedded SiC trench MOSFET shown in FIG. 1, and is a plan view at a certain depth where the trench is formed.
 図1に示すように、n型で低抵抗の炭化珪素で構成される半導体基板10の表面上に、n型の炭化珪素で構成されるドリフト層20が形成されている。ドリフト層20上にはp型の炭化珪素で構成されるボディ領域30が設けられている。
 ボディ領域30が形成されたドリフト層20にゲートトレンチ91とショットキトレンチ92とが交互に、かつ、平行に配置されている。ゲートトレンチ91に隣接するボディ領域30の表層部には、n型の炭化珪素で構成されるソース領域40が設けられている。ゲートトレンチ91とショットキトレンチ92との間のボディ領域30の表層部には、低抵抗p型のコンタクト領域35が形成されている。
As shown in FIG. 1, a drift layer 20 made of n-type silicon carbide is formed on the surface of a semiconductor substrate 10 made of n-type low-resistance silicon carbide. Body region 30 made of p-type silicon carbide is provided on drift layer 20 .
Gate trenches 91 and Schottky trenches 92 are arranged alternately and in parallel in drift layer 20 in which body region 30 is formed. A source region 40 made of n-type silicon carbide is provided in a surface layer portion of body region 30 adjacent to gate trench 91 . A low-resistance p-type contact region 35 is formed in the surface layer portion of the body region 30 between the gate trench 91 and the Schottky trench 92 .
 ゲートトレンチ91は、ソース領域40の表面からソース領域40およびボディ領域30を貫通してドリフト層20に達するように形成されている。ショットキトレンチ92は、ボディ領域30の表面からボディ領域30を貫通してドリフト層20に達するように形成されている。ゲートトレンチ91内には酸化珪素からなるゲート絶縁膜50を介してゲート電極60が形成されている。ゲート電極60は、不純物濃度が高い低抵抗多結晶珪素で構成されている。ゲート電極60上には酸化珪素からなる層間絶縁膜55が形成されている。 Gate trench 91 is formed to reach drift layer 20 from the surface of source region 40 through source region 40 and body region 30 . Schottky trench 92 is formed to extend from the surface of body region 30 through body region 30 to reach drift layer 20 . A gate electrode 60 is formed in the gate trench 91 with a gate insulating film 50 made of silicon oxide interposed therebetween. The gate electrode 60 is made of low resistance polycrystalline silicon with a high impurity concentration. An interlayer insulating film 55 made of silicon oxide is formed on the gate electrode 60 .
 ショットキトレンチ92内にはTiを含むショットキ電極81が形成されており、ショットキトレンチ92とドリフト層20およびボディ領域30との界面にはTiSiからなる反応層71が形成されている。反応層71とショットキ電極81とは、全体として、ドリフト層20とショットキ接続する。
 ゲートトレンチ91の底のドリフト層20内には、p型の第1保護領域31が形成されている。ショットキトレンチ92の底のドリフト層20内には、p型の第2保護領域32が形成されている。第1保護領域31と第2保護領域32とは、同じ深さで同じ不純物濃度である。半導体基板10の裏面側には、ドレイン電極82が形成されている。
 また、コンタクト領域35とソース領域40との上にはオーミック電極70が形成されており、オーミック電極70上、および、ショットキ電極81上には、ソース電極80が形成されている。
A Schottky electrode 81 containing Ti is formed in Schottky trench 92 , and a reaction layer 71 made of TiSi is formed at the interface between Schottky trench 92 and drift layer 20 and body region 30 . The reaction layer 71 and the Schottky electrode 81 are in Schottky contact with the drift layer 20 as a whole.
A p-type first protection region 31 is formed in the drift layer 20 at the bottom of the gate trench 91 . A p-type second protection region 32 is formed in the drift layer 20 at the bottom of the Schottky trench 92 . The first protection region 31 and the second protection region 32 have the same depth and the same impurity concentration. A drain electrode 82 is formed on the back surface side of the semiconductor substrate 10 .
Ohmic electrode 70 is formed on contact region 35 and source region 40 , and source electrode 80 is formed on ohmic electrode 70 and Schottky electrode 81 .
 図2に示すように、平面視では、ストライプ状のゲートトレンチ91とショットキトレンチ92との長手方向に沿って一定間隔毎にp型の接続領域が形成されている。ゲートトレンチ91に対して形成されているp型の接続領域は、第1接続領域33であり、第1接続領域33は、第1保護領域31とボディ領域30とを接続するようにドリフト層20内に形成されている。ショットキトレンチ92に対して形成されているp型の接続領域は、第2接続領域34であり、第2接続領域34は、第2保護領域32とボディ領域30とを接続するようにドリフト層20内に形成されている。 As shown in FIG. 2, in plan view, p-type connection regions are formed at regular intervals along the longitudinal direction of the striped gate trenches 91 and Schottky trenches 92 . A p-type connection region formed for the gate trench 91 is the first connection region 33 , and the first connection region 33 is formed on the drift layer 20 so as to connect the first protection region 31 and the body region 30 . formed within. A p-type connection region formed for the Schottky trench 92 is the second connection region 34 , and the second connection region 34 connects the second protection region 32 and the body region 30 to the drift layer 20 . formed within.
 ここで、反応層71は、TiとSiとが反応して形成された層であり、Siに対するTiの原子組成比率が0.5以上、2.0以下である。また、反応層71の厚さは、1nm以上であり、50nm以下である。また、ドリフト層20とショットキ電極81との間の反応層71は、均一に形成されている。 Here, the reaction layer 71 is a layer formed by reaction of Ti and Si, and the atomic composition ratio of Ti to Si is 0.5 or more and 2.0 or less. Also, the thickness of the reaction layer 71 is 1 nm or more and 50 nm or less. Also, the reaction layer 71 between the drift layer 20 and the Schottky electrode 81 is formed uniformly.
 また、ショットキ電極81は、Tiからなるものであればいいが、少なくともその最も半導体層側がTiからなるものであり、Tiと他の金属との積層構造であってもよい。 In addition, the Schottky electrode 81 may be made of Ti, but at least the part closest to the semiconductor layer is made of Ti, and may have a laminated structure of Ti and other metals.
 次に、本実施の形態の炭化珪素半導体装置の製造方法について、図1に示した断面に対応する図3~図10の断面図を用いて説明する。
説明する。
Next, a method for manufacturing the silicon carbide semiconductor device of the present embodiment will be described with reference to cross-sectional views of FIGS. 3 to 10 corresponding to the cross-section shown in FIG.
explain.
 まず、第1主面が<11-20>方向に1°以上傾斜した(0001)面であり、4Hのポリタイプを有する、n型で低抵抗の炭化珪素からなる半導体基板10の上に、化学気相堆積法(Chemical Vapor Deposition:CVD法)により、1×1015cm-3以上、1×1017cm-3以下の不純物濃度でn型、5μm以上、50μm以下の厚さの炭化珪素からなるドリフト層20をエピタキシャル成長させる。ドリフト層20表面も、<11-20>方向に1°以上傾斜した(0001)面となる。 First, on a semiconductor substrate 10 made of n-type low-resistance silicon carbide having a 4H polytype and a (0001) plane whose first main surface is inclined by 1° or more in the <11-20> direction, Silicon carbide having an impurity concentration of 1×10 15 cm −3 or more and 1×10 17 cm −3 or less and an n-type silicon carbide thickness of 5 μm or more and 50 μm or less by chemical vapor deposition (CVD method). A drift layer 20 made of is epitaxially grown. The surface of the drift layer 20 is also the (0001) plane inclined by 1° or more in the <11-20> direction.
 つづいて、ドリフト層20の表面にp型の不純物であるAl(アルミニウム)をイオン注入する。このとき、Alのイオン注入の深さはドリフト層20の厚さを超えない0.5μm以上、3μm以下程度とする。また、イオン注入されたAlの不純物濃度は、1×1017cm-3以上、1×1019cm-3以下の範囲でありドリフト層20の不純物濃度より高くする。本工程によりAlイオン注入された領域がボディ領域30となる。 Subsequently, ions of Al (aluminum), which is a p-type impurity, are implanted into the surface of the drift layer 20 . At this time, the depth of the Al ion implantation is about 0.5 μm or more and 3 μm or less, which does not exceed the thickness of the drift layer 20 . The impurity concentration of ion-implanted Al is in the range of 1×10 17 cm −3 or more and 1×10 19 cm −3 or less, which is higher than the impurity concentration of the drift layer 20 . A region implanted with Al ions in this step becomes the body region 30 .
 次に、ドリフト層20の表面のボディ領域30の所定の箇所が開口するようにフォトレジスト等により注入マスクを形成し、n型の不純物であるN(窒素)をイオン注入する。Nのイオン注入深さはボディ領域30の厚さより浅いものとする。また、イオン注入したNの不純物濃度は、1×1018cm-3以上、1×1021cm-3以下の範囲であり、ボディ領域30のp型の不純物濃度を超えるものとする。本工程でNが注入された領域のうちn型を示す領域がソース領域40となる。その後、注入マスクを除去する。
 また、同様の方法により、ソース領域40に隣接したボディ領域30の所定の領域にボディ領域30の不純物濃度より高い1×1019cm-3以上、1×1021cm-3以下の範囲の不純物濃度になるようにAlをイオン注入することにより、コンタクト領域35を形成する。この工程までにより、図3に示す断面図の構造が得られる。
Next, an implantation mask is formed with a photoresist or the like so that a predetermined portion of the body region 30 on the surface of the drift layer 20 is opened, and an n-type impurity N (nitrogen) is ion-implanted. The N ion implantation depth is assumed to be shallower than the thickness of the body region 30 . The impurity concentration of ion-implanted N is in the range of 1×10 18 cm −3 to 1×10 21 cm −3 and exceeds the p-type impurity concentration of the body region 30 . Of the regions into which N is implanted in this step, the region exhibiting the n-type becomes the source region 40 . After that, the implantation mask is removed.
Further, by the same method, impurities in a range of 1×10 19 cm −3 to 1×10 21 cm −3 higher than the impurity concentration of the body region 30 are added to a predetermined region of the body region 30 adjacent to the source region 40 . A contact region 35 is formed by ion-implanting Al so as to obtain a concentration. Through these steps, the structure of the cross-sectional view shown in FIG. 3 is obtained.
 つづいて、ソース領域40が形成された領域の一部を開口するレジストマスクを形成し、ソース領域40、ボディ領域30を貫通してドリフト層20まで達するゲートトレンチ91をドライエッチング法により形成する。同様に、ソース領域40が形成されていない領域の一部を開口するレジストマスクを形成し、ボディ領域30を貫通してドリフト層20まで達するショットキトレンチ92をドライエッチング法により形成する。
 このとき、ゲートトレンチ91とショットキトレンチ92とは、長手方向が<11-20>方向に沿うように形成する。ゲートトレンチ91とショットキトレンチ92とのトレンチ側壁がドリフト層20表面に対して垂直に形成された場合、ゲートトレンチ91とショットキトレンチ92とのトレンチの長手方向の側壁は、(1-100)面と(-1100)面とになる。実際には、ゲートトレンチ91とショットキトレンチ92とのトレンチの長手方向の側壁は、ドリフト層20表面、または、半導体基板10の表面である第1の主面にトレンチの長手方向の側壁は対して角度が80度以上、90度以下の範囲の角度を成す。そのため、ゲートトレンチ91とショットキトレンチ92とのトレンチの長手方向の側壁は(1-100)面と(-1100)面とから10度以内に傾斜した面となる。
 ここで、ゲートトレンチ91とショットキトレンチ92との形成は、同じドライエッチ工程で同じ深さで形成してもよい。この工程までにより、図4に示す断面図の構造が得られる。
Subsequently, a resist mask is formed to partially open the region where the source region 40 is formed, and a gate trench 91 is formed by dry etching to reach the drift layer 20 through the source region 40 and the body region 30 . Similarly, a resist mask is formed to partially open a region where the source region 40 is not formed, and a Schottky trench 92 that penetrates the body region 30 and reaches the drift layer 20 is formed by dry etching.
At this time, the gate trench 91 and the Schottky trench 92 are formed so that their longitudinal directions are along the <11-20> direction. When the trench sidewalls of the gate trench 91 and the Schottky trench 92 are formed perpendicular to the surface of the drift layer 20, the longitudinal sidewalls of the gate trench 91 and the Schottky trench 92 are aligned with the (1-100) plane. (−1100) plane. In practice, the longitudinal sidewalls of the gate trench 91 and the Schottky trench 92 face the first main surface, which is the surface of the drift layer 20 or the surface of the semiconductor substrate 10 . The angle forms an angle in the range of 80 degrees or more and 90 degrees or less. Therefore, the side walls of the gate trench 91 and the Schottky trench 92 in the longitudinal direction are inclined within 10 degrees from the (1-100) plane and the (-1100) plane.
Here, the gate trench 91 and the Schottky trench 92 may be formed to the same depth by the same dry etching process. Through these steps, the structure of the cross-sectional view shown in FIG. 4 is obtained.
 つづいて、図5にその断面模式図を示すように、ゲートトレンチ91とショットキトレンチ92との底部のドリフト層20に、p型不純物をイオン注入し、それぞれ第1保護領域31、第2保護領域32を形成する。第1保護領域31と第2保護領域32とのp型不純物濃度は、1×1018cm-3以上、1×1020cm-3以下の範囲であればよい。イオン注入後にレジストマスクを除去する。また、第1接続領域33と第2接続領域34とを形成する箇所を開口したレジストマスクを形成し、p型不純物を斜めイオン注入することにより第1接続領域33と第2接続領域34とを形成する。第1接続領域33と第2接続領域34とのp型不純物濃度は、1×1018cm-3以上、1×1020cm-3以下の範囲であればよい。イオン注入後にレジストマスクを除去する。
 次に、熱処理装置によって、アルゴン(Ar)ガス等の不活性ガス雰囲気中で、1300から1900℃の温度で、30秒から1時間のアニールを行なう。このアニールにより、イオン注入されたN及びAlを電気的に活性化させる。
Subsequently, as shown in the schematic cross-sectional view of FIG. 5, p-type impurity ions are implanted into the drift layer 20 at the bottom of the gate trench 91 and the Schottky trench 92 to form a first protection region 31 and a second protection region, respectively. form 32; The p-type impurity concentration of the first protection region 31 and the second protection region 32 may be in the range of 1×10 18 cm −3 or more and 1×10 20 cm −3 or less. After ion implantation, the resist mask is removed. In addition, a resist mask is formed with openings at locations where the first connection region 33 and the second connection region 34 are to be formed, and p-type impurities are obliquely ion-implanted to form the first connection region 33 and the second connection region 34 . Form. The p-type impurity concentration of the first connection region 33 and the second connection region 34 may be in the range of 1×10 18 cm −3 or more and 1×10 20 cm −3 or less. After ion implantation, the resist mask is removed.
Next, annealing is performed in an inert gas atmosphere such as argon (Ar) gas at a temperature of 1300 to 1900° C. for 30 seconds to 1 hour using a heat treatment apparatus. This annealing electrically activates the implanted N and Al ions.
 つづいて、ショットキトレンチ92を保護絶縁膜で覆った状態で、ゲートトレンチ91内に厚さが10nm以上、300nm以下の酸化珪素からなるゲート絶縁膜50を形成する。次に、ゲート絶縁膜50内に厚さが300nm以上、2000nm以下の導電性を有する多結晶シリコンからなる膜を減圧CVD法により形成しパターニングすることによって、ゲート電極60を形成する。保護絶縁膜を除去した後に、図6に示す断面図のものが形成される。 Subsequently, with the Schottky trench 92 covered with a protective insulating film, the gate insulating film 50 made of silicon oxide is formed in the gate trench 91 with a thickness of 10 nm or more and 300 nm or less. Next, a gate electrode 60 is formed by forming a conductive polycrystalline silicon film having a thickness of 300 nm or more and 2000 nm or less in the gate insulating film 50 by low pressure CVD and patterning. After removing the protective insulating film, the cross-sectional view shown in FIG. 6 is formed.
 つづいて、厚さが500nm以上、3000nm以下の酸化珪素からなる層間絶縁膜55を減圧CVD法により形成する。
 次に、ソース領域40とコンタクト領域35が形成されている領域上を開口させるように層間絶縁膜55をエッチングして、その内部にNiなどの金属を堆積しアニールする等の工程により、図7にその断面図を示すように、ソース領域40とコンタクト領域35上にNiSi合金層(シリサイド)からなるオーミック電極70を形成する。
Subsequently, an interlayer insulating film 55 made of silicon oxide and having a thickness of 500 nm or more and 3000 nm or less is formed by low pressure CVD.
Next, the interlayer insulating film 55 is etched so as to open above the region where the source region 40 and the contact region 35 are formed, and a metal such as Ni is deposited inside and annealed. 2, an ohmic electrode 70 made of a NiSi alloy layer (silicide) is formed on the source region 40 and the contact region 35. As shown in FIG.
 つづいて、図8にその断面図を示すように、ショットキトレンチ92内の層間絶縁膜55を除去した後に、ショットキトレンチ92内、オーミック電極70上および層間絶縁膜55上にTiからなるショットキ電極81をスパッタ法により形成する。また、その上に、スパッタ法によりAlを含むソース電極80を形成する。ソース電極80は、Al/Tiの積層構造であってもよい。この状態の断面図を図9に示す。
 その後、ショットキ電極81をショットキトレンチ92内に形成した状態で、Ar等の不活性ガス中で、室温から400℃以上、600℃以下の温度まで10℃/secの温度上昇速度で温度を上昇させて加熱する。400℃以上、600℃以下の温度のアニールの加熱時間は、5min以上、30min以下であればよい。
Subsequently, as shown in the cross-sectional view of FIG. 8, after removing the interlayer insulating film 55 in the Schottky trench 92, a Schottky electrode 81 made of Ti is formed in the Schottky trench 92, on the ohmic electrode 70 and on the interlayer insulating film 55. Then, as shown in FIG. is formed by sputtering. Further, a source electrode 80 containing Al is formed thereon by a sputtering method. The source electrode 80 may have a laminated structure of Al/Ti. A cross-sectional view of this state is shown in FIG.
Thereafter, with the Schottky electrode 81 formed in the Schottky trench 92, the temperature is raised from room temperature to 400° C. or more and 600° C. or less at a rate of 10° C./sec in an inert gas such as Ar. to heat. The heating time for annealing at a temperature of 400° C. or more and 600° C. or less may be 5 minutes or more and 30 minutes or less.
 このような条件で加熱することにより、図10にその断面図を示すように、ドリフト層20とショットキ電極81との界面にTiSiからなる反応層71ができる。前述の通り、反応層71のSiに対するTiの原子組成比率は、0.5以上、2.0以下である。また、反応層71の厚さは、5nm以上であり、50nm以下である。また、反応層71は、反応層71が形成された領域で、均一に形成されている。この反応層71は、不活性ガス中で加熱されているので、反応層71中の酸素濃度が低くなっており、反応層71中の酸素の原子組成濃度が5%以下となっている。酸素が少ない状態で反応層71が形成されるので、界面に凹凸ができるのを防止でき、一様に反応層71が形成される。
 また、ゲートトレンチ91とショットキトレンチ92との長手方向の側壁が半導体基板10のオフ方向の影響を受けない(1-100)面と(-1100)面または、これらの面から10度以内に傾斜した面になり、半導体基板10のオフ角の大きさに寄らず、ショットキトレンチ92の長手方向の両側壁面に、均一に反応層71を形成ことができる。
By heating under such conditions, a reaction layer 71 made of TiSi is formed at the interface between the drift layer 20 and the Schottky electrode 81, as shown in the sectional view of FIG. As described above, the atomic composition ratio of Ti to Si in the reaction layer 71 is 0.5 or more and 2.0 or less. Also, the thickness of the reaction layer 71 is 5 nm or more and 50 nm or less. Further, the reaction layer 71 is formed uniformly in the region where the reaction layer 71 is formed. Since the reaction layer 71 is heated in the inert gas, the oxygen concentration in the reaction layer 71 is low, and the atomic composition concentration of oxygen in the reaction layer 71 is 5% or less. Since the reaction layer 71 is formed in a state with less oxygen, it is possible to prevent unevenness from being formed on the interface, and the reaction layer 71 is formed uniformly.
Further, the longitudinal side walls of the gate trench 91 and the Schottky trench 92 are not affected by the off direction of the semiconductor substrate 10 (1-100) plane and (−1100) plane, or are inclined within 10 degrees from these planes. Therefore, the reaction layer 71 can be uniformly formed on both side wall surfaces of the Schottky trench 92 in the longitudinal direction regardless of the off-angle of the semiconductor substrate 10 .
 ここで、本実施の形態の炭化珪素半導体装置のソース電極80からドリフト層20にかけての断面SEM(Scanning Electron Microscope)図を図11に示す。図11は、ショットキトレンチ内92内にショットキ電極81を形成した後に10℃/secの温度上昇速度で温度上昇させ温度450℃で10min間Arガス中でアニールしたものである。これに対し、図12は、ショットキトレンチ内92内にショットキ電極81を形成した後に10℃/secの温度上昇速度で温度上昇させ温度800℃で10min間Arガス中でアニールしたものの断面SEM図(参考図)である。
 450℃でアニールした本実施の形態の炭化珪素半導体装置のショットキ界面は、均一にほぼ同じ厚さで反応層71が形成されているのに対し、800℃でアニールした参考構造(図12)は、界面が均一形成されなかった。
Here, FIG. 11 shows a cross-sectional SEM (Scanning Electron Microscope) view from source electrode 80 to drift layer 20 of the silicon carbide semiconductor device of the present embodiment. In FIG. 11, after the Schottky electrode 81 was formed in the Schottky trench 92, the temperature was raised at a rate of temperature rise of 10° C./sec and annealed in Ar gas at a temperature of 450° C. for 10 minutes. On the other hand, FIG. 12 is a cross-sectional SEM view ( Reference diagram).
In the silicon carbide semiconductor device of the present embodiment annealed at 450° C., the reaction layer 71 is uniformly formed with substantially the same thickness at the Schottky interface. , the interface was not formed uniformly.
 つづいて、裏面側に、図示しない裏面オーミック電極およびドレイン電極82を形成することによって、図1にその断面図を示すSBD内蔵SiCトレンチMOSFETを製造することができる。 Subsequently, by forming a back surface ohmic electrode (not shown) and a drain electrode 82 on the back surface side, the SBD-embedded SiC trench MOSFET whose cross-sectional view is shown in FIG. 1 can be manufactured.
 なお、ショットキトレンチ92の上端に接する炭化珪素層がp型のボディ領域30である例で説明したが、ここにn型の低抵抗領域が形成されていてもよい。 Although the example in which the silicon carbide layer in contact with the upper end of Schottky trench 92 is p-type body region 30 has been described, an n-type low resistance region may be formed here.
 本実施の形態の炭化珪素半導体装置によれば、ショットキ電極81とドリフト層20との間に形成されるSBDのショットキバリア高さが、個々のショットキトレンチ92内で一定になるばかりではなく、チップ内の他のショットキトレンチ92のSBDのショットキバリア高さともばらつきが小さくなる。したがって、部分的にショットキバリア高さが小さくなる箇所からオフ時にリーク電流が流れることを抑制できる。また、ショットキトレンチ92側壁におけるショットキ電極81とドリフト層20との密着性が改善し、部分的にショットキ電極81が剥離したりすることが防止でき、信頼性の高い炭化珪素半導体装置を得ることができる。
 また、ストライプ状のショットキトレンチ92の長手方向を半導体基板10のオフ方向と平行に、すなわち、オフ方向に沿って形成しているので、半導体基板10のオフ角の影響を受けず、ショットキトレンチ92の長手の両側壁に同じ性質、厚さの反応層71を形成することができる。
According to the silicon carbide semiconductor device of the present embodiment, not only is the Schottky barrier height of the SBD formed between Schottky electrode 81 and drift layer 20 constant within each Schottky trench 92, but also Variations in the Schottky barrier heights of the SBDs of the other Schottky trenches 92 are also reduced. Therefore, it is possible to suppress leakage current from flowing from a portion where the Schottky barrier height is partially reduced in the off state. In addition, the adhesion between Schottky electrode 81 and drift layer 20 on the side wall of Schottky trench 92 is improved, and partial separation of Schottky electrode 81 can be prevented, so that a highly reliable silicon carbide semiconductor device can be obtained. can.
In addition, since the longitudinal direction of the stripe-shaped Schottky trenches 92 is formed parallel to the off-direction of the semiconductor substrate 10 , that is, along the off-direction, the Schottky trenches 92 are not affected by the off-angle of the semiconductor substrate 10 . A reaction layer 71 having the same properties and thickness can be formed on both longitudinal side walls of the .
 実施の形態2.
 図13は、実施の形態2の炭化珪素半導体装置における活性領域の一部分の断面図である。本実施の形態の炭化珪素半導体装置は、実施の形態1の炭化珪素半導体装置と異なり、ショットキトレンチ92に接するボディ領域30とショットキトレンチ92との間に、さらにオーミック電極70を備える。すなわち、コンタクト領域35とソース領域40との上に形成されているオーミック電極70がショットキトレンチ92側壁の上部まで延びている。その他の点については、実施の形態1と同じであるので、詳しい説明を省略する。
Embodiment 2.
FIG. 13 is a cross-sectional view of part of the active region in the silicon carbide semiconductor device of the second embodiment. Unlike the silicon carbide semiconductor device of the first embodiment, the silicon carbide semiconductor device of the present embodiment further includes an ohmic electrode 70 between Schottky trench 92 and body region 30 in contact with Schottky trench 92 . That is, ohmic electrode 70 formed on contact region 35 and source region 40 extends to the upper portion of the sidewall of Schottky trench 92 . Since other points are the same as those of the first embodiment, detailed description thereof will be omitted.
 本開示の炭化珪素半導体装置においては、ショットキ電極81とドリフト層20との間に形成されるSBDのショットキ界面が、均質に形成されればよく、ボディ領域30とショットキ電極81との間には反応層71は無くてもよい。図13において、ショットキトレンチ92は、コンタクト領域35とボディ領域30とを貫通して形成されている。ショットキトレンチ92内で、オーミック電極70は、コンタクト領域35がショットキトレンチ92に面している領域の全領域と、ボディ領域30がショットキトレンチ92に面している領域の一部に形成されている。反応層71は、ショットキトレンチ92のボディ領域30の下方とドリフト層20とに面している領域に形成されている。 In the silicon carbide semiconductor device of the present disclosure, the Schottky interface of SBD formed between Schottky electrode 81 and drift layer 20 may be homogeneously formed, and between body region 30 and Schottky electrode 81 The reaction layer 71 may be omitted. In FIG. 13, Schottky trench 92 is formed through contact region 35 and body region 30 . Within the Schottky trench 92, the ohmic electrode 70 is formed in the entire region where the contact region 35 faces the Schottky trench 92 and part of the region where the body region 30 faces the Schottky trench 92. . Reactive layer 71 is formed in a region of Schottky trench 92 facing below body region 30 and drift layer 20 .
 次に、本実施の形態の炭化珪素半導体装置の製造方法について説明する。
 製造方法の前半については、実施の形態1の図3~図6と同様である。図6に示した構造に対して、図14にその断面図を示すように、ゲートトレンチ91上とショットキトレンチ92の底部にだけ層間絶縁膜55が残るように層間絶縁膜55をパターニングする。
 つづいて、図15にその断面図を示すように実施の形態1と同様に層間絶縁膜55が形成されていない箇所にオーミック電極70を形成し、ショットキトレンチ92の底部の層間絶縁膜を除去する。
 その後、ショットキ電極81を形成し、実施の形態1と同様のアニールを行なった後、半導体基板10の裏面側にドレイン電極82を形成することによって、図13の断面図を有する本実施の形態の炭化珪素半導体装置を製造することができる。
Next, a method for manufacturing the silicon carbide semiconductor device of the present embodiment will be described.
The first half of the manufacturing method is the same as in FIGS. 3 to 6 of the first embodiment. 6, interlayer insulating film 55 is patterned so that interlayer insulating film 55 remains only on gate trench 91 and on the bottom of Schottky trench 92, as shown in the cross-sectional view of FIG.
Subsequently, as shown in the cross-sectional view of FIG. 15, the ohmic electrode 70 is formed in a portion where the interlayer insulating film 55 is not formed, and the interlayer insulating film at the bottom of the Schottky trench 92 is removed in the same manner as in the first embodiment. .
After that, a Schottky electrode 81 is formed, and annealing is performed in the same manner as in the first embodiment. After that, a drain electrode 82 is formed on the back surface side of semiconductor substrate 10, thereby forming the structure of the present embodiment having the cross-sectional view of FIG. A silicon carbide semiconductor device can be manufactured.
 本実施の形態の炭化珪素半導体装置によれば、コンタクト領域35とオーミック電極70とが接触している面積を増大させることができるため、ボディ領域30とショットキ電極81およびソース電極80との間のコンタクト抵抗を低減できる。また、コンタクト領域35とショットキトレンチ92との間の領域を形成する必要が無いので、断面横方向の、ソース領域40端とショットキトレンチ92との間、すなわち、コンタクト領域35幅を小さくすることができる。したがって、図13に断面図を示す単位セルの断面図上の幅を小さくでき、結果的に、単位面積当たりに流れる電流量を増加することができる。つまり、チップのオン抵抗を低減することができる。 According to silicon carbide semiconductor device of the present embodiment, the contact area between contact region 35 and ohmic electrode 70 can be increased. Contact resistance can be reduced. Further, since it is not necessary to form a region between the contact region 35 and the Schottky trench 92, it is possible to reduce the width of the contact region 35 between the end of the source region 40 and the Schottky trench 92 in the lateral direction of the cross section. can. Therefore, the width of the unit cell shown in FIG. 13 can be reduced, and as a result, the amount of current flowing per unit area can be increased. That is, the on-resistance of the chip can be reduced.
 また、ショットキトレンチ92上端に炭化珪素の層とNi等の金属を反応させて形成するオーミック電極70を形成するので、ショットキトレンチ92上端のコーナー部の角が丸まる。そのため、ショットキトレンチ92内にショットキ電極81を埋め込むときの埋め込み性が改善され、より製造歩留まりを高くすることができる。 Also, since the ohmic electrode 70 formed by reacting a layer of silicon carbide and a metal such as Ni is formed on the upper end of the Schottky trench 92, the corners of the upper end of the Schottky trench 92 are rounded. Therefore, the embedding property when embedding the Schottky electrode 81 in the Schottky trench 92 is improved, and the manufacturing yield can be further increased.
 実施の形態3.
 図16は、実施の形態3の炭化珪素半導体装置における活性領域の一部分の断面図である。図16の本実施の形態の炭化珪素半導体装置は、反応層71がショットキトレンチ92内で一様に形成されていない点で実施の形態1の炭化珪素半導体装置と異なる。その他の点については、実施の形態1と同じであるので、詳しい説明を省略する。
Embodiment 3.
FIG. 16 is a cross-sectional view of part of the active region in the silicon carbide semiconductor device of the third embodiment. The silicon carbide semiconductor device of the present embodiment of FIG. 16 differs from the silicon carbide semiconductor device of the first embodiment in that reaction layer 71 is not uniformly formed within Schottky trench 92 . Since other points are the same as those of the first embodiment, detailed description thereof will be omitted.
 本開示の炭化珪素半導体装置においては、ショットキ電極81とドリフト層20との間に形成されるSBDのショットキ界面が、均質に形成されればよく、ボディ領域30とショットキ電極81との間の反応層71は、ショットキ電極81とドリフト層20との間の形成される反応層71と同じ厚さである必要は無い。また、ボディ領域30とショットキ電極81との間の反応層71は、無くてもよい。 In the silicon carbide semiconductor device of the present disclosure, the Schottky interface of SBD formed between Schottky electrode 81 and drift layer 20 only needs to be homogeneously formed, and the reaction between body region 30 and Schottky electrode 81 Layer 71 need not be the same thickness as reaction layer 71 formed between Schottky electrode 81 and drift layer 20 . Also, the reaction layer 71 between the body region 30 and the Schottky electrode 81 may be omitted.
 図16に示すように、本実施の形態の炭化珪素半導体装置においては、ボディ領域30がショットキトレンチ92と接する領域で、ショットキ電極81が全領域で埋め込まれていなくてもよい。ショットキ電極81をショットキトレンチ92に埋め込む際に、ショットキトレンチ92全体を埋め込まない、または、埋め込んだ後で上部が除去されることによって、本実施の形態の炭化珪素半導体装置を製造することができる。ショットキ電極81が埋め込まれないショットキトレンチ92上部については、その後に形成するソース電極80で埋め込めばよい。 As shown in FIG. 16 , in the silicon carbide semiconductor device of the present embodiment, Schottky electrode 81 does not have to be buried in the entire region where body region 30 is in contact with Schottky trench 92 . When Schottky electrode 81 is buried in Schottky trench 92, the silicon carbide semiconductor device of the present embodiment can be manufactured by not filling Schottky trench 92 entirely, or by removing the upper portion after filling Schottky trench 92 . The upper portion of the Schottky trench 92, which is not filled with the Schottky electrode 81, may be filled with the source electrode 80 to be formed later.
 本実施の形態の炭化珪素半導体装置によれば、ショットキトレンチ92内の上部までショットキ電極81が埋め込まれていない場合においても、ドリフト層20とショットキ電極81との間に均質な反応層71を形成することができ、より容易に製造することができる。 According to silicon carbide semiconductor device of the present embodiment, homogeneous reaction layer 71 is formed between drift layer 20 and Schottky electrode 81 even when Schottky electrode 81 is not embedded up to the upper portion of Schottky trench 92 . and can be manufactured more easily.
 実施の形態4.
 図17は、実施の形態4の炭化珪素半導体装置における活性領域の一部分の断面図である。図17の本実施の形態の炭化珪素半導体装置において、ショットキトレンチ92の下部では側壁に傾斜面92Tが形成されている。その他の点については、実施の形態1と同じであるので、詳しい説明を省略する。
Embodiment 4.
FIG. 17 is a cross-sectional view of part of the active region in the silicon carbide semiconductor device of the fourth embodiment. In the silicon carbide semiconductor device of the present embodiment in FIG. 17 , an inclined surface 92T is formed on the side wall at the lower portion of Schottky trench 92 . Since other points are the same as those of the first embodiment, detailed description thereof will be omitted.
 図17に示すように、本実施の形態の炭化珪素半導体装置では、ショットキトレンチ92下部のショットキ電極81とドリフト層20が対向する領域において、傾斜面92Tが、炭化珪素層表面に対して45度の角度で傾斜して形成されている。ショットキ電極81とドリフト層20との間には、一定の厚さの反応層71が形成されている。
 ボディ領域30とショットキ電極81との境界は、炭化珪素層表面に対して垂直な面となっており、その界面にも反応層71が形成されている。
 本実施の形態の炭化珪素半導体装置は、ショットキトレンチ92をエッチングする際に、2段階でエッチングすることによって製造することができる。
As shown in FIG. 17, in the silicon carbide semiconductor device of the present embodiment, in the region where Schottky electrode 81 and drift layer 20 under Schottky trench 92 face each other, inclined surface 92T is inclined at an angle of 45 degrees with respect to the silicon carbide layer surface. is inclined at an angle of A reaction layer 71 having a constant thickness is formed between the Schottky electrode 81 and the drift layer 20 .
The boundary between body region 30 and Schottky electrode 81 is a plane perpendicular to the surface of the silicon carbide layer, and reaction layer 71 is also formed at that interface.
The silicon carbide semiconductor device of the present embodiment can be manufactured by etching Schottky trench 92 in two stages.
 本実施の形態の炭化珪素半導体装置によれば、同じ深さのトレンチに対してショットキ界面の面積を増加させることができ、単位面積当たりに流すことが可能なユニポーラ電流密度を増加させることができる。
 また、ショットキトレンチ92底の両端コーナー部の成す角度が鈍角であるので、ショットキトレンチ92内へのショットキ電極81の埋め込み性が改善し、ショットキトレンチ92内に空洞のような空間ができる確率をより減らすことができる。
 さらに、本実施の形態の炭化珪素半導体装置によれば、ショットキトレンチ92底のコーナー部が第2導電型の第2保護領域32で覆われるので、ショットキトレンチ92底近傍のゲート絶縁膜50に印加される電界を低減でき、より信頼性の高い炭化珪素炭化珪素半導体装置を得ることができる。
According to the silicon carbide semiconductor device of the present embodiment, the area of the Schottky interface can be increased for trenches of the same depth, and the unipolar current density that can be flowed per unit area can be increased. .
In addition, since the angle formed by the corners at both ends of the bottom of the Schottky trench 92 is obtuse, the filling property of the Schottky electrode 81 into the Schottky trench 92 is improved, and the probability of forming a void-like space in the Schottky trench 92 is increased. can be reduced.
Furthermore, according to the silicon carbide semiconductor device of the present embodiment, since the corner portion of the bottom of Schottky trench 92 is covered with second protection region 32 of the second conductivity type, the voltage is applied to gate insulating film 50 near the bottom of Schottky trench 92 . The applied electric field can be reduced, and a more reliable silicon carbide silicon carbide semiconductor device can be obtained.
 このように、本実施の形態の炭化珪素半導体装置は、面積が大きくショットキバリア高さがそろったSBDを備え、より信頼性が高い炭化珪素半導体装置となる。 Thus, the silicon carbide semiconductor device of the present embodiment includes an SBD with a large area and uniform Schottky barrier height, and is a highly reliable silicon carbide semiconductor device.
 なお、本実施の形態の炭化珪素炭化珪素半導体装置において、ショットキトレンチ92の傾斜面92Tが炭化珪素層表面に対して45度の角度で傾斜するものとして説明したが、この角度は必ずしも45度である必要は無く、35度以上、60度以下の角度であってもよい。
 さらに、本実施の形態の炭化珪素炭化珪素半導体装置において、反応層71が形成されるショットキ界面が全て傾斜面92Tである場合について説明してきたが、ショットキ界面の一部が傾斜面92Tではない、炭化珪素層表面に対してほぼ垂直な面に形成されていても、両者において反応層71が均一に形成されていれば、同様の効果を奏する。
In the silicon carbide silicon carbide semiconductor device of the present embodiment, the inclined surface 92T of the Schottky trench 92 has been described as inclined at an angle of 45 degrees with respect to the surface of the silicon carbide layer, but this angle is not necessarily 45 degrees. The angle need not be equal, and may be 35 degrees or more and 60 degrees or less.
Furthermore, in the silicon carbide silicon carbide semiconductor device of the present embodiment, the case where the Schottky interface where the reaction layer 71 is formed is entirely the inclined surface 92T has been described. Even if it is formed on a plane substantially perpendicular to the surface of the silicon carbide layer, the same effect can be obtained as long as the reaction layer 71 is formed uniformly on both.
 なお、実施の形態1~4では、ショットキ電極81とソース電極80とを別に形成した例について説明してきたが、その最下層がTiで形成されてさえいれば、ショットキ電極81とソース電極80とは一体となった同じ電極であってもよい。このとき、全体として積層構造であってもよい。 In Embodiments 1 to 4, an example in which the Schottky electrode 81 and the source electrode 80 are separately formed has been described. may be the same electrode in one piece. At this time, it may be a laminated structure as a whole.
 また、実施の形態1~4では、ボディ領域30とソース領域40とをイオン注入法で形成する方法について説明したが、ボディ領域30とソース領域40とは他の方法で形成してもよく、例えばエピタキシャル法で形成してもよい。さらに、ボディ領域30を全面に形成した例を説明したが、ボディ領域30は、ドリフト層20の上層部の一部に形成されてもよい。そのとき、ショットキトレンチ92は、ボディ領域30を貫通して設けるのではなく、ドリフト層20の表面からそのまま設けてもよい。 Moreover, in the first to fourth embodiments, the method of forming the body region 30 and the source region 40 by ion implantation has been described, but the body region 30 and the source region 40 may be formed by other methods. For example, it may be formed by an epitaxial method. Furthermore, although the example in which the body region 30 is formed over the entire surface has been described, the body region 30 may be formed in part of the upper layer portion of the drift layer 20 . At that time, the Schottky trench 92 may be provided directly from the surface of the drift layer 20 instead of penetrating the body region 30 .
 さらに、実施の形態1~4では、トレンチの下部に第1保護領域31と第2保護領域32とを設けた例を説明したが、第1保護領域31と第2保護領域32とは場合によっては無くてもよい。このとき、第1接続領域33と第2接続領域34とも設けなくてもよい。
 また、ゲートトレンチ91とショットキトレンチ92とはストライプ状で無く、格子状に設けられていてもよい。
Furthermore, in Embodiments 1 to 4, examples in which the first protection region 31 and the second protection region 32 are provided under the trench have been described, but the first protection region 31 and the second protection region 32 may be may be omitted. At this time, neither the first connection region 33 nor the second connection region 34 may be provided.
Moreover, the gate trenches 91 and the Schottky trenches 92 may be provided in a grid pattern instead of in a stripe pattern.
 さらに、実施の形態1~4においては、p型不純物としてアルミニウム(Al)を用いたが、p型不純物がホウ素(B)またはガリウム(Ga)であってもよい。n型不純物は、窒素(N)で無く燐(P)であってもよい。実施の形態1~2で説明したMOSFETにおいては、ゲート絶縁膜は、必ずしもSiOなどの酸化膜である必要はなく、酸化膜以外の絶縁膜、または、酸化膜以外の絶縁膜と酸化膜とを組み合わせたものであってもよい。また、上記実施形態では、結晶構造、主面の面方位、オフ角および各注入条件等、具体的な例を用いて説明したが、これらの数値範囲に適用範囲が限られるものではない。 Furthermore, although aluminum (Al) is used as the p-type impurity in the first to fourth embodiments, the p-type impurity may be boron (B) or gallium (Ga). The n-type impurity may be phosphorus (P) instead of nitrogen (N). In the MOSFETs described in the first and second embodiments, the gate insulating film does not necessarily have to be an oxide film such as SiO 2 . may be a combination of Further, in the above-described embodiments, the crystal structure, the plane orientation of the main surface, the off-angle, the implantation conditions, and the like have been described using specific examples, but the scope of application is not limited to these numerical ranges.
 また、上記実施形態では、ドレイン電極85が半導体基板10の裏面に形成される、いわゆる縦型MOSFETの炭化珪素半導体装置にSBDを内蔵させたものについて説明したが、ドレイン電極85がドリフト層20の表面に形成されるRESURF(REduced SURface Field)型MOSFET等のいわゆる横型MOSFETにSBDを内蔵させたものにも用いることができる。さらに、炭化珪素半導体装置は絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transisitor)にSBDを内蔵させたものであってもよい。また、スーパージャンクション構造を有するMOSFET、IGBTにSBDを内蔵させたものにも適用することができる。 Further, in the above embodiment, the SBD is incorporated in a so-called vertical MOSFET silicon carbide semiconductor device in which the drain electrode 85 is formed on the back surface of the semiconductor substrate 10 . It can also be used for a so-called lateral MOSFET such as a RESURF (REduced SURface Field) type MOSFET formed on the surface, in which an SBD is built. Furthermore, the silicon carbide semiconductor device may be an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor) with an SBD built therein. It can also be applied to MOSFETs and IGBTs having a superjunction structure with built-in SBDs.
  実施の形態5.
 本実施の形態は、上述した実施の形態1~4にかかる炭化珪素半導体装置を電力変換装置に適用したものである。本開示は特定の電力変換装置に限定されるものではないが、以下、実施の形態5として、三相のインバータに本開示を適用した場合について説明する。
Embodiment 5.
The present embodiment applies the silicon carbide semiconductor devices according to the first to fourth embodiments described above to a power converter. Although the present disclosure is not limited to a specific power converter, a case where the present disclosure is applied to a three-phase inverter will be described below as a fifth embodiment.
 図18は、本実施の形態にかかる電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 18 is a block diagram showing the configuration of a power conversion system to which the power conversion device according to this embodiment is applied.
 図18に示す電力変換システムは、電源100、電力変換装置200、負荷300から構成される。電源100は、直流電源であり、電力変換装置200に直流電力を供給する。電源100は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源100を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 The power conversion system shown in FIG. 18 is composed of a power supply 100, a power converter 200, and a load 300. The power supply 100 is a DC power supply and supplies DC power to the power converter 200 . The power supply 100 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. good too. Also, the power supply 100 may be configured by a DC/DC converter that converts DC power output from the DC system into predetermined power.
 電力変換装置200は、電源100と負荷300の間に接続された三相のインバータであり、電源100から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。電力変換装置200は、図30に示すように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201の各スイッチング素子を駆動する駆動信号を出力する駆動回路202と、駆動回路202を制御する制御信号を駆動回路202に出力する制御回路203とを備えている。
 駆動回路202は、ノーマリオフ型の各スイッチング素子を、ゲート電極の電圧とソース電極の電圧とを同電位にすることによってオフ制御している。
Power converter 200 is a three-phase inverter connected between power supply 100 and load 300 , converts DC power supplied from power supply 100 into AC power, and supplies AC power to load 300 . As shown in FIG. 30, the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a drive circuit 202 that outputs a drive signal for driving each switching element of the main conversion circuit 201. , and a control circuit 203 that outputs a control signal for controlling the drive circuit 202 to the drive circuit 202 .
The drive circuit 202 turns off each normally-off switching element by setting the voltage of the gate electrode and the voltage of the source electrode to the same potential.
 負荷300は、電力変換装置200から供給された交流電力によって駆動される三相の電動機である。なお、負荷300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200 . Note that the load 300 is not limited to a specific application, but is an electric motor mounted on various electrical equipment, such as a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an electric motor for air conditioning equipment.
 以下、電力変換装置200の詳細を説明する。主変換回路201は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源100から供給される直流電力を交流電力に変換し、負荷300に供給する。主変換回路201の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路201の各スイッチング素子には、上述した実施の形態1~3のいずれかにかかる炭化珪素半導体装置の製造方法で製造された炭化珪素半導体装置を適用する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路201の3つの出力端子は、負荷300に接続される。 The details of the power converter 200 will be described below. The main conversion circuit 201 includes a switching element and a freewheeling diode (not shown). By switching the switching element, the DC power supplied from the power supply 100 is converted into AC power and supplied to the load 300 . Although there are various specific circuit configurations of the main conversion circuit 201, the main conversion circuit 201 according to the present embodiment is a two-level three-phase full bridge circuit, and has six switching elements and It can consist of six freewheeling diodes in anti-parallel. A silicon carbide semiconductor device manufactured by the method for manufacturing a silicon carbide semiconductor device according to any one of the first to third embodiments described above is applied to each switching element of main conversion circuit 201 . Six switching elements are connected in series every two switching elements to form upper and lower arms, and each upper and lower arm forms each phase (U phase, V phase, W phase) of the full bridge circuit. Output terminals of the upper and lower arms, that is, three output terminals of the main conversion circuit 201 are connected to the load 300 .
 駆動回路202は、主変換回路201のスイッチング素子を駆動する駆動信号を生成し、主変換回路201のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 The drive circuit 202 generates a drive signal for driving the switching element of the main converter circuit 201 and supplies it to the control electrode of the switching element of the main converter circuit 201 . Specifically, in accordance with a control signal from the control circuit 203, which will be described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrode of each switching element. When maintaining the switching element in the ON state, the driving signal is a voltage signal (ON signal) equal to or higher than the threshold voltage of the switching element, and when maintaining the switching element in the OFF state, the driving signal is a voltage equal to or less than the threshold voltage of the switching element. signal (off signal).
 制御回路203は、負荷300に所望の電力が供給されるよう主変換回路201のスイッチング素子を制御する。具体的には、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、駆動回路202に制御指令(制御信号)を出力する。駆動回路202は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。
 本実施の形態に係る電力変換装置では、主変換回路201のスイッチング素子として実施の形態1~4にかかる炭化珪素半導体装置を適用するため、低損失、かつ、高速スイッチングの信頼性を高めた電力変換装置を実現することができる。
The control circuit 203 controls the switching elements of the main converter circuit 201 so that desired power is supplied to the load 300 . Specifically, based on the power to be supplied to the load 300, the time (on time) during which each switching element of the main conversion circuit 201 should be in the ON state is calculated. For example, the main conversion circuit 201 can be controlled by PWM control that modulates the ON time of the switching element according to the voltage to be output. Then, a control command (control signal) is output to the drive circuit 202 so that an ON signal is output to the switching element that should be in the ON state at each time point, and an OFF signal is output to the switching element that should be in the OFF state. The drive circuit 202 outputs an ON signal or an OFF signal as a drive signal to the control electrode of each switching element according to this control signal.
In the power conversion device according to the present embodiment, since the silicon carbide semiconductor device according to the first to fourth embodiments is applied as the switching element of the main conversion circuit 201, low loss and high-speed switching reliability are improved. A conversion device can be implemented.
 本実施の形態では、2レベルの三相インバータに本開示を適用する例を説明したが、本開示は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本開示を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本開示を適用することも可能である。 Although an example in which the present disclosure is applied to a two-level three-phase inverter has been described in the present embodiment, the present disclosure is not limited to this, and can be applied to various power converters. In this embodiment, a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used. You can apply it. In addition, the present disclosure can be applied to a DC/DC converter or an AC/DC converter when power is supplied to a DC load or the like.
 また、本開示を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触器給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 In addition, the power conversion device to which the present disclosure is applied is not limited to the case where the above-described load is an electric motor. It can also be used as a device, and can also be used as a power conditioner for a photovoltaic power generation system, an electric storage system, or the like.
10 半導体基板、20 ドリフト層、30 ボディ領域、31 第1保護領域、32 第2保護領域、33 第1接続領域、34 第2接続領域、35 コンタクト領域、40 ソース領域、50 ゲート絶縁膜、55 層間絶縁膜、60 ゲート電極、70 オーミック電極、71 反応層、80 ソース電極、81 ショットキ電極、82 ドレイン電極、91 ゲートトレンチ、92 ショットキトレンチ、100 電源、200、電力変換装置、201 主変換回路、202 駆動回路、203 制御回路、300 負荷。 10 Semiconductor substrate 20 Drift layer 30 Body region 31 First protection region 32 Second protection region 33 First connection region 34 Second connection region 35 Contact region 40 Source region 50 Gate insulating film 55 Interlayer insulating film, 60 Gate electrode, 70 Ohmic electrode, 71 Reaction layer, 80 Source electrode, 81 Schottky electrode, 82 Drain electrode, 91 Gate trench, 92 Schottky trench, 100 Power source, 200 Power conversion device, 201 Main conversion circuit, 202 drive circuit, 203 control circuit, 300 load.

Claims (8)

  1.  第1導電型の炭化珪素からなる半導体基板の第1の主面上に形成された第1導電型の炭化珪素からなるドリフト層と、
     前記ドリフト層上に形成された第2導電型の炭化珪素からなるボディ領域と、
     前記ボディ領域の少なくとも一部の上に形成された第1導電型の炭化珪素からなるソース領域と、
     前記ソース領域および前記ボディ領域とを貫通して前記ドリフト層に達するゲートトレンチと、
     前記ゲートトレンチにゲート絶縁膜を介して前記ボディ領域と対向して形成されたゲート電極と、
     少なくとも前記ドリフト層内に下端があるように形成されたショットキトレンチと、
     前記ショットキトレンチ内に形成されたTiを主成分とするショットキ電極と、
     前記ショットキ電極と前記ショットキトレンチの側面に接する前記ドリフト層との間に形成され、Siに対するTiの原子組成比率が0.5以上であるTiSiからなる反応層と
     を備えたことを特徴とする炭化珪素半導体装置。
    a drift layer made of first conductivity type silicon carbide formed on a first main surface of a semiconductor substrate made of first conductivity type silicon carbide;
    a body region made of silicon carbide of a second conductivity type formed on the drift layer;
    a source region made of silicon carbide of a first conductivity type formed on at least part of the body region;
    a gate trench penetrating through the source region and the body region and reaching the drift layer;
    a gate electrode formed in the gate trench so as to face the body region with a gate insulating film interposed therebetween;
    a Schottky trench formed to have a lower end in at least the drift layer;
    a Schottky electrode mainly composed of Ti formed in the Schottky trench;
    and a reaction layer formed between the Schottky electrode and the drift layer in contact with the side surface of the Schottky trench and made of TiSi in which the atomic composition ratio of Ti to Si is 0.5 or more. Silicon semiconductor device.
  2.  前記反応層の厚さは、1nm以上である
     請求項1に記載の炭化珪素半導体装置。
    The silicon carbide semiconductor device according to claim 1, wherein the reaction layer has a thickness of 1 nm or more.
  3.  前記反応層は、酸素の原子組成濃度が5%以下である
     請求項1または2に記載の炭化珪素半導体装置。
    The silicon carbide semiconductor device according to claim 1 , wherein the reaction layer has an oxygen atomic composition concentration of 5% or less.
  4.  前記半導体基板は、前記第1の主面が(0001)面から<11-20>方向に1°以上傾斜した4Hのポリタイプを有する炭化珪素であり、
     前記ショットキトレンチがストライプ状に<11-20>方向に沿って形成された
     請求項1から請求項3のいずれか1項に記載の炭化珪素半導体装置。
    the semiconductor substrate is silicon carbide having a 4H polytype in which the first main surface is inclined by 1° or more in the <11-20> direction from the (0001) plane;
    The silicon carbide semiconductor device according to any one of claims 1 to 3, wherein the Schottky trenches are formed in stripes along the <11-20> direction.
  5.  前記ショットキトレンチの長手方向の側壁が前記第1の主面と成す角度が80度以上、90度以下の範囲である
     請求項1から請求項4のいずれか1項に記載の炭化珪素半導体装置。
    The silicon carbide semiconductor device according to any one of claims 1 to 4, wherein an angle formed between a longitudinal side wall of said Schottky trench and said first main surface is in the range of 80 degrees or more and 90 degrees or less.
  6.  前記ショットキトレンチは、前記ボディ領域を貫通して形成され、
     前記ショットキトレンチが前記ボディ領域に接する領域内にNiSiからなるオーミック電極が形成されている
     請求項1から請求項5のいずれか1項に記載の炭化珪素半導体装置。
    the Schottky trench is formed through the body region;
    The silicon carbide semiconductor device according to any one of claims 1 to 5, wherein an ohmic electrode made of NiSi is formed in a region where said Schottky trench contacts said body region.
  7.  第1導電型の炭化珪素からなる半導体基板の第1の主面上に第1導電型の炭化珪素からなるドリフト層を形成する工程と、
     前記ドリフト層上に第2導電型の炭化珪素からなるボディ領域を形成する工程と、
     前記ボディ領域の少なくとも一部の上に第1導電型の炭化珪素からなるソース領域を形成する工程と、
     前記ソース領域および前記ボディ領域とを貫通して前記ドリフト層に達するゲートトレンチを形成する工程と、
     前記ゲートトレンチにゲート絶縁膜を介して前記ボディ領域と対向してゲート電極を形成する工程と、
     少なくとも前記ドリフト層内に下端があるようにショットキトレンチを形成する工程と、
     前記ショットキトレンチ内にTiを主成分とするショットキ電極を堆積する工程と、
     前記ショットキ電極を堆積した状態で10℃/secの上昇率で温度を上昇させた後に400℃以上600℃以下の温度で加熱処理を行ないTiSi反応層を形成する工程と
    を備えたことを特徴とする炭化珪素半導体装置の製造方法。
    forming a drift layer made of silicon carbide of the first conductivity type on the first main surface of a semiconductor substrate made of silicon carbide of the first conductivity type;
    forming a body region made of second conductivity type silicon carbide on the drift layer;
    forming a source region made of silicon carbide of the first conductivity type on at least part of the body region;
    forming a gate trench through the source region and the body region to reach the drift layer;
    forming a gate electrode in the gate trench so as to face the body region with a gate insulating film interposed therebetween;
    forming a Schottky trench with a lower end in at least the drift layer;
    depositing a Ti-based Schottky electrode in the Schottky trench;
    and a step of increasing the temperature at a rate of 10° C./sec while depositing the Schottky electrode, and then performing a heat treatment at a temperature of 400° C. or more and 600° C. or less to form a TiSi reaction layer. A method for manufacturing a silicon carbide semiconductor device.
  8.  請求項1~6のいずれか1項に記載の炭化珪素半導体装置を有し、入力される電力を変換して出力する主変換回路と、
     前記炭化珪素半導体装置のゲート電極の電圧をソース電極の電圧と同じにすることによってオフ動作させ、前記炭化珪素半導体装置を駆動する駆動信号を前記炭化珪素半導体装置に出力する駆動回路と、
     前記駆動回路を制御する制御信号を前記駆動回路に出力する制御回路と、
     を備えた電力変換装置。
    a main conversion circuit having the silicon carbide semiconductor device according to any one of claims 1 to 6 and converting input electric power for output;
    a drive circuit that turns off the silicon carbide semiconductor device by making the voltage of the gate electrode of the silicon carbide semiconductor device equal to the voltage of the source electrode, and outputs a drive signal for driving the silicon carbide semiconductor device to the silicon carbide semiconductor device;
    a control circuit that outputs a control signal for controlling the drive circuit to the drive circuit;
    A power converter with
PCT/JP2021/009567 2021-03-10 2021-03-10 Silicon carbide semiconductor device, method for manufacturing same, and power conversion device WO2022190269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023504972A JPWO2022190269A1 (en) 2021-03-10 2021-03-10
PCT/JP2021/009567 WO2022190269A1 (en) 2021-03-10 2021-03-10 Silicon carbide semiconductor device, method for manufacturing same, and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009567 WO2022190269A1 (en) 2021-03-10 2021-03-10 Silicon carbide semiconductor device, method for manufacturing same, and power conversion device

Publications (1)

Publication Number Publication Date
WO2022190269A1 true WO2022190269A1 (en) 2022-09-15

Family

ID=83227614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009567 WO2022190269A1 (en) 2021-03-10 2021-03-10 Silicon carbide semiconductor device, method for manufacturing same, and power conversion device

Country Status (2)

Country Link
JP (1) JPWO2022190269A1 (en)
WO (1) WO2022190269A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094433A (en) * 2007-10-12 2009-04-30 National Institute Of Advanced Industrial & Technology Silicon carbide equipment
JP2010068008A (en) * 2009-12-24 2010-03-25 Mitsubishi Electric Corp Method of manufacturing silicon carbide schottky barrier diode
JP2018182235A (en) * 2017-04-20 2018-11-15 国立研究開発法人産業技術総合研究所 Semiconductor device and semiconductor device manufacturing method
JP2019216224A (en) * 2018-06-14 2019-12-19 富士電機株式会社 Semiconductor device
JP6735950B1 (en) * 2019-07-23 2020-08-05 三菱電機株式会社 Silicon carbide semiconductor device, power converter, and method for manufacturing silicon carbide semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094433A (en) * 2007-10-12 2009-04-30 National Institute Of Advanced Industrial & Technology Silicon carbide equipment
JP2010068008A (en) * 2009-12-24 2010-03-25 Mitsubishi Electric Corp Method of manufacturing silicon carbide schottky barrier diode
JP2018182235A (en) * 2017-04-20 2018-11-15 国立研究開発法人産業技術総合研究所 Semiconductor device and semiconductor device manufacturing method
JP2019216224A (en) * 2018-06-14 2019-12-19 富士電機株式会社 Semiconductor device
JP6735950B1 (en) * 2019-07-23 2020-08-05 三菱電機株式会社 Silicon carbide semiconductor device, power converter, and method for manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JPWO2022190269A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
CN110709997B (en) Semiconductor device and power conversion device
US11158704B2 (en) Semiconductor device and power conversion device
US11637184B2 (en) Silicon carbide semiconductor device, power converter, method of manufacturing silicon carbide semiconductor device, and method of manufacturing power converter
WO2021014570A1 (en) Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
WO2019171678A1 (en) Silicon carbide semiconductor device, power conversion device and silicon carbide semiconductor device production method
JP6991370B2 (en) Semiconductor equipment and power conversion equipment
JP7275407B1 (en) Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
JP7138770B2 (en) Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
WO2022168240A1 (en) Silicon carbide semiconductor device and power conversion device
JP7370476B2 (en) Silicon carbide semiconductor device manufacturing method, silicon carbide semiconductor device, and power conversion device
WO2022190269A1 (en) Silicon carbide semiconductor device, method for manufacturing same, and power conversion device
JP7127748B2 (en) Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
JP6947338B1 (en) Manufacturing method of silicon carbide semiconductor device and power conversion device
JP7094439B2 (en) Silicon carbide semiconductor device and power conversion device
WO2020100960A1 (en) Semiconductor device, power conversion device, method for manufacturing semiconductor device, and method for manufacturing power conversion device
WO2022264212A1 (en) Silicon carbide semiconductor device and electric power converter using silicon carbide semiconductor device
WO2024038504A1 (en) Silicon carbide semiconductor device, electric power conversion device, and method for producing silicon carbide semiconductor device
WO2023281669A1 (en) Silicon carbide semiconductor device and power converter using silicon carbide semiconductor device
WO2024024073A1 (en) Semiconductor device, power conversion device, and manufacturing method for semiconductor device
WO2022034636A1 (en) Silicon carbide semiconductor device and power conversion device
WO2022249397A1 (en) Semiconductor device and power conversion device
JP2023008566A (en) Semiconductor device and electric power conversion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930125

Country of ref document: EP

Kind code of ref document: A1