WO2021014570A1 - Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device - Google Patents

Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device Download PDF

Info

Publication number
WO2021014570A1
WO2021014570A1 PCT/JP2019/028858 JP2019028858W WO2021014570A1 WO 2021014570 A1 WO2021014570 A1 WO 2021014570A1 JP 2019028858 W JP2019028858 W JP 2019028858W WO 2021014570 A1 WO2021014570 A1 WO 2021014570A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
sbd
semiconductor device
silicon carbide
layer
Prior art date
Application number
PCT/JP2019/028858
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 宮田
英之 八田
梨菜 田中
勝俊 菅原
裕 福井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020510147A priority Critical patent/JP6735950B1/en
Priority to PCT/JP2019/028858 priority patent/WO2021014570A1/en
Publication of WO2021014570A1 publication Critical patent/WO2021014570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a silicon carbide semiconductor device having a trench gate and a power conversion device using the same.
  • a semiconductor device for power that incorporates a unipolar type switching element such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and a unipolar type freewheeling diode such as a Schottky barrier diode (SBD) is known. ..
  • a semiconductor device can be realized by arranging a MOSFET cell and an SBD cell in parallel on the same chip, and generally, a Schottky electrode is provided in a specific region in the chip, and that region is designated as an SBD. It can be realized by operating it.
  • the cost can be reduced compared to the case where the freewheeling diode is externally attached to the switching element.
  • SiC silicon carbide
  • a side wall of the trench is compared with a planar type MOSFET having a structure in which a gate electrode is formed on the surface of the semiconductor layer.
  • Patent Document 1 discloses a technique for alleviating electric field concentration at the bottom of a trench by providing a conductive protective layer different from the drift layer at the bottom of the trench in a trench gate type semiconductor device. ..
  • an SBD in which a Schottky electrode is embedded in a trench by replacing a part of the gate electrodes with a Schottky electrode (hereinafter, “trench type SBD”” is provided. ) Is formed, and the Schottky electrode is connected to the source electrode of the MOSFET, thereby disclosing a technique of incorporating an SBD as a freewheeling diode into a trench gate type MOSFET.
  • the trench spacing can be kept small, a high unipolar current can be obtained from the built-in SBD while suppressing the electric field applied to the bottom of the trench.
  • a trench (SBD trench) in which a Schottky electrode of a trench type SBD is embedded is provided between a trench (gate trench) in which a gate electrode of a trench gate type MOSFET is embedded.
  • the metal in the SBD trench is generally formed by a physical vapor deposition method such as a sputtering method.
  • the side wall of the SBD trench is close to perpendicular to the wafer surface, that is, when the SBD trench has a non-tapered shape, it is difficult to form electrodes in all of the SBD trench, and thermal reliability due to poor contact or cavity formation. There is concern about deterioration of sex.
  • the electrodes in the gate trench are generally formed by a chemical deposition method, and the side wall of the gate trench is preferably in a plane orientation having good channel characteristics. Therefore, the side wall of the gate trench is required to be close to perpendicular to the wafer surface.
  • the present invention has been made to solve the above problems, and in a silicon carbide semiconductor device including a trench gate type MOSFET and a trench type SBD, the good thermal reliability of the SBD and the good channel characteristics of the MOSFET are obtained.
  • the purpose is to achieve both.
  • the silicon carbide semiconductor device includes a semiconductor layer made of silicon carbide, a first conductive type drift layer formed on the semiconductor layer, and a second conductive type body formed on the surface layer portion of the drift layer.
  • the gate insulating film, the gate electrode formed on the gate insulating film in the gate trench, the source region and the body region, reach the drift layer, and the side wall is inclined more than the gate trench. It includes a gentle SBD trench and a shotkey electrode formed in the SBD trench and forming a shotkey contact with the drift layer.
  • the present invention in MOSFET, good channel characteristics can be obtained because the trench gate has a non-tapered shape. Further, in the SBD, since the SBD trench has a tapered shape, the coverage of the Schottky electrode is good and the formation of cavities can be suppressed, so that good thermal reliability can be obtained.
  • FIG. It is a vertical sectional view which shows the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. 1 It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. 2 is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. 2 is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. 2 is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. 1 shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the power conversion system to which the power conversion apparatus which concerns on Embodiment 2 is applied.
  • FIG. 1 is a vertical sectional view showing a configuration of a silicon carbide semiconductor device according to a first embodiment of the present invention.
  • the silicon carbide semiconductor device includes a MOSFET region 10 that functions as a MOSFET and an SBD region 20 that functions as a Schottky barrier diode (SBD).
  • SBD Schottky barrier diode
  • the "impurity concentration" in each region represents the maximum value of the impurity concentration in that region.
  • the silicon carbide semiconductor device is formed by using the semiconductor substrate 1 which is the first conductive type silicon carbide semiconductor substrate.
  • the semiconductor substrate 1 is composed of 4H-SiC belonging to the hexagonal system among the crystal polymorphs of silicon carbide, and has 1 degree or more and 8 degrees or less between the wafer surface and the (11-20) surface. It is assumed that the silicon carbide semiconductor substrate has an off-angle of.
  • a semiconductor layer 2 which is an epitaxial growth layer of silicon carbide is formed on the semiconductor substrate 1.
  • a body region 4, which is a second conductive type semiconductor region, is formed on the surface layer portion of the semiconductor layer 2.
  • the first conductive type portion excluding the body region 4 and the source region 5 becomes the drift layer 3.
  • the impurity concentration of the first conductive type of the drift layer 3 is 1.0 ⁇ 10 14 cm -3 or more and 1.0 ⁇ 10 17 cm -3 or less, and the withstand voltage performance required for the silicon carbide semiconductor device and the like. It is set according to.
  • the impurity concentration of the second conductive type in the body region 4 is 1.0 ⁇ 10 14 cm -3 or more and 1.0 ⁇ 10 18 cm -3 or less.
  • the concentration of impurities in the first conductive type in the source region 5 is 1.0 ⁇ 10 18 cm -3 or more and 1.0 ⁇ 10 21 cm -3 or less.
  • a gate trench 11 is formed in the semiconductor layer 2 through the source region 5 and the body region 4 to reach the drift layer 3.
  • the gate trench 11 has a non-tapered shape in which the side wall has a steep inclination angle with respect to the surface of the semiconductor layer 2.
  • the angle formed by the side wall of the gate trench 11 and the surface of the semiconductor layer 2 is 80 degrees or more and 90 degrees or less.
  • a gate insulating film 12 is formed on the inner surface (bottom surface and side surface) of the gate trench 11. Further, a gate electrode 13 is formed on the gate insulating film 12 in the gate trench 11 so as to be embedded in the gate trench 11.
  • the gate trench 11 is formed in a striped shape extending in the ⁇ 11-20> direction of the semiconductor substrate 1 in a plan view of the semiconductor layer 2. That is, a plurality of gate trenches 11 are formed at equal intervals in the semiconductor layer 2.
  • the ⁇ 11-20> direction corresponds to the direction of the step flow in the epitaxial growth of the semiconductor layer 2.
  • the surface orientations of the left and right side walls of the gate trench 11 can be matched, so that the variation in characteristics between the left and right side walls is suppressed, and the gate The reliability of the insulating film 12 is improved. Further, when the longitudinal direction of the gate trench 11 is perpendicular to the direction of the step flow, the side wall of the gate trench 11 on which the channel is formed can be a surface having high channel mobility.
  • An interlayer insulating film 14 is formed on the upper surface of the semiconductor layer 2 of the MOSFET region 10 so as to cover the gate electrode 13 embedded in the gate trench 11.
  • a contact hole reaching the source region 5 is formed in the interlayer insulating film 14, and a source contact electrode 15 is formed on the source region 5 exposed to the contact hole.
  • the source contact electrode 15 is a silicide formed by reacting a metal such as Ni or Ti with a silicon carbide semiconductor in the source region 5, and forms ohmic contact with the source region 5.
  • a second conductive type well contact region having a higher impurity concentration than the body region 4 is further provided on the surface layer portion of the body region 4, and the source contact electrode 15 is provided with the source region 5 and the source region 5.
  • Ohmic contacts may be made with both well contact areas.
  • the concentration of impurities in the second conductive type in the well contact region shall be 1.0 ⁇ 10 18 cm -3 or more and 1.0 ⁇ 10 21 cm -3 or less.
  • a source electrode 16 is formed on the interlayer insulating film 14.
  • the source electrode 16 is electrically connected to the source contact electrode 15 through a contact hole formed in the interlayer insulating film 14.
  • the source electrode 16 is electrically connected to the source region 5 via the source contact electrode 15.
  • a metal film which is a part of the Schottky electrode 22 described later is interposed between the source electrode 16 and the source contact electrode 15.
  • a drain electrode 17 is formed on the back surface of the semiconductor substrate 1 (the surface opposite to the semiconductor layer 2).
  • an SBD trench 21 that penetrates the source region 5 and the body region 4 and reaches the drift layer 3 is formed in the semiconductor layer 2.
  • the SBD trench 21 has a tapered shape in which the side surface is gently inclined as compared with the gate trench. That is, the width of the SBD trench 21 becomes narrower at the deeper position.
  • the angle formed by the side wall of the SBD trench 21 and the surface of the semiconductor layer 2 is 45 degrees or more and 85 degrees or less.
  • the SBD trench 21 is formed in a striped shape extending in the ⁇ 11-20> direction of the semiconductor substrate 1 in the plan view of the semiconductor layer 2, similarly to the gate trench 11. That is, a plurality of SBD trenches 21 are formed at equal intervals in the semiconductor layer 2, and the gate trench 11 and the SBD trench 21 are parallel to each other.
  • a Schottky electrode 22 is embedded in the SBD trench 21.
  • the Schottky electrode 22 is in contact with the inner surface (bottom surface and side surface) of the SBD trench 21.
  • the Schottky electrode 22 is a metal film or metal silicide containing Ti or Mo, and forms a Schottky contact with the drift layer 3.
  • the Schottky electrode 22 is formed along the inner surface of the SBD trench 21, and a part of the source electrode 16 is formed on the Schottky electrode 22 in the SBD trench 21. That is, a part of the source electrode 16 is embedded in the SBD trench 21 together with the Schottky electrode 22.
  • the silicon carbide semiconductor device of the first embodiment includes a trench gate type MOSFET formed in the MOSFET region 10 and a trench type SBD formed in the SBD region 20, and the gate trench 11 of the MOSFET is The SBD trench 21 of the non-tapered shape and SBD has a tapered shape.
  • the operation of the silicon carbide semiconductor device of FIG. 1 will be briefly described.
  • the operation of the MOSFET region 10 will be described.
  • a voltage equal to or higher than the threshold voltage is applied to the gate electrode 13
  • a channel in which the conductive type is inverted that is, a first conductive type channel is formed in a portion adjacent to the gate trench 11 in the body region 4. ..
  • a first conductive type current path is formed between the source electrode 16 and the drain electrode 17, and the MOSFET region 10 is turned on.
  • the MOSFET region 10 switches between an on state and an off state according to the voltage applied to the gate electrode 13.
  • the unipolar current that can be passed immediately before the bipolar current starts to flow is called the "maximum unipolar current".
  • the magnitude of this maximum unipolar current is affected by the pn junction between the body region 4 and the drift layer 3 and the potential difference generated in the drift layer 3.
  • a semiconductor substrate 1 made of a silicon carbide semiconductor having a semiconductor layer 2 formed on its upper surface is prepared.
  • the first conductive type semiconductor layer 2 is formed on the first conductive type semiconductor substrate 1 by the epitaxial growth method.
  • the body region 4 and the source region 5 are formed by implanting impurities into the surface layer portion of the semiconductor layer 2 (FIG. 2).
  • the first conductive type portion of the semiconductor layer 2 in which the body region 4 and the source region 5 are not formed becomes the drift layer 3.
  • a well contact region is provided on the surface layer of the body region 4, a well contact region is formed in a desired region by selective ion implantation using a mask.
  • each region of the semiconductor layer 2 is formed may be any order.
  • the method for forming each region is not limited to the ion implantation method, and for example, a part or all of the regions may be formed by epitaxial growth.
  • a non-tapered gate trench 11 that penetrates the source region 5 and the body region 4 and reaches the drift layer 3 is formed in the semiconductor layer 2 of the MOSFET region 10 by reactive ion etching (RIE) or dry etching. ..
  • RIE reactive ion etching
  • a tapered SBD trench 21 that penetrates the source region 5 and the body region 4 and reaches the drift layer 3 is formed in the semiconductor layer 2 of the SBD region 20 (FIG. 3).
  • the non-tapered gate trench 11 and the tapered SBD trench 21 are made separately, that is, the inclination angle of the side wall of each trench is adjusted, for example, the amount of active species reaching the bottom of the trench, gas partial pressure, and DC. This can be done by controlling the bias value and the like.
  • a heat treatment is performed to electrically activate the impurities injected into the semiconductor layer 2.
  • This heat treatment may be performed in an atmosphere of an inert gas such as argon or nitrogen, or in a vacuum at a temperature of 1500 ° C. or higher and 2200 ° C. or lower, and for a time of 0.5 minutes or longer and 60 minutes or shorter.
  • This heat treatment may be performed in a state where the surface of the semiconductor layer 2 is covered with a protective film made of carbon. By doing so, it is possible to suppress the occurrence of etching due to the reaction with the residual water and residual oxygen in the semiconductor layer 2 during the heat treatment, and it is possible to prevent the surface of the semiconductor layer 2 from being roughened.
  • the gate insulating film 12 is formed on the inner surfaces (bottom surface and side surface) of the gate trench 11 and the SBD trench 21. Further, by embedding, for example, polycrystalline silicon in the gate trench 11 and the SBD trench 21 by a chemical deposition method or the like, the gate electrode 13 is formed in the gate trench 11 and the SBD trench 21 (FIG. 4). However, the gate insulating film 12 and the gate electrode 13 in the SBD trench 21 are removed in a subsequent step.
  • an interlayer insulating film 14 is formed on the semiconductor layer 2, and a contact that reaches the source region 5 (and a well contact region (not shown)) reaches the interlayer insulating film 14 by selective etching or the like using a resist mask or the like. Form a hole. Then, the source contact electrode 15 is formed on the upper surface of the source region 5 (and the well contact region) exposed in the contact hole (FIG. 5).
  • the source contact electrode 15 As a method for forming the source contact electrode 15, for example, a metal film containing Ni as a main component is formed on the interlayer insulating film 14 including the inside of the contact hole, and the metal film is carbonized by heat treatment at 600 ° C. or higher and 1100 ° C. or lower. There is a method of reacting with a silicon semiconductor to form a silicide film, and then removing the unreacted metal film remaining on the interlayer insulating film 14 by wet etching. After removing the unreacted metal film, the heat treatment may be performed again. In this case, the second heat treatment is performed at a higher temperature than the first heat treatment to form an ohmic contact with a lower contact resistance between the source contact electrode 15 and the source region 5 (and the well contact region). be able to.
  • a Schottky electrode 22 is formed on the upper surface of the semiconductor layer 2 including the inside of the SBD trench 21, and a source electrode 16 is further formed on the Schottky electrode 22.
  • the Schottky electrode 22 may be in contact with at least the source electrode 16 and the drift layer 3, but may also be in contact with the source contact electrode 15, the source region 5, and the body region 4 as shown in FIG.
  • the drain electrode 17 is formed on the back surface of the semiconductor substrate 1.
  • the Schottky electrode 22, the source electrode 16, and the drain electrode 17 can be formed by using a physical vapor deposition method such as a sputtering method.
  • the silicon carbide semiconductor device having the configuration shown in FIG. 1 is formed.
  • the Schottky electrode 22 is embedded in the SBD trench 21, the area of the SBD contact can be secured even on the side wall of the SBD trench 21. Therefore, it is possible to obtain an SBD contact having a large area while keeping the lateral dimension of FIG. 1 small. As a result, the chip area required to pass the same unipolar current can be reduced, and the chip cost can be reduced.
  • the MOS structure can be formed in a plane orientation having high controllability of the formation rate of the gate insulating film 12, channel characteristics, and reliability of the gate insulating film 12 and the channel. it can. Therefore, good channel characteristics can be obtained in the MOSFET.
  • the SBD trench 21 has a tapered shape, the coverage of the Schottky electrode 22 is improved, and the Schottky electrode 22 can be brought into contact with the entire surface of the drift layer 3 on the inner wall of the SBD trench 21. As a result, it is possible to increase the unipolar current due to the increase in the contact area and suppress the local current concentration due to the narrowing of the contact area.
  • the source electrode 16 can be formed in the SBD trench 21 covered with the Schottky electrode 22 as shown in FIG.
  • the source electrode 16 is formed by depositing Al to which Si is added by a physical vapor deposition method such as a sputtering method, but the tapered shape of the SBD trench 21 suppresses the formation of cavities in the source electrode 16 and flattens the surface. It is effective for.
  • the source electrode 16 is preferably embedded in the SBD trench 21 without a gap because there is a concern of local heat generation due to a decrease in thermal reliability and a narrowing of the current path. ..
  • the surface flatness of the source electrode 16 is high because there is a concern that the thermal reliability may decrease due to the decrease in the adhesion of the wire bonding and the local heat generation may occur due to the narrowing of the current path. Is desirable.
  • the depth of the SBD trench 21 may be shallower than that of the gate trench 11. In this case, as shown later in FIG. 11, contact between the SBD trench 21 and the second conductive type protective layer 31 provided under the trench 21 can be avoided, and the leakage current when the SBD is off can be reduced. can do. On the contrary, as shown in FIG. 8, the depth of the SBD trench 21 may be deeper than that of the gate trench 11. In this case, the electric field strength applied to the gate insulating film 12 in the gate trench 11 is reduced, and the reliability of the silicon carbide semiconductor device is improved.
  • a second conductive type protective layer 31 may be formed in the drift layer 3 so as to be in contact with the bottoms of one or both of the gate trench 11 and the SBD trench 21.
  • the protective layer 31 has the effect of relaxing the electric field applied around the bottom of the gate trench 11 or the SBD trench 21.
  • the protective layer 31 provided under the SBD trench 21 may be formed at a position separated from the SBD trench 21. In this case, the leakage current flowing through the protective layer 31 can be reduced when the SBD is in the off state.
  • an ohmic electrode 23 that ohmic-bonds to the protective layer 31 may be formed in the SBD trench 21. That is, the ohmic electrode 23 that makes ohmic contact with the protective layer 31 may be interposed at the boundary portion between the Schottky electrode 22 and the protective layer 31 in the SBD trench 21. As a result, charge transfer due to the depletion behavior around the protective layer 31 at the bottom of the SBD trench 21 becomes smooth, and high-speed switching of the SBD becomes possible.
  • the Schottky electrode 22 is made of a material different from that of the source electrode 16, but as shown in FIG. 13, the source electrode 16 in the SBD trench 21 is brought into contact with the inner surface of the SBD trench 21. A part of the source electrode 16 may be used as the Schottky electrode 22. In other words, the Schottky electrode 22 may be made of the same material as the source electrode 16. In this case, the manufacturing cost can be reduced as compared with the case where the source electrode 16 and the Schottky electrode 22 are made of different materials.
  • a second conductive type connection is connected between the body region 4 and the protective layer 31 so as to be adjacent to one or both side walls of the gate trench 11 and the SBD trench 21 in the drift layer 3.
  • the layer 32 may be formed. In this case, at the time of turn-on or turn-off, the path length when extracting or returning the electric charge from the protective layer 31 is shortened, the potential increase is suppressed, and as a result, the reliability of the gate insulating film 12 is improved.
  • a first conductive type first low resistance layer 41 having a higher impurity concentration than the drift layer 3 may be formed in the drift layer 3 so as to be adjacent to the side wall of the gate trench 11.
  • the impurity concentration of the first low resistance layer 41 is, for example, 1.0 ⁇ 10 16 cm -3 or more and 1.0 ⁇ 10 19 cm -3 or less.
  • a first conductive type second low resistance layer 42 having a lower impurity concentration than the drift layer 3 may be formed in the drift layer 3 so as to be adjacent to the side wall of the SBD trench 21.
  • the impurity concentration of the second low resistance layer 42 is set higher than the impurity concentration of the first conductive type of the drift layer 3 and smaller than the impurity concentration of the first conductive type of the first low resistance layer 41, for example, 1.0. It is set in the range larger than ⁇ 10 16 and smaller than 1.0 ⁇ 10 19 cm -3 .
  • connection layer 32, the first low resistance layer 41, and the second low resistance layer 42 may coexist in one unit cell.
  • the reliability of the gate insulating film 12 is improved, the current flowing from the drain electrode 17 to the source electrode 16 when the MOSFET is turned on is increased, and the unipolar current flowing from the drain electrode 17 to the source electrode 16 through the SBD is increased. All the effects of the first low resistance layer 41 and the second low resistance layer 42 can be obtained.
  • the drift layer 3 is provided between the protective layers 31.
  • the first conductive type third low resistance layer 43 having a lower impurity concentration may be formed.
  • the impurity concentration of the third low resistance layer 43 does not need to be adjusted with the first low resistance layer 41 and the second low resistance layer 42, and is 1.0 ⁇ 10 16 cm -3 or more, 1.0 ⁇ 10 19 cm ⁇ . It may be set in the range of 3 or less.
  • the third low resistance layer 43 can suppress depletion between the protective layers 31 and increase the current flowing from the drain electrode 17 to the source electrode 16 when the MOSFET is turned on.
  • the semiconductor device according to the first embodiment described above is applied to a power conversion device.
  • the application of the semiconductor device according to the first embodiment is not limited to a specific power conversion device, but hereinafter, as the second embodiment, when the semiconductor device according to the first embodiment is applied to a three-phase inverter. Will be described.
  • FIG. 19 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.
  • the power conversion system shown in FIG. 19 includes a power source 100, a power conversion device 200, and a load 300.
  • the power source 100 is a DC power source, and supplies DC power to the power converter 200.
  • the power supply 100 can be configured by various things, for example, it can be configured by a DC system, a solar cell, a storage battery, or by a rectifier circuit or an AC / DC converter connected to an AC system. May be good. Further, the power supply 100 may be configured by a DC / DC converter that converts the DC power output from the DC system into a predetermined power.
  • the power conversion device 200 is a three-phase inverter connected between the power supply 100 and the load 300, converts the DC power supplied from the power supply 100 into AC power, and supplies AC power to the load 300.
  • the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a drive circuit 202 that outputs a drive signal that drives each switching element of the main conversion circuit 201.
  • a control circuit 203 that outputs a control signal for controlling the drive circuit 202 to the drive circuit 202 is provided.
  • the load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200.
  • the load 300 is not limited to a specific application, and is an electric motor mounted on various electric devices.
  • the load 300 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.
  • the main conversion circuit 201 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, the DC power supplied from the power supply 100 is converted into AC power and supplied to the load 300.
  • the main conversion circuit 201 is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can consist of six anti-parallel freewheeling diodes.
  • the semiconductor device according to the first embodiment described above is applied to each switching element and freewheeling diode of the main conversion circuit 201.
  • the six switching elements are connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. Then, the output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 201 are connected to the load 300.
  • the drive circuit 202 generates a drive signal for driving the switching element of the main conversion circuit 201 and supplies it to the control electrode of the switching element of the main conversion circuit 201. Specifically, according to the control signal from the control circuit 203 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrodes of each switching element.
  • the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element
  • the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).
  • the control circuit 203 controls the switching element of the main conversion circuit 201 so that the desired power is supplied to the load 300. Specifically, the time (on time) for each switching element of the main conversion circuit 201 to be in the on state is calculated based on the power to be supplied to the load 300.
  • the main conversion circuit 201 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output.
  • a control command is output to the drive circuit 202 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off.
  • the drive circuit 202 outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
  • the semiconductor device according to the first embodiment is applied as the switching element and the freewheeling diode of the main conversion circuit 201, so that the reliability can be improved.
  • the application of the semiconductor device according to the first embodiment is not limited to this. It can be applied to various power conversion devices.
  • a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used, and when power is supplied to a single-phase load, a single-phase inverter is used.
  • the semiconductor device according to 1 may be applied.
  • the power conversion device to which the semiconductor device according to the first embodiment is applied is not limited to the case where the above-mentioned load is an electric motor, for example, a discharge machine, a laser machine, an induction heating cooker, or a non-electric machine. It can be used as a power supply device for a contact power supply system, and can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.

Abstract

This silicon carbide semiconductor device includes a trench gate MOSFET and a trench SBD. A gate trench (11) in which a gate electrode (13) of the MOSFET is embedded passes through a source region (5) and a body region (4) and reaches a drift layer (3). An SBD trench (21) in which a Schottky electrode (22) of the SBD is embedded passes through the source region (5) and the body region (4) and reaches the drift layer (3), and the side walls of the SBD trench (21) has a more gradual slope than the side walls of the gate trench (11).

Description

炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法Manufacturing method of silicon carbide semiconductor device, power conversion device and silicon carbide semiconductor device
 本発明は、トレンチゲートを有する炭化珪素半導体装置およびそれを用いた電力変換装置に関するものである。 The present invention relates to a silicon carbide semiconductor device having a trench gate and a power conversion device using the same.
 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のユニポーラ型のスイッチング素子と、ショットキーバリアダイオード(SBD:Schottky barrier diode)等のユニポーラ型の還流ダイオードとを内蔵する電力用の半導体装置が知られている。そのような半導体装置は、同一のチップにMOSFETセルとSBDセルとを並列に配置することで実現でき、一般的には、チップ内の特定の領域にショットキー電極を設け、その領域をSBDとして動作させることで実現できる。 A semiconductor device for power that incorporates a unipolar type switching element such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and a unipolar type freewheeling diode such as a Schottky barrier diode (SBD) is known. .. Such a semiconductor device can be realized by arranging a MOSFET cell and an SBD cell in parallel on the same chip, and generally, a Schottky electrode is provided in a specific region in the chip, and that region is designated as an SBD. It can be realized by operating it.
 スイッチング素子のチップに還流ダイオードを内蔵させることで、スイッチング素子に還流ダイオードを外付けする場合に比べてコストを低減できる。特に、炭化珪素(SiC)を母材として用いたMOSFETでは、SBDを内蔵させることにより寄生pnダイオードによるバイポーラ動作を抑制できることもメリットの一つとなる。炭化珪素半導体装置では寄生pnダイオード動作によるキャリアの再結合エネルギーに起因する結晶欠陥の拡張により、素子の信頼性が損なわれることがあるからである。 By incorporating a freewheeling diode in the chip of the switching element, the cost can be reduced compared to the case where the freewheeling diode is externally attached to the switching element. In particular, in a MOSFET using silicon carbide (SiC) as a base material, it is one of the merits that the bipolar operation due to the parasitic pn diode can be suppressed by incorporating the SBD. This is because in a silicon carbide semiconductor device, the reliability of the device may be impaired due to the expansion of crystal defects caused by the recombination energy of carriers due to the operation of the parasitic pn diode.
 また、半導体層に形成されたトレンチ内にゲート電極が埋め込まれた構造を有するトレンチゲート型MOSFETでは、半導体層の表面上にゲート電極が形成された構造を有するプレーナ型MOSFETに比べ、トレンチの側壁にチャネルを形成できる分、チャネル幅密度を向上でき、オン抵抗を低減できるというメリットがある。しかし、半導体装置のオフ状態において高い電圧が印加された際に、トレンチ底部に電界集中が発生しやすいという問題を持っている。特に、トレンチゲート型の炭化珪素半導体装置では、SiCが高い絶縁破壊強度を有するため、ドリフト層内でのアバランシェ破壊よりも先に、トレンチ底部の電界集中に起因するゲート絶縁膜破壊が生じやすく、トレンチ底部での電界集中が問題となりやすい。 Further, in a trench gate type MOSFET having a structure in which a gate electrode is embedded in a trench formed in a semiconductor layer, a side wall of the trench is compared with a planar type MOSFET having a structure in which a gate electrode is formed on the surface of the semiconductor layer. There is an advantage that the channel width density can be improved and the on-resistance can be reduced because the channel can be formed. However, there is a problem that electric field concentration is likely to occur at the bottom of the trench when a high voltage is applied in the off state of the semiconductor device. In particular, in a trench gate type silicon carbide semiconductor device, since SiC has a high dielectric breakdown strength, gate insulating film fracture due to electric field concentration at the bottom of the trench is likely to occur prior to avalanche fracture in the drift layer. Electric field concentration at the bottom of the trench tends to be a problem.
 例えば下記の特許文献1には、トレンチゲート型の半導体装置において、トレンチ底部にドリフト層とは異なる導電型の保護層を設けることで、トレンチ底部での電界集中を緩和する技術が開示されている。なお、この技術では、トレンチの間隔すなわち保護層の間隔が広くなると電界緩和の効果が低くなるため、一般的には、トレンチの間隔を小さく保つことが重要となる。 For example, Patent Document 1 below discloses a technique for alleviating electric field concentration at the bottom of a trench by providing a conductive protective layer different from the drift layer at the bottom of the trench in a trench gate type semiconductor device. .. In this technique, it is generally important to keep the trench spacing small because the effect of electric field relaxation decreases as the trench spacing, that is, the protective layer spacing increases.
 また、例えば特許文献2には、トレンチゲート型MOSFETを備える半導体装置において、一部のゲート電極をショットキー電極に置き換えることで、ショットキー電極がトレンチに埋め込まれたSBD(以下「トレンチ型SBD」)を形成し、そのショットキー電極をMOSFETのソース電極と接続させることで、トレンチゲート型MOSFETに還流ダイオードとしてのSBDを内蔵させる技術が開示されている。この技術では、トレンチの間隔を小さく保つことができるため、トレンチ底部に印加される電界を抑制しつつ、内蔵したSBDから高いユニポーラ電流を得ることができる。 Further, for example, in Patent Document 2, in a semiconductor device including a trench gate type MOSFET, an SBD in which a Schottky electrode is embedded in a trench by replacing a part of the gate electrodes with a Schottky electrode (hereinafter, “trench type SBD”” is provided. ) Is formed, and the Schottky electrode is connected to the source electrode of the MOSFET, thereby disclosing a technique of incorporating an SBD as a freewheeling diode into a trench gate type MOSFET. In this technique, since the trench spacing can be kept small, a high unipolar current can be obtained from the built-in SBD while suppressing the electric field applied to the bottom of the trench.
特開2006-210392号公報Japanese Unexamined Patent Publication No. 2006-210392 特開2009-278067号公報Japanese Unexamined Patent Publication No. 2009-278067
 特許文献1,2の半導体装置のように、トレンチゲート型MOSFETのゲート電極が埋め込まれたトレンチ(ゲートトレンチ)の間に、トレンチ型SBDのショットキー電極が埋め込まれたトレンチ(SBDトレンチ)を設ける場合、SBDトレンチ内の金属はスパッタ法などの物理蒸着法で形成することが一般的である。しかし、SBDトレンチの側壁がウエハ表面に対して垂直に近い場合、すなわちSBDトレンチが非テーパ形状の場合、SBDトレンチ内のすべてに電極を形成するのは難しく、コンタクト不良や空洞形成による熱的信頼性の低下が懸念される。 Like the semiconductor devices of Patent Documents 1 and 2, a trench (SBD trench) in which a Schottky electrode of a trench type SBD is embedded is provided between a trench (gate trench) in which a gate electrode of a trench gate type MOSFET is embedded. In this case, the metal in the SBD trench is generally formed by a physical vapor deposition method such as a sputtering method. However, when the side wall of the SBD trench is close to perpendicular to the wafer surface, that is, when the SBD trench has a non-tapered shape, it is difficult to form electrodes in all of the SBD trench, and thermal reliability due to poor contact or cavity formation. There is concern about deterioration of sex.
 一方、ゲートトレンチ内の電極は、化学堆積法で形成することが一般的であり、ゲートトレンチの側壁は良好なチャネル特性を有する面方位であることが好ましい。そのため、ゲートトレンチの側壁はウエハ表面に対して垂直に近いことが求められる。 On the other hand, the electrodes in the gate trench are generally formed by a chemical deposition method, and the side wall of the gate trench is preferably in a plane orientation having good channel characteristics. Therefore, the side wall of the gate trench is required to be close to perpendicular to the wafer surface.
 本発明は以上のような課題を解決するためになされたものであり、トレンチゲート型MOSFETおよびトレンチ型SBDを備える炭化珪素半導体装置において、SBDの良好な熱的信頼性およびMOSFETの良好なチャネル特性の両立を図ることを目的とする。 The present invention has been made to solve the above problems, and in a silicon carbide semiconductor device including a trench gate type MOSFET and a trench type SBD, the good thermal reliability of the SBD and the good channel characteristics of the MOSFET are obtained. The purpose is to achieve both.
 本発明に係る炭化珪素半導体装置は、炭化珪素から成る半導体層と、前記半導体層に形成された第1導電型のドリフト層と、前記ドリフト層の表層部に形成された第2導電型のボディ領域と、前記ボディ領域の表層部に形成された第1導電型のソース領域と、前記ソース領域および前記ボディ領域を貫通して前記ドリフト層に達するゲートトレンチと、前記ゲートトレンチの内面に形成されたゲート絶縁膜と、前記ゲートトレンチ内の前記ゲート絶縁膜上に形成されたゲート電極と、前記ソース領域および前記ボディ領域を貫通して前記ドリフト層に達し、前記ゲートトレンチよりも側壁の傾斜が緩やかなSBDトレンチと、前記SBDトレンチ内に形成され、前記ドリフト層とショットキーコンタクトを成すショットキー電極と、を備える。 The silicon carbide semiconductor device according to the present invention includes a semiconductor layer made of silicon carbide, a first conductive type drift layer formed on the semiconductor layer, and a second conductive type body formed on the surface layer portion of the drift layer. A region, a first conductive type source region formed on the surface layer of the body region, a gate trench that penetrates the source region and the body region and reaches the drift layer, and an inner surface of the gate trench. The gate insulating film, the gate electrode formed on the gate insulating film in the gate trench, the source region and the body region, reach the drift layer, and the side wall is inclined more than the gate trench. It includes a gentle SBD trench and a shotkey electrode formed in the SBD trench and forming a shotkey contact with the drift layer.
 本発明によれば、MOSFETにおいては、トレンチゲートが非テーパ形状であるため良好なチャネル特性が得られる。また、SBDにおいては、SBDトレンチがテーパ形状であるため、ショットキー電極のカバレッジ性がよく、空洞形成を抑制することができるため、良好な熱的信頼性が得られる。 According to the present invention, in MOSFET, good channel characteristics can be obtained because the trench gate has a non-tapered shape. Further, in the SBD, since the SBD trench has a tapered shape, the coverage of the Schottky electrode is good and the formation of cavities can be suppressed, so that good thermal reliability can be obtained.
 本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The object, features, aspects, and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
実施の形態1に係る半導体装置の構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の製造方法を説明するための工程図である。It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の製造方法を説明するための工程図である。It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の製造方法を説明するための工程図である。It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の製造方法を説明するための工程図である。It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の製造方法を説明するための工程図である。It is a process drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る半導体装置の構成の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態2に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power conversion system to which the power conversion apparatus which concerns on Embodiment 2 is applied.
 <実施の形態1>
 図1は、本発明の実施の形態1に係る炭化珪素半導体装置の構成を示す縦断面図である。当該炭化珪素半導体装置は、MOSFETとして機能するMOSFET領域10と、ショットキーバリアダイオード(SBD)として機能するSBD領域20とを備えている。なお、以下の説明において、各領域の「不純物濃度」とは、その領域における不純物濃度の最高値を表している。
<Embodiment 1>
FIG. 1 is a vertical sectional view showing a configuration of a silicon carbide semiconductor device according to a first embodiment of the present invention. The silicon carbide semiconductor device includes a MOSFET region 10 that functions as a MOSFET and an SBD region 20 that functions as a Schottky barrier diode (SBD). In the following description, the "impurity concentration" in each region represents the maximum value of the impurity concentration in that region.
 実施の形態1に係る炭化珪素半導体装置は、第1導電型の炭化珪素半導体基板である半導体基板1を用いて形成されている。本実施の形態では、半導体基板1は、炭化珪素の結晶多形のうち六方晶系に属する4H-SiCから成り、ウエハ表面と(11-20)面との間に1度以上、8度以下のオフ角を有する炭化珪素半導体基板であるものとする。 The silicon carbide semiconductor device according to the first embodiment is formed by using the semiconductor substrate 1 which is the first conductive type silicon carbide semiconductor substrate. In the present embodiment, the semiconductor substrate 1 is composed of 4H-SiC belonging to the hexagonal system among the crystal polymorphs of silicon carbide, and has 1 degree or more and 8 degrees or less between the wafer surface and the (11-20) surface. It is assumed that the silicon carbide semiconductor substrate has an off-angle of.
 半導体基板1の上には、炭化珪素のエピタキシャル成長層である半導体層2が形成されている。半導体層2の表層部には、第2導電型の半導体領域であるボディ領域4が形成されている。ボディ領域4の表層部には、第1導電型の半導体領域であるソース領域5が形成されている。半導体層2のうち、ボディ領域4およびソース領域5を除く第1導電型の部分はドリフト層3となる。 A semiconductor layer 2 which is an epitaxial growth layer of silicon carbide is formed on the semiconductor substrate 1. A body region 4, which is a second conductive type semiconductor region, is formed on the surface layer portion of the semiconductor layer 2. A source region 5, which is a first conductive type semiconductor region, is formed on the surface layer portion of the body region 4. Of the semiconductor layer 2, the first conductive type portion excluding the body region 4 and the source region 5 becomes the drift layer 3.
 ここで、ドリフト層3の第1導電型の不純物濃度は、1.0×1014cm-3以上、1.0×1017cm-3以下であり、炭化珪素半導体装置に求められる耐圧性能などに応じて設定される。ボディ領域4の第2導電型の不純物濃度は、1.0×1014cm-3以上、1.0×1018cm-3以下とする。ソース領域5の第1導電型の不純物濃度は1.0×1018cm-3以上、1.0×1021cm-3以下とする。 Here, the impurity concentration of the first conductive type of the drift layer 3 is 1.0 × 10 14 cm -3 or more and 1.0 × 10 17 cm -3 or less, and the withstand voltage performance required for the silicon carbide semiconductor device and the like. It is set according to. The impurity concentration of the second conductive type in the body region 4 is 1.0 × 10 14 cm -3 or more and 1.0 × 10 18 cm -3 or less. The concentration of impurities in the first conductive type in the source region 5 is 1.0 × 10 18 cm -3 or more and 1.0 × 10 21 cm -3 or less.
 MOSFET領域10においては、半導体層2に、ソース領域5およびボディ領域4を貫通してドリフト層3に達するゲートトレンチ11が形成されている。図1に示すように、ゲートトレンチ11は、側壁が半導体層2の表面に対して急峻な傾斜角を有する、非テーパ形状である。具体的には、ゲートトレンチ11の側壁と半導体層2の表面との成す角は、80度以上、90度以下である。 In the MOSFET region 10, a gate trench 11 is formed in the semiconductor layer 2 through the source region 5 and the body region 4 to reach the drift layer 3. As shown in FIG. 1, the gate trench 11 has a non-tapered shape in which the side wall has a steep inclination angle with respect to the surface of the semiconductor layer 2. Specifically, the angle formed by the side wall of the gate trench 11 and the surface of the semiconductor layer 2 is 80 degrees or more and 90 degrees or less.
 ゲートトレンチ11の内面(底面および側面)には、ゲート絶縁膜12が形成されている。また、ゲートトレンチ11内のゲート絶縁膜12上には、ゲートトレンチ11に埋め込まれるようにゲート電極13が形成されている。 A gate insulating film 12 is formed on the inner surface (bottom surface and side surface) of the gate trench 11. Further, a gate electrode 13 is formed on the gate insulating film 12 in the gate trench 11 so as to be embedded in the gate trench 11.
 ゲートトレンチ11は、半導体層2の平面視で、半導体基板1の<11-20>方向に伸びたストライプ状に形成されている。すなわち、半導体層2には、複数のゲートトレンチ11が等間隔に形成されている。本実施の形態では、半導体基板1の表面は、(11-20)面に対するオフ角を有するため、<11-20>方向は半導体層2のエピタキシャル成長におけるステップフローの方向に相当する。 The gate trench 11 is formed in a striped shape extending in the <11-20> direction of the semiconductor substrate 1 in a plan view of the semiconductor layer 2. That is, a plurality of gate trenches 11 are formed at equal intervals in the semiconductor layer 2. In the present embodiment, since the surface of the semiconductor substrate 1 has an off angle with respect to the (11-20) plane, the <11-20> direction corresponds to the direction of the step flow in the epitaxial growth of the semiconductor layer 2.
 ゲートトレンチ11の長手方向をステップフローの方向に対して平行にした場合、ゲートトレンチ11の左右の側壁の面方位を一致させることができるため、左右の側壁での特性のばらつきが抑制され、ゲート絶縁膜12の信頼性が向上する。また、ゲートトレンチ11の長手方向をステップフローの方向に対して垂直にした場合、チャネルが形成されるゲートトレンチ11の側壁をチャネル移動度の高い面とすることができる。 When the longitudinal direction of the gate trench 11 is parallel to the direction of the step flow, the surface orientations of the left and right side walls of the gate trench 11 can be matched, so that the variation in characteristics between the left and right side walls is suppressed, and the gate The reliability of the insulating film 12 is improved. Further, when the longitudinal direction of the gate trench 11 is perpendicular to the direction of the step flow, the side wall of the gate trench 11 on which the channel is formed can be a surface having high channel mobility.
 MOSFET領域10の半導体層2の上面には、ゲートトレンチ11に埋め込まれたゲート電極13を覆うように、層間絶縁膜14が形成されている。層間絶縁膜14には、ソース領域5に達するコンタクトホールが形成されており、コンタクトホールに露出したソース領域5上に、ソースコンタクト電極15が形成されている。ソースコンタクト電極15は、NiやTi等の金属とソース領域5の炭化珪素半導体とが反応して形成されたシリサイドであり、ソース領域5とオーミックコンタクトを成している。 An interlayer insulating film 14 is formed on the upper surface of the semiconductor layer 2 of the MOSFET region 10 so as to cover the gate electrode 13 embedded in the gate trench 11. A contact hole reaching the source region 5 is formed in the interlayer insulating film 14, and a source contact electrode 15 is formed on the source region 5 exposed to the contact hole. The source contact electrode 15 is a silicide formed by reacting a metal such as Ni or Ti with a silicon carbide semiconductor in the source region 5, and forms ohmic contact with the source region 5.
 なお、図1では省略しているが、ボディ領域4の表層部に、ボディ領域4よりも不純物濃度が高い第2導電型のウェルコンタクト領域をさらに設け、ソースコンタクト電極15が、ソース領域5およびウェルコンタクト領域の両方とオーミックコンタクトを成すようにしてもよい。ウェルコンタクト領域の第2導電型の不純物濃度は、1.0×1018cm-3以上、1.0×1021cm-3以下とする。 Although omitted in FIG. 1, a second conductive type well contact region having a higher impurity concentration than the body region 4 is further provided on the surface layer portion of the body region 4, and the source contact electrode 15 is provided with the source region 5 and the source region 5. Ohmic contacts may be made with both well contact areas. The concentration of impurities in the second conductive type in the well contact region shall be 1.0 × 10 18 cm -3 or more and 1.0 × 10 21 cm -3 or less.
 層間絶縁膜14の上には、ソース電極16が形成されている。ソース電極16は、層間絶縁膜14に形成されたコンタクトホールを通してソースコンタクト電極15と電気的に接続している。これにより、ソース電極16は、ソースコンタクト電極15を介してソース領域5と電気的に接続される。なお、図1の例では、後述するショットキー電極22の一部である金属膜が、ソース電極16とソースコンタクト電極15との間に介在している。また、半導体基板1の裏面(半導体層2とは逆の面)には、ドレイン電極17が形成されている。 A source electrode 16 is formed on the interlayer insulating film 14. The source electrode 16 is electrically connected to the source contact electrode 15 through a contact hole formed in the interlayer insulating film 14. As a result, the source electrode 16 is electrically connected to the source region 5 via the source contact electrode 15. In the example of FIG. 1, a metal film which is a part of the Schottky electrode 22 described later is interposed between the source electrode 16 and the source contact electrode 15. Further, a drain electrode 17 is formed on the back surface of the semiconductor substrate 1 (the surface opposite to the semiconductor layer 2).
 SBD領域20においては、半導体層2に、ソース領域5およびボディ領域4を貫通してドリフト層3に達するSBDトレンチ21が形成されている。図1に示すように、SBDトレンチ21は、ゲートトレンチに比べて側面が緩やかに傾斜したテーパ形状である。すなわち、SBDトレンチ21の幅は、深い位置ほど狭くなっている。具体的には、SBDトレンチ21の側壁と半導体層2の表面との成す角は、45度以上、85度以下である。SBDトレンチ21は、半導体層2の平面視で、ゲートトレンチ11と同様に、半導体基板1の<11-20>方向に伸びたストライプ状に形成されている。すなわち、半導体層2には、複数のSBDトレンチ21が等間隔に形成されており、ゲートトレンチ11とSBDトレンチ21とは互いに平行である。 In the SBD region 20, an SBD trench 21 that penetrates the source region 5 and the body region 4 and reaches the drift layer 3 is formed in the semiconductor layer 2. As shown in FIG. 1, the SBD trench 21 has a tapered shape in which the side surface is gently inclined as compared with the gate trench. That is, the width of the SBD trench 21 becomes narrower at the deeper position. Specifically, the angle formed by the side wall of the SBD trench 21 and the surface of the semiconductor layer 2 is 45 degrees or more and 85 degrees or less. The SBD trench 21 is formed in a striped shape extending in the <11-20> direction of the semiconductor substrate 1 in the plan view of the semiconductor layer 2, similarly to the gate trench 11. That is, a plurality of SBD trenches 21 are formed at equal intervals in the semiconductor layer 2, and the gate trench 11 and the SBD trench 21 are parallel to each other.
 SBDトレンチ21内には、ショットキー電極22が埋め込まれている。ショットキー電極22は、SBDトレンチ21の内面(底面および側面)に接している。ショットキー電極22は、TiあるいはMoを含む金属膜または金属シリサイドであり、ドリフト層3とショットキーコンタクトを成している。 A Schottky electrode 22 is embedded in the SBD trench 21. The Schottky electrode 22 is in contact with the inner surface (bottom surface and side surface) of the SBD trench 21. The Schottky electrode 22 is a metal film or metal silicide containing Ti or Mo, and forms a Schottky contact with the drift layer 3.
 本実施の形態では、ショットキー電極22は、SBDトレンチ21の内面に沿って形成されており、ソース電極16の一部が、SBDトレンチ21内のショットキー電極22上に形成されている。すなわち、ソース電極16の一部は、ショットキー電極22と共にSBDトレンチ21に埋め込まれている。 In the present embodiment, the Schottky electrode 22 is formed along the inner surface of the SBD trench 21, and a part of the source electrode 16 is formed on the Schottky electrode 22 in the SBD trench 21. That is, a part of the source electrode 16 is embedded in the SBD trench 21 together with the Schottky electrode 22.
 このように、実施の形態1の炭化珪素半導体装置は、MOSFET領域10に形成されたトレンチゲート型MOSFETと、SBD領域20に形成されたトレンチ型SBDとを備えており、MOSFETのゲートトレンチ11は非テーパ形状、SBDのSBDトレンチ21はテーパ形状である。 As described above, the silicon carbide semiconductor device of the first embodiment includes a trench gate type MOSFET formed in the MOSFET region 10 and a trench type SBD formed in the SBD region 20, and the gate trench 11 of the MOSFET is The SBD trench 21 of the non-tapered shape and SBD has a tapered shape.
 ここで、図1の炭化珪素半導体装置の動作について簡単に説明する。まず、MOSFET領域10の動作を説明する。MOSFET領域10では、ゲート電極13に閾値電圧以上の電圧が印加されると、ボディ領域4におけるゲートトレンチ11と隣接する部分に導電型が反転したチャネル、すなわち第1導電型のチャネルが形成される。それにより、ソース電極16からドレイン電極17までの間に第1導電型の電流経路が形成され、MOSFET領域10はオン状態となる。 Here, the operation of the silicon carbide semiconductor device of FIG. 1 will be briefly described. First, the operation of the MOSFET region 10 will be described. In the MOSFET region 10, when a voltage equal to or higher than the threshold voltage is applied to the gate electrode 13, a channel in which the conductive type is inverted, that is, a first conductive type channel is formed in a portion adjacent to the gate trench 11 in the body region 4. .. As a result, a first conductive type current path is formed between the source electrode 16 and the drain electrode 17, and the MOSFET region 10 is turned on.
 それに対し、ゲート電極13の電圧が閾値電圧以下のときは、ボディ領域4にはチャネルが形成されないため、ドレイン電極17とソース電極16との間に電圧が印加されていても、ドレイン電極17からソース電極16へは電流がほとんど流れない。すなわち、MOSFET領域10はオフ状態になる。このように、MOSFET領域10は、ゲート電極13に印加された電圧に応じてオン状態とオフ状態とが切り換わる。 On the other hand, when the voltage of the gate electrode 13 is equal to or less than the threshold voltage, no channel is formed in the body region 4, so that even if a voltage is applied between the drain electrode 17 and the source electrode 16, the drain electrode 17 can be used. Almost no current flows to the source electrode 16. That is, the MOSFET region 10 is turned off. In this way, the MOSFET region 10 switches between an on state and an off state according to the voltage applied to the gate electrode 13.
 次に、SBD領域20の動作を説明する。MOSFET領域10がオフ状態のとき、SBD領域20のショットキーバリアダイオードに順方向電圧が印加されると、ショットキー電極22とドレイン電極17間にユニポーラ電流が流れる。このとき、順方向電圧を上げていくと、しばらくはユニポーラ電流が増大していくが、ソース電極16とドレイン電極17との間の電位差がある値以上に達すると、ボディ領域4とドレイン電極17との間に、ボディ領域4とドリフト層3との間のpn接合に由来したバイポーラ電流が流れる。 Next, the operation of the SBD area 20 will be described. When a forward voltage is applied to the Schottky barrier diode in the SBD region 20 when the MOSFET region 10 is off, a unipolar current flows between the Schottky electrode 22 and the drain electrode 17. At this time, if the forward voltage is increased, the unipolar current increases for a while, but when the potential difference between the source electrode 16 and the drain electrode 17 reaches a certain value or more, the body region 4 and the drain electrode 17 A bipolar current derived from the pn junction between the body region 4 and the drift layer 3 flows between the and.
 バイポーラ電流が流れ始める直前に流すことができるユニポーラ電流を「最大ユニポーラ電流」と呼ぶ。この最大ユニポーラ電流の大きさは、ボディ領域4とドリフト層3との間のpn接合や、ドリフト層3に生じる電位差によって影響される。 The unipolar current that can be passed immediately before the bipolar current starts to flow is called the "maximum unipolar current". The magnitude of this maximum unipolar current is affected by the pn junction between the body region 4 and the drift layer 3 and the potential difference generated in the drift layer 3.
 続いて、図2から図6の工程図を参照しつつ、実施の形態1に係る炭化珪素半導体装置の製造方法について説明する。 Subsequently, the manufacturing method of the silicon carbide semiconductor device according to the first embodiment will be described with reference to the process diagrams of FIGS. 2 to 6.
 まず、上面に半導体層2が形成された炭化珪素半導体から成る半導体基板1を用意する。具体的には、第1導電型の半導体基板1上に、第1導電型の半導体層2をエピタキシャル成長法によって形成する。そして、半導体層2の表層部に、不純物のイオン注入を行うことで、ボディ領域4およびソース領域5を形成する(図2)。このとき、ボディ領域4およびソース領域5が形成されない半導体層2の第1導電型の部分がドリフト層3となる。 First, a semiconductor substrate 1 made of a silicon carbide semiconductor having a semiconductor layer 2 formed on its upper surface is prepared. Specifically, the first conductive type semiconductor layer 2 is formed on the first conductive type semiconductor substrate 1 by the epitaxial growth method. Then, the body region 4 and the source region 5 are formed by implanting impurities into the surface layer portion of the semiconductor layer 2 (FIG. 2). At this time, the first conductive type portion of the semiconductor layer 2 in which the body region 4 and the source region 5 are not formed becomes the drift layer 3.
 なお、ボディ領域4の表層部にウェルコンタクト領域を設ける場合には、マスクを用いた選択的なイオン注入によって、所望の領域にウェルコンタクト領域を形成する。 When a well contact region is provided on the surface layer of the body region 4, a well contact region is formed in a desired region by selective ion implantation using a mask.
 ソース領域5などの第1導電型の領域を形成するときは、ドナーとして例えばNやP等のイオン注入が行われる。ボディ領域4などの第2導電型の領域を形成するときは、アクセプタとして例えばAlやB等のイオン注入が行われる。また、半導体層2の各領域を形成する順序は任意の順序でよい。なお、各領域の形成手法はイオン注入法に限られず、例えば、一部または全部の領域をエピタキシャル成長によって形成してもよい。 When forming the first conductive type region such as the source region 5, ion implantation of, for example, N or P is performed as a donor. When forming a second conductive type region such as the body region 4, ion implantation of, for example, Al or B is performed as an acceptor. Further, the order in which each region of the semiconductor layer 2 is formed may be any order. The method for forming each region is not limited to the ion implantation method, and for example, a part or all of the regions may be formed by epitaxial growth.
 次に、反応性イオンエッチング(RIE)またはドライエッチングにより、MOSFET領域10の半導体層2に、ソース領域5およびボディ領域4を貫通してドリフト層3に達する非テーパ形状のゲートトレンチ11を形成する。また同様に、RIEまたはドライエッチングにより、SBD領域20の半導体層2に、ソース領域5およびボディ領域4を貫通してドリフト層3に達するテーパ形状のSBDトレンチ21を形成する(図3)。非テーパ形状のゲートトレンチ11と、テーパ形状のSBDトレンチ21との作り分け、すなわち、各トレンチの側壁の傾斜角度の調整は、例えばトレンチの底に到達する活性種量や、ガス分圧、直流バイアス値などを制御することによって行うことができる。 Next, a non-tapered gate trench 11 that penetrates the source region 5 and the body region 4 and reaches the drift layer 3 is formed in the semiconductor layer 2 of the MOSFET region 10 by reactive ion etching (RIE) or dry etching. .. Similarly, by RIE or dry etching, a tapered SBD trench 21 that penetrates the source region 5 and the body region 4 and reaches the drift layer 3 is formed in the semiconductor layer 2 of the SBD region 20 (FIG. 3). The non-tapered gate trench 11 and the tapered SBD trench 21 are made separately, that is, the inclination angle of the side wall of each trench is adjusted, for example, the amount of active species reaching the bottom of the trench, gas partial pressure, and DC. This can be done by controlling the bias value and the like.
 その後、半導体層2に注入した不純物を電気的に活性化させるための熱処理を行う。この熱処理は、アルゴンや窒素などの不活性ガス雰囲気、若しくは、真空中で、1500℃以上、2200℃以下の温度、0.5分以上、60分以下の時間で行うとよい。この熱処理は、半導体層2の表面を炭素から成る保護膜で覆った状態で行ってもよい。そうすることにより、熱処理時に、半導体層2内の残留水分や残留酸素との反応によってエッチングが生じることを抑制でき、半導体層2の表面が荒れることを防止できる。 After that, a heat treatment is performed to electrically activate the impurities injected into the semiconductor layer 2. This heat treatment may be performed in an atmosphere of an inert gas such as argon or nitrogen, or in a vacuum at a temperature of 1500 ° C. or higher and 2200 ° C. or lower, and for a time of 0.5 minutes or longer and 60 minutes or shorter. This heat treatment may be performed in a state where the surface of the semiconductor layer 2 is covered with a protective film made of carbon. By doing so, it is possible to suppress the occurrence of etching due to the reaction with the residual water and residual oxygen in the semiconductor layer 2 during the heat treatment, and it is possible to prevent the surface of the semiconductor layer 2 from being roughened.
 次に、ゲートトレンチ11およびSBDトレンチ21の内面(底面および側面)にゲート絶縁膜12を形成する。さらに、化学堆積法などにより、例えば多結晶シリコンなどをゲートトレンチ11およびSBDトレンチ21内に埋め込むことで、ゲートトレンチ11およびSBDトレンチ21内にゲート電極13を形成する(図4)。ただし、SBDトレンチ21内のゲート絶縁膜12およびゲート電極13は、この後の工程で除去される。 Next, the gate insulating film 12 is formed on the inner surfaces (bottom surface and side surface) of the gate trench 11 and the SBD trench 21. Further, by embedding, for example, polycrystalline silicon in the gate trench 11 and the SBD trench 21 by a chemical deposition method or the like, the gate electrode 13 is formed in the gate trench 11 and the SBD trench 21 (FIG. 4). However, the gate insulating film 12 and the gate electrode 13 in the SBD trench 21 are removed in a subsequent step.
 続いて、半導体層2上に層間絶縁膜14を形成し、レジストマスク等を用いた選択的なエッチング等によって、層間絶縁膜14に、ソース領域5(および不図示のウェルコンタクト領域)に達するコンタクトホールを形成する。そして、コンタクトホール内に露出したソース領域5(およびウェルコンタクト領域)の上面に、ソースコンタクト電極15を形成する(図5)。 Subsequently, an interlayer insulating film 14 is formed on the semiconductor layer 2, and a contact that reaches the source region 5 (and a well contact region (not shown)) reaches the interlayer insulating film 14 by selective etching or the like using a resist mask or the like. Form a hole. Then, the source contact electrode 15 is formed on the upper surface of the source region 5 (and the well contact region) exposed in the contact hole (FIG. 5).
 ソースコンタクト電極15の形成方法としては、例えば、コンタクトホール内を含む層間絶縁膜14上にNiを主成分とする金属膜を成膜し、600℃以上、1100℃以下の熱処理により金属膜と炭化珪素半導体と反応させてシリサイド膜を形成し、その後、層間絶縁膜14上に残留した未反応の金属膜をウェットエッチングにより除去する、という方法がある。未反応の金属膜を除去した後に、再度熱処理を行ってもよい。この場合、2回目の熱処理を、1回目の熱処理よりも高温で行うことで、ソースコンタクト電極15とソース領域5(およびウェルコンタクト領域)との間に、コンタクト抵抗のより低いオーミック接触を形成することができる。 As a method for forming the source contact electrode 15, for example, a metal film containing Ni as a main component is formed on the interlayer insulating film 14 including the inside of the contact hole, and the metal film is carbonized by heat treatment at 600 ° C. or higher and 1100 ° C. or lower. There is a method of reacting with a silicon semiconductor to form a silicide film, and then removing the unreacted metal film remaining on the interlayer insulating film 14 by wet etching. After removing the unreacted metal film, the heat treatment may be performed again. In this case, the second heat treatment is performed at a higher temperature than the first heat treatment to form an ohmic contact with a lower contact resistance between the source contact electrode 15 and the source region 5 (and the well contact region). be able to.
 その後、マスクを用いた選択的なエッチング等により、SBDトレンチ21内のゲート電極13およびゲート絶縁膜12を除去する(図6)。続いて、SBDトレンチ21内を含む半導体層2の上面にショットキー電極22を形成し、さらに、その上にソース電極16を形成する。ショットキー電極22は、少なくともソース電極16とドリフト層3とに接していればよいが、図1のように、さらにソースコンタクト電極15、ソース領域5およびボディ領域4とも接してもよい。そして、半導体基板1の裏面にドレイン電極17を形成する。ショットキー電極22、ソース電極16、ドレイン電極17はスパッタ法などの物理蒸着法を用いて形成することができる。 After that, the gate electrode 13 and the gate insulating film 12 in the SBD trench 21 are removed by selective etching or the like using a mask (FIG. 6). Subsequently, a Schottky electrode 22 is formed on the upper surface of the semiconductor layer 2 including the inside of the SBD trench 21, and a source electrode 16 is further formed on the Schottky electrode 22. The Schottky electrode 22 may be in contact with at least the source electrode 16 and the drift layer 3, but may also be in contact with the source contact electrode 15, the source region 5, and the body region 4 as shown in FIG. Then, the drain electrode 17 is formed on the back surface of the semiconductor substrate 1. The Schottky electrode 22, the source electrode 16, and the drain electrode 17 can be formed by using a physical vapor deposition method such as a sputtering method.
 以上の工程により、図1に示した構成の炭化珪素半導体装置が形成される。 By the above steps, the silicon carbide semiconductor device having the configuration shown in FIG. 1 is formed.
 実施の形態1に係る炭化珪素半導体装置では、ショットキー電極22がSBDトレンチ21内に埋め込まれているため、SBDトレンチ21の側壁でもSBDコンタクトの面積を確保できる。よって、図1の横方向の寸法を小さく抑えつつ、広い面積のSBDコンタクトを得ることができる。その結果、同じユニポーラ電流を流すために必要なチップ面積を小さくすることができ、チップコストを安くすることができる。 In the silicon carbide semiconductor device according to the first embodiment, since the Schottky electrode 22 is embedded in the SBD trench 21, the area of the SBD contact can be secured even on the side wall of the SBD trench 21. Therefore, it is possible to obtain an SBD contact having a large area while keeping the lateral dimension of FIG. 1 small. As a result, the chip area required to pass the same unipolar current can be reduced, and the chip cost can be reduced.
 また、ゲートトレンチ11が非テーパ形状であるため、ゲート絶縁膜12の形成レートの制御性、チャネル特性、ならびにゲート絶縁膜12およびチャネルの信頼性が高い面方位に、MOS構造を形成することができる。よって、MOSFETにおいて良好なチャネル特性が得られる。 Further, since the gate trench 11 has a non-tapered shape, the MOS structure can be formed in a plane orientation having high controllability of the formation rate of the gate insulating film 12, channel characteristics, and reliability of the gate insulating film 12 and the channel. it can. Therefore, good channel characteristics can be obtained in the MOSFET.
 さらに、SBDトレンチ21がテーパ形状であるため、ショットキー電極22のカバレッジ性が向上し、SBDトレンチ21の内壁のドリフト層3の全面にショットキー電極22を接触させることができる。その結果、コンタクト面積増加によるユニポーラ電流増大、コンタクト領域狭窄による局所的な電流集中の抑制が可能となる。 Further, since the SBD trench 21 has a tapered shape, the coverage of the Schottky electrode 22 is improved, and the Schottky electrode 22 can be brought into contact with the entire surface of the drift layer 3 on the inner wall of the SBD trench 21. As a result, it is possible to increase the unipolar current due to the increase in the contact area and suppress the local current concentration due to the narrowing of the contact area.
 さらに、SBDトレンチ21がテーパ形状であることにより、図1のように、ソース電極16を、ショットキー電極22で覆われたSBDトレンチ21内に形成することができる。ソース電極16は、スパッタ法などの物理蒸着法でSiを添加したAlを堆積させることによって形成されるが、SBDトレンチ21がテーパ形状であることは、ソース電極16の空洞形成抑制や表面平坦化に効果的である。SBDトレンチ21に空洞が形成された場合、熱的信頼性の低下や電流経路の狭窄のため局所発熱の懸念があるため、ソース電極16はSBDトレンチ21内に隙間なく埋め込まれていることが望ましい。またソース電極16の表面形状がラフである場合、ワイヤーボンディングの密着性低下による熱的信頼性の低下や電流経路狭窄のための局所発熱の懸念があるため、ソース電極16の表面平坦性は高いことが望ましい。 Further, since the SBD trench 21 has a tapered shape, the source electrode 16 can be formed in the SBD trench 21 covered with the Schottky electrode 22 as shown in FIG. The source electrode 16 is formed by depositing Al to which Si is added by a physical vapor deposition method such as a sputtering method, but the tapered shape of the SBD trench 21 suppresses the formation of cavities in the source electrode 16 and flattens the surface. It is effective for. When a cavity is formed in the SBD trench 21, the source electrode 16 is preferably embedded in the SBD trench 21 without a gap because there is a concern of local heat generation due to a decrease in thermal reliability and a narrowing of the current path. .. Further, when the surface shape of the source electrode 16 is rough, the surface flatness of the source electrode 16 is high because there is a concern that the thermal reliability may decrease due to the decrease in the adhesion of the wire bonding and the local heat generation may occur due to the narrowing of the current path. Is desirable.
 [変形例]
 以下、実施の形態1に係る炭化珪素半導体装置の構成の幾つかの変形例を示す。
[Modification example]
Hereinafter, some modifications of the configuration of the silicon carbide semiconductor device according to the first embodiment will be shown.
 図7のように、SBDトレンチ21の深さは、ゲートトレンチ11よりも浅くてもよい。この場合、後で図11に示すように、SBDトレンチ21とその下に設けられる第2導電型の保護層31との接触を回避することができ、SBDがオフ状態のときのリーク電流を低減することができる。逆に、図8のように、SBDトレンチ21の深さを、ゲートトレンチ11よりも深くしてもよい。この場合、ゲートトレンチ11内のゲート絶縁膜12にかかる電界強度が低減され、炭化珪素半導体装置の信頼性が向上する。 As shown in FIG. 7, the depth of the SBD trench 21 may be shallower than that of the gate trench 11. In this case, as shown later in FIG. 11, contact between the SBD trench 21 and the second conductive type protective layer 31 provided under the trench 21 can be avoided, and the leakage current when the SBD is off can be reduced. can do. On the contrary, as shown in FIG. 8, the depth of the SBD trench 21 may be deeper than that of the gate trench 11. In this case, the electric field strength applied to the gate insulating film 12 in the gate trench 11 is reduced, and the reliability of the silicon carbide semiconductor device is improved.
 図9または図10に示すように、ドリフト層3内において、ゲートトレンチ11およびSBDトレンチ21の片方または両方の底部に接するように、第2導電型の保護層31を形成してもよい。保護層31は、ゲートトレンチ11またはSBDトレンチ21の底部周辺にかかる電界を緩和する効果を奏する。 As shown in FIG. 9 or 10, a second conductive type protective layer 31 may be formed in the drift layer 3 so as to be in contact with the bottoms of one or both of the gate trench 11 and the SBD trench 21. The protective layer 31 has the effect of relaxing the electric field applied around the bottom of the gate trench 11 or the SBD trench 21.
 図11のように、SBDトレンチ21の下に設けられる保護層31は、SBDトレンチ21から離間した位置に形成されてもよい。この場合、SBDがオフ状態のときに保護層31を経由して流れるリーク電流を低減することができる。 As shown in FIG. 11, the protective layer 31 provided under the SBD trench 21 may be formed at a position separated from the SBD trench 21. In this case, the leakage current flowing through the protective layer 31 can be reduced when the SBD is in the off state.
 図12のように、SBDトレンチ21内に、保護層31とオーミック接合するオーミック電極23を形成してもよい。すなわち、SBDトレンチ21内のショットキー電極22と保護層31との境界部分に、保護層31とオーミックコンタクトを成すオーミック電極23を介在させてもよい。これにより、SBDトレンチ21底部の保護層31周囲の空乏化挙動に伴う電荷移動がスムーズになり、SBDの高速スイッチングが可能となる。 As shown in FIG. 12, an ohmic electrode 23 that ohmic-bonds to the protective layer 31 may be formed in the SBD trench 21. That is, the ohmic electrode 23 that makes ohmic contact with the protective layer 31 may be interposed at the boundary portion between the Schottky electrode 22 and the protective layer 31 in the SBD trench 21. As a result, charge transfer due to the depletion behavior around the protective layer 31 at the bottom of the SBD trench 21 becomes smooth, and high-speed switching of the SBD becomes possible.
 図1においては、ショットキー電極22はソース電極16とは異なる材料で形成されていたが、図13のように、SBDトレンチ21内のソース電極16をSBDトレンチ21の内面に接触させることで、ソース電極16の一部をショットキー電極22としてもよい。言い換えれば、ショットキー電極22はソース電極16と同じ材料で形成されてもよい。この場合、ソース電極16とショットキー電極22とをそれぞれ異なる材料で形成するのに比べ、製造コストを下げることができる。 In FIG. 1, the Schottky electrode 22 is made of a material different from that of the source electrode 16, but as shown in FIG. 13, the source electrode 16 in the SBD trench 21 is brought into contact with the inner surface of the SBD trench 21. A part of the source electrode 16 may be used as the Schottky electrode 22. In other words, the Schottky electrode 22 may be made of the same material as the source electrode 16. In this case, the manufacturing cost can be reduced as compared with the case where the source electrode 16 and the Schottky electrode 22 are made of different materials.
 図14のように、ドリフト層3内に、ゲートトレンチ11およびSBDトレンチ21の片方または両方の側壁と隣接するように、ボディ領域4と保護層31との間に接続する第2導電型の接続層32を形成してもよい。この場合、ターンオン時やターンオフ時に、保護層31から電荷を抜き取ったり、戻したりする際の経路長が短くなり、電位上昇が抑えられ、その結果、ゲート絶縁膜12の信頼性が向上する。 As shown in FIG. 14, a second conductive type connection is connected between the body region 4 and the protective layer 31 so as to be adjacent to one or both side walls of the gate trench 11 and the SBD trench 21 in the drift layer 3. The layer 32 may be formed. In this case, at the time of turn-on or turn-off, the path length when extracting or returning the electric charge from the protective layer 31 is shortened, the potential increase is suppressed, and as a result, the reliability of the gate insulating film 12 is improved.
 図15のように、ドリフト層3内に、ゲートトレンチ11の側壁に隣接するように、ドリフト層3よりも不純物濃度の高い第1導電型の第1低抵抗層41を形成してもよい。第1低抵抗層41の不純物濃度は、例えば1.0×1016cm-3以上、1.0×1019cm-3以下である。これにより、MOSFET領域10のボディ領域4と保護層31の間の空乏化を抑制することができ、MOSFETがオン状態のときにドレイン電極17からソース電極16に流れる電流を増大させることができる。 As shown in FIG. 15, a first conductive type first low resistance layer 41 having a higher impurity concentration than the drift layer 3 may be formed in the drift layer 3 so as to be adjacent to the side wall of the gate trench 11. The impurity concentration of the first low resistance layer 41 is, for example, 1.0 × 10 16 cm -3 or more and 1.0 × 10 19 cm -3 or less. As a result, depletion between the body region 4 and the protective layer 31 of the MOSFET region 10 can be suppressed, and the current flowing from the drain electrode 17 to the source electrode 16 can be increased when the MOSFET is in the ON state.
 図16のように、ドリフト層3内に、SBDトレンチ21の側壁に隣接するように、ドリフト層3よりも不純物濃度の低い第1導電型の第2低抵抗層42を形成してもよい。これにより、SBD領域20のボディ領域4と保護層31の間の空乏化を抑制することができ、SBDを通してドレイン電極17からソース電極16に流れるユニポーラ電流を増大させることができる。第2低抵抗層42の不純物濃度は、ドリフト層3の第1導電型の不純物濃度よりも高く、第1低抵抗層41の第1導電型の不純物濃度よりも小さく設定され、例えば1.0×1016より大きく、1.0×1019cm-3より小さい範囲に設定される。 As shown in FIG. 16, a first conductive type second low resistance layer 42 having a lower impurity concentration than the drift layer 3 may be formed in the drift layer 3 so as to be adjacent to the side wall of the SBD trench 21. As a result, depletion between the body region 4 of the SBD region 20 and the protective layer 31 can be suppressed, and the unipolar current flowing from the drain electrode 17 to the source electrode 16 through the SBD can be increased. The impurity concentration of the second low resistance layer 42 is set higher than the impurity concentration of the first conductive type of the drift layer 3 and smaller than the impurity concentration of the first conductive type of the first low resistance layer 41, for example, 1.0. It is set in the range larger than × 10 16 and smaller than 1.0 × 10 19 cm -3 .
 図17に示すように、接続層32、第1低抵抗層41および第2低抵抗層42は、1つのユニットセル内に共存させてもよい。これにより、ゲート絶縁膜12の信頼性向上、MOSFETのオン時にドレイン電極17からソース電極16に流れる電流の増大、SBDを通してドレイン電極17からソース電極16に流れるユニポーラ電流の増大という、接続層32、第1低抵抗層41および第2低抵抗層42のすべての効果が得られる。 As shown in FIG. 17, the connection layer 32, the first low resistance layer 41, and the second low resistance layer 42 may coexist in one unit cell. As a result, the reliability of the gate insulating film 12 is improved, the current flowing from the drain electrode 17 to the source electrode 16 when the MOSFET is turned on is increased, and the unipolar current flowing from the drain electrode 17 to the source electrode 16 through the SBD is increased. All the effects of the first low resistance layer 41 and the second low resistance layer 42 can be obtained.
 図18に示すように、炭化珪素半導体装置が、ゲートトレンチ11およびSBDトレンチ21の片方または両方の底部に形成された保護層31が複数設けられる場合、保護層31同士の間に、ドリフト層3よりも不純物濃度の低い第1導電型の第3低抵抗層43を形成してもよい。第3低抵抗層43の不純物濃度は、第1低抵抗層41、第2低抵抗層42と調整する必要はなく、1.0×1016cm-3以上、1.0×1019cm-3以下の範囲で設定されればよい。第3低抵抗層43は、保護層31の間の空乏化を抑制し、MOSFETのオン時にドレイン電極17からソース電極16に流れる電流を増大させることができる。 As shown in FIG. 18, when the silicon carbide semiconductor device is provided with a plurality of protective layers 31 formed on the bottoms of one or both of the gate trench 11 and the SBD trench 21, the drift layer 3 is provided between the protective layers 31. The first conductive type third low resistance layer 43 having a lower impurity concentration may be formed. The impurity concentration of the third low resistance layer 43 does not need to be adjusted with the first low resistance layer 41 and the second low resistance layer 42, and is 1.0 × 10 16 cm -3 or more, 1.0 × 10 19 cm −. It may be set in the range of 3 or less. The third low resistance layer 43 can suppress depletion between the protective layers 31 and increase the current flowing from the drain electrode 17 to the source electrode 16 when the MOSFET is turned on.
 <実施の形態2>
 本実施の形態は、上述した実施の形態1に係る半導体装置を電力変換装置に適用したものである。実施の形態1に係る半導体装置の適用は特定の電力変換装置に限定されるものではないが、以下、実施の形態2として、三相のインバータに実施の形態1に係る半導体装置を適用した場合について説明する。
<Embodiment 2>
In this embodiment, the semiconductor device according to the first embodiment described above is applied to a power conversion device. The application of the semiconductor device according to the first embodiment is not limited to a specific power conversion device, but hereinafter, as the second embodiment, when the semiconductor device according to the first embodiment is applied to a three-phase inverter. Will be described.
 図19は、本実施の形態に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 19 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.
 図19に示す電力変換システムは、電源100、電力変換装置200、負荷300から構成される。電源100は、直流電源であり、電力変換装置200に直流電力を供給する。電源100は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源100を、直流系統から出力される直流電力を予め定められた電力に変換するDC/DCコンバータによって構成することとしてもよい。 The power conversion system shown in FIG. 19 includes a power source 100, a power conversion device 200, and a load 300. The power source 100 is a DC power source, and supplies DC power to the power converter 200. The power supply 100 can be configured by various things, for example, it can be configured by a DC system, a solar cell, a storage battery, or by a rectifier circuit or an AC / DC converter connected to an AC system. May be good. Further, the power supply 100 may be configured by a DC / DC converter that converts the DC power output from the DC system into a predetermined power.
 電力変換装置200は、電源100と負荷300の間に接続された三相のインバータであり、電源100から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。電力変換装置200は、図19に示すように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201の各スイッチング素子を駆動する駆動信号を出力する駆動回路202と、駆動回路202を制御する制御信号を駆動回路202に出力する制御回路203とを備えている。 The power conversion device 200 is a three-phase inverter connected between the power supply 100 and the load 300, converts the DC power supplied from the power supply 100 into AC power, and supplies AC power to the load 300. As shown in FIG. 19, the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a drive circuit 202 that outputs a drive signal that drives each switching element of the main conversion circuit 201. A control circuit 203 that outputs a control signal for controlling the drive circuit 202 to the drive circuit 202 is provided.
 負荷300は、電力変換装置200から供給された交流電力によって駆動される三相の電動機である。なお、負荷300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200. The load 300 is not limited to a specific application, and is an electric motor mounted on various electric devices. For example, the load 300 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.
 以下、電力変換装置200の詳細を説明する。主変換回路201は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源100から供給される直流電力を交流電力に変換し、負荷300に供給する。主変換回路201の具体的な回路構成は種々のものがあるが、本実施の形態に係る主変換回路201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路201の各スイッチング素子および還流ダイオードには、上述した実施の形態1に係る半導体装置を適用する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路201の3つの出力端子は、負荷300に接続される。 The details of the power converter 200 will be described below. The main conversion circuit 201 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, the DC power supplied from the power supply 100 is converted into AC power and supplied to the load 300. There are various specific circuit configurations of the main conversion circuit 201, but the main conversion circuit 201 according to the present embodiment is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can consist of six anti-parallel freewheeling diodes. The semiconductor device according to the first embodiment described above is applied to each switching element and freewheeling diode of the main conversion circuit 201. The six switching elements are connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. Then, the output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 201 are connected to the load 300.
 駆動回路202は、主変換回路201のスイッチング素子を駆動する駆動信号を生成し、主変換回路201のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 The drive circuit 202 generates a drive signal for driving the switching element of the main conversion circuit 201 and supplies it to the control electrode of the switching element of the main conversion circuit 201. Specifically, according to the control signal from the control circuit 203 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrodes of each switching element. When the switching element is kept in the on state, the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element, and when the switching element is kept in the off state, the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).
 制御回路203は、負荷300に所望の電力が供給されるよう主変換回路201のスイッチング素子を制御する。具体的には、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、駆動回路202に制御指令(制御信号)を出力する。駆動回路202は、この制御信号に従い、各スイッチング素子の制御電極にオン信号またはオフ信号を駆動信号として出力する。 The control circuit 203 controls the switching element of the main conversion circuit 201 so that the desired power is supplied to the load 300. Specifically, the time (on time) for each switching element of the main conversion circuit 201 to be in the on state is calculated based on the power to be supplied to the load 300. For example, the main conversion circuit 201 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is output to the drive circuit 202 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off. The drive circuit 202 outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
 本実施の形態に係る電力変換装置では、主変換回路201のスイッチング素子および還流ダイオードとして実施の形態1に係る半導体装置を適用するため、信頼性向上を実現することができる。 In the power conversion device according to the present embodiment, the semiconductor device according to the first embodiment is applied as the switching element and the freewheeling diode of the main conversion circuit 201, so that the reliability can be improved.
 本実施の形態では、2レベルの三相インバータに実施の形態1に係る半導体装置を適用する例を説明したが、実施の形態1に係る半導体装置の適用は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに実施の形態1に係る半導体装置を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに実施の形態1に係る半導体装置を適用することも可能である。 In the present embodiment, an example of applying the semiconductor device according to the first embodiment to a two-level three-phase inverter has been described, but the application of the semiconductor device according to the first embodiment is not limited to this. It can be applied to various power conversion devices. In the present embodiment, a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used, and when power is supplied to a single-phase load, a single-phase inverter is used. The semiconductor device according to 1 may be applied. Further, when supplying electric power to a DC load or the like, it is also possible to apply the semiconductor device according to the first embodiment to a DC / DC converter or an AC / DC converter.
 また、実施の形態1に係る半導体装置を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、または誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 Further, the power conversion device to which the semiconductor device according to the first embodiment is applied is not limited to the case where the above-mentioned load is an electric motor, for example, a discharge machine, a laser machine, an induction heating cooker, or a non-electric machine. It can be used as a power supply device for a contact power supply system, and can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 It should be noted that, within the scope of the invention, the present invention can be freely combined with each embodiment, and each embodiment can be appropriately modified or omitted.
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is exemplary in all embodiments and the present invention is not limited thereto. It is understood that a myriad of variations not illustrated can be envisioned without departing from the scope of the invention.
 1 半導体基板、2 半導体層、3 ドリフト層、4 ボディ領域、5 ソース領域、10 MOSFET領域、11 ゲートトレンチ、12 ゲート絶縁膜、13 ゲート電極、14 層間絶縁膜、15 ソースコンタクト電極、16 ソース電極、17 ドレイン電極、20 SBD領域、21 SBDトレンチ、22 ショットキー電極、23 オーミック電極、31 保護層、32 接続層、41 第1低抵抗層、42 第2低抵抗層、43 第3低抵抗層、100 電源、200 電力変換装置、201 主変換回路、202 駆動回路、203 制御回路、300 負荷。 1 semiconductor substrate, 2 semiconductor layer, 3 drift layer, 4 body area, 5 source area, 10 MOSFET area, 11 gate trench, 12 gate insulating film, 13 gate electrode, 14 interlayer insulating film, 15 source contact electrode, 16 source electrode , 17 drain electrode, 20 SBD region, 21 SBD trench, 22 shot key electrode, 23 ohmic electrode, 31 protective layer, 32 connection layer, 41 first low resistance layer, 42 second low resistance layer, 43 third low resistance layer. , 100 power supply, 200 power conversion device, 201 main conversion circuit, 202 drive circuit, 203 control circuit, 300 load.

Claims (18)

  1.  炭化珪素から成る半導体層と、
     前記半導体層に形成された第1導電型のドリフト層と、
     前記ドリフト層の表層部に形成された第2導電型のボディ領域と、
     前記ボディ領域の表層部に形成された第1導電型のソース領域と、
     前記ソース領域および前記ボディ領域を貫通して前記ドリフト層に達するゲートトレンチと、
     前記ゲートトレンチの内面に形成されたゲート絶縁膜と、
     前記ゲートトレンチ内の前記ゲート絶縁膜上に形成されたゲート電極と、
     前記ソース領域および前記ボディ領域を貫通して前記ドリフト層に達し、前記ゲートトレンチよりも側壁の傾斜が緩やかなSBDトレンチと、
     前記SBDトレンチ内に形成され、前記ドリフト層とショットキーコンタクトを成すショットキー電極と、
    を備える炭化珪素半導体装置。
    A semiconductor layer made of silicon carbide and
    The first conductive type drift layer formed on the semiconductor layer and
    A second conductive body region formed on the surface layer of the drift layer and
    The first conductive type source region formed on the surface layer of the body region and
    A gate trench that penetrates the source region and the body region and reaches the drift layer.
    The gate insulating film formed on the inner surface of the gate trench and
    A gate electrode formed on the gate insulating film in the gate trench and
    An SBD trench that penetrates the source region and the body region to reach the drift layer and has a gentler side wall slope than the gate trench.
    A Schottky electrode formed in the SBD trench and forming a Schottky contact with the drift layer,
    A silicon carbide semiconductor device comprising.
  2.  前記ゲートトレンチは非テーパ形状であり、
     前記ゲート絶縁膜はテーパ形状である、
    請求項1に記載の炭化珪素半導体装置。
    The gate trench has a non-tapered shape.
    The gate insulating film has a tapered shape.
    The silicon carbide semiconductor device according to claim 1.
  3.  前記ゲートトレンチの側壁と前記半導体層の表面との成す角は80度以上、90度以下の範囲であり、
     前記SBDトレンチの側壁と前記半導体層の表面との成す角は45度以上、85度以下の範囲である、
    請求項1に記載の炭化珪素半導体装置。
    The angle formed by the side wall of the gate trench and the surface of the semiconductor layer is in the range of 80 degrees or more and 90 degrees or less.
    The angle formed by the side wall of the SBD trench and the surface of the semiconductor layer is in the range of 45 degrees or more and 85 degrees or less.
    The silicon carbide semiconductor device according to claim 1.
  4.  前記ゲートトレンチの深さは、前記SBDトレンチよりも深い、
    請求項1から請求項3のいずれか一項に記載の炭化珪素半導体装置。
    The depth of the gate trench is deeper than that of the SBD trench.
    The silicon carbide semiconductor device according to any one of claims 1 to 3.
  5.  前記ゲートトレンチの深さは、前記SBDトレンチよりも浅い、
    請求項1から請求項3のいずれか一項に記載の炭化珪素半導体装置。
    The depth of the gate trench is shallower than that of the SBD trench.
    The silicon carbide semiconductor device according to any one of claims 1 to 3.
  6.  前記ゲートトレンチおよび前記SBDトレンチの片方または両方の底部に接するように形成された第2導電型の保護層をさらに備える、
    請求項1から請求項5のいずれか一項に記載の炭化珪素半導体装置。
    Further comprising a second conductive protective layer formed to contact the bottom of the gate trench and one or both of the SBD trenches.
    The silicon carbide semiconductor device according to any one of claims 1 to 5.
  7.  前記保護層は、前記SBDトレンチの底部からは離間している、
    請求項6に記載の炭化珪素半導体装置。
    The protective layer is separated from the bottom of the SBD trench.
    The silicon carbide semiconductor device according to claim 6.
  8.  前記SBDトレンチ内に形成され、前記保護層とオーミックコンタクトを成すオーミック電極をさらに備える、
    請求項6または請求項7に記載の炭化珪素半導体装置。
    An ohmic electrode formed in the SBD trench and making ohmic contact with the protective layer is further provided.
    The silicon carbide semiconductor device according to claim 6 or 7.
  9.  前記ゲートトレンチおよび前記SBDトレンチの片方または両方の側壁に隣接して形成され、前記ボディ領域と前記保護層との間に接続する第2導電型の接続層をさらに備える、
    請求項6から請求項8のいずれか一項に記載の炭化珪素半導体装置。
    A second conductive type connecting layer formed adjacent to the gate trench and one or both side walls of the SBD trench and connecting between the body region and the protective layer is further provided.
    The silicon carbide semiconductor device according to any one of claims 6 to 8.
  10.  前記半導体層の上に形成され、前記ソース領域と電気的に接続するソース電極をさらに備え、
     前記ショットキー電極は、前記SBDトレンチの内面に沿って形成されており、
     前記ソース電極の一部は、前記SBDトレンチ内の前記ショットキー電極上に形成されている、
    請求項1から請求項9のいずれか一項に記載の炭化珪素半導体装置。
    Further comprising a source electrode formed on the semiconductor layer and electrically connected to the source region.
    The Schottky electrode is formed along the inner surface of the SBD trench.
    A part of the source electrode is formed on the Schottky electrode in the SBD trench.
    The silicon carbide semiconductor device according to any one of claims 1 to 9.
  11.  前記ドリフト層内に、前記ゲートトレンチの側壁に隣接するように形成された、前記ドリフト層よりも不純物濃度の高い第1導電型の第1低抵抗層をさらに備える、
    請求項1から請求項10のいずれか一項に記載の炭化珪素半導体装置。
    The drift layer further includes a first conductive type first low resistance layer having a higher impurity concentration than the drift layer, which is formed so as to be adjacent to the side wall of the gate trench.
    The silicon carbide semiconductor device according to any one of claims 1 to 10.
  12.  前記ドリフト層内に、前記SBDトレンチの側壁に隣接するように形成された、前記ドリフト層よりも不純物濃度の低い第1導電型の第2低抵抗層をさらに備える、
    請求項1から請求項11のいずれか一項に記載の炭化珪素半導体装置。
    A first conductive type second low resistance layer having a lower impurity concentration than the drift layer, which is formed in the drift layer so as to be adjacent to the side wall of the SBD trench, is further provided.
    The silicon carbide semiconductor device according to any one of claims 1 to 11.
  13.  前記保護層を複数個備え、
     前記保護層同士の間に形成された、前記ドリフト層よりも不純物濃度の低い第1導電型の第3低抵抗層をさらに備える、
    請求項6から請求項9のいずれか一項に記載の炭化珪素半導体装置。
    Provided with a plurality of the protective layers
    A first conductive type third low resistance layer having a lower impurity concentration than the drift layer, which is formed between the protective layers, is further provided.
    The silicon carbide semiconductor device according to any one of claims 6 to 9.
  14.  前記ゲートトレンチおよび前記SBDトレンチの長手方向は、前記半導体層のステップフローの方向に平行である、
    請求項1から請求項13のいずれか一項に記載の炭化珪素半導体装置。
    The longitudinal direction of the gate trench and the SBD trench is parallel to the direction of the step flow of the semiconductor layer.
    The silicon carbide semiconductor device according to any one of claims 1 to 13.
  15.  前記ゲートトレンチおよび前記SBDトレンチの長手方向は、前記半導体層のステップフローの方向に垂直である、
    請求項1から請求項13のいずれか一項に記載の炭化珪素半導体装置。
    The longitudinal direction of the gate trench and the SBD trench is perpendicular to the direction of the step flow of the semiconductor layer.
    The silicon carbide semiconductor device according to any one of claims 1 to 13.
  16.  請求項1から請求項15のいずれか一項に記載の炭化珪素半導体装置を有し、入力される電力を変換して出力する主変換回路と、
     前記炭化珪素半導体装置を駆動する駆動信号を前記炭化珪素半導体装置に出力する駆動回路と、
     前記駆動回路を制御する制御信号を前記駆動回路に出力する制御回路と、
    を備えた、電力変換装置。
    A main conversion circuit having the silicon carbide semiconductor device according to any one of claims 1 to 15 and converting and outputting input power.
    A drive circuit that outputs a drive signal for driving the silicon carbide semiconductor device to the silicon carbide semiconductor device,
    A control circuit that outputs a control signal for controlling the drive circuit to the drive circuit,
    A power converter equipped with.
  17.  炭化珪素から成る半導体層に第1導電型のドリフト層を形成する工程と、
     前記ドリフト層の表層部に第2導電型のボディ領域を形成する工程と、
     前記ボディ領域の表層部に第1導電型のソース領域を形成する工程と、
     前記ソース領域および前記ボディ領域を貫通して前記ドリフト層に達するゲートトレンチを形成する工程と、
     前記ゲートトレンチの内面にゲート絶縁膜を形成する工程と、
     前記ゲートトレンチ内の前記ゲート絶縁膜上にゲート電極を形成する工程と、
     前記ソース領域および前記ボディ領域を貫通して前記ドリフト層に達する、前記ゲートトレンチよりも側壁の傾斜が緩やかなSBDトレンチを形成する工程と、
     前記SBDトレンチ内に、前記ドリフト層とショットキーコンタクトを成すショットキー電極を形成する工程と、
    を備える炭化珪素半導体装置の製造方法。
    A process of forming a first conductive type drift layer on a semiconductor layer made of silicon carbide, and
    A step of forming a second conductive type body region on the surface layer portion of the drift layer, and
    A step of forming a first conductive type source region on the surface layer portion of the body region, and
    A step of forming a gate trench that penetrates the source region and the body region and reaches the drift layer.
    The process of forming a gate insulating film on the inner surface of the gate trench and
    A step of forming a gate electrode on the gate insulating film in the gate trench, and
    A step of forming an SBD trench having a side wall slope gentler than that of the gate trench, which penetrates the source region and the body region and reaches the drift layer.
    A step of forming a Schottky electrode forming a Schottky contact with the drift layer in the SBD trench, and
    A method for manufacturing a silicon carbide semiconductor device.
  18.  前記ゲート電極は、化学堆積法で形成され、
     前記ショットキー電極は、物理蒸着法で形成される、
    請求項17に記載の炭化珪素半導体装置の製造方法。
    The gate electrode is formed by a chemical deposition method and is formed.
    The Schottky electrode is formed by a physical vapor deposition method.
    The method for manufacturing a silicon carbide semiconductor device according to claim 17.
PCT/JP2019/028858 2019-07-23 2019-07-23 Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device WO2021014570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020510147A JP6735950B1 (en) 2019-07-23 2019-07-23 Silicon carbide semiconductor device, power converter, and method for manufacturing silicon carbide semiconductor device
PCT/JP2019/028858 WO2021014570A1 (en) 2019-07-23 2019-07-23 Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028858 WO2021014570A1 (en) 2019-07-23 2019-07-23 Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
WO2021014570A1 true WO2021014570A1 (en) 2021-01-28

Family

ID=71892510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028858 WO2021014570A1 (en) 2019-07-23 2019-07-23 Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device

Country Status (2)

Country Link
JP (1) JP6735950B1 (en)
WO (1) WO2021014570A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202041A1 (en) * 2021-03-23 2022-09-29 ローム株式会社 Semiconductor device
JP7275407B1 (en) * 2021-12-27 2023-05-17 三菱電機株式会社 Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230215942A1 (en) * 2020-08-25 2023-07-06 Mitsubishi Electric Corporation Semiconductor device, power conversion apparatus, and method for producing semiconductor device
WO2022097221A1 (en) * 2020-11-05 2022-05-12 三菱電機株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device
EP4145533A1 (en) 2020-12-24 2023-03-08 Fuji Electric Co., Ltd. Insulated gate-type semiconductor device
WO2022137789A1 (en) * 2020-12-24 2022-06-30 富士電機株式会社 Insulated gate semiconductor device
JPWO2022190269A1 (en) * 2021-03-10 2022-09-15
DE112021007715T5 (en) * 2021-05-27 2024-03-14 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE AND POWER CONVERTER DEVICE

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210392A (en) * 2005-01-25 2006-08-10 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2008536316A (en) * 2005-04-06 2008-09-04 フェアチャイルド・セミコンダクター・コーポレーション Trench gate field effect transistor and method of forming the same
JP2009278067A (en) * 2008-04-17 2009-11-26 Fuji Electric Device Technology Co Ltd Wide band gap semiconductor device, and method of manufacturing the same
JP2016122835A (en) * 2014-12-03 2016-07-07 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device with trench electrode
JP2017079251A (en) * 2015-10-20 2017-04-27 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
WO2018084020A1 (en) * 2016-11-01 2018-05-11 三菱電機株式会社 Silicon carbide semiconductor device and power conversion device
JP2018142578A (en) * 2017-02-27 2018-09-13 トヨタ自動車株式会社 Mosfet
WO2018212282A1 (en) * 2017-05-17 2018-11-22 ローム株式会社 Semiconductor device
JP2019003968A (en) * 2017-06-09 2019-01-10 国立研究開発法人産業技術総合研究所 Semiconductor device and semiconductor device manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911486B2 (en) * 2017-04-20 2021-07-28 富士電機株式会社 Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210392A (en) * 2005-01-25 2006-08-10 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2008536316A (en) * 2005-04-06 2008-09-04 フェアチャイルド・セミコンダクター・コーポレーション Trench gate field effect transistor and method of forming the same
JP2009278067A (en) * 2008-04-17 2009-11-26 Fuji Electric Device Technology Co Ltd Wide band gap semiconductor device, and method of manufacturing the same
JP2016122835A (en) * 2014-12-03 2016-07-07 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device with trench electrode
JP2017079251A (en) * 2015-10-20 2017-04-27 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
WO2018084020A1 (en) * 2016-11-01 2018-05-11 三菱電機株式会社 Silicon carbide semiconductor device and power conversion device
JP2018142578A (en) * 2017-02-27 2018-09-13 トヨタ自動車株式会社 Mosfet
WO2018212282A1 (en) * 2017-05-17 2018-11-22 ローム株式会社 Semiconductor device
JP2019003968A (en) * 2017-06-09 2019-01-10 国立研究開発法人産業技術総合研究所 Semiconductor device and semiconductor device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202041A1 (en) * 2021-03-23 2022-09-29 ローム株式会社 Semiconductor device
JP7275407B1 (en) * 2021-12-27 2023-05-17 三菱電機株式会社 Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
WO2023127023A1 (en) * 2021-12-27 2023-07-06 三菱電機株式会社 Silicon carbide semiconductor device, electric power conversion device, and method for producing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JPWO2021014570A1 (en) 2021-09-13
JP6735950B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6753951B2 (en) Semiconductor devices and power converters
WO2021014570A1 (en) Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
US11158704B2 (en) Semiconductor device and power conversion device
CN110337725B (en) Silicon carbide semiconductor device and power conversion device
JP7068916B2 (en) Silicon Carbide Semiconductor Device, Power Conversion Device, and Method for Manufacturing Silicon Carbide Semiconductor Device
WO2018163593A1 (en) Silicon carbide semiconductor device, power conversion device, method for manufacturing silicon carbide semiconductor device, and method for manufacturing power conversion device
JP6874158B2 (en) Silicon carbide semiconductor device and power conversion device
JP6641523B2 (en) Semiconductor device and power converter
JPWO2019171678A1 (en) Manufacturing method of silicon carbide semiconductor device, power conversion device and silicon carbide semiconductor device
JP6991370B2 (en) Semiconductor equipment and power conversion equipment
JP7275407B1 (en) Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
JP6873273B2 (en) Silicon carbide semiconductor device and power conversion device
JP7047981B1 (en) Silicon carbide semiconductor device and power conversion device
WO2020188862A1 (en) Silicon carbide semiconductor device, power conversion device, and manufacturing method of silicon carbide semiconductor device
JP6377309B1 (en) Silicon carbide semiconductor device, power conversion device, method for manufacturing silicon carbide semiconductor device, and method for manufacturing power conversion device
WO2022070317A1 (en) Method for manufacturing silicon carbide semiconductor device, silicon carbide semiconductor device, and method for manufacturing power conversion device
JP7094439B2 (en) Silicon carbide semiconductor device and power conversion device
JP6947338B1 (en) Manufacturing method of silicon carbide semiconductor device and power conversion device
WO2021038787A1 (en) Silicon carbide semiconductor device, electric power conversion device, and method for producing silicon carbide semiconductor device
CN116325176A (en) Silicon carbide semiconductor device and power conversion device
WO2024038504A1 (en) Silicon carbide semiconductor device, electric power conversion device, and method for producing silicon carbide semiconductor device
WO2022190269A1 (en) Silicon carbide semiconductor device, method for manufacturing same, and power conversion device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020510147

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938417

Country of ref document: EP

Kind code of ref document: A1