WO2017042873A1 - 遠隔操作システムおよび操作支援システム - Google Patents

遠隔操作システムおよび操作支援システム Download PDF

Info

Publication number
WO2017042873A1
WO2017042873A1 PCT/JP2015/075377 JP2015075377W WO2017042873A1 WO 2017042873 A1 WO2017042873 A1 WO 2017042873A1 JP 2015075377 W JP2015075377 W JP 2015075377W WO 2017042873 A1 WO2017042873 A1 WO 2017042873A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
work
camera
moving body
point cloud
Prior art date
Application number
PCT/JP2015/075377
Other languages
English (en)
French (fr)
Inventor
栗原 恒弥
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/075377 priority Critical patent/WO2017042873A1/ja
Priority to JP2017538497A priority patent/JP6474905B2/ja
Publication of WO2017042873A1 publication Critical patent/WO2017042873A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • H04N13/117Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation the virtual viewpoint locations being selected by the viewers or determined by viewer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras

Definitions

  • the present invention relates to a remote operation system for operating a moving body such as a work machine or a mobile robot from a remote place.
  • a camera is installed on the mobile unit, and the captured camera video is transmitted to the remote control facility by wired or wireless communication, and the video is displayed on the monitor in the control facility. Is projected.
  • the remote operator operates the moving body with reference to the video on the monitor.
  • the image on the monitor makes it difficult to perceive the perspective compared to when the machine is mounted on the work machine, and it is relatively difficult to recognize the distance and shape to the work object.
  • a camera car having a camera and communication means is arranged at the work site, the camera car photographs the work machine and the periphery of the work object from the side, and the image is transmitted to the operation equipment.
  • depth information is given to the remotely operated operator in the form of a side image, and the distance and shape to the work object can be easily recognized.
  • a method of separately preparing such a camera car and operating it is not practical because it increases costs and labor.
  • Patent Documents 1 and 2 As methods for giving depth information to an operator using only a work machine without using a camera car, methods described in Patent Documents 1 and 2 have been proposed.
  • a multi-view camera is mounted on a remotely operated work machine, a distance image is generated from a plurality of captured images obtained from the multi-view camera based on a predetermined parallax, and each pixel is set according to the distance.
  • a remote control support device that synthesizes a pseudo three-dimensional image by assigning different colors and transmits the synthesized three-dimensional image to the remote control device is disclosed.
  • a three-dimensional scanner is mounted on a construction machine to acquire three-dimensional distance data of a work object, and this is displayed on a scanner image display unit of a remote control device. Discloses the display of three-dimensional distance data at different angles.
  • JP-A-11-213154 Japanese Patent Laying-Open No. 2015-043488
  • Patent Document 1 can give a pseudo three-dimensional feeling to an image with a viewpoint on a work machine, but the accuracy of depth information given to an operator is limited. For this reason, compared with the method of presenting an image from the side using a camera car, the sense of distance to the work object cannot be accurately grasped, resulting in low work accuracy and poor work efficiency. End up.
  • An object of the present invention is to provide a remote control system that displays an image that can accurately grasp the sense of distance to a work object even when the work object is viewed from an arbitrary angle.
  • the present invention is a remote control system for operating a moving body that performs a work on a work target by a remote control device.
  • the moving body includes a three-dimensional camera that captures the front of the moving body and a three-dimensional camera.
  • a free viewpoint image generation unit that generates a point cloud rendering image in which the work object is captured at an angle different from the viewpoint direction of the 3D camera, and movement based on the 3D model data of the moving object
  • a CG image generation unit that generates an artificial image of the body, a superimposed image synthesis unit that superimposes the artificial image on the point cloud rendering image, and a communication unit that transmits the free viewpoint synthesized image superimposed by the superimposed image synthesis unit to the remote control device; .
  • the remote control device includes a communication unit that receives a free viewpoint composite image transmitted from a mobile body, a display unit that displays the received free viewpoint composite image, and an operation input unit that instructs the mobile body to perform an operation. It is set as the structure provided with these.
  • the superimposed image composition unit is further configured to generate an artificial image of the work object based on the three-dimensional model data of the work object and superimpose it on the point cloud rendering image.
  • the operator can remotely operate the work machine while referring to a free viewpoint composite image from an arbitrary angle (for example, upward or side), an objective distance to the work object is obtained.
  • a feeling, the size of an object, etc. can be grasped easily, and the operativity of remote work can be improved remarkably.
  • FIG. 6 is a diagram showing an image displayed on the remote control device 200.
  • FIG. It is explanatory drawing of the synthetic
  • Example 2 It is a figure which shows the virtual side surface image which superimposed the artificial image of the work target object. It is a flowchart which shows the production
  • FIG. 10 is a diagram illustrating an image synthesized by the method of the second embodiment. It is a figure which shows the image displayed restrict
  • Example 4 It is a figure which shows the example which changes and displays the superimposition degree of an artificial image.
  • Example 5 It is a figure which shows the example whose moving body is a mobile robot. It is a figure which shows the example of the virtual image in the case of a mobile robot.
  • FIG. 1A is a block diagram of a remote operation system
  • FIG. 1B is a diagram showing the relationship between various programs and various data used for image processing in this embodiment.
  • FIG. 2 is a configuration diagram of a work machine to which the remote operation system is applied.
  • the work machine 100 is an unmanned hydraulic excavator, and is operated by an operator (operator) who rides on the remote control device 200 installed in a remote place.
  • the work machine 100 may be various work machines other than the hydraulic excavator.
  • the remote operation system includes a part mounted on a work machine 100 to be remotely operated and a part mounted on a remote operation device 200 operated by an operator.
  • the work machine 100 includes a main control unit 101, a camera 102, a three-dimensional camera 103, an arm unit 105, an arm angle sensor 104, a traveling unit 106, and a wireless communication unit 107.
  • the arm part 105 is a part that performs various operations such as excavation as a hydraulic excavator, and the traveling part 106 is a part that causes the work machine 100 to travel.
  • the arm angle sensor 104 acquires the angle of each joint of the arm unit 105 in real time.
  • the camera 102 is installed in the operation seat (unmanned), and the front of the work machine 100 is photographed.
  • the front means a direction in which the operator sees when the work machine is operated by manned boarding.
  • a three-dimensional camera 103 is installed to capture a depth image in front of the work machine 100.
  • the three-dimensional camera 103 is a camera that can acquire depth information in real time.
  • a stereo camera is used.
  • a TOF (Time of Flight) type camera, an optical coding type camera, or a 3D laser scanner may be used. It is assumed that the 3D camera can acquire not only depth information but also color information.
  • the wireless communication unit 107 performs wireless communication with the remote control device 200.
  • the main control unit 101 controls the work machine 100.
  • the main control unit 101 includes an information processing device 111, a storage device 120, and 3D model data 131 stored in, for example, an HDD, and can be configured by a general-purpose computer.
  • a processor (not shown) performs various processes using programs and data stored in the storage device 120.
  • the storage device 120 uses a 3D point cloud generation program 121 that generates 3D point cloud data 142 from 3D camera data 141 that is input data from the 3D camera 103, and a free viewpoint using the 3D point cloud data 142.
  • Point-of-view image generation program 122 for generating point cloud rendering image 144 from CG
  • CG image generation program 123 for generating computer graphic (CG) image (artificial image) 145 from three-dimensional model data 131 of the moving object, point cloud rendering image
  • the superimposition image synthesis program 124 that superimposes the artificial image 145 on the 144 to synthesize the free viewpoint composite image 125 and the arm unit / travel unit control program 129 that controls the arm unit and the travel unit are stored.
  • the storage device 120 also includes 3D camera data 141, 3D point cloud data 142, virtual camera data 143, a point cloud rendering image 144, a population image 145, moving body posture data 146, and a free viewpoint.
  • the composite image 125 is stored.
  • FIG. 1B shows the relationship between the various programs handled by the main control unit 101 and various data.
  • the main control unit 101 transmits the front camera image and the free viewpoint composite image 125 to the remote operation device 200 via the wireless communication unit 107.
  • the main control unit 101 controls the arm unit 105 and the traveling unit 106 in accordance with an operation command received from the remote operation device 200 received via the wireless communication unit 107.
  • the remote operation device 200 includes a main control unit 201, a wireless communication unit 202, a camera image display unit 203, a free viewpoint composite image display unit 204, a free viewpoint composite image display control unit 205, an operation input unit 206, and an operation seat 209.
  • the main control unit 201 is a part that controls the remote operation device 200 and can be configured by a general-purpose computer having an information processing device (not shown) including a processor and a storage device (not shown).
  • the wireless communication unit 202 performs wireless communication with the work machine 100, receives a front camera image and a free viewpoint composite image 125 from the work machine 100, and the camera image display unit 203 and the free viewpoint composite image display unit 204 respectively. indicate.
  • the free viewpoint composite image display control unit 205 sets the display method of the free viewpoint composite image according to the input from the operator, and transmits the information to the work machine 100 via the wireless communication unit 202.
  • the operator operates the work machine 100 from the operation input unit 206 while referring to the images of the camera image display unit 203 and the free viewpoint composite image display unit 204.
  • the operation command input to the operation input unit 206 is processed by the main control unit 201 and transmitted to the work machine 100 via the wireless communication unit 202. Note that transmission / reception between the work machine 100 and the remote control device 200 may be performed by wire.
  • the camera image display unit 203 and the free viewpoint composite image display unit 204 may be configured by one display unit, and the front camera image and the free viewpoint composite image 125 may be displayed on the single display unit.
  • FIG. 3A and 3B are diagrams showing examples of image display by the remote operation system.
  • FIG. 3A shows a work state by the work machine 100
  • FIG. 3B shows an image displayed on the remote operation device 200.
  • the work machine (hydraulic excavator) 100 is in a state where the bucket 105 a is moved and the dump 301 is being discharged.
  • An object of work performed by the work machine 100 is called a “work object”.
  • the dump 301 is the work object.
  • a space in which work is performed is referred to as a “work environment”.
  • FIG. 3B is an image display example on the camera image display unit 203 and the free viewpoint composite image display unit 204 of the remote control device 200.
  • a front camera image 311 photographed by the camera 102 is wirelessly received and displayed on the camera image display unit 203 on the lower side of the drawing.
  • the front camera image 311 shows the work object (dump) 301, the work environment (ground) 302, the arm part 105 of the work machine, the bucket 105a, and the like.
  • a virtual virtual top image 312 and a virtual virtual side image 313 are displayed on the free viewpoint composite image display unit 204 on the upper side of the drawing.
  • the virtual top surface image 312 and the virtual side surface image 313 wirelessly receive the free viewpoint composite image 125 synthesized by the main control unit 101 based on the 3D point cloud data 142 photographed by the 3D camera 103 of the work machine 100. Is displayed.
  • the virtual top image 312 is a virtual composite of images of the work machine 100 and the work object 301 viewed from above
  • the virtual side image 313 is a view of the work machine 100 and the work object 301 from the side.
  • upward means a high direction parallel to the vertical direction with respect to the work machine.
  • the side means a direction perpendicular to the traveling direction and the vertical direction of the work machine.
  • FIG. 4 is an explanatory diagram of a method for synthesizing the virtual upper surface image 312 and its procedure is shown in (a) to (i).
  • (A) is a top image when it is assumed that the work state shown in FIG. 3A is taken from above the work machine 100, and generation of such an image is a target (ideal).
  • a camera in order to obtain such an ideal image, a camera must be installed at a position far away above the work machine 100, which is practically difficult.
  • the three-dimensional camera 103 is mounted on the work machine 100, three-dimensional point cloud data such as the work object 301 is acquired, and an image viewed virtually from above is generated from the depth information.
  • An image generated from the three-dimensional point cloud data is called a point cloud rendering image.
  • (B) shows a situation where the front is photographed from the three-dimensional camera 103 mounted on the work machine 100.
  • a substantially triangular area 401 including the work object 301 is an area that can be photographed by the three-dimensional camera 103.
  • (C) shows an area 401 that can be photographed from the three-dimensional camera 103.
  • the target top surface image as shown in (a) cannot be generated only by the imageable area 401 shown in (c). This is because the region 401 includes only a part of the work machine 100 (for example, the arm unit 105). Further, only a part of the work environment 302 is included.
  • the 3D point cloud data of the invisible area cannot be acquired from the 3D camera 103.
  • a part of the work object 301 is hidden by the bucket 105a of the work machine 100 (see FIG. 3A).
  • An area 402 shown in (d) is an area of the work target 301 hidden by the bucket 105 a, and the depth cannot be measured from the three-dimensional camera 103.
  • An area 403 shown in (e) is an area of the work environment 302 hidden by the work object 301, and this area 403 also cannot measure the depth from the three-dimensional camera 103.
  • (G) collectively shows the upper surface point cloud rendering image 144 that can be generated from the image data from the three-dimensional camera 103.
  • the areas 402, 403, and 404 that cannot be measured are excluded from the imageable area 401. For this reason, compared with the ideal top image shown in (a), a part of the image of the work machine 100 or the work object 301 is missing, and the positional relationship between the work machine 100 and the work object 301 can be grasped. It becomes difficult.
  • an artificial image (CG image) 145 of the work machine 100 that is missing from the image (g) is generated and superimposed.
  • the three-dimensional model data 131 of the work machine 100, the moving body posture data 146 such as the angle of the joint part of the arm unit 105, and the CG camera for generating the artificial image are generated.
  • (H) shows the generated artificial image 100 ′ (image viewed from above) of the work machine 100.
  • (I) shows an example of an image obtained by superimposing the artificial image 100 'of the work machine 100 shown in (h) on the 3D image shown in (g). This makes it easier to grasp the positional relationship between the work machine 100 and the work object 301 than in the case of only the point cloud rendering image (g).
  • FIG. 5 is an explanatory diagram of a method for synthesizing the virtual side image 313, and the procedure is shown in (a) to (e).
  • (A) is a side image when it is assumed that the work state shown in FIG. 3A is taken from the side of the work machine 100, and the generation of such an image is the target (ideal).
  • a camera In order to obtain such an ideal image, a camera must be installed at a position far away from the side of the work machine 100, which is practically difficult. Also in this case, a side image is generated using the three-dimensional camera 103 mounted on the front surface of the work machine 100.
  • (B) shows an area 501 that can be photographed from the three-dimensional camera 103.
  • the vertical sector area 501 including the work object 301 is an area that can be imaged by the three-dimensional camera 103.
  • (C) shows a region 501 that can be photographed from the three-dimensional camera 103. Only the shootable area 501 shown in (c) does not include the entire work machine 100, and a target side image as shown in (a) cannot be generated.
  • (D) is a diagram showing a region that cannot be measured by the three-dimensional camera 103.
  • the work object 301 and the arm part 105 of the work machine are mainly measured only on the left side, and the side images viewed from the right side are broken lines. As indicated by 502 and 503, it becomes incomplete.
  • the work object 301 hides a part of the work environment 302, the hidden area 504 cannot be measured. For this reason, compared with the ideal side image shown in (a), a part of the image is lost, and it is difficult to grasp the positional relationship between the work machine 100 and the work object 301.
  • the missing artificial image (CG image) 145 of the work machine 100 is superimposed on the image (d).
  • (E) shows an example of an image in which an artificial image 100 ′ (image viewed from the side) of the work machine 100 is generated and superimposed on the point cloud rendered image 144 shown in (d). This makes it easier to grasp the positional relationship between the work machine 100 and the work object 301 than in the case of only the point cloud rendering image 144 (d).
  • the virtual image in FIG. 4 and the side image in FIG. 5 have been described as virtual images, the virtual image can be generated not only for this but also when viewed from any direction (camera angle).
  • an image generated by changing the viewpoint direction is also referred to as a “free viewpoint synthesized image”.
  • an image from an arbitrary viewpoint direction can also be generated for the superimposed artificial image.
  • FIG. 6 is a flowchart showing a method for generating a free viewpoint composite image.
  • This processing is executed by the information processing apparatus 111.
  • step S ⁇ b> 601 data is input from the three-dimensional camera 103.
  • This input data varies depending on the type of the three-dimensional camera. For example, in the case of a stereo camera, two left and right images are input to the three-dimensional camera data 141.
  • S602 a distance image is calculated from the three-dimensional camera data 141 input from the three-dimensional camera. The distance image is obtained by giving distance information d (x, y) from the camera to each pixel (x, y).
  • the arm angle sensor 104 of the work machine 100 detects the arm angle of the arm unit 105 and inputs it to the moving body posture data 146.
  • the arm angle includes a turning angle, a boom angle, an arm angle, and a bucket angle, whereby the current posture of the hydraulic excavator can be defined.
  • the virtual camera data 143 for generating the free viewpoint image is referred to and set in the virtual camera data of the free viewpoint image generation program 122 and the CG image generation program 123.
  • the virtual camera data 143 includes information on the position, direction, and angle of view of the virtual camera for generating a virtual image.
  • the virtual camera data 143 is set by the operator from the free viewpoint composite image display control unit 205 of the remote operation device 200.
  • information of two virtual cameras that is, virtual camera data from the top surface corresponding to the virtual top surface image 312 and virtual camera data from the side surface corresponding to the virtual side image 313 is stored in the virtual camera data 143.
  • step S ⁇ b> 604 first, virtual camera data from the upper surface corresponding to the virtual upper surface image 312 is referenced, and the virtual camera data of the free viewpoint image generation program 122 and the CG image generation program 123 is set.
  • a point cloud rendering image 144 is generated using the distance image.
  • three-dimensional coordinates (X, Y, Z) and pixel color information C are obtained for each pixel of the distance image d (x, y) calculated in S602 and expressed as point cloud data.
  • the point cloud data 142 is rendered using the set virtual camera data 143 to generate a point cloud rendered image from the upper surface.
  • FIG. 4G shows the generated upper surface point cloud rendered image.
  • image defect areas 402 to 404 are generated due to occlusion between objects.
  • the point cloud data acquired from the 3D camera is defined in the local coordinate system of the 3D camera. This point cloud data needs to be converted into the coordinate system of the work machine 100.
  • the position and direction of the three-dimensional camera are measured in the coordinate system of the work machine, and a coordinate transformation matrix is obtained from the position and direction to perform coordinate transformation.
  • the 3D model data 131 and the moving body posture data 146 such as the arm angle acquired in S603 are used to generate the artificial image 145 of the work machine 100 in the defect area.
  • the three-dimensional model data 131 stores CG model data 131 of the work machine 100 in advance.
  • the angle of the arm portion can be arbitrarily set for the CG model data 131, thereby generating an artificial image viewed from the upper surface in the same posture as the current work machine.
  • FIG. 4H shows the generated artificial image (top CG image) 100 'of the work machine.
  • FIG. 4 (i) shows an image of the superimposition result.
  • the work machine 100 and the work machine 100 are compared with the point cloud rendering image display using only the point cloud data shown in FIG. It becomes easy to grasp the relationship between the work objects 301.
  • step S608 the free viewpoint composite image 125 is transferred.
  • the virtual top image (FIG. 4 (i)) is transferred to the remote control device 200.
  • step S609 it is determined whether there is other virtual camera information.
  • virtual camera information from the side surface corresponding to the virtual side image 313 exists. In this case, the process returns to S604, and the virtual camera information from the side is set in the virtual camera data of the free viewpoint image generation program 122 and the CG image generation program 123.
  • the side point cloud rendering image generated in S605 is as shown in FIG. 5D
  • the virtual side image 313 in which the artificial image 100 ′ of the work machine 100 is superimposed in S607 is shown in FIG. 5E. It becomes like this. Also in this case, as a result of superimposing the artificial image of the work machine 100, the relationship between the work machine 100 and the work object 301 can be easily grasped.
  • step S608 the free viewpoint composite image 125 is transferred.
  • the virtual side image (FIG. 5E) is transferred to the remote operation device 200.
  • step S609 it is determined whether there is other virtual camera information. In the example of FIG. 3B, the process ends because there is no other virtual camera information.
  • the composite image transferred in S608 is displayed on the free viewpoint composite image display unit 204 of the remote control device 200 as shown in FIG. 3B.
  • an image from the front camera 102 is displayed on the camera image display unit 203 of the remote operation device 200.
  • the CG image (artificial image) of the work machine is superimposed and displayed on the point cloud rendering image obtained from the three-dimensional camera, so that the positional relationship between the work machine and the work object can be grasped. There is an effect that it becomes easy.
  • the 3D model data 131 of the work machine 100 stores not only the CG model data of the work machine 100 but also the CG model data of the work object (dump) 301.
  • FIGS. 7 and 8 are diagrams showing an example in which an artificial image of a work object is added and superimposed, FIG. 7 shows a virtual top image, and FIG. 8 shows a virtual side image. This is performed subsequent to FIGS. 4 and 5, respectively.
  • FIG. 7A corresponds to FIG. 4G, and is a virtual upper surface point cloud rendering image using point cloud data obtained from a three-dimensional camera.
  • (B) is an image in which the artificial images 100 ′ and 301 ′ from above the work machine 100 and the work object 301 are superimposed and displayed on the upper surface point cloud rendering image of (a).
  • the work machine 100 is more than the display of the upper surface point cloud rendering image (a) and the case where only the artificial image 100 ′ of the work machine 100 is superimposed as shown in FIG. And the positional relationship between the work object 301 can be easily understood.
  • (a) corresponds to FIG. 5 (d), and is a virtual side surface point cloud rendering image using point cloud data of a three-dimensional camera.
  • (B) is an image in which the artificial images 100 ′ and 301 ′ from the sides of the work machine 100 and the work object 301 are superimposed and displayed on the side point cloud rendering image of (a).
  • an artificial image 302 ′ for the work environment 302 is also added.
  • the work machine 100 is more than the display of the side point cloud rendering image (a) and the case where only the artificial image 100 ′ of the work machine 100 is superimposed as shown in FIG. And the positional relationship between the work object 301 can be easily understood.
  • FIG. 9 is a flowchart illustrating a method for generating a free viewpoint composite image according to the second embodiment. The description will focus on differences from the first embodiment (FIG. 6).
  • This processing is executed by the information processing apparatus 111.
  • the processing from S901 to S903 (3D camera data input, distance image calculation, arm angle input) is the same as S601 to S603 in FIG.
  • step S904 the work target 301 is detected.
  • a dump corresponds in this example.
  • identification of the work object 301 can be determined by image processing. If the dump position and direction can be measured by GPS (Global Positioning System), the work object 301 can be detected using the position and direction data of the work machine 100.
  • GPS Global Positioning System
  • step S905 it is determined whether or not the work object 301 exists. If the work object 301 exists, the process proceeds to S906, and if not, the process proceeds to S907.
  • step S906 the position and orientation of the work target 301 are calculated. For this reason, by extracting the work object 301 from the image of the camera, information on the position and orientation with respect to the work machine 100 is obtained. The obtained position and orientation are converted into the coordinate system of the work machine 100.
  • the virtual camera data setting in S907, the point cloud rendering image generation in S908, and the artificial image generation of the work machine in S909 are the same as S604 to S606 in FIG.
  • the process is branched depending on whether the work object 301 exists. If the work object 301 exists, the process proceeds to S911, and if it does not exist, the process proceeds to S912.
  • an artificial image of the work object 301 is generated. That is, an artificial image 301 ′ of the work object 301 is generated from the CG model data of the work object 301 and the position and orientation of the work object 301 obtained in S ⁇ b> 906.
  • S912 the artificial image 100 ′ of the work machine 100 generated in S909 and the artificial image 301 ′ of the work target 301 generated in S911 (when the work target 301 is present) are superimposed on the point cloud rendering image generated in S908.
  • S913 and S914 transfer of composite image, check of virtual camera data
  • S608 and S609 are the same as S608 and S609 in FIG.
  • the work machine and the work are displayed by superimposing and displaying both the artificial image of the work machine and the artificial image of the work object on the free viewpoint point cloud rendering image obtained from the three-dimensional camera. There is an effect that it becomes easier to grasp the positional relationship between the objects.
  • an image display range is limited to a desired region with respect to a free viewpoint composite image generated from a three-dimensional camera.
  • FIG. 10A shows an example of a working state by the work machine 100 in the third embodiment
  • FIGS. 10B and 10C show images displayed on the remote control device 200.
  • a state is assumed in which two obstacles 1001 and 1002 exist in the vicinity of the work target 301.
  • FIG. 10B shows a virtual top image 1011 and a virtual side image 1012 synthesized by the method of the second embodiment in this state.
  • artificial images 100 ′ and 301 ′ of the work machine 100 and the work target 301 are superimposed and displayed.
  • the virtual side image 1012 the work machine 100 'and the work object 301' are concealed due to the obstacles 1001 and 1002, and the work state is difficult to visually recognize.
  • the problem of concealment by the obstacles 1001 and 1002 does not occur.
  • the display area of the point cloud rendering image is limited so that the point cloud data of the area including the obstacles 1001 and 1002 is not displayed.
  • FIG. 10C shows an image displayed with a limited display area.
  • an area 1003 is provided so as to exclude the obstacles 1001 and 1002 to the outside.
  • the obstacles 1001 and 1002 are not rendered by generating the point cloud rendering image from the point cloud data only in the area 1003.
  • the obstacles 1001 and 1002 are removed from the virtual side image 1022, and the concealment problem due to the obstacles 1001 and 1002 is solved.
  • the step (S605, S908) of “Generate free viewpoint 3D image using distance image” in FIGS. 6 and 9 is added. That is, when generating a free viewpoint image using a distance image, point cloud data outside the region is not displayed by a known clipping process. Thus, a virtual image as shown in FIG. 10C can be generated.
  • the display area is limited. Thereby, even if there is an obstacle, the obstacle can be hidden, and the positional relationship between the work machine and the work object can be easily grasped.
  • a CG model (work target model) of a work target used in the second embodiment is generated (updated) using input data of a three-dimensional camera.
  • FIG. 11 is a flowchart for explaining generation of a work target model. This generation process is executed by the information processing apparatus 111.
  • 3D camera data of the work object 301 is input from the 3D camera 103, and in S1102, a distance image (distance information from the camera) is calculated.
  • the position / orientation of the three-dimensional camera 103 is calculated using the distance image and the model data of the existing work target model.
  • the model data of the existing work target model is model data of the work target 301 that is currently owned.
  • step S1104 the work target model is updated using the calculated position / posture of the three-dimensional camera 103 and the calculated distance image. That is, the data of the work target model is corrected by using new information on the position and orientation of the three-dimensional camera 103.
  • step S1105 this process is repeated a predetermined number of times and the process ends. By repeating the update of the work target model in this way, a more precise work target model can be generated.
  • a method for updating a model using input data from the above three-dimensional camera is described in the following reference.
  • [References] A. Newcombe, et Al. “KinectFusion: Real-time dense surface mapping and tracking,” in Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on, 2011, pp. 127-136.
  • the work target model is configured using the point cloud data obtained from the three-dimensional camera. For this reason, it is not necessary to prepare an accurate CG model of the work target, a precise model of the work environment such as the work target and particularly the terrain can be constructed, and a more natural free viewpoint image can be generated. Thereby, there is an effect that it becomes easy to grasp the positional relationship between the work machine and the work object.
  • Example 5 when an artificial image is superimposed on a point cloud rendering image generated from a three-dimensional camera, the ratio (superimposition degree) of superimposing the artificial image is changed with time.
  • FIG. 12 is a diagram illustrating an example in which the degree of superimposition of the artificial image is changed and displayed.
  • (b) is an artificial image 100 ′ of the work machine 100 and the work object 301.
  • the superimposed image generation processing in S607 in FIG. 6 and S912 in FIG. 9 is modified. That is, in the process of superimposing the point cloud rendered image and the artificial image, it is possible to display a superimposed image in which the degree of superimposition is changed by temporally changing the transparency of the artificial image.
  • the degree of superimposition of the point cloud rendering image obtained from the three-dimensional camera and the artificial image generated from the CG model is changed. This makes it easier for the operator to know whether the point cloud rendered image and the artificial image are correctly matched. If the image does not fit properly and an image shift or the like occurs, the operation is interrupted and calibration processing such as adjustment of the camera position and direction is performed.
  • the change in the degree of superimposition can be changed not only in terms of time but also in accordance with, for example, an operator's instruction.
  • the degree of superimposition can be interactively changed by an instruction using the operation input unit 206.
  • a hydraulic excavator has been described as an example of the work machine 100 that performs remote operation.
  • the work machine 100 is not limited to a hydraulic excavator and can be applied to various moving objects.
  • FIG. 13A is a diagram illustrating an example in which the moving body is a mobile robot.
  • the mobile robot 100 also includes the main control unit 101, the front camera 102, the three-dimensional camera 103, the arm angle sensor 104, the arm unit 105, the traveling unit 106, the wireless communication unit 107, and the like, and can be realized with the same configuration.
  • FIG. 13B is an example of a virtual top image 1301 and a virtual side image 1302 in the case of a mobile robot. Also in this case, by superimposing the artificial images 100 ′ and 301 ′ of the mobile robot 100 and the work object 301 on the point cloud rendering image obtained from the three-dimensional camera 103, it is easy to grasp the positional relationship between the mobile robot and the work object. The effect of becoming is obtained.
  • an operator can remotely operate a work machine while referring to a free viewpoint composite image from an arbitrary angle (for example, from above or from the side).
  • a sense of distance and the size of an object can be easily grasped, and the operability of remote work can be greatly improved.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the operator performs a remote operation on the work machine (moving body).
  • the present invention is not limited to this. It is valid. That is, when it is difficult for an operator who is on the work machine to see the surrounding work object, a free viewpoint composite image in which an artificial image (CG image) is superimposed on the point cloud rendering image is displayed. Needless to say, it becomes easier to grasp the positional relationship between the work objects. Therefore, the present invention can be extended to an operation support system for operating a work machine.
  • CG image artificial image
  • the generation of the point cloud rendering image and the synthesis of the artificial image are all performed on the mobile body side, and the remote control device receives and displays the free viewpoint synthesized image.
  • part of the image processing can be performed on the remote control device side.
  • the point cloud data of the distance image and the information of the CG model (the angle information of the arm part and the type and position / direction of the work object) are transferred to the remote control device, and the point cloud rendering image and the artificial image are transmitted on the remote control device side. It is also possible to perform the above synthesis.
  • 100 work machine (moving body), 101: Main control unit, 102: Camera, 103: 3D camera, 104: Arm angle sensor, 105: Arm part, 106: traveling part, 107: wireless communication unit, 111: Information processing device, 120: storage device, 121: 3D point cloud generation program, 122: Free viewpoint image generation program, 123: CG image generation program, 124: superimposed image synthesis program, 125: Free viewpoint composite image, 131: 3D model data, 141: 3D camera data, 142: 3D point cloud data, 143: virtual camera data, 144: Point cloud rendering image, 145: Artificial image, 146: moving body posture data, 200: remote control device, 201: main control unit, 202: wireless communication unit, 203: Camera image display unit 204: a free viewpoint composite image display unit, 205: a free viewpoint composite image display control unit, 206: operation input unit, 301: Work object 302: Working environment 311: Front camera image, 312: virtual top image, 313: Virtual side image,

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Processing Or Creating Images (AREA)
  • Image Analysis (AREA)

Abstract

作業機械などの移動体100に3次元カメラ103を設置し、移動体の前方を撮像して3次元点群データを取得する。この3次元点群データから、カメラ視点方向とは異なるアングルで移動体が作業を行う作業対象物301が写る点群レンダリング画像を生成する。さらに、移動体や作業対象物の3次元モデルデータをもとに移動体や作業対象物の人工画像100',301'を生成して、前記点群レンダリング画像に重畳して表示する。これにより遠隔オペレータは、例えば移動体の上方からの画像や側方からの画像を参照し、移動体と作業対象物の位置関係を把握することができ、作業効率が向上する。

Description

遠隔操作システムおよび操作支援システム
 本発明は、作業機械や移動ロボットなどの移動体を遠隔地から操作する遠隔操作システムに関するものである。
 作業機械や移動ロボットなどの移動体を遠隔操作したというニーズがある。例えば、災害復旧工事などの作業員が危険にさらされる環境下での作業は、作業機械に運転手が搭乗せず、無人の作業機械を遠隔地に設置した操作設備からオペレータが操作する遠隔操作システムが有効となる。移動ロボットに関しても同様である。
 上記のように移動体を遠隔操作する場合には、移動体にカメラを設置し、撮影されたカメラ映像を遠隔地の操作設備に有線または無線通信によって伝送し、操作設備内のモニタにその映像を映し出す。遠隔操作者は、モニタ上の映像を参照して移動体の操作を行う。
 その場合、一般的にモニタ上の映像では、作業機械に搭乗した時と比べて遠近感が分かりにくく、作業対象物までの距離や形を認識することが比較的困難となる。その対策として、作業現場へカメラや通信手段を持ったカメラ車を配置し、このカメラ車が作業機械や作業対象周辺を側方から撮影し、その映像を操作設備に送信する方法がある。これによれば、遠隔操作するオペレータには側方映像という形で奥行き情報が与えられ、作業対象物までの距離や形を認識し易くなる。しかし、このようなカメラ車を別途用意してその操作を行う方法は、費用や手間が増えるため実用的とは言えない。
 カメラ車を用いず作業機械のみでオペレータへ奥行き情報を与える方法として、特許文献1、2に記載される方法が提案されている。
 特許文献1には、遠隔操縦される作業機に多眼カメラを搭載し、多眼カメラから得られる複数の撮像画像から所定の視差をもとに距離画像を生成し、各画素に距離に応じた色を割り当てることで擬似的な3次元画像を合成して遠隔操縦装置へ伝送する遠隔操縦支援装置が開示されている。
 特許文献2には、建設機械に3次元スキャナーを搭載して作業対象物の3次元距離データを取得し、これを遠隔操作装置のスキャナー画像表示部にて表示すること、また、スキャナー画像表示部では異なるアングルの3次元距離データを表示することが開示されている。
特開平11-213154号公報 特開2015-043488号公報
 特許文献1の方法は、作業機に視点を置いた画像に擬似的な立体感を持たせることができるが、オペレータへ与えられる奥行き情報の精度が限られている。このため、カメラ車を用いて側方からの画像を提示する方法と比較すると、作業対象物までの距離感が正確につかめず、その結果作業の精度が低く、かつ作業効率が劣るものとなってしまう。
 特許文献2の方法は、3次元スキャナーを用いて作業対象物の3次元距離データ(距離画像)を取得し、取得した距離画像を用いることで、任意のアングルの画像を合成することが可能である。しかしながら、建設機械(作業機械)から測定できる距離画像は、当然ながら3次元スキャナーから見える領域に制限される。このため、作業対象物が作業機械の一部(例えばアーム部分)により遮蔽されている場合には、作業対象物を別アングルから見た画像を生成することは不可能である。その結果、例えば別のアングルからの画像が分かりにくくなるため、作業対象物の距離感が正確につかめず、作業の精度が低く、かつ作業効率が劣るものとなってしまう。
 本発明の目的は、作業対象物を任意のアングルから見た場合でも作業対象物までの距離感が正確につかめるような画像を表示する遠隔操作システムを提供することである。
 本発明は、作業対象物に対して作業を行う移動体を遠隔操作装置により操作する遠隔操作システムであって、移動体には、移動体の前方を撮影する3次元カメラと、3次元カメラから得た3次元点群データから3次元カメラの視点方向とは異なる角度で作業対象物が写る点群レンダリング画像を生成する自由視点画像生成部と、移動体の3次元モデルデータをもとに移動体の人工画像を生成するCG画像生成部と、人工画像を点群レンダリング画像に重畳する重畳画像合成部と、重畳画像合成部で重畳した自由視点合成画像を遠隔操作装置に送信する通信部と、を備える。また遠隔操作装置には、移動体から送信された自由視点合成画像を受信する通信部と、受信した自由視点合成画像を表示する表示部と、移動体に対して操作を指示する操作入力部と、を備える構成とする。ここに重畳画像合成部は、さらに、作業対象物の3次元モデルデータをもとに作業対象物の人工画像を生成して点群レンダリング画像に重畳する構成とする。
 本発明によれば、操作者は、任意のアングル(例えば上方や側方)からの自由視点合成画像を参照しながら作業機械を遠隔操作することができるため、作業対象物までの客観的な距離感や物の大きさ等を容易に把握することができ、遠隔作業の操作性を格段に向上させることができる。
遠隔操作システムのブロック構成図である。(実施例1) 画像処理に用いる各種プログラムと各種データの関係を示す図である。 遠隔操作システムを適用した作業機械の構成図である。 作業機械100による作業状態を示す図である。 遠隔操作装置200に表示される画像を示す図である。 仮想上面画像の合成方法の説明図である。 仮想側面画像の合成方法の説明図である。 自由視点合成画像の生成方法を示すフローチャートである。 作業対象物の人工画像を重畳した仮想上面画像を示す図である。(実施例2) 作業対象物の人工画像を重畳した仮想側面画像を示す図である。 自由視点合成画像の生成方法を示すフローチャートである。 作業機械による作業状態の一例を示す図である。(実施例3) 実施例2の手法で合成した画像を示す図である。 表示領域を制限して表示した画像を示す図である。 作業対象モデルの生成を説明するフローチャートである。(実施例4) 人工画像の重畳度を変化させて表示する例を示す図である。(実施例5) 移動体が移動ロボットの例を示す図である。 移動ロボットの場合の仮想画像の例を示す図である。
 以下、本発明の実施の形態について、図面を参照して説明する。以下の実施例では、遠隔操作を行う作業機械として油圧ショベルを例に説明する。
 図1Aは、遠隔操作システムのブロック構成図であり、図1Bは、本実施例における画像処理に用いる各種プログラムと各種データの関係を示す図である。また図2は、遠隔操作システムを適用した作業機械の構成図である。本実施例では、作業機械100は無人の油圧ショベルの場合であり、遠隔地に設置した遠隔操作装置200に搭乗する操作者(オペレータ)によって操作される。もちろん、作業機械100は油圧ショベル以外の様々な作業機械であってもよい。図1Aに示すように、遠隔操作システムは、遠隔操作される作業機械100に搭載される部分と、オペレータが操作する遠隔操作装置200に搭載される部分から構成される。以下、図1A、図1Bと図2を参照して、各部の構成を説明する。
 まず、作業機械100の構成から説明する。作業機械100は、主制御部101、カメラ102、3次元カメラ103、アーム部105、アーム角度センサ104、走行部106、無線通信部107を備える。
 アーム部105は油圧ショベルとしての掘削などの様々な作業を行う部分で、走行部106は作業機械100を走行させる部分である。アーム角度センサ104は、アーム部105の各関節の角度をリアルタイムに取得する。
 操作席(無人)にはカメラ102が設置され、作業機械100の前方を撮影する。ここで、前方とは、作業機械を有人搭乗で操作する場合に、操作者が見る方向を意味することとする。さらに3次元カメラ103が設置され、作業機械100の前方の奥行き画像を撮影する。3次元カメラ103はリアルタイムで奥行き情報を取得可能なカメラであり、例えばステレオカメラを用いる。あるいは、TOF(Time of Flight)方式のカメラ、光コーディング方式のカメラ、3Dレーザスキャナを用いることもできる。なお、3次元カメラは奥行き情報だけでなく、カラー情報も取得できると仮定する。無線通信部107は遠隔操作装置200との間で無線通信を行う。
 主制御部101は、作業機械100を制御する。主制御部101は、情報処理装置111と記憶装置120と例えばHDD等に格納した3次元モデルデータ131とを有し、汎用的な計算機によって構成することができる。情報処理装置111は、プロセッサ(不図示)が記憶装置120に格納されたプログラムやデータを用いて、様々な処理を行う。記憶装置120には、3次元カメラ103からの入力データである3次元カメラデータ141から3次元点群データ142を生成する3次元点群生成プログラム121、3次元点群データ142を用いて自由視点からの点群レンダリング画像144を生成する自由視点画像生成プログラム122、移動体の3次元モデルデータ131からCG(Computer Graphics)画像(人工画像)145を生成するCG画像生成プログラム123、点群レンダリング画像144に人工画像145を重畳して自由視点合成画像125を合成する重畳画像合成プログラム124、アーム部および走行部を制御するアーム部・走行部制御プログラム129が格納されている。また、記憶装置120には、3次元カメラデータ141と、3次元点群データ142と、仮想カメラデータ143と、点群レンダリング画像144と、人口画像145と、移動体姿勢データ146と、自由視点合成画像125とを格納している。図1Bは、主制御部101で扱う上記した各種プログラムと各種データの関係を示す。
 さらに主制御部101は、無線通信部107を介して前方カメラ画像や自由視点合成画像125を遠隔操作装置200に送信する。また主制御部101は、無線通信部107を介して受信した遠隔操作装置200からの操作指令によって、アーム部105や走行部106の制御を行う。
 次に、遠隔操作装置200の構成を説明する。遠隔操作装置200は、主制御部201、無線通信部202、カメラ画像表示部203、自由視点合成画像表示部204、自由視点合成画像表示制御部205、操作入力部206、操作席209を備える。
 主制御部201は遠隔操作装置200の制御を行う部分で、プロセッサを含む情報処理装置(不図示)や記憶装置(不図示)を有する汎用の計算機で構成できる。無線通信部202は作業機械100との間で無線通信を行い、作業機械100から前方カメラ画像や自由視点合成画像125を受信し、それぞれカメラ画像表示部203と自由視点合成画像表示部204にて表示する。自由視点合成画像表示制御部205は、オペレータからの入力に従い自由視点合成画像の表示方法を設定し、その情報を無線通信部202を介して作業機械100に送信する。
 オペレータは、カメラ画像表示部203と自由視点合成画像表示部204の画像を参照しつつ、操作入力部206から作業機械100に対する操作を行う。操作入力部206に入力された操作コマンドは、主制御部201にて処理され、無線通信部202を介して作業機械100に送信される。なお、作業機械100と遠隔操作装置200の間の送受信は、有線で行ってもよい。また、カメラ画像表示部203と自由視点合成画像表示部204は、1つの表示部で構成されて、この1つの表示部にて前方カメラ画像や自由視点合成画像125を表示する構成としてもよい。
 図3Aと図3Bは、遠隔操作システムによる画像表示例を示す図であり、図3Aは作業機械100による作業状態を、図3Bは遠隔操作装置200に表示される画像を示す。
 図3Aに示すように、作業機械(油圧ショベル)100はバケット105aを動かしてダンプ301に対して放土作業を行っている状態である。作業機械100が行う作業の対象物を「作業対象物」と呼び、この場合、ダンプ301が作業対象物となる。この他に作業を行う空間を「作業環境」と呼び、この場合、地面302などが作業環境となる。
 図3Bは、遠隔操作装置200のカメラ画像表示部203と自由視点合成画像表示部204での画像表示例である。図面下側のカメラ画像表示部203には、カメラ102によって撮影された前方カメラ画像311を無線によって受信して表示している。前方カメラ画像311には、作業対象物(ダンプ)301と作業環境(地面)302、および作業機械のアーム部105やバケット105aなどが写っている。
 従来の遠隔操作では、オペレータは前方カメラ画像311を見ながら、作業機械の遠隔操作を行っていた。しかし、前方カメラ画像311だけでは奥行き感が乏しいため、作業効率が低下する場合があった。これを解決するため、本実施例では、図面上側の自由視点合成画像表示部204に、仮想的な仮想上面画像312と仮想的な仮想側面画像313を表示している。
 仮想上面画像312と仮想側面画像313は、作業機械100の3次元カメラ103で撮影した3次元点群データ142をもとに、主制御部101により合成された自由視点合成画像125を無線で受信して表示している。仮想上面画像312は、作業機械100と作業対象物301を上方から見た画像を仮想的に合成したものであり、仮想側面画像313は、作業機械100と作業対象物301を側方から見た画像を仮想的に合成したものである。ここで、上方とは作業機械に対して鉛直方向と平行で高い方向を意味する。また、側方とは作業機械の進行方向および鉛直方向と互いに直交する方向を意味する。このように仮想上面画像312と仮想側面画像313を表示することで、オペレータに作業対象物301の奥行き感を与えることができ、作業効率を向上させることができる。
 以下、仮想上面画像312と仮想側面画像313の合成方法について説明する。
  図4は、仮想上面画像312の合成方法の説明図であり、その手順を(a)~(i)に示す。
 (a)は、図3Aに示す作業状態を作業機械100の上方から撮影したと仮定した場合の上面画像であり、このような画像の生成を目標(理想)とする。しかしながら、このような理想画像を得るためには、作業機械100の上方の遠く離れた位置にカメラを設置せねばならず実用的に困難である。このため、3次元カメラ103を作業機械100に搭載して作業対象物301などの3次元点群データを取得し、その奥行き情報から仮想的に上方から見た画像を生成する。なお、3次元点群データから生成される画像を点群レンダリング画像と呼ぶ。
 (b)は、作業機械100に搭載した3次元カメラ103から前方を撮影した状況を示す。この場合、作業対象物301を含む略三角形の領域401が3次元カメラ103で撮影可能な領域となる。(c)は、3次元カメラ103から撮影可能な領域401を抜き出して示したものである。(c)に示される撮影可能な領域401だけでは、(a)に示すような目標とする上面画像を生成することができない。なぜなら、領域401には、作業機械100の一部(例えばアーム部105)しか含まれていない。また、作業環境302についても一部しか含まれていない。
 さらに(c)の領域401内であっても、3次元カメラ103から不可視の領域の3次元点群データは取得できない。この作業状態では、作業機械100のバケット105aにより作業対象物301の一部分が隠れてしまう(図3A参照)。(d)に示す領域402は、バケット105aによって隠される作業対象物301の領域であり、3次元カメラ103からは奥行きを計測できない。
 同様に、作業対象物301は作業環境302の一部分を隠す。このため、作業対象物301が隠した領域は計測できない。(e)に示す領域403は、作業対象物301によって隠される作業環境302の領域であり、この領域403も3次元カメラ103からは奥行きを計測できない。
 さらに、作業機械100のアーム部105に関しては、3次元カメラ103から可視の部分、すなわちアーム部105は左側の部分しか計測されない。その結果、(f)に示すように、アーム部105の右側の領域404(破線部分)は計測できない。
 (g)は、上記をまとめて3次元カメラ103からの画像データにより生成可能な上面点群レンダリング画像144を示したものである。この画像では、撮影可能領域401から計測不可能な領域402,403,404を除いたものとなる。このため、(a)に示す理想の上面画像と比較して、作業機械100や作業対象物301の画像の一部が欠落して、作業機械100と作業対象物301との位置関係の把握が困難となる。
 この問題を解決するために、本実施例では、(g)の画像に欠落している作業機械100の人工画像(CG画像)145を生成して重畳させるようにした。作業機械100の人工画像を生成するには、作業機械100の3次元モデルデータ131と、アーム部105の関節部分の角度などの移動体姿勢データ146、さらに人工画像を生成するためのCGカメラの情報である仮想カメラデータ143があればよい。(h)は、生成した作業機械100の人工画像100’(上方から見た画像)を示したものである。
 (i)は、(g)に示す3D画像に(h)の作業機械100の人工画像100’を重畳した画像の例を示す。これにより、点群レンダリング画像だけの場合(g)と比較し、作業機械100と作業対象物301の位置関係の把握が容易となる。
 図5は、仮想側面画像313の合成方法の説明図であり、その手順を(a)~(e)に示す。
 (a)は、図3Aに示す作業状態を作業機械100の側方から撮影したと仮定した場合の側面画像であり、このような画像の生成を目標(理想)とする。このような理想画像を得るためには、作業機械100の側方の遠く離れた位置にカメラを設置せねばならず実用的に困難である。この場合も、作業機械100の前面に搭載した3次元カメラ103を用いて側面画像を生成する。
 (b)は、3次元カメラ103から撮影可能な領域501を示す。この場合、作業対象物301を含む上下方向の扇形領域501が3次元カメラ103で撮影可能な領域となる。(c)は、3次元カメラ103から撮影可能な領域501を抜き出して示したものである。(c)に示される撮影可能な領域501だけでは、作業機械100の全体が含まれず、(a)に示すような目標とする側面画像を生成することができない。
 さらに(c)の領域501内であっても、3次元カメラ103から不可視の領域の3次元点群データは計測できない。(d)は、3次元カメラ103により計測不可能な領域を示す図である。3次元カメラ103を作業機械100の左側に搭載した場合には、例えば、作業対象物301や作業機械のアーム部105は主に左側の部分しか計測されず、右側から見た側面画像については破線502,503で示すように不完全となる。その他、作業対象物301は作業環境302の一部分を隠すため、隠された領域504は計測できない。このため、(a)に示す理想の側面画像と比較して画像の一部が欠落して、作業機械100と作業対象物301との位置関係の把握が困難となる。
 この問題を解決するために、本実施例では、(d)の画像に欠落している作業機械100の人工画像(CG画像)145を重畳させる。(e)は、(d)に示す点群レンダリング画像144に、作業機械100の人工画像100’(側方から見た画像)を生成し、重畳した画像の例を示す。これにより、点群レンダリング画像144だけの場合(d)と比較し、作業機械100と作業対象301の位置関係の把握が容易となる。
 なお、仮想画像として図4では上面画像、図5では側面画像について説明したが、仮想画像はこれだけでなく任意の方向(カメラアングル)から見た場合について生成できる。以下、視点方向を変えて生成した画像を「自由視点合成画像」とも呼ぶ。重畳する人工画像についても、任意の視点方向からの画像を生成できるのは言うまでもない。
 図6は、自由視点合成画像の生成方法を示すフローチャートである。この処理は情報処理装置111が実行するものである。
  S601では、3次元カメラ103からデータを入力する。この入力データは3次元カメラの種類によって異なり、例えば、ステレオカメラの場合には左右2つの画像を3次元カメラデータ141に入力する。
  S602では、3次元カメラより入力した3次元カメラデータ141から距離画像を算出する。距離画像とは、各画素(x,y)に対してカメラからの距離の情報d(x,y)を与えたものである。
 S603では、作業機械100のアーム角度センサ104により、アーム部105のアーム角度を検出して移動体姿勢データ146に入力する。図2に示した油圧ショベルでは、アーム角度には、旋回角、ブーム角、アーム角、バケット角が含まれ、これにより油圧ショベルの現在の姿勢を規定できる。
 S604では、自由視点画像を生成するための仮想カメラデータ143を参照し、自由視点画像生成プログラム122およびCG画像生成プログラム123の仮想カメラデータに設定する。仮想カメラデータ143は、仮想画像を生成するための仮想カメラの位置、方向、画角の情報から構成されている。仮想カメラデータ143は、遠隔操作装置200の自由視点合成画像表示制御部205からオペレータが設定する。図3Bの例では、仮想上面画像312に対応する上面からの仮想カメラデータと、仮想側面画像313に対応する側面からの仮想カメラデータの2つの仮想カメラの情報が仮想カメラデータ143に保存されている。S604では、初めに、仮想上面画像312に対応する上面からの仮想カメラデータを参照し、自由視点画像生成プログラム122およびCG画像生成プログラム123の仮想カメラデータに設定する。
 S605では、前記距離画像を用いて点群レンダリング画像144を生成する。この処理では、S602で算出した距離画像d(x,y)の各画素に対して、3次元座標(X,Y,Z)と画素の色情報Cを求め、それらを点群データとして表現する。これらの点群データ142を前記設定した仮想カメラデータ143を用いてレンダリングして、上面からの点群レンダリング画像を生成する。前記図4(g)には生成された上面点群レンダリング画像を示すが、点群データだけから生成された点群レンダリング画像には、物体間の遮蔽により画像欠損領域402~404が発生する。
 なお、距離画像を用いて自由視点画像を生成するためには、3次元カメラ103の設置位置と方向の情報が必要である。3次元カメラから取得した点群データは3次元カメラのローカル座標系で定義される。この点群データを作業機械100の座標系に変換する必要がある。このためには、3次元カメラの位置と方向を作業機械の座標系で計測し、その位置と方向から座標変換行列を求めて座標変換を行う。
 S606では、3次元モデルデータ131とS603で取得したアーム角度などの移動体姿勢データ146を用いて、欠損領域にある作業機械100の人工画像145を生成する。3次元モデルデータ131には、予め作業機械100のCGモデルデータ131が格納されている。このCGモデルデータ131に対し、アーム部の角度を任意に設定することが可能であり、これにより現在の作業機械と同じ姿勢の上面から見た人工画像を生成する。前記図4(h)には生成された作業機械の人工画像(上面CG画像)100’を示す。
 S607では、S605で生成した点群データからの点群レンダリング画像とS606で生成した作業機械100の人工画像100’を重畳合成して自由視点合成画像125を生成する。この重畳処理では、点群レンダリング画像と作業機械100の人工画像を、奥行きを考慮して重畳する。この処理は、Zバッファ法を用いた隠面消去処理によって実現できる。前記図4(i)には重畳結果の画像を示す。図4(i)に示されるように、作業機械100の人工画像を重畳した結果、図4(g)に示す点群データだけを用いた点群レンダリング画像表示と比較して、作業機械100と作業対象物301の関係を把握し易くなる。
 S608では、自由視点合成画像125の転送を行う。この例では、仮想上面画像(図4(i))を遠隔操作装置200に転送する。
  S609では、他の仮想カメラ情報があるかどうかを判定する。図3Bの例では、仮想側面画像313に対応する側面からの仮想カメラ情報が存在する。この場合には前記S604に戻り、側面からの仮想カメラ情報を自由視点画像生成プログラム122およびCG画像生成プログラム123の仮想カメラデータに設定する。
 以下、S605で生成される側面の点群レンダリング画像は前記図5(d)のようになり、S607で作業機械100の人工画像100’を重畳した仮想側面画像313は前記図5(e)のようになる。この場合も、作業機械100の人工画像を重畳した結果、作業機械100と作業対象物301の関係を把握し易くなる。
 S608では、自由視点合成画像125の転送を行う。この例では、仮想側面画像(図5(e))を遠隔操作装置200に転送する。
  S609では、他の仮想カメラ情報があるかどうかを判定する。図3Bの例では、他の仮想カメラ情報がないので終了する。
 S608で転送された合成画像は、図3Bのように、遠隔操作装置200の自由視点合成画像表示部204に表示される。一方遠隔操作装置200のカメラ画像表示部203には、前方カメラ102からの画像が表示されている。
 以上のように実施例1では、3次元カメラから得られた点群レンダリング画像に、作業機械のCG画像(人工画像)を重畳表示することで、作業機械と作業対象物の位置関係が把握し易くなるという効果がある。
 実施例2は、3次元カメラから生成された点群レンダリング画像に対し、欠損領域にある作業機械の人工画像だけでなく、作業対象物の人工画像も重畳するようにしたものである。
 遠隔操作システムの構成は実施例1(図1A,1B、図2)と同様であるため、以下では動作の相違点を説明する。作業機械100の3次元モデルデータ131には、作業機械100のCGモデルデータだけでなく、作業対象物(ダンプ)301のCGモデルデータを格納している。
 図7と図8は、作業対象物の人工画像を追加して重畳した例を示す図で、図7は仮想上面画像を、図8は仮想側面画像を示す。それぞれ、前記図4、図5に引き続いて行われる。
 図7において、(a)は図4(g)に対応し、3次元カメラから得られる点群データを用いた仮想上面点群レンダリング画像である。(b)は、作業機械100と作業対象物301の上方からの人工画像100’,301’を(a)の上面点群レンダリング画像に重畳表示したものである。(b)の重畳画像では、上面点群レンダリング画像(a)の表示よりも、また前記図4(i)のように作業機械100の人工画像100’だけを重畳したときよりも、作業機械100と作業対象物301の位置関係の把握が容易となる。
 図8において、(a)は図5(d)に対応し、3次元カメラの点群データを用いた仮想側面点群レンダリング画像である。(b)は、作業機械100と作業対象物301の側方からの人工画像100’,301’を(a)の側面点群レンダリング画像に重畳表示したものである。ここではさらに作業環境302についての人工画像302’も追加している。(b)の重畳画像では、側面点群レンダリング画像(a)の表示よりも、また前記図5(e)のように作業機械100の人工画像100’だけを重畳したときよりも、作業機械100と作業対象物301の位置関係の把握が容易となる。
 図9は、実施例2における自由視点合成画像の生成方法を示すフローチャートである。実施例1(図6)との相違点を中心に説明する。この処理は情報処理装置111が実行するものである。
  S901~S903までの処理(3次元カメラデータ入力、距離画像算出、アーム角度入力)は図6のS601~S603と同様である。
 S904では作業対象物301の検出処理を行う。作業対象物301は作業内容によって様々であるが、ここでの例ではダンプが相当する。ダンプに対して放土を行う場合には、ダンプがカメラに写っているかどうかを判定する。その場合の作業対象物301の識別は、画像処理によって判定できる。また、GPS(Global Positioning System)によってダンプの位置と方向を計測できれば、作業機械100の位置と方向のデータを用いて、作業対象物301の検出が可能である。
 S905では、作業対象物301が存在するかどうかの判定を行う。作業対象物301が存在する場合にはS906に進み、存在しない場合にはS907に進む。
  S906では、作業対象物301の位置と姿勢を算出する。このため、カメラの画像から作業対象物301を抽出することで、作業機械100に対する位置や姿勢の情報を得る。求めた位置と姿勢は、作業機械100の座標系に変換する。
 S907の仮想カメラデータ設定、S908の点群レンダリング画像生成、S909の作業機械の人工画像生成は、図6のS604~S606と同様である。
  S910では、作業対象物301が存在するかどうかにより処理の分岐を行う。作業対象物301が存在する場合にはS911に進み、存在しない場合にはS912に進む。
 S911では、作業対象物301の人工画像を生成する。すなわち、作業対象物301のCGモデルデータと、S906で求めた作業対象物301の位置、姿勢から作業対象物301の人工画像301’を生成する。
 S912では、S908で生成した点群レンダリング画像にS909で生成した作業機械100の人工画像100’、およびS911で生成した作業対象物301の人工画像301’(作業対象物301ありの場合)を重畳する。
  S913,S914(合成画像の転送、仮想カメラデータのチェック)は図6のS608,S609と同様である。
 以上のように、実施例2では、3次元カメラから得られた自由視点点群レンダリング画像に、作業機械の人工画像と作業対象物の人工画像の両方を重畳表示することで、作業機械と作業対象物の位置関係がより把握し易くなるという効果がある。
 実施例3は、3次元カメラから生成された自由視点合成画像に対して、画像表示範囲を所望の領域に制限するようにしたものである。
 図10Aは、実施例3における作業機械100による作業状態の一例を示し、図10Bと図10Cは遠隔操作装置200に表示される画像を示す。
  図10Aに示すように、作業対象物301の近傍に2つの障害物1001、1002が存在する状態を想定する。
 図10Bは、この状態について、前記実施例2の手法で合成した仮想上面画像1011と仮想側面画像1012を示す。いずれも作業機械100と作業対象物301の人工画像100’,301’が重畳表示されている。この図から分かるように、仮想側面画像1012では、障害物1001、1002のために作業機械100’や作業対象物301’が隠蔽され、作業状態が視認しにくい表示となっている。なお、仮想上面画像1011では、障害物1001、1002による隠蔽の問題は生じない。本実施例ではこの問題を解決するため、障害物1001、1002を含む領域の点群データを表示しないように、点群レンダリング画像の表示領域に制限を加えるようにした。
 図10Cは、表示領域を制限して表示した画像を示す。仮想上面画像1021において、障害物1001、1002を外側に排除するような領域1003を設ける。そして、領域1003の内部だけの点群データから点群レンダリング画像を生成することで、障害物1001、1002についてはレンダリングされない。この結果、仮想側面画像1022では障害物1001、1002が除去され、障害物1001、1002による隠蔽の問題が解消される。
 点群画像の表示領域を制限するためには、図6、図9の「距離画像を用いて自由視点3D画像生成」のステップ(S605、S908)に修正を加える。すなわち、距離画像を用いた自由視点画像生成において、公知のクリッピング処理によって領域外の点群データの表示を行わないようにする。以上で、図10Cのような仮想画像が生成できる。
 以上のように、実施例3では、3次元カメラから得られた点群データを用いて自由視点画像を生成するときに、表示する領域に制限を加える。これにより、障害物が存在しても障害物を非表示とすることができ、作業機械と作業対象物の位置関係を把握し易くなるという効果がある。
 実施例4は、実施例2において使用する作業対象物のCGモデル(作業対象モデル)を3次元カメラの入力データを用いて生成(更新)するようにしたものである。
 図11は、作業対象モデルの生成を説明するフローチャートである。この生成処理は情報処理装置111によって実行される。
  S1101では3次元カメラ103から作業対象物301の3次元カメラデータを入力し、S1102で距離画像(カメラからの距離情報)を算出する。
 S1103では、この距離画像と既存の作業対象モデルのモデルデータを用いて、3次元カメラ103の位置・姿勢を算出する。既存の作業対象モデルのモデルデータとは、現時点で所有している当該作業対象物301のモデルデータである。
 S1104では、算出された3次元カメラ103の位置・姿勢と、算出された距離画像を用いて、作業対象モデルを更新する。すなわち、3次元カメラ103の位置・姿勢の新しい情報を用いることで、作業対象モデルのデータが修正される。
  S1105では所定回数この処理を繰り返して終了する。このように作業対象モデルの更新を繰り返すことで、より精密な作業対象モデルを生成できる。
 上記の3次元カメラからの入力データを用いてモデルを更新する方法は、次の参考文献に記載されている。
[参考文献]R.A.Newcombe, et Al.“KinectFusion: Real-time dense surface mapping and tracking,”in Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on, 2011, pp.127-136.
 以上のように、実施例4では、3次元カメラから得られた点群データを用いて作業対象モデルを構成する。このため、作業対象の正確なCGモデルを用意する必要がなく、作業対象物や特に地形などの作業環境の精密なモデルを構築でき、より自然な自由視点画像を生成することが可能である。これにより、作業機械と作業対象物の位置関係を把握し易くなるという効果がある。
 実施例5は、3次元カメラから生成された点群レンダリング画像に人工画像を重畳するとき、人工画像を重畳する割合(重畳度)を時間的に変化させるようにしたものである。
 図12は、人工画像の重畳度を変化させて表示する例を示す図である。(a)は、作業機械100や作業対象物301の人工画像を重畳しない自由視点合成画像(重畳度=0%)を、(b)は、作業機械100や作業対象物301の人工画像100’,301’を重畳した自由視点合成画像(重畳度=100%)を示す。自由視点合成画像表示部204には、例えば時間的に(a)と(b)を切り替えて交互に表示する。あるいは、(a)と(b)の間で重畳度を徐々に変化させ、(c)のように重畳度=50%の場合を含めて表示してもよい。
 本実施例を実現するためには、図6のS607や図9のS912の重畳画像生成の処理に修正を加える。すなわち、点群レンダリング画像と人工画像の重畳処理において、人工画像の透明度を時間的に変化させることで、重畳度を変化させた重畳画像を表示できる。
 以上のように実施例5では、3次元カメラから得られた点群レンダリング画像と、CGモデルから生成した人工画像の重畳度を変化させる。これにより、点群レンダリング画像と人工画像が正しく適合しているかどうかをオペレータが把握し易くなる。もし、正しく適合せずに画像のずれなどが生じた場合には、操作を中断してカメラ位置・方向の調整などのキャリブレーション処理を行うようにする。
 なお、重畳度の変化に関しては、時間的に変化させるだけでなく、例えば、オペレータの指示によって変化させることが可能である。操作入力部206を用いた指示によって重畳度を対話的に変更することが可能である。
 以上の各実施例では、遠隔操作を行う作業機械100として油圧ショベルを例に説明した。作業機械100は油圧ショベルに限らず、様々な移動体に適用できる。
 図13Aは、移動体が移動ロボットの例を示す図である。移動ロボット100においても、主制御部101、前方カメラ102、3次元カメラ103、アーム角度センサ104、アーム部105、走行部106、無線通信部107などを備え、同様な構成で実現できる。
 図13Bは、移動ロボットの場合の仮想上面画像1301、仮想側面画像1302の例である。この場合も3次元カメラ103から得られる点群レンダリング画像に移動ロボット100や作業対象物301の人工画像100’,301’を重畳することで、移動ロボットと作業対象物の位置関係を把握し易くなるという効果が得られる。
 以上、本発明によれば、任意のアングル(例えば上方や側方)からの自由視点合成画像を参照しながら、操作者は作業機械を遠隔操作することができるため、作業対象物までの客観的な距離感や物の大きさ等を容易に把握することができ、遠隔作業の操作性を格段に向上させることができる。
 本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。
  上記実施例では、操作者が作業機械(移動体)に対し遠隔操作を行う場合を前提としたが、これに限定せず、操作者が作業機械に搭乗して操作する場合にも本発明は有効である。すなわち、作業機械に搭乗している操作者から周囲の作業対象物が見えにくいときは、点群レンダリング画像に人工画像(CG画像)を重畳した自由視点合成画像を表示することで、作業機械と作業対象物の位置関係が把握し易くなることは言うまでもない。よって本発明は、作業機械を操作する上での操作支援システムに拡張可能である。
 上記実施例では、点群レンダリング画像の生成と人工画像の合成は全て移動体側で実行し、遠隔操作装置は自由視点合成画像を受信して表示するものとした。これらの処理のうち、一部の画像処理を遠隔操作装置側で実施することも可能である。例えば、距離画像の点群データとCGモデルの情報(アーム部の角度情報や作業対象物の種類と位置・方向)を遠隔操作装置に転送し、遠隔操作装置側で点群レンダリング画像と人工画像の合成を実行する形態も可能である。
 上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることもできる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の構成を追加・削除・置換することもできる。
 100:作業機械(移動体)、
 101:主制御部、
 102:カメラ、
 103:3次元カメラ、
 104:アーム角度センサ、
 105:アーム部、
 106:走行部、
 107:無線通信部、
 111:情報処理装置、
 120:記憶装置、
 121:3次元点群生成プログラム、
 122:自由視点画像生成プログラム、
 123:CG画像生成プログラム、
 124:重畳画像合成プログラム、
 125:自由視点合成画像、
 131:3次元モデルデータ、
 141:3次元カメラデータ、
 142:3次元点群データ、
 143:仮想カメラデータ、
 144:点群レンダリング画像、
 145:人工画像、
 146:移動体姿勢データ、
 200:遠隔操作装置、
 201:主制御部、
 202:無線通信部、
 203:カメラ画像表示部、
 204:自由視点合成画像表示部、
 205:自由視点合成画像表示制御部、
 206:操作入力部、
 301:作業対象物、
 302:作業環境、
 311:前方カメラ画像、
 312:仮想上面画像、
 313:仮想側面画像、
 401,501:撮影可能領域、
 402~404,502~504:計測不可能領域、
 100’,301’,302’:CG画像(人工画像)。

Claims (9)

  1.  作業対象物に対して作業を行う移動体を遠隔操作装置により操作する遠隔操作システムにおいて、
     前記移動体には、
     前記移動体の前方を撮影する3次元カメラと、
     前記3次元カメラから得た3次元点群データから、前記3次元カメラの視点方向とは異なる角度で、前記作業対象物が写る点群レンダリング画像を生成する自由視点画像生成部と、
     前記移動体の3次元モデルデータをもとに、前記移動体の人工画像を生成するCG画像生成部と、
     前記人工画像を前記点群レンダリング画像に重畳する重畳画像合成部と、
     前記重畳画像合成部で重畳した自由視点合成画像を前記遠隔操作装置に送信する通信部と、
     を備え、
     前記遠隔操作装置には、
     前記移動体から送信された前記自由視点合成画像を受信する通信部と、
     前記受信した自由視点合成画像を表示する表示部と、
     前記移動体に対して操作を指示する操作入力部と、
     を備えることを特徴とする遠隔操作システム。
  2.  請求項1に記載の遠隔操作システムであって、
     前記CG画像生成部は、さらに、前記作業対象物の3次元モデルデータをもとに、前記作業対象物の人工画像を生成し、
     前記重畳画像合成部は、生成された前記作業対象物の人工画像を前記点群レンダリング画像に重畳することを特徴とする遠隔操作システム。
  3.  請求項1に記載の遠隔操作システムであって、
     前記移動体には、当該移動体の姿勢を検出するセンサを有し、
     前記CG画像生成部は、前記センサで検出した当該移動体の姿勢に基づき当該移動体の人工画像を生成し、
     前記重畳画像合成部は、生成された当該移動体の人工画像を前記点群レンダリング画像に重畳することを特徴とする遠隔操作システム。
  4.  請求項2に記載の遠隔操作システムであって、
     前記CG画像生成部は、前記3次元カメラが撮影した3次元画像データから前記作業対象物の位置と姿勢を算出し、前記作業対象物の人工画像を生成し、
     前記重畳画像合成部は、生成された前記作業対象物の人工画像を前記点群レンダリング画像に重畳することを特徴とする遠隔操作システム。
  5.  請求項1に記載の遠隔操作システムであって、
     前記自由視点画像生成部は、前記3次元カメラが撮影した3次元画像データのうち、所望の領域のデータを用いて前記点群レンダリング画像を生成することを特徴とする遠隔操作システム。
  6.  請求項2に記載の遠隔操作システムであって、
     前記3次元カメラを用いて前記作業対象物を撮影し、
     撮影した3次元点群データと前記3次元カメラの位置と姿勢の情報を用いて、前記作業対象物の3次元モデルデータを生成することを特徴とする遠隔操作システム。
  7.  請求項2に記載の遠隔操作システムであって、
     前記重畳画像合成部は、前記点群レンダリング画像に前記人工画像を重畳するとき、前記人工画像を重畳する割合を時間的に変化させることを特徴とする遠隔操作システム。
  8.  作業対象物に対して作業を行う移動体を操作する操作支援システムにおいて、
     前記移動体に搭載され前記移動体の前方を撮影する3次元カメラと、
     前記3次元カメラから得た3次元点群データから、前記3次元カメラの視点方向とは異なる角度で、前記作業対象物が写る点群レンダリング画像を生成する自由視点画像生成部と、
     前記移動体の3次元モデルデータをもとに、前記移動体の人工画像を生成するCG画像生成部と、
     前記人工画像を前記点群レンダリング画像に重畳する重畳画像合成部と、
     前記重畳画像合成部で重畳した自由視点合成画像を表示する表示部と、
     前記移動体に対して操作を指示する操作入力部と、
     を備えることを特徴とする操作支援システム。
  9.  請求項8に記載の操作支援システムであって、
     前記CG画像生成部は、さらに、前記作業対象物の3次元モデルデータをもとに、前記作業対象物の人工画像を生成し、
     前記重畳画像合成部は、生成された前記作業対象物の人工画像を前記点群レンダリング画像に重畳することを特徴とする操作支援システム。
PCT/JP2015/075377 2015-09-08 2015-09-08 遠隔操作システムおよび操作支援システム WO2017042873A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/075377 WO2017042873A1 (ja) 2015-09-08 2015-09-08 遠隔操作システムおよび操作支援システム
JP2017538497A JP6474905B2 (ja) 2015-09-08 2015-09-08 遠隔操作システムおよび操作支援システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075377 WO2017042873A1 (ja) 2015-09-08 2015-09-08 遠隔操作システムおよび操作支援システム

Publications (1)

Publication Number Publication Date
WO2017042873A1 true WO2017042873A1 (ja) 2017-03-16

Family

ID=58240652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075377 WO2017042873A1 (ja) 2015-09-08 2015-09-08 遠隔操作システムおよび操作支援システム

Country Status (2)

Country Link
JP (1) JP6474905B2 (ja)
WO (1) WO2017042873A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128847A (ja) * 2017-02-08 2018-08-16 株式会社Ihiエアロスペース 遠隔操縦車両の停止位置決定方法及び遠隔操縦車両の操縦システム
WO2019012992A1 (ja) * 2017-07-14 2019-01-17 株式会社小松製作所 表示制御装置、表示制御方法、プログラムおよび表示システム
WO2019054003A1 (ja) * 2017-09-15 2019-03-21 株式会社小松製作所 表示システム、表示方法、及び表示装置
WO2020044440A1 (ja) * 2018-08-28 2020-03-05 株式会社オプティム コンピュータシステム、動作検証方法及びプログラム
WO2020090954A1 (ja) * 2018-10-31 2020-05-07 株式会社小松製作所 再生装置、分析支援システム及び再生方法
WO2020170526A1 (ja) * 2019-02-20 2020-08-27 コベルコ建機株式会社 作業機械用表示システム
JP2020161933A (ja) * 2019-03-26 2020-10-01 コベルコ建機株式会社 遠隔操作システムおよび遠隔操作サーバ
JP2020170293A (ja) * 2019-04-02 2020-10-15 株式会社Ihiエアロスペース 画像表示方法及び遠隔操縦システム
WO2021002245A1 (ja) * 2019-07-01 2021-01-07 株式会社小松製作所 作業機械を含むシステム、および作業機械
WO2021066023A1 (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 制御装置、作業機械および制御方法
CN112884710A (zh) * 2021-01-19 2021-06-01 上海三一重机股份有限公司 作业机械的辅助影像生成方法、远程操控方法及其装置
JP2021182177A (ja) * 2020-05-18 2021-11-25 防衛装備庁長官 車両操縦システムと車両操縦方法
JP2022111789A (ja) * 2021-01-20 2022-08-01 アジアクエスト株式会社 3d画像表示システム、3d画像表示方法及びコンピュータプログラム
JP2022541669A (ja) * 2019-12-13 2022-09-26 ソニーグループ株式会社 2-d画像のリアルタイム体積視覚化
US11634890B2 (en) * 2016-09-02 2023-04-25 Komatsu Ltd. Image display system for work machine
WO2023100703A1 (ja) * 2021-12-01 2023-06-08 ソニーグループ株式会社 画像制作システム、画像制作方法、プログラム
WO2023100704A1 (ja) * 2021-12-01 2023-06-08 ソニーグループ株式会社 画像制作システム、画像制作方法、プログラム
JP7366472B1 (ja) 2022-07-05 2023-10-23 吉谷土木株式会社 作付け支援方法と圃場作業支援システム等

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116353A (ja) * 1996-10-11 1998-05-06 Kajima Corp 施工用移動体の遠隔操作支援画像システム
JP2004294067A (ja) * 2003-03-25 2004-10-21 Penta Ocean Constr Co Ltd 無人化施工装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116353A (ja) * 1996-10-11 1998-05-06 Kajima Corp 施工用移動体の遠隔操作支援画像システム
JP2004294067A (ja) * 2003-03-25 2004-10-21 Penta Ocean Constr Co Ltd 無人化施工装置

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634890B2 (en) * 2016-09-02 2023-04-25 Komatsu Ltd. Image display system for work machine
JP2018128847A (ja) * 2017-02-08 2018-08-16 株式会社Ihiエアロスペース 遠隔操縦車両の停止位置決定方法及び遠隔操縦車両の操縦システム
US10997889B2 (en) 2017-07-14 2021-05-04 Komatsu Ltd. Display control device, display control method, program, and display system
WO2019012992A1 (ja) * 2017-07-14 2019-01-17 株式会社小松製作所 表示制御装置、表示制御方法、プログラムおよび表示システム
JPWO2019012992A1 (ja) * 2017-07-14 2019-11-07 株式会社小松製作所 表示制御装置、表示制御方法、プログラムおよび表示システム
CN110574078A (zh) * 2017-07-14 2019-12-13 株式会社小松制作所 显示控制装置、显示控制方法、程序以及显示系统
CN110574078B (zh) * 2017-07-14 2023-03-28 株式会社小松制作所 显示控制装置、显示控制方法、记录介质以及显示系统
US20200126464A1 (en) * 2017-07-14 2020-04-23 Komatsu Ltd. Display control device, display control method, program, and display system
AU2018299288B2 (en) * 2017-07-14 2021-07-22 Komatsu Ltd. Display control device, display control method, program, and display system
JP2019054464A (ja) * 2017-09-15 2019-04-04 株式会社小松製作所 表示システム、表示方法、及び表示装置
AU2018333193B2 (en) * 2017-09-15 2021-03-18 Komatsu Ltd. Display system, display method, and display device
US11280062B2 (en) 2017-09-15 2022-03-22 Komatsu Ltd. Display system, display method, and display device
WO2019054003A1 (ja) * 2017-09-15 2019-03-21 株式会社小松製作所 表示システム、表示方法、及び表示装置
WO2020044440A1 (ja) * 2018-08-28 2020-03-05 株式会社オプティム コンピュータシステム、動作検証方法及びプログラム
JPWO2020044440A1 (ja) * 2018-08-28 2021-06-03 株式会社オプティム コンピュータシステム、動作検証方法及びプログラム
US11188053B2 (en) 2018-08-28 2021-11-30 Optim Corporation Computer system, operation verification method, and program
WO2020090954A1 (ja) * 2018-10-31 2020-05-07 株式会社小松製作所 再生装置、分析支援システム及び再生方法
JP7231380B2 (ja) 2018-10-31 2023-03-01 株式会社小松製作所 再生装置、分析支援システム及び再生方法
CN112703525A (zh) * 2018-10-31 2021-04-23 株式会社小松制作所 播放装置、分析辅助系统以及播放方法
JP2020071742A (ja) * 2018-10-31 2020-05-07 株式会社小松製作所 再生装置、分析支援システム及び再生方法
WO2020170526A1 (ja) * 2019-02-20 2020-08-27 コベルコ建機株式会社 作業機械用表示システム
JP7099358B2 (ja) 2019-02-20 2022-07-12 コベルコ建機株式会社 作業機械用表示システム
JP2020131365A (ja) * 2019-02-20 2020-08-31 コベルコ建機株式会社 作業機械用表示システム
US11732444B2 (en) 2019-02-20 2023-08-22 Kobelco Construction Machinery Co., Ltd. Display system for work machine
CN113423543A (zh) * 2019-02-20 2021-09-21 神钢建机株式会社 作业机械用显示系统
EP3900892A4 (en) * 2019-02-20 2022-03-09 Kobelco Construction Machinery Co., Ltd. DISPLAY SYSTEM FOR WORK MACHINE
CN113423543B (zh) * 2019-02-20 2023-10-27 神钢建机株式会社 作业机械用显示系统
JP2020161933A (ja) * 2019-03-26 2020-10-01 コベルコ建機株式会社 遠隔操作システムおよび遠隔操作サーバ
WO2020194882A1 (ja) * 2019-03-26 2020-10-01 コベルコ建機株式会社 遠隔操作システムおよび遠隔操作サーバ
US11732440B2 (en) 2019-03-26 2023-08-22 Kobelco Construction Machinery Co., Ltd. Remote operation system and remote operation server
JP7318258B2 (ja) 2019-03-26 2023-08-01 コベルコ建機株式会社 遠隔操作システムおよび遠隔操作サーバ
JP2020170293A (ja) * 2019-04-02 2020-10-15 株式会社Ihiエアロスペース 画像表示方法及び遠隔操縦システム
JP7303008B2 (ja) 2019-04-02 2023-07-04 株式会社Ihiエアロスペース 画像表示方法及び遠隔操縦システム
WO2021002245A1 (ja) * 2019-07-01 2021-01-07 株式会社小松製作所 作業機械を含むシステム、および作業機械
JP2021009556A (ja) * 2019-07-01 2021-01-28 株式会社小松製作所 作業機械を含むシステム、および作業機械
WO2021066023A1 (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 制御装置、作業機械および制御方法
CN114364845A (zh) * 2019-09-30 2022-04-15 株式会社小松制作所 控制装置、作业机械以及控制方法
JP7424784B2 (ja) 2019-09-30 2024-01-30 株式会社小松製作所 制御装置、作業機械および制御方法
JP2022541669A (ja) * 2019-12-13 2022-09-26 ソニーグループ株式会社 2-d画像のリアルタイム体積視覚化
US11734873B2 (en) 2019-12-13 2023-08-22 Sony Group Corporation Real-time volumetric visualization of 2-D images
JP2021182177A (ja) * 2020-05-18 2021-11-25 防衛装備庁長官 車両操縦システムと車両操縦方法
CN112884710A (zh) * 2021-01-19 2021-06-01 上海三一重机股份有限公司 作业机械的辅助影像生成方法、远程操控方法及其装置
JP2022111789A (ja) * 2021-01-20 2022-08-01 アジアクエスト株式会社 3d画像表示システム、3d画像表示方法及びコンピュータプログラム
WO2023100703A1 (ja) * 2021-12-01 2023-06-08 ソニーグループ株式会社 画像制作システム、画像制作方法、プログラム
WO2023100704A1 (ja) * 2021-12-01 2023-06-08 ソニーグループ株式会社 画像制作システム、画像制作方法、プログラム
JP7366472B1 (ja) 2022-07-05 2023-10-23 吉谷土木株式会社 作付け支援方法と圃場作業支援システム等
JP2024007317A (ja) * 2022-07-05 2024-01-18 吉谷土木株式会社 作付け支援方法と圃場作業支援システム等
JP7438516B2 (ja) 2022-07-05 2024-02-27 吉谷土木株式会社 作付け支援方法と圃場作業支援システム等

Also Published As

Publication number Publication date
JPWO2017042873A1 (ja) 2018-06-14
JP6474905B2 (ja) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6474905B2 (ja) 遠隔操作システムおよび操作支援システム
AU2017404218B2 (en) Display system, display method, and remote operation system
EP3086283B1 (en) Providing a point cloud using a surveying instrument and a camera device
JP6407663B2 (ja) 作業支援画像生成装置、及びそれを備えた作業機械の操縦システム
JP7285051B2 (ja) 表示制御装置、および表示制御方法
US11421404B2 (en) Construction machine
US10527413B2 (en) Outside recognition device
WO2013145878A1 (ja) 作業機械用周辺監視装置
US20160301864A1 (en) Imaging processing system for generating a surround-view image
JP2013036243A (ja) 建設機械制御システム
US20160301863A1 (en) Image processing system for generating a surround-view image
JP2016065422A (ja) 外界認識装置および外界認識装置を用いた掘削機械
WO2021124654A1 (ja) 作業支援サーバ、作業支援方法および作業支援システム
KR101611427B1 (ko) 영상 처리 방법 및 이를 수행하는 영상 처리 장치
US20230291989A1 (en) Display control device and display method
KR101975556B1 (ko) 로봇의 관측 시점 제어 장치
JP2014127839A (ja) 画像合成装置、および画像合成方法
JP7351478B2 (ja) 表示システム、遠隔操作システム、及び表示方法
US20240060275A1 (en) Method and system of configuring a machine control unit of a construction machine
KR100960368B1 (ko) 3차원 공간계를 이용한 항만 견시 시스템 및 항만 견시영상 제공방법
WO2023228897A1 (ja) 遠隔制御システム、遠隔操作型作業機械システム、および作業情報表示制御方法
KR20180060078A (ko) 건설장비에서의 작업 모니터링 시스템
JP2023120743A (ja) 表示制御装置、及び遠隔操作装置
JP2022053421A (ja) 遠隔操作のための表示システム、表示方法およびプログラム
JP2014056496A (ja) 仮想カメラ画像生成装置、仮想カメラ画像生成システム、仮想カメラ画像生成方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903539

Country of ref document: EP

Kind code of ref document: A1