JP2004294067A - 無人化施工装置 - Google Patents

無人化施工装置 Download PDF

Info

Publication number
JP2004294067A
JP2004294067A JP2003082636A JP2003082636A JP2004294067A JP 2004294067 A JP2004294067 A JP 2004294067A JP 2003082636 A JP2003082636 A JP 2003082636A JP 2003082636 A JP2003082636 A JP 2003082636A JP 2004294067 A JP2004294067 A JP 2004294067A
Authority
JP
Japan
Prior art keywords
remote
construction machine
laser beam
data
fixed station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003082636A
Other languages
English (en)
Inventor
Bunji Shigematsu
文治 重松
Hideki Sugimoto
英樹 杉本
Tomoyuki Kakegawa
友行 掛川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2003082636A priority Critical patent/JP2004294067A/ja
Publication of JP2004294067A publication Critical patent/JP2004294067A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Processing Or Creating Images (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Selective Calling Equipment (AREA)

Abstract

【課題】遠隔操作式建設機械にスキャニングレーザと、バケットに追随して動く反射板を設けることで、レーザ光線の照射で地形の形状と、バケットの動きを検出してモニター画面に重畳表示させて遠隔操作をする無人化施工装置を提供する。
【解決手段】移動局としての遠隔操作式建設機械12と、この遠隔操作式建設機械12を遠隔操作するための固定局11とからなる無人化施工装置であって、遠隔操作式建設機械12に搭載したスキャニングレーザ手段15と、遠隔操作式建設機械12のアーム16先端に設けたレーザ光線を反射させる反射板18を備え、スキャニングレーザ手段15は、バケットで作業する対象地形領域29にレーザ光線を照射させ、その反射光を受光することで対象地形領域の地形データを固定局11のモニター画面13に表示すると共に、バケット17の動きを模擬したバケットデータをモニター画面13に地形データと共に重畳表示することである。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、無人化施工装置に関するものであり、詳しくは、スキャニングレーザを作業機械に搭載させ、そのスキャニングレーザから発射されるレーザ光線の反射光を用いて、作業対象物の地形の表示や作業対象物を掘削する作業治具、例えば、バケットに連動して動く反射板で反射したレーザ光線反射光に基いて、バケットの動きを、地形の表示と重畳表示させて、遠隔にいながらにして作業機械を操作するようにした無人化施工装置に関する。
【0002】
【従来の技術】
従来技術におけるテレビカメラを利用した無人化施工を施す手法は、バケットと対象物の立体感や距離感を把握することが難しいため、建設機械に搭載したカメラと、建設機械のバケットの作用を横方向から撮像するというカメラ車が特別に必要である。
【0003】
即ち、図18に示すように、カメラ111を搭載したカメラ車112と、油圧ショベル115のバケット113が作業する様子を撮像することができるカメラ114を備えた移動局である油圧ショベル115と、カメラ車112のカメラ111からの映像を受信すると共に、油圧ショベル115に搭載されているカメラ114で撮像した映像信号を受信する固定局117と、から構成されている。
固定局117には、カメラ車112を移動させると共に、カメラ111の位置を上下動或いは回転させるように制御する遠隔操作部118と、油圧ショベル115のバケット113を動かして対象物116を掘削する制御をする遠隔操作部119と、カメラ車112のカメラ111の映像及び油圧ショベル115のカメラ114の映像を映し出すモニター画面120とを備えた構成になっている。
【0004】
このような構成からなる無人化施工装置において、固定局117側においては、モニター画面120に映し出される映像をみながら、油圧ショベル115を駆動させる前に、油圧ショベル115の近傍位置にカメラ車112を配置する。そして、カメラ車112のカメラ111を駆動させ、油圧ショベル115を撮像して、その映像をモニター画面120に映し出すと共に、油圧ショベル115に搭載したカメラ114を駆動させて、油圧ショベル115のバケット113を撮像して、所望の対象物116の掘削等をモニター画面120に写し出すことで油圧ショベル115を遠隔制御する。
図19に示すものは、油圧ショベル115に搭載したカメラ114からの映像を示したもので、バケット113の略後方から撮像し、対象物116を掘削する様子をモニター画面120に映し出している。
図20に示すものは、カメラ車112のカメラ111で油圧ショベル115を撮像したもので、油圧ショベル115の横方向から主に対象物116を掘削するバケット113の動く様子を撮像し、モニター画面120に映し出している。
【0005】
又、テレビ画像だけでは立体感や距離感覚を把握するのが難しいことを解決する手法として、油圧ショベルの各アームの可動部へポテンションなどを設けて角度を検出し演算することで先端バケットの位置を求めるポテンション手法がある。
このポテンション手法は、図21に示すように、油圧ショベル121において、第1のアーム122の可動部の基部位置に第1のポテンション123、第1のアーム122と第2のアーム124が接続する中間の折曲がる位置に第2のポテンション125、バケット126が取付けられる位置に第3のポテンション127を備える。
そして、この第1、第2及び第3のポテンション123、125、127からの位置信号を解析して、現在の各アームの動きをモニター画面に写し出すことで、現在のバケット126の状態と対象物128の位置関係を三次元で表示させ、その三次元表示されているものを見て油圧ショベル121を駆動させる。
【0006】
【特許文献1】
特開平6−331632号公報(第3〜4頁、第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、従来技術で説明した建設機械である油圧ショベルやカメラ車に搭載されているカメラで撮像した映像信号を解析して、モニターに表示させる手法であると、カメラの搭載、そのカメラで撮像したデータを送信する制御部等の構成が複雑になる割には、撮像した映像信号を解析するのに正確且つ精巧に解析する技術を構築するのに膨大な費用がかかり実用的ではないという問題がある。
従って、構成を簡単にすると共に、作業機械の動作を正確に再現できる構成に解決しなければならない課題を有する。
【0008】
【課題を解決するための手段】
上記課題を解決するための本願発明に係る無人化施工装置は、次に示す構成にすることである。
【0009】
(1)無人化施工装置は、固定局からの遠隔操作により所定の作業を行うように駆動する移動局としての遠隔操作式建設機械と、前記遠隔操作式建設機械を遠隔操作するための、モニター画面及び遠隔操作部を具備する固定局と、からなる無人化施工装置であって、前記遠隔操作式建設機械には、スキャンさせてレーザ光線を発射させ、該発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段と、前記遠隔操作式建設機械のアーム先端に設けた作業治具の移動方向に追随できるように取付け、レーザ光線を反射させる反射板と、を備え、前記スキャニングレーザ手段は、前記作業治具で作業する対象地形領域にレーザ光線を照射させ、その反射光を受光することで対象地形領域の地形データを前記固定局のモニター画面に表示すると共に、前記反射板にレーザ光線を反射させ、その反射したレーザ光線に基いて前記作業治具の動きを模擬した作業治具データを前記固定局のモニター画面に前記地形データと共に重畳表示することである。
(2)又、前記スキャニングレーザ手段は、前記遠隔操作式建設機械の近傍位置にいる建設機械にレーザ光線を照射し、その反射光から、当該建設機械を特定すると共に当該遠隔操作式建設機械からみた建設機械の全体と位置及び向きを前記固定局のモニター画面に表示することを特徴とする(1)に記載の無人化施工装置。
【0010】
(3)無人化施工装置は、固定局からの遠隔操作により所定の作業を行うように駆動する移動局としての遠隔操作式建設機械と、前記遠隔操作式建設機械を遠隔操作するための、モニター画面及び遠隔操作部を具備する固定局と、からなる無人化施工装置であって、前記遠隔操作式建設機械には、スキャンさせてレーザ光線を発射させ、該発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段と、前記遠隔操作式建設機械のアーム先端に設けた作業治具の移動方向に追随できるように取付け、レーザ光線を反射させる反射板と、前記遠隔操作式建設機械の適宜位置に距離を持たせて2本のGPSアンテナを取付け、位置と方位を検出する位置方位検出手段と、前記遠隔操作式建設機械の傾斜を検出する傾斜手段と、を備え、前記スキャニングレーザ手段は、前記作業治具で作業する対象地形領域にレーザ光線を照射させ、その反射光を受信することで対象地形領域の地形データと、前記傾斜手段で求めた傾斜データと、前記位置方位検出手段で求めた方位データ及び位置データとを組み合わせて三次元地形データを生成して前記固定局のモニター画面に表示すると共に、前記反射板にレーザ光線を反射させ、その反射したレーザ光線に基いて前記作業治具の動きを模擬する作業治具データを前記固定局のモニター画面に前記三次元地形データと共に重畳表示することである。
【0011】
(4)無人化施工装置は、固定局からの遠隔操作により所定の作業を行うように駆動する移動局としての遠隔操作式建設機械と、前記遠隔操作式建設機械を遠隔操作するための、モニター画面及び遠隔操作部を具備する固定局と、からなる無人化施工装置であって、前記遠隔操作式建設機械には、スキャンさせてレーザ光線を発射させ、該発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段と、前記遠隔操作式建設機械のアーム先端に設けた作業治具の移動方向に追随できるように取付け、レーザ光線を反射させる反射板と、前記遠隔操作式建設機械の回転中心位置から外れた適宜位置に1本のGPSアンテナを取付け、位置と方位を検出する位置方位検出手段と、前記遠隔操作式建設機械の傾斜を検出する傾斜手段と、を備え、前記位置方位検出手段は、前記遠隔操作式建設機械を回転させることで中心座標位置を算出し、該中心座標位置から現在の位置との角度から方位データを検出すると共に、回転させたときの位置情報の高低データから傾斜データを算出し、前記スキャニングレーザ手段は、前記バケットで作業する対象地形領域にレーザ光線を照射させ、その反射光を受信することで対象地形領域の地形データと、前記位置方位検出手段で求めた方位データと傾斜データとを組み合わせて三次元地形データを生成して前記固定局のモニター画面に表示すると共に、前記反射板にレーザ光線を反射させ、その反射したレーザ光線に基いて前記作業治具の動きを模擬する作業治具データを前記固定局のモニター画面に前記三次元地形データと共に重畳表示することである。
【0012】
このように、遠隔操作式建設機械にスキャニングレーザ手段と作業治具(例えば、バケット)の動きに追随する反射板とを備え、このスキャニングレーザ手段で、作業目的とする領域にレーザ光線を照射させ、その反射光を利用して地形をモニター画面に表示させると共に、反射板から反射するレーザ光線から作業治具の動きを検出して、モニター画面に地形と共に重畳表示させることで、正確な作業治具の動きをモニター画面に表示させ、それを見ることで視認でき、正確なバケットによる作業状態を把握することが可能になる。
【0013】
【発明の実施の形態】
次に、本発明に係る無人化施工装置の実施形態について図面を参照して説明する。
【0014】
本願発明に係る第1の実施形態の無人化施工装置は、図1及び図2に示すように、固定局11からの遠隔操作により所定の作業を行うように駆動する移動局として機能する遠隔操作式建設機械12と、遠隔操作式建設機械12を遠隔操作するための、モニター画面13及び遠隔操作部14を具備する固定局11とから構成されている。
そして、遠隔操作式建設機械12には、スキャンさせてレーザ光線を発射させ、この発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械12の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段であるスキャンニングレーザ15を搭載し、遠隔操作式建設機械12のアーム16の先端に設けた作業治具、実施例においてバケット17の移動方向に追随できるように取付けたレーザ光線を反射させる反射板18を備えた構成になっている。
このスキャニングレーザ15は、固定局11と交信する車両コントローラ19と接続されている。
【0015】
移動局である遠隔操作式建設機械12は、実施例の場合、油圧ショベルであり、この油圧ショベル(12)は、機械を操作するオペレータ室20と、オペレータ室20の下部側に位置し、作業領域を移動するための車両部21と、オペレータ室20を回転させる回転部22と、オペレータ室20の基部位置に取り付けられ、先端に作業治具であるバケット17を備えたアーム16とからなる。
アーム16は、オペレータ室20の基部位置に取付けられ、上下動に動く第1のアーム23と、この第1のアーム23に第1の関節24で結合されている第2のアーム25と、第2のアーム25に第2の関節26で結合されている第3のアーム27とからなり、この第3のアーム27の先端に第4の関節28を介してバケット17が取り付けられた構成になっている。このバケット17は作業内容によって、第4の関節28から取り外し自在な構成になっている。
【0016】
このような構成からなる油圧ショベル(12)において、オペレータ室20の頂部にスキャニングレーザ15を前方方向を向いた状態で取付け、且つバケット17の近傍位置、実施例において第3のアーム27の下端部位置にレーザ光線を反射する反射板18を備えた構成になっている。このスキャニングレーザ15の取付け位置は、高い位置が望ましく、且つ前方方向に出した状態で取付けることで前方測量の視認性が良くなる。
【0017】
スキャニングレーザ15は、実施例において計測距離が30m、計測精度が6〜7cm、スキャンタイプは1ラインで二次元データを生成し、スキャンタイプは100°と180°が選択できるようになっており、更に、1ラインのスキャニング時間は数秒である。このような機能を有するスキャニングレーザ15は、スキャンしながらレーザ光線を照射するには、上部の一方向に1ライン照射し、次に、照射した位置から一段下がった方向に移動させて1ライン照射するようにして次々と照射するようにし、そのときの反射光を受光することで、照射した対象地形領域の地形29を地形データとして得ることができる。
この地形データは、車両コントローラ19を介して固定局11に送られ、固定局11で、この地形データをモニター画面13に表示させることができるようになっている。
【0018】
反射板18は、実際に作業を施すバケット17の近傍に備えた構成になっており、スキャニングレーザ15から発射されたレーザ光線を反射させ、その反射したレーザ光線をスキャニングレーザ15で受光することで、バケット17の位置関係を把握して認識するというものである。
【0019】
この反射板18による認識は、スキャニングレーザ15により得られる形状、動きなどの条件で認識し、反射板18の位置から想定される位置へバケット17のサイズや傾きを描き、これを、バケット17の動きを模擬した作業治具データとして固定局11に送られ、モニター画面13に映し出される。
【0020】
図3は、スキャニングレーザ15の反射光で捉えた地形29と、バケット17との位置関係を固定局11のモニター画面13に映し出したもので、バケット17は、反射板18で反射されたレーザ光線を受光し、その受光したレーザ光線のパターンと予め設定されているパターンとを比較することで、モニター画面13に映し出されているようなバケット17を表示することができる。このパターン等の比較演算は、図示しない固定局11側で、車両コントローラ19から送られてくる反射板18で反射して得られたデータに基いて行う。又、この比較演算は、車両コントローラ19側で行うようにしてもよい。
【0021】
この反射板18から反射されたレーザ光線は、図4に示すように、アーム16の移動により様々に異なる。従って、予め、アーム16の移動により変化する反射板18からの反射レーザ光線を捉えておけば、現在のアーム16の移動位置及びバケット17の状態を知ることができる。
【0022】
図5に示すものは、この反射板の形状と回転した場合の形状変化を示した例であり、例えば、反射板18が円形状のものである場合に、反射板18が鉛直方向に位置していてスキャニングレーザ15と水平位置が同じであれば、そのときの反射されて得られる反射レーザ光線から得るものは、真円かそれに近いものになる。この状態で鉛直方向に移動すれば、反射板18から得られる形状は楕円形になる。このようにして、オペレータ室20の回転動作及びアーム16の移動したときの反射板18での反射レーザ光線を取得することで、そのときのバケット17の位置状態を導き出すことができる。この変化する形状に見合ったデータをモニター画面13に表示させるようにすればよい。
そして、このバケット17の位置状態からバケット17の位置を再現させ、且つ以前にスキャニングレーザ15でスキャンして捉えてある作業する場所の地形29とを組み合わせることで、現在の作業風景を二次元的に実現することができるのである。
【0023】
具体的に示すと、図6及び図7に示すように、バケット17の先端が下方向を向いているときに、図7に示す固定局11のモニター画面13にはバケット17の位置と反射板18の角度からバケット17が下方向を向いた状態にして地形29と共に映し出す。
【0024】
図8及び図9に示すものは、バケット17の先端が略前方方向を向き、取入れ口が下方向を向いた状態であり、このときには反射板18での反射レーザ光線は最小値となる。このときの反射レーザ光線を得ることで、バケット17の方向位置状態を知ることができ、その時のバケット17が前方向を向いている状態にして、地形29との関係をモニター画面13に映し出す。
【0025】
このようにして、現在の地形29の状態とバケット17との位置関係を同時にモニター画面13に重畳表示することで、現在のバケット17の様子を遠隔にいながらにして正確に二次元で再現することができるのである。
【0026】
次に、無人化施工装置の第2の実施形態について、図面を参照して説明する。
尚、上記の第1の実施形態で説明したものと同じものには同一符号を付与して説明する。
【0027】
第2の実施形態の無人化施工装置は、レーザ光線で得られた対象地形領域の地形データを3次元的に表示するようにしたものであり、図10に示すように、固定局11からの遠隔操作により所定の作業を行うように駆動する移動局として機能する遠隔操作式建設機械12と、遠隔操作式建設機械12を遠隔操作するための、モニター画面13及び遠隔操作部14を具備する固定局11とから構成されている。
【0028】
移動局として機能する遠隔操作式建設機械12には、スキャンさせてレーザ光線を発射させ、この発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械12の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段であるスキャニングレーザ15を搭載し、遠隔操作式建設機械12のアーム16の先端に設けた作業治具であるバケット17の移動方向に追随できるように取付けたレーザ光線を反射させる反射板18と、遠隔操作式建設機械12の前後方向に位置をずらした適宜位置に2本の第1及び第2のGPSアンテナ41、42を取付け、この第1及び第2のアンテナ41、42に接続し、位置と方位を検出する位置方位検出手段である第1及び第2の位置方位検出部43、44と、遠隔操作式建設機械12の傾斜を検出する傾斜手段である傾斜検出部46と、スキャニングレーザ15からのデータ、第1及び第2の位置方位検出部43、44からのデータ、傾斜検出部46からのデータのそれぞれを受信し、固定局11と交信する車両コントローラ19とを備えた構成になっている。
【0029】
移動局である遠隔操作式建設機械12は、上記第1の実施形態で説明したものと同様に、油圧ショベルであり、この油圧ショベル(12)は、機械を操作するオペレータ室20と、オペレータ室20の下部側に位置し、作業領域を移動するための車両部21と、オペレータ室20を回転させる回転部22と、オペレータ室20の基部位置に取り付けられ、先端に作業治具であるバケット17を備えたアーム16とからなる。
アーム16は、オペレータ室20の基部位置に取付けられ、上下動に動く第1のアーム23と、この第1のアーム23に第1の関節24で結合されている第2のアーム25と、第2のアーム25に第2の関節26で結合されている第3のアーム27とからなり、この第3のアーム27の先端に第4の関節28を介してバケット17が取り付けられた構成になっている。このバケット17は作業内容によって、第4の関節から取り外し自在な構成になっており、バケットのかわりに粉砕アッタチメントのブレカーを取付けることができる構成になっている。
【0030】
スキャニングレーザ15は、上記した第1の実施形態で説明したものと同じものであり、油圧ショベル(12)のオペレータ室20の頂部に前方方向を向いた状態で取付けられているものであり、前方方向に1ラインの照射した後には、下部方向に一ライン下げて照射することを繰り返し行い、その照射したレーザ光線の反射光を受光する機能を有する。
【0031】
反射板18は、実際に作業を施すバケット17の近傍に備えた構成になっており、スキャニングレーザ15から発射されたレーザ光線を反射させ、その反射したレーザ光線をスキャニングレーザ15で受光することで、バケット17の位置関係を把握して認識する。この認識については、上記第1の実施形態で説明したものと同じであるため、その説明は省略する。
【0032】
第1及び第2の位置方位検出部43、44は、油圧ショベル(12)の車体の位置と方位を検出するもので、2つの第1及び第2のGPSアンテナ41、42を用いて位置と方位を算出するようになっている。
この位置と方位の算出は、第1及び第2のGPSアンテナ41、42の物理的な位置の差を利用して、例えば後部側の第2のGPSアンテナ42で得れた位置情報を基準にして、前部側の第1のGPSアンテナ41で得られた位置情報を比較することで、油圧ショベル(12)の回転している角度を算出して方位を決定することができる。
又、位置は、後部側の第2のGPSアンテナ42から得られた位置情報により、当該油圧ショベル(12)の位置がわかり、その位置からどの位離れた位置にバケット17があるかは、建設機械の設計寸法から容易に割り出せるため、バケット17の絶対位置も算出することができる。尚、基準となるGPSアンテナは、前部側の第1のGPSアンテナ41でも、後部側の第2のGPSアンテナ42でもよく、要は、両者で得られた位置情報が比較できれば良い。
【0033】
傾斜検出部46は、所謂、傾斜計で形成され、車体の傾斜を算出して傾斜データを生成する。
【0034】
このような構成からなる無人化施工装置において、スキャニングレーザ15から、バケット17で作業する対象地形領域にレーザ光線を照射させ、その反射光を受信することで対象地形領域の地形29の地形データと、傾斜検出部46で求めた傾斜データと、第1及び第2の位置方位検出部43、44で求めた方位データ及び位置データとを車両コントローラ19から固定局11に送出する。このデータを受信した固定局11において、これらの地形データ、傾斜データ、方位データ及び位置データを組み合わせて三次元地形データを生成する。そして、図11に示すように、この生成された三次元地形データ(29)を固定局11のモニター画面13に表示する。同時に、反射板18にレーザ光線を反射させ、その反射したレーザ光線に基いたバケット17の動きを模擬した作業治具データをモニター画面13に三次元地形データと共に重畳表示する。
【0035】
図12に示すものは、作業治具であるバケット17を交換してブレカーにしたときのモニター画面に表示されている様子を示したもので、ブレカーにしても、同じくスキャニングレーザで破砕する地形にレーザ光線を照射し、その反射光から得た地形データに、傾斜データ、方位データ、位置データを組み合わせることで、破砕する地形29を三次元に表示することができ、同時に、反射板18で得られたブレカーの動きを模擬した作業治具データを重畳表示させることで、地形29とブレカー(17)の関係が画面を見ながら視認できるのである。
【0036】
次に、本願発明に係る無人化施工装置の第3の実施形態について、図面を参照して説明する。尚、上記の第1の実施形態で説明したものと同じものには同一符号を付与して説明する。
【0037】
第3の実施形態の無人化施工装置は、図13及び図14に示すように、固定局11からの遠隔操作により所定の作業を行うように駆動する移動局としての遠隔操作式建設機械12と、遠隔操作式建設機械12を遠隔操作するための、モニター画面13及び遠隔操作部14を具備する固定局11とから構成されている。
遠隔操作式建設機械12には、スキャンさせてレーザ光線を発射させ、この発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械12の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段であるスキャニングレーザ15を搭載し、この遠隔操作式建設機械12のアーム16の先端に設けた作業治具であるバケット17の移動方向に追随できるように取付け、レーザ光線を反射させる反射板18と、遠隔操作式建設機械12の回転中心位置から外れた適宜位置に1本のGPSアンテナ50を取付け、位置と方位を検出する位置方位検出手段である位置方位検出部51と、遠隔操作式建設機械12の傾斜を検出する傾斜手段である傾斜検出部46とを備えた構成になっている。
【0038】
移動局である遠隔操作式建設機械12は、上記第1の実施形態で説明したものと同様に、油圧ショベルであり、この油圧ショベル(12)は、機械を操作するオペレータ室20と、オペレータ室20の下部側に位置し、作業領域を移動するための車両部21と、オペレータ室20を回転させる回転部22と、オペレータ室20の基部位置に取り付けられ、先端に作業治具であるバケット17を備えたアーム16とからなる。
アーム16は、オペレータ室20の基部位置に取付けられ、上下動に動く第1のアーム23と、この第1のアーム23に第1の関節24で結合されている第2のアーム25と、第2のアーム25に第2の関節26で結合されている第3のアーム27とからなり、この第3のアーム27の先端に第4の関節28を介してバケット17が取り付けられた構成になっている。
【0039】
スキャニングレーザ15は、上記した第1の実施形態で説明したものと同じものであり、油圧ショベル(12)のオペレータ室20の頂部に前方方向を向いた状態で取付けられているものであり、前方方向に1ラインの照射した後には、下部方向に一ライン下げて照射することを繰り返し行い、その照射したレーザ光線の反射光を受光する機能を有する。
【0040】
反射板18は、実際に作業を施すバケット17の近傍に備えた構成になっており、スキャニングレーザ15から発射されたレーザ光線を反射させ、その反射したレーザ光線をスキャニングレーザ15で受光することで、バケット17の位置関係を把握して認識する。この認識については、上記第1の実施形態で説明したものと同じであるため、その説明は省略する。
【0041】
位置方位検出部51は、図15に示すように油圧ショベル(12)を回転させたときにGPSアンテナ50で得た位置情報に基いて中心座標位置を算出する。この中心座標位置が油圧ショベル(12)の中心位置、具体的には、オペレータ室20の略中心位置に相当する。これはGPSアンテナ50がオペレータ室20の略中心位置から外れた位置に設置されているため、油圧ショベル(12)を左右のどちらかに回転させることで、その回転する毎に得られた位置情報による円の軌跡を生成することができ、その円の中心が中心座標位置になるのである。
【0042】
このようにして、中心座標位置が求められると、今度は、図16に示すように、実際の油圧ショベル(12)が向いている方向を得るために、中心座標位置から現在の位置との角度から方位データを検出する。これは、中心座標位置が決定されると、その中心座標位置から物理的に離れた位置に存在するGPSアンテナ50の位置で得られた位置情報と中心座標位置情報とを比較することで、方位を求めることができる。
【0043】
又、上記中心座標位置を求めるために油圧ショベル(12)を回転したときに、図14に示すように、回転させたときのGPSアンテナ50の位置情報の高低データから傾斜データを算出する。
【0044】
このようにして、GPSアンテナ50が一つであっても、GPSアンテナ50を設置する位置を油圧ショベル(12)の中心位置から外した位置に設置し、油圧シャベル12を回転させたときの位置情報により、油圧シャベル(12)の位置、方位、傾斜を算出することができるのである。
【0045】
そして、スキャニングレーザ15は、バケット17で作業する対象地形領域にレーザ光線を照射させ、その反射光を受信することで対象地形領域の地形データと、位置方位検出部51で求めた方位データと傾斜データとを組み合わせて三次元地形データを生成して固定局11のモニター画面13に表示すると共に、反射板18にレーザ光線を反射させ、その反射したレーザ光線に基いてバケット17の動きを固定局11のモニター画面13に三次元地形データと共に重畳表示させることができるのである。
【0046】
次に、本願発明に係る無人化施工装置に第4の実施形態について、図面を参照して説明する。
尚、上記の第1の実施形態で説明したものと同じものには同一符号を付与して説明する。
【0047】
第4の実施形態の無人化施工装置は、上記の第1の実施形態で説明したものと同じ構成になっており、図17に示すように、スキャニングレーザ15、反射板18を遠隔操作式建設機械12、実施例では油圧ショベルに搭載すると共に、スキャニングレーザ15を用いて、他の作業機械55、実施例ではダンプカーにレーザ光線を照射し、その反射光のデータをもとに、高さ、サイドの形状などの特徴から、予め登録されている建設機械55の種類を割り出し、所望の建設機械である場合に、当該油圧ショベル(12)から見た建設機械55の全体の容姿と、位置と向きを固定局11のモニター画面13に二次元表示するというものである。
【0048】
このように、油圧ショベル(12)以外の建設機械55をスキャニングレーザ15を用いて検出することで、例えば、油圧ショベル(12)のバケット17で掘削した土砂を他の建設機械55であるダンプカーの荷台に積載するといった作業を遠隔にいてモニター画面13をみながら正確に遠隔操作できるのである。
【0049】
【発明の効果】
以上、説明したように、本発明に係る無人化施工装置は、遠隔操作式建設機械に、スキャンするスキャニングレーザと、このスキャニングレーザからのレーザ光線を反射する反射板を、アームの先端部に設けた作業治具に追随して動くように取り付けたことで、作業する地形データと実際に作業する作業治具の動いている様子をモニター画面に重畳表示させ、この画面を見ながら遠隔で正確に遠隔操作することができるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る第1の実施形態の無人化施工装置を略示的に示した全体説明図である。
【図2】同、遠隔操作式建設機械を上部からみた説明図である。
【図3】同、バットと地形の様子をモニター画面に映し出した様子を示す説明図である。
【図4】同、反射板の移動を検出する様子を示した説明図である。
【図5】同、反射板で反射されたレーザ光線から得られたパターンによる認識を示した説明図である。
【図6】同、バケットの先端が下方向を向いているときの油圧ショベルの様子を示した説明図である。
【図7】同、図6におけるバケットの先端が下方向を向いているときのモニター画面に映し出される様子を示した説明図である。
【図8】同、バケットの先端が水平方向を向いているときの油圧ショベルの様子を示した説明図である。
【図9】同、図8におけるバケットの先端が水平方向を向いているときのモニター画面に映し出される様子を示した説明図である。
【図10】本発明に係る第2の実施形態の無人化施工装置を略示的に示した全体説明図である。
【図11】同、バケットと地形の三次元表示されているモニター画面の説明図である。
【図12】同、岩の破砕とブレカー位置の三次元表示されているモニター画面の説明図である。
【図13】本発明に係る第3の実施形態の無人化施工装置を略示的に示した全体説明図である。
【図14】同、遠隔操作式建設機械の側面からみた全体説明図である。
【図15】同、遠隔操作式建設機械が回転したときに得る円の軌跡から中心座標位置を求めるための説明図である。
【図16】同、中心座標位置から方位を検出するための手法を示した説明図である。
【図17】本発明に係る第4の実施形態の無人化施工装置を略示的に示した全体説明図である。
【図18】従来技術における、カメラ車を用いた遠隔操作手法を示した説明図である。
【図19】図18における油圧ショベルに搭載したカメラからの画像を示した説明図である。
【図20】図18における油圧ショベルの横方向から撮像した説明図である。
【図21】従来技術におけるポテンション方式の遠隔操作式建設機械を示した説明図である。
【符号の説明】
11;固定局、12;遠隔操作式建設機械、13;モニター画面、14;遠隔操作部、15;スキャニングレーザ、16;アーム、19;車両コントローラ、20;オペレータ室、21;車両部、22;回転部、23;第1のアーム、24;第1の関節、25;第2のアーム、26;第2の関節、27;第3のアーム、28;第3の関節、29;地形、41;第1のGPSアンテナ、42;第2のGPSアンテナ、43;第1の位置方位検出部、44;第2の位置方位検出部、46;傾斜検出部、50;GPSアンテナ、51;位置方位検出部、55;建設機械。

Claims (4)

  1. 固定局からの遠隔操作により所定の作業を行うように駆動する移動局としての遠隔操作式建設機械と、
    前記遠隔操作式建設機械を遠隔操作するための、モニター画面及び遠隔操作部を具備する固定局と、からなる無人化施工装置であって、
    前記遠隔操作式建設機械には、
    スキャンさせてレーザ光線を発射させ、該発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段と、
    前記遠隔操作式建設機械のアーム先端に設けた作業治具の移動方向に追随できるように取付け、レーザ光線を反射させる反射板と、
    を備え、
    前記スキャニングレーザ手段は、前記作業治具で作業する対象地形領域にレーザ光線を照射させ、その反射光を受光することで対象地形領域の地形データを前記固定局のモニター画面に表示すると共に、前記反射板にレーザ光線を反射させ、その反射したレーザ光線に基いて前記作業治具の動きを模擬した作業治具データを前記固定局のモニター画面に前記地形データと共に重畳表示することを特徴とする無人化施工装置。
  2. 前記スキャニングレーザ手段は、前記遠隔操作式建設機械の近傍位置にいる建設機械にレーザ光線を照射し、その反射光から、当該建設機械を特定すると共に当該遠隔操作式建設機械からみた建設機械の全体と位置及び向きを前記固定局のモニター画面に表示することを特徴とする請求項1に記載の無人化施工装置。
  3. 固定局からの遠隔操作により所定の作業を行うように駆動する移動局としての遠隔操作式建設機械と、
    前記遠隔操作式建設機械を遠隔操作するための、モニター画面及び遠隔操作部を具備する固定局と、からなる無人化施工装置であって、
    前記遠隔操作式建設機械には、
    スキャンさせてレーザ光線を発射させ、該発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段と、
    前記遠隔操作式建設機械のアーム先端に設けた作業治具の移動方向に追随できるように取付け、レーザ光線を反射させる反射板と、
    前記遠隔操作式建設機械の適宜位置に距離を持たせて2本のGPSアンテナを取付け、位置と方位を検出する位置方位検出手段と、
    前記遠隔操作式建設機械の傾斜を検出する傾斜手段と、
    を備え、
    前記スキャニングレーザ手段は、前記作業治具で作業する対象地形領域にレーザ光線を照射させ、その反射光を受信することで対象地形領域の地形データと、前記傾斜手段で求めた傾斜データと、前記位置方位検出手段で求めた方位データ及び位置データとを組み合わせて三次元地形データを生成して前記固定局のモニター画面に表示すると共に、前記反射板にレーザ光線を反射させ、その反射したレーザ光線に基いて前記作業治具の動きを模擬する作業治具データを前記固定局のモニター画面に前記三次元地形データと共に重畳表示することを特徴とする無人化施工装置。
  4. 固定局からの遠隔操作により所定の作業を行うように駆動する移動局としての遠隔操作式建設機械と、
    前記遠隔操作式建設機械を遠隔操作するための、モニター画面及び遠隔操作部を具備する固定局と、からなる無人化施工装置であって、
    前記遠隔操作式建設機械には、
    スキャンさせてレーザ光線を発射させ、該発射させたレーザ光線の反射光を受信する機能を有し、当該遠隔操作式建設機械の前方方向にレーザ光線が発射できるように搭載したスキャニングレーザ手段と、
    前記遠隔操作式建設機械のアーム先端に設けた作業治具の移動方向に追随できるように取付け、レーザ光線を反射させる反射板と、
    前記遠隔操作式建設機械の回転中心位置から外れた適宜位置に1本のGPSアンテナを取付け、位置と方位を検出する位置方位検出手段と、
    前記遠隔操作式建設機械の傾斜を検出する傾斜手段と、
    を備え、
    前記位置方位検出手段は、前記遠隔操作式建設機械を回転させることで中心座標位置を算出し、該中心座標位置から現在の位置との角度から方位データを検出すると共に、回転させたときの位置情報の高低データから傾斜データを算出し、
    前記スキャニングレーザ手段は、前記バケットで作業する対象地形領域にレーザ光線を照射させ、その反射光を受信することで対象地形領域の地形データと、前記位置方位検出手段で求めた方位データと傾斜データとを組み合わせて三次元地形データを生成して前記固定局のモニター画面に表示すると共に、前記反射板にレーザ光線を反射させ、その反射したレーザ光線に基いて前記作業治具の動きを模擬する作業治具データを前記固定局のモニター画面に前記三次元地形データと共に重畳表示することを特徴とする無人化施工装置。
JP2003082636A 2003-03-25 2003-03-25 無人化施工装置 Pending JP2004294067A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082636A JP2004294067A (ja) 2003-03-25 2003-03-25 無人化施工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082636A JP2004294067A (ja) 2003-03-25 2003-03-25 無人化施工装置

Publications (1)

Publication Number Publication Date
JP2004294067A true JP2004294067A (ja) 2004-10-21

Family

ID=33398338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082636A Pending JP2004294067A (ja) 2003-03-25 2003-03-25 無人化施工装置

Country Status (1)

Country Link
JP (1) JP2004294067A (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038438A (ja) * 2006-08-04 2008-02-21 Shin Caterpillar Mitsubishi Ltd 作業機械
KR100894192B1 (ko) 2007-09-20 2009-04-22 고려대학교 산학협력단 무인 굴삭기 지원용 로봇장치
KR101186968B1 (ko) 2010-04-22 2012-09-28 인하대학교 산학협력단 지능형 굴삭 시스템의 로컬지형 3차원 모델링을 위한 회전형 레이저 센서 시스템
JP2012233404A (ja) * 2012-08-02 2012-11-29 Komatsu Ltd 掘削機械の表示システム及びその制御方法。
US8412418B2 (en) 2008-11-12 2013-04-02 Kabushiki Kaisha Topcon Industrial machine
JP2013114330A (ja) * 2011-11-25 2013-06-10 Chiba Inst Of Technology 無人走行体を用いた環境情報の取得システム
JP2016003520A (ja) * 2014-06-18 2016-01-12 住友建機株式会社 建設機械
JP2016008484A (ja) * 2014-06-26 2016-01-18 住友建機株式会社 建設機械
WO2017042873A1 (ja) * 2015-09-08 2017-03-16 株式会社日立製作所 遠隔操作システムおよび操作支援システム
CN107090868A (zh) * 2017-05-31 2017-08-25 李明 一种具有预警装置的挖掘设备
KR20170107076A (ko) 2015-03-05 2017-09-22 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 화상 표시 시스템, 작업 기계의 원격 조작 시스템 및 작업 기계
KR101855988B1 (ko) 2016-12-29 2018-05-09 주식회사 아이지오스캔 지형측정시스템 및 그것을 구비한 건설기계
WO2018099755A1 (de) * 2016-12-02 2018-06-07 Robert Bosch Gmbh Verfahren und vorrichtung zum bestimmen einer position eines baggerarms mittels eines an einem bagger angeordneten lidar-systems
JP2018128847A (ja) * 2017-02-08 2018-08-16 株式会社Ihiエアロスペース 遠隔操縦車両の停止位置決定方法及び遠隔操縦車両の操縦システム
CN109138038A (zh) * 2018-08-07 2019-01-04 中铁工程机械研究设计院有限公司 一种基于激光点云的开挖机器人3d仿真系统
JP2019031909A (ja) * 2018-12-04 2019-02-28 住友建機株式会社 ショベル
EP3409848A4 (en) * 2016-03-02 2019-03-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ACCESSORIES DETECTION DEVICE
JP2019152098A (ja) * 2014-06-26 2019-09-12 住友建機株式会社 ショベル
CN111622297A (zh) * 2020-04-22 2020-09-04 浙江大学 一种挖掘机的在线作业纠偏系统和方法
US20210395982A1 (en) * 2019-01-23 2021-12-23 Komatsu Ltd. System and method for work machine
JP2022027816A (ja) * 2014-06-26 2022-02-14 住友建機株式会社 ショベル及びショベル用地形検知システム
CN115405100A (zh) * 2022-08-26 2022-11-29 北京空间智筑技术有限公司 一种月球建筑3d打印设备
US11634890B2 (en) 2016-09-02 2023-04-25 Komatsu Ltd. Image display system for work machine
DE102022211957A1 (de) 2022-11-11 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer Erdbaumaschine, Vorrichtung und Erdbaumaschine

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761382B2 (ja) * 2006-08-04 2011-08-31 キャタピラー エス エー アール エル 作業機械
JP2008038438A (ja) * 2006-08-04 2008-02-21 Shin Caterpillar Mitsubishi Ltd 作業機械
KR100894192B1 (ko) 2007-09-20 2009-04-22 고려대학교 산학협력단 무인 굴삭기 지원용 로봇장치
US8412418B2 (en) 2008-11-12 2013-04-02 Kabushiki Kaisha Topcon Industrial machine
KR101186968B1 (ko) 2010-04-22 2012-09-28 인하대학교 산학협력단 지능형 굴삭 시스템의 로컬지형 3차원 모델링을 위한 회전형 레이저 센서 시스템
JP2013114330A (ja) * 2011-11-25 2013-06-10 Chiba Inst Of Technology 無人走行体を用いた環境情報の取得システム
JP2012233404A (ja) * 2012-08-02 2012-11-29 Komatsu Ltd 掘削機械の表示システム及びその制御方法。
JP2016003520A (ja) * 2014-06-18 2016-01-12 住友建機株式会社 建設機械
JP2016008484A (ja) * 2014-06-26 2016-01-18 住友建機株式会社 建設機械
JP7301937B2 (ja) 2014-06-26 2023-07-03 住友建機株式会社 ショベル及びショベル用地形検知システム
JP2022027816A (ja) * 2014-06-26 2022-02-14 住友建機株式会社 ショベル及びショベル用地形検知システム
JP2019152098A (ja) * 2014-06-26 2019-09-12 住友建機株式会社 ショベル
KR20170107076A (ko) 2015-03-05 2017-09-22 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 화상 표시 시스템, 작업 기계의 원격 조작 시스템 및 작업 기계
JPWO2017042873A1 (ja) * 2015-09-08 2018-06-14 株式会社日立製作所 遠隔操作システムおよび操作支援システム
WO2017042873A1 (ja) * 2015-09-08 2017-03-16 株式会社日立製作所 遠隔操作システムおよび操作支援システム
EP3409848A4 (en) * 2016-03-02 2019-03-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) ACCESSORIES DETECTION DEVICE
US10676900B2 (en) 2016-03-02 2020-06-09 Kobe Steel, Ltd. Attachment recognition device
US11634890B2 (en) 2016-09-02 2023-04-25 Komatsu Ltd. Image display system for work machine
WO2018099755A1 (de) * 2016-12-02 2018-06-07 Robert Bosch Gmbh Verfahren und vorrichtung zum bestimmen einer position eines baggerarms mittels eines an einem bagger angeordneten lidar-systems
KR101855988B1 (ko) 2016-12-29 2018-05-09 주식회사 아이지오스캔 지형측정시스템 및 그것을 구비한 건설기계
JP2018128847A (ja) * 2017-02-08 2018-08-16 株式会社Ihiエアロスペース 遠隔操縦車両の停止位置決定方法及び遠隔操縦車両の操縦システム
CN107090868A (zh) * 2017-05-31 2017-08-25 李明 一种具有预警装置的挖掘设备
CN109138038A (zh) * 2018-08-07 2019-01-04 中铁工程机械研究设计院有限公司 一种基于激光点云的开挖机器人3d仿真系统
JP2019031909A (ja) * 2018-12-04 2019-02-28 住友建機株式会社 ショベル
AU2020212919B2 (en) * 2019-01-23 2023-02-09 Komatsu Ltd. System and method for work machine
US20210395982A1 (en) * 2019-01-23 2021-12-23 Komatsu Ltd. System and method for work machine
CN111622297B (zh) * 2020-04-22 2021-04-23 浙江大学 一种挖掘机的在线作业纠偏系统和方法
CN111622297A (zh) * 2020-04-22 2020-09-04 浙江大学 一种挖掘机的在线作业纠偏系统和方法
CN115405100A (zh) * 2022-08-26 2022-11-29 北京空间智筑技术有限公司 一种月球建筑3d打印设备
CN115405100B (zh) * 2022-08-26 2024-03-22 北京空间智筑技术有限公司 一种月球建筑3d打印设备
DE102022211957A1 (de) 2022-11-11 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer Erdbaumaschine, Vorrichtung und Erdbaumaschine

Similar Documents

Publication Publication Date Title
JP2004294067A (ja) 無人化施工装置
US6736216B2 (en) Laser-guided construction equipment
CN113266045B (zh) 具有测量系统的建筑机械和建筑场地测量系统
WO2020241618A1 (ja) マップ生成システム及びマップ生成方法
EP2524085B1 (en) System for orienting an implement on a vehicle
JP5759798B2 (ja) 建設機械制御システム
WO2016140055A1 (ja) 作業機械の画像表示システム、作業機械の遠隔操作システム及び作業機械
US6443235B1 (en) Rotary laser irradiating apparatus and construction machine control system
JP7151392B2 (ja) 建設機械の遠隔操作装置
JP2008144379A (ja) 遠隔操縦作業機の画像処理システム
JP6778214B2 (ja) 建設機械および撮像システム
JP6918716B2 (ja) 建設機械
KR101427364B1 (ko) 라이다 장치를 이용한 3d 실내지도 생성용 스캔시스템
JP2017215240A (ja) 測定装置及び測量システム
JP7386592B2 (ja) 建設機械の操作補助システム
JP2020002717A (ja) 表示制御装置、表示制御システムおよび表示制御方法
WO2022030289A1 (ja) 掘削情報処理装置、作業機械、掘削支援装置および掘削情報処理方法
WO2023002796A1 (ja) 掘削機械の稼働範囲設定システムおよびその制御方法
JP2673653B2 (ja) 遠隔箇所の作業機械への通信方法
JP7329928B2 (ja) 作業機械
JPH06258077A (ja) 自動掘削システム
WO2023228883A1 (ja) 作業機械の表示システム、作業機械の遠隔操作システム、作業機械、及び作業機械の表示方法
US20240060275A1 (en) Method and system of configuring a machine control unit of a construction machine
KR101855988B1 (ko) 지형측정시스템 및 그것을 구비한 건설기계
JP2022173478A (ja) 建設機械の自動制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513