WO2017039314A1 - 안과용 치료 장치 및 안과용 치료 장치의 구동방법 - Google Patents

안과용 치료 장치 및 안과용 치료 장치의 구동방법 Download PDF

Info

Publication number
WO2017039314A1
WO2017039314A1 PCT/KR2016/009718 KR2016009718W WO2017039314A1 WO 2017039314 A1 WO2017039314 A1 WO 2017039314A1 KR 2016009718 W KR2016009718 W KR 2016009718W WO 2017039314 A1 WO2017039314 A1 WO 2017039314A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
focal length
spot size
lens
therapeutic
Prior art date
Application number
PCT/KR2016/009718
Other languages
English (en)
French (fr)
Inventor
이희철
Original Assignee
(주)루트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)루트로닉 filed Critical (주)루트로닉
Priority to US15/756,553 priority Critical patent/US20180250163A1/en
Publication of WO2017039314A1 publication Critical patent/WO2017039314A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/0084Laser features or special beam parameters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00821Methods or devices for eye surgery using laser for coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00814Laser features or special beam parameters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/009Auxiliary devices making contact with the eyeball and coupling in laser light, e.g. goniolenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00851Optical coherence topography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00863Retina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea

Definitions

  • the present invention relates to an ophthalmic treatment device and a method for driving an ophthalmic treatment device, and more particularly, an ophthalmic treatment device and an ophthalmic treatment for treating ocular lesions by irradiating a therapeutic beam such as a laser to the ocular lesion. It relates to a method of driving a device.
  • Ophthalmic treatment devices for treating the eye are used to treat lesions such as cornea, lens and retina.
  • the ophthalmic treatment device may be used to adjust the refractive index of the cornea, lens due to cataracts, glaucoma treatment and macular degeneration of the retina.
  • Such an ophthalmic treatment device irradiates a therapeutic beam to the treatment area of the eye, that is, the lesion area.
  • the therapeutic beam irradiated from the ophthalmic treatment device may be a laser having a wavelength band suitable for treating the lesion.
  • At least four to six or more lenses are arranged in the equipment to configure a beam delivery unit.
  • several independent lenses corresponding to each spot size are arranged and have a structure for generating a beam.
  • An object of the present invention is a device for treating ocular lesions with a laser, the method for driving an ophthalmic treatment device and an ophthalmic treatment device, which is an improvement of the lens system of the treatment device so that the tolerance and focal length of the lens can be easily varied. To provide.
  • An ophthalmic treatment apparatus comprises a beam generating unit for generating a therapeutic beam; An agent capable of forming an optical path through which the therapeutic beam oscillated from the beam generating unit is directed toward the eye, and varying a focal length such that the therapeutic beam is delivered to the eye at a predetermined spot size; A beam transmission unit including one lens unit; And a control unit connected to the beam delivery unit and controlling the focal length of the treatment beam according to the first lens unit.
  • control unit may generate and transmit a variable signal such that a focal length of the therapeutic beam is variable in the first lens unit.
  • the first lens unit may vary the focal length by receiving an amount of current or voltage corresponding to the variable signal transmitted from the control unit.
  • the first lens unit may include an electrical lens.
  • the spot beam for treatment may be transmitted to the corneal region or the retinal region of the eyeball through the first lens unit.
  • the diameter of the spot size to which the therapeutic beam is delivered to the retinal area is 40-1200um
  • the diameter of the spot size to which the therapeutic beam is delivered to the corneal area may be 300-450um.
  • the apparatus may further include a contact lens for guiding the therapeutic beam delivered from the beam delivery unit to the eye.
  • the beam delivery unit may further include a second lens unit configured to focus the therapeutic beam having a focal length varied by the first lens unit.
  • the imaging unit may further include an imaging unit for photographing the treatment area of the eyeball to form an image.
  • the method of driving an ophthalmic treatment apparatus comprises the steps of generating a beam for treatment in the beam generating unit; Varying the focal length at the first lens portion such that the therapeutic beam forms a predetermined spot size within the eyeball; And irradiating the therapeutic beam of the controlled spot size into the eye.
  • irradiating the controlled therapeutic beam into the eyeball may transmit the therapeutic beam by using a second lens unit focusing the therapeutic beam having a focal length variable by the first lens unit.
  • a second lens unit focusing the therapeutic beam having a focal length variable by the first lens unit.
  • the controlling of the spot size of the therapeutic beam may include generating a variable signal based on an amount of current or voltage in a control unit, and changing the spot size of the therapeutic beam to be variable. Can carry a signal.
  • the method may further include setting an irradiation position of the therapeutic beam delivered to the treatment area of the eye.
  • the ophthalmic treatment apparatus and the driving method of the ophthalmic treatment apparatus according to the present invention is provided with a lens that can vary the focal length according to the spot size of the beam transmitted in the eye for treatment to improve the treatment efficiency of the eye It can be effective.
  • the ophthalmic treatment apparatus has the effect of maximizing the simplicity and mass production of the structure by using a single lens that can replace a plurality of lenses.
  • FIG. 1 is a control block diagram of an ophthalmic treatment device according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of an ophthalmic treatment device according to an embodiment of the present invention.
  • Figure 3 shows the spot size in the cornea or retina as the focal length of the first lens unit in the ophthalmic treatment device according to an embodiment of the present invention.
  • Figure 4 is a flow chart showing a method of driving an ophthalmic treatment device according to an embodiment of the present invention.
  • 1 is a control block diagram of an ophthalmic treatment device according to an embodiment of the present invention.
  • 2 is a schematic configuration diagram of an ophthalmic treatment device according to an embodiment of the present invention.
  • the ophthalmic treatment device 10 is a beam generating unit 100, beam delivery unit 200, image unit 400, control unit 300 And a contact lens 500.
  • the ophthalmic treatment device 10 according to the present invention is described below as an ophthalmic treatment device 10 for treating the retina (R), in addition to the retina (R) various eyeballs such as cornea (C) and the lens (O) Of course, it can be used to treat the area of.
  • the beam generating unit 100 generates a beam for treatment (B) capable of treating a lesion of the retina (R) or cornea (C).
  • the therapeutic beam B generated from the beam generating unit 100 may be a laser having a predetermined wavelength band.
  • the beam generating unit 100 may be made of a laser diode or the like so that a laser having a predetermined wavelength band may be generated as the beam for treatment (B).
  • the wavelength band of the therapeutic beam B generated from the beam generating unit 100 may be 532 nm to 1064 nm. However, the wavelength band of the therapeutic beam (B) generated from the beam generating unit 100 may be less than 532nm or more than 1064nm depending on the tissue characteristics of the lesion area to be treated.
  • the image unit 400 may be provided to capture an image of the eyeball O.
  • the image unit 400 may radiate light to the eyeball and photograph the surface image or the tomography of the eyeball O using the reflected light.
  • the optical path through which the light travels may be formed by using components such as an optical lens installed in the beam delivery unit 200, or the optical path may be formed by disposing an optical element separate from the beam delivery unit 200.
  • an optical coherence tomography OCT
  • OCT optical coherence tomography
  • tomography of the eyeball O may be taken along the axis of light to which the therapeutic beam B is irradiated.
  • an image analyzer (not shown) connected to the image unit 400 may be disposed inside the ophthalmic treatment apparatus 10.
  • the image analyzer may analyze an image of the eyeball O photographed from the image unit 400 to identify a region requiring treatment before treatment is performed, and to determine whether treatment is appropriately provided after treatment is performed.
  • the beam delivery unit 200 receives the treatment beam B generated from the beam generation unit 100 and transmits the beam B to the retina R or the cornea C, which is a treatment area.
  • the beam delivery unit 200 may include a first lens unit 210 for generating a predetermined spot size on the retina R or the cornea C for treatment.
  • the first lens unit 210 may include a second lens unit 230 for condensing the beam for treatment, the spot size is adjusted.
  • the first lens unit 210 may be disposed in the beam delivery unit 200, and may form an optical path in which the therapeutic beam B oscillated from the beam generating unit 100 travels toward the eyeball O. .
  • the first lens unit 210 may vary the focal length such that the therapeutic beam B transmitted to the retina R or cornea C of the fundus forms a predetermined spot size.
  • At least four to six or more lenses are arranged in the equipment to configure a beam delivery unit.
  • several independent lenses corresponding to each spot size are arranged and have a structure for generating a beam.
  • tolerances between lenses occur and it is difficult to cope with these tolerances when treating a patient.
  • the beam delivery unit 200 of the present invention can generate a variety of spot sizes of the beam B for treatment to be transmitted to the eyeball and the focal length can be adjusted with one of the first lens parts 210 in real time.
  • the patient's lesion can be treated with a simple structure.
  • the first lens unit 210 may be connected to the control unit 300 to vary the focal length according to the variable signal 310 controlled by the control unit 300.
  • the spot size of the beam for treatment delivered to the cornea C or the retina R may be variously controlled according to the change in focal length.
  • the control unit 300 will be described later.
  • the first lens unit 210 may use an electronic lens.
  • the electron lens may receive a current or a voltage to affect the trajectory of electrons in the electron lens to vary the path of the traveling light.
  • Electronic lenses may be classified into electrostatic lenses using electric fields and magnetic lenses using magnetic fields.
  • the second lens unit 230 may be disposed in the beam delivery unit 200 and may focus the treatment beam B having a variable focal length by the first lens unit 210.
  • the second lens unit 230 may be provided as a convex lens for condensing the beam B for treatment.
  • the therapeutic beam B collected through the convex lens proceeds to the contact lens 500 via the beam delivery unit 30.
  • the control unit 300 is connected to the beam delivery unit 200, and serves to control the focal length of the therapeutic beam (B) according to the first lens unit (210).
  • the control unit 300 may transmit a variable signal 310 capable of varying the focal length to the first lens unit 210.
  • the variable signal 310 is the amount of current or voltage supplied to the first lens unit 210. It may be a signal to control.
  • the control unit 300 may generate a variable signal 310 corresponding to a predetermined amount of current or voltage in order to generate a predetermined focal length and a predetermined spot size according to the focal length.
  • the first lens unit 210 may receive a preset amount of current or voltage to vary a focal length in an area requiring treatment. Thereafter, according to the change in the focal length, the therapeutic beam B corresponding to the appropriate spot size may be delivered to the retina (R) and the cornea (C) areas requiring treatment.
  • control unit 300 may change the variable signal 310 corresponding thereto in real time, in real time, so as to transmit lasers of various spot sizes according to the patient or the lesion in real time during the treatment. Can be passed to 210.
  • control unit 300 may control the operation of the image unit 400 for photographing the eyeball (O).
  • Figure 3 shows the diameter of the spot size of the therapeutic beam delivered from the cornea or the retina according to the focal length change of the first lens unit according to an embodiment of the present invention.
  • Table 1 shows the simulated results when the therapeutic beam (B) is delivered from the cornea (C) and retina (R).
  • the therapeutic beam (B) is transmitted to the retina (R) or cornea (C) by varying the focal length in the first lens unit 210 accordingly The amount of change in the spot size is shown.
  • the therapeutic beam B has a spot size of 50 um, 100 um, 200 um, 300 um, 500 um, and 1000 um diameters in the retina R, and also in the cornea C.
  • An example is when the diameter of the size is to be 300 um or more (which may be larger depending on the design).
  • the treatment device 10 preferably delivers the amount of thermal energy required for treatment to the retina (R) and the minimum energy to the cornea (C).
  • the amount of heat energy transferred to each region may be determined by the amount of change according to the spot size delivered to the cornea C according to the amount of change in the spot size delivered to the retina R.
  • the amount of change in the spot size delivered to the cornea (C) looks at the amount of change in the spot size delivered to the cornea (C) to the amount of change in the spot size that can treat the lesion of the retina (R), the amount of change in the spot size delivered to the cornea (C), that is the energy and Experimental results show that the change width shows the spot size according to the energy and change width that are generally acceptable in terms of bio stability.
  • the experimental results show that the focal length change amount of the first lens unit 210 is sufficiently controllable by the first lens unit 210 and the control unit 300.
  • the diameter of the spot size at which the therapeutic beam B of the present invention is transmitted to the retinal R region corresponds to 40-1200 um, and has a wide range of bands for treating a plurality of lesions of the retina (R).
  • the diameter of the spot size to which the therapeutic beam (B) is delivered to the cornea (C) area is 300-450um, during the treatment of the retina (R), in a safe band without damage to the cornea (C) Energy can be delivered to the cornea (C).
  • the amount of spot size change in the retina R according to the focal length according to the first lens unit 210 may appropriately treat the lesion of the patient, and more energy than necessary may be transmitted to the cornea C. It was not possible to carry out safe treatment.
  • the present invention can control the spot size in accordance with the variable focal length of only the first lens unit 210, it can be seen that there is an effect that can be convenient and quick treatment by a simple operation and simple configuration there was.
  • the spot size transmitted from the cornea (C) and the retina (R) may have a larger value according to the design of the equipment and the adjustment of the first lens unit (210).
  • the therapeutic beam B passing through the beam delivery unit 200 may be guided to the contact lens 500 for delivery to the intraocular lesion.
  • the contact lens 500 is disposed between the beam delivery unit 200 and the eyeball O, and contacts the eyeball O to ensure visibility of the retina R. That is, the contact lens 500 contacts the cornea C of the eyeball O so that the operator can recognize the retina R of the ocular fundus.
  • the contact lens 500 may basically be provided in a shape of a cone.
  • Figure 4 is a flow chart showing a method of driving an ophthalmic treatment device according to an embodiment of the present invention.
  • an image may be formed by photographing a treatment area in the eyeball O using the image unit 400.
  • the irradiation position of the beam B for treatment may be set with respect to the treatment area of the eyeball O.
  • the beam generating unit 100 may proceed to generate the therapeutic beam B such that the therapeutic beam B is transmitted to the preset irradiation position (S10).
  • the generating of the beam B for treatment in the beam generating unit 100 may be performed after adjusting the focal length of the lens in the beam delivery unit 200 to be described later.
  • the therapeutic beam B generated from the beam generating unit 100 may be a laser having a predetermined wavelength band.
  • the beam generating unit 100 may be made of a laser diode or the like so that a laser having a predetermined wavelength band may be generated as the beam for treatment (B).
  • the method of setting the irradiation position of the treatment beam B may be performed by controlling a spot size according to a change in focal length (S30).
  • the control unit 300 may generate a variable signal 310 applied to the variable focal length and transmit the variable signal 310 to the first lens unit 210 of the beam delivery unit 200.
  • the variable signal 310 may mean a digital signal generated by the control unit 300 so that a user can set a desired focal length by controlling the amount of current or voltage supplied to the first lens unit 210.
  • the first lens unit 210 of the beam delivery unit 200 may generate an appropriate spot size required for the treatment area according to the variable signal 310 received from the control unit 300. According to the driving method of the beam delivery unit 200 and the control unit 300, the adjustment of the spot size through the change of the focal length can be performed in a predetermined manner, and can be adjusted while checking the treatment lesion of the patient in real time. have.
  • the diameter of the spot size to which the therapeutic beam B is transmitted to the retina R region may be 40-1200 um, and the diameter of the spot size to be delivered to the corneal C region may be 300-450 um.
  • At least 4-6 or more lenses are arranged in a row to configure a beam delivery unit, and use a relatively large amount of lenses to generate the spot size of the therapeutic beam B. This has caused a problem that the tolerance of the lens and the coping with the tolerance is difficult due to the complexity of the structure and the effective treatment is not progressed in the treatment of the patient.
  • the focal length can be adjusted with one first lens unit 210.
  • the variable focal length of the first lens unit 210 can generate a variety of spot size of the beam for treatment (B) delivered to the fundus to treat the lesion of the patient with a simple structure compared to the prior art. It became possible.
  • the first lens unit 210 is connected to the control unit 300, and thus, the focal length may be variously changed according to the variable signal 310 controlled by the control unit 300.
  • the therapeutic beam B generated by the beam generating unit 100 may irradiate the therapeutic beam B to the treatment area of the fundus along the optical path formed by the beam delivery unit 200.
  • the contact lens 500 is placed in contact with the eyeball O cornea C to guide the treatment beam B transmitted from the beam delivery unit 200 to the eyeball O to help the treatment proceed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

본 발명에 따른 안과용 치료장치는 치료용 빔을 생성하는 빔 생성유닛, 상기 빔 생성유닛으로부터 발진되는 상기 치료용 빔이 안저 내에서 진행하는 광경로를 형성하고, 상기 안저 내에서 소정의 스팟 사이즈로 전달되도록 초점 거리(focal length)를 가변할 수 있는 제 1렌즈부를 포함하는 빔 전달유닛 및 상기 빔 전달유닛과 연결되며, 상기 제 1렌즈부에 따른 상기 치료용 빔의 상기 초점거리를 제어하는 제어유닛을 포함한다.

Description

안과용 치료 장치 및 안과용 치료 장치의 구동방법
본 발명은 안과용 치료 장치 및 안과용 치료 장치의 구동방법에 관한 것으로서, 보다 상세하게는 안구의 병변에 레이저와 같은 치료용 빔을 조사하여 안구의 병변을 치료하는 안과용 치료 장치 및 안과용 치료 장치의 구동방법에 관한 것이다.
안구를 치료하기 위한 안과용 치료장치는 각막, 수정체 및 망막 등의 병변을 치료하기 위해 사용된다. 구체적으로, 안과용 치료장치는 각막의 굴절률 조정, 백내장에 따른 수정체, 녹내장 치료 및 망막의 황반 변성 등에 이용될 수 있다.
이러한 안과용 치료장치는 치료용 빔을 안구의 치료 영역, 즉 병변 영역에 조사한다. 여기서 안과용 치료장치로부터 조사되는 치료용 빔은 병변 치료에 적합한 파장 대역을 갖는 레이저가 이용될 수 있다.
한편, 종래의 방식을 예로 들면, 기존 장비는 적어도 4~6개 이상의 렌즈가 장비 내에 배열되어 빔 전달유닛을 구성하였다. 구체적으로, 치료에 필요한 다양한 스팟 사이즈를 만들어 내기 위하여, 각각의 스팟 사이즈에 대응하는 여러 개의 독립된 렌즈들이 배열되고 빔을 생성하는 구조를 가지고 있었다.
이렇게 상대적으로 많은 양의 렌즈들을 이용하여 치료용 빔의 스팟 사이즈를 개별적으로 생성하는 경우에 구조의 복잡화에 따라 원하지 않은 렌즈의 공차가 발생되며, 환자의 치료시 상기 공차에 따른 대처가 어렵고 레이저 장치의 양산화가 불가능한 문제점을 가지고 있었다.
본 발명의 목적은 안구의 병변을 레이저로 치료하는 장치에 있어서, 렌즈의 공차 및 초점거리를 간단하게 가변할 수 있도록 치료 장치의 렌즈 시스템을 개선한 안과용 치료장치 및 안과용 치료장치의 구동방법을 제공하고자 함이다.
본 발명에 따른 안과용 치료장치는 치료용 빔을 생성하는 빔 생성유닛; 상기 빔 생성유닛으로부터 발진되는 상기 치료용 빔이 안구를 향하여 진행하는 광경로를 형성하고, 상기 치료용 빔이 상기 안구에 소정의 스팟 사이즈로 전달되도록 초점 거리(focal length)를 가변할 수 있는 제 1렌즈부를 포함하는 빔 전달유닛; 및 상기 빔 전달유닛과 연결되며, 상기 제 1렌즈부에 따른 상기 치료용 빔의 상기 초점거리를 제어하는 제어유닛을 포함할 수 있다.
또한, 상기 제어유닛은 제 1 렌즈부에서 상기 치료용 빔의 초점 거리(focal length)가 가변되도록 가변 신호를 생성하여 전달할 수 있다. 또한, 상기 제 1 렌즈부는 상기 제어유닛에서 전달된 가변 신호에 대응하는 전류나 전압의 양을 공급받아 상기 초점 거리를 가변할 수 있다.
또한, 상기 제 1 렌즈부는 전자 렌즈(electrical lens)를 포함할 수 있다.
그리고 상기 제 1렌즈부를 통하여 가변된 스팟 사이즈의 치료용 빔은 상기 안구의 각막영역 또는 망막영역으로 전달될 수 있다.
또한, 상기 치료용 빔이 망막 영역에 전달되는 스팟 사이즈의 직경은 40-1200um이며, 상기 치료용 빔이 각막 영역에 전달되는 스팟 사이즈의 직경은 300-450um일 수 있다.
또한, 상기 빔 전달 유닛으로부터 전달된 치료용 빔을 상기 안구로 안내하는 컨택트 렌즈를 더 포함할 수 있다.
그리고 상기 빔 전달 유닛은 상기 제 1렌즈부에 의해 초점 거리(focal length)가 가변된 치료용 빔을 집광하는 제 2렌즈부를 더 포함할 수 있다.
더욱이, 상기 안저의 치료 영역에 전달되는 상기 치료용 빔의 조사 위치를 설정하기 위하여, 상기 안구의 상기 치료 영역을 촬영하여 이미지를 형성하는 이미지 유닛을 더 포함할 수 있다.
본 발명에 따른 안과용 치료장치의 구동방법은 빔 생성유닛에서 치료용 빔을 생성하는 단계; 상기 치료용 빔이 안구 내에서 소정의 스팟 사이즈를 형성하도록 제 1렌즈부에서 초점 거리(focal length)를 가변하는 단계; 및 상기 제어된 스팟 사이즈의 상기 치료용 빔을 상기 안구 내로 조사하는 단계;를 포함할 수 있다.
또한, 상기 제어된 치료용 빔을 상기 안구 내로 조사하는 단계는, 상기 제 1렌즈부에 의해 초점 거리(focal length)가 가변된 치료용 빔을 집광하는 제 2렌즈부를 이용하여 치료용 빔을 전달할 수 있다.
그리고 상기 치료용 빔의 스팟 사이즈를 형성하도록 제어하는 단계는, 제어 유닛에서 전류나 전압의 양에 기초한 가변 신호를 생성하고, 상기 치료용 빔의 스팟 사이즈가 가변되도록 상기 제 1렌즈부에 상기 가변 신호를 전달할 수 있다.
더욱이, 상기 안구 내에서 소정의 스팟 사이즈를 형성하도록 제어하는 단계 이전에, 상기 안구의 치료 영역에 전달되는 치료용 빔의 조사 위치를 설정하는 단계를 더 포함할 수 있다.
기타 실시 예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에 따른 안과용 치료장치 및 안과용 치료장치의 구동방법은 치료를 위하여 안구 내에 전달되는 빔의 스팟 사이즈에 따른 초점거리를 다양하게 가변할 수 있는 렌즈를 구비하여 안구의 치료 효율을 향상시킬 수 있는 효과가 있다.
더욱이 본 발명에 따른 안과용 치료장치는 복수개의 렌즈를 대체 가능한 단일 렌즈를 사용하여 구조의 단순화 및 양산성을 극대화할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 안과용 치료장치의 제어 블럭도이다.
도 2는 본 발명의 일 실시예에 따른 안과용 치료장치의 개략 구성도이다.
도 3은 본 발명의 일 실시예에 따른 안과용 치료장치에서 제 1렌즈부의 초점거리를 가변함에 따른, 각막 또는 망막에서의 스팟 사이즈의 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 안과용 치료장치의 구동방법을 나타낸 순서도이다.
이하, 본 발명의 실시 예에 따른 안과용 치료 장치 및 안과용 치료 장치의 구동방법에 대해 첨부된 도면을 참조하여 상세히 설명한다. 그러나 본 실시예의 이하에서 개시되는 용어나 단어는 통상적이거나 사전적인 의미로 한정되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이를 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 안과용 치료장치의 제어 블록도이다. 도 2는 본 발명의 일 실시예에 따른 안과용 치료장치의 개략 구성도이다.
도 1 및 2에 도시된 바와 같이, 본 발명의 실시 예에 따른 안과용 치료장치(10)는 빔 생성유닛(100), 빔 전달유닛(200), 이미지 유닛(400), 제어유닛(300) 및 컨택트 렌즈(500)를 포함할 수 있다. 본 발명에 따른 안과용 치료장치(10)는 망막(R)을 치료하는 안과용 치료장치(10)로 이하에서 설명되나, 망막(R) 이외에도 각막(C) 및 수정체와 같은 다양한 안구(O)의 영역을 치료하는데 사용될 수 있음은 물론이다.
빔 생성유닛(100)은 망막(R) 또는 각막(C)의 병변을 치료할 수 있는 치료용 빔(B)을 생성한다. 빔 생성유닛(100)으로부터 생성되는 치료용 빔(B)은 일정한 파장 대역을 갖는 레이저일 수 있다. 빔 생성유닛(100)은 일정한 파장 대역을 갖는 레이저가 치료용 빔(B)으로 생성될 수 있도록, 레이저 다이오드 등으로 구성될 수 있다. 빔 생성유닛(100)으로부터 생성되는 치료용 빔(B)의 파장 대역은 532nm 내지 1064nm일 수 있다. 그러나 빔 생성유닛(100)으로부터 생성되는 치료용 빔(B)의 파장 대역은 치료하는 병변 영역의 조직 특성에 따라 532nm 미만 또는 1064nm 초과될 수 있다.
이미지 유닛(400)은 안구(O)의 이미지를 촬영하기 위해서 마련될 수 있다. 이미지 유닛(400)은 안구에 광을 조사하고 반사된 광을 이용하여 안구(O)의 표면 이미지 또는 단층을 촬영할 수 있다. 여기서, 빔 전달유닛(200) 내에 설치된 광학 렌즈 등의 구성요소를 이용하여 광이 진행하는 광경로를 형성하거나, 빔 전달유닛(200)과 별개의 광학소자를 배치하여 광경로를 형성할 수 있다. 이미지 유닛(400)으로 안구(O)의 단층을 촬영하는 경우, 한 실시예로, OCT(Optical Coherence Tomography) 등이 사용될 수 있다. OCT(Optical Coherence Tomography)를 이용하는 경우 치료용 빔(B)이 조사되는 광의 축선을 따라 안구(O)의 단층을 촬영할 수 있다.
본 발명에는 도시되지 않았지만, 안과용 치료장치(10) 내부에 이미지 유닛(400)과 연결된 이미지 분석부(미도시)가 배치될 수 있다. 이미지 분석부는 이미지 유닛(400)으로부터 촬영된 안구(O)의 이미지를 분석하여 치료가 이루어지기 전 치료가 필요한 영역을 확인하고, 치료가 이루어진 후에 치료가 적절하게 제공되었는지 확인할 수 있다.
빔 전달유닛(200)은 빔 생성유닛(100)으로부터 생성된 치료용 빔(B)을 제공받아 치료 영역인 망막(R) 또는 각막(C)으로 전달한다.
빔 전달유닛(200)은 치료에 필요한 망막(R) 또는 각막(C)에 소정의 스팟 사이즈를 생성하는 제 1렌즈부(210)를 포함할 수 있다. 또한, 상기 제 1렌즈부(210)에 의해 스팟 사이즈가 조절된 치료용 빔을 집광하는 제 2렌즈부(230)를 포함할 수 있다.
제 1렌즈부(210)는 빔 전달유닛(200) 내부에 배치되며, 빔 생성유닛(100)으로부터 발진되는 치료용 빔(B)이 안구(O)를 향하여 진행하는 광경로를 형성할 수 있다. 이때, 제 1렌즈부(210)는 안저의 망막(R) 또는 각막(C)에 전달되는 치료용 빔(B)이 소정의 스팟 사이즈를 형성하도록 초점 거리(focal length)를 가변할 수 있다.
종래의 방식을 예로 들면, 기존 장비는 적어도 4~6개 이상의 렌즈가 장비 내에 배열되어 빔 전달유닛을 구성하였다. 구체적으로, 치료에 필요한 다양한 스팟 사이즈를 만들어 내기 위하여, 각각의 스팟 사이즈에 대응하는 여러 개의 독립된 렌즈들이 배열되고 빔을 생성하는 구조를 가지고 있었다. 이렇게 상대적으로 많은 양의 렌즈들을 이용하는 장비의 경우, 렌즈 사이 공차가 발생하고 환자의 치료시 이러한 공차에 따른 대처가 어려운 단점이 있었다. 또한, 복잡한 구조에 따라 레이저 장치의 양산화가 어려운 문제점이 있었다.
그러나 본 발명의 빔 전달유닛(200)은 제 1렌즈부(210) 하나로 초점 거리 조절이 가능하고 안구로 전달하는 치료용 빔(B)의 스팟 사이즈를 실시간으로 다양하게 생성할 수 있어, 종래의 기술에 비하여 간단한 구조로 환자의 병변을 치료할 수 있다. 구체적으로, 제 1렌즈부(210)는 제어유닛(300)과 연결되어, 제어 유닛(300)에서 제어되는 가변 신호(310)에 따라 초점 거리를 다양하게 변화시킬 수 있다. 그리고 상기 초점 거리의 변화에 따라 각막(C) 또는 망막(R)에 전달되는 치료용 빔의 스팟 사이즈를 다양하게 제어할 수 있다. 제어유닛(300)은 이하에서 후술한다.
제 1렌즈부(210)는 한 실시예로, 전자 렌즈(electrical lens)가 사용될 수 있다. 전자 렌즈는 전류 또는 전압을 공급 받아 전자 렌즈 내부의 전자들의 궤적에 영향을 주어 진행하는 빛의 경로를 가변할 수 있다. 전자 렌즈는 전기장을 이용한 정전기 렌즈와 자기장을 이용한 자기 렌즈로 구분될 수 있다.
제 2렌즈부(230)는 빔 전달유닛(200) 내부에 배치되며, 제 1렌즈부(210)에 의해 초점 거리가 가변된 치료용 빔(B)을 집광할 수 있다. 제 2렌즈부(230)는 치료용 빔(B)을 집광하기 위한 볼록렌즈(convex lens)로 구비될 수 있다.
이후, 볼록렌즈를 통해 집광된 치료용 빔(B)은 빔 전달유닛(30) 내부를 거쳐 컨택트 렌즈(500)로 진행한다.
제어유닛(300)은 빔 전달유닛(200)과 연결되며, 제 1렌즈부(210)에 따른 치료용 빔(B)의 초점거리(focal length)를 제어하는 역할을 한다.
제어유닛(300)은 제 1렌즈부(210)로 초점거리를 가변할 수 있는 가변 신호(310)를 전달할 수 있다. 본 발명의 일 실시예에 따라 제 1렌즈부(210)로 전자 렌즈(electrical lens)를 사용하는 경우, 상기 가변 신호(310)는 제 1렌즈부(210)에 공급되는 전류나 전압의 양을 제어하는 신호일 수 있다. 예를 들어, 제어유닛(300)은 기 설정된 초점 거리 및 상기 초점 거리에 따른 소정의 스팟 사이즈를 생성하기 위하여 정해진 전류나 전압의 양에 대응하는 가변 신호(310)를 생성할 수 있다.
제 1렌즈부(210)로 가변 신호(310)가 전달되면, 제 1렌즈부(210)는 기 설정된 양의 전류나 전압의 양을 공급받아 치료가 필요한 영역에 초점 거리를 가변할 수 있다. 이후, 상기 초점 거리의 가변에 따라, 치료가 필요한 망막(R) 및 각막(C) 영역에 적절한 스팟 사이즈에 해당하는 치료용 빔(B)을 전달할 수 있다.
또한, 제어유닛(300)은 기 설정된 방식 이외에도 치료 도중에 실시간으로 환자에 따라 또는 병변에 따라 다양한 스팟 사이즈의 레이저를 전달할 수 있도록, 그에 대응하는 가변 신호(310)를 실시간으로 변경하면서 제 1렌즈부(210)에 전달할 수 있다.
또한, 제어유닛(300)은 안구(O)를 이미지를 촬영하는 이미지 유닛(400)의 작동을 제어할 수 있다.
도 3은 본 발명의 일 실시예에 따른 제 1렌즈부의 초점 거리 가변에 따른, 각막 또는 망막에서 전달하는 치료용 빔의 스팟 사이즈의 직경을 나타낸 것이다.
표 1은 치료용 빔(B)이 각막(C) 및 망막(R)에서 전달되는 경우, 시물레이션된 결과를 나타낸다.
Spot size at Retina (um) Spot size at Cornea (um) Needed Focal length of Electrical lens(mm)
49 413 40.07
102 408 41.08
206 398 41.76
296 389 42.37
506 369 43.85
1004 321 47.86
도 3 및 표 1을 참고하면, 본 발명의 일 실시예에 따라, 제 1렌즈부(210)에서 초점 거리를 가변하고 이에 따라 망막(R) 또는 각막(C)에 전달되는 치료용 빔(B)의 스팟 사이즈의 변화량을 나타내었다.
본 실시예는 치료용 빔(B)이 망막(R)에서 50 um, 100 um, 200 um, 300 um, 500 um, 1000 um 직경의 스팟 사이즈를 가지도록 하면서, 또한 각막(C)에서의 스팟 사이즈의 직경이 300 um 이상이 되도록(이는 설계에 따라 더 큰 사이즈를 갖도록 하게 할 수도 있다) 하고자 할 때의 예를 든 것이다.
표 1에서, 망막(R)에서 전달되는 스팟 사이즈의 직경이 50um ~ 200um까지 증가될 때 각막(C)에서의 스팟 사이즈의 변화량은 미미하게 감소됨을 보여주고 있다. 이후 망막(R)에서 전달되는 스팟 사이즈의 직경이 300um 이상부터는 각막(C)에서의 스팟 사이즈의 변화량은 다소 커지기 시작하고, 망막(R)에서 전달되는 스팟 사이즈가 1000um 에서는 각막(C)에서의 스팟 사이즈의 변화량은 전 수치에 비하여 20% 가량 증가하는 변화율을 보여주고 있다.
망막(R)의 치료에 있어서, 치료용 빔(B)은 각막(C)을 통과하여 망막(R) 영역에 필요한 스팟 사이즈로 전달되어야 한다. 따라서 치료장치(10)는 망막(R)에 치료에 필요한 양의 열에너지를 전달하고 각막(C)에는 최소한의 에너지를 전달하는 것이 바람직하다. 상기 실시예에 따르면, 망막(R)에 전달되는 스팟 사이즈의 변화량에 따라 각막(C)에 전달되는 스팟 사이즈에 따른 변화량으로 각 영역에 전달되는 열 에너지의 양을 확인할 수 있다. 구체적으로, 망막(R)의 병변을 치료할 수 있는 스팟 사이즈의 변화량에 대한 각막(C)에 전달되는 스팟 사이즈의 변화량을 살펴보면, 각막(C)에 전달되는 스팟 사이즈의 변화량, 즉 전달되는 에너지 및 변화폭은 생체 안정성 측면에서 일반적으로 받아들일 수 있는 에너지 및 변화폭에 따른 스팟 사이즈가 나타남을 실험 결과 확인할 수 있었다.
또한 제 1렌즈부(210)의 초점 거리 변화량도 제 1렌즈부(210) 및 제어 유닛(300)에서 충분히 제어 가능한 수치임을 실험 결과 확인할 수 있었다.
본 발명의 상기 치료용 빔(B)이 망막(R) 영역에 전달되는 스팟 사이즈의 직경은 40-1200um에 해당하여, 망막(R)의 다수의 병변을 치료할 수 있는 넓은 범위의 대역을 가진다. 또한, 상기 치료용 빔(B)이 각막(C) 영역에 전달되는 스팟 사이즈의 직경은 300-450um에 해당하여, 망막(R)을 치료하는 도중, 각막(C)에 손상이 없는 안전한 대역의 에너지를 각막(C)으로 전달할 수 있다.
결론적으로, 제 1렌즈부(210)에 따른 초점거리에 따른 망막(R)에서의 스팟 사이즈의 변화량은 환자의 병변 치료를 적절하게 수행할 수 있으며, 각막(C)에서도 필요 이상의 에너지가 전달되지 않아 안전한 치료를 수행할 수 있었다. 또한, 본 발명은 제 1렌즈부(210)만의 초점 거리 가변에 따라 스팟 사이즈를 다양하게 제어할 수 있어, 간편한 조작 및 간소한 구성에 의하여 편리하고 빠른 치료를 할 수 있는 효과가 있음을 알 수 있었다.
물론, 상기 실시예의 이외에도, 각막(C) 및 망막(R)에서 전달되는 스팟 사이즈는 장비의 설계 및 제 1렌즈부(210)의 조절에 따라 더 큰 값을 갖도록 할 수 있다.
제어유닛(300)에 의하여 제어된 가변 신호(310)를 바탕으로, 빔 전달유닛(200)을 통과한 치료용 빔(B)은 안구 내 병변에 전달되기 위하여 컨택트 렌즈(500)로 안내될 수 있다.
컨택트 렌즈(500)는 상기 빔 전달유닛(200)과 안구(O) 사이에 배치되며, 안구(O)에 접촉되어 망막(R)의 시인성을 확보할 수 있게 한다. 즉, 컨택트 렌즈(500)는 시술자가 안저의 망막(R)이 시인될 수 있도록 안구(O)의 각막(C)에 접촉된다. 컨택트 렌즈(500)는 기본적으로 원뿔의 한 형상으로 마련될 수 있다.
이러한 구성에 의해 본 발명의 안과용 치료장치(10)의 치료용 빔(B) 조사를 위한 구동방법에 대해 도 4를 참조하여 설명한다.
도 4는 본 발명의 일 실시예에 따른 안과용 치료장치의 구동방법을 나타낸 순서도이다.
우선, 이미지 유닛(400)을 이용하여 안구(O) 내의 치료 영역을 촬영하여 이미지를 형성할 수 있다. 그리고 안구(O)의 치료 영역에 대하여 치료용 빔(B)의 조사 위치를 설정할 수 있다.
이후, 빔 생성유닛(100)에서 기 설정된 조사 위치에 치료용 빔(B)이 전달되도록 치료용 빔(B)을 생성하는 단계를 진행할 수 있다(S10). 빔 생성유닛(100)에서 치료용 빔(B)을 생성하는 단계는 후술하는 빔 전달유닛(200)에서 렌즈의 초점거리를 조정한 후 진행할 수도 있다.
빔 생성유닛(100)으로부터 생성되는 치료용 빔(B)은 일정한 파장 대역을 갖는 레이저일 수 있다. 빔 생성유닛(100)은 일정한 파장 대역을 갖는 레이저가 치료용 빔(B)으로 생성될 수 있도록, 레이저 다이오드 등으로 구성될 수 있다.
상기 치료용 빔(B)의 조사 위치를 설정하는 방법은 초점 거리의 가변에 따른 스팟 사이즈를 제어하는 단계로 수행될 수 있다(S30). 우선, 제어유닛(300)은 초점 거리 가변에 적용되는 가변 신호(310)를 생성하여 빔 전달유닛(200)의 제 1렌즈부(210)로 전달할 수 있다. 가변 신호(310)는 제 1렌즈부(210)에 공급되는 전류나 전압의 양을 제어하여 사용자가 원하는 초점거리를 설정할 수 있도록 제어유닛(300)에서 생성된 디지털 신호 등을 의미할 수 있다.
그리고 빔 전달유닛(200)의 제 1렌즈부(210)는 제어유닛(300)에서 전달받은 가변 신호(310)에 따라 치료 영역에 필요한 적정의 스팟 사이즈를 생성할 수 있다. 상기 빔 전달유닛(200)과 제어유닛(300)의 구동 방법에 따라 초점 거리의 가변을 통한 스팟 사이즈의 조절은 기 설정된 방식으로 진행할 수 있는 것은 물론, 실시간으로 환자의 치료 병변을 확인하면서 조절할 수 있다.
상기 치료용 빔(B)이 망막(R)영역에 전달되는 스팟 사이즈의 직경은 40-1200um이며, 각막(C) 영역에 전달되는 스팟 사이즈의 직경은 300-450um일 수 있다.
종래의 기술은 적어도 4-6개 이상의 렌즈가 일 열로 배열되어 빔 전달유닛이 구성되고, 상대적으로 많은 양의 렌즈들을 이용하여 치료용 빔(B)의 스팟 사이즈를 생성하였다. 이는 구조의 복잡화에 따라 원하지 않은 렌즈의 공차의 발생 및 상기 공차에 따른 대처가 어렵고 환자의 치료시 효과적인 치료가 진행되지 못한 문제점이 발생되었다.
그러나 본 발명의 제 1렌즈부(210)와 제어유닛(300)의 상호 연관 구성 및 동작 방법에 따라, 제 1렌즈부(210) 하나로 초점거리 조절이 가능하게 되었다. 또한, 상기 제 1렌즈부(210)의 가변된 초점거리에 따라 안저 내에 전달하는 치료용 빔(B)의 스팟 사이즈를 다양하게 생성할 수 있어 종래의 기술에 비하여 간단한 구조로 환자의 병변을 치료할 수 있게 되었다. 결론적으로, 제 1렌즈부(210)는 제어유닛(300)과 연결되어, 제어 유닛(300)에서 제어되는 가변 신호(310)에 따라 초점 거리를 다양하게 변화할 수 있는 효과가 있다.
이후, 빔 생성유닛(100)에서 생성된 치료용 빔(B)은 빔 전달유닛(200)에 의하여 형성된 광경로를 따라 안저의 치료 영역에 치료용 빔(B)을 조사할 수 있다. 안구(O) 각막(C)에는 컨택트 렌즈(500)가 접촉 배치되어 상기 빔 전달유닛(200)으로부터 전달된 치료용 빔(B)을 안구(O)로 안내하여 치료가 진행되도록 도울 수 있다.
따라서 상기 전술한 것처럼, 안구(O)의 치료 영역으로 치료용 빔(B)을 조사하는 동안, 치료용 빔(B)의 조사위치, 즉 초점거리에 따른 스팟 사이즈를 실시간 조절이 가능하며, 실시간 제어함으로써 간편하게 적절한 양의 에너지를 환자의 병변에 제공할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징들이 변경되지 않고서 다른 구체적인 형태로 실시될 수 있다는 것으로 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 치료용 빔을 생성하는 빔 생성유닛;
    상기 빔 생성유닛으로부터 발진되는 상기 치료용 빔이 안구를 향하여 진행하는 광경로를 형성하고, 상기 치료용 빔이 상기 안구에 소정의 스팟 사이즈로 전달되도록 초점 거리(focal length)를 가변할 수 있는 제 1렌즈부를 포함하는 빔 전달유닛; 및
    상기 빔 전달유닛과 연결되며, 상기 제 1렌즈부에 따른 상기 치료용 빔의 상기 초점거리를 제어하는 제어유닛을 포함하는 것을 특징으로 하는 안과용 치료장치.
  2. 제 1항에 있어서,
    상기 제어유닛은 제 1렌즈부에서 상기 치료용 빔의 초점 거리(focal length)가 가변되도록 가변 신호를 생성하여 전달하는 것을 특징으로 하는 안과용 치료장치.
  3. 제 2항에 있어서,
    상기 제 1렌즈부는 상기 제어유닛에서 전달된 가변 신호에 대응하는 전류나 전압의 양을 공급받아 상기 초점 거리를 가변하는 것을 특징으로 하는 안과용 치료장치.
  4. 제 2항에 있어서,
    상기 제 1렌즈부는 전자 렌즈(electrical lens)를 포함하는 것을 특징으로 하는 안과용 치료장치.
  5. 제 1항에 있어서,
    상기 제 1렌즈부를 통하여 가변된 스팟 사이즈의 치료용 빔은 상기 안구의 각막영역 또는 망막영역으로 전달되는 것을 특징으로 하는 안과용 치료장치.
  6. 제 5항에 있어서,
    상기 치료용 빔이 망막 영역에 전달되는 스팟 사이즈의 직경은 40-1200um이며,
    상기 치료용 빔이 각막 영역에 전달되는 스팟 사이즈의 직경은 300-450um인 것을 특징으로 하는 안과용 치료장치.
  7. 제 1항에 있어서,
    상기 빔 전달 유닛으로부터 전달된 치료용 빔을 상기 안구로 안내하는 컨택트 렌즈를 더 포함하는 것을 특징으로 하는 안과용 치료장치.
  8. 제 1항에 있어서,
    상기 빔 전달 유닛은 상기 제 1렌즈부에 의해 상기 초점 거리(focal length)가 가변된 치료용 빔을 집광하는 제 2렌즈부를 더 포함하는 것을 특징으로 하는 안과용 치료장치.
  9. 제 1항에 있어서,
    상기 안구의 치료 영역에 전달되는 상기 치료용 빔의 조사 위치를 설정하기 위하여, 상기 안구 내의 상기 치료 영역을 촬영하여 이미지를 형성하는 이미지 유닛을 더 포함하는 것을 특징으로 하는 안과용 치료장치.
  10. 빔 생성유닛에서 치료용 빔을 생성하는 단계;
    상기 치료용 빔이 안구 내에서 소정의 스팟 사이즈를 형성하도록 제 1렌즈부에서 초점 거리(focal length)를 가변하는 단계; 및
    상기 제어된 스팟 사이즈의 상기 치료용 빔을 상기 안구 내로 조사하는 단계;를 포함하는 것을 특징으로 하는 안과용 치료장치의 구동방법.
  11. 제 10항에서, 상기 제어된 치료용 빔을 상기 안구 내로 조사하는 단계는,
    상기 제 1렌즈부에 의해 초점 거리(focal length)가 상기 가변된 치료용 빔을 집광하는 제 2렌즈부를 이용하여 상기 치료용 빔을 전달하는 것을 특징으로 하는 안과용 치료장치의 구동방법.
  12. 제 10항에서, 상기 치료용 빔의 스팟 사이즈를 형성하도록 제어하는 단계는,
    제어 유닛에서 전류나 전압의 양에 기초한 가변 신호를 생성하고, 상기 치료용 빔의 스팟 사이즈가 가변되도록 상기 제 1렌즈부에 상기 가변 신호를 전달하는 것을 특징으로 하는 안과용 치료장치의 구동방법.
  13. 제 10항에서, 상기 안구 내에서 소정의 스팟 사이즈를 형성하도록 제어하는 단계 이전에,
    상기 안구의 치료 영역에 전달되는 치료용 빔의 조사 위치를 설정하는 단계를 더 포함하는 것을 특징으로 하는 안과용 치료장치의 구동방법.
PCT/KR2016/009718 2015-08-31 2016-08-31 안과용 치료 장치 및 안과용 치료 장치의 구동방법 WO2017039314A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/756,553 US20180250163A1 (en) 2015-08-31 2016-08-31 Apparatus for ocular treatment and method for operating apparatus for ocular treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0122479 2015-08-31
KR1020150122479A KR20170025684A (ko) 2015-08-31 2015-08-31 안과용 치료 장치 및 안과용 치료 장치의 구동방법

Publications (1)

Publication Number Publication Date
WO2017039314A1 true WO2017039314A1 (ko) 2017-03-09

Family

ID=58188026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009718 WO2017039314A1 (ko) 2015-08-31 2016-08-31 안과용 치료 장치 및 안과용 치료 장치의 구동방법

Country Status (3)

Country Link
US (1) US20180250163A1 (ko)
KR (1) KR20170025684A (ko)
WO (1) WO2017039314A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020123842A1 (en) * 2018-12-12 2020-06-18 Drake Precision Optics, Inc. Ophthalmic surgery laser system and method for utilizing same for ophthalmic surgery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007531A (ko) * 2009-07-16 2011-01-24 한국전기연구원 치료용 레이저 장치
JP2012213634A (ja) * 2011-03-31 2012-11-08 Nidek Co Ltd 眼科用レーザ治療装置
JP2013078399A (ja) * 2011-09-30 2013-05-02 Nidek Co Ltd 眼科用レーザ手術装置、及び眼科用レーザ手術装置の光学系
KR20140009843A (ko) * 2012-07-13 2014-01-23 주식회사 루트로닉 안과용 치료장치 및 그 제어방법
JP2014518514A (ja) * 2011-03-25 2014-07-31 カール ツアイス メディテック アクチエンゲゼルシャフト 眼科用機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171242A (en) * 1990-10-26 1992-12-15 Coherent, Inc. Combination lens system for retinal photocoagulator laser system
US8394084B2 (en) * 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
EP2520220A1 (en) * 2006-02-14 2012-11-07 Shui T. Lai Subjective refraction method and device for correcting low and higher order aberrations
EP2745820B1 (en) * 2012-12-19 2015-12-09 Telesto GmbH Light therapy system for noninvasive correction of the refractive system of the eye

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007531A (ko) * 2009-07-16 2011-01-24 한국전기연구원 치료용 레이저 장치
JP2014518514A (ja) * 2011-03-25 2014-07-31 カール ツアイス メディテック アクチエンゲゼルシャフト 眼科用機器
JP2012213634A (ja) * 2011-03-31 2012-11-08 Nidek Co Ltd 眼科用レーザ治療装置
JP2013078399A (ja) * 2011-09-30 2013-05-02 Nidek Co Ltd 眼科用レーザ手術装置、及び眼科用レーザ手術装置の光学系
KR20140009843A (ko) * 2012-07-13 2014-01-23 주식회사 루트로닉 안과용 치료장치 및 그 제어방법

Also Published As

Publication number Publication date
US20180250163A1 (en) 2018-09-06
KR20170025684A (ko) 2017-03-08

Similar Documents

Publication Publication Date Title
EP2961364B1 (en) System for glaucoma treatment
WO2014011017A1 (ko) 안과용 치료장치 및 이의 빔 제어방법
JP6735560B2 (ja) ヒトの虹彩への電磁放射線の照射
CN113473950B (zh) 自动激光虹膜切开术
JP3695900B2 (ja) レーザ治療装置
WO2015088226A1 (ko) 안과용 치료장치, 안과용 치료장치의 제어방법 및 안저 병변 치료 방법
JPH08196561A (ja) 網膜光凝固レーザーシステム
CN105920742B (zh) 一种用于白癜风治疗的光电装置
KR20120027195A (ko) 눈의 레이저 조사 치료 장치
JP7448973B2 (ja) 直接選択的レーザー線維柱帯形成術の保護
KR20180082437A (ko) 안과용 레이저 장치를 위한 모듈식 환자 어댑터
EP1138290B1 (en) Ophthalmic surgery apparatus
WO2004091362A2 (en) Transcleral opthalmic illumination method and system
WO2017039314A1 (ko) 안과용 치료 장치 및 안과용 치료 장치의 구동방법
WO2021261699A1 (ko) 안구에 조사되는 레이저 피드백장치 및 이를 이용한 레이저 피드백방법
WO2014011012A1 (ko) 안과용 치료장치 및 이의 치료용 빔 조사방법
WO2017039312A1 (ko) 안과용 치료장치 및 이의 제어방법
WO2014011015A1 (ko) 안과용 치료장치 및 그 제어방법
WO2005079919A1 (en) A medical laser system and method of irradiating a treatment area
CN210962599U (zh) 一种具有数字光处理的角膜交联装置
JP2016013255A (ja) レーザ治療装置
JP4118154B2 (ja) レーザ治療装置
WO2014077569A1 (ko) 안과용 치료장치 및 이의 제어방법
CN110507911A (zh) 一种皮肤光组治疗装置和治疗方法
US10252075B2 (en) Ocular therapy device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15756553

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842280

Country of ref document: EP

Kind code of ref document: A1