WO2014011017A1 - 안과용 치료장치 및 이의 빔 제어방법 - Google Patents

안과용 치료장치 및 이의 빔 제어방법 Download PDF

Info

Publication number
WO2014011017A1
WO2014011017A1 PCT/KR2013/006331 KR2013006331W WO2014011017A1 WO 2014011017 A1 WO2014011017 A1 WO 2014011017A1 KR 2013006331 W KR2013006331 W KR 2013006331W WO 2014011017 A1 WO2014011017 A1 WO 2014011017A1
Authority
WO
WIPO (PCT)
Prior art keywords
bubble
test
pulse energy
area
irradiated
Prior art date
Application number
PCT/KR2013/006331
Other languages
English (en)
French (fr)
Inventor
하태호
안철산
Original Assignee
(주)루트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)루트로닉 filed Critical (주)루트로닉
Priority to US14/414,696 priority Critical patent/US10080683B2/en
Publication of WO2014011017A1 publication Critical patent/WO2014011017A1/ko
Priority to US16/139,998 priority patent/US10537476B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/0079Methods or devices for eye surgery using non-laser electromagnetic radiation, e.g. non-coherent light or microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00814Laser features or special beam parameters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00821Methods or devices for eye surgery using laser for coagulation
    • A61F9/00823Laser features or special beam parameters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/0084Laser features or special beam parameters therefor

Definitions

  • the present invention relates to an ophthalmic treatment device and a beam control method thereof, and more particularly, to measure the pulse energy of the therapeutic beam irradiated to the treatment area of the eye to irradiate a therapeutic beam suitable for the treatment area of the eye.
  • a therapeutic apparatus and a beam control method thereof are particularly, to measure the pulse energy of the therapeutic beam irradiated to the treatment area of the eye to irradiate a therapeutic beam suitable for the treatment area of the eye.
  • Ophthalmic devices are used for therapeutic purposes in eye diseases such as glaucoma, cataracts, and macular degeneration.
  • glaucoma among the diseases of the eye is a disease due to the increase in intraocular pressure
  • cataract is a disease due to the whitening of the lens.
  • Macular degeneration is an eye disease occurring in the retina.
  • the ophthalmic treatment device irradiates a therapeutic beam of a wavelength band having a different pulse energy.
  • a therapeutic beam can be irradiated with pulse energy in the wavelength band of 1064 nm, depending on the tissue of the eye disease.
  • the technical feature disclosed in the prior art is to treat a disease of the eye by irradiating a femtosecond laser to the vitreous of the eye, the efficiency of treatment as the treatment proceeds without the test of the laser having a pulse energy suitable for different tissues of the eye There is a problem that can be degraded.
  • An object of the present invention is to provide an ophthalmic treatment apparatus capable of proceeding treatment by testing the pulse energy suitability of the therapeutic beam to the tissue of the eye so as to irradiate a therapeutic beam having pulse energy corresponding to different tissues of the eye. It is to provide a beam control method.
  • the beam generating unit for generating a beam having a different pulse energy, and whether the bubble generated according to the pulse energy of the beam generated from the beam generating unit irradiated to the treatment area of the eye
  • a control unit for controlling an operation of the beam generation unit to adjust a pulse energy of the beam generated from the beam generation unit based on a signal from the bubble detection unit and a bubble detection unit for detecting a bubble generation amount. It is made by an ophthalmic treatment device.
  • the beam generated from the beam generating unit is a test beam irradiated to detect whether the bubble generation and the bubble generation amount by the bubble detection unit, and when the bubble generation and the bubble generation amount is detected by the bubble detection unit It may include a therapeutic beam corresponding to the pulse energy of the test beam of the irradiated to treat the treatment area of the eye.
  • the region to which the test beam is irradiated may be a test region which is one region of the eye treatment region.
  • the controller controls the operation of the beam generator to sequentially increase the pulse energy of the test beam generated from the beam generator until the bubble detector detects bubble generation.
  • the ophthalmic treatment device may further include a memory unit for storing information of the respective pulse energies sequentially increased until the bubble is detected by the bubble detection unit.
  • control unit when the test beam is irradiated to a test area of another area of the eyeball treatment area, the control unit is configured to detect a bubble when the bubble is detected by the bubble detecting unit of information of respective pulse energies stored in the memory unit. Operation of the beam generator may be controlled to irradiate pulse energy one step lower than pulse energy.
  • control unit may control the operation of the beam generation unit so that the therapeutic beam is irradiated with the pulse energy when the bubble detection unit detects bubble generation.
  • control unit sequentially increases the pulse energy of the test beam until the bubble detecting unit detects the occurrence of bubble, and maintains the pulse energy generated by the bubble to detect the predetermined amount of bubble. Until the operation of the beam generator can be controlled.
  • an ophthalmic treatment device having a beam generating unit for generating a beam having a different pulse energy, according to the present invention, (a) irradiating a test area which is one area of the eye treatment area Generating the beam, irradiating the beam to the test area, (b) detecting whether the bubble is generated in the test area according to the irradiation of the beam, and (c) whether or not the bubble is generated Based on, the beam control method of the ophthalmic treatment apparatus comprising the step of controlling the operation of the beam generator to adjust the pulse energy of the beam.
  • the method may further include controlling the operation of the beam generator such that the beam of the pulse energy when the bubble is generated in step (c) is irradiated to treat the treatment area of the eye. have.
  • the beam generated by the beam generating unit has a test beam irradiated to the test area and a pulse energy corresponding to the pulse energy of the test beam in the step (d) and irradiated to the treatment area of the eyeball. May comprise a therapeutic beam.
  • step (c) may include sequentially increasing pulse energy of the test beam irradiated to the test area until bubble generation is detected in the test area.
  • the ophthalmic treatment device further comprises a memory unit for storing information of the respective pulse energies, each of the stored in the memory unit when the test beam is irradiated to the test area of the other area of the treatment area of the eye
  • the method may further include controlling the operation of the beam generator to irradiate the test beam with pulse energy lower than pulse energy information at the time of bubble generation among the pulse energy information.
  • Step (b) may include detecting bubble generation and the amount of bubble generated.
  • the step (c) may further include controlling the operation of the beam generator until the predetermined amount of bubbles is sensed by irradiating a corresponding pulse energy when the bubble stored in the memory unit is generated.
  • Effects of the ophthalmic treatment device and the beam control method according to the present invention is the information of the pulse energy of the therapeutic beam corresponding to the tissue of the treatment area by irradiating the test beam before irradiating the treatment beam to the treatment area of the eye Can be obtained, thereby securing the treatment efficiency and safety for the treatment area.
  • FIG. 1 is a schematic configuration diagram of an ophthalmic treatment device according to embodiments of the present invention.
  • FIG. 2 is a control block diagram of an ophthalmic treatment device according to embodiments of the present invention.
  • FIG. 3 is a schematic configuration diagram of a treatment region irradiated with a therapeutic beam and a test region irradiated with a test beam of an ophthalmic treatment apparatus according to embodiments of the present disclosure
  • FIG. 4 is a control flowchart of an ophthalmic treatment apparatus according to a first embodiment of the present invention
  • FIG. 5 is a graph showing the energy magnitude of the beam irradiated according to the first embodiment of the present invention.
  • FIG. 6 is a graph showing the magnitude of energy of the beam irradiated according to the second embodiment
  • FIG. 7 is a diagram illustrating partitioning of a treatment area according to a third embodiment
  • FIG. 8 is a graph showing energy levels of beams irradiated according to the third embodiment.
  • FIG. 10 is a control flowchart of an ophthalmic treatment apparatus according to a fourth embodiment of the present invention.
  • the components of the ophthalmic treatment apparatus according to the first and second embodiments of the present invention are the same, and thus it is noted that the same components are described with the same reference numerals.
  • the ophthalmic treatment apparatus according to the embodiments of the present invention described below is described to treat lesions of the retina, but can be applied to other eye diseases in addition to the lesions of the retina.
  • the beam generating unit will be described as generating two beams, a test beam and a therapeutic beam, but the beam beams are not generated separately, but the test beams are adjusted in pulse energy until a signal is detected by the bubble detector.
  • the beam for treatment is a beam irradiated for treatment with a pulse energy corresponding to the pulse energy of the test beam when a signal is detected by the bubble detector.
  • FIG. 1 is a schematic configuration diagram of an ophthalmic treatment device according to embodiments of the present invention
  • FIG. 2 is a control block diagram of an ophthalmic treatment device according to embodiments of the present invention
  • FIG. 3 is an embodiment of the present invention.
  • the ophthalmic treatment device 1 may include a beam generator 10, a contact lens 20, a beam delivery unit 30, and an image unit ( 40, a bubble detecting unit 60, a memory unit 70, an input unit 80, and a control unit 90.
  • the contact lens 20 of the ophthalmic treatment device 1 according to the embodiments of the present invention may be omitted depending on the position of the lesion area.
  • the beam generator 10 generates a beam for treatment for treating a lesion generated in the retina R of the eyeball O.
  • the beam generator 10 generates a test beam used to generate a beam of pulse energy suitable for the tissue of the treatment area T of the eyeball O.
  • the test beam generated from the beam generator 10 may have various wavelength bands according to pulse energy.
  • the therapeutic beam and the test beam generated by the beam generator 10 include a laser.
  • the beam generator 10 generates a test beam having a different pulse energy according to the control signal of the controller 90 and has a corresponding pulse energy after the tissue test of the eyeball O by the test beam is finished. Generate a therapeutic beam.
  • the contact lens 20 is in contact with the cornea Co of the eyeball O so that the therapeutic beam or test beam generated by the beam generator 10 passes through the lens Cr of the eyeball O. Guide).
  • the beam delivery unit 30 includes an XY scanner 32, a collimation unit 34, and a beam splitter 36.
  • the beam delivery unit 30 is disposed between the beam generation unit 10 and the contact lens 20.
  • the beam delivery unit 30 guides the treatment beam that is generated from the beam generation unit 10 to the treatment area T of the eyeball O.
  • the beam generator 10 and the beam delivery unit 30 are operated based on the operation signal input from the input unit 80.
  • the XY scanner 32 determines the focal position of the therapeutic beam on the XY plane which is the horizontal plane of the Z axis.
  • the XY scanner 32 includes at least two reflecting mirrors not shown in the present invention to adjust the focal position of the therapeutic beam along the X axis and the Y axis.
  • the collimation unit 34 is disposed between the XY scanner 32 and the contact lens 20.
  • the collimation unit 34 collimates the therapeutic beam provided from the XY scanner 32 with the contact lens 20.
  • the collimation unit 34 uses an objective lens composed of a combination of a plurality of lenses.
  • the beam splitter 36 is disposed between the XY scanner 32 and the collimation unit 34. The beam splitter 36 guides the therapeutic beam from the XY scanner 32 to the collimation unit 34.
  • the image unit 40 photographs the eyeball O to form an image.
  • the image unit 40 may be configured in various known combinations such as optical coherence tomography (OCT) and digital cameras.
  • OCT optical coherence tomography
  • the retina R, the blood vessel BV, the treatment area T, and the test area Te shown in FIG. 3 are photographed by the image unit 40 to form an image.
  • the image of the eyeball O formed from the image unit 40 may improve the treatment efficiency of the operator.
  • the bubble detector 60 detects whether bubbles are generated and the amount of bubbles generated by the beam for testing generated by the beam generator 10 and irradiated to the treatment area T of the eyeball O.
  • Bubble detection unit 60 detects the occurrence of bubbles in the ophthalmic treatment device 1 according to the first embodiment of the present invention.
  • the bubble detection unit 60 detects the amount of bubble generation together with whether or not the bubble in the ophthalmic treatment device 1 according to the second embodiment of the present invention.
  • the bubble detection unit 60 may use an optical sensing method, and for example, may be configured to detect whether the bubble is generated and the amount of bubble generation using a degree of light scattering by the bubble.
  • the bubble detection unit may be configured using various known methods.
  • the memory unit 70 stores the sensing signal sensed by the bubble detecting unit 60.
  • the memory unit 70 stores pulse energy information that is sequentially increased until bubbles are detected by the bubble detector 60 in the ophthalmic treatment device 1 according to the first embodiment of the present invention.
  • the memory unit 70 stores pulse energy information when a predetermined amount of bubble is sensed along with respective pulse energy information sequentially increased until the bubble is sensed by the bubble detecting unit 60.
  • the pulse energy information at the time of detecting the predetermined bubble amount stored in the memory unit 70 includes information when the bubble is generated and time information at the time of detecting the predetermined bubble amount.
  • the input unit 80 is provided to apply an operation signal to the beam generator 10, the beam delivery unit 30, and the image unit 40.
  • the input unit 80 classifies and applies an operation signal for generating a therapeutic beam and a test beam.
  • the controller 90 generates control signals for controlling the operations of the beam generator 10, the beam delivery unit 30, and the image unit 40, respectively, based on the input of the input unit 80.
  • the controller may, in some embodiments, sequentially increase the pulse energy of the test beam generated by the beam generator 10 until the bubble detector 60 detects bubble generation. While controlling the operation, the test beam and the therapeutic beam generating the bubble are irradiated.
  • the size of the test beam may be determined in consideration of the previously irradiated therapeutic beam.
  • the test beams having pulse energy of P1, P2, and P3 are sequentially irradiated at the X1 position (P1 ⁇ P2 ⁇ P3 ⁇ P4), and bubbles are generated from the beam having the energy of P4 to treat P4 as a therapeutic beam. Assume the case decided. In this case, it can be expected that the bubble will be generated even when the beam having a pulse energy of the magnitude adjacent to P4 is irradiated even at the X2 position adjacent to the X1 position.
  • the test beam when irradiating the test beam to the X2 position, the test beam is irradiated so as to sequentially increase the energy of the pulse from P2 or P3 rather than the method of sequentially increasing the pulse energy from P1 as in the X1 position.
  • the initial pulse energy of the test beam irradiated at a later position can be controlled to have a value greater than the initial pulse energy of the test beam irradiated at the previous position.
  • the initial pulse energy of the test beam irradiated at a later position may be controlled to increase sequentially with 70-90% of the energy of the therapeutic beam irradiated at the previous position.
  • control unit 90 is beam so that the therapeutic beam is irradiated with the pulse energy when the bubble detection unit 60 detects the bubble generation.
  • the operation of the generation unit 10 is controlled.
  • control unit 90 sequentially increases the pulse energy of the test beam until the bubble detecting unit 60 detects the bubble generation, and maintains the corresponding pulse energy generated by the bubble.
  • the operation of the beam generator 10 is controlled until the bubble detector 60 detects a predetermined amount of bubbles.
  • the controller 90 controls the operation of the beam generator 10 to generate a test beam until a predetermined amount of bubble is detected, thereby controlling the pulse energy of the beam for treatment irradiated onto the tissue of the eyeball O.
  • irradiation time can also be considered.
  • FIG. 4 is a control flowchart of an ophthalmic treatment apparatus according to a first embodiment of the present invention
  • FIG. 5 is a graph showing energy levels of beams irradiated according to the first embodiment of the present invention.
  • the beam control method of the ophthalmic treatment device 1 according to the first embodiment of the present invention is as follows.
  • the beam is then irradiated to the first treatment position of the treatment region T (S30).
  • the bubble B is detected using the bubble detector 60. If it is determined that no bubbles are generated in the bubble detection step (S50), after controlling to increase the pulse energy of the beam (S90), the beam is irradiated to the same treatment position (S30), and it is determined whether the bubble is generated. (S50)).
  • the pulse energy information of the corresponding beam is stored in the memory. Then, it is determined that the treatment is in progress to the treatment position, the beam delivery unit is controlled to move the irradiation position to irradiate the beam to another treatment position (S70), and the treatment is performed.
  • Figure 5 shows the magnitude of the pulse energy of the beam irradiated in this manner.
  • the beam P1 irradiated first at the first treatment position I of the treatment regions T has a low pulse energy to prevent inadvertent damage from occurring in the retina. It is composed.
  • the P2, P3, and P4 beams are irradiated while sequentially increasing pulse energy until bubbles are generated, and after each beam is irradiated, it is determined whether bubbles are generated. When it is detected that the bubble is generated, it is determined that the treatment of the first treatment position I is completed, and the beam is moved to the second treatment position II.
  • treatment may be performed by irradiating the beam in such a manner as to sequentially increase energy of the beam.
  • the beam is irradiated in the form of increasing energy sequentially from the lowest energy beam in the first position for safety reasons, but in the second position treatment, treatment is performed with beams of energy similar to the first position. You can expect that. Therefore, the energy of the beam P4 that generated the bubble at the first treatment position is stored in memory, and then the energy of the first beam irradiated at the second treatment position (II) is bubbled at the first treatment position (I). It can be controlled to be smaller than P4 which generated P1 and larger than P1 which is the first beam of the first treatment position (I). As shown in FIG. 5, in this embodiment, the beam is irradiated to sequentially increase the amount of energy starting from P3 at the second treatment position, and in this case, treatment may be completed while bubbles are generated at the second beam. have.
  • the beam size is sequentially increased according to each treatment position to detect whether bubbles are generated or not to determine whether the treatment is performed.
  • a portion of the treatment area T is set as the test area Te, and the beam for treatment in the test area Te is provided.
  • the treatment may be performed by irradiating the remaining treatment position of the treatment area T with the size of a beam having the same energy.
  • the beam is irradiated to sequentially increase energy from the low energy beam to the test region.
  • the pulse energy of the therapeutic beam corresponds to the pulse energy of P4
  • the beam may be treated by irradiating the beam having the energy of P4 to the remaining treatment areas. have.
  • the beam having the same size is irradiated by determining that the size of the last beam P4 that generates bubbles in the test area may be generated even at different treatment positions, but the beam is irradiated in advance in the test area several times.
  • FIG. 7 is a diagram illustrating partitioning of a treatment area according to a third embodiment
  • FIG. 8 is a graph showing energy levels of beams to be irradiated according to the third embodiment.
  • the entire treatment area is treated using the size of the treatment beam determined in one test area.
  • the treatment area is divided into a plurality of zones T1, T2, T3, and T4 having similar tissue characteristics. After dividing by), it is possible to set the test area for each zone to determine the size of the beam for treatment, and then to treat the area with the size of the beam.
  • energy levels of a beam in which bubbles are generated are determined by sequentially increasing energy from a beam having a low magnitude of energy in the test region.
  • the remaining treatment positions corresponding to the T1 region may be treated with a beam having a pulse energy of P4.
  • the energy of the beam is determined by sequentially increasing the energy of the beam in the test region of the T2 region.
  • the remaining treatment position corresponding to the T2 region may be treated with a beam having a pulse energy of P3.
  • T3 and T4 zones may also proceed in a similar manner to the above and T1 and T2.
  • FIG. 9 is a graph showing an energy level of a beam irradiated according to a fourth embodiment
  • FIG. 10 is a control flowchart of an ophthalmic treatment apparatus according to a fourth embodiment of the present invention.
  • the beam control method of the ophthalmic treatment device 1 according to the fourth embodiment of the present invention is as follows.
  • a test beam is irradiated to a test area I of one area of the treatment area T of the eyeball O.
  • the pulse energy of the test beam irradiated to the test region I is lower than the expected pulse energy.
  • the test area I is irradiated while increasing the pulse energy of the test beam sequentially.
  • the pulse energy of the test beam which is sequentially increased is preferably increased at equal intervals. The pulse energy increase of the test beam continues until bubble B1 is generated.
  • the pulse energy of the test beam when the bubble B1 is generated in the memory unit 70 is stored. Then, the test beam having the pulse energy when the bubble B1 is generated is irradiated continuously until the predetermined bubble amount B2 is detected. When the preset bubble amount B2 is detected, the irradiation time of the test beam is stored in the memory unit 70. The treatment beam of the same pulse energy is irradiated to the treatment region T based on the pulse energy information and the irradiation time stored in the memory unit 70.
  • an image of the treatment area T of the eyeball O is taken and a photographed image is formed (S100).
  • the amount of bubbles B2 to be detected in the test area Te of the treatment area T is set (S200).
  • the test beam is irradiated to the test area Te of the treatment area T (S300). After irradiating the test beam to the test area Te, it is detected whether the bubble B1 is generated (S400).
  • the test beam maintains the pulse energy (S500).
  • step S200 it is determined whether a predetermined bubble amount B2 is detected (S700). Pulse energy and irradiation time information according to the preset bubble amount B2 is stored. The therapeutic beam is irradiated to the treatment region T based on the stored pulse energy information and the irradiation time (S800).
  • step S600 the pulse energy of the test beam is sequentially increased (S600). Then, the flow proceeds to the control flow from the 'S300' step. If the preset bubble amount B2 is not detected in step S700, the process proceeds to step S500 and the test beam when the bubble B1 is generated until the predetermined bubble amount B2 is detected. Maintain pulse energy.
  • the test beam may be irradiated to obtain information on the pulse energy of the treatment beam corresponding to the tissue of the treatment area. Safety can be secured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

본 발명은 안과용 치료장치 및 이의 빔 제어방법에 관한 것으로, 본 발명에 따른 안과용 치료장치는 상이한 펄스 에너지를 갖는 빔을 생성하는 빔 생성부와, 빔 생성부로부터 생성되어 안구의 치료 영역으로 조사된 빔의 펄스 에너지에 따른 버블 발생 여부 및 버블 발생량을 감지하는 버블감지부와, 버블감지부로부터의 신호에 기초하여 빔 생성부로부터 생성되는 빔의 펄스 에너지를 조절하도록 빔 생성부의 작동을 제어하는 제어부를 포함하는 것을 특징으로 한다.

Description

안과용 치료장치 및 이의 빔 제어방법
본 발명은 안과용 치료장치 및 이의 빔 제어 방법에 관한 것으로서, 보다 상세하게는 안구의 치료 영역에 조사되는 치료용 빔의 펄스 에너지를 측정하여 안구의 치료 영역에 적합한 치료용 빔을 조사하는 안과용 치료장치 및 이의 빔 제어방법에 관한 것이다.
안과용 치료장치는 녹내장, 백내장 및 황반 변성과 같은 안구의 질환에 치료 목적으로 사용된다. 여기서, 안구의 질환 중 녹내장은 안구의 안압 증가에 따른 질환이고, 백내장은 수정체의 백화 현상으로 인한 질환이다. 그리고, 황반 변성의 경우는 망막에 발생되는 안구의 질환이다.
이러한, 다양한 안구의 질환을 치료하기 위해 안과용 치료장치는 펄스 에너지가 상이한 파장 대역의 치료용 빔을 조사한다. 예를 들어, 안구의 질환의 조직에 따라 1064nm의 파장 대역의 펄스 에너지를 갖는 치료용 빔을 조사할 수 있다.
한편, 종래의 안과용 치료장치는 "대한민국 공개특허공보 제2011-0063100호"인 "레이저를 이용한 안구 질환 치료 장치 및 레이저를 이용한 안구 질환 진단 장치"에 개시되어 있다. 상술한 선행문헌인 "레이저를 이용한 안구 질환 치료 장치 및 레이저를 이용한 안구 질환 진단 장치"는 안구 내 유리체로 초점이 조절된 펨토초 레이저를 조사하여 초점 영역의 유리체에서 레이저 유발 이온화 및 레이저 유발 흡수에 따른 압력 파가 발생하도록 하여 안구 질환을 치료하는 기술적 특징을 개시한다.
그런데, 종래의 선행문헌에 개시된 기술적 특징은 안구의 유리체에 펨토초 레이저를 조사하여 안구의 질환을 치료하는 것으로서, 안구의 상이한 조직에 적합한 펄스 에너지를 갖는 레이저의 테스트 없이 치료가 진행됨에 따라 치료의 효율성이 저하될 수 있는 문제점이 있다.
본 발명의 목적은 안구의 상이한 조직에 대응되는 펄스 에너지를 갖는 치료용 빔을 조사할 수 있도록 안구의 조직에 대한 치료용 빔의 펄스 에너지 적합성을 테스트하여 치료를 진행할 수 있는 안과용 치료장치 및 이의 빔 제어방법을 제공하는 것이다.
상기 과제의 해결 수단은, 본 발명에 따라, 상이한 펄스 에너지를 갖는 빔을 생성하는 빔 생성부와, 상기 빔 생성부로부터 생성되어 안구의 치료 영역으로 조사된 상기 빔의 펄스 에너지에 따른 버블 발생 여부 및 버블 발생량을 감지하는 버블감지부와, 상기 버블감지부로부터의 신호에 기초하여 상기 빔 생성부로부터 생성되는 상기 빔의 펄스 에너지를 조절하도록 상기 빔 생성부의 작동을 제어하는 제어부를 포함하는 것을 특징으로 하는 안과용 치료장치에 의해 이루어진다.
여기서, 상기 빔 생성부로부터 생성되는 상기 빔은 상기 버블감지부에 의해 버블 발생 여부 및 버블 발생량이 감지되도록 조사되는 테스트용 빔과, 상기 버블감지부에 의해 버블 발생 여부 및 버블 발생량이 감지될 때의 상기 테스트용 빔의 펄스 에너지에 상응하며 상기 안구의 치료 영역을 치료하기 위해 조사되는 치료용 빔을 포함할 수 있다.
바람직하게 상기 테스트용 빔이 조사되는 영역은 상기 안구의 치료 영역 중 일영역인 테스트 영역일 수 있다.
상기 제어부는 상기 버블감지부가 버블 발생을 감지할 때까지 상기 빔 생성부로부터 생성되는 상기 테스트용 빔의 펄스 에너지를 순차적으로 증가시키도록 상기 빔 생성부의 작동을 제어하는 것이 바람직하다.
또한, 상기 안과용 치료장치는 상기 버블감지부에 의해 버블이 감지될 때까지 순차적으로 증가되는 각각의 펄스 에너지들의 정보를 저장하는 메모리부를 더 포함할 수 있다.
바람직하게 상기 테스트용 빔이 상기 안구의 치료 영역 중 타영역의 테스트 영역으로 조사될 때, 상기 제어부는 상기 메모리부에 저장된 각각의 펄스 에너지들의 정보 중 상기 버블감지부에 의해 버블이 감지될 때의 펄스 에너지 보다 한 단계 낮은 펄스 에너지부터 조사하도록 상기 빔 생성부의 작동을 제어할 수 있다.
더욱 바람직하게 상기 제어부는 상기 버블감지부가 버블 발생을 감지할 때의 해당 펄스 에너지로 상기 치료용 빔이 조사되도록 상기 빔 생성부의 작동을 제어할 수 있다.
더불어, 상기 제어부는 상기 버블감지부가 버블 발생을 감지할 때까지 상기 테스트용 빔의 펄스 에너지를 순차적으로 증가시키고, 버블 발생된 해당 펄스 에너지를 유지하여 상기 버블감지부가 기설정된 버블량을 감지할 때까지 상기 빔 생성부의 작동을 제어하할 수 있다.
한편, 상기 과제의 해결 수단은, 본 발명에 따라, 상이한 펄스 에너지를 갖는 빔을 생성하는 빔 생성부를 갖는 안과용 치료장치를 포함하고, (a) 안구의 치료 영역 중 일영역인 테스트 영역에 조사되는 상기 빔을 생성하여, 상기 테스트 영역에 상기 빔을 조사하는 단계와, (b) 상기 빔의 조사에 따라 상기 테스트 영역에서 발생되는 버블 발생 여부를 감지하는 단계와, (c) 상기 버블 발생 여부에 기초하여, 상기 빔의 펄스 에너지를 조절하도록 상기 빔 생성부의 작동을 제어하는 단계를 포함하는 것을 특징으로 하는 안과용 치료장치의 빔 제어방법에 의해서도 이루어진다.
여기서, (d) 상기 (c) 단계에서 버블 발생을 감지할 때의 해당 펄스 에너지의 상기 빔이 상기 안구의 치료 영역을 치료하기 위해 조사되도록 상기 빔 생성부의 작동을 제어하는 단계를 더 포함할 수 있다.
상기 빔 생성부에 의해 생성되는 상기 빔은 상기 테스트 영역에 조사되는 테스트용 빔과, 상기 (d) 단계에서의 상기 테스트용 빔의 펄스 에너지에 상응한 펄스 에너지를 가지며 상기 안구의 치료 영역에 조사되는 치료용 빔을 포함할 수 있다.
그리고, 상기 (c) 단계는 상기 테스트 영역에서 버블 발생이 감지될 때까지, 상기 테스트 영역에 조사되는 상기 테스트용 빔의 펄스 에너지를 순차적으로 증가하는 단계를 포함할 수 있다.
또한, 상기 안과용 치료장치는 각각의 펄스 에너지들의 정보를 저장하는 메모리부를 더 포함하고, 상기 테스트용 빔이 상기 안구의 치료 영역 중 타영역의 테스트 영역으로 조사될 때 상기 메모리부에 저장된 각각의 펄스 에너지들의 정보 중 버블 발생 시의 펄스 에너지 정보 보다 한단계 낮은 펄스 에너지로 상기 테스트용 빔이 조사되도록 상기 빔 생성부의 작동을 제어하는 단계를 더 포함할 수 있다.
상기 (b) 단계는 버블 발생 및 발생된 버블량을 감지하는 단계를 포함할 수 있다.
그리고, 상기 (c) 단계는 상기 메모리부에 저장된 버블 발생 시의 해당 펄스 에너지를 조사하여 기설정된 버블량을 감지할 때까지 상기 빔 생성부의 작동을 제어하는 단계를 더 포함할 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에 따른 안과용 치료장치 및 이의 빔 제어방법에 대한 효과는 안구의 치료 영역에 치료용 빔을 조사하기 전에 테스트용 빔을 조사하여 치료 영역의 조직에 대응되는 치료용 빔의 펄스 에너지의 정보를 취득할 수 있고, 이에 따라 치료 영역에 대한 치료 효율과 안전성을 확보할 수 있다.
도 1은 본 발명의 실시예들에 따른 안과용 치료장치의 개략 구성도,
도 2는 본 발명의 실시예들에 따른 안과용 치료장치의 제어 블록도,
도 3은 본 발명의 실시예들에 따른 안과용 치료장치의 치료용 빔이 조사되는 치료 영역과 테스트용 빔이 조사되는 테스트 영역의 개략 구성도,
도 4는 본 발명의 제1실시예에 따른 안과용 치료장치의 제어 흐름도,
도 5는 본 발명의 제1실시예에 따라 조사되는 빔의 에너지 크기를 도시한 그래프,
도 6은 제2 실시예에 따라 조사되는 빔의 에너지 크기를 도시한 그래프,
도 7은 제3 실시예에 따라 치료 영역을 구획시킨 것을 도시한 도면,고, 도 8은 제3 실시예에 따라 조사되는 빔의 에너지 크기를 도시한 그래프이다.
도 9는 제4 실시예에 따라 조사되는 빔의 에너지 크기를 도시한 그래프이고,
도 10은 본 발명의 제4실시예에 따른 안과용 치료장치의 제어 흐름도이다.
이하, 본 발명의 실시예들에 따른 안과용 치료장치 및 이의 빔 제어방법에 대해 첨부된 도면을 참조하여 상세히 설명한다.
설명하기에 앞서, 본 발명의 제1 및 제2실시예에 따른 안과용 치료장치의 구성 요소는 동일하고, 이에 따라 동일한 구성 요소에 대해 동일한 도면 부호로 기재하였음을 미리 밝혀둔다.
또한, 이하에서 설명되는 본 발명의 실시예들에 따른 안과용 치료장치는 망막의 병변을 치료하기 위한 것으로 설명되나, 망막의 병변 이외에도 다른 안구의 질환에 적용될 수 있음은 물론이다.
특히, 이하 빔 생성부는 테스트용 빔과 치료용 빔의 2개의 빔을 생성하는 것으로 설명되나, 각각 개별적으로 생성되는 것이 아니라 테스트용 빔은 버블감지부에 의해 신호가 감지될 때까지 펄스 에너지가 조절되는 빔이고 치료용 빔은 버블감지부에 의해 신호가 감지될 때 해당 테스트용 빔의 펄스 에너지와 상응하는 펄스 에너지를 가지고 치료를 위해 조사되는 빔 임을 미리 밝혀둔다.
도 1은 본 발명의 실시예들에 따른 안과용 치료장치의 개략 구성도, 도 2는 본 발명의 실시예들에 따른 안과용 치료장치의 제어 블록도, 그리고 도 3은 본 발명의 실시예들에 따른 안과용 치료장치의 치료용 빔이 조사되는 치료 영역과 테스트용 빔이 조사되는 테스트 영역의 개략 구성도이다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 실시예들에 따른 안과용 치료장치(1)는 빔 생성부(10), 컨택트 렌즈(20), 빔 딜리버리부(30), 이미지유닛(40), 버블감지부(60), 메모리부(70), 입력부(80) 및 제어부(90)를 포함한다. 여기서, 본 발명의 실시예들에 따른 안과용 치료장치(1)의 컨택트 렌즈(20)는 병변 영역의 위치에 따라 생략될 수도 있다.
빔 생성부(10)는 안구(O)의 망막(R)에 발생된 병변을 치료하기 위한 치료용 빔을 생성한다. 또한, 빔 생성부(10)는 안구(O)의 치료 영역(T)의 조직에 적합한 펄스 에너지의 치료용 빔을 생성하기 위해 사용되는 테스트용 빔을 생성한다. 빔 생성부(10)로부터 생성되는 테스트용 빔은 펄스 에너지에 따라 다양한 파장 대역을 가질 수 있다. 여기서, 빔 생성부(10)에 의해 생성되는 치료용 빔 및 테스트용 빔은 레이저를 포함한다. 빔 생성부(10)는 제어부(90)의 제어 신호에 따라 펄스 에너지가 상이한 테스트용 빔을 생성함과 더불어 테스트용 빔에 의한 안구(O)의 조직 테스트가 종료된 후 해당되는 펄스 에너지를 갖는 치료용 빔을 생성한다.
컨택트 렌즈(20)는 안구(O)의 각막(Co)에 접촉되어 빔 생성부(10)에 의해 생성된 치료용 빔 또는 테스트용 빔을 안구(O)의 수정체(Cr)를 통해 망막(R)으로 안내한다.
빔 딜리버리부(30)는 XY 스캐너(32), 시준유닛(34) 및 빔 스플리터(36)를 포함한다. 빔 딜리버리부(30)는 빔 생성부(10)와 컨택트 렌즈(20) 사이에 배치된다. 빔 딜리버리부(30)는 빔 생성부(10)로부터 생성되어 입사된 치료용 빔을 안구(O)의 치료 영역(T)으로 인도한다. 여기서, 빔 생성부(10)와 빔 딜리버리부(30)는 입력부(80)로부터 입력된 작동 신호에 기초하여 작동된다.
XY 스캐너(32)는 안구(O)로 조사되는 치료용 빔의 광 축선을 Z축이라 할 때 Z축의 가로방향 평면인 XY 평면 상에 치료용 빔의 초점위치를 결정하는 역할을 한다. 예를 들어, XY 스캐너(32)는 본 발명에 도시되지 않은 적어도 2개의 반사미러를 구비하여, X축선 및 Y축선을 따라 치료용 빔의 초점위치를 조절한다.
시준유닛(34)은 XY 스캐너(32)와 컨택트 렌즈(20) 사이에 배치된다. 시준유닛(34)은 XY 스캐너(32)로부터 제공된 치료용 빔을 컨택트 렌즈(20)로 시준한다. 시준유닛(34)은 복수개의 렌즈의 조합으로 구성된 대물렌즈가 사용된다. 빔 스플리터(36)는 XY 스캐너(32)와 시준유닛(34) 사이에 배치된다. 빔 스플리터(36)는 XY 스캐너(32)로부터의 치료용 빔을 시준유닛(34)으로 안내한다.
이미지유닛(40)은 안구(O)를 촬영하여 이미지를 형성한다. 이미지유닛(40)은 OCT(Optical Coherence Tomography)와 디지털카메라와 같은 공지된 다양한 조합으로 구성될 수 있다. 도 3에 도시된 망막(R), 혈관(BV), 치료 영역(T) 및 테스트 영역(Te)은 이미지유닛(40)에 촬영되어 이미지로 형성된다. 이렇게 이미지유닛(40)으로부터 형성된 안구(O)의 이미지는 시술자의 치료 효율을 향상시킬 수 있다.
버블감지부(60)는 빔 생성부(10)로부터 생성되어 안구(O)의 치료 영역(T)으로 조사된 테스트용 빔에 따른 버블 발생 여부 및 버블 발생량을 감지한다. 버블감지부(60)는 본 발명의 제1실시예에 따른 안과용 치료장치(1)에서 버블 발생 여부를 감지한다. 반면, 버블감지부(60)는 본 발명의 제2실시예에 따른 안과용 치료장치(1)에서 버블 발생 여부와 함께 버블 발생량을 감지한다. 여기서, 버블감지부(60)는 광학적 감지 방식을 이용할 수 있으며, 일 예로 버블에 의해 빛이 산란되는 정도를 이용하여 버블의 발생 여부 및 버블 발생량을 감지하도록 구성될 수 있다. 다만, 이 이외에도 공지된 다양한 방식을 이용하여 버블 감지부를 구성할 수 있다.
메모리부(70)는 버블감지부(60)에 의해 감지된 감지 신호를 저장한다. 메모리부(70)는 본 발명의 제1실시예에 따른 안과용 치료장치(1)에서 버블감지부(60)에 의해 버블이 감지될 때까지 순차적으로 증가되는 각각의 펄스 에너지 정보를 저장한다. 또한, 메모리부(70)는 버블감지부(60)에 의해 버블이 감지될 때까지 순차적으로 증가되는 각각의 펄스 에너지 정보와 함께 기설정된 버블량이 감지될 때의 펄스 에너지 정보를 저장한다. 여기서, 메모리부(70)에 저장되는 기설정된 버블량 감지 시의 펄스 에너지 정보는 버블 발생될 때의 정보와 함께 기설정된 버블량 감지될 때의 시간 정보를 포함한다.
입력부(80)는 빔 생성부(10), 빔 딜리버리부(30) 및 이미지유닛(40)에 작동 신호를 인가하도록 마련된다. 입력부(80)는 빔 생성부(10)에 작동 신호를 인가할 때, 치료용 빔 생성과 테스트용 빔 생성을 위한 작동 신호를 구분하여 인가한다.
제어부(90)는 입력부(80)의 입력에 기초하여 각각 빔 생성부(10), 빔 딜리버리부(30) 및 이미지유닛(40)의 작동을 제어하는 제어 신호를 발생한다. 제어부는, 일부 실시예에서, 버블감지부(60)가 버블 발생을 감지할 때까지 빔 생성부(10)로 생성되는 테스트용 빔의 펄스 에너지를 순차적으로 증가시키도록 빔 생성부(10)의 작동을 제어하면서, 테스트용 빔 및 버블을 발생시키는 치료용 빔을 조사한다.
한편, 특정 위치로 치료용 빔을 조사한 후 인접한 위치에서 재차 테스트용 빔을 조사하는 경우, 이전에 조사된 치료용 빔을 고려하여 테스트용 빔의 크기를 결정할 수 있다. 예를 들어, X1위치에서 P1, P2, P3의 펄스 에너지를 갖는 테스트 빔을 순차적으로 조사하고(P1<P2<P3<P4), P4의 에너지를 갖는 빔에서 버블이 발생하여 P4를 치료용 빔으로 결정한 경우를 가정한다. 이때, X1위치와 인접한 X2 위치에서도 P4와 인접한 크기의 펄스 에너지를 갖는 빔을 조사할 경우 버블이 발생할 것이라는 것을 예상할 수 있다. 따라서, X2 위치에 테스트용 빔을 조사하는 경우에는, X1 위치와 같이 P1부터 순차적으로 펄스 에너지를 증가시키는 방식이 아니라, P2 또는 P3부터 펄스의 에너지를 순차적으로 증가시키도록 테스트용 빔을 조사할 수 있다. 이 경우, 치료에 소요되는 시간을 단축시킬 수 있는 장점이 있다. 따라서, 이후 위치에서 조사되는 테스트용 빔의 최초 펄스 에너지는 이전 위치에 조사된 테스트용 빔의 최초 펄스 에너지보다 더 큰 값을 갖도록 제어할 수 있다. 또는, 이후 위치에서 조사되는 테스트용 빔의 최초 펄스 에너지는 이전 위치에서 조사된 치료용 빔의 70~90%의 에너지를 갖고 순차적으로 증가하도록 제어하는 것도 가능하다.
한편, 테스트용 빔에 의한 안구(O)의 조직의 테스트가 종료된 후, 제어부(90)는 버블감지부(60)가 버블 발생을 감지할 때의 해당 펄스 에너지로 치료용 빔이 조사되도록 빔 생성부(10)의 작동을 제어한다.
또한, 본 발명의 일부 실시예에서, 제어부(90)는 버블감지부(60)가 버블 발생을 감지할 때까지 테스트용 빔의 펄스 에너지를 순차적으로 증가시키고, 버블 발생된 해당 펄스 에너지를 유지하여 버블감지부(60)가 기설정된 버블량을 감지할 때까지 빔 생성부(10)의 작동을 제어한다. 이렇게, 제어부(90)는 기설정된 버블량을 감지될 때까지 테스트용 빔이 발생되도록 빔 생성부(10)의 작동을 제어함으로써, 안구(O)의 조직에 조사되는 치료용 빔의 펄스 에너지와 함께 조사 시간도 고려될 수 있다.
<제1실시예>
도 4는 본 발명의 제1실시예에 따른 안과용 치료장치의 제어 흐름도이고, 도 5는 본 발명의 제1실시예에 따라 조사되는 빔의 에너지 크기를 도시한 그래프이다.
본 발명의 제1실시예에 따른 안과용 치료장치(1)의 빔 제어방법은 다음과 같다.
도 4에 도시된 바와 같이, 우선 안구(O)의 치료 영역(T)의 촬영 및 촬영된 이미지를 형성한다(S10).
그리고 치료 영역(T)의 첫 번째 치료 위치로 빔을 조사한다(S30). 그리고, 버블 감지부(60)를 이용하여 버블(B) 발생 여부를 감지한다(S50). 본 버블 감지 단계(S50)에서 버블이 발생되지 않은 것으로 판단되면, 빔의 펄스 에너지를 증가시키도록 제어한 후(S90), 동일한 치료 위치에 빔을 조사하고(S30), 버블 발생 여부를 판단한다(S50)).
이후, 버블 감지 단계에서 버블(B)이 발생된 것으로 감지되면, 해당 빔의 펄스 에너지 정보를 메모리에 저장한다. 그리고, 해당 치료 위치에는 치료가 진행된 것으로 판단하고 다른 치료 위치로 빔을 조사할 수 있도록 빔 딜리버리부를 제어하여 조사 위치를 이동시키고(S70), 치료를 진행한다.
도 5에서는 이러한 방식으로 조사되는 빔의 펄스 에너지의 크기를 도시한 것이다. 도 5에 도시된 것과 같이, 치료 영역(T) 중 첫 번째 치료 위치(I)에서 첫 번째로 조사되는 빔(P1)은 망막에 불측의 손상이 발생하는 것을 방지할 수 있도록 낮은 펄스 에너지를 갖도록 구성된다. 그리고, 버블이 발생될 때 까지 순차적으로 펄스 에너지를 증가시키면서 P2, P3, P4 빔을 조사하고, 각각의 빔을 조사한 이후 버블의 발생 여부를 판단한다. 그리고, 버블이 발생된 것으로 감지되면 첫 번째 치료 위치(I)의 치료가 완료된 것으로 판단하고, 두번째 치료 위치(II)로 빔을 이동시킨다.
그리고, 두 번째 치료 위치(II)에서도 이전 치료 위치와 마찬가지로 빔의 에너지를 순차적으로 증가시키는 방식으로 빔을 조사하여 치료를 진행할 수 있다.
이 때, 첫 번째 위치에서는 안전상의 이류로 최대한 낮은 에너지의 빔부터 순차적으로 에너지를 증가시키는 형태로 빔을 조사하였으나, 두 번째 위치 치료시에는 첫 번째 위치와 비슷한 크기의 에너지의 빔으로 치료가 이루어질 것을 예상할 수 있다. 따라서, 첫 번째 치료 위치에서 버블을 발생시킨 빔(P4)의 에너지 크기는 메모리에 저장한 후, 두 번째 치료 위치(II)에서 조사되는 첫 번째 빔의 에너지는 첫 번째 치료 위치(I)에서 버블을 발생시킨 P4보다 작고 첫 번째 치료 위치(I)의 첫 번 째 빔인 P1보다 크게 제어될 수 있다. 도 5에 도시된 바와 같이, 본 실시예에서는 두 번째 치료위치에서 P3를 시작으로 순차적으로 에너지의 크기를 증가시키도록 빔을 조사하며, 이 경우 두 번째 빔에서 버블이 발생하면서 치료가 완료될 수 있다.
<제2 실시예>
도 6은 제2 실시예에 따라 조사되는 빔의 에너지 크기를 도시한 그래프이다. 제1 실시예에서는 각각의 치료 위치에 따라 빔의 크기를 순차적으로 증가시켜 버블이 발생하는지 여부를 감지하여 치료 여부를 판단하였다. 다만, 본 실시예에서는 치료 영역에서 치료가 이루어지는 빔의 크기는 유사할 것이라는 가정하에, 치료 영역(T) 중 일부 영역을 테스트 영역(Te)으로 설정하고, 해당 테스트 영역(Te)에서 치료용 빔의 에너지 크기를 판단한 후, 이에 기초하여 치료 영역(T)의 나머지 치료 위치를 동일한 에너지를 갖는 빔의 크기로 조사하여 치료할 수 있다.
도 6에 도시된 바와 같이, 우선 테스트 영역에 낮은 에너지의 빔부터 순차적으로 에너지가 증가하도록 빔을 조사한다. 이 때, P4에서 버블이 발생한 것으로 감지되면, 이에 기초하여 치료용 빔의 펄스 에너지가 P4의 펄스 에너지에 대응되는 것으로 판단하고 나머지 치료 영역에 P4만큼의 에너지를 갖는 빔을 조사하는 방식으로 치료할 수 있다.
다만, 도 6에서는 테스트 영역에서 버블을 발생시킨 마지막 빔(P4)의 크기가 다른 치료 위치에서도 빔을 발생시킬 수 있는 것으로 판단하여 동일한 크기의 빔을 조사하였으나, 테스트 영역에서 여러 번에 걸쳐 미리 조사된 빔의 에너지가 즉시 방출되지 못하고 어느 정도 치료 위치에 잔류했을 것을 고려하여, 치료용 빔의 크기를 P4 보다 일정 비율만큼 크게 결정하여 나머지 치료 위치의 치료를 진행하는 것도 가능하다.
<제3 실시예>
도 7은 제3 실시예에 따라 치료 영역을 구획시킨 것을 도시한 도면이고, 도 8은 제3 실시예에 따라 조사되는 빔의 에너지 크기를 도시한 그래프이다.
전술한 제2 실시예에서는 하나의 테스트 영역에서 결정된 치료용 빔의 크기를 이용하여 전체 치료 영역를 치료하였으나, 본 실시예서는 치료 영역을 유사한 조직 특성을 갖는 복수개의 구역(T1, T2, T3, T4)으로 분할한 후, 해당 구역별로 테스트 영역을 설정하여 치료용 빔의 크기를 결정한 후, 해당 구역에 한해 해당 치료용 빔의 크기로 치료를 진행할 수 있다.
도 8에 도시된 바와 같이, 우선 T1 영역에서 테스트 영역을 결정한 후, 해당 테스트 영역에서 낮은 크기의 에너지를 갖는 빔부터 에너지를 순차적으로 증가시켜 버블이 발생하는 빔의 에너지 크기를 판단한다. 이때, P4에서 버블이 발생되는 경우, T1 영역에 해당하는 나머지 치료 위치는 P4의 펄스 에너지를 갖는 빔으로 치료를 진행할 수 있다. 이후, T2 영역에서도 마찬가지로 T2 영역의 테스트 영역에서 빔의 에너지를 순차적으로 증가시켜 치료용 빔의 에너지 크기를 판단한다. 이때, P3에서 버블이 발생된 경우 T2 영역에 해당하는 나머지 치료 위치는 P3의 펄스 에너지를 갖는 빔으로 치료를 진행할 수 있다.
그리고, 도 8에는 도시되지 않았으나 T3 및 T4 구역 또한 위와 T1 및 T2와 유사한 방식으로 진행하는 것도 가능하다.
<제4실시예>
도 9는 제4 실시예에 따라 조사되는 빔의 에너지 크기를 도시한 그래프이고, 도 10은 본 발명의 제4실시예에 따른 안과용 치료장치의 제어 흐름도이다.
이전의 실시예에서는 치료 위치에서의 치료 여부를 버블의 발생 유무를 기준으로 판단한 것에 비해, 본 실시예에서는 치료 위치에서 기설정된 양의 버블이 발생한 경우에 치료가 진행된 것으로 판단할 수 있다.
본 발명의 제4 실시예에 따른 안과용 치료장치(1)의 빔 제어방법은 다음과 같다.
도 9에 도시된 바와 같이, 안구(O)의 치료 영역(T) 중 일영역의 테스트 영역(Ⅰ)에 테스트용 빔을 조사한다. 이때, 테스트 영역(Ⅰ)에 조사되는 테스트용 빔의 펄스 에너지는 예상되는 펄스 에너지 보다는 낮은 펄스 에너지가 사용된다. 테스트용 빔의 펄스 에너지를 순차적으로 증가하면서 테스트 영역(Ⅰ)에 조사한다. 여기서, 순차적으로 증가되는 테스트용 빔의 펄스 에너지는 등간격 단계를 두고 증가시키는 것이 바람직하다. 테스트용 빔의 펄스 에너지 증가는 버블(B1)이 발생될 때까지 지속된다.
테스트용 빔의 조사에 따라 버블(B1) 발생이 감지되면, 메모리부(70)에 버블(B1)이 발생될 때의 테스트용 빔의 펄스 에너지가 저장된다. 그리고, 기설정된 버블량(B2)이 감지될 때까지 지속적으로 버블(B1)이 발생될 때의 펄스 에너지를 갖는 테스트용 빔을 조사한다. 기설정된 버블량(B2)이 감지되면 테스트용 빔의 조사시간을 메모리부(70)에 저장한다. 그리고, 메모리부(70)에 저장된 펄스 에너지 정보 및 조사시간을 기초로 하여 치료 영역(T)에 동일한 펄스 에너지의 치료용 빔을 조사한다.
한편, 안구(O)의 치료 영역(T) 중 타영역의 테스트 영역(Ⅱ)으로 테스트용 빔을 조사할 때, 메모리부(70)에 저장된 펄스 에너지의 정보를 이용하여 버블(B1) 발생 시의 펄스 에너지보다 한 단계 낮은 펄스 에너지의 테스트용 빔을 조사한다. 이렇게, 메모리부(70)에 기저장된 펄스 에너지의 정보를 이용하여 타영역의 테스트 영역(Ⅱ)에 테스트용 빔을 조사할 때는 테스트 시간을 단축시킬 수 있는 효과가 있다.
이러한 본 발명의 제2실시예에 따른 안과용 치료장치(1)의 제어흐름을 살펴보면 다음과 같다.
도 10에 도시된 바와 같이, 우선 안구(O)의 치료 영역(T)의 촬영 및 촬영된 이미지를 형성한다(S100). 치료 영역(T) 중 테스트 영역(Te)에서 감지될 버블량(B2)을 설정한다(S200). 치료 영역(T) 중 테스트 영역(Te)에 테스트용 빔을 조사한다(S300). 테스트 영역(Te)에 테스트용 빔을 조사한 후, 버블(B1) 발생 여부를 감지한다(S400).
'S400'단계에서 버블(B1) 발생이 감지된 것으로 판단되면, 해당 테스트용 빔을 펄스 에너지를 유지한다(S500). 'S200'단계에서 기설정된 버블량(B2)이 감지되는 지 판단한다(S700). 기설정된 버블량(B2)에 따른 펄스 에너지 및 조사시간 정보를 저장한다. 저장된 펄스 에너지의 정보 및 조사시간에 기초하여 치료용 빔을 치료 영역(T)에 조사한다(S800).
한편, 'S400'단계에서 버블(B1) 발생이 감지되지 않으면 테스트용 빔의 펄스 에너지를 순차적으로 증가한다(S600). 그리고, 'S300'단계부터의 제어흐름으로 진행한다. 그리고, 'S700'단계에서 기설정된 버블량(B2)이 감지되지 않으면 'S500'단계로 진행하여 기설정된 버블량(B2)이 감지될 때까지 버블(B1)이 발생될 때의 테스트용 빔의 펄스 에너지를 유지한다.
한편, 도 10에는 도시되지 않았지만, 'S300'단계에서 치료 영역 중 타영역의 테스트 영역(Ⅱ)에 테스트용 빔을 조사할 때는 일영역의 테스트 영역(Ⅰ)에 조사된 테스트용 빔의 펄스 에너지 정보를 이용하여 저장된 펄스 에너지의 정보 보다 한 단계 낮은 펄스 에너지로 테스트용 빔을 조사한다.
이에, 안구의 치료 영역에 치료용 빔을 조사하기 전에 테스트용 빔을 조사하여 치료 영역의 조직에 대응되는 치료용 빔의 펄스 에너지의 정보를 취득할 수 있고, 이에 따라 치료 영역에 대한 치료 효율과 안전성을 확보할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징들이 변경되지 않고서 다른 구체적인 형태로 실시될 수 있다는 것으로 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (16)

  1. 상이한 펄스 에너지를 갖는 빔을 생성하는 빔 생성부와;
    상기 빔 생성부로부터 생성되어 안구의 치료 영역으로 조사된 상기 빔의 펄스 에너지에 따른 버블 발생 여부 또는 버블 발생량을 감지하는 버블감지부와;
    상기 버블감지부로부터의 신호에 기초하여, 상기 빔 생성부로부터 생성되는 상기 빔의 펄스 에너지를 조절하도록 상기 빔 생성부의 작동을 제어하는 제어부를 포함하는 것을 특징으로 하는 안과용 치료장치.
  2. 제1항에 있어서,
    상기 빔 생성부로부터 생성되는 상기 빔은,
    상기 버블감지부에 의해 버블 발생 여부 및 버블 발생량이 감지되도록 조사되는 테스트용 빔과;
    상기 버블감지부에 의해 버블 발생 여부 및 버블 발생량이 감지될 때의 상기 테스트용 빔의 펄스 에너지에 상응하며, 상기 안구의 치료 영역을 치료하기 위해 조사되는 치료용 빔을 포함하는 것을 특징으로 하는 안과용 치료장치.
  3. 제2항에 있어서,
    상기 테스트용 빔이 조사되는 영역은 상기 안구의 치료 영역 중 일영역인 테스트 영역인 것을 특징으로 하는 안과용 치료장치.
  4. 제2항에 있어서,
    상기 제어부는 상기 버블감지부가 버블 발생을 감지할 때까지 상기 빔 생성부로부터 생성되는 상기 테스트용 빔의 펄스 에너지를 순차적으로 증가시키도록 상기 빔 생성부의 작동을 제어하는 것을 특징으로 하는 안과용 치료장치.
  5. 제4항에 있어서,
    상기 안과용 치료장치는,
    상기 버블감지부에 의해 버블이 감지될 때까지 순차적으로 증가되는 각각의 펄스 에너지들의 정보를 저장하는 메모리부를 더 포함하는 것을 특징으로 하는 안과용 치료장치.
  6. 제5항에 있어서,
    상기 테스트용 빔이 상기 안구의 치료 영역 중 타영역의 테스트 영역으로 조사될 때,
    상기 제어부는 상기 메모리부에 저장된 이전 테스트 영역에 조사된 빔의 펄스 에너지들의 정보 중 최소의 펄스 에너지 보다 크고 상기 버블감지부에 의해 버블이 감지될 때의 펄스 에너지보다는 작은 펄스 에너지부터 조사하도록 상기 빔 생성부의 작동을 제어하는 것을 특징으로 하는 안과용 치료장치.
  7. 제4항에 있어서,
    상기 제어부는 상기 버블감지부가 버블 발생을 감지할 때의 해당 펄스 에너지로 상기 치료용 빔이 조사되도록 상기 빔 생성부의 작동을 제어하는 것을 특징으로 하는 안과용 치료장치.
  8. 제2항에 있어서,
    상기 제어부는 상기 버블감지부가 버블 발생을 감지할 때까지 상기 테스트용 빔의 펄스 에너지를 순차적으로 증가시키고, 버블 발생된 해당 펄스 에너지를 유지하여 상기 버블감지부가 기설정된 버블량을 감지할 때까지 상기 빔 생성부의 작동을 제어하는 것을 특징으로 하는 안과용 치료장치.
  9. 제1항에 있어서,
    상기 빔 생성부는 동일한 조사 위치로 순차적으로 펄스 에너지가 증가하는 패턴으로 복수개의 빔을 발생시키고,
    상기 제어부는 상기 버블 감지부로부터 감지된 신호에 기초하여, 상기 조사 위치로 빔이 조사되는 것을 중지시키는 것을 특징으로 하는 안과용 치료장치.
  10. 상이한 펄스 에너지를 갖는 빔을 생성하는 빔 생성부를 갖는 안과용 치료장치를 포함하고,
    (a) 안구의 치료 영역 중 일영역인 테스트 영역에 조사되는 상기 빔을 생성하여, 상기 테스트 영역에 상기 빔을 조사하는 단계와;
    (b) 상기 빔의 조사에 따라 상기 테스트 영역에서 발생되는 버블 발생 여부를 감지하는 단계와;
    (c) 상기 버블 발생 여부에 기초하여, 상기 빔의 펄스 에너지를 조절하도록 상기 빔 생성부의 작동을 제어하는 단계를 포함하는 것을 특징으로 하는 안과용 치료장치의 빔 제어방법.
  11. 제10항에 있어서,
    (d) 상기 (c) 단계에서 버블 발생을 감지할 때의 해당 펄스 에너지의 상기 빔이 상기 안구의 치료 영역을 치료하기 위해 조사되도록 상기 빔 생성부의 작동을 제어하는 단계를 더 포함하는 것을 특징으로 하는 안과용 치료장치의 빔 제어방법.
  12. 제11항에 있어서,
    상기 빔 생성부에 의해 생성되는 상기 빔은,
    상기 테스트 영역에 조사되는 테스트용 빔과;
    상기 (d) 단계에서의 상기 테스트용 빔의 펄스 에너지에 상응한 펄스 에너지를 가지며, 상기 안구의 치료 영역에 조사되는 치료용 빔을 포함하는 것을 특징으로 하는 안과용 치료장치의 빔 제어방법.
  13. 제12항에 있어서,
    상기 (c) 단계는 상기 테스트 영역에서 버블 발생이 감지될 때까지, 상기 테스트 영역에 조사되는 상기 테스트용 빔의 펄스 에너지를 순차적으로 증가하는 단계를 포함하는 것을 특징으로 하는 안과용 치료장치의 빔 제어방법.
  14. 제12항에 있어서,
    상기 안과용 치료장치는 각각의 펄스 에너지들의 정보를 저장하는 메모리부를 더 포함하고,
    상기 테스트용 빔이 상기 안구의 치료 영역 중 타영역의 테스트 영역으로 조사될 때 상기 메모리부에 저장된 각각의 펄스 에너지들의 정보 중 버블 발생 시의 펄스 에너지 정보 보다 한단계 낮은 펄스 에너지로 상기 테스트용 빔이 조사되도록 상기 빔 생성부의 작동을 제어하는 단계를 더 포함하는 것을 특징으로 하는 안과용 치료장치의 빔 제어방법.
  15. 제10항에 있어서,
    상기 (b) 단계는 버블 발생 및 발생된 버블량을 감지하는 단계를 포함하는 것을 특징으로 하는 안과용 치료장치의 빔 제어방법.
  16. 제14항에 있어서,
    상기 (c) 단계는 상기 메모리부에 저장된 버블 발생 시의 해당 펄스 에너지를 조사하여 기설정된 버블량을 감지할 때까지 상기 빔 생성부의 작동을 제어하는 단계를 더 포함하는 것을 특징으로 하는 안과용 치료장치의 빔 제어방법.
PCT/KR2013/006331 2012-07-13 2013-07-15 안과용 치료장치 및 이의 빔 제어방법 WO2014011017A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/414,696 US10080683B2 (en) 2012-07-13 2013-07-15 Ophthalmic treatment apparatus and beam control method therefor
US16/139,998 US10537476B2 (en) 2012-07-13 2018-09-24 Ophthalmic treatment apparatus and beam control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0076779 2012-07-13
KR1020120076779A KR101421653B1 (ko) 2012-07-13 2012-07-13 안과용 치료장치 및 이의 빔 제어방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/414,696 A-371-Of-International US10080683B2 (en) 2012-07-13 2013-07-15 Ophthalmic treatment apparatus and beam control method therefor
US16/139,998 Continuation US10537476B2 (en) 2012-07-13 2018-09-24 Ophthalmic treatment apparatus and beam control method therefor

Publications (1)

Publication Number Publication Date
WO2014011017A1 true WO2014011017A1 (ko) 2014-01-16

Family

ID=49916361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006331 WO2014011017A1 (ko) 2012-07-13 2013-07-15 안과용 치료장치 및 이의 빔 제어방법

Country Status (3)

Country Link
US (2) US10080683B2 (ko)
KR (1) KR101421653B1 (ko)
WO (1) WO2014011017A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2640088T3 (es) * 2006-11-10 2017-10-31 Topcon Medical Laser Systems Inc. Sistema para determinar la dosimetría en foto-medicina oftálmica
CA2996990C (en) 2015-09-15 2020-04-07 Amerivision International, Inc. Apparatus and method for ocular microcurrent stimulation therapy
KR101966906B1 (ko) 2018-04-18 2019-04-08 주식회사 루트로닉 안과용 치료장치 및 이의 제어방법
US11986424B2 (en) 2018-07-16 2024-05-21 Vialase, Inc. Method, system, and apparatus for imaging and surgical scanning of the irido-corneal angle for laser surgery of glaucoma
US11173067B2 (en) 2018-09-07 2021-11-16 Vialase, Inc. Surgical system and procedure for precise intraocular pressure reduction
US10821024B2 (en) 2018-07-16 2020-11-03 Vialase, Inc. System and method for angled optical access to the irido-corneal angle of the eye
US11246754B2 (en) 2018-07-16 2022-02-15 Vialase, Inc. Surgical system and procedure for treatment of the trabecular meshwork and Schlemm's canal using a femtosecond laser
US11110006B2 (en) 2018-09-07 2021-09-07 Vialase, Inc. Non-invasive and minimally invasive laser surgery for the reduction of intraocular pressure in the eye
ES2961009T3 (es) 2018-12-20 2024-03-07 I Lumen Scient Inc Sistema para terapia de estimulación por microcorriente
US11564567B2 (en) 2020-02-04 2023-01-31 Vialase, Inc. System and method for locating a surface of ocular tissue for glaucoma surgery based on dual aiming beams
US11612315B2 (en) 2020-04-09 2023-03-28 Vialase, Inc. Alignment and diagnostic device and methods for imaging and surgery at the irido-corneal angle of the eye

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073983A1 (en) * 2001-10-12 2003-04-17 Josef Bille Device and method for performing refractive surgery
US20060111697A1 (en) * 2003-07-11 2006-05-25 Medizinisches Laserzentrum Luebeck Gmbh Method for operation of laser
US20100021983A1 (en) * 2007-01-18 2010-01-28 Universitat Zu Lubeck Laser Dosimetry for the Optoperforation of Single Cells

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484052B1 (en) * 1999-03-30 2002-11-19 The Regents Of The University Of California Optically generated ultrasound for enhanced drug delivery
US8092446B2 (en) * 2005-10-14 2012-01-10 Carl Zeiss Meditec Ag Device and method for material processing by means of laser radiation
DE102006030219A1 (de) * 2006-06-30 2008-01-03 Iroc Ag Bestrahlungssystem für medizinische Anwendungen
WO2010085650A2 (en) * 2009-01-23 2010-07-29 The General Hospital Corporation Dose determination for inducing microcavitation in retinal pigment epithelium (rpe)
US8459121B2 (en) * 2010-10-28 2013-06-11 Covaris, Inc. Method and system for acoustically treating material
WO2013095695A1 (en) * 2011-04-10 2013-06-27 Vanessa Vera Systems and methods to deliver laser pulses into the eye

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073983A1 (en) * 2001-10-12 2003-04-17 Josef Bille Device and method for performing refractive surgery
US20060111697A1 (en) * 2003-07-11 2006-05-25 Medizinisches Laserzentrum Luebeck Gmbh Method for operation of laser
US20100021983A1 (en) * 2007-01-18 2010-01-28 Universitat Zu Lubeck Laser Dosimetry for the Optoperforation of Single Cells

Also Published As

Publication number Publication date
US10080683B2 (en) 2018-09-25
KR101421653B1 (ko) 2014-07-23
KR20140009844A (ko) 2014-01-23
US20150190276A1 (en) 2015-07-09
US20190021903A1 (en) 2019-01-24
US10537476B2 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
WO2014011017A1 (ko) 안과용 치료장치 및 이의 빔 제어방법
WO2015170947A1 (ko) 안과용 치료장치
US8230866B2 (en) Systems and methods for treating glaucoma and systems and methods for imaging a portion of an eye
WO2016018099A1 (ko) 안과용 치료장치 및 이의 구동 방법
WO2015088226A1 (ko) 안과용 치료장치, 안과용 치료장치의 제어방법 및 안저 병변 치료 방법
WO2018021780A1 (ko) 안과용 치료장치 및 이의 제어방법
JP6580679B2 (ja) 角膜トポグラフィー、瞬き検出、及び、レーザ眼手術システムのための方法及びシステム
WO2018021781A1 (ko) 안과용 치료장치 및 이의 제어방법
CN102076290A (zh) 用于眼科激光手术尤其是屈光激光手术的设备
US20120303007A1 (en) System and Method for Using Multiple Detectors
JP2013165819A (ja) 眼科装置および眼科制御方法並びにプログラム
JP2014083232A (ja) 眼科装置および眼科制御方法並びにプログラム
JP2003245300A (ja) 眼科装置
KR101417843B1 (ko) 안과용 치료장치
EP1138290A1 (en) Ophthalmic surgery apparatus
WO2014011015A1 (ko) 안과용 치료장치 및 그 제어방법
WO2014011012A1 (ko) 안과용 치료장치 및 이의 치료용 빔 조사방법
WO2021261699A1 (ko) 안구에 조사되는 레이저 피드백장치 및 이를 이용한 레이저 피드백방법
US6802837B2 (en) Device used for the photorefractive keratectomy of the eye using a centering method
WO2017039312A1 (ko) 안과용 치료장치 및 이의 제어방법
US20060161144A1 (en) Optical tracking system and associated methods
JP2023513178A (ja) 直接レーザ線維柱帯形成方法及び装置
CN111973148A (zh) 一种眼底激光治疗仪及其控制方法
WO2019194519A1 (ko) 안과용 치료장치 및 이의 제어방법
WO2014077569A1 (ko) 안과용 치료장치 및 이의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14414696

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13816934

Country of ref document: EP

Kind code of ref document: A1