WO2017039127A1 - 3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법 - Google Patents

3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법 Download PDF

Info

Publication number
WO2017039127A1
WO2017039127A1 PCT/KR2016/006478 KR2016006478W WO2017039127A1 WO 2017039127 A1 WO2017039127 A1 WO 2017039127A1 KR 2016006478 W KR2016006478 W KR 2016006478W WO 2017039127 A1 WO2017039127 A1 WO 2017039127A1
Authority
WO
WIPO (PCT)
Prior art keywords
nylon
amino acid
nylon copolymer
shape memory
bio
Prior art date
Application number
PCT/KR2016/006478
Other languages
English (en)
French (fr)
Inventor
장영욱
하주완
최명찬
카쉬프무하마드
Original Assignee
한양대학교에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교에리카산학협력단 filed Critical 한양대학교에리카산학협력단
Priority to US17/593,351 priority Critical patent/US20220204692A1/en
Publication of WO2017039127A1 publication Critical patent/WO2017039127A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/0608Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/04Preparatory processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers

Definitions

  • the present invention relates to a bio nylon having a triple shape memory characteristic, and a method for producing the same, more specifically, a biomass-derived pyrrolidone group-containing amino acid and ⁇ , ⁇ -aliphatic amino acid
  • the present invention relates to a bio nylon having a triple shape memory characteristic including a nylon copolymer (nylon copolymer) prepared by condensation polymerization, and a method of manufacturing the same.
  • Shape memory materials are the most widely used shape memory materials at present, but there are disadvantages of low strain rate, high cost, processing difficulty, and difficult to control the transition temperature. In contrast, shape memory polymers have the advantages of high strain rate, low cost, low density, controllability of transition temperature, ease of processing and potential biocompatibility and biodegradability.
  • Existing shape memory polymers can have a specific temporary shape, and are a dual shape memory polymer that stores only one original shape in one step.
  • Patent Publication No. 10-2002-0014054 (Applicant: Ulsan Institute of Technology, Application No. 10-2000-0047105) is a polyaliphatic ester-polyamide block copolymer as a first component, polyaliphatic ester And a polymer having compatibility with the second component to prepare a homogeneous mixed phase, the glass transition temperature of the homogeneous mixed phase as the shape recovery reference temperature, when the molded body deformed by physical external force is formed, the glass transition temperature
  • a method for producing and using a shape memory composition which recovers to its original shape before deformation by heating is disclosed.
  • One technical problem to be solved by the present invention is to provide a bio-nylon having a triple shape memory characteristics and a manufacturing method thereof.
  • Another technical problem to be solved by the present invention is to provide an eco-friendly, renewable bio-based triple shape memory bio-nylon and its manufacturing method.
  • Another technical problem to be solved by the present invention is to provide a bio-nylon having a triple shape memory characteristic and easy to control the shape recovery temperature and a manufacturing method thereof.
  • Another technical problem to be solved by the present invention is to provide a bio-nylon having a triple shape memory characteristic capable of mass production and a manufacturing method thereof.
  • Another technical problem to be solved by the present invention is to provide a bio-nylon having a triple shape memory characteristics and a method of manufacturing the simplified manufacturing process.
  • Another technical problem to be solved by the present invention is to provide a bio-nylon having a triple shape memory characteristics and reduced manufacturing cost and a manufacturing method thereof.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a method for producing a bio nylon having a triple shape memory characteristics.
  • the step of reacting itaconic acid (diconic acid) and diamine (diamine) to produce a biomass-derived pyrrolidone group-containing amino acid (amino acid), and the biomass-derived pyrrolidone group-containing amino acid (amino acid) ) And the ⁇ , ⁇ -aliphatic amino acid may be reacted to generate a nylon copolymer (nylon copolymer) shown in [Formula 1] below.
  • the method of manufacturing a bio nylon having a triple shape memory characteristics is Michael addition reaction of the itaconic acid (diconic acid) and the diamine (Michael) It may include those produced by addition reaction and amidation (amidation).
  • the diamine may include two to thirteen carbon atoms.
  • the nylon copolymer is produced by the condensation polymerization of the synthesized biomass-derived pyrrolidone-containing amino acid (amino acid) and the ⁇ , ⁇ -aliphatic amino acid (aliphatic amino acid) It may include being.
  • the step of producing the nylon copolymer (nylon copolymer), the biomass-derived pyrrolidone-containing amino acid (amino acid) and the ⁇ , ⁇ -aliphatic amino acid (aliphatic amino acid) to the biomass may include copolymerizing so that the molar content of the derived pyrrolidone group-containing amino acid is 20 to 60%.
  • the ⁇ , ⁇ -aliphatic amino acid may include 4, 9, 10, 11, and 12 carbon atoms.
  • the present invention provides a bio nylon having a triple shape memory characteristics.
  • the bio nylon having the triple shape memory characteristics may include a nylon copolymer (nylon copolymer) represented by the following [Formula 1].
  • the nylon copolymer when measuring the storage modulus (storage modulus) according to the temperature change, has both the glass transition temperature (Tg) and melting temperature (Tm) as the phase transition temperature, the melting temperature ( Tm) above, the storage modulus is maintained at a constant value.
  • the nylon copolymer may include one having a melting temperature (Tm) of 101.4 to 167.6 ° C, a glass transition temperature (Tg) of 38.7 to 44.4 ° C, and an intrinsic viscosity of 1.16 to 1.18 ml / g. Can be.
  • the method of using the bio-nylon having the triple shape memory characteristics the first step of deforming the nylon copolymer of the initial shape (A) by the force applied from the outside at a melting temperature (Tm) or more Cooling the primary modified nylon copolymer to a glass transition temperature (Tg), removing the force causing the primary deformation, but maintaining the shape (B) of the primary modified nylon copolymer, Secondly deforming the primary modified nylon copolymer by a force applied from the outside at a glass transition temperature (Tg), and cooling the secondary modified nylon copolymer to room temperature and causing the secondary deformation Removing the force, but may include maintaining the shape (C) of the secondary modified nylon copolymer.
  • the method of using the bio-nylon having the triple shape memory characteristics by heating the secondary modified (C) nylon copolymer to the glass transition temperature (Tg) the first modified nylon air Restoring to the shape (B) of the coalescence; and heating the primary modified nylon copolymer to the melting temperature (Tm) or more to restore the nylon copolymer to the original shape (A). have.
  • the present invention provides a biomass-derived pyrrolidone group-containing amino acid (amino acid).
  • the biomass-derived pyrrolidone group-containing amino acid (amino acid), by the Michael addition reaction (itaconic acid) and diamine (Michael addition reaction) and amidation (amidation) It may be prepared, and include those represented by the following [Formula 2].
  • the shape, deformation, and restoration of the shape can be performed in two steps, thereby enabling the production of bio nylon having triple shape memory characteristics.
  • the bio nylon having the triple shape memory characteristic it is environmentally friendly by using a bio-based reactant, and by controlling the content of the reactant, it is possible to control the shape restoration temperature to a desired level, in the medical field, actuator, aircraft
  • 1 is a 1 H-NMR spectroscopy ( 1 H-NMR spectroscopy) measurement result graph for explaining the chemical bonding structure of nylon11 manufactured according to the first comparative example for the embodiment of the present invention.
  • Figure 2 is one for explaining the chemical bond structure of the nylon copolymer (nylon copolymer) produced a 50% molar content of biomass-derived pyrrolidine dongi containing amino acids (amino acid) prepared according to the third embodiment of the present invention H-NMR spectroscopy ( 1 H-NMR spectroscopy) measurement result graph.
  • nylon copolymer nylon copolymer
  • DMA dynamic mechanical analysis
  • FIG 4 are images for explaining the triple shape memory characteristics of the first embodiment of the nylon copolymer (nylon copolymer) prepared according to the embodiment of the present invention.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Thus, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment.
  • first component in one embodiment may be referred to as a second component in another embodiment.
  • second component in another embodiment.
  • Each embodiment described and illustrated herein also includes its complementary embodiment.
  • the term 'and / or' is used herein to include at least one of the components listed before and after.
  • a biomass-derived pyrrolidone group-containing amino acid according to an embodiment of the present invention and a manufacturing method thereof are described.
  • the biomass-derived pyrrolidone-containing amino acid amino acid
  • itaconic acid itaconic acid
  • diamine diamine
  • the itaconic acid may be represented by the following [Formula 1].
  • the itaconic acid is a monomer derived from natural products.
  • the diamine may be represented by the following [Formula 2], and may be a diamine monomer having 2 to 13 carbon atoms.
  • the diamine monomers are 1,2-diaminoethane having 1 to 2 carbon atoms, 1,3-diaminopropane, 1,4-diaminopropane, and 1,4- Diaminobutane (1,4-diaminobutane), 1,5-diaminopentane (1,5-diaminopentane), 1,6-diaminonucleic acid (1,6-diaminohexane), 1,8-diaminooctane (1 , 8-diaminooctane), 1,10-diaminodecane, 1,12-diaminododecane and 1,13-diaminotridecane (1,13- diaminotridecane).
  • the itaconic acid (diconic acid) and the diamine (diamine) is derived from biomass according to an embodiment of the present invention shown by the following (Michael addition reaction) and amidation (amidation), shown in [Formula 3] Pyrrolidone group-containing amino acids can be prepared.
  • the biomass-derived biomass may be obtained by the Michael addition reaction and amidation reaction of 1,10-diaminodecane, which is one of the itaconic acid and the diamine.
  • Mass-derived pyrrolidone group-containing amino acids ADPA (1- (10-aminodecyl) -2-pyrrolidone-4-carboxylic acid) can be prepared.
  • the method for producing a biomass-derived pyrrolidone group-containing amino acid (amino acid) may comprise the step of preparing.
  • the itaconic acid and the diamine may be dissolved in a solvent, respectively, to prepare an itaconic acid solution and a diamine solution.
  • the solvent may be any one of alcohols such as ethyl alcohol and methyl alcohol.
  • the prepared itaconic acid solution and the diamine solution may be added to a reaction vessel, mixed, and a heating process in which heat is applied to the reaction vessel may be performed.
  • a heating process in which heat is applied to the reaction vessel may be performed.
  • the heater used for the said heating process the kind is not specifically limited.
  • the heater may be any one of a heater, a hot plate, and a heating coil.
  • the intermediate product represented by [Formula 5] is heated, so that the biomass-derived pyrrolidone group-containing amino acid represented by [Formula 3] can be prepared.
  • the intermediate product may be heated to 240 ° C.
  • Biomass-derived pyrrolidone group-containing amino acids and ⁇ , ⁇ -aliphatic amino acid according to an embodiment of the present invention can be prepared.
  • ADPA (1- (10-aminodecyl) -2-pyrrolidone-4-carboxylic acid) and ⁇ , ⁇ -aliphatic amino acid
  • ADPA (1- (10-aminodecyl) -2-pyrrolidone-4-carboxylic acid
  • ⁇ , ⁇ -aliphatic amino acid can be prepared.
  • the ⁇ , ⁇ -aliphatic amino acid may be represented by the following [Formula 6], and may be ⁇ , ⁇ -aliphatic amino acid having 4, 9, 10, 11, or 12 carbon atoms. have. According to one embodiment, the ⁇ , ⁇ -aliphatic amino acid may be commercially available.
  • the ⁇ , ⁇ -aliphatic amino acid is 1,4-aminobutanoic acid, 1,9-aminononanoic acid, 1,10-aminodecanoic acid, 1,11-aminoundecanoic acid, 1,12-aminododecanoic acid It can be one.
  • a nylon copolymer may be prepared by a condensation polymerization reaction of the biomass-derived pyrrolidone group-containing amino acid and the ⁇ , ⁇ -aliphatic amino acid.
  • the biomass-derived pyrrolidone group-containing amino acid represented by the above [Formula 3] and the ⁇ , ⁇ -aliphatic amino acid represented by the above [Formula 6] by condensation polymerization reaction Nylon copolymer represented by the formula (7) may be prepared (nylon copolymer).
  • x is the number of the biomass-derived pyrrolidone group-containing amino acids participating in the condensation polymerization
  • y is the ⁇ , ⁇ -aliphatic amino acid participating in the condensation polymerization.
  • aliphatic amino acid aliphatic amino acid
  • the condensation polymerization reaction is carried out by the amine group (-NH 2 ) and carboxylic acid (-COOH) of the biomass-derived pyrrolidone group-containing amino acid (carbohydrate) and the ⁇ , ⁇ -aliphatic amino acid.
  • the amidation reaction of the acid (-COOH) and the amine group (-NH 2 ) to generate and discharge the water molecule (H 2 O) the nylon copolymer having an amide bond (nylon copolymer) can be prepared.
  • the method for preparing the nylon copolymer may include a heating step and a stirring step of the reactant.
  • the biomass-derived pyrrolidone group-containing amino acid and the ⁇ , ⁇ -aliphatic amino acid are added to the reaction vessel, and heat is applied to the reaction vessel under a nitrogen (N 2 ) atmosphere. Losing heating process can proceed.
  • the heater may be any one of a heater, a hot plate, and a heating coil.
  • the heating process for the reaction vessel may be performed at 240 °C for 2 hours.
  • the reaction in the reaction vessel may further comprise a stirring step.
  • the stirring speed in the stirring process may be 160 rpm.
  • the nylon copolymer has both phase transition temperatures (glass transition temperature (Tg) and melting temperature (Tm)), and the two phase transition temperatures (glass transition temperature (Tg) and melting temperature ( Tm)), the storage modulus in the glass state section below the glass transition temperature (Tg), the rubbery state section between the glass transition temperature (Tg) and the melting temperature (Tm), and the melt state section above the melting temperature (Tm) (storage modulus) has a drastic change, and may have a storage modulus that is kept constant in the melt state section above the melting temperature (Tm).
  • the nylon copolymer may include the biomass-derived pyrrolidone group-containing amino acid having a molar content of 20% to 60% and the ⁇ , ⁇ -aliphatic amino acid having a molar content of 80% to 40% ( It can be prepared by the condensation polymerization of aliphatic amino acid). Accordingly, the nylon copolymer is fixed, deformed, and restored in two steps based on the two phase transition temperatures (glass transition temperature (Tg) and melting temperature (Tm)). It may be possible to have a triple shape memory characteristic.
  • Tg glass transition temperature
  • Tm melting temperature
  • the molar content of the biomass-derived pyrrolidone group-containing amino acid is less than 20%, it may not have a storage modulus in the melt state section of the melting temperature (Tm) or more, and the biomass-derived When the molar content of the pyrrolidone group-containing amino acid exceeds 60%, there is no melting point (Tm), so it does not have two phase transition temperatures (glass transition temperature (Tg) and melting point (Tm)). It is not easy to deform and fix.
  • Melt temperature (Tm) of the nylon copolymer (nylon copolymer) prepared according to the embodiment of the present invention described above is 101.4 to 167.6 °C
  • glass transition temperature (Tg) is 37.4 to 44.4 °C
  • intrinsic viscosity is 1.16 to May be 1.18 ml / g.
  • nylon copolymer nylon copolymer having a triple shape memory characteristic prepared according to the embodiment of the present invention described above is described.
  • the initial shape (A) of the nylon copolymer may be firstly deformed by a force applied from the outside at a melting temperature (Tm) or more.
  • the first modified nylon copolymer (nylon copolymer) is cooled to a glass transition temperature (Tg), and even if the force causing the first deformation is removed, the shape of the first modified nylon copolymer (nylon copolymer) (B) can be kept as it is.
  • the first modified nylon copolymer (nylon copolymer) may be secondarily deformed by a force applied from the outside in the vicinity of the glass transition temperature (Tg).
  • the secondary modified nylon copolymer (nylon copolymer) is cooled to room temperature, and the shape (C) of the secondary modified nylon copolymer (nylon copolymer) is maintained even if the force causing the secondary deformation is removed. Can be.
  • the secondary modified nylon copolymer (nylon copolymer) is heated again to the glass transition temperature (Tg), it can be restored to the shape (B) of the primary modified nylon copolymer (nylon copolymer).
  • Tg glass transition temperature
  • Tm melting temperature
  • it can be restored to the initial shape (A) of the nylon copolymer (nylon copolymer) before the primary deformation occurs have.
  • the nylon copolymer (nylon copolymer) prepared according to the embodiment of the present invention can be modified, fixed and restored in two steps, and may have a triple shape memory characteristic.
  • the shape restoration temperature can be easily controlled by adjusting the molar content of the biomass-derived pyrrolidone group-containing amino acid.
  • the existing shape memory polymer has a double shape memory characteristic that stores an initial permanent shape and is temporarily deformed by an appropriate magnetic pole and then restored to the original initial shape.
  • Such double shape memory polymers are not easy to control the shape recovery temperature to a desired level, and there is a limit to the application in a wide range of fields.
  • the shape can be modified, fixed, and restored in two steps.
  • the bio-based reaction material is used to manufacture a bio nylon having a triple shape memory characteristics, it is possible to apply to a wide range of fields such as the aircraft, electronics, environmental, medical field.
  • nylon copolymer nylon copolymer
  • nylon copolymer In order to prepare a nylon copolymer (nylon copolymer) according to an embodiment of the present invention, 1,10-diaminodecane (1,10-diaminodecane) of one of itaconic acid (diconic acid) and diamine (diamine) monomers It was dissolved in ethyl alcohol (ethanol), respectively, to prepare an itaconic acid (diconic acid) solution and diamine (diamine) solution. The beaker was added to the beaker with the same mol ratio of the itaconic acid solution and the 1,10-diaminodecane (1,10-diaminodecane), followed by reaction at 60 ° C. for 30 minutes.
  • the product produced by the reaction was dried in a vacuum oven at 50 °C for 12 hours to obtain a monomer in the form of a salt, and the heating step to the monomer in the form of salt of the biomass-derived pyrrolidone group-containing amino acid (amino acid) ADPA (1- (10-aminodecyl) -2-pyrrolidone-4-carboxylic acid) was prepared.
  • the biomass-derived pyrrolidone group-containing amino acid (amino acid) ADPA (1- (10-aminodecyl) -2-pyrrolidone-4-carboxylic acid) and ⁇ , ⁇ -aliphatic amino acid (AUA) (11 Injected into a 250ml reaction vessel by varying the mol ratio of -aminoundecanoic acid), it was reacted for 2 hours at 240 °C under nitrogen (N 2 ) atmosphere to prepare the nylon copolymer (nylon copolymer). In the reaction, stirring was carried out at a speed of 160 rpm.
  • the mol ratio condition of the ADPA and the AUA is shown in Table 1 below.
  • nylon 11 polymerized with AUA 11-aminoundecanoic acid
  • AUA 11-aminoundecanoic acid
  • nylon copolymer nylon copolymer
  • the nylon copolymer prepared by varying the mol ratio between the ADPA and the AUA was prepared at a heating rate of 10 ° C./min using a DSC (Differential Scanning Calorimetry) device.
  • the phase transition temperature (glass transition temperature (Tg), melting temperature (Tm)) of (nylon copolymer) was measured.
  • Phase transition temperature (glass transition temperature (Tg), melting temperature (Tm)) of the nylon copolymer (nylon copolymer) prepared by varying the mol ratio of the ADPA and the AUA is shown in Table 2 below.
  • the molar content of the biomass-derived pyrrolidone group-containing amino acid is 20% to 60%
  • both have a phase transition temperature (glass transition temperature (Tg), melting temperature (Tm)).
  • Tg glass transition temperature
  • Tm melting temperature
  • FIG 3 is a view for explaining the storage modulus of the nylon copolymer (nylon copolymer) produced by varying the molar content of the biomass-derived pyrrolidone group-containing amino acid prepared according to an embodiment of the present invention DMA (dynamic mechanical analysis) measurement result graph.
  • the ADPA (1- (10-aminodecyl) -2-pyrrolidone-4-carboxylic acid) and the biomass-derived pyrrolidone-containing amino acid prepared according to an embodiment of the present invention and
  • the nylon copolymer was prepared in the same manner as described above by varying the molar content of AUA (11-aminoundecanoic acid), which is an ⁇ , ⁇ -aliphatic amino acid.
  • AUA 11-aminoundecanoic acid
  • the nylon copolymer prepared by varying the mol ratio of the ADPA and the AUA was prepared by using a dynamic mechanical analysis (DMA) instrument at a heating rate of 2 ° C./min, using the nylon copolymer.
  • the storage modulus was measured according to the temperature change of (nylon copolymer). Storage modulus measurement values of the nylon copolymer (nylon copolymer) prepared by varying the mol ratio of the ADPA and the AUA are shown in Table 3 below.
  • Tg glass transition temperature
  • Tm melting temperature
  • the shape can be restored through two steps of fixing, deforming, and resetting the shape based on the two phase transition temperatures. From this, by adjusting the molar content of the biomass-derived pyrrolidone group-containing amino acid (amino acid), it is possible to manufacture a nylon copolymer (nylon copolymer) having a triple shape memory characteristics that can easily control the shape recovery temperature Confirmed.
  • Tm melting temperature
  • the use of the biomass-derived pyrrolidone group-containing amino acid in a molar content of 20% to 60% is an efficient method for producing a nylon copolymer having triple shape memory characteristics. Able to know.
  • ADPA: AUA 2: 8
  • ADPA: AUA 4: 6
  • nylon copolymer (nylon copolymer) of the secondary deformed shape (C) is heated to near the glass transition temperature (Tg) of each embodiment shown in the above [Table 2]
  • the primary deformed shape ( B) the shape is restored
  • the melting temperature (Tm) of each embodiment shown in the [Table 2] is restored to the nylon copolymer (nylon copolymer) having a film form of the initial shape (A) It was confirmed.
  • Nylon copolymer having a triple shape memory characteristics is a bio-based nylon, environmentally friendly, not only remember the triple shape, but also can control the shape recovery temperature to a desired level It can be applied to a wide range of fields such as medical field, actuator, aircraft, automobile and electronics industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

이타콘산(itaconic acid)과 디아민(diamine)으로 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)을 생성하는 단계, 및 상기 피롤리돈기 함유 아미노산(amino acid)과 상기 α,ω-지방족 아미노산(aliphatic amino acid)을 반응시켜 나일론 공중합체(nylon copolymer)를 생성하는 단계를 포함하는 3중 형상기억특성을 갖는 나일론의 제조 방법을 제공한다. 이로 인해, 두 단계에 걸쳐 형상의 변형, 고정, 및 복원이 가능하고, 반응물질의 함량을 조절함으로써, 원하는 수준으로의 형상복원온도 제어가 가능한 3중 형상기억특성을 갖는 바이오 나일론이 제공될 수 있다.

Description

3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법
본 발명은 3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법과 관련된 것으로, 보다 상세하게는, 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid) 및 α,ω-지방족 아미노산(aliphatic amino acid)을 축합중합하여 제조된 나일론 공중합체(nylon copolymer)를 포함하는 3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법에 관련된 것이다.
현재 가장 널리 사용되는 형상기억재료로는 형상기억합금이 있으나, 이는 낮은 변형율, 고비용, 가공상의 어려움, 및 전이온도를 제어하기 어려운 단점이 있다. 이에 반해, 형상기억고분자는 큰 변형율, 저비용, 저밀도, 전이온도의 제어 용이성, 가공상의 용이성 및 잠재적인 생체적합성과 생분해성의 장점을 지닌다.
기존의 형상기억고분자는 특정한 임시모양을 가질 수 있으며, one step으로 한가지 본래 모양만 기억하는 이중형상기억고분자(dual shape memory polymer)이다.
천연물과 같은 재생가능자원으로부터 제조할 수 있는 바이오 고분자는 종래의 석유기반 고분자에 비해 이산화탄소 저감효과가 매우 크고 자원고갈에 대처할 수 있는 친환경소재로써, 최근 활발히 연구되고 있다. PA11, PA1010 등의 바이오기반의 나일론 수지가 개발되어 있으나, 형상기억특성과 같은 기능성을 갖는 소재는 아직 개발된 바가 없다.
지구 환경 보호 관점에서 연료유 및 석유화학기반의 석유 자원으로 얻어지는 고분자 소재의 바이오 매스 기반 소재로의 전환에 대한 요구가 증가함에 따라, 환경에 무해하고, 재생 가능한 원료인 바이오기반 폴리머의 제조 방법에 대해서 연구되고 있다.
특히, 바이오기반 폴리머를 사용하여 외부 환경 조건의 변화에 능동적으로 반응할 수 있는 스마트 물질인 형상 기억 고분자를 제조하여, 친환경적이고, 보다 경제적으로 대량 생산할 수 있는 바이오기반 형상 기억 고분자의 제조 방법에 대한 연구가 진행되고 있다.
예를 들어, 특허 공개 공보 10-2002-0014054 (출원인: 학교법인 울산공업학원, 출원번호 10-2000-0047105)에는, 폴리알리파틱에스테르-폴리아미드 블록공중합체를 제1 성분, 폴리알리파틱에스테르와 상용성을 갖는 고분자를 제2 성분으로 혼합하여 균일 혼합상을 제조하고, 균일 혼합상의 유리전이온도를 형상회복 기준온도로 하고, 물리적인 외력에 의해 변형된 성형체가 형성되면, 유리전이온도 이상으로 가열하여 변형 전의 원래 형상으로 회복되는 형상기억수지 조성물의 제조방법 및 사용방법에 대한 기술이 개시되어 있다.
형상의 고정 및 복원이 가능한 형상기억고분자에 대한 연구들이 진행 중이며, 형상기억고분자를 보다 경제적으로 대량 생산이 가능하고, 형상복원온도를 원하는 수준으로 제어가 용이한 형상기억고분자를 제조하기 위한 연구 개발이 필요한 실정이다.
본 발명이 해결하고자 하는 일 기술적 과제는, 3중 형상기억특성을 갖는 바이오 나일론 및 그 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 친환경적이고, 재생 가능한 바이오 기반의 3중 형상기억특성을 갖는 바이오 나일론 및 그 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 형상복원온도 제어가 용이한 3중 형상기억특성을 갖는 바이오 나일론 및 그 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 대량 생산이 가능한 3중 형상기억특성을 갖는 바이오 나일론 및 그 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 제조 공정이 간소화된 3중 형상기억특성을 갖는 바이오 나일론 및 그 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 제조 비용이 감소된 3중 형상기억특성을 갖는 바이오 나일론 및 그 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다.
상술된 기술적 과제를 해결하기 위해, 본 발명은 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법을 제공한다.
일 실시 예에 따르면, 이타콘산(itaconic acid)과 디아민(diamine)을 반응시켜 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)을 생성하는 단계, 및 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 α,ω-지방족 아미노산(aliphatic amino acid)을 반응시켜 아래의 [화학식 1]로 도시된 나일론 공중합체(nylon copolymer)를 생성하는 단계를 포함할 수 있다.
[화학식 1](n, m은 양의 정수)
Figure PCTKR2016006478-appb-I000001
일 실시 예에 따르면, 상기 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법은, 상기 바이오매스 유래 피롤리돈기 함유 아미노산은 상기 이타콘산(itaconic acid)과 상기 디아민(diamine)의 미카엘 부가반응(Michael addition reaction) 및 아미드화반응(amidation)에 의해 생성되는 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 디아민(diamine)은, 탄소수가 2 내지 13인 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 나일론 공중합체(nylon copolymer)는, 상기 합성된 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 상기 α,ω-지방족 아미노산(aliphatic amino acid)의 축합중합에 의해 생성되는 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 나일론 공중합체(nylon copolymer)를 생성하는 단계는, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 상기 α,ω-지방족 아미노산(aliphatic amino acid)을 상기 바이오매스 유래 피롤리돈기 함유 아미노산의 몰함량이 20~60%이 되도록 공중합시키는 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 α,ω-지방족 아미노산(aliphatic amino acid)은, 탄소수가 4, 9, 10, 11, 및 12인 것을 포함할 수 있다.
상기 기술적 과제를 해결하기 위해, 본 발명은 3중 형상기억특성을 갖는 바이오 나일론을 제공한다.
일 실시 예에 따르면, 상기 3중 형상기억특성을 갖는 바이오 나일론은, 아래 [화학식 1]로 표시되는 나일론 공중합체(nylon copolymer)를 포함할 수 있다.
[화학식 1] (n, m은 양의 정수)
Figure PCTKR2016006478-appb-I000002
일 실시 예에 따르면, 상기 나일론 공중합체는, 온도변화에 따른 저장탄성률 (storage modulus)을 측정한 경우, 상 전이 온도로 유리전이온도(Tg) 및 용융온도 (Tm)를 모두 갖고, 용융온도(Tm) 이상에서 저장탄성률(storage modulus)이 일정한 값으로 유지되는 것을 포함하고 있다.
일 실시 예에 따르면, 상기 나일론 공중합체는, 101.4 내지 167.6℃의 용융온도(Tm), 38.7 내지 44.4℃의 유리전이온도(Tg), 및 1.16 내지 1.18ml/g의 고유 점도를 갖는 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 3중 형상기억특성을 갖는 바이오 나일론의 사용방법은, 초기형상(A)의 상기 나일론 공중합체를 용융 온도(Tm) 이상에서 외부로부터 가해진 힘에 의해 1차 변형되는 단계, 상기 1차 변형된 나일론 공중합체를 유리전이온도(Tg)로 냉각하고, 상기 1차 변형을 일으킨 상기 힘을 제거하되, 상기 1차 변형된 나일론 공중합체의 형상(B)이 유지되는 단계, 상기 1차 변형된 나일론 공중합체를 유리전이온도(Tg) 에서 외부로부터 가해진 힘에 의해 2차 변형되는 단계, 및 상기 2차 변형된 나일론 공중합체를 상온으로 냉각하고, 상기 2차 변형을 일으킨 상기 힘을 제거하되, 상기 2차 변형된 나일론 공중합체의 형상(C)이 유지되는 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 3중 형상기억특성을 갖는 바이오 나일론의 사용방법은, 상기 2차 변형 (C)된 나일론 공중합체를 상기 유리전이온도(Tg)로 가열하여 상기 1차 변형된 나일론 공중합체의 형상(B)으로 복원되는 단계, 및 상기 1차 변형된 나일론 공중합체를 상기 용융온도(Tm) 이상으로 가열하여 상기 나일론 공중합체가 원래 형상(A)으로 복원되는 단계를 더 포함할 수 있다.
상기 기술적 과제를 해결하기 위해, 본 발명은 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)을 제공한다.
일 실시 예에 따르면, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)은, 이타콘산 (itaconic acid)과 디아민(diamine)의 미카엘 부가반응(Michael addition reaction) 및 아미드화반응(amidation)에 의해 제조되고, 아래의 [화학식 2]로 표시되는 것을 포함할 수 있다.
[화학식 2](n은 양의 정수)
Figure PCTKR2016006478-appb-I000003
본 발명의 실시 예에 따르면, 두 단계에 걸쳐 형상의 변형, 고정, 및 복원이 가능하여 3중 형상기억특성을 갖는 바이오 나일론의 제조가 가능하다. 상기 3중 형상기억특성을 갖는 바이오 나일론 제조 시, 바이오 기반의 반응물질을 사용함으로써 친환경적이고, 반응물질의 함량을 조절함으로써, 원하는 수준으로 형상복원온도를 제어할 수 있어, 의료분야, 액추에이터, 항공기, 자동차, 전자산업 등 광범위한 분야에 적용이 가능한 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법이 제공될 수 있다.
도 1은 본 발명의 실시 예에 대한 제1 비교예에 따라 제작된 nylon11의 화학 결합구조를 설명하기 위한 1H-NMR 분광법 (1H-NMR spectroscopy) 측정 결과 그래프이다.
도 2는 본 발명의 제3 실시예에 따라 제조되는 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량 50%로 제작된 나일론 공중합체(nylon copolymer)의 화학 결합구조를 설명하기 위한 1H-NMR 분광법 (1H-NMR spectroscopy) 측정 결과 그래프이다.
도 3는 본 발명의 실시 예에 따라 제조되는 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량을 달리하여 제작된 나일론 공중합체(nylon copolymer)의 저장탄성률(storage modulus)를 설명하기 위한 DMA(dynamic mechanical analysis) 측정 결과 그래프이다.
도 4는 본 발명의 실시 예에 따라 제조된 나일론 공중합체(nylon copolymer) 중 제1 실시예의 3중 형상기억특성을 설명하기 위한 이미지들이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
본 발명의 실시 예에 따른 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid) 및 그 제조 방법이 설명된다.
상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 제조를 위해, 이타콘산(itaconic acid)과 디아민(diamine)이 준비될 수 있다. 상기 이타콘산(itaconic acid)은 아래 [화학식 1]로 도시될 수 있다. 일 실시 예에 따르면, 상기 이타콘산은 천연물 유래 단량체이다.
[화학식 1]
Figure PCTKR2016006478-appb-I000004
상기 디아민(diamine)은 아래 [화학식 2]으로 도시될 수 있고, 탄소수가 2 내지 13인 디아민계 단량체일 수 있다.
[화학식 2](n은 양의 정수)
Figure PCTKR2016006478-appb-I000005
예를 들어, 상기 디아민계 단량체는, 탄소수가 2 내지 13인 1,2-디아미노에탄(1,2-diaminoethane), 1,3-디아미노프로판(1,3-diaminopropane), 1,4-디아미노부탄(1,4-diaminobutane), 1,5-디아미노팬탄(1,5-diaminopentane), 1,6-디아미노핵산(1,6-diaminohexane), 1,8-디아미노옥탄(1,8-diaminooctane), 1,10-디아미노데칸(1,10-diaminodecane), 1,12-디아미노도데칸(1,12-diaminododecane) 및 1,13-디아미노트리데칸(1,13-diaminotridecane)의 중 어느 하나일 수 있다.
상기 이타콘산(itaconic acid)과 상기 디아민(diamine)은 미카엘 부가반응(Michael addition reaction) 및 아미드화 반응(amidation)에 의해, 아래 [화학식 3]으로 도시되는 본 발명의 실시 예에 따른 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)이 제조될 수 있다. 예를 들어, 상기 이타콘산(itaconic acid)과 상기 디아민(diamine) 중 하나인 1,10-디아미노데칸(1,10-diaminodecane)의 미카엘 부가반응 및 아미드화 반응에 의해, 상기 바이오매스 유래 바이오매스 유래 피롤리돈기 함유 아미노산인 ADPA(1-(10-aminodecyl)-2-pyrrolidone-4-carboxylic acid)가 제조될 수 있다.
[화학식 3](n은 양의 정수)
Figure PCTKR2016006478-appb-I000006
구체적으로, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 제조 방법은, 염형태의 단량체를 제조하는 단계, 및 상기 염형태의 단량체를 가열하여 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)을 제조하는 단계를 포함할 수 있다.
상기 염형태의 단량체 제조하는 단계에서, 상기 이타콘산(itaconic acid)과 상기 디아민(diamine)이 각각 용매에 용해되어 이타콘산(itaconic acid) 용액과 디아민(diamine) 용액으로 제조될 수 있다. 예를 들어, 상기 용매는, 에틸 알코올, 메틸 알코올 등의 알코올류 중 어느 하나일 수 있다.
상기 염형태의 단량체를 제조하는 단계에서, 제조된 상기 이타콘산(itaconic acid) 용액과 상기 디아민(diamine) 용액이 반응용기에 투입되어 혼합되고, 상기 반응용기에 열이 가해지는 가열공정이 진행될 수 있다. 상기 공정에 의해 아래 [화학식 4]로 도시되는 상기 이타콘산(itaconic acid)과 상기 디아민(diamine)을 포함하는 상기 염형태의 단량체가 제조될 수 있다.
[화학식 4](n은 양의 정수)
Figure PCTKR2016006478-appb-I000007
상기 염형태의 단량체에 열이 가해지는 가열공정이 진행되어, 미카엘 부가반응(Michael addition reaction)이 수행되고, 이에 따라, 아래 [화학식 5]로 도시되는 중간 생성물이 제조될 수 있다. 상기 가열공정에 사용되는 가열기의 형태로는, 그 종류를 특별히 한정하지 않는다. 예를 들어, 상기 가열기는, 히터(Heater), 핫 플레이트(Hot plate), 또는 가열 코일(Heating coil) 중에서 어느 하나일 수 있다.
[화학식 5](n은 양의 정수)
Figure PCTKR2016006478-appb-I000008
상기 [화학식 5]로 표시된 상기 중간 생성물이 가열되어, 상기 [화학식 3]으로 표시된 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)이 제조될 수 있다. 예를 들어, 상기 중간 생성물은 240℃로 가열될 수 있다.
상술된 본 발명의 실시 예에 따른 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)을 이용한 3중 형상기억 특성을 갖는 바이오 나일론 및 그 제조 방법이 설명된다.
본 발명의 실시 예에 따른 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid) 및 α,ω-지방족 아미노산(aliphatic amino acid)가 준비될 수 있다. 예를 들어, ADPA(1-(10-aminodecyl)-2-pyrrolidone-4-carboxylic acid) 및 α,ω-지방족 아미노산(aliphatic amino acid)가 준비될 수 있다.
상기 α,ω-지방족 아미노산(aliphatic amino acid)은 아래 [화학식 6]으로 도시될 수 있고, 탄소수가 4, 9, 10, 11, 또는 12인 α,ω-지방족 아미노산(aliphatic amino acid)일 수 있다. 일 실시 예에 따르면, 상기 α,ω-지방족 아미노산(aliphatic amino acid)은 상업적으로 확보 가능한 것일 수 있다.
[화학식 6](m은 양의 정수)
Figure PCTKR2016006478-appb-I000009
예를 들어, 상기 α,ω-지방족 아미노산(aliphatic amino acid)은, 1,4-아미노부탄산(1,4-aminobutanoic acid), 1,9-아미노노난산(1,9-aminononanoic acid), 1,10-아미노데칸산(1,10-aminodecanoic acid), 1,11-아미노운데칸산(1,11- aminoundecanoic acid), 1,12-아미노도데칸산(1,12-aminododecanoic acid) 중 어느 하나일 수 있다.
상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 상기 α,ω-지방족 아미노산(aliphatic amino acid)의 축합중합반응에 의해 나일론 공중합체(nylon copolymer)가 제조될 수 있다. 상기 [화학식 3]으로 표시되는 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid) 및 상기 [화학식 6]으로 표시되는 α,ω-지방족 아미노산(aliphatic amino acid)이 축합중합반응에 의해, 아래 [화학식 7]로 표시되는 나일론 공중합체(nylon copolymer)가 제조될 수 있다. 아래 [화학식 7]에 표시되어 있는 x는 상기 축합중합반응에 참여한 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 수이고, y는 상기 축합중합반응에 참여한 상기 α,ω-지방족 아미노산(aliphatic amino acid)의 수이다. 또한, 아래 [화학식 7]에 표시되어 있는 n, m, x, y는 양의 정수이다.
[화학식 7]
Figure PCTKR2016006478-appb-I000010
상기 축합중합반응은, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 아민기(-NH2) 및 카르복실산(-COOH) 과 상기 α,ω-지방족 아미노산(aliphatic amino acid)의 카르복실산(-COOH) 및 아민기(-NH2)의 아미드화반응으로 물분자(H2O)가 생성 및 배출되면서, amide결합을 갖는 상기 나일론 공중합체(nylon copolymer)가 제조될 수 있다.
상기 나일론 공중합체(nylon copolymer)의 제조 방법은, 반응물질의 가열 공정 및 교반 공정을 포함할 수 있다.
반응 물질로 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 상기 α,ω-지방족 아미노산(aliphatic amino acid)가 반응용기에 투입되고, 질소(N2) 분위기 하에 상기 반응용기에 열이 가해지는 가열공정이 진행될 수 있다. 상기 가열공정에 사용되는 가열기의 형태로는, 그 종류를 특별히 한정하지 않는다. 예를 들어, 상기 가열기는, 히터(Heater), 핫 플레이트(Hot plate), 또는 가열 코일(Heating coil) 중에서 어느 하나일 수 있다. 또한, 상기 반응용기에 대한 상기 가열공정은, 240℃에서 2시간 동안 진행될 수 있다. 또한, 상기 반응용기에서의 반응은, 교반 공정을 더 포함할 수 있다. 예를 들어, 상기 교반 공정에서의 교반 속도는, 160rpm일 수 있다. 상기 가열 공정 및 상기 교반 공정에 의한 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 상기 α,ω-지방족 아미노산(aliphatic amino acid)의 축합중합반응에 의해 상기 나일론 공중합체(nylon copolymer)가 제조될 수 있다.
상기 나일론 공중합체(nylon copolymer)는, 두 개의 상 전이온도(유리전이온도(Tg), 용융온도(Tm))를 모두 갖고, 상기 두 개의 상 전이온도(유리전이온도(Tg), 용융온도(Tm))를 기준으로, 유리전이온도(Tg) 이하의 glass state 구간, 유리전이온도(Tg)와 용융온도(Tm) 사이의 rubbery state 구간, 및 용융온도(Tm) 이상의 melt state 구간에서 저장탄성률(storage modulus)이 급격한 변화를 가지며, 용융온도(Tm) 이상의 melt state 구간에서 저장탄성률(storage modulus)이 일정하게 유지되는 것을 모두 가질 수 있다. 상기 나일론 공중합체(nylon copolymer)는, 몰함량이 20% 내지 60%인 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 몰함량이 80% 내지 40%인 상기 α,ω-지방족 아미노산(aliphatic amino acid)의 축합중합반응에 의해 제조될 수 있다. 이에 따라, 상기 나일론 공중합체(nylon copolymer)는, 상기 두 개의 상 전이온도(유리전이온도(Tg), 용융온도(Tm))를 기준으로 형상이 고정, 변형, 및 두 단계에 걸쳐 형상이 복원되는 것이 가능하여, 3중 형상기억특성을 가질 수 있다.
만약, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 20% 미만이면, 용융온도(Tm) 이상의 melt state 구간에서 저장탄성률(storage modulus)를 갖지 못할 수 있고, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 60%을 초과하면, 용융점(Tm)이 없어 두 개의 상 전이온도(유리전이온도(Tg), 용융점(Tm))를 갖지 못해 두 단계의 형상 변형 및 고정이 용이하지 않다. 이에 따라, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 20% 미만인 경우와 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 60%을 초과하는 경우에는, 3중 형상기억특성을 갖는 바이오 나일론을 제조하는 것이 용이하지 않다.
상술된 본 발명의 실시 예에 따라 제조된 상기 나일론 공중합체(nylon copolymer)의 용융온도(Tm)는 101.4 내지 167.6℃이고, 유리전이온도(Tg)는 37.4 내지 44.4℃이고, 고유점도는 1.16 내지 1.18ml/g 일 수 있다.
이하, 상술된 본 발명의 실시 예에 따라 제조된 3중 형상기억특성을 갖는 나일론 공중합체(nylon copolymer)의 사용 방법이 설명된다.
상기 나일론 공중합체(nylon copolymer)의 초기형상(A)를 용융 온도(Tm) 이상에서 외부로부터 가해진 힘에 의해 1차 변형될 수 있다. 상기 1차 변형된 나일론 공중합체(nylon copolymer)는, 유리전이온도(Tg)로 냉각되고, 상기 1차 변형을 일으킨 상기 힘을 제거되어도, 상기 1차 변형된 나일론 공중합체(nylon copolymer)의 형상(B)이 그대로 유지될 수 있다. 상기 1차 변형된 나일론 공중합체(nylon copolymer)는, 유리전이온도(Tg) 부근에서 외부로부터 가해진 힘에 의해 2차 변형될 수 있다. 상기 2차 변형된 나일론 공중합체(nylon copolymer)는, 상온으로 냉각되고, 상기 2차 변형을 일으킨 상기 힘이 제거되어도, 상기 2차 변형된 나일론 공중합체(nylon copolymer)의 형상(C)이 유지될 수 있다. 또한, 상기 2차 변형된 나일론 공중합체(nylon copolymer)가 상기 유리전이온도(Tg)로 다시 가열되면, 상기 1차 변형된 나일론 공중합체(nylon copolymer)의 형상(B)으로 복원될 수 있다. 상기 1차 변형된 나일론 공중합체(nylon copolymer)가 상기 용융온도(Tm) 이상으로 가열되면, 상기 1차 변형이 발생하기 전인 상기 나일론 공중합체(nylon copolymer)의 초기 형상(A)으로 복원될 수 있다. 이에 따라, 본 발명의 실시 예에 따라 제조된 나일론 공중합체(nylon copolymer)는, 두 단계에 걸쳐 형상의 변형, 고정 및 복원이 가능하여, 3중 형상기억특성을 가질 수 있다. 상기 나일론 공중합체(nylon copolymer) 제조 시, 사용되는 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량을 조절하여 형상복원온도가 용이하게 제어될 수 있다.
상술된 본 발명의 실시 예와 달리, 기존의 형상기억고분자의 경우, 초기의 영구 형상을 기억하고, 적절한 자극에 의해 일시적으로 변형되었다가 본래의 초기 형상으로 복원되는 2중 형상기억특성을 갖는다. 이러한 2중 형상기억고분자는 형상복원온도를 원하는 수준으로 제어하는 것이 용이하지 않고, 광범위한 분야에의 응용에 한계가 존재한다.
하지만, 상술된 바와 같이, 본 발명의 실시 예에 따라 제조된 3중 형상기억특성을 갖는 나일론 공중합체(nylon copolymer)의 경우, 두 단계에 걸쳐 형상의 변형, 고정, 및 복원이 가능하여 3중 형상을 기억할 뿐만 아니라, 제조 시, 반응물질의 함량을 조절함으로써, 원하는 수준으로 형상복원온도를 제어하는 것이 용이하다. 또한, 바이오 기반의 반응물질을 사용하여 3중 형상기억특성을 갖는 바이오 나일론을 제조하므로, 항공기, 전자산업 외 환경, 의료분야 등 광범위한 분야의 응용이 가능하다.
이하, 상술된 본 발명의 실시 예에 따라 제조된 나일론 공중합체(nylon copolymer)에 대한 특성 평가 결과가 설명된다.
본 발명의 실시 예에 따른 나일론 공중합체(nylon copolymer)을 제조하기 위해, 이타콘산(itaconic acid)과 디아민(diamine)계 단량체 중 하나인 1,10-디아미노데칸(1,10-diaminodecane)을 각각 용매인 에틸알코올(ethanol)에 용해시켜 이타콘산(itaconic acid) 용액과 디아민(diamine) 용액을 제조하였다. 비이커에 상기 이타콘산(itaconic acid) 용액과 상기 1,10-디아미노데칸(1,10-diaminodecane)의 mol ratio를 동일하게 하여 비이커에 투입한 후, 60℃에서 30분간 반응시켰다. 상기 반응에 의해 생성된 생성물을 50℃의 진공오븐 내에서 12시간 건조시킨 후 염형태의 단량체를 얻고, 상기 염형태의 단량체에 가열공정을 거쳐 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)인 ADPA(1-(10-aminodecyl)-2-pyrrolidone-4-carboxylic acid)를 제조하였다. 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)인 상기 ADPA(1-(10-aminodecyl)-2-pyrrolidone-4-carboxylic acid)와 α,ω-지방족 아미노산(aliphatic amino acid)인 AUA(11-aminoundecanoic acid)의 mol ratio를 달리하여 250ml 반응용기에 투입하고, 질소(N2) 분위기 하에 240℃에서 2시간 동안 반응시켜, 상기 나일론 공중합체(nylon copolymer)를 제조하였다. 상기 반응 시, 160rpm의 속도로 stirring을 동반하였다. 상기 ADPA와 상기 AUA의 mol ratio 조건은 아래 [표 1]과 같다.
구분 ADPA : AUAmol ratio
제1 비교예 0 : 1
제1 실시예 2 : 8
제2 실시예 4 : 6
제3 실시예 5 : 5
제4 실시예 6 : 4
제2 비교예 8 : 2
도 1 및 도 2는 본 발명의 실시 예에 대한 제1 비교 예(ADPA:AUA=0:1) 및 제3 실시 예(ADPA:AUA=5:5)에 따라 제조된 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량을 달리하여 제작된 나일론 공중합체(nylon copolymer)의 화학 결합구조를 설명하기 위한 1H-NMR 분광법 (1H-NMR spectroscopy) 측정 결과 그래프이다.
도 1을 참조하면, 1H-NMR 그래프에서 α,ω-지방족 아미노산(aliphatic amino acid)인 AUA(11-aminoundecanoic acid)로 중합된 nylon11의 화학 결합 구조를 확인하였다.
도 2에서 알 수 있듯이, 1H-NMR 그래프에서 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)인 상기 ADPA(1-(10-aminodecyl)-2-pyrrolidone-4-carboxylic acid)와 α,ω-지방족 아미노산(aliphatic amino acid)인 AUA(11-aminoundecanoic acid)로 중합된 나일론 공중합체(nylon copolymer)의 화학 결합 구조를 확인하였다.
도 1 및 도 2의 결과로부터, 상기 나일론 공중합체(nylon copolymer)내의 피롤리돈기 구조가 명확히 합성된 것을 확인하였다.
상기 ADPA와 상기 AUA의 mol ratio를 달리하여 제조된 상기 나일론 공중합체(nylon copolymer)에 대하여, DSC(Differential scanning calorimetry) 기기를 이용하여, 10℃/min의 heating rate에서, 제조된 상기 나일론 공중합체(nylon copolymer)의 상 전이 온도(유리전이온도(Tg), 용융온도(Tm))를 측정하였다. 상기 ADPA와 상기 AUA의 mol ratio를 달리하여 제조된 나일론 공중합체(nylon copolymer)의 상 전이 온도(유리전이온도(Tg), 용융온도(Tm)) 측정값은 아래 [표 2]와 같다.
구분 ADPA : AUAmol ratio Tm(℃) Tg(℃)
제1 비교예 0 : 1 188.4 45.3
제1 실시예 2 : 8 167.6 44.4
제2 실시예 4 : 6 135.5 44.0
제3 실시예 5 : 5 134.9 40.6
제4 실시예 6 : 4 101.4 38.7
제2 비교예 8 : 2 - 37.4
[표 2]에서는, 제1 비교예(ADPA:AUA=0:1), 제2 비교예(ADPA:AUA=8:2), 제1 실시예(ADPA:AUA=2:8), 제2 실시예(ADPA:AUA=4:6), 제3 실시예(ADPA:AUA=5:5) 및 제4 실시예(ADPA:AUA=6:4)에 따른 측정결과를 도시하였다.
[표 2]에서 알 수 있듯이, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 20%내지 60%인, 제1 실시예(ADPA:AUA=2:8), 제2 실시예(ADPA:AUA=4:6), 제3 실시예(ADPA:AUA=5:5) 및 제4 실시예(ADPA:AUA=6:4)에 따라 제조된 상기 나일론 공중합체(nylon copolymer)의 경우, 두 개의 상 전이온도(유리전이온도(Tg), 용융온도(Tm))를 모두 갖는 것을 확인하였다. 이와 같이, 두 개의 상 전이온도를 갖는 경우, 상기 두 개의 상 전이온도를 기준으로 형상을 고정, 변형, 및 두 단계에 걸쳐 형상을 복원하는 것이 가능하다. 또한, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 증가함에 따라, 제조된 상기 나일론 공중합체(nylon copolymer)의 유리전이온도(Tg) 및 용융온도(Tm)가 상이한 것을 확인하였다. 이로부터, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량을 조절함으로써, 형상복원온도의 제어가 용이한 3중 형상기억특성을 갖는 나일론 공중합체(nylon copolymer)의 제조가 가능한 것을 확인하였다.
도 3는 본 발명의 실시 예에 따라 제조된 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량을 달리하여 제작된 나일론 공중합체(nylon copolymer)의 저장탄성률(storage modulus)를 설명하기 위한 DMA(dynamic mechanical analysis ) 측정 결과 그래프이다.
도 3을 참조하면, 본 발명의 실시 예에 따라 제조된 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)인 상기 ADPA(1-(10-aminodecyl)-2-pyrrolidone-4-carboxylic acid)와 α,ω-지방족 아미노산(aliphatic amino acid)인 AUA(11-aminoundecanoic acid)의 몰함량을 달리하여 상기 설명된 것과 동일한 방법으로 상기 나일론 공중합체(nylon copolymer)가 제조하였다. 상기 ADPA와 상기 AUA의 mol ratio 조건은 위의 <표 1>과 같다.
상기 ADPA와 상기 AUA의 mol ratio를 달리하여 제조된 상기 나일론 공중합체(nylon copolymer)에 대하여, DMA(dynamic mechanical analysis) 기기를 이용하여, 2℃/min의 heating rate에서, 제조된 상기 나일론 공중합체(nylon copolymer)의 온도변화에 따른 저장탄성률(storage modulus)를 측정하였다. 상기 ADPA와 상기 AUA의 mol ratio를 달리하여 제조된 나일론 공중합체(nylon copolymer)의 저장탄성률(storage modulus) 측정값은 아래 [표 3]와 같다.
구분 ADPA : AUAmol ratio E' at 30℃(MPa) E' at 50℃(MPa) E' at 150℃(MPa)
제1 비교예 0 : 1 1200 530 160
제1 실시예 2 : 8 1180 400 27
제2 실시예 4 : 6 1400 500 0.4
제3 실시예 5 : 5 750 120 0.4
제4 실시예 6 : 4 830 80 0.6
제2 비교예 8 : 2 280 5 0.7
도 3에서는, 제1 비교예(ADPA:AUA=0:1), 제2 비교예(ADPA:AUA=8:2), 제1 실시예(ADPA:AUA=2:8), 제2 실시예(ADPA:AUA=4:6), 제3 실시예(ADPA:AUA=5:5) 및 제4 실시예(ADPA:AUA=6:4)에 따른 저장탄성률(storage modulus) 측정결과를 도시하였다.
도 3을 참조하면, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 20% 내지 60%인, 제1 실시예(ADPA:AUA=2:8), 제2 실시예(ADPA:AUA=4:6), 제3 실시예(ADPA:AUA=5:5) 및 제4 실시예(ADPA:AUA=6:4)에 따라 제조된 상기 나일론 공중합체(nylon copolymer)의 경우, 두 개의 상 전이온도(유리전이온도(Tg), 용융온도(Tm))를 기준으로, 유리전이온도(Tg) 이하의 glass state 구간, 유리전이온도(Tg)와 용융온도(Tm) 사이의 rubbery state 구간, 및 용융온도(Tm) 이상의 melt state 구간에서 저장탄성률(storage modulus)의 변화가 크게 일어나며, 또한 용융온도(Tm) 이상의 melt state 구간에서 저장탄성률(storage modulus)이 일정한 값으로 유지되는 것을 확인하였다. 이에 따라, 상기 두 개의 상 전이온도를 기준으로 형상을 고정, 변형, 및 두 단계에 걸쳐 형상이 복원되는 것이 가능하다는 것을 알 수 있었다. 이로부터, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량을 조절함으로써, 형상복원온도의 제어가 용이한 3중 형상기억특성을 갖는 나일론 공중합체(nylon copolymer)의 제조가 가능한 것을 확인하였다.
반면, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 20% 미만인, 제1 비교예(ADPA:AUA=0:1)에 따라 제조된 상기 나일론 (nylon)의 경우, 용융온도(Tm)와 유리전이온도(Tg)는 갖지만, 용융온도(Tm) 이상의 melt state 구간에서 저장탄성률(storage modulus)을 갖지 못하는 것을 확인하였다. 이에 따라, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 20% 미만인 경우, 상기 melt state 구간에서의 저장탄성률(storage modulus)이 없어 3중 형상기억특성을 발현할 수 없는 것을 확인하였다. 또한, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 60%을 초과하는, 제2 비교예(ADPA:AUA=8:2)에 따라 제조된 상기 나일론 공중합체(nylon copolymer)의 경우, 용융온도(Tm)를 갖지 않는 것을 확인하였다. 이에 따라, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량이 60%를 초과되는 경우, 두 개의 상 전이온도를 갖지 못하기 때문에, 3중 형상기억특성을 발현할 수 없는 것을 확인하였다. 따라서, 몰함량이 20%~60% 범위의 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)을 사용하는 것이, 3중 형상기억특성을 갖는 나일론 공중합체(nylon copolymer)를 제조하는 효율적인 방법임을 알 수 있다.
도 4는 아래에 설명된 것과 동일한 방법으로, 상기 제1 실시예(ADPA:AUA=2:8), 제2 실시예(ADPA:AUA=4:6), 제3 실시예(ADPA:AUA=5:5), 제4실시예(ADPA:AUA=6:4)에 따라 제조된 상기 나일론 공중합체(nylon copolymer) 중 제1 실시예의 3중 형상기억특성 관련 실험 이미지들이다.
도 4를 참조하면, 본 발명의 상기 제1 실시예(ADPA:AUA=2:8)에 따라 제조된 초기 형상(A)인 필름 형태를 갖는 상기 나일론 공중합체(nylon copolymer)를 상기 [표 2]에 나타낸 제1 실시 예의 용융온도(Tm) 167.6℃ 이상으로 가열하여 상기 1차 변형을 가한 후, 상기 [표 2]에 나타낸 제1 실시 예의 유리전이온도(Tg) 44.4℃ 부근으로 급냉시킨 후, 상기 1차 변형을 유지하던 힘을 외력을 제거해도 상기 1차 변형된 형상(B)을 유지하는 것을 확인하였다. 이후, 상기 1차 변형된 형상(B)의 상기 나일론 공중합체(nylon copolymer)를 상기 [표 2]에 나타낸 제1 실시 예의 유리전이온도(Tg) 44.4℃ 부근으로 가열된 샘플에 상기 2차 변형을 가한 후, 상온 25℃로 냉각시키고, 상기 2차 변형을 유지하던 힘을 제거해도 상기 2차 변형된 형상(C)를 유지하는 것을 확인하였다. 또한, 상기 2차 변형된 형상(C)의 상기 나일론 공중합체(nylon copolymer)를 다시 상기 [표 2]에 나타낸 제1 실시예의 유리전이온도(Tg) 44.4℃ 부근으로 가열하면, 상기 1차 변형된 형상(B)으로 형상이 복원되고, 다시 상기 [표 2]에 나타낸 제1 실시 예의 용융온도(Tm) 167.6℃ 이상으로 가열하면 상기 초기 형상(A)인 필름 형태를 갖는 상기 나일론 공중합체(nylon copolymer)로 복원되는 것을 확인하였다.
상기 제1 실시 예에서 설명한 바와 같이, 본 발명의 제2 실시 예(ADPA:AUA=4:6), 제3 실시 예(ADPA:AUA=5:5), 제4 실시 예(ADPA:AUA=6:4) 에 따라 제조된 초기 형상(A)인 필름 형태를 갖는 상기 나일론 공중합체(nylon copolymer)를 상기 [표 2]에 나타낸 각 실시예의 용융온도(Tm) 이상으로 가열하여 상기 1차 변형을 가한 후, 상기 [표 2]에 나타낸 각 실시예의 유리전이온도(Tg) 부근으로 급냉시킨 후, 상기 1차 변형을 유지하던 힘을 외력을 제거해도 상기 1차 변형된 형상(B)을 유지하는 것을 확인하였다. 이후, 상기 1차 변형된 형상(B)의 상기 나일론 공중합체(nylon copolymer)를 상기 [표 2]에 나타낸 각 실시 예의 유리전이온도(Tg) 부근으로 가열된 샘플에 상기 2차 변형을 가한 후, 상온 25℃로 냉각시키고, 상기 2차 변형을 유지하던 힘을 제거해도 상기 2차 변형된 형상(C)를 유지하는 것을 확인하였다. 또한, 상기 2차 변형된 형상(C)의 상기 나일론 공중합체(nylon copolymer)를 다시 상기 [표 2]에 나타낸 각 실시 예의 유리전이온도(Tg) 부근으로 가열하면, 상기 1차 변형된 형상(B)으로 형상이 복원되고, 다시 상기 [표 2]에 나타낸 각 실시예의 용융온도(Tm) 이상으로 가열하면 상기 초기 형상(A)인 필름 형태를 갖는 상기 나일론 공중합체(nylon copolymer)로 복원되는 것을 확인하였다.
본 발명의 제1 실시예(ADPA:AUA=2:8), 제2 실시예(ADPA:AUA=4:6), 제3 실시예(ADPA:AUA=5:5), 및 제4 실시예(ADPA:AUA=6:4)에 따라 제조된 상기 나일론 공중합체(nylon copolymer)의 기계적 물성 특성을 평가하기 위하여, 인장강도 및 인장신율을 측정하였다. 상기 인장강도(MPa)와 상기 인장신율(%)은 만능시험기(UTM, Universal Testing Machine)를 이용하여, 상온에서 50mm/min의 변형속도로 5회 반복 측정한 후, 평균값을 산출하였다. 산출된 상기 인장강도(MPa)와 상기 인장신율(%) 값은 아래 [표 4]와 같다.
구분 ADPA : AUAmol ratio 물성
인장강도(MPa) 인장신율(%) 100% 모듈러스(MPa)
제1 실시예 2 : 8 53 380 35
제2 실시예 4 : 6 53 385 27
제3 실시예 5 : 5 50 400 24
제4 실시예 6 : 4 44 385 22
[표 4]를 참조하면, 본 발명의 제1 실시예(ADPA:AUA=2:8), 제2 실시예(ADPA:AUA=4:6), 제3 실시예(ADPA:AUA=5:5), 및 제4 실시예(ADPA:AUA=6:4)에 따라 제조된 상기 나일론 공중합체(nylon copolymer)는 우수한 기계적 물성을 갖고, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량을 변화함에 따라 상기 인장강도(MPa)와 상기 인장신율(%) 값을 조절 가능함을 확인하였다. 이에 따라, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)의 몰함량에 따라 제조된 상기 나일론 공중합체(nylon copolymer)의 기계적 물성을 용이하게 조절 가능하다는 것을 확인하였다.
본 발명의 실시 예에 따른 3중 형상기억특성을 갖는 나일론 공중합체(nylon copolymer)는, 바이오 기반의 나일론으로, 친환경적이고, 3중 형상을 기억할 뿐만 아니라 형상복원온도를 원하는 수준으로 제어가 가능하므로, 의료분야, 액추에이터, 항공기, 자동차, 전자산업 등 광범위한 분야에 적용이 가능하다.

Claims (12)

  1. 이타콘산(itaconic acid)과 디아민(diamine)을 반응시켜 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)을 생성하는 단계; 및
    상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 α,ω-지방족 아미노산(aliphatic amino acid)을 반응시켜 아래의 [화학식 1]로 도시된 나일론 공중합체(nylon copolymer)를 생성하는 단계를 포함하는 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법.
    [화학식 1](n, m은 양의 정수)
    Figure PCTKR2016006478-appb-I000011
  2. 제1 항에 있어서,
    상기 바이오매스 유래 피롤리돈기 함유 아미노산은 상기 이타콘산(itaconic acid)과 상기 디아민(diamine)의 미카엘 부가반응(Michael addition reaction) 및 아미드화반응(amidation)에 의해 생성되는 것을 포함하는 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법.
  3. 제2 항에 있어서,
    상기 디아민(diamine)은, 탄소수가 2 내지 13인 것을 포함하는 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법.
  4. 제1 항에 있어서,
    상기 나일론 공중합체(nylon copolymer)는, 상기 합성된 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 상기 α,ω-지방족 아미노산(aliphatic amino acid)의 축합중합에 의해 생성되는 것을 포함하는 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법.
  5. 제1 항에 있어서,
    상기 나일론 공중합체(nylon copolymer)를 생성하는 단계는, 상기 바이오매스 유래 피롤리돈기 함유 아미노산(amino acid)과 상기 α,ω-지방족 아미노산(aliphatic amino acid)을 상기 바이오매스 유래 피롤리돈기 함유 아미노산의 몰함량이 20~60%이 되도록 축합중합시키는 것을 포함하는 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법.
  6. 제5 항에 있어서,
    상기 α,ω-지방족 아미노산(aliphatic amino acid)은, 탄소수가 4, 9, 10, 11, 및 12인 것을 포함하는 3중 형상기억특성을 갖는 바이오 나일론의 제조 방법.
  7. 아래 [화학식 1]로 표시되는 나일론 공중합체(nylon copolymer)를 포함하는 3중 형상기억특성을 갖는 바이오 나일론.
    [화학식 1] (n, m은 양의 정수)
    Figure PCTKR2016006478-appb-I000012
  8. 제7 항에 있어서,
    상기 나일론 공중합체는, 온도변화에 따른 저장탄성률(storage modulus)을 측정한 경우, 상 전이 온도로 유리전이온도(Tg) 및 용융온도(Tm)를 모두 갖고, 용융온도(Tm) 이상에서 저장탄성률(storage modulus)이 일정한 값으로 유지되는 것을 포함하는 3중 형상기억특성을 갖는 바이오 나일론.
  9. 제7 항에 있어서,
    상기 나일론 공중합체는, 101.4 내지 167.6℃의 용융온도(Tm), 38.7 내지 44.4℃의 유리전이온도(Tg), 및 1.16 내지 1.18ml/g의 고유 점도를 갖는 것을 포함하는 3중 형상기억특성을 갖는 바이오 나일론.
  10. 제7 항에 따른 3중 형상기억특성을 갖는 바이오 나일론을 준비하는 단계;
    초기형상(A)의 상기 나일론 공중합체를 용융온도(Tm) 이상에서 외부로부터 가해진 힘에 의해 1차 변형되는 단계;
    상기 1차 변형된 나일론 공중합체를 유리전이온도(Tg)로 냉각하고, 상기 1차 변형을 일으킨 상기 힘을 제거하되, 상기 1차 변형된 나일론 공중합체의 형상(B)이 유지되는 단계;
    상기 1차 변형된 나일론 공중합체를 유리전이온도(Tg)에서 외부로부터 가해진 힘에 의해 2차 변형되는 단계; 및
    상기 2차 변형된 나일론 공중합체를 상온으로 냉각하고, 상기 2차 변형을 일으킨 상기 힘을 제거하되, 상기 2차 변형된 나일론 공중합체의 형상(C)이 유지되는 단계를 포함하는 3중 형상기억특성을 갖는 바이오 나일론의 사용방법.
  11. 제10 항에 있어서,
    상기 2차 변형된 나일론 공중합체(C)를 상기 유리전이온도(Tg)로 가열하여 상기 1차 변형된 나일론 공중합체의 형상(B)으로 복원되는 단계; 및
    상기 1차 변형된 나일론 공중합체(B)를 상기 용융온도(Tm) 이상으로 가열하여 상기 나일론 공중합체가 원래 형상(A)으로 복원되는 단계를 더 포함하는 3중 형상기억특성을 갖는 바이오 나일론의 사용방법.
  12. 이타콘산(itaconic acid)과 디아민(diamine)의 미카엘 부가반응(Michael addition reaction) 및 아미드화반응(amidation)에 의해 제조되고, 아래의 [화학식 2]로 표시되는 피롤리돈기 함유 아미노산(amino acid).
    [화학식 2](n은 양의 정수)
    Figure PCTKR2016006478-appb-I000013
PCT/KR2016/006478 2015-08-31 2016-06-17 3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법 WO2017039127A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/593,351 US20220204692A1 (en) 2015-08-31 2016-06-17 Bionylon having triple shape memory properties, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0122897 2015-08-31
KR1020150122897A KR101855556B1 (ko) 2015-08-31 2015-08-31 3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2017039127A1 true WO2017039127A1 (ko) 2017-03-09

Family

ID=58188944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006478 WO2017039127A1 (ko) 2015-08-31 2016-06-17 3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법

Country Status (3)

Country Link
US (1) US20220204692A1 (ko)
KR (1) KR101855556B1 (ko)
WO (1) WO2017039127A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102102574B1 (ko) * 2020-02-03 2020-04-20 서울과학기술대학교 산학협력단 패턴의 물리적 변형을 이용한 정보 제공 장치
CN113683900B (zh) * 2021-08-25 2022-09-16 南京工业大学 一种改性木质素-聚酰胺基热固性复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020161163A1 (en) * 1998-03-06 2002-10-31 Ube Industries, Ltd. Nylon 12, nylon 12 composition, method for producing nylon 12, and tubular molded product using nylon 12
US20110105683A1 (en) * 2008-06-30 2011-05-05 Koya Kato Polyamide resin, composition containing the polyamide resin, and molded articles of the polyamide resin and the composition
CN103030803A (zh) * 2012-12-23 2013-04-10 北京化工大学 一种生物基聚酰胺四元共聚物及其合成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384091B1 (ko) 2000-08-16 2003-05-14 학교법인 울산공업학원 형상기억 수지조성물과 이의 사용방법
JP5777134B2 (ja) * 2010-11-17 2015-09-09 国立大学法人北陸先端科学技術大学院大学 ポリアミドの製造方法
CN104193989A (zh) * 2014-07-27 2014-12-10 北京化工大学 一种生物基聚酰胺共聚物弹性体的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020161163A1 (en) * 1998-03-06 2002-10-31 Ube Industries, Ltd. Nylon 12, nylon 12 composition, method for producing nylon 12, and tubular molded product using nylon 12
US20110105683A1 (en) * 2008-06-30 2011-05-05 Koya Kato Polyamide resin, composition containing the polyamide resin, and molded articles of the polyamide resin and the composition
CN103030803A (zh) * 2012-12-23 2013-04-10 北京化工大学 一种生物基聚酰胺四元共聚物及其合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HA, JU WAN ET AL.: "Synthesis and Characterization of Fully Bio-based Copolyamides Derived from 11-aminoundecanoic Acid, 1,10-decanediamine and Itaconic Acid, Collected abstracts of research papers the Polymer Society of Korea Conference", THE POLYMER SOCIETY OF KOREA , 2015, vol. 40, no. 1, April 2015 (2015-04-01), pages 124 *
WANG, Z. ET AL.: "Synthesis of Fully Bio-based Polyamides with Tunable Properties by Employing Itaconic Acid", POLYMER, vol. 55, no. 19, 2014, pages 4846 - 4856, XP055367716 *

Also Published As

Publication number Publication date
US20220204692A1 (en) 2022-06-30
KR20170025849A (ko) 2017-03-08
KR101855556B1 (ko) 2018-05-04

Similar Documents

Publication Publication Date Title
WO2014003210A1 (en) Polyamide-imide copolymer film and method of preparing polyamide-imide copolymer
KR101922791B1 (ko) 신속 반응형, 형상 기억 열경화성 폴리이미드 및 이의 제조 방법
EP2760915A1 (en) Polyamide-imide copolymer film and method of preparing polyamide-imide copolymer
WO2017039127A1 (ko) 3중 형상기억특성을 갖는 바이오 나일론, 및 그 제조 방법
WO2012053699A1 (ko) 폴리아미드 수지
WO2011112016A2 (ko) 정렬된 카본 나노튜브와 고분자 복합체를 사용한 열전도성 플라스틱 및 그 제조방법
WO2017116103A1 (ko) 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈
WO2011013970A9 (ko) 폴리우레아 다공질체 및 그 제조방법
WO2019004677A1 (ko) 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재
JP2007100079A (ja) 熱硬化性ポリアミドイミド樹脂組成物、ポリアミドイミド樹脂硬化物、絶縁電線および成型ベルト
JPS61200125A (ja) ヘキサメチレンジアミン、アジピン酸、随意としての少なくとも1種の他の短鎖ジカルボン酸及び二量体酸を基とするコポリアミドの製造方法
CN111363122A (zh) 一种三重交联高性能聚合物及其制备方法
WO2021054513A1 (ko) 폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말
CN113980273A (zh) 液晶弹性体驱动器及其制备方法
WO2018190647A2 (ko) 자가치유 기능 폴리비닐계 화합물 및 이의 제조방법
US20230331987A1 (en) Polyamide and molded body and film obtained from the same and method for producing the polyamide
CN109694478A (zh) 一种超支化聚酰胺及其制备方法和用途
WO2019083136A1 (ko) 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법
WO2021118233A1 (ko) 다중고리 구조를 포함하는 비스말레이미드 유래 에폭시 화합물 및 이의 제조방법
WO2009104936A2 (ko) 수분산 재유화형 폴리우레탄/아크릴공중합체 하이브리드 수지 조성물 및 그의 제조방법
CN116253882A (zh) 一种氨基超支化硅氧烷及其改性聚酰亚胺气凝胶材料的制备方法
WO2014104482A1 (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
Takeichi et al. Effect of in situ-formed polydimethylsiloxane on the properties of polyimide hybrids
TW201833183A (zh) 聚醯亞胺前驅物組成物、聚醯亞胺樹脂之製造方法及聚醯亞胺樹脂
WO2022071713A1 (ko) 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842093

Country of ref document: EP

Kind code of ref document: A1