WO2017038809A1 - 滞空位置制御装置 - Google Patents

滞空位置制御装置 Download PDF

Info

Publication number
WO2017038809A1
WO2017038809A1 PCT/JP2016/075305 JP2016075305W WO2017038809A1 WO 2017038809 A1 WO2017038809 A1 WO 2017038809A1 JP 2016075305 W JP2016075305 W JP 2016075305W WO 2017038809 A1 WO2017038809 A1 WO 2017038809A1
Authority
WO
WIPO (PCT)
Prior art keywords
string
control device
members
winding
small unmanned
Prior art date
Application number
PCT/JP2016/075305
Other languages
English (en)
French (fr)
Inventor
和雄 市原
紀代一 菅木
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Priority to US15/756,048 priority Critical patent/US10246188B2/en
Priority to JP2017538042A priority patent/JP6261830B2/ja
Publication of WO2017038809A1 publication Critical patent/WO2017038809A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0866Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted to captive aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/80UAVs characterised by their small size, e.g. micro air vehicles [MAV]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • B64U2201/202Remote controls using tethers for connecting to ground station

Definitions

  • the present invention relates to a stagnant position control device, and more particularly to a technique for stably hovering a small unmanned airplane having a plurality of rotor blades at a desired position in space.
  • a multicopter is a type of helicopter equipped with a plurality of rotors, and is a rotary wing aircraft that flies while balancing the fuselage by controlling the rotational speed of each rotor. Since a multi-copter can use a propeller having a simpler structure than that of a helicopter, the multi-copter is excellent in maintainability and can be configured at a relatively low cost.
  • the multicopter's airframe controls are automated, in order to fly the multicopter as intended by the pilot, appropriate maneuvering technology, maintenance technology, and airframe performance are required. If these are not sufficient, the multicopter may fly out of the viewing range or out of the communication range due to external factors such as mishandling, poor maintenance of the aircraft, or strong winds. This is the same when the multicopter is autonomously flying in the program.
  • a multicopter equipped with a photographing device or measuring device is stagnated at a predetermined position in the space, and shooting or measuring from that position for a long time, the multicopter is quickly moved to the predetermined position, and hovering flight It is necessary to keep the aircraft in the same position for a long time. It is not easy to perform such a flight stably.
  • the problem to be solved by the present invention is to quickly move a small unmanned airplane equipped with a plurality of rotor blades to a predetermined position in the space, and to make the airframe fly stably at that position.
  • the present invention is to provide a hovering position control device.
  • the airborne position control device of the present invention connects a small unmanned airplane having a plurality of rotor blades, a fixed surface on which the small unmanned airplane takes off and landing, and the small unmanned airplane and the fixed surface.
  • a plurality of string-like members, and the plurality of string-like members have a length that is all in tension when the small unmanned airplane reaches a designated position that is a predetermined position in the space. It is characterized by.
  • the small unmanned airplane is connected to the fixed surface with a plurality of string-like members, and the length of these string-like members is adjusted so that all are in a tension state when the small unmanned airplane reaches the specified position, By simply raising the small unmanned airplane vertically from the fixed surface, the aircraft is guided to a designated position by these string-like members. In addition, since these string-like members are in tension at the designated position, the small unmanned airplane further generates upward thrust at the designated position, thereby pulling the small unmanned airplane and the fixed surface in opposite directions. The small unmanned airplane is prevented from easily deviating from the designated position. That is, a small unmanned airplane can be stably hovered at a specified position.
  • the small unmanned airplane of the present invention since the small unmanned airplane of the present invention is connected to the fixed surface with a string-like member, the small unmanned airplane may fly out of the viewing range or out of the communication range due to misoperation, malfunction of the fuselage, strong wind, etc. There is no end.
  • the plurality of string-like members have at least three string-like members.
  • ⁇ A small unmanned airplane can be moored with at least three string-like members, so that one point in the space can be designated.
  • the plurality of string-like members include a power line that supplies power to the small unmanned airplane or a signal line that transmits and receives signals to and from the small unmanned airplane.
  • the winding control device further includes a control device and a relaxation detection device that detects the relaxation of the plurality of string-like members, and the relaxation detection device detects the relaxation of any of the plurality of string-like members. It is preferable that all the winding devices perform a winding operation until the relaxed string-like member is in a tension state.
  • Each string-like member is connected to a fixed surface via a winding device, and when any of the string-like members is detected to be relaxed, all the string-like members are wound up until the string-like member is in a tensioned state. By doing so, it is possible to correct the deviation of the flight position of the small unmanned airplane in the horizontal direction. Furthermore, it is possible to prevent the small unmanned airplane from crashing outside the take-off and landing area, which is an area defined by an annular virtual line connecting each winding device and the winding device adjacent to the winding device.
  • the winding control device increases the winding speed of all the winding devices when the string-like member is not in tension even when the relaxed string-like member is wound by a predetermined length. Is preferred.
  • connection portion to which the plurality of string-like members are connected is provided at the bottom of the small unmanned airplane, the connection portion is a part of the relaxation detecting device, and the connection portion is the plurality of string-like members. It is preferable to be able to tilt in the direction pulled by the member.
  • the winding control device and the relaxation detecting device are provided in the small unmanned airplane, and the small unmanned airplane and the plurality of winding devices are connected to each other by the signal lines so as to communicate with each other. preferable.
  • the small unmanned airplane and each winding device are connected by a signal line, when the slack of any of the string-like members is detected, the small unmanned airplane instructs each winding device to cancel the relaxation. It becomes possible to put out directly.
  • the small unmanned airplane having a plurality of rotor blades can be quickly moved to a predetermined position in the space, and the aircraft can be stably hovered at that position. Is possible.
  • the airborne position control device of this embodiment is a monitoring device that raises a small unmanned aerial vehicle to a predetermined altitude and monitors the surrounding situation from the position using a camera or a measuring instrument.
  • the hovering position control device may be automatically executed based on a predetermined cycle, or may be executed irregularly at any timing of the operator.
  • FIG. 1 is a schematic diagram showing an appearance of a hovering position control apparatus according to a first embodiment of the present invention.
  • the airspace position control device 90 includes a multicopter 100 (small unmanned airplane) having a plurality of rotor blades, a fixed surface 20 on which the multicopter 100 takes off and landing, and three wires 30 that connect the multicopter 100 and the fixed surface 20. (String member) and a transceiver 810 that wirelessly controls the multicopter 100.
  • the length of each wire 30 is adjusted so that when the multicopter 100 reaches a designated position D, which is a predetermined position in the space, all are in a tension state.
  • the fixed surface 20 refers to a fixed surface that cannot be easily moved even when an external force is applied, such as the ground surface or the rooftop of a building.
  • the fixed surface 20 does not necessarily need to be a horizontal surface, and by adjusting the length of each wire 30, it can be used as the fixed surface 20 even if it is a surface provided with unevenness and inclination.
  • the fixed surface 20 is provided with three winding devices 400 for feeding and winding the wires 30, and the end of each wire 30 on the fixed surface 20 side is connected to the winding device 400.
  • the winding device 400 is a small winch that has an auto tension function and always pulls the wire 30 in the winding direction with a constant tension. Naturally, the tension of the wire 30 is adjusted to be smaller than the lift force that the multicopter 100 can output. Further, the winding device 400 is not an essential configuration, and each wire 30 may be directly connected to the fixed surface 20.
  • FIG. 2 is a block diagram showing a functional configuration of the hovering position control device 90.
  • the multicopter 100 mainly includes a flight controller 120 that controls the attitude and flight operation of the multicopter 100 in the air, a plurality of rotor blades 170 that generate lift by rotating the multicopter 100, and a situation around the multicopter 100.
  • a camera module 130 for photographing, a transmitter / receiver 110 that performs wireless communication with a pilot (transmitter / receiver 810), and a battery 180 that supplies electric power to these units are configured.
  • the flight controller 120 includes a control device 121 that is a microcontroller.
  • the control device 121 includes a CPU 122 that is a central processing unit, a RAM / ROM 123 that is a storage device, and a PWM controller 126 that transmits a control signal of the DC motor 160 to an ESC (Electric Speed Controller) 150.
  • the DC motors 160 are a plurality (four in this embodiment) of outer rotor type DC brushless motors, and a rotor blade 170 is attached to the output shaft of each DC motor 160.
  • the ESC 150 is disposed for each DC motor 160 and rotates each DC motor 160 at a speed instructed by the PWM controller 126.
  • the flight controller 120 includes a sensor group 124 and a GPS receiver 125, which are connected to the control device 121.
  • the sensor group 124 of the multicopter 100 includes an acceleration sensor, a gyro sensor (angular velocity sensor), an atmospheric pressure sensor, a geomagnetic sensor (electronic compass), and the like.
  • the control device 121 can acquire the current position including the latitude, longitude, and altitude of the multicopter 100 by using the sensor group 124 and the GPS receiver 125.
  • the RAM / ROM 123 of the control device 121 stores a flight control program 123a in which a flight control algorithm during the flight of the multicopter 100 is implemented.
  • the control device 121 controls the attitude of the multicopter 100 to be constant by using the program 123a and information acquired from the sensor group 124.
  • the maneuvering position control device 90 may be operated manually by the operator, or may be automatically performed by separately registering an autonomous flight program in the RAM / ROM 123 of the control device 121.
  • the hovering position control device of the present invention can guide the small unmanned airplane to the designated position by the string-like member, it is considered that the sensor group 124 and the GPS receiver 125 can be omitted.
  • the multicopter 100 includes a camera module 130 that captures the situation around the multicopter 100.
  • the camera module 130 receives a command from the operator (transmitter / receiver 810), changes the circumferential direction and the vertical direction of the camera unit 133 according to the command from the camera control unit 131, and the camera unit 133.
  • the camera posture control unit 132 that corrects the camera shake and the camera unit 133 that captures the situation in the direction directed to the camera posture control unit 132.
  • the operation of the camera module 130 may be performed manually by the operator, or may be automatically performed by an autonomous photographing program registered in the camera control unit 131 using a microcontroller in the camera control unit 131.
  • the hovering position control apparatus in this embodiment is used as a monitoring apparatus
  • the camera module 130 (the measuring instrument module 140 in the third embodiment) is mounted.
  • the camera module 130 and the measuring instrument module 140 are indispensable configurations. is not.
  • a speaker is mounted and used for a public address (Public Address), or a light source is mounted and used as a light wave sign such as a lighthouse.
  • the multicopter 100 is connected to the fixed surface 20 by three wires 30 and the length is adjusted so that all of the wires 30 are in tension when the multicopter 100 reaches the designated position D.
  • the multicopter 100 is swept by the wind while rising and its horizontal position deviates from the specified position D, only some of the wires 30 are in advance and in tension.
  • the movable range of the multicopter 100 is limited to an arc drawn by the tip of the wire 30 in the tension state (the end of the wire 30 on the multicopter 100 side).
  • the designated position D is an intersection of arcs drawn by the tips of the wires 30 in a tension state, and the intersection is the highest position in the movable range of the multicopter 100. Therefore, when the multicopter 100 continues to rise, the multicopter 100 follows one of the arcs and is guided to the designated position D.
  • all these wires 30 are in tension. Therefore, when the multicopter 100 generates a further upward thrust at the designated position D, the multicopter 100 and the fixed surface 20 can be pulled in opposite directions. Thereby, it is possible to prevent the multicopter 100 from easily deviating from the designated position D. That is, the multicopter 100 can be stably hovered at the designated position D.
  • the multicopter 100 since the multicopter 100 is connected to the fixed surface 20 by the wire 30, the multicopter 100 may fly out of the viewing range or out of the communication range due to a steering mistake, a malfunction of the fuselage, or a strong wind. Is prevented.
  • the designated position D is specified as one point in the space by connecting the multicopter 100 with three wires 30, but the number of the wires 30 is not limited to three. If the designated position D is allowed to be a linear range in the space, the number may be two, or conversely, four or more.
  • FIG. 3 is a schematic diagram showing the appearance of the hovering position control device 91 according to the second embodiment of the present invention
  • FIG. 4 is a block diagram showing the functional configuration of the hovering position control device 91.
  • components having the same or the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • the staying position control device 91 includes a winding detection device 501 that detects the relaxation of the wire 30 in the winding device 401 that feeds and winds each wire 30, and further performs the operation of the winding device 401.
  • a winding control device 601 for centralized management is provided.
  • the configuration of the multicopter 100 is the same as that of the stagnant position control device 90 of the first embodiment.
  • the winding device 401 is a small winch that has an auto-tension function and always pulls the wire 30 in the winding direction with a constant tension.
  • tensile_strength of the wire 30 is the same as the winding apparatus 400 of 1st Embodiment that the multicopter 100 is adjusted so that it may become smaller than the lift which can be output.
  • the winding device 401 is an electric winch, and can perform a winding operation at an arbitrary timing and speed according to an instruction from the winding control device 601.
  • a slack detection device 501 is incorporated in each winding device 401.
  • the looseness detection device 501 is a device that detects the feeding operation or the winding operation of the winding device 401 using, for example, a rotary encoder, and notifies the winding control device 601 of it. That is, the looseness detection of the wire 30 in the stay position control device 91 is realized by the cooperation of the relaxation detection device 501 and the winding control device 601.
  • “relaxation of the string-like member” in the present invention does not simply indicate a state in which the string-like member is slack, but prevents in advance the occurrence of sagging in the wire 30 as in the winding device 401, for example.
  • the length in which a part of the wires 30 is drawn out is not enough for the expected length compared to the length in which the other wires 30 are drawn out (part thereof) The wire 30 is not pulled sufficiently, i.e., relaxed).
  • the winding control device 601 is a microcontroller including a CPU 61 and a RAM / ROM 62.
  • the RAM / ROM 62 stores a winding control program 62a in which a flight position correction algorithm of the multicopter 100 described below is mounted.
  • FIG. 9 is an explanatory diagram showing a flight position correction procedure of the multicopter 100 by the winding control device 601 (winding control program 62a).
  • the winding control device 601 does all the winding until the relaxed wire 30 is in a tension state.
  • the winding device 401 is caused to perform a winding operation (FIG. 9B).
  • the deviation of the flight position of the multicopter 100 in the horizontal direction can be corrected by winding all the wires 30 to the length where the wire 30 is in a tension state. it can. Furthermore, in addition to the take-off and landing area A (see FIG. 3), which is an area defined by an annular virtual line connecting each winding device 401 and the winding device 401 adjacent to the winding device 401, the multicopter 100. Can be prevented from falling.
  • the winding control device 601 increases the winding speed of all the winding devices 401 when the relaxed wire 30 is not in tension even after winding the relaxed wire 30 by a predetermined length (for example, 2 to 3 m).
  • the multicopter 100 is likely to fail or crash. Therefore, by increasing the winding speed of all the winding devices 401 and quickly pulling back the multicopter 100 into the take-off and landing area A, it is possible to minimize the damage caused by such problems.
  • FIG. 5 is a schematic diagram showing the appearance of the hovering position control device 92 according to the third embodiment of the present invention
  • FIG. 6 is a block diagram showing the functional configuration of the hovering position control device 92.
  • components having the same or the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • the basic configuration of the remaining position control device 92 is the same as that of the remaining position control device 91 of the second embodiment.
  • the stay position control apparatus 92 includes a measuring instrument module 140 instead of the camera module 130 (see FIG. 2).
  • the measuring instrument used in the measuring instrument module 140 for example, an atmospheric component analyzer, an infrared camera, a radio wave measuring instrument, and the like are conceivable, but not limited thereto.
  • the measuring instrument module 140 is a measuring instrument controller 141 that receives an instruction from the operator (transceiver 811), and a measuring instrument that changes the circumferential direction and the vertical direction of the measuring instrument unit 143 according to the instruction of the measuring instrument controller 141.
  • the posture control unit 142 and a measuring device unit 143 that performs a side in a direction directed to the measuring device posture control unit 142 are configured.
  • the operation of the measuring instrument module 140 may be performed manually by the operator, or may be automatically performed by an autonomous measurement program registered in the measuring instrument control section 141 using a microcontroller for the measuring instrument control section 141. .
  • the wire 30 ′ connecting the multicopter 101 and the fixed surface 20 is connected to the power line 32 that supplies power to the multicopter 101, and the operator (transmitter / receiver 811) is connected to the multicopter 101.
  • a signal line 31 for transmitting and receiving signals is included.
  • the multicopter 101 can be stably hovered and flying at the designated position D, and the limitation on the flight time due to the battery capacity is eliminated.
  • the influence of noise in communication between the (transmitter / receiver 811) and the multicopter 101 (transmitter / receiver 110 ′) is suppressed.
  • the power line 32 and the signal line 31 may be connected to the multicopter 101 alone instead of the wire 30. However, if there is a concern about the strength of the power line 32 and the signal line 31, the power line 32 and the signal line 31 may be connected separately from the wire 30. Good. That is, as in the previous embodiment, the multicopter 101 and the fixed surface 20 are connected by the three wires 30, and the signal line 31 is connected to one of them and the power line 32 is connected to the other to form the multicopter 101. It is good also as a structure to connect.
  • FIG. 7 is a schematic diagram showing an appearance of the hovering position control device 93 according to the fourth embodiment of the present invention
  • FIG. 8 is a block diagram showing a functional configuration of the hovering position control device 93.
  • components having the same or the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • a winding control device 602 and a relaxation detection device 502 having functions equivalent to those of the winding control device 601 and the relaxation detection device 501 in the previous embodiment are provided inside the body of the multicopter 102. ing.
  • the multicopter 102 and each winding device 401 are connected to each other via a signal line 31 so as to communicate with each other.
  • the signal line 31 may be connected to the multicopter 102 alone instead of the wire 30, and the signal line 31 may be connected to the wire 30 in the same manner as in the previous embodiment.
  • the connecting portion 51 is a member that can be tilted in the direction pulled by these signal lines 31, and the connecting portion 51 constitutes a part of the relaxation detecting device 502.
  • the connecting portion 51 a set of a connecting piece that stands upright in the vertical direction by an elastic force and maintains its position unless an external force of a predetermined magnitude is applied, and a tilt direction and a tendency angle of the connecting piece.
  • a structure having a variable resistor is conceivable.
  • the configuration of JP-A-06-110602 can be referred to.
  • the relaxation detection device 502 notifies only the winding control device 602 of the detected relaxation information, but may be configured to notify the control device 121 of the flight controller 120 of such information. By adopting such a configuration, it becomes possible for the multicopter 102 to autonomously correct the flight position, and it is possible to control the hovering position of the multicopter 102 more flexibly.
  • the multicopter 102 and each winding device 401 are connected by the signal line 31 respectively, when the relaxation of any of the signal lines 31 is detected, the multicopter 102 directly connects to each winding device 401. It is possible to issue an instruction for eliminating the relaxation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

複数の回転翼を備える小型無人飛行機を空間中の所定位置に速やかに移動させ、機体をその位置で安定してホバリング飛行させることを可能とする滞空位置制御装置を提供する。 複数の回転翼を備える小型無人飛行機と、前記小型無人飛行機が離着陸する固定面と、前記小型無人飛行機と前記固定面とを連結する複数の紐状部材と、を備え、前記複数の紐状部材は、前記小型無人飛行機が空間中の所定の位置である指定位置に至ったときに、すべてが緊張状態となる長さであることを特徴とする滞空位置制御装置により解決する。また、前記複数の紐状部材は少なくとも3本の前記紐状部材を有することが好ましい。

Description

滞空位置制御装置
 本発明は滞空位置制御装置に関し、さらに詳しくは、複数の回転翼を備える小型無人飛行機を空間中の所望の位置において安定してホバリング飛行させる技術に関する。
 従来、産業用無人ヘリコプターに代表される小型の無人飛行機(UAV)は、機体が高価で入手困難なうえ、安定して飛行させるためには操作に熟練が必要とされるものであった。しかし近年、高性能かつ取扱いも容易な加速度センサや角速度センサ、マイクロコントローラなどが廉価に入手可能となったことから、機体の価格が下落するとともに、機体の制御操作の多くが自動化されたことで操作性が飛躍的に向上した。こうした背景から現在、特に小型のマルチコプターについては、趣味目的だけでなく、広範な分野における種々のミッションへの応用が試行されている。
 マルチコプターは、複数のロータが搭載されたヘリコプターの一種であり、これら各ロータの回転速度を制御することにより機体のバランスをとりながら飛行する回転翼機である。マルチコプターは、ヘリコプターよりも簡易な構造のプロペラが使用可能であることから、整備性に優れ、また、比較的低いコストで機体を構成することが可能である。
特開2010‐058779公報
 マルチコプターの機体制御の多くが自動化されても、操縦者が意図した通りにマルチコプターを飛行させるためには相応の操縦技術や整備技術、機体性能が求められる。これらが十分でない場合、操縦ミスや機体の整備不良、または強風などの外的要因によりマルチコプターが目視範囲外や通信圏外へ飛去してしまうこともある。これはプログラムでマルチコプターを自律飛行させる場合も同様である。
 例えば撮影機器や測定機器を搭載したマルチコプターを空間中の所定位置に滞空させ、その位置から長時間にわたって撮影や測定を行う場合、マルチコプターを所定位置に速やかに移動させ、かつ、ホバリング飛行により機体を同じ位置に長時間留める必要がある。このような飛行を安定して行うことは容易ではない。
 上記問題に鑑み、本発明が解決しようとする課題は、複数の回転翼を備える小型無人飛行機を空間中の所定位置に速やかに移動させ、機体をその位置で安定してホバリング飛行させることを可能とする滞空位置制御装置を提供することにある。
 上記課題を解決するため、本発明の滞空位置制御装置は、複数の回転翼を備える小型無人飛行機と、前記小型無人飛行機が離着陸する固定面と、前記小型無人飛行機と前記固定面とを連結する複数の紐状部材と、を備え、前記複数の紐状部材は、前記小型無人飛行機が空間中の所定の位置である指定位置に至ったときに、すべてが緊張状態となる長さであることを特徴とする。
 小型無人飛行機が複数の紐状部材で固定面に連結され、これら紐状部材の長さが、小型無人飛行機が指定位置に至ったときにすべて緊張状態となるように調節されていることにより、小型無人飛行機を固定面から垂直に上昇させるだけで、機体がこれら紐状部材により指定位置へと誘導される。また、指定位置ではこれら紐状部材は緊張状態にあることから、小型無人飛行機が指定位置において上方への推力をさらに発生させることにより、小型無人飛行機と固定面とを互いが反対方向へ引っ張られ、小型無人飛行機が指定位置から容易に逸脱することが防止される。つまり、小型無人飛行機を指定位置において安定してホバリング飛行させることができる。
 さらに、本発明の小型無人飛行機は紐状部材で固定面に連結されていることから、操縦ミスや機体の故障、または強風などによっては、小型無人飛行機が目視範囲外や通信圏外へ飛去してしまうことがない。
 また、前記複数の紐状部材は少なくとも3本の前記紐状部材を有することが好ましい。
 少なくとも3本の紐状部材で小型無人飛行機を係留することにより、空間中の一点を指定位置とすることができる。
 また、前記複数の紐状部材には、前記小型無人飛行機に電力を供給する電力線または前記小型無人飛行機と信号を送受信する信号線が含まれることが好ましい。
 複数の紐状部材に電力線または信号線を含めることにより、小型無人飛行機を指定位置で安定してホバリング飛行させることができるのみならず、例えばバッテリー容量による飛行時間の制限を解消させたり、小型無人飛行機との無線通信がノイズで阻害されたりすることを防止することができる。
 また、前記紐状部材ごとに前記固定面に設置され、前記各紐状部材の繰り出しおよび巻き取りを行う複数の巻取装置と、前記複数の巻取装置の動作を一元的に管理する巻取制御装置と、前記複数の紐状部材の弛緩を検知する弛緩検知装置と、をさらに有し、前記弛緩検知装置が前記複数の紐状部材のいずれかの弛緩を検知すると、前記巻取制御装置は、弛緩した前記紐状部材が緊張状態となるまで、すべての前記巻取装置に巻取動作を行わせることが好ましい。
 各紐状部材が巻取装置を介して固定面に接続され、いずれかの紐状部材の弛緩が検知されたときには、その紐状部材が緊張状態となるまですべての紐状部材を巻き取る構成とすることにより、水平方向における小型無人飛行機の飛行位置のずれを修正することができる。さらに、各巻取装置とその巻取装置に隣接する巻取装置とを結んだ環状の仮想線で区画される領域である離着陸エリアの外に小型無人飛行機が墜落することを防止することができる。
 また、前記巻取制御装置は、弛緩した前記紐状部材を所定の長さ巻き取っても該紐状部材が緊張状態にならないときは、すべての前記巻取装置の巻取速度を上昇させることが好ましい。
 弛緩した紐状部材を所定の長さ巻き取っても弛緩が解消しない場合には、小型無人飛行機の故障や墜落の蓋然性が高いものと判断し、早急に小型無人飛行機を離着陸エリア内に引き戻すことで、かかる不具合の被害を最小限に抑えることが可能となる。
 また、前記小型無人飛行機の底部には、前記複数の紐状部材が連結される連結部が設けられ、前記連結部は前記弛緩検知装置の一部であり、前記連結部は前記複数の紐状部材に牽引された方向へ傾倒可能であることが好ましい。
 小型無人飛行機の底部に設けられた連結部に各紐状部材が連結されていることにより、小型無人飛行機の飛行位置と指定位置との水平方向の位置にずれが生じると、連結部が紐状部材に不均等に引っ張られることとなる。これにより連結部が小型無人飛行機の復帰すべき方向に傾倒し、小型無人飛行機の水平方向における位置ずれの方向、および、弛緩している紐状部材を特定することが可能となる。
 また、前記巻取制御装置および前記弛緩検知装置は前記小型無人飛行機に備えられ、前記小型無人飛行機と前記複数の巻取装置とは、それぞれ前記信号線により互いに通信可能に接続されていることが好ましい。
 小型無人飛行機と各巻取装置とが信号線で連結されることにより、いずれかの紐状部材の弛緩を検知した場合に、小型無人飛行機から各巻取装置に対して弛緩を解消させるための指示を直接出すことが可能となる。
 以上のように、本発明にかかる滞空位置制御装置によれば、複数の回転翼を備える小型無人飛行機を空間中の所定位置に速やかに移動させ、機体をその位置で安定してホバリング飛行させることが可能となる。
第1実施形態にかかる滞空位置制御装置の外観を示す模式図である。 第1実施形態にかかる滞空位置制御装置の機能構成を示すブロック図である。 第2実施形態にかかる滞空位置制御装置の外観を示す模式図である。 第2実施形態にかかる滞空位置制御装置の機能構成を示すブロック図である。 第3実施形態にかかる滞空位置制御装置の外観を示す模式図である。 第3実施形態にかかる滞空位置制御装置の機能構成を示すブロック図である。 第4実施形態にかかる滞空位置制御装置の外観を示す模式図である。 第4実施形態にかかる滞空位置制御装置の機能構成を示すブロック図である。 巻取制御装置によるマルチコプターの飛行位置修正手順を示す説明図である。
 以下、本発明にかかる滞空位置制御装置の実施形態について図面を用いて詳細に説明する。本実施形態の滞空位置制御装置は、小型無人飛行機を所定の高度まで上昇させ、その位置からカメラや測定器を使って周囲の状況をモニタする監視装置である。滞空位置制御装置は予め定められた周期に基づいて自動的に実行されてもよく、操縦者の任意のタイミングで不定期に実行されてもよい。
(第1実施形態)
 図1は本発明の第1実施形態にかかる滞空位置制御装置の外観を示す模式図である。滞空位置制御装置90は、複数の回転翼を備えるマルチコプター100(小型無人飛行機)と、マルチコプター100が離着陸する固定面20と、マルチコプター100と固定面20とを連結する3本のワイヤー30(紐状部材)と、マルチコプター100を無線操縦する送受信器810と、を備えている。また、各ワイヤー30の長さは、マルチコプター100が空間中の所定の位置である指定位置Dに至ったときに、すべてが緊張状態となる長さに調節されている。
 ここで、固定面20とは、例えば地表やビルの屋上など、外力を加えても容易には移動させることができない固定された面をいう。固定面20は必ずしも水平面である必要はなく、各ワイヤー30の長さを調節することにより、凹凸や傾斜が設けられた面であっても固定面20として用いることができる。
 また、固定面20には、ワイヤー30の繰り出しおよび巻き取りを行う3基の巻取装置400が設置されており、各ワイヤー30の固定面20側の端部は巻取装置400に接続されている。巻取装置400は、オートテンション機能を備え、ワイヤー30を常に一定の張力で巻取方向へ引き込む小型のウインチである。ワイヤー30の張力は、当然、マルチコプター100が出力可能な揚力よりも小さくなるよう調整されている。また、巻取装置400は必須の構成ではなく、各ワイヤー30は固定面20に直接接続されていてもよい。
 図2は滞空位置制御装置90の機能構成を示すブロック図である。マルチコプター100は主に、空中におけるマルチコプター100の姿勢や飛行動作を制御するフライトコントローラ120、回転することによりマルチコプター100に揚力を発生させる複数の回転翼170、マルチコプター100の周囲の状況を撮影するカメラモジュール130、操縦者(送受信器810)との無線通信を行う送受信器110、およびこれらに電力を供給するバッテリー180により構成される。
 フライトコントローラ120は、マイクロコントローラである制御装置121を備えている。制御装置121は、中央処理装置であるCPU122、記憶装置であるRAM/ROM123、および、ESC(Electric Speed Controller)150へDCモータ160の制御信号を送信するPWMコントローラ126を備えている。DCモータ160は複数(本実施形態においては4つ)のアウターロータ型DCブラシレスモータであり、各DCモータ160の出力軸には回転翼170が取り付けられている。ESC150はDCモータ160ごとに配置され、PWMコントローラ126から指示された速度で各DCモータ160を回転させる。
 また、フライトコントローラ120はセンサ群124およびGPS受信器125を備えており、これらは制御装置121に接続されている。マルチコプター100のセンサ群124には、加速度センサ、ジャイロセンサ(角速度センサ)、気圧センサ、地磁気センサ(電子コンパス)などが含まれている。制御装置121は、これらセンサ群124およびGPS受信器125により、マルチコプター100の緯度、経度、および高度からなる現在位置を取得可能である。
 制御装置121のRAM/ROM123には、マルチコプター100の飛行時における飛行制御アルゴリズムが実装された飛行制御プログラム123aが記憶されている。制御装置121はかかるプログラム123aとセンサ群124から取得した情報とを用いてマルチコプター100の姿勢を一定に制御する。滞空位置制御装置90の操作は、操縦者が手動で行ってもよく、または、制御装置121のRAM/ROM123に別途自律飛行プログラムを登録しておくことにより自動的に行ってもよい。尚、本発明の滞空位置制御装置は、紐状部材により小型無人飛行機を指定位置へ誘導可能であることから、これらセンサ群124およびGPS受信器125は省略することも可能と考えられる。
 また、マルチコプター100はマルチコプター100の周囲の状況を撮影するカメラモジュール130を備えている。カメラモジュール130は、操縦者(送受信器810)からの指示を受け付けるカメラ制御部131と、カメラ制御部131の指示によりカメラユニット133の周方向および上下方向の向きを変更し、また、カメラユニット133のブレを補正するカメラ姿勢制御部132と、カメラ姿勢制御部132に向けられた方向の状況を撮影するカメラユニット133と、により構成されている。カメラモジュール130の操作は操縦者が手動で行ってもよく、または、カメラ制御部131にマイクロコントローラを用いて、カメラ制御部131に登録した自律撮影プログラムにより自動的に行ってもよい。
 尚、本実施形態における滞空位置制御装置は監視装置として用いられるためカメラモジュール130(第3実施形態では測定器モジュール140)が搭載されているが、カメラモジュール130や測定器モジュール140は必須の構成ではない。本発明のその他の用途としては、例えばスピーカーを搭載してパブリック・アドレス(Public Address)に用いたり、光源を搭載して灯台のような光波標識として用いたり、様々な用途が考えられる。
 マルチコプター100が3本のワイヤー30で固定面20に連結され、マルチコプター100が指定位置Dに至ったときにこれらワイヤー30のすべてが緊張状態となるようにその長さが調節されていることにより、マルチコプター100を固定面20から垂直に上昇させるだけで、マルチコプター100を指定位置Dへと誘導することが可能とされている。例えば、マルチコプター100が上昇中に風にあおられ、その水平方向の位置が指定位置Dからずれた場合、一部のワイヤー30のみが先行して緊張状態となる。これにより、マルチコプター100の移動可能範囲は、その緊張状態となったワイヤー30の先端(ワイヤー30のマルチコプター100側の端部)が描く円弧上に制限される。指定位置Dは緊張状態にある各ワイヤー30の先端が描く円弧の交点であり、かかる交点は、マルチコプター100の移動可能範囲の中で最も高い位置にある。そのため、マルチコプター100が上昇を続けることにより、マルチコプター100はいずれかの円弧を辿って指定位置Dへと誘導されることとなる。
 また、指定位置Dではこれらワイヤー30はすべて緊張状態にある。そのため、マルチコプター100が指定位置Dにおいてさらに上方への推力を発生させることにより、マルチコプター100と固定面20とを互いに反対方向へ引っ張らせることができる。これにより、マルチコプター100が指定位置Dから容易に逸脱することを防止することができる。つまり、マルチコプター100を指定位置Dにおいて安定してホバリング飛行させることができる。
 さらに、マルチコプター100はワイヤー30で固定面20に連結されていることから、操縦ミスや機体の故障、または強風などによって、マルチコプター100が目視範囲外や通信圏外へ飛去してしまうことが防止される。
 尚、滞空位置制御装置90では3本のワイヤー30でマルチコプター100を連結することにより、指定位置Dを空間中の一点に特定しているが、ワイヤー30の本数は3本に限られず、例えば指定位置Dが空間中の直線範囲となることが許容される場合は2本にしてもよく、逆に4本以上とすることも可能である。
(第2実施形態)
 以下に、本発明の滞空位置制御装置にかかる第2実施形態について説明する。図3は本発明の第2実施形態にかかる滞空位置制御装置91の外観を示す模式図であり、図4は滞空位置制御装置91の機能構成を示すブロック図である。なお、以下の説明では、先の実施形態と同様または同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
 滞空位置制御装置91は、各ワイヤー30の繰り出しおよび巻き取りを行う巻取装置401に、ワイヤー30の弛緩を検知する弛緩検知装置501が組み込まれており、さらに、これら巻取装置401の動作を一元的に管理する巻取制御装置601を備えている。尚、マルチコプター100の構成は第1実施形態の滞空位置制御装置90と同様である。
 巻取装置401は、オートテンション機能を備え、ワイヤー30を常に一定の張力で巻取方向へ引き込む小型のウインチである。ワイヤー30の張力はマルチコプター100が出力可能な揚力よりも小さくなるよう調整されている点は第1実施形態の巻取装置400と同様である。また、巻取装置401は電動ウインチであり、巻取制御装置601からの指示により任意のタイミングおよび速度で巻取動作を行わせることが可能である。
 滞空位置制御装置91では、各巻取装置401に弛緩検知装置501が組み込まれている。弛緩検知装置501は、例えばロータリーエンコーダなどにより巻取装置401の繰出動作や巻取動作の実行を検知し、巻取制御装置601へ通知する装置である。つまり、滞空位置制御装置91におけるワイヤー30の弛緩検知は、弛緩検知装置501および巻取制御装置601の協働により実現される。
 尚、本発明における「紐状部材の弛緩」とは、単に紐状部材がたるんだ状態のみを指すのではなく、例えば巻取装置401のように、ワイヤー30にたるみが生じることを予め防止する構成を備える場合には、他のワイヤー30が繰り出された長さと比較して、一部のワイヤー30が繰り出された長さが本来見込まれる長さに足りていない状態も含まれる(その一部のワイヤー30は十分に引っ張られていない、つまり弛緩しているものとみなす)。
 巻取制御装置601は、CPU61およびRAM/ROM62を備えるマイクロコントローラである。RAM/ROM62には、以下に説明するマルチコプター100の飛行位置修正アルゴリズムが実装された巻取制御プログラム62aが記憶されている。
 図9は巻取制御装置601(巻取制御プログラム62a)によるマルチコプター100の飛行位置修正手順を示す説明図である。弛緩検知装置501からの通知によりワイヤー30のいずれかの弛緩が検知されたときは(図9(a))、巻取制御装置601は、弛緩したワイヤー30が緊張状態となるまで、すべての巻取装置401に対して巻取動作を行わせる(図9(b))。
 ワイヤー30のいずれかの弛緩が検知されたときに、そのワイヤー30が緊張状態となる長さまですべてのワイヤー30を巻き取ることにより、水平方向におけるマルチコプター100の飛行位置のずれを修正することができる。さらに、各巻取装置401と、その巻取装置401に隣接する巻取装置401とを結んだ環状の仮想線で区画される領域である離着陸エリアA(図3参照)の外に、マルチコプター100が墜落することを防止することができる。
 さらに、巻取制御装置601は、弛緩したワイヤー30を所定の長さ(例えば2~3m)巻き取ってもそのワイヤー30が緊張状態にならないときには、すべての巻取装置401の巻取速度を上昇させる。
 弛緩したワイヤー30を所定の長さ巻き取っても弛緩が解消しない場合には、マルチコプター100の故障や墜落の蓋然性が高いと考えられる。そのため、すべての巻取装置401の巻取速度を上げて、早急にマルチコプター100を離着陸エリアA内に引き戻すことにより、かかる不具合がもたらす被害を最小限に抑えることができる。
(第3実施形態)
 以下に、本発明の滞空位置制御装置にかかる第3実施形態について説明する。図5は本発明の第3実施形態にかかる滞空位置制御装置92の外観を示す模式図であり、図6は滞空位置制御装置92の機能構成を示すブロック図である。なお、以下の説明では、先の実施形態と同様または同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
 滞空位置制御装置92の基本的な構成は、第2実施形態の滞空位置制御装置91と同様である。滞空位置制御装置92は滞空位置制御装置91とは異なり、カメラモジュール130(図2参照)の代わりに測定器モジュール140が搭載されている。測定器モジュール140で使用される測定器としては、例えば大気成分分析器、赤外線カメラ、電波測定器などが考えられるが、これらには限定されない。
 測定器モジュール140は、操縦者(送受信器811)からの指示を受け付ける測定器制御部141と、測定器制御部141の指示により測定器ユニット143の周方向および上下方向の向きを変更する測定器姿勢制御部142と、測定器姿勢制御部142に向けられた方向の側的を行う測定器ユニット143と、により構成されている。測定器モジュール140の操作は操縦者が手動で行ってもよく、または、測定器制御部141にマイクロコントローラを用いて、測定器制御部141に登録した自律測定プログラムにより自動的に行ってもよい。
 また、滞空位置制御装置92において、マルチコプター101と固定面20とを連結するワイヤー30´には、マルチコプター101に電力を供給する電力線32、および操縦者(送受信器811)がマルチコプター101と信号を送受信する信号線31が含まれている。ワイヤー30に信号線31および電力線32を含めることにより、マルチコプター101を指定位置Dで安定してホバリング飛行させることができることに加えて、バッテリー容量による飛行時間の制限が解消され、また、操縦者(送受信器811)とマルチコプター101(送受信器110´)との通信におけるノイズの影響が抑えられている。
 電力線32および信号線31はワイヤー30の代わりとしてマルチコプター101に単独で接続されてもよいが、これら電力線32および信号線31の強度に懸念がある場合は、ワイヤー30とは別に接続してもよい。つまり、先の実施形態と同じく3本のワイヤー30でマルチコプター101と固定面20とを連結し、そのうちの一本に信号線31を、もう一本に電力線32を這わせてマルチコプター101に接続する構成としてもよい。
(第4実施形態)
 以下に、本発明の滞空位置制御装置にかかる第4実施形態について説明する。図7は本発明の第4実施形態にかかる滞空位置制御装置93の外観を示す模式図であり、図8は滞空位置制御装置93の機能構成を示すブロック図である。なお、以下の説明では、先の実施形態と同様または同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
 滞空位置制御装置93においては、先の実施形態における巻取制御装置601および弛緩検知装置501と同等の機能を有する、巻取制御装置602および弛緩検知装置502がマルチコプター102の機体内部に備えられている。また、マルチコプター102と各巻取装置401とが、信号線31で互いに通信可能に接続されている。尚、信号線31はワイヤー30の代わりに単独でマルチコプター102に接続してもよく、ワイヤー30に信号線31を這わせて接続してもよい点は先の実施形態と同様である。
 マルチコプター102の底部には、信号線31が接続される連結部51が設けられている(図7参照)。連結部51はこれら信号線31に引っ張られた方向へ傾倒可能な部材であり、連結部51は弛緩検知装置502の一部を構成している。
 マルチコプター102の底部に設けられた連結部51にこれら信号線31が連結されていることにより、マルチコプター102の飛行位置と指定位置Dとの水平方向の位置にずれが生じたときには、連結部51が信号線31に不均等に引っ張られることとなる。これにより連結部51がマルチコプター102の復帰すべき方向に傾倒し、マルチコプター102の水平方向における位置ずれの方向、および、弛緩している信号線31を特定することが可能とされている(図9参照)。
 連結部51としては、弾性力により鉛直方向へ直立し、所定の大きさの外力が加えられない限りその位置を保持する連結片と、かかる連結片の傾倒方向および傾向角度を検知する一組の可変抵抗を備えた構造が考えられる、例えば特開平06-110602の構成などを参考とすることができる。尚、本実施形態における弛緩検知装置502は、検知した弛緩情報を巻取制御装置602のみへ通知しているが、かかる情報をフライトコントローラ120の制御装置121へも通知する構成としてもよい。そのように構成とすることで、マルチコプター102が自律的に飛行位置を修正することが可能となり、マルチコプター102の滞空位置をより柔軟に制御することが可能となる。
 また、マルチコプター102と各巻取装置401とがそれぞれ信号線31で連結されていることにより、いずれかの信号線31の弛緩を検知した場合に、マルチコプター102から直接各巻取装置401に対して弛緩を解消させるための指示を出すことが可能とされている。
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 

 
 

Claims (7)

  1.  複数の回転翼を備える小型無人飛行機と、
     前記小型無人飛行機が離着陸する固定面と、
     前記小型無人飛行機と前記固定面とを連結する複数の紐状部材と、を備え、
     前記複数の紐状部材は、前記小型無人飛行機が空間中の所定の位置である指定位置に至ったときに、すべてが緊張状態となる長さであることを特徴とする滞空位置制御装置。
  2.  前記複数の紐状部材は少なくとも3本の前記紐状部材を有することを特徴とする請求項1に記載の滞空位置制御装置。
  3.  前記複数の紐状部材には、前記小型無人飛行機に電力を供給する電力線または前記小型無人飛行機と信号を送受信する信号線が含まれることを特徴とする請求項1または請求項2に記載の滞空位置制御装置。
  4.  前記紐状部材ごとに前記固定面に設置され、前記各紐状部材の繰り出しおよび巻き取りを行う複数の巻取装置と、
     前記複数の巻取装置の動作を一元的に管理する巻取制御装置と、
     前記複数の紐状部材の弛緩を検知する弛緩検知装置と、をさらに有し、
     前記弛緩検知装置が前記複数の紐状部材のいずれかの弛緩を検知すると、前記巻取制御装置は、弛緩した前記紐状部材が緊張状態となるまで、すべての前記巻取装置に巻取動作を行わせることを特徴とする請求項1から請求項3のいずれか一項に記載の滞空位置制御装置。
  5.  前記巻取制御装置は、弛緩した前記紐状部材を所定の長さ巻き取っても該紐状部材が緊張状態にならないときは、すべての前記巻取装置の巻取速度を上昇させることを特徴とする請求項4に記載の滞空位置制御装置。
  6.  前記小型無人飛行機の底部には、前記複数の紐状部材が連結される連結部が設けられ、
     前記連結部は前記弛緩検知装置の一部であり、
     前記連結部は前記複数の紐状部材に牽引された方向へ傾倒可能であることを特徴とする請求項4または請求項5に記載の滞空位置制御装置。
  7.  前記巻取制御装置および前記弛緩検知装置は前記小型無人飛行機に備えられ、
     前記小型無人飛行機と前記複数の巻取装置とは、それぞれ前記信号線により互いに通信可能に接続されていることを特徴とする請求項6に記載の滞空位置制御装置。
     
PCT/JP2016/075305 2015-09-04 2016-08-30 滞空位置制御装置 WO2017038809A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/756,048 US10246188B2 (en) 2015-09-04 2016-08-30 Apparatus for controlling still position in air
JP2017538042A JP6261830B2 (ja) 2015-09-04 2016-08-30 滞空位置制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015174620 2015-09-04
JP2015-174620 2015-09-04

Publications (1)

Publication Number Publication Date
WO2017038809A1 true WO2017038809A1 (ja) 2017-03-09

Family

ID=58187594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075305 WO2017038809A1 (ja) 2015-09-04 2016-08-30 滞空位置制御装置

Country Status (3)

Country Link
US (1) US10246188B2 (ja)
JP (1) JP6261830B2 (ja)
WO (1) WO2017038809A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203520A1 (ja) * 2017-05-02 2018-11-08 株式会社プロドローン 飛行機能付加装置およびロータユニット
JP2018188034A (ja) * 2017-05-09 2018-11-29 株式会社衛星ネットワーク 係留気球システム
JP2020192967A (ja) * 2019-05-23 2020-12-03 首都高技術株式会社 無人航空機の飛行領域制限装置
JP2021109622A (ja) * 2020-01-15 2021-08-02 株式会社エアロジーラボ マルチコプター、マルチコプターの離陸・着陸補助装置、マルチコプターの着陸方法、マルチコプターの離陸方法
US11186364B2 (en) 2018-07-03 2021-11-30 Panasonic Intellectual Property Management Co., Ltd. Information processing method, control device, and mobile tethering body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10737783B2 (en) 2018-01-16 2020-08-11 RSQ-Systems SPRL Control systems for unmanned aerial vehicles
US10696396B2 (en) * 2018-03-05 2020-06-30 Rsq-Systems Us Llc Stability systems for tethered unmanned aerial vehicles
US10773800B2 (en) 2018-07-26 2020-09-15 RSQ-Systems SPRL Vehicle-based deployment of a tethered surveillance drone
CN111552307A (zh) * 2020-05-15 2020-08-18 航迅信息技术有限公司 一种无人机快速悬停方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE733801C (de) * 1939-10-25 1943-04-03 Aeg Bodenfessel fuer Steilschrauber
JP2010208623A (ja) * 2009-03-10 2010-09-24 Honeywell Internatl Inc テザエネルギー供給システム
WO2013052178A2 (en) * 2011-06-09 2013-04-11 Lasermotive, Inc. An aerial platform system, and related methods
JP2014169038A (ja) * 2013-03-04 2014-09-18 Osaka City Univ 飛行体システム及び飛行体制御方法
WO2014204116A1 (ko) * 2013-06-19 2014-12-24 Jang Soo-Young 비행체 운용시스템
WO2014203593A1 (ja) * 2013-06-21 2014-12-24 株式会社エルム 遠隔操縦無人飛行体の制御システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980365A (en) * 1958-12-05 1961-04-18 Lester N Yohe Aircraft with rotary lifting airfoils
FR1320844A (fr) * 1962-01-30 1963-03-15 Nord Aviation Plate-forme volante captive
US4981456A (en) * 1988-06-20 1991-01-01 Yamaha Hatsudoki Kabushiki Kaisha Remote controlled helicopter
JPH06110602A (ja) 1992-09-30 1994-04-22 Fujitsu Ten Ltd ジョイスティック装置
JP3185081B2 (ja) * 1994-03-10 2001-07-09 ヤマハ発動機株式会社 無人ヘリコプタの姿勢制御装置
US7109598B2 (en) * 2001-11-07 2006-09-19 Bryan William Roberts Precisely controlled flying electric generators III
AUPR871201A0 (en) * 2001-11-07 2001-11-29 Roberts, Bryan William Windmill kite
DE10209881A1 (de) * 2002-03-06 2003-09-18 Aloys Wobben Fluggerät
US8350403B2 (en) * 2008-07-18 2013-01-08 Baseload Energy, Inc. Tether handling for airborne electricity generators
JP5392891B2 (ja) 2008-09-05 2014-01-22 学校法人東京電機大学 飛翔ロボット
KR101134684B1 (ko) * 2009-08-07 2012-04-09 이문희 공기강하장치
US8602349B2 (en) * 2010-06-23 2013-12-10 Dimitri Petrov Airborne, tethered, remotely stabilized surveillance platform
WO2012162421A1 (en) * 2011-05-23 2012-11-29 Sky Windpower Corporation Flying electric generators with clean air rotors
US8876571B2 (en) * 2013-02-15 2014-11-04 Disney Enterprises, Inc. Aerial display system with marionettes articulated and supported by airborne devices
US9718543B2 (en) * 2014-10-03 2017-08-01 The Boeing Company Guided lift system
TWI528989B (zh) * 2015-04-10 2016-04-11 wen-chang Xiao Can independently block the light of the aircraft
US20170036777A1 (en) * 2015-08-03 2017-02-09 Qualcomm Incorporated Tether system for aerial vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE733801C (de) * 1939-10-25 1943-04-03 Aeg Bodenfessel fuer Steilschrauber
JP2010208623A (ja) * 2009-03-10 2010-09-24 Honeywell Internatl Inc テザエネルギー供給システム
WO2013052178A2 (en) * 2011-06-09 2013-04-11 Lasermotive, Inc. An aerial platform system, and related methods
JP2014169038A (ja) * 2013-03-04 2014-09-18 Osaka City Univ 飛行体システム及び飛行体制御方法
WO2014204116A1 (ko) * 2013-06-19 2014-12-24 Jang Soo-Young 비행체 운용시스템
WO2014203593A1 (ja) * 2013-06-21 2014-12-24 株式会社エルム 遠隔操縦無人飛行体の制御システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203520A1 (ja) * 2017-05-02 2018-11-08 株式会社プロドローン 飛行機能付加装置およびロータユニット
JP2018188011A (ja) * 2017-05-02 2018-11-29 株式会社プロドローン 飛行機能付加装置およびロータユニット
JP2018188034A (ja) * 2017-05-09 2018-11-29 株式会社衛星ネットワーク 係留気球システム
US11186364B2 (en) 2018-07-03 2021-11-30 Panasonic Intellectual Property Management Co., Ltd. Information processing method, control device, and mobile tethering body
JP2020192967A (ja) * 2019-05-23 2020-12-03 首都高技術株式会社 無人航空機の飛行領域制限装置
JP2021109622A (ja) * 2020-01-15 2021-08-02 株式会社エアロジーラボ マルチコプター、マルチコプターの離陸・着陸補助装置、マルチコプターの着陸方法、マルチコプターの離陸方法
JP7308769B2 (ja) 2020-01-15 2023-07-14 紳一 谷 マルチコプター、マルチコプターの離陸・着陸補助装置、マルチコプターの着陸方法、マルチコプターの離陸方法

Also Published As

Publication number Publication date
JPWO2017038809A1 (ja) 2017-11-24
US20180251217A1 (en) 2018-09-06
US10246188B2 (en) 2019-04-02
JP6261830B2 (ja) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6261830B2 (ja) 滞空位置制御装置
CN110621250B (zh) 用于无人驾驶飞行器的电气系统
JP6239567B2 (ja) 情報伝達装置
CN111684705B (zh) 无人机的多旋翼音调噪声控制
US10407162B2 (en) Multicopters with variable flight characteristics
US11447235B2 (en) Unmanned aerial vehicle
CN104118559B (zh) 侦察用虚拟桅杆
US8602349B2 (en) Airborne, tethered, remotely stabilized surveillance platform
US20180284575A1 (en) Underwater image capturing apparatus
US9677564B1 (en) Magnetic propeller safety device
US20160207626A1 (en) Airborne Surveillance Kite
RU2441809C2 (ru) Способ управления беспилотным привязным летательным аппаратом и беспилотный авиационный комплекс
US20100256839A1 (en) Performing Corrective Action on Unmanned Aerial Vehicle Using One Axis of Three-Axis Magnetometer
US11649046B2 (en) Ganged servo flight control system for an unmanned aerial vehicle
KR20130112688A (ko) 무인 항공기 및 작동 방법
JP6085520B2 (ja) 遠隔操縦式無人飛行体
JP2013079034A (ja) 空撮用回転翼機
CN110944909A (zh) 旋翼机
CN112638770B (zh) 安全的无人航空器
CN111511643A (zh) 无人驾驶航空器的有效载荷耦合装置和有效载荷递送方法
WO2020017486A1 (ja) 無人航空機
JP6561273B2 (ja) 着脱式ユニットおよびこれを用いたセンサ較正方法
KR101958264B1 (ko) 자동 고도 유지가 가능한 드론 및 드론 제어 방법
US9283490B1 (en) Device for stabilising a flying attitude of a remote-controlled fixed-wing aircraft
JP2019043394A (ja) 回転翼航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538042

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15756048

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841841

Country of ref document: EP

Kind code of ref document: A1