WO2020017486A1 - 無人航空機 - Google Patents

無人航空機 Download PDF

Info

Publication number
WO2020017486A1
WO2020017486A1 PCT/JP2019/027862 JP2019027862W WO2020017486A1 WO 2020017486 A1 WO2020017486 A1 WO 2020017486A1 JP 2019027862 W JP2019027862 W JP 2019027862W WO 2020017486 A1 WO2020017486 A1 WO 2020017486A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
rotor
rotors
control
changing mechanism
Prior art date
Application number
PCT/JP2019/027862
Other languages
English (en)
French (fr)
Inventor
伸也 国井
進一 槙
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Publication of WO2020017486A1 publication Critical patent/WO2020017486A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/32Blade pitch-changing mechanisms mechanical
    • B64C11/34Blade pitch-changing mechanisms mechanical automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U40/00On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration
    • B64U40/10On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration for adjusting control surfaces or rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers

Definitions

  • the present invention relates to unmanned aerial vehicle technology.
  • Patent Document 1 discloses a multicopter provided with a variable pitch mechanism for a rotor.
  • the fixed pitch propeller multicopter has the above advantages, it also has the disadvantage that the propeller itself must be replaced when changing the pitch angle of the propeller.
  • the propeller itself must be replaced when changing the pitch angle of the propeller.
  • it may be necessary to repeat the propeller replacement several times before the flight.
  • the servo motor that is the drive source of the pitch changing mechanism is directly connected to the pitch changing mechanism.
  • the weight of the tip of the arm is increased by the amount corresponding to the servomotor, the stability and agility of the flight operation are reduced.
  • the pitch in the air is accompanied by the control of the pitch angle as in the multicopter disclosed in Patent Document 1 (paragraph 0015), a general flight controller on the market cannot cope with such control, so that it must be separately prepared. You need to create a flight controller.
  • an object of the present invention is to provide an unmanned aerial vehicle that can eliminate the troublesome adjustment of the optimum pitch of a propeller while suppressing the complexity and instability of the airframe structure and flight program. It is in.
  • the unmanned aerial vehicle of the present invention includes a plurality of rotors, a pitch changing mechanism that changes a pitch angle of the plurality of rotors, and a speed controller that controls a rotation speed of each rotor,
  • the pitch changing mechanism changes the pitch angles of the rotors so that the pitch angles of the rotors are all the same, and the movement in the air is performed by controlling the rotation speed of the rotors.
  • the pitch changing mechanism provided in the unmanned aerial vehicle of the present invention changes these pitch angles so that the pitch angles of the rotors are all the same, but does not individually adjust the pitch angles of the individual rotors. . Therefore, the thrust of each rotor cannot be imbalanced by controlling the pitch angle, and the unmanned aerial vehicle cannot fly horizontally.
  • the unmanned aerial vehicle of the present invention uses the pitch changing mechanism only for uniformly adjusting the pitch angle of the rotors, and moves in the air exclusively by controlling the rotation speed of each rotor.
  • the pitch changing mechanism of the present invention enables the pitch angle of the fixed pitch propeller to be changed without replacing the propeller, so to say, its use and technical idea are different from those of a general pitch changing mechanism. ing.
  • the structure of the pitch changing mechanism of the present invention can be simplified by narrowing down its functions and applications. Furthermore, the unmanned aerial vehicle of the present invention can adopt the existing multi-copter flight controller without modification by performing movement in the air exclusively by controlling the rotation speed of the rotor. That is, according to the unmanned aerial vehicle of the present invention, it is possible to solve the trouble of adjusting the optimum pitch of the propeller while suppressing the complexity and instability of the airframe structure and the flight program.
  • the pitch changing mechanism simultaneously changes the pitch angles of the plurality of rotors by the same amount while keeping the pitch angles of the rotors all the same.
  • the fixed-pitch propeller multicopter maintains its altitude by lowering the number of revolutions (synonymous with the rotation speed) of the propeller when the aircraft is pushed up by an updraft during flight.
  • the number of revolutions must be sufficient to obtain a sufficient gyro effect. If the speed of the propeller is reduced below its lower limit, the propeller will stall and the multicopter will be unable to steer. It is desirable to rotate the propeller at low speed to increase the energy efficiency of the rotor, but it also makes it vulnerable to updrafts.
  • the pitch changing mechanism can simultaneously change the pitch angles of the rotors by the same amount while maintaining the pitch angles of the plurality of rotors at the same angle.
  • the pitch angle is temporarily reduced to reduce the thrust with respect to the rotation speed of each rotor, thereby maintaining the rotation speed and avoiding stall of these rotors.
  • the pitch changing mechanism has one or a plurality of motors that are driving sources of the pitch changing mechanism, and the number of the motors is preferably smaller than the number of the rotors. At this time, it is more preferable that the pitch changing mechanism changes all the pitch angles of the plurality of rotors by one motor which is a driving source of the pitch changing mechanism.
  • the pitch changing mechanism of the present invention changes a plurality of rotors so that the pitch angles of these rotors are all the same. This feature allows the pitch angle of all rotors to be operated simultaneously by a small number of motors.
  • the pitch changing mechanism includes a motor for each rotor, the number of mounted motors increases by the number of rotors, so that the weight of the body increases and the power consumption also increases.
  • By driving the pitch changing mechanism with a smaller number of motors than the number of rotors it is possible to alleviate such difficulties associated with the use of the pitch changing mechanism. In particular, when one motor is used, the lightening effect and the power saving effect of the pitch changing mechanism are maximized, and the synchronization accuracy of the pitch angle can be improved.
  • the pitch changing mechanism changes the pitch angle of each of the rotors by collective pitch control, and does not perform the cyclic pitch control on the plurality of rotors.
  • the unmanned aerial vehicle of the present invention uses the pitch changing mechanism only for uniformly adjusting the pitch angles of the rotors, and moves in the air exclusively by controlling the rotation speed of each rotor. Therefore, the pitch changing mechanism of the present invention does not need to perform the cyclic pitch control. By removing the structure related to the cyclic pitch control from the pitch changing mechanism, the pitch changing mechanism can be simplified.
  • the unmanned aerial vehicle of the present invention includes a center frame that is a center portion of the fuselage, and a plurality of arms that extend radially from the center frame in plan view, and the plurality of rotors are supported by the arms, respectively.
  • Each of the rotors has a blade that is a rotor blade, and a rotor hub to which the blade is connected, the rotor hub is coupled to a rotor shaft that is a rotation shaft, and the pitch changing mechanism is provided for each of the rotors.
  • a slider member connected to the blade by a pitch link that is a link member; a pitch leveler that is a mechanism that moves the slider member up and down along the rotor shaft; and a bar-shaped link member that operates the pitch leveler.
  • a first control rod wherein the first control rod is provided with the center frame.
  • Are arranged along each arm from the pitch change mechanism may be configured to all the first control rod along said each arm to the same amount back and forth at the same time.
  • the posture becomes less stable due to the inertia of the tip of the arm, and the agility of the flying operation is impaired.
  • the load at the tip of the arm impedes the exhaust flow of the rotor, which may disturb the propulsion direction of the rotor.
  • a control hub which is a hub member that rotates horizontally by the output of the motor, is disposed on the center frame, and each of the first control rods has a base end connected to the control hub. It may be.
  • the motor includes four rotors, and a servo horn, which is an output unit of the motor, is disposed at the center of the center frame.
  • a pair of control hubs are arranged at positions that are point-symmetric with respect to the center of rotation of the servo horn, and the servo horn and each control hub are connected by a second control rod that is a rod-shaped link member, Two first control rods are connected to the respective control hubs, and the pair of control hubs simultaneously rotate the four first control rods along the respective arms by rotation of the servo horn.
  • a configuration in which the amount is advanced or retracted may be adopted.
  • the reliability of the pitch angle changing operation can be improved by mechanically synchronizing the operations of all the first control rods with a simple structure, Further, the weight of the pitch changing mechanism can be reduced.
  • the unmanned aerial vehicle of the present invention has a pitch adjustment program which is a program for automatically controlling the pitch change mechanism, and when the rotation speed of each rotor falls below a predetermined threshold, the pitch adjustment program
  • the configuration may be such that the pitch angle of the rotor is automatically reduced.
  • the pitch adjustment program automatically reduces the pitch angle and sets the thrust for the rotation speed of each rotor. By lowering the rotation speed and maintaining the rotation speed of the rotor, the stall of the rotor can be prevented.
  • the unmanned aerial vehicle of the present invention may be configured so that the pitch adjustment program automatically reduces the pitch angles of the plurality of rotors when the rotation speed of each rotor falls below a predetermined threshold.
  • ⁇ ⁇ As mentioned above, in order to increase the energy efficiency of the rotor, it is desirable to rotate the rotor at a low speed, but it also means that it is vulnerable to updrafts.
  • the pitch adjustment program monitors the number of revolutions of the rotor and automatically keeps the pitch angle large within a safe range, thereby increasing the energy efficiency of the rotor while avoiding rotor stall.
  • the unmanned aerial vehicle of the present invention it is possible to solve the trouble of adjusting the optimal pitch of the propeller while suppressing the complexity and instability of the airframe structure and the flight program.
  • FIG. 2 is a perspective view showing a configuration inside a center frame of FIG. 1.
  • FIG. 3 is a perspective view showing the configuration of a pitch changing mechanism of the multicopter. It is a partial enlarged view showing the mechanism of the arm tip. It is a side view which shows the pitch angle change operation
  • FIG. 2 is a block diagram illustrating a functional configuration of the multicopter. It is a block diagram showing the functional composition of a modification of a multicopter.
  • the following embodiment is an example of a multicopter 10 which is an unmanned aerial vehicle having a plurality of rotors.
  • “up”, “down”, and “vertical” in the following description are directions parallel to the Z axis of the coordinate axis display depicted in FIGS. 1 and 2, and the arrow direction of the Z axis is upward. I do.
  • “horizontal” refers to an XY plane (direction) in the same coordinate axis display.
  • FIG. 1 is a perspective view illustrating an appearance of a multicopter 10 according to the present embodiment (hereinafter, also referred to as “present example”).
  • FIG. 2 is a perspective view showing the configuration inside the center frame 11 of FIG.
  • FIGS. 1 and 2 illustrate a mechanical structure related to driving and control of the rotor 43 included in the multicopter 10.
  • a flight controller FC an ESC 24, a battery 60, and the like described later are mounted here.
  • a cover member that covers the center frame 11, a landing gear, an external device according to various uses, and the like may be provided.
  • the multicopter 10 of this example has a center frame 11 which is a frame member arranged at the center of the fuselage, and four arms 12 extending radially from the center frame 11 in plan view.
  • the center frame 11 is configured by arranging flat plate members having a substantially cruciform shape in a plan view vertically in parallel.
  • the arm 12 is a cylindrical pipe material, and is disposed so as to extend from each end of the cross of the center frame 11 in the same direction as these ends.
  • the base end of each arm 12 is fixed in the center frame 11 by an arm clamp 121 serving as a clamp member, and a rotor 43 is supported at the distal end of each arm 12.
  • the motor 41 that is the drive source of each rotor 43 is disposed in the center frame 11. These motors 41 are fixed to a motor mount 419 provided on the center frame 11 with their output shafts facing the respective arms 12. The outputs of these motors 41 are transmitted to the rotor 43 via power transmission members arranged in each arm 12.
  • the multicopter 10 of the present example the motor 41 is disposed on the center frame 11 to reduce the weight of the tip of the arm 12, thereby improving the stability and agility of the flight operation.
  • the rotor 43 of this example is a variable pitch propeller whose pitch angle can be changed.
  • the multicopter 10 of the present example adjusts the pitch angles of the rotors 43 so that the pitch angles of the rotors 43 are all the same, and the movement in the air is exclusively performed by the rotation speed of each rotor 43. Performed by control. This eliminates the hassle of adjusting the optimal pitch of the propeller while suppressing the complexity and instability of the aircraft structure and flight program.
  • FIG. 3 is a perspective view showing the configuration of the pitch changing mechanism PC of the multicopter 10.
  • FIG. 4 is a partially enlarged view showing the mechanism at the tip of the arm 12.
  • the pitch changing mechanism PC of the present embodiment does not individually adjust the pitch angles of the individual rotors 43, but maintains all the pitch angles of the rotors 43 at the same angle while maintaining the pitch angles of the rotors 43.
  • the pitch angle is simultaneously changed by the same amount. Therefore, the pitch changing mechanism PC cannot control the pitch angle so that the thrust of each rotor 43 becomes unbalanced, and cannot use the pitch changing mechanism PC to fly the aircraft horizontally.
  • the pitch changing mechanism PC of this example is mainly constituted by the servomotor 71, the first control rod 81, the pitch lever 82, and the slider member S.
  • the servo motor 71 is a driving source of the pitch changing mechanism PC.
  • the servo motor 71 is fixed to the center frame 11, and an elliptical servo horn 711, which is an output portion thereof, is arranged at the center of the center frame 11.
  • One end of a second control rod 73 which is a rod-shaped link member, is connected to both ends of the servo horn 11 in the longitudinal direction, and the other end of the second control rod 73 is connected to a control hub 72.
  • the control hub 72 is a hub member supported by a lower plate constituting the center frame 11. When the center frame 11 is viewed in a plan view, a pair of the control hubs 72 are arranged at point-symmetric positions with respect to the center of rotation of the servo horn 711.
  • Each control hub 72 is a member having a sector shape in plan view, and can rotate horizontally around a portion corresponding to the central angle of the sector shape as a center of rotation.
  • the other end of the second control rod 73 is connected to a portion corresponding to the center of an arc forming a sector of each control hub 72. Thereby, the pair of control hubs 72 rotate symmetrically within a predetermined angle range in conjunction with the servo horn 11.
  • One end (base end) of a first control rod 81 which is a rod-shaped link member, is connected to a portion corresponding to the vicinity of the distal ends of the two radii constituting the fan shape of each control hub 72.
  • Two first control rods 81 are connected to each control hub 72, and these control hubs 72 operate a total of four first control rods 81.
  • the four first control rods 81 are arranged along the arms 12 that are separate from each other.
  • the pitch changing mechanism PC of this example is capable of simultaneously moving the four first control rods 81 by the same amount by one servomotor 71.
  • the other ends of the first control rods 81 are connected to a slider member S, and the first control rod 81 is moved forward and backward along each arm 12 so that the first control rod 81 moves through the slider member S.
  • the pitch angles of all the rotors 43 can be changed.
  • the pitch changing mechanism PC of this embodiment changes the four rotors 43 so that the pitch angles of the rotors 43 are all the same.
  • This feature enables the pitch angle of all the rotors 43 to be simultaneously operated by one servomotor 71.
  • the pitch changing mechanism includes a motor for each rotor, the number of mounted motors increases by the number of rotors, so that the weight of the body increases and the power consumption also increases. In the multicopter 10 of the present example, such a difficulty associated with the use of the pitch changing mechanism PC is reduced by driving the pitch changing mechanism PC with one servomotor 71.
  • the pitch angle synchronization accuracy is improved by using one servo motor 71, but the pitch changing mechanism PC is driven by a smaller number of servo motors 71 than the number of rotors 43 to a certain degree.
  • the lightening effect and the power saving effect can be obtained.
  • the pitch changing mechanism PC of the present example the drive source (servo motor 71) of the pitch changing mechanism PC can be operated by controlling the pitch angle of each rotor 43 from the center frame 11 side via the first control rod 81. It is possible to arrange it on the center side of the fuselage. Thus, the weight of the tip of each arm 43 is reduced, and the effect of the provision of the pitch changing mechanism PC on the stability and agility of the flight operation is suppressed.
  • the pitch lever 82 and the slider member S will be described with reference to FIG.
  • the tip side (arrow f side in FIG. 4) of the arm 12 is referred to as “front”, and the opposite side (arrow r side in FIG. 4) is referred to as “rear”.
  • a rotor base 13 which is a support member for the rotor 43 is mounted on the tip of the arm 12.
  • the rotor base 13 of the present example includes a socket 131, a support plate 132, and a reinforcing post.
  • the socket portion 131 is a cylindrical connection member fixed to the tip of the arm 12 with a screw.
  • the support plate 132 is two plate-like portions extending forward from the socket portion 131, and these are arranged horizontally and vertically in parallel.
  • the reinforcing post 133 is a columnar reinforcing material that prevents the support plate 132 from bending.
  • the reinforcing posts 133 are vertically arranged between the front ends of the two support plates 132. The two support plates 132 limit the deflection of each other via the reinforcing posts 133, thereby increasing the rigidity of the support plate 132.
  • the pitch lever 82 is a mechanism for moving the slider member S up and down along the rotor shaft 44, and is one form of the pitch leveler of the present invention.
  • the pitch lever 82 is a hinge member whose one end is rotatably supported by a pitch lever base 821 which is a pedestal portion fixed to the upper surface of the support plate 132.
  • the first control rod 81 is connected to a pitch lever 82 via a pitch lever link 811 as a link member. When the first control rod 81 advances and retreats along the arm 12, the pitch lever 82 pivots up and down around a connection with the pitch lever base 821.
  • the slider member S vertically moves up and down along the rotor shaft 44 to rotate the feathering hinge 88 to which the blade 432 of the rotor 43 is connected in the pitch direction of the blade 432. That is, the pitch angle of the rotor 43 is changed.
  • the rotor 43 of the present example includes a rotor hub 431 on which a feathering hinge 88 is rotatably supported, blades 432 as rotating blades, and a blade base 433 for holding the blades 432 in a foldable manner.
  • the rotor hub 431 is connected to the rotor shaft 44 and rotates integrally with the rotor shaft 44.
  • the blade base 433 is connected to the feathering hinge 88, and rotates integrally with the feathering hinge 88.
  • the slider member S of this example is mainly constituted by a pitch control plate 85 and a slider ring 86.
  • the pitch control plate 85 has a cylindrical body through which the rotor shaft 44 is inserted, and a pair of arms extending in the front-rear direction from the body, and these arms are connected to feathering hinges 88.
  • One end of each of the two pitch links 851 is rotatably supported.
  • the slider ring 86 is provided with two upper and lower annular flanges 861 that are continuous in the circumferential direction on the outer peripheral surface of the cylindrical body. Between these flange portions 861, a groove portion 862 which is continuous in the circumferential direction of the outer peripheral surface is formed.
  • the pitch control plate 85 and the slider ring 86 are connected by a slider sleeve 87, which is a cylindrical sleeve member 87 disposed inside the body, and move up and down integrally.
  • the slider sleeve 87 is a semi-threaded member having a head part whose outer peripheral surface is partly expanded in a flange shape, and is arranged with the head part down and the screw part up.
  • a pitch control plate 85 is screwed into a screw portion of the slider sleeve 87, and a slider ring 86 is disposed between the pitch control plate 85 and the head of the slider sleeve 87.
  • the slider ring 86 is supported by the slider sleeve 87 with a bearing interposed therebetween, whereby the pitch control plate 85 rotates integrally with the rotor shaft 44 and the slider sleeve 87 independently of the slider ring 86. .
  • a pair of bosses 822 provided at the tip of the pitch lever 82 is fitted into the groove 862 of the slider ring 86.
  • the slider section S moves up and down in conjunction with the vertical movement of the pitch lever 82.
  • FIG. 5 is a side view showing a pitch angle changing operation of the rotor 43 by the pitch changing mechanism PC.
  • each control hub 72 pushes the first control rod 81 connected thereto toward the distal end of each arm 12.
  • the pushed first control rod 81 raises the pitch lever 82 via the pitch lever link 811.
  • the lifted pitch lever 82 raises the slider ring 86 and the pitch control plate 85 integrated therewith.
  • the raised pitch control plate 85 rotates the feathering hinge 88 via the pitch link 851, thereby increasing the angle of attack (pitch angle) of the blade 432.
  • FIG. 5 shows an operation in the case where the pitch angle of the rotor 43 is increased. However, if the servo motor 71 is driven in the CCW direction, the pitch angle of the rotor 43 is reduced through a process reverse to the above-described process. Become.
  • the pitch changing mechanism PC of the present example changes the pitch angle of each rotor 43 by collective pitch control (control of simultaneously increasing and decreasing the pitch angles of all blades of one rotor by the same amount), and changes the main rotor of the helicopter. Does not perform the cyclic pitch control that is generally performed.
  • the pitch changing mechanism PC of this example the structure related to the cyclic pitch control is removed from the pitch changing mechanism PC, thereby simplifying the pitch changing mechanism PC.
  • FIG. 6 is a side sectional view showing a driving mechanism of the rotor 43.
  • the rotor drive mechanism of the present embodiment will be described with reference to FIGS.
  • the distal end side (the arrow f side in FIG. 6) of the arm 12 is “front”, and the opposite side (the arrow r side in FIG. 6) is “rear”.
  • the motors 41 that are the driving sources of the rotors 43 are arranged in the center frame 11, and these motors 41 connect their output shafts 411 to the respective arms 12. And is fixed to the motor mount 419.
  • a shaft adapter 412 which is a cylindrical connection member, is attached to the output shaft 411 of the motor 41, and the other end (top end) of the shaft adapter 412 is a power transmission member of the motor 41.
  • a certain drive shaft 42 is connected.
  • the drive shaft 42 is a cylindrical rod, and a drive gear 421, which is a bevel gear, is attached to the front end thereof.
  • the drive gear 421 is disposed in the rotor base 13.
  • a driven gear 441 that is a bevel gear meshing with the drive gear 421 is disposed at a lower end (base end) of the rotor shaft 44 rotatably supported by the support plate 132.
  • the output of the motor 41 is transmitted to the shaft adapter 412, the drive shaft 42, the drive gear 421, the driven gear 441, the rotor shaft 44, and the rotor hub 431 in order to rotate the rotor 43.
  • a motor 41 is disposed on the center frame 11 and its output is transmitted to the rotor 43 via the drive shaft 42 to reduce the weight of the tip of the arm 12. Improves stability and agility.
  • the power transmission member for transmitting the output of the motor 41 to the rotor 43 is not limited to the drive shaft 42 of the present embodiment, but may be a toothed belt, for example. However, in this case, it is necessary to arrange the output shaft 411 of the motor 41 vertically (vertically) in the center frame 11, and the space efficiency in the center frame 11 is reduced. In the multicopter 10 of the present embodiment, the motor 41 can be arranged by using the drive shaft 42 so that the output shaft 411 is directed to each arm 12 side. Space efficiency is increased.
  • (Functional configuration) 7 and 8 are block diagrams showing the functional configuration of the multicopter 10.
  • the functions of the multicopter 10 mainly include a flight controller FC as a control unit, four rotors 43, a motor 41, and an ESC24 (Electric @ Speed) which is a motor drive circuit for controlling the number of rotations (synonymous with the rotation speed) of the motor 41. Controller, a communication device 52 that communicates with the operator (operator terminal 51), the above-described pitch changing mechanism PC, and a battery 60 that supplies power thereto.
  • the flight controller FC has a control device 20 which is a microcontroller.
  • the control device 20 has a CPU 21 as a central processing unit, and a memory 22 including a storage device such as a RAM, a ROM, and a flash memory.
  • the flight controller FC further has a flight control sensor group 30 including an IMU 31 (Inertial Measurement Unit), a GPS receiver 32, a barometric pressure sensor 33, and an electronic compass 34, which are connected to the control device 20. Have been.
  • IMU 31 Inertial Measurement Unit
  • GPS receiver 32 GPS receiver
  • barometric pressure sensor 33 barometric pressure sensor
  • electronic compass 34 electronic compass
  • the IMU 31 is a sensor for detecting the tilt of the multicopter 10, and is mainly composed of a three-axis acceleration sensor and a three-axis angular velocity sensor.
  • the atmospheric pressure sensor 33 is an altitude sensor that obtains the altitude (altitude) above the sea level of the multicopter 10 from the detected atmospheric pressure value.
  • the electronic compass 34 is a sensor that detects the azimuth of the nose of the multicopter 10. A three-axis geomagnetic sensor is used for the electronic compass 34 in this example.
  • the GPS receiver 32 is a receiver of a navigation satellite system (NSS: Navigation Satellite System) to be precise. The GPS receiver 32 acquires a current latitude and longitude value from a global navigation satellite system (GNSS: Global Navigation Satellite System) or a regional navigation satellite system (RNSS: Regional Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • RNSS Regional Navigation Satellite System
  • the flight controller FC uses the flight control sensor group 30 to acquire the position information of its own aircraft including the longitude and latitude, altitude, and azimuth of the nose in addition to the tilt and rotation of the aircraft.
  • the control device 20 has a flight control program FS that controls the attitude of the multicopter 10 during flight and basic flight operations.
  • the flight control program FS controls the rotation speed of each rotor 43 based on the information obtained from the flight control sensor group 30, and causes the multicopter 10 to fly while correcting the disturbance of the attitude and position of the aircraft.
  • the control device 20 further has an autonomous flight program AP which is a program for causing the multicopter 10 to fly autonomously.
  • an autonomous flight program AP which is a program for causing the multicopter 10 to fly autonomously.
  • a flight plan FP which is a parameter designating the latitude and longitude of the route on which the multicopter 10 flies, the altitude and speed during flight, and the like, is registered.
  • the autonomous flight program AP causes the multicopter 10 to fly autonomously according to the flight plan FP, using an instruction from the operator terminal 51 as a start condition.
  • the operator terminal 51 may be a radio control transmitter or a device generally called GCS (Ground Control Station) in the field of unmanned aerial vehicles.
  • the operator terminal 51 may be a terminal of an operation management system (UTM: UAV Traffic Management) that controls a large number of multicopters 10.
  • UDM UAV Traffic Management
  • the communication device 52 and the operator terminal 51 of the multicopter 10 are not limited to any specific communication method and protocol as long as they can transmit and receive control signals and data.
  • Wi-Fi Wireless Fidelity
  • the control signal at the time of manual control is a 2.4 GHz frequency hopping method.
  • a configuration for transmitting a PCM (pulse code modulation) signal may be considered.
  • the multicopter 10 and the operator terminal 51 may be connected by a mobile communication network such as 3G, LTE (Long Term Evolution), and WiMAX (Worldwide Interoperability for Microwave Access). By doing so, the operator (operator terminal 51) can control the multicopter 10 from anywhere within the service area of the mobile communication network.
  • the multicopter 10 may fly indoors.
  • a beacon that transmits a radio signal is arranged at a predetermined location in a facility, and the relative distance between the multicopter 10 and each beacon is measured from the radio wave intensity of a signal received from the beacon, thereby enabling It is conceivable to specify the position of the multicopter 10.
  • a distance measuring sensor using a laser, an infrared ray, an ultrasonic wave or the like is separately mounted, and the distance between the floor (or ceiling) or wall surface in the facility and the multicopter 10 is measured, and the multicopter in the facility is measured. Ten positions may be specified.
  • the multicopter 10 of this example uses the pitch changing mechanism PC only for uniformly adjusting the pitch angle of the rotor 43, and moves in the air exclusively by controlling the rotation speed of each rotor 43. That is, the pitch changing mechanism PC is capable of changing the pitch angle of the fixed pitch propeller without changing the propeller, so to speak, and has a different application and technical idea from a general pitch changing mechanism. .
  • the pitch changing mechanism PC of this example is not only simplified in its structure by narrowing down its functions and applications, but also performs movement in the air exclusively by controlling the rotation speed of the rotor 43, so that an existing multi-copter can be used. It is possible to adopt the flight controller without modification. Thus, the multicopter 10 eliminates the hassle of adjusting the optimum pitch of the propeller without complicating or destabilizing the airframe structure and the flight program.
  • the operation of changing the pitch angle in the multicopter 10 of the present example is based on the assumption that the pilot manually issues an instruction to the pitch changing mechanism PC based on his / her own judgment.
  • a pitch adjusting program PP for automatically controlling the pitch changing mechanism PC may be separately provided.
  • the pitch adjusting program PP can automatically control the pitch changing mechanism PC according to predetermined conditions, in addition to transferring the control signal of the pitch changing mechanism PC received from the communication device 52 to the pitch changing mechanism PC. .
  • the movement in the air is performed exclusively by controlling the rotation speed of each rotor 43, it is not necessary to modify an existing flight program such as the flight control program FS.
  • the pitch adjustment program PP by mounting the pitch adjustment program PP in the control device 20 of the flight controller FC, the output values of the flight control sensor group 30 and the flight control program FS included in the flight controller FC are output by the pitch change mechanism PC.
  • a control device and sensors dedicated to the pitch adjustment program PP may be separately prepared. By doing so, the pitch adjustment program PP can be made completely independent of the flight controller FC.
  • the pitch changing mechanism PC can simultaneously change the pitch angles of the rotors 43 by the same amount while maintaining the pitch angles of the rotors 43 at the same angle.
  • the pitch adjustment program PP can realize the following automatic control.
  • the pitch adjustment program PP monitors the output values of the flight control sensor group 30 and the flight control program FS, and when the rotation speed of the rotor 43 falls below a predetermined threshold and the attitude control may be disturbed, the pitch adjustment program PP It is conceivable to prevent the stall of the rotor 43 by temporarily reducing the pitch angle to lower the thrust with respect to the rotation speed of each rotor 43 and keeping the rotation speed of each rotor 43.
  • the pitch adjustment program PP automatically keeps the pitch angle large enough that the rotation speed of the rotor 43 does not fall below a predetermined threshold value.
  • the pitch adjustment program PP monitors the number of revolutions of the rotor 43 and automatically increases the pitch angle within a safe range, thereby increasing the energy efficiency of the rotor 43 while avoiding the stall of the rotor 43.
  • the rotation speed of the rotor 43 can be calculated by monitoring a control signal such as a PWM (Pulse Width Modulation) signal input to the ESC 24.
  • a sensor for directly measuring the rotation speed of the rotor 43 may be separately mounted, or a current sensor may be attached to the motor 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

機体構造やフライトプログラムの複雑化・不安定化を抑えつつ、プロペラの最適ピッチ調節の煩わしさを解消させることのできる無人航空機を提供することにある。 複数のロータを備え、前記複数のロータのピッチ角を変化させるピッチ変更機構と、前記各ロータの回転速度を制御するスピードコントローラと、を備え、前記ピッチ変更機構は、前記各ロータのピッチ角が全て同じ角度となるようにこれらロータのピッチ角を変化させ、空中における移動は前記各ロータの回転速度制御により行うことを特徴とする無人航空機により解決する。

Description

無人航空機
 本発明は、無人航空機技術に関する。
 近年、無人航空機の姿勢制御や自律飛行に用いられるセンサ類およびソフトウェアの改良が進み、無人航空機の性能や操作性が飛躍的に向上した。特に複数基の固定ピッチプロペラで飛行するマルチコプターは、ヘリコプターに比べローター構造が簡単であり、設計およびメンテナンスが容易であることから、広範な産業分野における種々のミッションへの応用が検討されている。
 下記特許文献1には、ロータの可変ピッチ機構を備えるマルチコプターが開示されている。
特開2017-185945号公報
 固定ピッチプロペラのマルチコプターには上記のような利点がある一方、プロペラのピッチ角を変更するときにはプロペラ自体を換装しなければならないという難点もある。特に、飛行時の気象条件やペイロードに応じた最適なピッチ角を特定するためには、プロペラの換装作業を飛行前に数回繰り返さなければならないこともある。
 このような課題への解決手段として、可変ピッチのロータを採用することが考えられる。しかし、ロータのピッチ変更機構は部品点数が多く、機体構造やフライトプログラムが複雑化することが懸念される。設計の複雑化やメンテナンス性の低下は、マルチコプターの本来の長所を損なうこととなる。
 上記特許文献1の発明では、ピッチ変更機構の駆動源であるサーボモータがピッチ変更機構に直結されている。特許文献1の発明は、各ピッチ変更機構にそれぞれ駆動源が備えられることで、各ロータのピッチ角を個別に調節することが可能とされており、また、ロータ数の増減にも柔軟に対応できるものと考えられる。一方、アームの先端重量がサーボモータの分だけ大きくなることで、飛行動作の安定性・機敏性は低下する。また、特許文献1のマルチコプターのように空中における移動にピッチ角の制御が伴う場合(段落0015)、市販の一般的なフライトコントローラではこのような制御に対応することができないため、別途独自にフライトコントローラを作成する必要がある。
 上記問題に鑑み、本発明が解決しようとする課題は、機体構造やフライトプログラムの複雑化・不安定化を抑えつつ、プロペラの最適ピッチ調節の煩わしさを解消させることのできる無人航空機を提供することにある。
 上記課題を解決するため、本発明の無人航空機は、複数のロータと、前記複数のロータのピッチ角を変化させるピッチ変更機構と、前記各ロータの回転速度を制御するスピードコントローラと、を備え、前記ピッチ変更機構は、前記各ロータのピッチ角が全て同じ角度となるようにこれらロータのピッチ角を変化させ、空中における移動は前記各ロータの回転速度制御により行うことを特徴とする。
 本発明の無人航空機が備えるピッチ変更機構は、各ロータのピッチ角が全て同じ角度となるようにこれらのピッチ角を変化させるものであり、個々のロータのピッチ角を個別に調節するものではない。そのため、ピッチ角の制御により各ロータの推力を不均衡にすることはできず、無人航空機を水平に飛行させることはできない。
 本発明の無人航空機は、ロータのピッチ角を統一的に調節することにのみピッチ変更機構を使用し、空中における移動は専ら各ロータの回転速度制御により行う。すなわち、本発明のピッチ変更機構は、いわば、固定ピッチプロペラのピッチ角を、プロペラを換装することなく変更可能とするものであり、一般的なピッチ変更機構とはその用途や技術思想を異にしている。
 本発明のピッチ変更機構は、その機能と用途とが絞り込まれていることで構造を単純化することが可能とされている。さらに、本発明の無人航空機は、空中における移動を専らロータの回転速度制御で行うことにより、マルチコプター用の既存のフライトコントローラを改変なく採用することができる。すなわち、本発明の無人航空機によれば、機体構造やフライトプログラムの複雑化・不安定化を抑えつつ、プロペラの最適ピッチ調節の煩わしさを解消させることができる。
 また、前記ピッチ変更機構は、前記各ロータのピッチ角を全て同じ角度に保ちながら、前記複数のロータのピッチ角を同時に同量変化させるものであることが好ましい。
 固定ピッチプロペラのマルチコプターは、飛行中に上昇気流で機体が押し上げられたときには、プロペラの回転数(回転速度と同義)を下げることでその高度を維持する。当然、強い上昇気流に煽られたときには相応に回転数を下げる必要があるが、プロペラがその本来の機能を発揮するためには十分なジャイロ効果が得られる回転数が必要である。プロペラの回転数がその下限を超えて下げられたときには、プロペラは失速し、マルチコプターは操舵不能に陥る。ロータのエネルギー効率を高めるためにはプロペラを低速で回転させることが望ましいが、それは同時に上昇気流に対して脆弱になるということでもある。
 ピッチ変更機構が、複数のロータのピッチ角を全て同じ角度に保ちながら、これらロータのピッチ角を同時に同量変更可能であることにより、例えば上昇気流に煽られて機体の姿勢状態が不安定になりそうなときには、ピッチ角を一時的に小さくして各ロータの回転数に対する推力を下げることで回転数を維持し、これらロータの失速を避けることが可能となる。
 また、前記ピッチ変更機構は、該ピッチ変更機構の駆動源である一または複数のモータを有し、前記モータの数は、前記ロータの数よりも少ないことが好ましい。このとき、前記ピッチ変更機構は、該ピッチ変更機構の駆動源である一のモータにより、前記複数のロータの全てのピッチ角を変化させることがより好ましい。
 本発明のピッチ変更機構は、複数のロータをこれらロータのピッチ角が全て同じ角度となるように変化させる。この特徴は、全ロータのピッチ角を少数のモータで一斉に操作することを可能にする。ピッチ変更機構がロータごとにモータを備える場合、搭載されるモータ数がロータの数だけ増えることとなり、機体重量が増加し、また消費電力も増える。ピッチ変更機構をロータの数よりも少ない数のモータで駆動することにより、ピッチ変更機構の採用に伴うこのような難点を緩和することができる。特に、モータを一つとした場合、ピッチ変更機構の軽量化効果・省電力効果が最大化されることに加え、ピッチ角の同期精度を高めることもできる。
 また、前記ピッチ変更機構は、前記各ロータのピッチ角をコレクティブピッチ制御により変化させ、前記複数のロータについてサイクリックピッチ制御は行わないことが好ましい。
 上でも述べたように、本発明の無人航空機は、ロータのピッチ角を統一的に調節することにのみピッチ変更機構を使用し、空中における移動は専ら各ロータの回転速度制御により行う。そのため、本発明のピッチ変更機構はサイクリックピッチ制御を行う必要はない。ピッチ変更機構からサイクリックピッチ制御に関係する構造を除去することで、ピッチ変更機構の単純化を図ることができる。
 また、本発明の無人航空機は、機体の中心部であるセンターフレームと、前記センターフレームから平面視放射状に延びる複数本のアームと、を備え、前記複数のロータはそれぞれ前記アームに支持されており、前記各ロータは、回転翼であるブレードと、前記ブレードが接続されたロータハブと、を有し、前記ロータハブは回転軸であるロータシャフトに結合されており、前記ピッチ変更機構は、前記ロータごとに、リンク部材であるピッチリンクで前記ブレードに接続されたスライダー部材と、前記スライダー部材を前記ロータシャフトに沿って昇降させる機構であるピッチレベラーと、前記ピッチレベラーを操作する棒状のリンク部材である第1コントロールロッドと、を有し、前記第1コントロールロッドは、前記センターフレームから前記各アームに沿って配置されており、前記ピッチ変更機構は、全ての前記第1コントロールロッドを前記各アームに沿って同時に同量進退させる構成としてもよい。
 一般にマルチコプターは、アームの先端重量が大きくなるほどアーム先端の慣性の影響で姿勢が安定しにくくなり、飛行動作の機敏性が損なわれる。さらに、アーム先端の搭載物はロータの排気流を妨げ、ロータの推進方向を乱す原因にもなる。各ロータのピッチ角を、第1コントロールロッドを介してセンターフレーム側から操作可能とすることにより、ピッチ変更機構の駆動源を機体の中心側に配置することが可能となる。これにより各アームの先端重量を軽量化することができ、ピッチ変更機構を備えることによる飛行動作の安定性・機敏性への影響を軽減することができる。
 また、このとき、前記センターフレームには前記モータの出力で水平に回転するハブ部材であるコントロールハブが配置され、前記各第1コントロールロッドはその基端部が前記コントロールハブに連結されている構成としてもよい。
 より具体的には、4基の前記ロータを備え、前記センターフレームの中央には前記モータの出力部であるサーボホーンが配置され、前記センターフレームには、該センターフレームを平面視したときに前記サーボホーンの回転中心を対称の中心として点対称となる位置に一対の前記コントロールハブが配置され、前記サーボホーンと前記各コントロールハブとは、棒状のリンク部材である第2コントロールロッドで連結され、前記各コントロールハブにはそれぞれ2本の前記第1コントロールロッドが連結され、前記一対のコントロールハブは、前記サーボホーンの回転により、4本の前記第1コントロールロッドを前記各アームに沿って同時に同量進退させる構成としてもよい。
 一のモータで全てのロータのピッチ角を変更するにあたり、すべての第1コントロールロッドの動作を簡易な構造で機械的に同期させることで、ピッチ角の変更動作の信頼性を高めることができ、また、ピッチ変更機構の重量を抑えることができる。
 また、本発明の無人航空機は、前記ピッチ変更機構を自動制御するプログラムであるピッチ調節プログラムを有し、前記各ロータの回転速度が所定の閾値を下回ったときに、前記ピッチ調節プログラムが前記複数のロータのピッチ角を自動的に小さくする構成としてもよい。
 上昇気流に煽られた場合など、ロータの回転数が所定の閾値を下回ることで姿勢制御が乱れるおそれがあるときには、ピッチ調節プログラムがピッチ角を自動的に小さくして各ロータの回転数に対する推力を下げ、ロータの回転数を保つことにより、ロータの失速を未然に防止することができる。
 その他、本発明の無人航空機は、前記各ロータの回転速度が所定の閾値を下回ったときに、前記ピッチ調節プログラムが前記複数のロータのピッチ角を自動的に小さくする構成としてもよい。
 上でも述べたように、ロータのエネルギー効率を高めるためには、ロータを低速で回転させることが望ましいが、それは同時に上昇気流に対して脆弱になるということでもある。ピッチ調節プログラムがロータの回転数を監視し、安全圏の範囲内で自動的にピッチ角を大きく保つことにより、ロータの失速を避けつつロータのエネルギー効率を高めることができる。
 このように、本発明の無人航空機によれば、機体構造やフライトプログラムの複雑化・不安定化を抑えつつ、プロペラの最適ピッチ調節の煩わしさを解消させることができる。
本実施形態にかかるマルチコプターの外観を示す斜視図である。 図1のセンターフレーム内の構成を示す透視斜視図である。 マルチコプターのピッチ変更機構の構成を示す透視斜視図である。 アーム先端の機構を示す部分拡大図である。 ピッチ変更機構によるロータのピッチ角変更動作を示す側面図である。 ロータの駆動機構を示す側面視断面図である。 マルチコプターの機能構成を示すブロック図である。 マルチコプターの変形例の機能構成を示すブロック図である。
 以下、本発明の実施形態について説明する。以下の実施形態は、複数のロータを備える無人航空機であるマルチコプター10についての例である。なお、以下の説明における「上」および「下」、「垂直」とは、図1および図2に描かれた座標軸表示のZ軸に平行な方向であって、Z軸の矢印方向を上とする。また、「水平」とは同座標軸表示におけるX-Y平面(方向)をいう。
(構成概要)
 図1は、本実施形態(以下、「本例」ともいう。)にかかるマルチコプター10の外観を示す斜視図である。図2は、図1のセンターフレーム11内の構成を示す透視斜視図である。図1および図2は、マルチコプター10が有するロータ43の駆動および制御に関わる機械構造を説明するものであり、実際にはここに後述するフライトコントーラFCやESC24、バッテリー60等が搭載される。その他、例えばセンターフレーム11を覆うカバー部材やランディングギヤ、種々の用途に応じた外部機器等を備えてもよい。
 本例のマルチコプター10は、機体の中心に配置されたフレーム部材であるセンターフレーム11と、センターフレーム11から平面視放射状に延びる4本のアーム12と、を有している。センターフレーム11は平面視略十字形状の平板材が上下に平行に配置されることで構成されている。アーム12は円筒形状のパイプ材であり、センターフレーム11の十字の各端部からこれら端部と同方向にのびるように配置されている。各アーム12は、その基端部がクランプ部材であるアームクランプ121でセンターフレーム11内に固定されており、各アーム12の先端部にはロータ43が支持されている。
 本例のマルチコプター10では、各ロータ43の駆動源であるモータ41がセンターフレーム11内に配置されている。これらモータ41は、その出力軸を各アーム12側に向けるようにして、センターフレーム11に設けられたモータマウント419に固定されている。これらモータ41の出力は各アーム12内に配置された動力伝達部材を介してロータ43に伝達される。
 市販の一般的なマルチコプターでは、各アームの先端にモータが配置され、その出力部に固定ピッチプロペラが直結される構造が多く採用されている。しかし、マルチコプターは、アームの先端重量が大きくなるほどアーム先端の慣性の影響で姿勢が安定しにくくなり、飛行動作の機敏性が損なわれる。本例のマルチコプター10は、モータ41をセンターフレーム11に配置することでアーム12の先端重量を減らし、飛行動作の安定性・機敏性を向上させている。
 また、本例のロータ43はピッチ角を変更可能な可変ピッチプロペラである。詳しくは後ほど説明するが、本例のマルチコプター10は、各ロータ43のピッチ角が全て同じ角度となるようにこれらロータ43のピッチ角を調節し、空中における移動は専ら各ロータ43の回転速度制御により行う。これにより、機体構造やフライトプログラムの複雑化・不安定化を抑えつつ、プロペラの最適ピッチ調節の煩わしさを解消させている。
(ピッチ変更機構)
 図3は、マルチコプター10のピッチ変更機構PCの構成を示す透視斜視図である。図4はアーム12先端の機構を示す部分拡大図である。
 上でも述べたように、本例のピッチ変更機構PCは、個々のロータ43のピッチ角を個別に調節するものではなく、各ロータ43のピッチ角を全て同じ角度に保ちながら、これらロータ43のピッチ角を同時に同量変化させるものである。そのため、ピッチ変更機構PCは、各ロータ43の推力が不均衡となるようにピッチ角を制御することはできず、機体を水平に飛行させることにこれを用いることはできない。
 本例のピッチ変更機構PCは、主に、サーボモータ71、第1コントロールロッド81、ピッチレバー82、およびスライダー部材Sにより構成されている。
 サーボモータ71はピッチ変更機構PCの駆動源である。サーボモータ71はセンターフレーム11に固定されており、その出力部である長円形状のサーボホーン711がセンターフレーム11の中央に配置されている。サーボホーン11の長手方向の両端には、棒状のリンク部材である第2コントロールロッド73の一端が連結されており、第2コントロールロッド73の他端はそれぞれコントロールハブ72に連結されている。
 コントロールハブ72は、センターフレーム11を構成する下側のプレートに支持されたハブ部材である。本例のコントロールハブ72は、センターフレーム11を平面視したときに、サーボホーン711の回転中心を対称の中心として、点対称となる位置に一対配置されている。各コントロールハブ72は平面視扇形の部材であり、その扇形の中心角に相当する部分を回転中心として水平に回転することができる。第2コントロールロッド73の他端は、各コントロールハブ72の扇形を構成する円弧の中心に相当する部位にそれぞれ連結されている。これにより一対のコントロールハブ72は、サーボホーン11に連動して所定の角度範囲内を互いに対称的に回転する。
 各コントロールハブ72の扇形を構成する2つの半径の先端近傍に相当する部位にはそれぞれ、棒状のリンク部材である第1コントロールロッド81の一端(基端部)が連結されている。各コントロールハブ72にはそれぞれ2本の第1コントロールロッド81が連結されており、これらコントロールハブ72は計4本の第1コントロールロッド81を操作する。4本の第1コントロールロッド81は互いに別々のアーム12に沿うように配置されている。
 上記構成により本例のピッチ変更機構PCは、一のサーボモータ71で4本の第1コントロールロッド81を同時に同量進退させることが可能とされている。なお、詳しくは後段で説明するが、これら第1コントロールロッド81の他端はスライダー部材Sにつながっており、第1コントロールロッド81を各アーム12に沿って進退させることで、スライダー部材Sを介して全てのロータ43のピッチ角を変更することができる。
 上でも述べたように、本例のピッチ変更機構PCは、4基のロータ43をこれらロータ43のピッチ角が全て同じ角度となるように変化させるものである。この特徴が、全ロータ43のピッチ角を一つのサーボモータ71で一斉に操作することを可能にしている。ピッチ変更機構がロータごとにモータを備える場合、搭載されるモータ数がロータの数だけ増えることとなり、機体重量が増加し、また消費電力も増える。本例のマルチコプター10では、ピッチ変更機構PCを一のサーボモータ71で駆動することにより、ピッチ変更機構PCの採用に伴うこのような難点が緩和されている。なお、本例ではサーボモータ71を一つとすることによりピッチ角の同期精度も高められているが、ロータ43の数よりも少ない数のサーボモータ71でピッチ変更機構PCを駆動することにより一定程度の軽量化効果や省電力効果は得ることができる。
 また、一般にマルチコプターは、アームの先端重量が大きくなるほどアーム先端の慣性の影響で姿勢が安定しにくくなり、飛行動作の機敏性が損なわれる。さらに、アーム先端の搭載物はロータの排気流を妨げ、ロータの推進方向を乱す原因にもなる。本例のピッチ変更機構PCでは、各ロータ43のピッチ角を、第1コントロールロッド81を介してセンターフレーム11側から操作可能とすることにより、ピッチ変更機構PCの駆動源(サーボモータ71)を機体の中心側に配置することが可能とされている。これにより各アーム43の先端重量が軽減され、ピッチ変更機構PCを備えることによる飛行動作の安定性・機敏性への影響が抑えられている。
 そして、一のサーボモータ71で全てのロータ43のピッチ角を変更するにあたり、すべての第1コントロールロッド81の動作を簡易な構造で機械的に同期させることでピッチ角の変更動作の信頼性が高められており、また、ピッチ変更機構PC自体の重量が抑えられている。
 以下、図4を参照してピッチレバー82およびスライダー部材Sについて説明する。以下の図4に基づく説明では、アーム12の先端側(図4の矢印f側)を「前」、その反対側(図4の矢印r側)を「後ろ」とする。
 アーム12の先端には、ロータ43の支持部材であるロータベース13が装着されている。本例のロータベース13は、ソケット部131、支持プレート132、および補強ポストにより構成されている。ソケット部131はアーム12の先端にねじ固定された円筒形状の接続部材である。支持プレート132はソケット部131から前方に延びる2枚の板状部であり、これらは水平に、かつ上下に平行に配置されている。補強ポスト133は支持プレート132のたわみを防ぐ円柱形状の補強材である。補強ポスト133は、2枚の支持プレート132の前側の端部の間に垂直に立てて配置されている。2枚の支持プレート132は補強ポスト133を介して互いのたわみを制限し合い、これにより支持プレート132の剛性が高められている。
 ピッチレバー82は、スライダー部材Sをロータシャフト44に沿って昇降させる機構であり、本発明のピッチレベラーの一形態である。ピッチレバー82は、支持プレート132の上面に固定された台座部であるピッチレバーベース821にその一端が回転可能に支持されたヒンジ部材である。第1コントロールロッド81は、リンク部材であるピッチレバーリンク811を介してピッチレバー82に連結されている。ピッチレバー82は、第1コントロールロッド81がアーム12に沿って進退することで、ピッチレバーベース821との連結部を中心として上下に旋回する。
 スライダー部材Sは、ロータシャフト44に沿って上下に昇降することでロータ43のブレード432が接続されたフェザリングヒンジ88をブレード432のピッチ方向に回転させる。つまりロータ43のピッチ角を変化させる。
 本例のロータ43は、フェザリングヒンジ88が回転可能に支持されたロータハブ431、回転翼であるブレード432、および、ブレード432を折り畳み可能に保持するブレードベース433により構成されている。ロータハブ431はロータシャフト44に結合されており、ロータシャフト44と一体に回転する。ブレードベース433はフェザリングヒンジ88に結合されており、フェザリングヒンジ88と一体的に回転する。
 本例のスライダー部材Sは、主に、ピッチコントロールプレート85とスライダーリング86によって構成されている。
 ピッチコントロールプレート85は、ロータシャフト44が挿通された円筒形状の胴部と、胴部から前後方向に延びる一対の腕部とを有し、これら腕部には、各フェザリングヒンジ88に連結された2つのピッチリンク851の一端が回転可能に支持されている。スライダーリング86は、その円筒形状の胴部の外周面に、周方向に連続した環状のフランジ部861が上下に2枚設けられている。これらフランジ部861の間には、同外周面の周方向に連続した溝部862が形成されている。
 ピッチコントロールプレート85とスライダーリング86とは、これらの胴部の内側に配置された円筒形状のスリーブ部材87であるスライダースリーブ87で結合されており、上下に一体的に移動する。スライダースリーブ87は、その外周面の一部がフランジ状に拡径された頭部を有する半ねじ部材であり、頭部を下に、ねじ部を上にして配置されている。スライダースリーブ87のねじ部にはピッチコントロールプレート85が螺合されており、ピッチコントロールプレート85とスライダースリーブ87の頭部との間にスライダーリング86が配置されている。なお、スライダーリング86はベアリングを介在させてスライダースリーブ87に支持されており、これによりピッチコントロールプレート85は、スライダーリング86とは独立して、ロータシャフト44およびスライダースリーブ87と一体的に回転する。
 そして、スライダーリング86の溝部862には、ピッチレバー82の先端に設けられた一対のボス822が嵌合されている。これによりスライダー部Sは、ピッチレバー82の上下動に連動して昇降する。
 図5は、ピッチ変更機構PCによるロータ43のピッチ角変更動作を示す側面図である。
 サーボモータ71が平面視CW方向に駆動すると、サーボホーン711に連結された第2コントロールロッド73は各コントロールハブ72を回転させる。各コントロールハブ72は、これらに連結された第1コントロールロッド81を各アーム12の先端側に押し出す。押し出された第1コントロールロッド81は、ピッチレバーリンク811を介してピッチレバー82を持ち上げる。持ち上げられたピッチレバー82は、スライダーリング86およびこれと一体化されたピッチコントロールプレート85を上昇させる。上昇したピッチコントロールプレート85はピッチリンク851を介してフェザリングヒンジ88を回転させ、これによりブレード432の迎角(ピッチ角)が大きくなる。
 なお、図5はロータ43のピッチ角を大きくする場合の動作を示しているが、サーボモータ71をCCW方向に駆動すれば、上述の過程とは逆の過程を経てロータ43のピッチ角が小さくなる。
 このように、本例のピッチ変更機構PCは、各ロータ43のピッチ角をコレクティブピッチ制御(一のロータの全てのブレードのピッチ角を同時に同量増減させる制御)により変化させ、ヘリコプターのメインロータで一般に行われてるようなサイクリックピッチ制御は行わない。本例のピッチ変更機構PCは、ピッチ変更機構PCからサイクリックピッチ制御に関係する構造が除去されていることで、ピッチ変更機構PCの単純化が図られている。
(ロータ駆動機構)
 図6は、ロータ43の駆動機構を示す側面視断面図である。以下、図4および図6を参照して本例のロータ駆動機構について説明する。なお、図6に基づく説明においても、アーム12の先端側(図6の矢印f側)を「前」、その反対側(図6の矢印r側)を「後ろ」とする。
 上でも述べたように、本例のマルチコプター10では、各ロータ43の駆動源であるモータ41がセンターフレーム11内に配置されており、これらモータ41は、その出力軸411を各アーム12側に向けるようにして、モータマウント419に固定されている。
 モータ41の出力軸411には、円筒形状の接続部材であるシャフトアダプタ412の一端(基端)が装着されており、シャフトアダプタ412の他端(先端)には、モータ41の動力伝達部材であるドライブシャフト42が接続されている。ドライブシャフト42は円筒形状の棒体であり、その前側の端部には傘歯歯車である駆動ギヤ421が装着されている。
 駆動ギヤ421はロータベース13内に配置されている。そして、支持プレート132に回転可能に支持されたロータシャフト44の下端(基端)には、駆動ギヤ421に噛合する傘歯歯車である従動ギヤ441が配置されている。これによりモータ41の出力は、順に、シャフトアダプタ412、ドライブシャフト42、駆動ギヤ421、従動ギヤ441、ロータシャフト44、ロータハブ431に伝達され、ロータ43を回転させる。
 上でも述べたように、マルチコプターはアームの先端重量が大きくなるほどアーム先端の慣性の影響で姿勢が安定しにくくなり、飛行動作の機敏性が損なわれる。本例のマルチコプター10は、センターフレーム11にモータ41を配置し、ドライブシャフト42を介してその出力をロータ43に伝達することでアーム12の先端重量を軽減しており、これにより飛行動作の安定性・機敏性を向上させている。
 なお、モータ41の出力をロータ43に伝達する動力伝達部材は本例のドライブシャフト42には限られず、例えば歯付ベルトなどを採用することもできる。ただしその場合、モータ41の出力軸411をセンターフレーム11内で垂直(鉛直)に立てて配置する必要があり、センターフレーム11内のスペース効率が低下する。本例のマルチコプター10では、ドライブシャフト42を採用することでモータ41をその出力軸411を各アーム12側に向けるようにして配置することが可能とされており、これによりセンターフレーム11内のスペース効率が高められている。
(機能構成)
 図7、図8は、マルチコプター10の機能構成を示すブロック図である。
 マルチコプター10の機能は、主に、制御部であるフライトコントローラFC、4基のロータ43およびモータ41、モータ41の回転数(回転速度と同義)を制御するモータ駆動回路であるESC24(Electric Speed Controller)、操縦者(オペレータ端末51)と通信を行う通信装置52、上述のピッチ変更機構PC、およびこれらに電力を供給するバッテリー60により構成されている。
 フライトコントローラFCはマイクロコントローラである制御装置20を有している。制御装置20は、中央処理装置であるCPU21と、RAMやROM・フラッシュメモリなどの記憶装置からなるメモリ22とを有している。
 フライトコントローラFCはさらに、IMU31(Inertial Measurement Unit:慣性計測装置)、GPS受信器32、気圧センサ33、および電子コンパス34を含む飛行制御センサ群30を有しており、これらは制御装置20に接続されている。
 IMU31はマルチコプター10の傾きを検出するセンサであり、主に3軸加速度センサおよび3軸角速度センサにより構成されている。気圧センサ33は、検出した気圧値からマルチコプター10の海抜高度(標高)を得る高度センサである。電子コンパス34はマルチコプター10の機首の方位角を検出するセンサである。本例の電子コンパス34には3軸地磁気センサが用いられている。GPS受信器32は、正確には航法衛星システム(NSS:Navigation Satellite System)の受信器である。GPS受信器32は、全地球航法衛星システム(GNSS:Global Navigation Satellite System)または地域航法衛星システム(RNSS:Regional Navigational Satellite System)から現在の経緯度値を取得する。
 フライトコンローラFCは、これら飛行制御センサ群30により、機体の傾きや回転のほか、飛行中の経緯度、高度、および機首の方位角を含む自機の位置情報を取得する。
 制御装置20は、マルチコプター10の飛行時における姿勢や基本的な飛行動作を制御する飛行制御プログラムFSを有している。飛行制御プログラムFSは、飛行制御センサ群30から取得した情報を基に個々のロータ43の回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター10を飛行させる。
 制御装置20はさらに、マルチコプター10を自律飛行させるプログラムである自律飛行プログラムAPを有している。そして、制御装置20のメモリ22には、マルチコプター10を飛行させる経路の経緯度、飛行中の高度や速度などが指定されたパラメータである飛行計画FPが登録されている。自律飛行プログラムAPは、オペレータ端末51からの指示を開始条件として、飛行計画FPに従ってマルチコプター10を自律的に飛行させる。
 オペレータ端末51には、ラジオコントロール用の送信機や、無人航空機分野において一般にGCS(Ground Control Station)と呼ばれている装置を用いることができる。その他、オペレータ端末51は、多数のマルチコプター10を管制する運行管理システム(UTM:UAV Traffic Management)の端末であってもよい。
 マルチコプター10の通信装置52とオペレータ端末51とは、制御信号やデータの送受信を行うことが可能であれば、その具体的な通信方式やプロトコルは問わない。例えば、マルチコプター10への飛行計画FPのアップロードやテレメトリデータの受信には双方向通信であるWi-Fi(Wireless Fidelity)を使用し、手動操縦時の操縦信号は2.4GHz帯の周波数ホッピング方式でPCM(pulse code modulation:パルス符号変調)信号を送信する構成などが考えられる。その他、マルチコプター10とオペレータ端末51とは、3GやLTE(Long Term Evolution)、WiMAX(Worldwide Interoperability for Microwave Access)などの移動体通信網で接続されてもよい。そうすることにより操縦者(オペレータ端末51)は、移動体通信網のサービスエリア内からであればどこからでもマルチコプター10を制御することが可能となる。
 なお、本例の飛行制御センサ群30は屋外用の構成とされているが、マルチコプター10は屋内を飛行するものであってもよい。例えば、無線信号を送出するビーコンを施設内の所定箇所に配置し、これらビーコンから受信した信号の電波強度からマルチコプター10と各ビーコンとの相対的な距離を計測することで、その施設内におけるマルチコプター10の位置を特定することが考えられる。または、マルチコプター10に別途カメラやオプティカルフローセンサを搭載し、画像認識により施設内における現在位置を特定することも可能である。同様に、レーザや赤外線、超音波などを利用した測距センサを別途搭載し、施設内の床面(または天井面)や壁面とマルチコプター10との距離を計測し、その施設内におけるマルチコプター10の位置を特定してもよい。
 本例のマルチコプター10は、ピッチ変更機構PCをロータ43のピッチ角を統一的に調節することにのみ使用し、空中における移動は専ら各ロータ43の回転速度制御により行う。すなわち、ピッチ変更機構PCは、いわば、固定ピッチプロペラのピッチ角を、プロペラを換装することなく変更可能とするものであり、一般的なピッチ変更機構とはその用途や技術思想を異にしている。本例のピッチ変更機構PCは、その機能と用途が絞り込まれることで構造が単純化されているのみならず、空中における移動を専らロータ43の回転速度制御で行うことにより、マルチコプター用の既存のフライトコントローラを改変なく採用することが可能とされている。これによりマルチコプター10は、機体構造やフライトプログラムを複雑化・不安定化させることなく、プロペラの最適ピッチ調節の煩わしさを解消している。
 なお、本例のマルチコプター10におけるピッチ角の変更操作は、操縦者が自身の判断に基づきピッチ変更機構PCに手動で指示を出すことを想定しているが、例えば図8に示すように、ピッチ変更機構PCを自動制御するピッチ調節プログラムPPを別途備えてもよい。
 ピッチ調節プログラムPPは、通信装置52から受信したピッチ変更機構PCの制御信号をピッチ変更機構PCに転送することに加え、所定の条件に応じて自動的にピッチ変更機構PCを制御することができる。なお、この場合でも空中における移動は専ら各ロータ43の回転速度制御により行うため、飛行制御プログラムFS等の既存のフライトプログラムを改変する必要はない。また、図8の例では、フライトコントローラFCの制御装置20にピッチ調節プログラムPPを実装することで、フライトコントローラFCが備える飛行制御センサ群30や飛行制御プログラムFSの出力値をピッチ変更機構PCの制御にも転用しているが、ピッチ調節プログラムPP専用の制御装置やセンサ類を別途用意してもよい。そうすることでピッチ調節プログラムPPをフライトコントローラFCから完全に独立させることができる。
 ピッチ変更機構PCは、ロータ43のピッチ角を全て同じ角度に保ちながら、これらロータ43のピッチ角を同時に同量変更することができる。この機能を応用することでピッチ調節プログラムPPは以下のような自動制御を実現することができる。
 例えば、飛行制御センサ群30や飛行制御プログラムFSの出力値をピッチ調節プログラムPPが監視し、ロータ43の回転数が所定の閾値を下回って姿勢制御が乱れるおそれがあるときには、ピッチ調節プログラムPPがピッチ角を一時的に小さくして各ロータ43の回転数に対する推力を下げ、各ロータ43の回転数を保つことより、ロータ43の失速を未然に防止することが考えられる。
 他の例としては、ピッチ調節プログラムPPが、ロータ43の回転数が所定の閾値を下回らない程度にピッチ角を自動的に大きく保つことが考えられる。ロータ43のエネルギー効率を高めるためには、ロータ43を低速で回転させることが望ましいが、それは同時に上昇気流に対して脆弱になるということでもある。ピッチ調節プログラムPPがロータ43の回転数を監視し、安全圏の範囲内で自動的にピッチ角を大きくすることにより、ロータ43の失速を避けつつロータ43のエネルギー効率を高めることができる。なお、ロータ43の回転数はESC24に入力されるPWM(Pulse Width Modulation:パルス幅変調)信号などの制御信号を監視することで算出可能である。これに加え、ロータ43の回転数を直接計測するセンサを別途搭載したり、モータ41に電流センサを取り付けたりしてもよい。
 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えることができる。

 

Claims (8)

  1.  複数のロータを備える無人航空機であって、
     前記複数のロータのピッチ角を変化させるピッチ変更機構と、
     前記各ロータの回転速度を制御するスピードコントローラと、
    を備え、
     前記ピッチ変更機構は、該ピッチ変更機構の駆動源である一または複数のモータを有し、
     前記モータの数は、前記ロータの数よりも少なく、
     前記ピッチ変更機構は、前記各ロータのピッチ角を全て同じ角度に保ちながら、前記複数のロータのピッチ角を同時に同量変化させ、
     空中における移動は前記各ロータの回転速度制御により行うことを特徴とする無人航空機。
  2.  前記ピッチ変更機構は、該ピッチ変更機構の駆動源である一のモータにより、前記複数のロータの全てのピッチ角を変化させることを特徴とする請求項1に記載の無人航空機。
  3.  前記ピッチ変更機構は、前記各ロータのピッチ角をコレクティブピッチ制御により変化させ、前記複数のロータについてサイクリックピッチ制御は行わないことを特徴とする請求項1に記載の無人航空機。
  4.  機体の中心部であるセンターフレームと、
     前記センターフレームから平面視放射状に延びる複数本のアームと、を備え、
     前記複数のロータはそれぞれ前記アームに支持されており、
     前記各ロータは、
      回転翼であるブレードと、
      前記ブレードが接続されたロータハブと、を有し、
     前記ロータハブは回転軸であるロータシャフトに結合されており、
     前記ピッチ変更機構は、前記ロータごとに、
      前記ブレードにリンク部材であるピッチリンクで接続されたスライダー部材と、
      前記スライダー部材を前記ロータシャフトに沿って昇降させる機構であるピッチレベラーと、
      前記ピッチレベラーを操作する棒状のリンク部材である第1コントロールロッドと、を有し、
     前記第1コントロールロッドは、前記センターフレームから前記各アームに沿って配置されており、
     前記ピッチ変更機構は、全ての前記第1コントロールロッドを前記各アームに沿って同時に同量進退させることで前記各ロータのピッチ角を変化させることを特徴とする請求項1に記載の無人航空機。
  5.  前記センターフレームには前記モータの出力で水平に回転するハブ部材であるコントロールハブが配置され、
     前記各第1コントロールロッドはその基端部が前記コントロールハブに連結されていることを特徴とする請求項4に記載の無人航空機。
  6.  4基の前記ロータを備え、
     前記センターフレームの中央には前記モータの出力部であるサーボホーンが配置され、
     前記センターフレームには、該センターフレームを平面視したときに前記サーボホーンの回転中心を対称の中心として点対称となる位置に一対の前記コントロールハブが配置され、
     前記サーボホーンと前記各コントロールハブとは、棒状のリンク部材である第2コントロールロッドで連結され、
     前記各コントロールハブにはそれぞれ2本の前記第1コントロールロッドが連結され、
     前記一対のコントロールハブは、前記サーボホーンの回転により、4本の前記第1コントロールロッドを前記各アームに沿って同時に同量進退させることを特徴とする請求項4に記載の無人航空機。
  7.  前記ピッチ変更機構を自動制御するプログラムであるピッチ調節プログラムを有し、
     前記ピッチ調節プログラムは、前記各ロータの回転速度が所定の閾値を下回ったときに、前記複数のロータのピッチ角を自動的に小さくすることを特徴とする請求項1に記載の無人航空機。
  8.  前記ピッチ変更機構を自動制御するプログラムであるピッチ調節プログラムを有し、
     前記ピッチ調節プログラムは、前記各ロータの回転速度が所定の閾値を下回らない程度に、前記複数のロータのピッチ角を自動的に大きく保つことを特徴とする請求項1に記載の無人航空機。
PCT/JP2019/027862 2018-07-17 2019-07-16 無人航空機 WO2020017486A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018134161A JP6592679B1 (ja) 2018-07-17 2018-07-17 無人航空機
JP2018-134161 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020017486A1 true WO2020017486A1 (ja) 2020-01-23

Family

ID=68314010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027862 WO2020017486A1 (ja) 2018-07-17 2019-07-16 無人航空機

Country Status (2)

Country Link
JP (1) JP6592679B1 (ja)
WO (1) WO2020017486A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114313222A (zh) * 2022-01-18 2022-04-12 珠海市双捷科技有限公司 变距螺旋组件、无人飞行器和飞行器系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728451C1 (ru) * 2019-12-06 2020-07-29 Александр Викторович Атаманов Система безопасности летательного аппарата вертикального взлета и посадки
KR102479686B1 (ko) * 2021-12-21 2022-12-21 하경호 감속기어와 가변 피치를 이용한 멀티 콥터 추력 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211826A1 (en) * 2001-02-07 2005-09-29 Pai Bhaskar R Lightweight helicopter
JP2010023820A (ja) * 2008-07-22 2010-02-04 Keiichi Aoyanagi 垂直離着陸する飛行機
WO2015024044A1 (en) * 2013-08-23 2015-02-26 Adam Martin Leon Omni-directional thrust vectoring propulsor
JP2017185945A (ja) * 2016-04-07 2017-10-12 ヒロボー株式会社 ヘリコプタのロータヘッド、マルチロータ型ヘリコプタ及びヘリコプタ
CN108202872A (zh) * 2018-02-09 2018-06-26 云南优航无人机科技有限公司 一种多旋翼无人机的驱动机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211826A1 (en) * 2001-02-07 2005-09-29 Pai Bhaskar R Lightweight helicopter
JP2010023820A (ja) * 2008-07-22 2010-02-04 Keiichi Aoyanagi 垂直離着陸する飛行機
WO2015024044A1 (en) * 2013-08-23 2015-02-26 Adam Martin Leon Omni-directional thrust vectoring propulsor
JP2017185945A (ja) * 2016-04-07 2017-10-12 ヒロボー株式会社 ヘリコプタのロータヘッド、マルチロータ型ヘリコプタ及びヘリコプタ
CN108202872A (zh) * 2018-02-09 2018-06-26 云南优航无人机科技有限公司 一种多旋翼无人机的驱动机构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114313222A (zh) * 2022-01-18 2022-04-12 珠海市双捷科技有限公司 变距螺旋组件、无人飞行器和飞行器系统

Also Published As

Publication number Publication date
JP2020011574A (ja) 2020-01-23
JP6592679B1 (ja) 2019-10-23

Similar Documents

Publication Publication Date Title
WO2020017488A1 (ja) 無人航空機
US10850835B2 (en) Unmanned aerial vehicle with monolithic wing and twin-rotor propulsion/lift modules
US10773802B2 (en) Tilt-rotor vertical takeoff and landing aircraft
US9938011B2 (en) Unmanned aircraft system (UAS) with active energy harvesting and power management
US8720816B2 (en) Unmanned aerial vehicle
US10407162B2 (en) Multicopters with variable flight characteristics
KR100812756B1 (ko) 요잉제어가 용이한 쿼드로콥터
WO2020017486A1 (ja) 無人航空機
KR101564380B1 (ko) 무인비행체
EP3535963B1 (en) An unmanned aerial vehicle
US20200301446A1 (en) Tilt-Wing Aircraft
CN109606674A (zh) 尾坐式垂直起降无人机及其控制系统与控制方法
CN110944909A (zh) 旋翼机
JP2006051841A (ja) 小型飛行装置
KR20180116849A (ko) 가변 피치 프로펠러를 이용한 고정익 드론
JP2012081936A (ja) 飛行体
JP6721191B2 (ja) 回転翼航空機
JP6561272B1 (ja) 回転翼航空機
JP4702882B2 (ja) 小型回転翼機
CN215399323U (zh) 一种基于可倾转涵道螺旋桨的跨介质无人机
JP2019043394A (ja) 回転翼航空機
WO2023182127A1 (ja) 飛行装置
RU222840U1 (ru) Беспилотный летательный аппарат мультироторного типа с изменяющимися углами атаки
US20230093447A1 (en) Rotary-wing unmanned aerial vehicle
NL1040979B1 (en) Air vehicle.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838330

Country of ref document: EP

Kind code of ref document: A1