WO2017038532A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2017038532A1
WO2017038532A1 PCT/JP2016/074391 JP2016074391W WO2017038532A1 WO 2017038532 A1 WO2017038532 A1 WO 2017038532A1 JP 2016074391 W JP2016074391 W JP 2016074391W WO 2017038532 A1 WO2017038532 A1 WO 2017038532A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
tti
downlink control
transmission
downlink
Prior art date
Application number
PCT/JP2016/074391
Other languages
English (en)
French (fr)
Inventor
一樹 武田
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2017537754A priority Critical patent/JP6797808B2/ja
Priority to EP16841564.4A priority patent/EP3346754B1/en
Priority to US15/755,412 priority patent/US10638502B2/en
Priority to CN201680050226.XA priority patent/CN107950051B/zh
Publication of WO2017038532A1 publication Critical patent/WO2017038532A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE successor systems (for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile communication system), New- RAT (called Radio Access Technology) is also being studied.
  • LTE-A LTE-Advanced
  • FRA Full Radio Access
  • 5G 5th generation mobile communication system
  • New- RAT called Radio Access Technology
  • each subframe can be dynamically used as DL (Downlink) or UL (Uplink) in order to use a given frequency spectrum more flexibly and effectively.
  • DL Downlink
  • UL Uplink
  • the introduction of the Flexible duplex system is under consideration.
  • DL / UL is not defined in advance for time / frequency resources, and is dynamically changed according to various conditions such as traffic and channel state.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a user terminal, a radio base station, and a radio communication method capable of realizing low-delay communication in a next-generation mobile communication system. To do.
  • the user terminal which concerns on 1 aspect of this invention receives at least 1 downlink control information among the 1st downlink control information which schedules reception of downlink data, and the 2nd downlink control information which schedules transmission of uplink data And a control unit that controls reception of the downlink data corresponding to the downlink control information and / or transmission of the uplink data at a predetermined transmission time interval (TTI).
  • TTI transmission time interval
  • the control unit uses the predetermined TTI based on the TTI that has received the downlink control information regardless of whether the downlink control information is the first downlink control information or the second downlink control information. It is characterized by controlling so that it may become the same TTI.
  • low-delay communication can be realized in a next-generation mobile communication system.
  • FIG. 3A is a diagram illustrating an example of radio resource allocation when scheduling the same frequency carrier with DL grant and UL grant.
  • FIG. 3B is a diagram illustrating scheduling of the same frequency carrier with DL grant and different frequency carriers with UL grant. It is a figure which shows an example of radio
  • FIG. 5A is a diagram illustrating an example of allocation of only PDCCH that transmits UL grant and PUSCH that transmits data, and FIG.
  • FIG. 5B is a diagram illustrating an example of resource allocation of an uplink reference signal (RS). .
  • FIG. 6A is a diagram illustrating an example of resource allocation of SRS
  • FIG. 6B is a diagram illustrating an example of resource allocation of delivery confirmation information of HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • a radio base station (eNB: evolved Node B) schedules transmission / reception of data to / from a user terminal (UE: User Equipment) using a downlink control channel.
  • UE User Equipment
  • DCI downlink control information
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced PDCCH
  • FIG. 1 is a diagram showing an example of data scheduling in an existing LTE system.
  • FIG. 1 shows DL scheduling and UL scheduling indicated by DCI received by PDCCH.
  • the UE is a PDSCH (Physical Downlink) based on the DL grant in the same subframe in which a DL grant (also referred to as a DL assignment (downlink assignment)) according to the DCI format 1A or the like is detected. Shared Channel) is received.
  • PDSCH Physical Downlink
  • Shared Channel Shared Channel
  • the UE for example, a PUSCH (Physical) based on the UL grant in a subframe after a predetermined period (for example, after 4 subframes) from the subframe in which the UL grant (uplink grant) according to the DCI format 0/4 is detected.
  • a PUSCH Physical
  • the UE for example, a PUSCH (Physical) based on the UL grant in a subframe after a predetermined period (for example, after 4 subframes) from the subframe in which the UL grant (uplink grant) according to the DCI format 0/4 is detected.
  • a PUSCH Physical
  • TTI Transmission Time Interval
  • CC component carrier
  • LTE Rel In 13 or later wireless communication systems (for example, 5G), in order to use a given frequency spectrum more flexibly and effectively, a flexible duplex system is introduced that allows each subframe to be dynamically used as DL or UL. Is being considered.
  • DL / UL In Flexible duplex, DL / UL is not defined in advance for time / frequency resources, and is dynamically changed according to various conditions such as traffic and channel state.
  • FIG. 2 is a diagram illustrating an example of radio resource allocation in a carrier that uses a flexible duplex.
  • FIG. 2 shows radio resources for 10 TTIs.
  • frequency spectrum is DL-only (downlink transmission only), UL-only (uplink transmission only), DL-heavy (downlink transmission ratio is large), It can be used as UL-heavy (high uplink transmission ratio).
  • FDD operation can be performed by using a combination of two frequency carriers of DL-only and UL-only, and TDD operation can also be performed by using the DL + UL setting.
  • the scheduling of the existing LTE system cannot maximize the flexibility of the flexible duplex, and the effect of improving the frequency utilization efficiency and the throughput is reduced, and it is difficult to suppress the delay related to the retransmission. Can be considered.
  • the inventors of the present invention pay attention to the fact that when control over TTI (subframe) (inter-subframe scheduling) is used, old control in time limits newer control (control at a later time). did. In addition, in inter-subframe scheduling, attention was also paid to the necessity of scheduling in consideration of future control contents.
  • the present inventors have conceived to reduce the scheduling timing as much as possible based on these points of interest. Specifically, the idea was to transmit and receive UL grant and uplink data with the same TTI. Furthermore, it has been found that the scheduling timing is made the same regardless of the DL / UL scheduling. According to one aspect of the present invention, it is possible to instruct the UE to perform scheduling for the latest time in a unified manner, so that dynamic control of DL / UL of each TTI can be effectively realized. Moreover, RRQ (Round Trip Time) of HARQ can be shortened suitably.
  • downlink control information is notified using PDCCH with the first few symbols as in the existing LTE system, but the application of the present invention is not limited to this.
  • the downlink control information may be notified on the EPDCCH multiplexed in the PDSCH region, or may be notified on other channels or other radio resources.
  • the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be.
  • downlink control information (which may be referred to as uplink scheduling information and uplink scheduling control information) for scheduling uplink data transmission is referred to as UL grant
  • downlink control information (downlink scheduling information, downlink scheduling information, Downlink scheduling control information, DL assignment, etc.) may be called DL grant, but the name is not limited to this.
  • the downlink control information (downlink control signal) may be referred to as, for example, L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), or simply L1 control information (L1 control signal). May be called.
  • the eNB notifies the UE of downlink control information (scheduling information) indicating radio resources to be allocated to a predetermined TTI (for example, subframe).
  • the eNB performs control such that radio resources are allocated with the same TTI with reference to the TTI that transmits the downlink control information.
  • the UE performs control so that transmission / reception is performed with the same TTI with reference to the TTI that has received the downlink control information, regardless of whether the detected downlink control information is UL grant or DL grant.
  • FIG. 3 is a diagram illustrating an example of scheduling according to the first embodiment.
  • FIG. 3A shows an example of radio resource allocation when scheduling the same frequency carrier with DL grant and UL grant.
  • FIG. 3B shows an example of radio resource allocation in the case where the same frequency carrier is scheduled with the DL grant and different frequency carriers are scheduled with the UL grant.
  • scheduling of data transmission / reception is performed with the same TTI as the notification of downlink control information.
  • the UE monitors and receives the L1 control signal with a predetermined frequency carrier. If the received L1 control information includes a DL grant addressed to the terminal itself, the DL data is received by the TTI that has received the DL grant. Further, if the UL grant addressed to the terminal is included in the L1 control signal, the UL data is received by the TTI that has received the UL grant.
  • the reception of DL / UL grant and the transmission / reception of DL / UL data may be performed with the same TTI as shown in FIG. 3, or may be performed with different TTIs as described later in FIG.
  • a non-transmission period for example, a guard period (GP), a gap, a GP section, or the like
  • a guard period may be the time from when the downlink control information is received until the transmission of data is started.
  • the guard period may be 20 ⁇ s, for example, or may be one or more symbol periods.
  • the symbol period may be expressed in, for example, an OFDM (Orthogonal Frequency Division Multiplexing) symbol unit, may be expressed in a reciprocal bandwidth (ie, sampling length) unit, or in other units. It may be expressed.
  • the length of the non-transmission period may be different or the same in the case of scheduling of the same frequency carrier (FIG. 3A) and the case of scheduling of different frequency carriers (FIG. 3B).
  • the guard period may be longer than a period during which PDCCH can be transmitted (for example, a maximum of 3 symbols).
  • FIG. 4 is a diagram illustrating another example of scheduling according to the first embodiment.
  • FIG. 4 shows an example of radio resource allocation when scheduling the same frequency carrier with DL grant and UL grant.
  • scheduling of data transmission / reception is performed in a TTI (after 1 TTI) adjacent to the TTI to which downlink control information is notified.
  • the configuration for scheduling adjacent TTIs with downlink control information is suitable for the case where downlink control information is notified on EPDCCH, for example, because scheduling TTI can be DL only and scheduled TTI can be UL only. is there.
  • the number of TTIs from the scheduled TTI to the scheduled TTI may be different depending on whether the downlink control information is notified by PDCCH or EPDCCH.
  • the UE when downlink control information is notified by PDCCH, the UE performs transmission / reception processing assuming that the number of TTIs is 0 (scheduling in the same subframe), while downlink control information is notified by EPDCCH.
  • the transmission / reception process may be performed assuming that the number of TTIs is 1 (scheduling in adjacent subframes).
  • the UE when the UE detects allocation of both DL grant and UL grant scheduling different frequency carriers with the same TTI, the UE determines that both grants are valid, and different frequency carriers with the same TTI.
  • the data transmission and data reception may be performed.
  • the UE detects the allocation of both DL grant and UL grant with the same TTI of the same frequency carrier, the UE ignores the UL grant, determines that the DL grant is valid, and based on the DL grant Downstream data may be received. By doing so, for example, it is possible to avoid the occurrence of interference with other users that are frequency and / or spatially multiplexed in the same TTI of the same cell.
  • the DL grant is ignored, it is determined that the UL grant is valid, and uplink data transmission is performed based on the UL grant. You may go. By doing in this way, for example, it is possible to process UL data having a greater influence of delay earlier, and to improve the user experience speed.
  • the UE when the UE detects that scheduling is performed from both the DL grant and the UL grant in a predetermined TTI of the same frequency carrier, the UE ignores the UL grant and determines that the DL grant is valid. Downlink data may be received based on the DL grant. On the other hand, if it is detected that scheduling is performed from both the DL grant and the UL grant in a predetermined TTI of the same frequency carrier, the DL grant is ignored, and the UL grant is determined to be valid, and based on the UL grant. Then, uplink data may be transmitted.
  • the UE may determine that the latest grant is valid, or based on a predetermined rule.
  • the effective grant may be determined, or the oldest grant may be determined to be effective. Then, the UE may transmit / receive data based on the grant that is determined to be valid.
  • the UE transmits scheduling information (for example, the number of TTIs from the scheduled TTI to the scheduled TTI), upper layer signaling (for example, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)), etc.) , SIB (System Information Block))).
  • scheduling information for example, the number of TTIs from the scheduled TTI to the scheduled TTI
  • upper layer signaling for example, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)), etc.) , SIB (System Information Block)
  • SIB System Information Block
  • the radio base station it is possible to suitably reduce the time from when the radio base station notifies the scheduling information to when the UE performs transmission / reception based on the information.
  • a certain processing time is required from the time when the UE receives the UL grant until the PUSCH can be transmitted. For example, encoding or modulation processing is required as processing for generating a data signal to be transmitted by PUSCH.
  • TBS Transport Block Size
  • these processing times become longer.
  • calculation of transmission power and surplus transmission power may also be performed after UL grant reception.
  • the guard period length (GP length) of the TTI scheduled by the UL grant described in the first embodiment is variable, and have found the second embodiment.
  • the UE determines and uses the GP length (may be called the GAP length) provided between the UL grant reception and the UL transmission for each UL grant. For example, the UE determines the GP length based on its own terminal processing capability (UE capability), TBS, coding scheme (eg, turbo coding), cell radius of the connected cell, and transmission timing (eg, timing) applied to the own terminal. (Advance) or a combination thereof.
  • the UE may shorten the GP length when the TBS of the transmission data is small, and lengthen the GP length when the TBS is large.
  • the variable-length GP in the second embodiment may be referred to as a “Flexible GP”.
  • FIG. 5 is a diagram illustrating an example of uplink resource allocation according to the second embodiment.
  • FIG. 5A is a diagram illustrating an example of allocation of only the PDCCH that transmits the UL grant and the PUSCH that transmits the data.
  • Scheduling A and scheduling B shown in FIG. 5A show scheduling of UL transmission based on different UL grants. Note that these schedulings are merely shown in the figure for simplicity and do not have to occur at the same TTI.
  • the radio resource to which data is allocated is not limited to the configuration in FIG. 5A.
  • the GP length is different for each scheduling.
  • Scheduling A is, for example, when the TBS corresponding to the UL grant is small and the GP length is short.
  • scheduling B is a case where, for example, the TBS corresponding to the UL grant is large, and the GP length is long. Note that, in FIG. 5B and FIG. 6 to be described later, radio resource mapping related to these two schedulings is illustrated as in FIG. 5A.
  • the guard period is defined in a predetermined range, and the guard periods of scheduling A and B correspond to the minimum value and the maximum value of the predetermined range, respectively. To do.
  • the time resource available for data transmission can be increased, so that the uplink frequency resource can be configured to be relatively narrow.
  • radio resources can be secured and data transmission can be performed even if time resources available for data transmission are reduced.
  • FIG. 5B is a diagram illustrating an example of resource allocation of an uplink reference signal (RS).
  • the UE uses a predetermined radio resource (eg, synchronized with a subframe) (time and / or frequency resource) that does not depend on the GP length (and PUSCH resource allocation) in the TTI that performs uplink transmission. Control to transmit RS.
  • a predetermined radio resource eg, synchronized with a subframe
  • time and / or frequency resource time and / or frequency resource
  • Control to transmit RS.
  • FIG. 5B an example is shown in which the UE performs mapping so that the RS is arranged after the longest guard period in the TTI scheduled by the UL grant.
  • the RS may be arranged after the minimum guard period. it can.
  • RS is mapped at a fixed timing / position even between different cells (and even when MU-MIMO (Multi User Multi Input Multi Output) is applied to UE).
  • MU-MIMO Multi User Multi Input Multi Output
  • the uplink reference signal to be allocated to a fixed resource may be, for example, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS: DeModulation Reference Signal), or other reference signal. There may be. Further, as the measurement reference signal, a reference signal (for example, may be referred to as eSRS (enhanced SRS)) that can be arranged in a discontinuous frequency resource may be used.
  • SRS Sounding Reference Signal
  • DMRS Demodulation reference Signal
  • a reference signal for example, may be referred to as eSRS (enhanced SRS)
  • eSRS enhanced SRS
  • FIG. 6 is a diagram illustrating another example of uplink resource allocation according to the second embodiment.
  • FIG. 6A is a diagram illustrating an example of SRS resource allocation.
  • the UE transmits SRS / eSRS immediately after the elapse of the minimum guard period in a predetermined TTI (for example, TTI scheduled with UL grant).
  • a predetermined TTI for example, TTI scheduled with UL grant.
  • the SRS / eSRS may be transmitted from the first timing that can be transmitted when the TBS is minimum because the encoding process is unnecessary unlike the data. It should be noted that SRS / eSRS may be transmitted at this timing even in a TTI that is not subject to scheduling by UL grant (data transmission is not performed).
  • SRS / eSRS is a reference signal and does not require complicated transmission signal processing, it can be transmitted in a short time. Therefore, by arranging SRS / eSRS at a relatively early transmission timing in the TTI, a resource having a relatively late transmission timing can be used for another signal allocation, and reduction in frequency utilization efficiency can be suppressed.
  • FIG. 6B is a diagram illustrating an example of resource allocation of HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (also referred to as retransmission control information, HARQ-ACK, ACK / NACK, etc.).
  • HARQ Hybrid Automatic Repeat reQuest
  • the UE starts transmission of ACK / NACK immediately after the minimum guard period elapses in a predetermined TTI (for example, TTI scheduled with UL grant).
  • TTI for example, TTI scheduled with UL grant
  • ACK / NACK may be transmitted from the first timing that can be transmitted when TBS is minimum. Note that ACK / NACK may be transmitted at this timing even in a TTI that is not subject to scheduling by UL grant (data transmission is not performed).
  • the ACK / NACK may be an ACK / NACK for the downlink data of the TTI immediately before the ACK / NACK is transmitted (the previous TTI), or before that (two before, three before, four) ACK / NACK for downlink data of the previous TTI or the like may be used.
  • ACK / NACK may be transmitted in a predetermined narrow band narrower than the system bandwidth.
  • ACK / NACK may also support frequency hopping. Thereby, the frequency diversity effect can be acquired about transmission of ACK / NACK, and the coverage of UE can be extended.
  • wireless resource (timing) in which allocation of SRS / eSRS and ACK / NACK occurs simultaneously, it is good also as a structure which gives priority to one transmission and drops the other transmission. For example, when ACK / NACK is transmitted from the first possible transmission timing when the TBS is minimum, SRS / eSRS transmission may be dropped at that timing, or transmission avoiding ACK / NACK resources. You may make it do.
  • the UE determines an ACK / NACK resource (frequency / time resource) based on the GP length corresponding to the uplink data transmission. Also good.
  • ACK / NACK is information including a simple bit string, for example, and does not require complicated transmission signal processing, and can be transmitted in a short time. Therefore, by arranging ACK / NACK from a relatively early transmission timing in the TTI, a resource having a relatively late transmission timing can be used for another signal allocation, and a reduction in frequency utilization efficiency can be suppressed.
  • PUSCH transmission can be appropriately performed.
  • Wireless communication system Hereinafter, the configuration of a wireless communication system according to an embodiment of the present invention will be described. In this wireless communication system, communication is performed using any one or combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced 4G (4th generation mobile communication system)
  • 5G. 5th generation mobile communication system
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • a radio communication system 1 shown in FIG. 7 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. -12c). Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously by CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used.
  • PUSCH uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 transmits downlink control information (for example, DCI) related to data transmission and / or reception to the user terminal 20.
  • DCI downlink control information
  • the transmission / reception unit 103 may transmit instruction information (DL grant) for reception of the downlink shared channel (PDSCH).
  • PDSCH downlink shared channel
  • the transmission / reception unit 103 may transmit instruction information (UL grant) for transmission of the uplink shared channel (PUSCH).
  • DL grant for reception of the downlink shared channel
  • UL grant for transmission of the uplink shared channel
  • These DCIs may be transmitted with the same TTI or with different TTIs. Further, these DCIs may be transmitted on the same frequency carrier or may be transmitted on different frequency carriers.
  • the transmission / reception unit 103 transmits downlink data (PDSCH) with a predetermined TTI determined (determined) by the control unit 301. Further, the transmission / reception unit 103 may transmit HARQ-ACK for uplink data (PUSCH). Further, the transmission / reception unit 103 may transmit information regarding scheduling.
  • the transmission / reception unit 103 receives uplink data from the user terminal 20 via the uplink shared channel (for example, PUSCH) with a predetermined TTI determined by the control unit 301.
  • the transmission / reception unit 103 may receive HARQ-ACK for downlink data transmitted on the downlink shared channel (PDSCH) based on DCI.
  • PDSCH downlink shared channel
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment of the present invention. Note that FIG. 9 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 9, the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. ing.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. ing.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling (for example, resource allocation) of system information, a downlink data signal transmitted on the PDSCH, and a downlink control signal transmitted on the PDCCH and / or EPDCCH. It also controls scheduling of synchronization signals (PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and downlink reference signals such as CRS, CSI-RS, and DMRS.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the control unit 301 also includes an uplink data signal transmitted on the PUSCH, an uplink control signal (eg, delivery confirmation information) transmitted on the PUCCH and / or PUSCH, a random access preamble transmitted on the PRACH, an uplink reference signal, etc. Control the scheduling of
  • control unit 301 performs control so that data transmission and / or reception corresponding to downlink control information (for example, DCI) transmitted from the transmission / reception unit 103 is performed with a predetermined TTI (scheduled TTI).
  • downlink control information for example, DCI
  • control unit 301 uses the TTI (scheduling TTI) that transmitted the downlink control information as a reference regardless of whether the downlink control information transmitted from the transmission / reception unit 103 is the UL grant or the DL grant. Control is performed so as to have the same TTI (first embodiment).
  • the control unit 301 can determine to use, for example, the same TTI as the TTI that transmitted the downlink control information or the next TTI as the predetermined TTI.
  • the control unit 301 may perform control so that data transmission and / or reception is performed using the same frequency carrier regardless of whether the downlink control information transmitted from the transmission / reception unit 103 is UL grant or DL grant.
  • control unit 301 may perform control so that only data transmission and / or reception corresponding to any grant is performed on a plurality of downlink control information transmitted by the same TTI. For example, the control unit 301 may perform control while ignoring one of the UL grant and the DL grant transmitted with the same TTI.
  • control unit 301 controls processing of the reception signal processing unit 304 and / or the measurement unit 305 on the assumption that a variable non-transmission period (GP) is included in the scheduling TTI in data transmission based on the UL grant. (Second embodiment). For example, the control unit 301 may determine the non-transmission period based on the size of the resource that indicates the UL grant or the capability information of the UE.
  • GP variable non-transmission period
  • control unit 301 controls the processing of the reception signal processing unit 304 and / or the measurement unit 305 on the assumption that the reference signal is transmitted from the user terminal 20 using a predetermined resource regardless of the GP length in the scheduling TTI. May be. Further, the control unit 301 transmits the downlink control information or at the timing when the shortest GP length has elapsed from the head of the TTI, and the delivery confirmation information (HARQ ⁇ ) for the reference signal for measurement (eg, SRS / eSRS) or downlink data. ACK) may be received.
  • HARQ ⁇ delivery confirmation information for the reference signal for measurement
  • ACK delivery confirmation information
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information based on an instruction from the control unit 301.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may measure, for example, received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 301.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 transmits uplink data to the radio base station 10 through an uplink shared channel (for example, PUSCH) with a predetermined TTI determined by the control unit 401.
  • the transmission / reception unit 203 may transmit HARQ-ACK for downlink data transmitted on the downlink shared channel (PDSCH) based on DCI.
  • PDSCH downlink shared channel
  • the transmission / reception unit 203 receives DCI related to data transmission and / or reception from the radio base station 10.
  • the transmission / reception unit 203 may receive instruction information (DL grant) for receiving a downlink shared channel (PDSCH).
  • PDSCH downlink shared channel
  • UL grant instruction information for transmission of the uplink shared channel (PUSCH).
  • DL grant instruction information for receiving a downlink shared channel
  • UL grant instruction information for transmission of the uplink shared channel
  • These DCIs may be received with the same TTI or with different TTIs. Also, these DCIs may be received on the same frequency carrier or on different frequency carriers.
  • the transmission / reception unit 203 receives downlink data (PDSCH) with a predetermined TTI determined by the control unit 401. Further, the transmission / reception unit 203 may receive HARQ-ACK for uplink data (PUSCH). The transmission / reception unit 203 may receive information related to scheduling.
  • PDSCH downlink data
  • PUSCH uplink data
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention. Note that FIG. 11 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 controls generation of an uplink control signal (for example, delivery confirmation information) and an uplink data signal based on a downlink control signal, a result of determining whether or not retransmission control is required for the downlink data signal, and the like.
  • control unit 401 performs control so that data transmission and / or reception corresponding to downlink control information (for example, DCI) acquired from the reception signal processing unit 404 is performed with a predetermined TTI (scheduled TTI). To do.
  • downlink control information for example, DCI
  • the control unit 401 uses the predetermined TTI as the TTI (scheduling TTI) that has received the downlink control information regardless of whether the downlink control information received by the reception signal processing unit 404 is UL grant or DL grant. Control is performed so that the same TTI is used as a reference (first embodiment).
  • the control unit 401 can determine to use, for example, the same TTI as the TTI that received the downlink control information or the subsequent (for example, one after) TTI as the predetermined TTI.
  • the control unit 401 may perform control so that data transmission and / or reception is performed using the same frequency carrier regardless of whether the downlink control information received by the reception signal processing unit 404 is UL grant or DL grant.
  • the control unit 401 controls to perform data transmission and / or reception by regarding any grant as valid. May be.
  • the control unit 401 may perform control by ignoring one of the UL grant and DL grant received by the same TTI.
  • control unit 401 may perform control so that a variable non-transmission period (GP) is provided in the scheduling TTI in data transmission based on the UL grant (second embodiment). For example, the control unit 401 may determine the non-transmission period based on the size of the resource instructed by the UL grant, TBS, or the like.
  • GP variable non-transmission period
  • the control unit 401 may perform control so that the reference signal is transmitted using a predetermined resource regardless of the GP length. Further, the control unit 401 receives the downlink control information or at the timing when the shortest GP length has elapsed from the head of the TTI, the delivery reference information (HARQ ⁇ ) for the reference signal for measurement (eg, SRS / eSRS) and downlink data. (ACK) may be transmitted.
  • HARQ ⁇ delivery reference information
  • ACK downlink data.
  • control unit 401 acquires information related to scheduling (for example, the number of TTIs from the scheduled TTI to the scheduled TTI) from the received signal processing unit 404, the control unit 401 updates the parameters used for control based on the information. May be.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generator 402 generates an uplink control signal related to delivery confirmation information and channel state information (CSI) based on an instruction from the controller 401, for example.
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401.
  • the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the received signal processing unit 404 performs blind decoding on DCI (DCI format) that schedules transmission and / or reception of predetermined TTI data (TB: Transport Block) based on an instruction from the control unit 401.
  • DCI DCI format
  • TTI Transport Block
  • the received signal processing unit 404 may decode the DCI by performing a demasking process using a predetermined identifier (RNTI: Radio Network Temporary Identifier), or may decode the DCI assuming a predetermined payload size. Good.
  • RNTI Radio Network Temporary Identifier
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, the received power (for example, RSRP), reception quality (for example, RSRQ), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • the radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
  • the radio base station 10 and the user terminal 20 are each a computer device including a processor (CPU: Central Processing Unit), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. It may be realized. That is, the radio base station, user terminal, and the like according to an embodiment of the present invention may function as a computer that performs processing of the radio communication method according to the present invention.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), CD-ROM (Compact Disc-ROM), RAM (Random Access Memory), A storage medium such as a hard disk.
  • the program may be transmitted from a network via a telecommunication line.
  • the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
  • the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
  • the program may be a program that causes a computer to execute the operations described in the above embodiments.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may also be called a frequency carrier, a carrier frequency, a cell, or the like.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) ), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), systems using other appropriate systems and / or extended based on these It may be applied to the next generation system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • communication system 5G (5th generation mobile communication system

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

次世代移動通信システムにおいて、低遅延な通信を行うこと。本発明の一態様に係るユーザ端末は、下りデータの受信をスケジューリングする第1の下り制御情報及び上りデータの送信をスケジューリングする第2の下り制御情報のうち少なくとも1つの下り制御情報を受信する受信部と、前記下り制御情報に対応する前記下りデータの受信及び/又は前記上りデータの送信を、所定の送信時間間隔(TTI:Transmission Time Interval)で行うように制御する制御部と、を有し、前記制御部は、前記所定のTTIを、前記下り制御情報が前記第1の下り制御情報及び前記第2の下り制御情報のいずれであっても、前記下り制御情報を受信したTTIを基準として同一のTTIとなるように制御することを特徴とする。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、New-RAT(Radio Access Technology)などと呼ばれる)も検討されている。
 LTE Rel.13以降の無線通信システム(例えば、5G)では、与えられた周波数スペクトルをより柔軟かつ効果的に活用するため、各サブフレームをDL(Downlink)又はUL(Uplink)として動的に利用可能にする、Flexible duplex方式の導入が検討されている。Flexible duplexでは、時間/周波数リソースについて、DL/ULを事前に規定せず、トラヒック、チャネル状態など種々の条件に応じて動的に変更する。
 しかしながら、既存のLTEにおけるデータ送受信のスケジューリングでは、時間的に早いタイミングで将来の無線リソースを確保する必要があるため、Flexible duplexの柔軟性を最大限に発揮することができず、低遅延な通信を達成できないおそれがある。
 本発明はかかる点に鑑みてなされたものであり、次世代移動通信システムにおいて、低遅延な通信を実現することができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、下りデータの受信をスケジューリングする第1の下り制御情報及び上りデータの送信をスケジューリングする第2の下り制御情報のうち少なくとも1つの下り制御情報を受信する受信部と、前記下り制御情報に対応する前記下りデータの受信及び/又は前記上りデータの送信を、所定の送信時間間隔(TTI:Transmission Time Interval)で行うように制御する制御部と、を有し、前記制御部は、前記所定のTTIを、前記下り制御情報が前記第1の下り制御情報及び前記第2の下り制御情報のいずれであっても、前記下り制御情報を受信したTTIを基準として同一のTTIとなるように制御することを特徴とする。
 本発明によれば、次世代移動通信システムにおいて、低遅延な通信を実現することができる。
既存のLTEシステムにおけるデータのスケジューリングの一例を示す図である。 Flexible duplexを利用するキャリアにおける無線リソース割り当ての一例を示す図である。 図3Aは、DLグラント及びULグラントで同一周波数キャリアをスケジューリングする場合の無線リソース割り当ての一例を示す図であり、図3Bは、DLグラントで同一周波数キャリアをスケジューリングし、ULグラントで異なる周波数キャリアをスケジューリングする場合の無線リソース割り当ての一例を示す図である。 第1の実施形態に係るスケジューリングの別の一例を示す図である。 図5Aは、ULグラントを送信するPDCCH及びデータを送信するPUSCHのみの割り当ての一例を示す図であり、図5Bは、上り参照信号(RS:Reference Signal)のリソース割り当ての一例を示す図である。 図6Aは、SRSのリソース割り当ての一例を示す図であり、図6Bは、HARQ(Hybrid Automatic Repeat reQuest)の送達確認情報のリソース割り当ての一例を示す図である。 本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。
 既存のLTEシステム(Rel.8-12)では、無線基地局(eNB:evolved Node B)がユーザ端末(UE:User Equipment)に対して、下り制御チャネルを用いてデータの送受信をスケジューリングする。具体的には、PDCCH(Physical Downlink Control Channel)/EPDCCH(Enhanced PDCCH)で通知される下り制御情報(DCI:Downlink Control Information)に基づくDLスケジューリングとULスケジューリングとが規定されている。
 図1は、既存のLTEシステムにおけるデータのスケジューリングの一例を示す図である。図1では、PDCCHで受信したDCIで指示されるDLスケジューリング及びULスケジューリングが示されている。図1に示すように、UEは、例えばDCIフォーマット1Aなどに従うDLグラント(DLアサインメント(downlink assignment)ともいう)を検出したサブフレームと同じサブフレームで、当該DLグラントに基づいてPDSCH(Physical Downlink Shared Channel)を受信する。
 また、UEは、例えばDCIフォーマット0/4に従うULグラント(uplink grant)を検出したサブフレームから所定の期間後(例えば、4サブフレーム後)のサブフレームで、当該ULグラントに基づいてPUSCH(Physical Uplink Shared Channel)を送信する。
 なお、図1ではDL/ULグラントをPDCCHで通知する例を示したが、EPDCCHの場合でも、スケジューリングする送信時間間隔(TTI:Transmission Time Interval)とスケジューリングされるTTIとの対応関係は、図1と同様である。また、DLグラントとPDSCHの送受信を行うキャリア(例えば、コンポーネントキャリア(CC:Component Carrier))は同一でなく、異なるキャリアであってもよい。また、ULグラントとPUSCHの送受信を行うキャリアは同一であってもよい。
 既存のLTEシステムは、TDD(Time Division Duplexing)やFDD(Frequency Division Duplexing)に基づく制御を利用している。具体的には、時間/周波数リソースについて、所定の単位(例えば、時間リソースとしてはサブフレーム、周波数リソースとしてはCCなど)毎に、DLに用いるかULに用いるかが厳密に規定されている。
 ところで、LTE Rel.13以降の無線通信システム(例えば、5G)では、与えられた周波数スペクトルをより柔軟かつ効果的に活用するため、各サブフレームをDL又はULとして動的に利用可能にする、Flexible duplex方式の導入が検討されている。Flexible duplexでは、時間/周波数リソースについて、DL/ULを事前に規定せず、トラヒック、チャネル状態など種々の条件に応じて動的に変更する。
 図2は、Flexible duplexを利用するキャリアにおける無線リソース割り当ての一例を示す図である。図2には、10TTI分の無線リソースが示されている。図2に示すように、Flexible duplexを利用するキャリアでは、例えば、周波数スペクトルをDL-only(下り送信のみ)、UL-only(上り送信のみ)、DL-heavy(下り送信の比率が大きい)、UL-heavy(上り送信の比率が大きい)などとして活用可能である。
 なお、DL-onlyとUL-onlyの2つの周波数キャリアを組み合わせて用いることでFDD運用を行うこともでき、DL+ULの設定を用いることでTDD運用を行うこともできる。
 しかしながら、実際にどのようにしてFlexible duplexを実現するかについては、まだ検討が行われていない。例えば、Flexible duplexを実現する制御をLTEシステムで実現しようとした場合、上述のようにDLとULとのスケジューリングタイミング(スケジューリングするTTIからスケジューリングされるTTIまでのTTI数)が異なることが問題となる。
 例えば、既存のLTEでは、ULグラントを通知するスケジューリングタイミングで数サブフレーム先のULリソースを予約する。このため、当該リソースを送信する時間になったときに、当該時間において別の割り当てを行いたい(割り当てを変更したい)場合であっても、割り当てることができない。
 このように、既存のLTEシステムのスケジューリングでは、Flexible duplexの柔軟性を最大限に発揮することができず、周波数利用効率やスループットの向上効果が低下したり、再送に係る遅延の抑制が難しくなったりすることが考えられる。
 そこで、本発明者らは、TTI(サブフレーム)をまたぐ制御(サブフレーム間スケジューリング)を用いると、時間的に古い制御がより新しい制御(後の時刻の制御)を制限してしまうことに着目した。また、サブフレーム間スケジューリングでは、将来の制御内容を予め考慮してスケジューリングする必要があることにも着目した。
 本発明者らは、これらの着目点に基づいて、スケジューリングタイミングをできるだけ低減することを着想した。具体的には、ULグラントと上りデータを同一TTIで送受信することを着想した。さらに、DL/ULのスケジューリングに依らず、スケジューリングタイミングを同じにすることを見出した。本発明の一態様によれば、UEに、統一的に直近の時間についてのスケジューリングを指示することができるため、各TTIのDL/ULの動的な制御を効果的に実現することができる。また、HARQのRTT(Round Trip Time)を好適に短縮することができる。
 以下、本発明に係る各実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 以下では、既存のLTEシステムと同様に先頭の数シンボルでPDCCHを用いて下り制御情報が通知される場合を例に説明するが、本発明の適用はこれに限られない。例えば、下り制御情報は、PDSCH領域に多重されるEPDCCHで通知されてもよいし、他のチャネルや他の無線リソースで通知されてもよい。
 また、以下の実施形態において、TTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 なお、上りデータの送信をスケジューリングする下り制御情報(上りスケジューリング情報、上りスケジューリング制御情報などと呼ばれてもよい)をULグラントと呼び、下りデータの受信をスケジューリングする下り制御情報(下りスケジューリング情報、下りスケジューリング制御情報、DLアサインメントなどと呼ばれてもよい)をDLグラントと呼ぶが、呼称はこれに限られない。また、下り制御情報(下り制御信号)は、例えばL1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)と呼ばれてもよいし、単にL1制御情報(L1制御信号)と呼ばれてもよい。
(無線通信方法)
<第1の実施形態>
 本発明の第1の実施形態では、eNBは、所定のTTI(例えば、サブフレーム)に割り当てる無線リソースを示す下り制御情報(スケジューリング情報)をUEに通知する。ここで、eNBは、下り制御情報がULグラント及びDLグラントのいずれであっても、下り制御情報を送信するTTIを基準として同じTTIで無線リソース割り当てを行うように制御を行う。また、UEは、検出した下り制御情報がULグラント及びDLグラントのいずれであっても、下り制御情報を受信したTTIを基準として同じTTIで送信/受信を行うように制御を行う。
 図3は、第1の実施形態に係るスケジューリングの一例を示す図である。図3Aは、DLグラント及びULグラントで同一周波数キャリアをスケジューリングする場合の無線リソース割り当ての一例を示す。図3Bは、DLグラントで同一周波数キャリアをスケジューリングし、ULグラントで異なる周波数キャリアをスケジューリングする場合の無線リソース割り当ての一例を示す。図3のいずれの例も、下り制御情報の通知と同じTTIでデータ送受信のスケジューリングが行われている。
 第1の実施形態では、UEは、所定の周波数キャリアで、L1制御信号を監視し、受信する。受信したL1制御情報に自端末宛てのDLグラントが含まれていたら、当該DLグラントを受信したTTIで、DLデータを受信する。また、L1制御信号に自端末宛てのULグラントが含まれていたら、当該ULグラントを受信したTTIで、ULデータを受信する。DL/ULグラントの受信とDL/ULデータ送受信とは、図3に示すように同一TTIで行われてもよいし、図4で後述するように、異なるTTIで行われてもよい。
 なお、ULグラントを受信した場合、スケジューリングされるTTIには無送信期間(例えば、ガード期間(GP:Guard Period)、ギャップ、GP区間などと呼ばれてもよい)を設けることが好ましい。ガード期間を設けることで、TTI内でDL/ULを切り替えることができる。ガード期間は、スケジューリングされるTTIとスケジューリングするTTIが同一の場合、下り制御情報を受信してから(受信完了してから)データを送信開始するまでの時間であってもよい。また、ガード期間は、TTIの先頭(=TTIの開始タイミング)からデータを送信開始するまでの時間であってもよい。
 ガード期間は、例えば20μsとしてもよいし、1つ以上のシンボル期間としてもよい。ここで、当該シンボル期間は、例えば、OFDM(Orthogonal Frequency Division Multiplexing)シンボル単位で表現されてもよいし、帯域幅の逆数(すなわち、サンプリング長)単位で表現されてもよいし、他の単位で表現されてもよい。また、同一周波数キャリアのスケジューリングの場合(図3A)と異なる周波数キャリアのスケジューリングの場合(図3B)とで、無送信期間の長さは異なってもよいし、同じとしてもよい。ガード期間は、異なる周波数キャリアのスケジューリングの場合には、PDCCHが送信され得る期間(例えば、最大3シンボル)以上としてもよい。
 図4は、第1の実施形態に係るスケジューリングの別の一例を示す図である。図4は、DLグラント及びULグラントで同一周波数キャリアをスケジューリングする場合の無線リソース割り当ての一例を示す。図4の例では、下り制御情報が通知されるTTIと隣接するTTI(1TTI後)においてデータ送受信のスケジューリングが行われている。このように、下り制御情報で隣接TTIをスケジューリングする構成は、例えばスケジューリングTTIをDLのみとし、スケジュールドTTIをULのみとすることができるため、下り制御情報がEPDCCHで通知される場合に好適である。
 なお、スケジューリングするTTIからスケジューリングされるTTIまでのTTI数は、下り制御情報がPDCCHで通知されるかEPDCCHで通知されるかに応じて異なってもよい。例えば、UEは、下り制御情報がPDCCHで通知された場合には、上記TTI数を0(同一サブフレーム内のスケジューリング)と想定して送信/受信処理を行う一方、下り制御情報がEPDCCHで通知された場合には、上記TTI数を1(隣接サブフレームでのスケジューリング)と想定して送信/受信処理を行う構成としてもよい。これにより、スケジューリングの柔軟性を高めることができる。
 UEは、図3Bに示すように、同一TTIで、異なる周波数キャリアをスケジューリングするDLグラント及びULグラント両方の割り当てを検出したら、両方のグラントが有効であると判断して、同一TTIの異なる周波数キャリアでデータ送信及びデータ受信を行ってもよい。
 また、UEは、同一周波数キャリアの同一TTIでDLグラント及びULグラント両方の割り当てを検出したら、ULグラントを無視し、DLグラントが有効(valid)であると判断して、当該DLグラントに基づいて下りデータの受信を行ってもよい。このようにすることで、例えば、同一セルの同一TTIで周波数及び/又は空間多重される他のユーザに対する干渉が発生するのを回避できる。一方で、同一周波数キャリアの同一TTIでDLグラント及びULグラント両方の割り当てを検出したら、DLグラントを無視し、ULグラントが有効であると判断して、当該ULグラントに基づいて上りデータの送信を行ってもよい。このようにすることで、例えば、より遅延の影響が大きいULデータを早く処理することができ、ユーザ体感速度を向上することができる。
 また、UEは、同一周波数キャリアの所定のTTIにおいて、DLグラント及びULグラント両方からスケジューリングされていることを検出したら、ULグラントを無視し、DLグラントが有効(valid)であると判断して、当該DLグラントに基づいて下りデータの受信を行ってもよい。一方で、同一周波数キャリアの所定のTTIにおいて、DLグラント及びULグラント両方からスケジューリングされていることを検出したら、DLグラントを無視し、ULグラントが有効であると判断して、当該ULグラントに基づいて上りデータの送信を行ってもよい。
 また、UEは、同一周波数キャリアの所定のTTIにおいて、複数のグラントからスケジューリングされていることを検出したら、最新のグラントが有効(valid)であると判断してもよいし、所定の規則に基づいて有効なグラントを判断してもよいし、最古のグラントが有効であると判断してもよい。そして、UEは、有効であると判断したグラントに基づいてデータの送信/受信を行ってもよい。
 また、UEは、スケジューリングに関する情報(例えば、スケジューリングするTTIからスケジューリングされるTTIまでのTTI数など)を、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))など)により通知されてもよい。また、UEは、スケジューリングに関する情報を、別の情報の通知により判断してもよいし、設定された周波数キャリアから判断してもよい。
 以上、第1の実施形態によれば、無線基地局がスケジューリング情報を通知してからUEが当該情報に基づく送受信を行うまでの時間を好適に低減することができる。
<第2の実施形態>
 UEがULグラントを受信してからPUSCH送信が可能となるまでには、一定の処理時間を要する。例えば、PUSCHで送信すべきデータ信号を生成するための処理として、符号化や変調処理が必要となる。データの送受信単位であるTBS(Transport Block Size)が大きくなると、これらの処理時間が長くなる。また、上り信号の送信のため、送信電力や余剰送信電力(power headroom)の計算も、ULグラント受信後に行う可能性がある。
 したがって、特に、上りデータのTBSが大きい場合には、ULグラントを受けた直後にPUSCHを送信するのは困難である可能性がある。そこで、本発明者らは、第1の実施形態で説明したULグラントでスケジューリングするTTIのガード期間長(GP長)を可変とすることを着想し、第2の実施形態を見出した。
 本発明の第2の実施形態では、UEは、ULグラント受信からUL送信の間に設けられるGP長(GAP長と呼ばれてもよい)を、ULグラントごとに判断して用いる。例えば、UEは、GP長を、自端末の処理能力(UE capability)、TBS、符号化方式(例えば、ターボ符号化)、接続セルのセル半径、自端末に適用される送信タイミング(例えば、タイミングアドバンス)など又はこれらの組み合わせに基づいて判断してもよい。UEは、GP長を、送信データのTBSが小さい場合には短くし、TBSが大きい場合には長くしてもよい。ここで、第2の実施形態における可変長のGPは、Flexible GPと呼ばれてもよい。
 図5は、第2の実施形態に係る上りリソース割り当ての一例を示す図である。図5Aは、ULグラントを送信するPDCCH及びデータを送信するPUSCHのみの割り当ての一例を示す図である。図5Aに示すスケジューリングA及びスケジューリングBは、それぞれ別のULグラントに基づくUL送信のスケジューリングを示す。なお、これらのスケジューリングは、簡単のため一図で示されているに過ぎず、同じTTIで生じなくてもよい。また、データを割り当てる無線リソースも、図5Aの構成に限られない。
 各スケジューリングでは、GP長が異なっている。スケジューリングAは、例えばULグラントに対応するTBSが小さい場合であり、GP長が短い。一方、スケジューリングBは、例えばULグラントに対応するTBSが大きい場合であり、GP長が長い。なお、図5B及び後述の図6でも、図5Aと同様に、これら2つのスケジューリングに関する無線リソースマッピングが例示される。
 ここで、図5及び図6の例では、ガード期間が所定の範囲で規定されるものとし、スケジューリングA及びBのガード期間は、それぞれ当該所定の範囲の最小値及び最大値に対応するものとする。
 図5Aに示すように、GP長が短いデータ送信については、データ送信に利用可能な時間リソースを増加することができるため、上り周波数リソースを比較的狭く構成することができる。一方、GP長が長いデータ送信については、上り周波数リソースを比較的広く構成することにより、データ送信に利用可能な時間リソースが低減しても無線リソースを確保でき、データ送信を行うことができる。
 図5Bは、上り参照信号(RS:Reference Signal)のリソース割り当ての一例を示す図である。第2の実施形態では、UEは、上り送信を行うTTIにおいて、GP長(及びPUSCHリソース割り当て)に依らない所定の(例えば、サブフレームに同期した)無線リソース(時間及び/又は周波数リソース)でRSを送信するように制御する。図5Bでは、ULグラントでスケジューリングするTTIにおいて、UEは最長のガード期間以降にRSを配置するようにマッピングする例が示されているが、最小のガード期間以降であればRSを配置することができる。
 このように、異なるセル間であっても(また、MU-MIMO(Multi User Multi Input Multi Output)をUEに適用する場合は異なるUE間であっても)RSを固定的なタイミング/位置でマッピングする構成とすることで、eNBにおけるUEの上り信号の分離やセル間干渉のランダム化を好適に実現することができる。
 なお、固定的なリソースに配置する上り参照信号は、例えば、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)であってもよく、他の参照信号であってもよい。また、測定用参照信号としては、非連続の周波数リソースに配置可能な参照信号(例えば、eSRS(enhanced SRS)と呼ばれてもよい)が用いられてもよい。
 図6は、第2の実施形態に係る上りリソース割り当ての別の一例を示す図である。図6Aは、SRSのリソース割り当ての一例を示す図である。本例では、UEは、所定のTTI(例えば、ULグラントでスケジューリングするTTI)において、最小のガード期間の経過直後にSRS/eSRSを送信する。例えば、SRS/eSRSは、データとは異なり符号化処理が不要なことから、TBSが最小の場合に送信可能な最初のタイミングから送信してもよい。なお、ULグラントによるスケジューリング対象でない(データ送信を行わない)TTIでも、当該タイミングでSRS/eSRSの送信を行ってもよい。
 SRS/eSRSは参照信号であり、複雑な送信信号処理が不要なため、短時間で送信可能とすることができる。したがって、SRS/eSRSをTTI内の比較的早い送信タイミングに配置することで、比較的遅い送信タイミングのリソースを別の信号割り当てに用いることができ、周波数利用効率の低減を抑制することができる。
 図6Bは、HARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)のリソース割り当ての一例を示す図である。本例では、UEは、所定のTTI(例えば、ULグラントでスケジューリングするTTI)において、最小のガード期間の経過直後からACK/NACKの送信を開始する。例えば、ACK/NACKは、TBSが最小の場合に送信可能な最初のタイミングから送信してもよい。なお、ULグラントによるスケジューリング対象でない(データ送信を行わない)TTIでも、当該タイミングでACK/NACKの送信を行ってもよい。
 ACK/NACKは、当該ACK/NACKが送信される直前のTTI(1つ前のTTI)の下りデータに対するACK/NACKであってもよいし、それ以前(2つ前、3つ前、4つ前のTTIなど)の下りデータに対するACK/NACKであってもよい。
 図6Bに示すように、ACK/NACKは、システム帯域幅より狭い所定の狭帯域で送信されてもよい。また、ACK/NACKは、周波数ホッピングをサポートしてもよい。これにより、ACK/NACKの送信について周波数ダイバーシチ効果を得ることができ、UEのカバレッジを拡張することができる。
 なお、SRS/eSRSとACK/NACKの割り当てが同時に発生する無線リソース(タイミング)では、一方の送信を優先し、他方の送信をドロップする構成としてもよい。例えば、TBSが最小の場合に送信可能な最初のタイミングからACK/NACKを送信する場合には、当該タイミングではSRS/eSRSの送信をドロップしてもよいし、ACK/NACKのリソースを避けて送信するようにしてもよい。
 また、ACK/NACKの送信と上りデータの送信が同時に発生するTTIでは、UEは、当該上りデータの送信に対応するGP長に基づいて、ACK/NACKリソース(周波数/時間リソース)を決定してもよい。
 ACK/NACKは、例えば単純なビット列を含む情報であり、複雑な送信信号処理が不要なため、短時間で送信可能とすることができる。したがって、ACK/NACKをTTI内の比較的早い送信タイミングから配置することで、比較的遅い送信タイミングのリソースを別の信号割り当てに用いることができ、周波数利用効率の低減を抑制することができる。
 以上、第2の実施形態によれば、PUSCH生成に要する処理時間を確保できるようにGP長を調整することができるため、PUSCH送信を適切に行うことができる。
 なお、第2の実施形態の上述の例では、ULグラント受信とデータ送信が同一TTIで生じる場合を説明したが、ULグラント受信とデータ送信が異なるTTI(隣接TTI)の場合にも、第2の実施形態で説明した方法を適用してもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又は組み合わせを用いて通信が行われる。
 図7は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 図7に示す無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図8は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、ユーザ端末20に対して、データの送信及び/又は受信に関する下り制御情報(例えば、DCI)を送信する。例えば、送受信部103は、下り共有チャネル(PDSCH)の受信の指示情報(DLグラント)を送信してもよい。また、送受信部103は、上り共有チャネル(PUSCH)の送信の指示情報(ULグラント)を送信してもよい。これらのDCIは、同じTTIで送信されてもよいし、異なるTTIで送信されてもよい。また、これらのDCIは、同じ周波数キャリアで送信されてもよいし、異なる周波数キャリアで送信されてもよい。
 送受信部103は、制御部301が判断(決定)する所定のTTIで、下りデータ(PDSCH)を送信する。また、送受信部103は、上りデータ(PUSCH)に対するHARQ-ACKを送信してもよい。また、送受信部103は、スケジューリングに関する情報を送信してもよい。
 送受信部103は、制御部301が判断する所定のTTIで、ユーザ端末20から、上り共有チャネル(例えば、PUSCH)で上りデータを受信する。送受信部103は、DCIに基づいて下り共有チャネル(PDSCH)で送信された下りデータに対するHARQ-ACKを受信してもよい。
 図9は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図9では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図9に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
 制御部301は、システム情報、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、同期信号(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))や、CRS、CSI-RS、DMRSなどの下り参照信号のスケジューリングの制御を行う。
 また、制御部301は、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号(例えば、送達確認情報)、PRACHで送信されるランダムアクセスプリアンブルや、上り参照信号などのスケジューリングを制御する。
 具体的には、制御部301は、送受信部103から送信する下り制御情報(例えば、DCI)に対応するデータ送信及び/又は受信を、所定のTTI(スケジュールドTTI)で行うように制御する。
 ここで、制御部301は、当該所定のTTIを、送受信部103から送信する下り制御情報がULグラント及びDLグラントのいずれであっても、下り制御情報を送信したTTI(スケジューリングTTI)を基準として同一のTTIとなるように制御する(第1の実施形態)。制御部301は、当該所定のTTIとして、例えば、下り制御情報を送信したTTIと同じTTI又は1つ後のTTIを利用するように決定することができる。
 制御部301は、送受信部103から送信する下り制御情報がULグラント及びDLグラントのいずれであっても、同一の周波数キャリアでデータ送信及び/又は受信を行うように制御してもよい。
 また、制御部301は、同じTTIで送信した複数の下り制御情報について、いずれかのグラントに対応するデータ送信及び/又は受信のみを行うように制御してもよい。例えば、制御部301は、同じTTIで送信したULグラント及びDLグラントの一方を無視して制御を行ってもよい。
 また、制御部301は、ULグラントに基づくデータ送信において、スケジューリングTTIに可変の無送信期間(GP)が含まれると想定して、受信信号処理部304及び/又は測定部305の処理を制御してもよい(第2の実施形態)。例えば、制御部301は、当該無送信期間をULグラントにより指示するリソースの大きさやUEの能力情報などに基づいて決定してもよい。
 また、制御部301は、スケジューリングTTIにおいて、GP長に関わらず所定のリソースでユーザ端末20から参照信号が送信されると想定して、受信信号処理部304及び/又は測定部305の処理を制御してもよい。さらに、制御部301は、下り制御情報を送信してから又はTTIの先頭から最短のGP長が経過したタイミングで、測定用参照信号(例えばSRS/eSRS)や下りデータに対する送達確認情報(HARQ-ACK)を受信するように制御してもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図10は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、制御部401が判断する所定のTTIで、無線基地局10に対して、上り共有チャネル(例えば、PUSCH)で上りデータを送信する。送受信部203は、DCIに基づいて下り共有チャネル(PDSCH)で送信された下りデータに対するHARQ-ACKを送信してもよい。
 送受信部203は、無線基地局10から、データの送信及び/又は受信に関するDCIを受信する。例えば、送受信部203は、下り共有チャネル(PDSCH)の受信の指示情報(DLグラント)を受信してもよい。また、送受信部203は、上り共有チャネル(PUSCH)の送信の指示情報(ULグラント)を受信してもよい。これらのDCIは、同じTTIで受信されてもよいし、異なるTTIで受信されてもよい。また、これらのDCIは、同じ周波数キャリアで受信されてもよいし、異なる周波数キャリアで受信されてもよい。
 送受信部203は、制御部401が判断する所定のTTIで、下りデータ(PDSCH)を受信する。また、送受信部203は、上りデータ(PUSCH)に対するHARQ-ACKを受信してもよい。また、送受信部203は、スケジューリングに関する情報を受信してもよい。
 図11は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図11においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図11に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認情報など)や上りデータ信号の生成を制御する。
 具体的には、制御部401は、受信信号処理部404から取得した下り制御情報(例えば、DCI)に対応するデータ送信及び/又は受信を、所定のTTI(スケジュールドTTI)で行うように制御する。
 ここで、制御部401は、当該所定のTTIを、受信信号処理部404が受信した下り制御情報がULグラント及びDLグラントのいずれであっても、下り制御情報を受信したTTI(スケジューリングTTI)を基準として同一のTTIとなるように制御する(第1の実施形態)。制御部401は、当該所定のTTIとして、例えば、下り制御情報を受信したTTIと同じTTI又は後続の(例えば、1つ後の)TTIを利用するように決定することができる。
 制御部401は、受信信号処理部404が受信した下り制御情報がULグラント及びDLグラントのいずれであっても、同一の周波数キャリアでデータ送信及び/又は受信を行うように制御してもよい。
 また、制御部401は、同じTTIで受信した複数の下り制御情報が受信信号処理部404から入力された場合、いずれかのグラントを有効とみなしてデータ送信及び/又は受信を行うように制御してもよい。例えば、制御部401は、同じTTIで受信したULグラント及びDLグラントの一方を無視して制御を行ってもよい。
 また、制御部401は、ULグラントに基づくデータ送信において、スケジューリングTTIに可変の無送信期間(GP)を設けるように制御してもよい(第2の実施形態)。例えば、制御部401は、当該無送信期間をULグラントにより指示されたリソースの大きさやTBSなどに基づいて決定してもよい。
 また、制御部401は、スケジューリングTTIで信号を送信する場合、GP長に関わらず所定のリソースで参照信号を送信するように制御してもよい。さらに、制御部401は、下り制御情報を受信してから又はTTIの先頭から最短のGP長が経過したタイミングで、測定用参照信号(例えばSRS/eSRS)や下りデータに対する送達確認情報(HARQ-ACK)を送信するように制御してもよい。
 また、制御部401は、受信信号処理部404から、スケジューリングに関する情報(例えば、スケジューリングするTTIからスケジューリングされるTTIまでのTTI数など)を取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報やチャネル状態情報(CSI)に関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、制御部401の指示に基づいて、所定のTTIのデータ(TB:Transport Block)の送信及び/又は受信をスケジューリングするDCI(DCIフォーマット)をブラインド復号する。例えば、受信信号処理部404は、当該DCIを、所定の識別子(RNTI:Radio Network Temporary Identifier)でデマスキング処理を行って復号してもよいし、所定のペイロードサイズを想定して復号してもよい。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ)やチャネル状態などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU:Central Processing Unit)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。つまり、本発明の一実施形態に係る無線基地局、ユーザ端末などは、本発明に係る無線通信方法の処理を行うコンピュータとして機能してもよい。
 ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、CD-ROM(Compact Disc-ROM)、RAM(Random Access Memory)、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
 無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。
 ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、周波数キャリア、キャリア周波数、セルなどと呼ばれてもよい。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年8月31日出願の特願2015-171452に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  下りデータの受信をスケジューリングする第1の下り制御情報及び上りデータの送信をスケジューリングする第2の下り制御情報のうち少なくとも1つの下り制御情報を受信する受信部と、
     前記下り制御情報に対応する前記下りデータの受信及び/又は前記上りデータの送信を、所定の送信時間間隔(TTI:Transmission Time Interval)で行うように制御する制御部と、を有し、
     前記制御部は、前記所定のTTIを、前記下り制御情報が前記第1の下り制御情報及び前記第2の下り制御情報のいずれであっても、前記下り制御情報を受信したTTIを基準として同一のTTIとなるように制御することを特徴とするユーザ端末。
  2.  前記所定のTTIは、下り制御情報を受信したTTIと同じTTI又は1つ後のTTIであることを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、受信した下り制御情報が前記第1の下り制御情報及び前記第2の下り制御情報のいずれであっても、同一の周波数キャリアでデータ送信及び/又は受信するように制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記第1の下り制御情報及び前記第2の下り制御情報の両方を同じTTIで受信した場合、前記第2の下り制御情報を無視するように制御することを特徴とする請求項3に記載のユーザ端末。
  5.  前記制御部は、前記第2の下り制御情報を受信した場合、前記所定のTTIに無送信期間を設けるように制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  前記制御部は、前記無送信期間の長さを所定の範囲で可変とすることを特徴とする請求項5に記載のユーザ端末。
  7.  前記制御部は、前記所定のTTIにおいて、前記無送信期間の長さに依らない所定の無線リソースで参照信号を送信するように制御することを特徴とする請求項6に記載のユーザ端末。
  8.  前記制御部は、前記所定のTTIにおいて、前記所定の範囲の最小値に対応する前記無送信期間の経過直後に、測定用参照信号及び/又は下りデータに対する送達確認情報を送信するように制御することを特徴とする請求項6又は請求項7に記載のユーザ端末。
  9.  下りデータの受信をスケジューリングする第1の下り制御情報及び上りデータの送信をスケジューリングする第2の下り制御情報のうち少なくとも1つの下り制御情報を送信する送信部と、
     前記下り制御情報に対応する前記下りデータの送信及び/又は前記上りデータの受信を、所定の送信時間間隔(TTI:Transmission Time Interval)で行うように制御する制御部と、を有し、
     前記制御部は、前記所定のTTIを、前記下り制御情報が前記第1の下り制御情報及び前記第2の下り制御情報のいずれであっても、前記下り制御情報を受信したTTIを基準として同一のTTIとなるように制御することを特徴とする無線基地局。
  10.  下りデータの受信をスケジューリングする第1の下り制御情報及び上りデータの送信をスケジューリングする第2の下り制御情報のうち少なくとも1つの下り制御情報を受信する受信工程と、
     前記下り制御情報に対応する前記下りデータの受信及び/又は前記上りデータの送信を、所定の送信時間間隔(TTI:Transmission Time Interval)で行うように制御する制御工程と、を有し、
     前記制御工程は、前記所定のTTIを、前記下り制御情報が前記第1の下り制御情報及び前記第2の下り制御情報のいずれであっても、前記下り制御情報を受信したTTIを基準として同一のTTIとなるように制御することを特徴とする無線通信方法。
PCT/JP2016/074391 2015-08-31 2016-08-22 ユーザ端末、無線基地局及び無線通信方法 WO2017038532A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017537754A JP6797808B2 (ja) 2015-08-31 2016-08-22 端末及び無線通信方法
EP16841564.4A EP3346754B1 (en) 2015-08-31 2016-08-22 User terminal, radio base station and radio communication method
US15/755,412 US10638502B2 (en) 2015-08-31 2016-08-22 User terminal, radio base station and radio communication method
CN201680050226.XA CN107950051B (zh) 2015-08-31 2016-08-22 用户终端、无线基站及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015171452 2015-08-31
JP2015-171452 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038532A1 true WO2017038532A1 (ja) 2017-03-09

Family

ID=58187439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074391 WO2017038532A1 (ja) 2015-08-31 2016-08-22 ユーザ端末、無線基地局及び無線通信方法

Country Status (5)

Country Link
US (1) US10638502B2 (ja)
EP (1) EP3346754B1 (ja)
JP (1) JP6797808B2 (ja)
CN (1) CN107950051B (ja)
WO (1) WO2017038532A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521269A (zh) * 2017-09-05 2019-11-29 Oppo广东移动通信有限公司 信息传输方法及相关产品
CN111837442A (zh) * 2018-01-11 2020-10-27 上海诺基亚贝尔股份有限公司 方法、设备和计算机程序
CN114097181A (zh) * 2019-05-10 2022-02-25 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6335205B2 (ja) * 2016-03-16 2018-05-30 株式会社東芝 無線通信装置および無線通信方法
US10873970B2 (en) * 2016-04-26 2020-12-22 Lg Electronics Inc. Downlink signal receiving method and user equipment, and downlink signal transmitting method and base station
JP6715204B2 (ja) 2017-03-22 2020-07-01 株式会社東芝 無線通信装置および無線通信方法
CN109495972A (zh) * 2017-09-10 2019-03-19 株式会社Ntt都科摩 发送上行控制信息的方法和移动台
KR20200041943A (ko) 2017-09-11 2020-04-22 주식회사 윌러스표준기술연구소 무선 통신시스템에서 상향링크 전송 및 하향링크 수신방법, 장치 및 시스템
CN110891316B (zh) * 2018-09-10 2023-11-03 华为技术有限公司 一种时域资源配置方法及接入网设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050574A1 (en) * 2006-10-23 2008-05-02 Sharp Kabushiki Kaisha Mobile communication system, mobile communication method, base station and mobile station device
WO2009022314A2 (en) * 2007-08-14 2009-02-19 Nokia Corporation Uplink scheduling grant for time division duplex with asymmetric uplink and downlink configuration
WO2015021185A1 (en) * 2013-08-07 2015-02-12 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703513B2 (ja) 2006-08-22 2011-06-15 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される無線基地局及び方法
EP2243329B1 (en) * 2008-01-11 2013-07-24 Nokia Corp. Scheduling ahead for improving data transmission in case of measurement gaps
US9407419B2 (en) * 2011-06-28 2016-08-02 Lg Electronics Inc. Method for user equipment transreceiving signal in wireless communication system
JP5952315B2 (ja) * 2012-01-30 2016-07-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無線通信端末装置および送信電力制御方法
EP2823683A1 (en) * 2012-02-03 2015-01-14 Interdigital Patent Holdings, Inc. Method and apparatus for coexistence among wireless transmit/receive units (wtrus) operating in the same spectrum
US9185620B2 (en) * 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network
US9538503B2 (en) * 2013-03-28 2017-01-03 Samsung Electronics Co., Ltd. Aggregation of FDD and TDD cells
WO2015123834A1 (en) * 2014-02-20 2015-08-27 Qualcomm Incorporated TIME DOMAIN DUPLEXING CONFIGURATION FOR eIMTA

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050574A1 (en) * 2006-10-23 2008-05-02 Sharp Kabushiki Kaisha Mobile communication system, mobile communication method, base station and mobile station device
WO2009022314A2 (en) * 2007-08-14 2009-02-19 Nokia Corporation Uplink scheduling grant for time division duplex with asymmetric uplink and downlink configuration
WO2015021185A1 (en) * 2013-08-07 2015-02-12 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS ET AL.: "Cross-carrier scheduling for TDD inter-band CA", 3GPP TSG-RAN WG1#69 R1-122544, 25 May 2012 (2012-05-25), XP050600741, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_ RL1/TSGR1_69/Docs/R1-122544.zip> *
See also references of EP3346754A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672346B1 (en) 2017-09-05 2021-09-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, terminal and network device
CN111148264A (zh) * 2017-09-05 2020-05-12 Oppo广东移动通信有限公司 信息传输方法及相关产品
EP3672346A4 (en) * 2017-09-05 2020-08-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. INFORMATION TRANSFER PROCEDURE AND RELATED PRODUCT
CN110521269B (zh) * 2017-09-05 2024-06-18 Oppo广东移动通信有限公司 信息传输方法及相关产品
CN110521269A (zh) * 2017-09-05 2019-11-29 Oppo广东移动通信有限公司 信息传输方法及相关产品
RU2748377C1 (ru) * 2017-09-05 2021-05-25 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ передачи информации и соответствующий продукт
US11350433B2 (en) 2017-09-05 2022-05-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method and related product
EP3941146A1 (en) 2017-09-05 2022-01-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method and related product
KR102599966B1 (ko) * 2018-01-11 2023-11-09 노키아 테크놀로지스 오와이 방법, 장치 및 컴퓨터 프로그램
EP3738382A4 (en) * 2018-01-11 2021-09-08 Nokia Technologies Oy PROCEDURE, DEVICE AND COMPUTER PROGRAM
JP2021514568A (ja) * 2018-01-11 2021-06-10 ノキア テクノロジーズ オサケユイチア 方法、装置、及びコンピュータプログラム
JP7128895B2 (ja) 2018-01-11 2022-08-31 ノキア テクノロジーズ オサケユイチア 方法、装置、及びコンピュータプログラム
JP2022163220A (ja) * 2018-01-11 2022-10-25 ノキア テクノロジーズ オサケユイチア 方法、装置、及びコンピュータプログラム
AU2022204562B2 (en) * 2018-01-11 2023-08-31 Nokia Technologies Oy Method, apparatus and computer program
KR20200128662A (ko) * 2018-01-11 2020-11-16 노키아 테크놀로지스 오와이 방법, 장치 및 컴퓨터 프로그램
CN111837442B (zh) * 2018-01-11 2024-01-05 上海诺基亚贝尔股份有限公司 用于通信的方法和设备
JP7449992B2 (ja) 2018-01-11 2024-03-14 ノキア テクノロジーズ オサケユイチア 方法、装置、及びコンピュータプログラム
CN111837442A (zh) * 2018-01-11 2020-10-27 上海诺基亚贝尔股份有限公司 方法、设备和计算机程序
US12075404B2 (en) 2018-01-11 2024-08-27 Nokia Technologies Oy Method, apparatus and computer program
CN114097181A (zh) * 2019-05-10 2022-02-25 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114097181B (zh) * 2019-05-10 2024-03-26 株式会社Ntt都科摩 终端、基站、系统以及无线通信方法

Also Published As

Publication number Publication date
CN107950051A (zh) 2018-04-20
US20180255568A1 (en) 2018-09-06
CN107950051B (zh) 2022-03-01
US10638502B2 (en) 2020-04-28
EP3346754B1 (en) 2024-06-12
JP6797808B2 (ja) 2020-12-09
EP3346754A1 (en) 2018-07-11
JPWO2017038532A1 (ja) 2018-06-14
EP3346754A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
CN107925551B (zh) 用户终端、无线基站及无线通信方法
WO2017038892A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US10841935B2 (en) User terminal, radio base station and radio communication method
WO2017078128A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017110956A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6797808B2 (ja) 端末及び無線通信方法
WO2017131065A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017033839A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7418507B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7054405B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2017150453A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017033841A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017150451A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6907119B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2017038533A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7010696B2 (ja) 端末及び無線通信方法
WO2017164142A1 (ja) ユーザ端末、無線基地局及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755412

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017537754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841564

Country of ref document: EP