WO2017038154A1 - 操作用中空撚り線 - Google Patents

操作用中空撚り線 Download PDF

Info

Publication number
WO2017038154A1
WO2017038154A1 PCT/JP2016/062748 JP2016062748W WO2017038154A1 WO 2017038154 A1 WO2017038154 A1 WO 2017038154A1 JP 2016062748 W JP2016062748 W JP 2016062748W WO 2017038154 A1 WO2017038154 A1 WO 2017038154A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
stranded wire
hollow stranded
hollow
strands
Prior art date
Application number
PCT/JP2016/062748
Other languages
English (en)
French (fr)
Inventor
松本 圭司
Original Assignee
トクセン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクセン工業株式会社 filed Critical トクセン工業株式会社
Priority to US15/580,209 priority Critical patent/US10426505B2/en
Priority to EP16841186.6A priority patent/EP3293306A4/en
Priority to CN201680029896.3A priority patent/CN107614787A/zh
Priority to KR1020177032357A priority patent/KR20170136587A/ko
Publication of WO2017038154A1 publication Critical patent/WO2017038154A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0693Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/12Ropes or cables with a hollow core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/02Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing for conveying rotary movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/10Means for transmitting linear movement in a flexible sheathing, e.g. "Bowden-mechanisms"
    • F16C1/20Construction of flexible members moved to and fro in the sheathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09108Methods for making a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09191Guide wires made of twisted wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2007Wires or filaments characterised by their longitudinal shape
    • D07B2201/2008Wires or filaments characterised by their longitudinal shape wavy or undulated
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2021Strands characterised by their longitudinal shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2022Strands coreless
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/2039Strands characterised by the number of wires or filaments three to eight wires or filaments respectively forming a single layer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/204Strands characterised by the number of wires or filaments nine or more wires or filaments respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2063Cores characterised by their structure being hollow
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3028Stainless steel
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3032Austenite
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/404Heat treating devices; Corresponding methods
    • D07B2207/4063Heat treating devices; Corresponding methods for stress relief
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/4072Means for mechanically reducing serpentining or mechanically killing of rope
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2084Mechanical controls, e.g. door lashes

Definitions

  • the present invention relates to a hollow stranded wire for operation that can also be used, for example, in medical instruments.
  • a medical instrument also referred to as a medical device
  • an operation wire rope or the like is used as one component.
  • an endoscopic treatment instrument disclosed in Japanese Patent Laid-Open No. 8-126648 is known.
  • the operation wire rope transmits the operation force to the treatment portion.
  • This operation wire rope can transmit the pushing force, pulling force, and rotational force (torque) from the operation unit to the treatment unit. By the transmitted force, medical treatment can be performed on the treatment target site in the body.
  • the wire rope for operation is required to have excellent torque transmission (rotation followability) as well as push / pull transmission according to its purpose.
  • torque transmission property of the operation wire rope is insufficient, the operation of the operation unit is not reproduced in the treatment unit. Further, particularly in the field of medical equipment, the flexibility of the operating wire rope is required as the diameter of the medical equipment is reduced.
  • JP-A-6-63142 discloses a coiled pipe used as a diagnostic treatment catheter.
  • This pipe is formed by winding a metal wire in a coil shape.
  • adjacent coil portions are in pressure contact with each other by an initial restoring force due to the coil formation.
  • this catheter is also required to have flexibility, pushability and torque transmission included in the transmission of push-pull force.
  • the present invention has been made in view of the present situation, and an object of the present invention is to provide a hollow stranded wire for operation excellent in torque transmission.
  • the molding rate of the side strand or side strand that is the outermost layer is more than 100% and 110% or less.
  • the flatness which is an aspect ratio obtained by dividing the major axis by the minor axis, is 1.01 or more and 1.10 or less in the spiral shape exhibited by the side strands or side strands that are molded.
  • the molding rate is 101% or more and 105% or less.
  • the flatness is 1.01 or more and 1.05 or less.
  • the hollow stranded wire for operation according to the present invention is excellent in torque transmission.
  • FIG. 1 is a perspective view showing a part of an embodiment of a hollow stranded wire for operation according to the present invention.
  • FIG. 2 is a cross-sectional view showing another embodiment of the hollow stranded wire for operation according to the present invention.
  • FIG. 3 is a cross-sectional view showing an example of a wire rope in the process of manufacturing the hollow stranded wire for operation shown in FIG.
  • FIG. 4 is a perspective view for explaining the outline of the torque transmission property evaluation test method for the hollow stranded wire for operation.
  • FIG. 5 is a graph in which the rotation angle on the proximal end side of the hollow stranded wire for operation is associated with the rotation angle on the distal end side at the same point.
  • FIG. 1 and FIG. 2 illustrate different embodiments of the hollow stranded wire for operation according to the present invention (hereinafter also simply referred to as a hollow stranded wire).
  • Each of the hollow stranded wires 2 and 10 has a configuration in which a plurality of strands are twisted together.
  • the present invention is not limited to the configuration according to the embodiment shown in FIGS. 1 and 2.
  • the hollow stranded wire 2 shown in FIG. 1 has a layer 6 composed of six strands 4, that is, a stranded structure composed of six layers.
  • the hollow stranded wire 2 has a tunnel-like internal space 8.
  • the 2 has two layers of a lower layer (inner layer) 12 and an upper layer (outer layer) 14.
  • the lower layer 12 has a single-layer six-strand structure composed of six strands 16.
  • the upper layer 14 has a single-layer 12-strand structure composed of 12 strands 18.
  • the hollow stranded wire 10 has a tunnel-like internal space 20.
  • side strands 18 having different diameters are used in order to make the cross-sectional shape close to a circle. However, it is not limited to this configuration, and all the side wires 18 may have the same diameter.
  • the strands 4 and 18 constituting the outermost layer are also called side strands. If the outermost layer is not a strand but a strand, this is also called a side strand.
  • the hollow strand wires 2 and 10 are suitable, but are not limited thereto.
  • the hollow stranded wire can be manufactured by twisting the wire rope in the same manner as when twisting the wire rope by using a wire rope twisting machine.
  • the first is to twist the preformed side strands, side strands and the like along the circumference without inserting a core wire or a core strand.
  • a hollow stranded wire is formed.
  • the hollow stranded wire is subjected to post heat treatment.
  • a core wire or a core strand is inserted, and the preformed side strands, side strands and the like are twisted along the circumference.
  • a wire rope is formed by this twisting process.
  • the wire rope is subjected to post heat treatment. After this wire rope is cut to a predetermined length, a hollow stranded wire is completed by pulling out the core wire or the core strand.
  • each strand which comprises a hollow strand wire is adjusted so that the required tensile strength may be obtained in a wire drawing process.
  • preforming is performed on the side strands or side strands by a preformer so as to give the required molding rate and flatness. In particular, it is preformed so that the cross section of the spiral of the side strands or side strands is flat. And these strands or strands are twisted by the said strand wire machine. In this twisting step, in the case of a twisted wire that does not contain a core wire or a core strand (FIGS. 1 and 2), this becomes a hollow twisted wire.
  • this post-heat treatment step of the hollow stranded wire continuous processing is performed instead of batch processing. Specifically, tension is applied to each of the entrances and exits of the heat treatment furnace with respect to the to-be-treated hollow stranded wire passing through the heat treatment furnace. By doing so, straightness of the hollow stranded wire is improved. Further, the molding rate and flatness of the side strands or side strands are determined. In this way, a hollow stranded wire is completed.
  • a wire rope is completed.
  • a 1 + 6 layer-twisted wire rope 22 composed of one core wire 24 and the six outer strands 4 is formed. Therefore, as described above, the wire rope 22 is cut into a predetermined length, and the core wire 24 is pulled out to finish, for example, a hollow stranded wire 2 as shown in FIG.
  • the hollow stranded wires 2 and 10 of these embodiments can be used for medical instruments.
  • the hollow stranded wire attached to the medical instrument for operation is, for example, a base end part connected to a hand operating part of the medical instrument and a tip part connected to a treatment part. Torque and push / pull force applied to the proximal end portion are transmitted to the distal end portion, and the treatment portion causes a treatment operation.
  • the strands of the hollow stranded wires 2 and 10 are made of austenitic stainless steel such as SUS304 or SUS316, nickel-titanium alloy, or the like. Of course, it is not limited to these materials.
  • the tensile strength of the material of these strands is preferably 2000 MPa or more, more preferably 2500 MPa or more, and particularly preferably 2800 MPa or more.
  • the mold rate of the side strands 4 and 18 or the side strands that are the outermost layers of the hollow stranded wires 2 and 10 is more than 100% and 110% or less.
  • This mold rate is a value obtained by dividing the spiral strand diameter (waviness diameter) of the side strand or side strand when the hollow strand is loosened by the measured outer diameter of the hollow strand. Is expressed as a percentage.
  • the side strand may enter the internal space in the twisting process.
  • the molding rate exceeds 110%, a so-called open structure may be formed in which voids are generated between the strands, and the desired hollow stranded wire diameter may not be obtained. From this viewpoint, it is preferable that the molding rate is 101% or more and 105% or less.
  • the spiral of the side strands or side strands may be elliptical or oval rather than perfect circles. In other words, the spiral is flat.
  • the major axis of the major axis and the minor axis is used as the waviness diameter for determining the above-described molding rate.
  • the hollow stranded wires 2 and 10 are formed so that the molding rate is 110% or less even when the long diameter is used as the waviness diameter. Moreover, even if it is a case where a short diameter is used as a waviness diameter, the hollow stranded wires 2 and 10 are formed so that a shaping rate may exceed 100%.
  • the flatness (also referred to as flatness) of the side strands 4 and 18 or the side strands which are the outermost layers of the hollow stranded wires 2 and 10 is 1.01 or more and 1.10 or less.
  • the flatness refers to the aspect ratio of the above-described flat spiral of the loosened side strands or side strands obtained by dividing the major axis by the minor axis.
  • An example of a method for measuring the diameter of the spiral will be described below. On the projector, the loosened side strand or side strand is rotated about its central axis. In the process, the spiral diameter is measured at a plurality of arbitrary angular positions (for example, five locations).
  • the plurality of angular positions are preferably equiangular intervals.
  • the maximum value is determined as the major axis.
  • the spiral diameter measured from the measurement direction of the major axis in the direction rotated by 90 ° around the central axis of the side strand or side strand is determined as the minor axis.
  • a plurality of spirals are continuously formed along the axial direction of the loosened side strands or side strands. Therefore, the average value of a plurality of measured values (for example, arbitrary 10 locations) is adopted as each diameter in the direction intersecting 90 °.
  • the flatness is 1.01 or more, the frictional force generated between the side strands or between the side strands is further increased, so that the energy loss when transmitting the rotation of the hollow stranded wire is further reduced. Is obtained.
  • the flatness is less than 1.01, this useful action cannot be expected.
  • the flatness exceeds 1.10, a so-called open structure is obtained, and it may be difficult to stably manufacture the hollow stranded wire. From this viewpoint, the flatness is preferably 1.01 or more and 1.05 or less.
  • the twist angle of the side strands 4 and 18 of the hollow strands 2 and 10 or the side strand is preferably 15 ° or more.
  • the hollow stranded wire having a twist angle of 15 ° or more becomes more flexible and is easy to bend.
  • a twist angle means the angle which a strand or a strand makes with the central axis of a hollow strand or a strand.
  • the side strand or the side strand refers to an angle formed with the central axis of the hollow stranded wire.
  • Example 1-9 A hollow stranded wire for operation of Example 1-9 having the configuration shown in FIG. 1 was obtained.
  • These hollow stranded wires are wire hollow stranded wires for medical devices.
  • the material of all the strands is SUS304 austenitic stainless steel.
  • the outer diameter (cord diameter) of the hollow stranded wire is 0.7 mm.
  • These hollow stranded wires were produced by first producing a wire rope and extracting the core wire from the wire rope.
  • the outer diameter of the core wire of the wire rope in the manufacturing stage of the hollow stranded wire is 0.25 mm.
  • the outer diameter of the side strand is 0.23 mm.
  • the tensile strength of both the side wire and the core wire is 2800 MPa.
  • Each of these twisted hollow strands is obtained by extracting the core wire from a 1 + 6 layer twisted rope.
  • the twist pitch of the hollow stranded wire is 5.5 mm.
  • the heat treatment temperature of the hollow stranded wire of Example 1-9 is 500 ° C.
  • Table 1 and Table 2 show the molding rate and flatness of the side strands of the hollow stranded wire of Example 1-9.
  • Comparative Example 1 A hollow stranded wire for operation of Comparative Example 1 was obtained in the same manner as in Example 1 except that the molding rate and flatness were as shown in Table 2 and the cord diameter was significantly larger than 0.7 mm. As shown in Table 2, since the molding rate of the hollow stranded wire of Comparative Example 1 was 115%, a so-called open structure was formed in which many voids were generated between the strands. For this reason, the cord diameter greatly exceeded 0.7 mm. The hollow stranded wire of Comparative Example 1 did not exhibit as an operation hollow stranded wire for medical devices, and was determined to be impossible to use as an operation hollow stranded wire for medical devices. .
  • Comparative Example 2 is a hollow stranded wire for operation according to the prior art.
  • the hollow stranded wire for operation of Comparative Example 2 is the same as Example 1 except that the molding rate and flatness are as shown in Table 2.
  • the side strands of the hollow stranded wire of Comparative Example 2 are not flattened.
  • Torque transmission is based on the rotation angle on the proximal side and the distal side (corresponding to the treatment part of the medical instrument) when the proximal end of each hollow stranded wire (corresponding to the operation part of the medical instrument) is rotated. It is evaluated by the difference from the rotation angle.
  • the torque transmission evaluation test was carried out as follows.
  • a double spiral having a diameter of 200 mm is formed for each hollow stranded wire of Example 1-9 and Comparative Examples 1 and 2.
  • a thin pipe 26 having a double spiral shape with a diameter of 200 mm and both ends being linear is used for the formation of the double spiral.
  • the test hollow stranded wire 2 is inserted into the small diameter pipe 26.
  • a rotational force around the central axis is applied to the proximal end side 2A of the test hollow stranded wire 2. While the rotational force is applied, the rotation angle of the proximal end side 2A and the rotation angle of the distal end side 2B of the hollow stranded wire 2 are simultaneously measured.
  • FIG. 5 is a graph in which the rotation angle of the proximal end 2A of the hollow stranded wire and the rotation angle of the distal end 2B at the same point are associated with each other.
  • FIG. 5 is a graph showing the relationship between the input rotation angle and the output rotation angle with respect to the hollow hollow wire for operation.
  • the unit of angle is degree (°).
  • a broken line extending at an angle of 45 ° with respect to the horizontal axis and the vertical axis starting from 0 ° indicates the base end side 2A in the entire measurement angle range (input rotation angle range from 0 ° to about 720 °). This is a straight line indicating that the difference between the rotation angle and the rotation angle of the distal end side 2B is zero.
  • the difference between the rotation angle of the proximal end 2A and the rotation angle of the distal end 2B, which is the object of evaluation of the test hollow stranded wire, is expressed as the difference in the vertical axis direction between the 45 ° inclined straight line and the measured value curve in the figure. Is done.
  • This difference in rotation angle corresponds to the rotation angle on the base end side. In this figure, the difference in the rotation angle is shown larger than the actual difference for easy understanding. In the range of 0 ° to 720 ° of the input rotation angle, the maximum angle difference among the measured rotation angle differences is set as an evaluation target.
  • the maximum angle difference of each hollow stranded wire of Example 1-9 and Comparative Examples 1 and 2 is shown in Table 1 and Table 2 by the index when the maximum angle difference of Comparative Example 2 is 100.
  • the hollow stranded wire for operation according to the present invention is suitable as a hollow stranded wire for operation of medical instruments.

Abstract

【課題】トルク伝達性に優れた操作用中空撚り線を提供すること。 【解決手段】この操作用中空撚り線2は、医療用器具の操作用撚り線として好適に用いられる中空撚り線2であり、その最外層を構成する側素線4又は側ストランドの型付け率が、100%を超え110%以下にされている。そして、上記型付けされている側素線4又は側ストランドが呈しているスパイラル形状の、長径を短径で除した縦横比である扁平度が、1.01以上1.10以下にされるのが好ましい。

Description

操作用中空撚り線
 本発明は、例えば医療用器具にも用いられうる操作用中空撚り線に関する。
 従来、操作用ワイヤロープ等が一構成部品として用いられる医療用器具(医療機器ともいう)がある。このような医療用器具としては、例えば、特開平8-126648号公報に開示された内視鏡用処置具が知られている。この内視鏡用処置具では、その手元の操作部と先端の処置部とが、トルク伝達性を有する操作用ワイヤロープによって接続されている。操作者が、上記処置部を患者の体腔内に挿入し、上記操作部を操作することにより、操作用ワイヤロープがその操作力を処置部に伝達する。この操作用ワイヤロープは、操作部からの押し力、引き力、回転力(トルク)を、処置部に伝達しうる。伝達された力により、体内の治療対象部位に対し、医療措置が施されうる。
 操作用ワイヤロープには、その目的に応じ、押し引き力の伝達性はもちろんのこと、優れたトルク伝達性(回転追随性)が求められる。操作用ワイヤロープのトルク伝達性等が不十分であると、操作部の操作が処置部において再現されない。さらに、特に医療機器の分野では、医療機器の細径化に伴い、操作用ワイヤロープのしなやかさが求められている。
 特開平6-63142号公報には、診断治療用カテーテルとして用いられるコイル状を呈したパイプが開示されている。このパイプは、金属線材がコイル状に巻回されることにより、形成されている。このパイプにおいては、隣接するコイル部同士が、コイル状形成による初期復元力により、互いに圧接している。このカテーテルにも、前述したと同様に、柔軟性、押し引き力の伝達性に含まれるプッシュアビリティ、トルク伝達性等が要求される。
特開平8-126648号公報 特開平6-63142号公報
 本発明は、かかる現状に鑑みてなされたものであり、トルク伝達性に優れた操作用中空撚り線を提供することを目的としている。
 本発明に係る操作用中空撚り線では、最外層である側素線又は側ストランドの型付け率が、100%を超え110%以下にされている。
 好ましくは、上記型付けされている側素線又は側ストランドが呈しているスパイラル形状の、長径を短径で除した縦横比である扁平度が、1.01以上1.10以下である。
 好ましくは、上記型付け率が、101%以上105%以下である。
 好ましくは、上記扁平度が、1.01以上1.05以下である。
 本発明に係る操作用中空撚り線は、トルク伝達性に優れている。
図1は、本発明に係る操作用中空撚り線の一実施形態の一部を示す斜視図である。 図2は、本発明に係る操作用中空撚り線の他の実施形態を示す横断面図である。 図3は、図1の操作用中空撚り線を製造する工程におけるワイヤーロープの一例を示す横断面図である。 図4は、操作用中空撚り線のトルク伝達性評価試験方法の概略を説明する斜視図である。 図5は、操作用中空撚り線の基端側の回転角と、同時点の先端側の回転角とを対応付けたグラフである。
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
 図1及び図2には、本発明に係る操作用中空撚り線(以下、単に中空撚り線とも言う)の互いに異なる実施形態が例示されている。いずれの中空撚り線2、10も、複数本の素線を撚り合わせた構成を有している。ただし、本発明は、図1及び図2に示された実施形態に係る構成には限定されない。
 図1に示された中空撚り線2は、6本の素線4から構成された層6、すなわち、1層6条からなる撚り構成を有している。この中空撚り線2は、トンネル状の内部空間8を有している。
 図2に示された中空撚り線10は、下層(内層)12及び上層(外層)14の2層を有している。下層12は、6本の素線16からなる1層6条の撚り構成を有している。上層14は、12本の素線18からなる1層12条の撚り構成を有している。この中空撚り線10は、トンネル状の内部空間20を有している。この中空撚り線10では、その横断面形状を円形に近づけるため、互いに径の異なる側素線18が用いられている。しかし、かかる構成には限定されず、全側素線18が同一径であってもよい。
 最外層を構成する上記素線4、18は、側素線とも呼ばれる。最外層を構成するのが素線ではなく、ストランドである場合、これは側ストランドとも呼ばれる。医療用器具に用いる操作用中空撚り線の撚り構成としては、上記中空撚り線2、10が相応しいものであるが、これらに限定されない。
 中空撚り線は、ワイヤーロープの撚り線機を用いることにより、ワイヤーロープを撚るときと同様に撚って製造することができる。この場合、以下の2通りの製造方法がある。第1は、芯線も芯ストランドも入れずに、プレフォームされた側素線、側ストランド等を、円周に沿って撚り込む。この撚り工程により、中空撚り線が形成される。次いで、この中空撚り線に後熱処理を施す。第2は、芯線又は芯ストランドを入れて、プレフォームされた側素線、側ストランド等を、円周に沿って撚り込む。この撚り工程により、ワイヤーロープが形成される。次いで、このワイヤーロープに後熱処理を施す。このワイヤーロープを所定長さに切断した後、上記芯線又は芯ストランドを引き抜くことにより、中空撚り線が出来上がる。
 以下に、上記中空撚り線の製造工程が簡単に説明される。まず、中空撚り線を構成する各素線は、伸線加工工程において、必要とする引っ張り強度が得られるように調整される。ついで、撚り線加工工程において、側素線又は側ストランドに対しては、プレフォーマーにより、必要とする型付け率及び扁平度を与えるべく、プレフォームが行われる。特に、側素線又は側ストランドのスパイラルの横断面が扁平状となるようにプレフォームされる。そして、上記撚り線機により、これらの素線又はストランドが撚られる。この撚り工程において、芯線も芯ストランドも含まれていない撚り線の場合(図1、図2)は、これが中空撚り線となる。
 この中空撚り線の後熱処理工程では、バッチ処理ではなく、連続処理が行われる。具体的には、熱処理炉を通過していく被処理中空撚り線に対し、熱処理炉の出入口それぞれにおいて、テンションが加えられる。こうすることにより、中空撚り線の真直性が向上する。また、側素線又は側ストランドの型付け率及び扁平度が確定される。このようにして、中空撚り線が出来上がる。
 一方、この製造工程において、上記撚り線が芯線又は芯ストランドを含んでいる場合は、ワイヤーロープが出来上がる。例えば、図3に示されるような、1本の芯線24と、最外層の6本の側素線4とから構成された、1+6の層撚りのワイヤーロープ22が出来上がる。そこで、前述の通り、このワイヤーロープ22を、所定長さに切断するとともに、上記芯線24を引き抜くことにより、例えば、図1に示されるような中空撚り線2として仕上げる。
 これら実施形態の中空撚り線2、10は、医療用器具に用いられうる。医療用器具に操作用として装着された中空撚り線は、例えば、その基端部が医療用器具の手元操作部に連結され、その先端部が処置部に連結される。基端部に加えられたトルク及び押し引き力が、先端部に伝わり、処置部が処置動作を起こす。
 本実施形態では、中空撚り線2、10の素線が、SUS304、SUS316等のオーステナイト系ステンレス鋼、ニッケル-チタン合金等から形成される。もちろん、これらの材料には限定されない。これら素線の材質の引っ張り強度は、2000MPa以上であるのが好ましく、2500MPa以上であるのがさらに好ましく、2800MPa以上であるのが特に好ましい。
 中空撚り線2、10の最外層である側素線4、18又は側ストランドの型付け率は、100%を超え110%以下とされている。この型付け率とは、中空撚り線をばらした(ほぐした)ときの側素線又は側ストランドのスパイラル形状の直径(うねり径)を、当該中空撚り線の実測外径で除して得た値を百分率で表したものである。型付け率を上記範囲とすることにより、当該中空撚り線がしなやかになり且つ曲げ易くなる。しかも、側素線同士の間又は側ストランド同士の間で生じる摩擦力が大きくなるため、中空撚り線の回転を伝達する際のエネルギーロスが低減する。また、図2に例示されるような、複数層からなる中空撚り線の場合は、内外層間の摩擦力が低減するため、中空撚り線の回転を伝達する際のエネルギーロスがさらに低減する。この作用により、基端から先端への回転力が伝わり易くなり、トルク伝達性が向上することが判明した。さらに、型付け率が上記範囲であることにより、撚り線機による撚り工程において、撚り対象が芯線も芯ストランドも含んでいない場合であっても、側素線が内部空間に入り込む可能性が低い。
 しかし、型付け率が100%以下であると、側素線に対し、中空撚り線の中心方向に向かう力が常時作用している。このため、この中空撚り線を曲げた際に、その横断面が楕円形状に変形しやすい。その結果、この中空撚り線の回転伝達が阻害されるおそれがある。。しかも、図2に例示されるような複数層からなる中空撚り線の場合は、内外層間の摩擦力が大きくなるため、中空撚り線の回転を伝達する際のエネルギーロスが増大するおそれもある。また、撚り対象が芯線も芯ストランドも含んでいない場合、撚り工程において、側素線が内部空間に入り込むおそれがある。一方、型付け率が110%を超えると、素線間に空隙が生じるいわゆるオープン構造となる可能性があり、所望の中空撚り線径が得られなくなるおそれがある。かかる観点からして、型付け率は、101%以上105%以下であるのが好ましい。
 上記側素線又は側ストランドのスパイラルが真円ではなく、楕円形又は長円形を呈していることがある。スパイラルが、いわば扁平になっている場合である。この場合は、上記型付け率を決定するうねり径として、長径及び短径のうちの長径を用いる。中空撚り線2、10は、うねり径として長径を用いた場合であっても、型付け率が110%以下となるように形成される。また、仮に、うねり径として短径を用いた場合であっても、中空撚り線2、10は、型付け率が100%を超えるように形成される。
 中空撚り線2、10の最外層である側素線4、18又は側ストランドは、その扁平度(扁平率ともいう)が、1.01以上1.10以下とされるのが好ましい。扁平度とは、ほぐされた側素線又は側ストランドの上記した扁平なスパイラルの、長径を短径で除した縦横比をいう。スパイラルの径の測定方法の一例を、以下に説明する。投影機上において、ほぐされた側素線又は側ストランドをその中心軸回りに回転させる。その過程で、任意の複数の角度位置(例えば5箇所)におけるスパイラル径を測定する。この複数の角度位置は、等角度間隔であるのが好ましい。この複数の測定値のうち、最大値を長径と決定する。この長径の測定方向から、側素線又は側ストランドの中心軸回りに位相90°回転させた方向に測定したスパイラル径を短径と決定する。ほぐされた側素線又は側ストランドには、その軸方向に沿って複数個のスパイラルが連続して形成されている。従って、90°交差した方向の各径としては、いずれも複数個(例えば任意の10箇所)の測定値の平均値が採用される。
 扁平度が1.01以上の場合、側素線同士の間又は側ストランド同士の間で生じる摩擦力がさらに増大するため、中空撚り線の回転を伝達する際のエネルギーロスがさらに低減するという作用が得られる。しかし、扁平度が1.01未満であると、この有用な作用が期待できない。また、図2に示されるような複数層からなる中空撚り線の場合は、扁平度が1.01未満であると、内外層間の摩擦力が大きくなるため、中空撚り線の回転を伝達する際のエネルギーロスが増大するおそれもある。一方、扁平度が1.10を超えると、いわゆるオープン構造となり、中空撚り線を安定して製造することが困難となるおそれがある。かかる観点からして、扁平度は、1.01以上1.05以下であるのが好ましい。
 前述したように、側素線又は側ストランドの型付け率を上記範囲とすることにより、中空撚り線のしなやかさ、曲げ易すさ、回転力の伝わり易さが向上する。これに加えて、扁平度を上記範囲とすることにより、中空撚り線のしなやかさ、曲げ易すさ、回転力の伝わり易さは、さらに向上することが判明した。
 上記中空撚り線2、10の側素線4、18又は側ストランドの撚り角は、15°以上とされるのが好ましい。この撚り角が15°以上とされた中空撚り線は、よりしなやかになり、曲げやすくなる。撚り角とは、素線又はストランドが、中空撚り線又はストランドの中心軸となす角度をいう。ここでは、側素線又は側ストランドが、中空撚り線の中心軸となす角度をいう。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
 [実施例1-9]
 図1に示された構成を備えた実施例1-9の各操作用中空撚り線を得た。これらの中空撚り線は、医療機器用のワイヤ中空撚り線である。全ての素線の材質が、SUS304オーステナイト系ステンレス鋼である。中空撚り線の外径(コード径)は0.7mmである。これらの中空撚り線は、まずワイヤーロープを製造し、このワイヤーロープから芯線を抜き取ることにより製造された。中空撚り線の製造段階におけるワイヤーロープの芯線の外径は0.25mmである。側素線の外径は0.23mmである。側素線及び芯線ともに、その引っ張り強度は2800MPaである。これらの中空撚り線の撚り構成は、いずれも1+6の層撚りのロープから芯線を抜き取ったものである。中空撚り線の撚りピッチはいずれも5.5mmである。実施例1-9の中空撚り線の熱処理温度は、いずれも500°Cである。実施例1-9の中空撚り線の側素線の型付け率及び扁平度は、表1及び表2に示されるとおりである。
 [比較例1]
 型付け率及び扁平度が表2に示されるとおりであり、コード径が0.7mmを大幅に超えている他は実施例1と同様にして、比較例1の操作用中空撚り線を得た。表2に示されるとおり、比較例1の中空撚り線の型付け率を115%としたため、素線間に多くの空隙が生じる、いわゆるオープン構造となった。このため、コード径が0.7mmを大幅に超えた。かかる比較例1の中空撚り線は、医療機器用の操作用中空撚り線としての呈を成しておらず、医療機器用の操作用中空撚り線としての使用は不可能であると判断された。
 [比較例2]
 比較例2は、従来技術に係る操作用中空撚り線である。この比較例2の操作用中空撚り線は、型付け率及び扁平度が表2に示されるとおりである他は、実施例1と同等である。この比較例2の中空撚り線の側素線については、扁平形状にはされていない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[トルク伝達性の評価]
 トルク伝達性は、各中空撚り線の基端側(医療用器具の操作部に相当)を回転させたときの、基端側の回転角と先端側(医療用器具の処置部に相当)の回転角との差によって評価される。実施例及び比較例の各中空撚り線に対し、以下のごとくトルク伝達性の評価試験が実施された。
 実施例1-9及び比較例1、2の各中空撚り線に対し、直径が200mmの2重スパイラルを形成する。この2重スパイラルの形成には、図4に示されるように、直径が200mmの2重スパイラル状で、且つ、両端側が共に直線状となるように形成された細径パイプ26が用いられる。この細径パイプ26の内部に、例えば被検中空撚り線2が挿入される。細径パイプ26に挿入した状態で、この被検中空撚り線2の基端側2Aに中心軸回りの回転力を負荷する。回転力が負荷されている間、中空撚り線2の基端側2Aの回転角と先端側2Bの回転角とが同時に測定される。
 図5は、中空撚り線の基端側2Aの回転角と、同時点の先端側2Bの回転角とが、対応付けて表されたグラフである。換言すれば、図5は、操作用中空撚り線に対する入力回転角と出力回転角との関係を示すグラフである。角度の単位は度(°)である。グラフの中の、0°を起点に横軸及び縦軸に対し45°傾斜して延びる破線は、全測定角度範囲(入力回転角が0°から約720°までの範囲)において基端側2Aの回転角と先端側2Bの回転角との差がゼロであることを示す直線である。被検中空撚り線の評価対象である、基端側2Aの回転角と先端側2Bの回転角との差は、図中の45°傾斜直線と測定値曲線との縦軸方向の差として表される。この回転角の差は、基端側回転角に対応している。本図では、理解容易のために、回転角の差を実際より大きく表している。入力回転角の0°から720°の範囲において、測定された回転角度差のうちの最大角度差が評価対象とされる。
 実施例1-9及び比較例1、2の各中空撚り線の最大角度差が、比較例2の最大角度差を100とした場合の指数によって表1及び表2に示される。最大角度差が小さいほど指数値が小さく、トルク伝達性に優れている。
 表1及び表2に示されるように、この評価結果から、本発明の優位性は明らかである。
 本発明に係る操作用中空撚り線は、医療用器具の操作用中空撚り線として好適である。
  2、10・・・操作用中空撚り線
  4、18・・・側素線
  6・・・層
  8、20・・・内部空間
 12・・・下層(内層)
 14・・・上層(外層)
 16・・・素線
 22・・・ワイヤーロープ
 24・・・芯線
 26・・・細径パイプ

Claims (4)

  1.  最外層である側素線又は側ストランドの型付け率が、100%を超え110%以下である操作用中空撚り線。
  2.  上記型付けされている側素線又は側ストランドが呈しているスパイラル形状の、長径を短径で除した縦横比である扁平度が、1.01以上1.10以下である請求項1に記載の操作用中空撚り線。
  3.  上記型付け率が、101%以上105%以下である請求項1又は2に記載の操作用中空撚り線。
  4.  上記扁平度が、1.01以上1.05以下である請求項2に記載の操作用中空撚り線。
PCT/JP2016/062748 2015-08-31 2016-04-22 操作用中空撚り線 WO2017038154A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/580,209 US10426505B2 (en) 2015-08-31 2016-04-22 Hollow stranded wire line for manipulation
EP16841186.6A EP3293306A4 (en) 2015-08-31 2016-04-22 TWISTED WIRE HOLLOW OPERATION
CN201680029896.3A CN107614787A (zh) 2015-08-31 2016-04-22 操作用中空绞线
KR1020177032357A KR20170136587A (ko) 2015-08-31 2016-04-22 조작용 중공 연선

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-170511 2015-08-31
JP2015170511A JP6611237B2 (ja) 2015-08-31 2015-08-31 操作用中空撚り線

Publications (1)

Publication Number Publication Date
WO2017038154A1 true WO2017038154A1 (ja) 2017-03-09

Family

ID=58187016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062748 WO2017038154A1 (ja) 2015-08-31 2016-04-22 操作用中空撚り線

Country Status (6)

Country Link
US (1) US10426505B2 (ja)
EP (1) EP3293306A4 (ja)
JP (1) JP6611237B2 (ja)
KR (1) KR20170136587A (ja)
CN (1) CN107614787A (ja)
WO (1) WO2017038154A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870227B1 (ja) * 2015-06-26 2016-02-24 トクセン工業株式会社 操作用ロープ
JP5870226B1 (ja) * 2015-06-26 2016-02-24 トクセン工業株式会社 操作用ロープ
JP6423374B2 (ja) * 2016-01-07 2018-11-14 トクセン工業株式会社 操作用中空撚り線
JP6340447B1 (ja) * 2017-03-14 2018-06-06 株式会社三和テスコ ベルトコンベア水洗浄装置に併設されるスラッジ脱水装置
EP3636162B1 (en) * 2018-10-09 2023-07-19 BibbInstruments AB Biopsy instrument and kit of parts
FR3099192A1 (fr) * 2019-07-25 2021-01-29 Compagnie Generale Des Etablissements Michelin Procédé de fractionnement et de réassemblage d’un assemblage à deux couches
JP7347985B2 (ja) * 2019-08-05 2023-09-20 トクセン工業株式会社 電磁波遮蔽体のための中空撚り線
CN113430848A (zh) * 2021-05-11 2021-09-24 盐城荣星制绳有限公司 一种空心钢丝绳的生产工艺
CN114214856B (zh) * 2021-11-01 2023-04-14 江阴法尔胜住电新材料有限公司 一种复合钢绞线制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0162396U (ja) * 1987-10-16 1989-04-20
JP2003052831A (ja) * 2001-08-10 2003-02-25 Asahi Intecc Co Ltd 医療用ガイドワイヤ及びその製造方法
JP2006283259A (ja) * 2005-04-05 2006-10-19 Chuo Spring Co Ltd ワイヤロープおよびコントロールケーブル
JP2008048850A (ja) * 2006-08-23 2008-03-06 Asahi Intecc Co Ltd 医療用処置具
JP2011006803A (ja) * 2009-06-24 2011-01-13 Hi-Lex Corporation 回転トルク伝達用のインナーケーブル、それを用いたコントロールケーブルおよびドア開閉機構
JP2011202321A (ja) * 2010-03-26 2011-10-13 Sumitomo Denko Steel Wire Kk 環状金属コード、無端金属ベルト及び環状金属コードの製造方法
JP2012082530A (ja) * 2010-10-06 2012-04-26 Sumitomo Denko Steel Wire Kk 環状金属コード、無端金属ベルト及び環状金属コードの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2533744A1 (fr) 1982-09-24 1984-03-30 Thomson Jeumont Cables Conducteur neutre porteur pour faisceau de conducteurs electriques, procede de fabrication, et moyens de mise en oeuvre
JPS62170594A (ja) * 1986-01-17 1987-07-27 東京製綱株式会社 ゴム補強用スチ−ルコ−ド
JPH04281081A (ja) * 1991-03-06 1992-10-06 Bridgestone Corp ゴム補強用金属コ−ド及びこれを使用したタイヤ
JPH0663142A (ja) 1991-05-10 1994-03-08 Kobe Steel Ltd パイプ及び診断治療用カテーテル
JP2669754B2 (ja) 1991-12-27 1997-10-29 日本ケーブル・システム株式会社 操作用ロープ
JPH08126648A (ja) 1994-11-02 1996-05-21 Olympus Optical Co Ltd 内視鏡用処置具
WO1996014020A1 (fr) 1994-11-02 1996-05-17 Olympus Optical Co. Ltd. Instrument fonctionnant avec un endoscope
US6881194B2 (en) 2001-03-21 2005-04-19 Asahi Intec Co., Ltd. Wire-stranded medical hollow tube, and a medical guide wire
JP2002275774A (ja) * 2001-03-21 2002-09-25 Asahi Intecc Co Ltd 医療用チューブ体、バルーンカテーテルおよび医療用ガイドワイヤ
JP4609903B2 (ja) 2008-03-24 2011-01-12 朝日インテック株式会社 医療用ガイドワイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0162396U (ja) * 1987-10-16 1989-04-20
JP2003052831A (ja) * 2001-08-10 2003-02-25 Asahi Intecc Co Ltd 医療用ガイドワイヤ及びその製造方法
JP2006283259A (ja) * 2005-04-05 2006-10-19 Chuo Spring Co Ltd ワイヤロープおよびコントロールケーブル
JP2008048850A (ja) * 2006-08-23 2008-03-06 Asahi Intecc Co Ltd 医療用処置具
JP2011006803A (ja) * 2009-06-24 2011-01-13 Hi-Lex Corporation 回転トルク伝達用のインナーケーブル、それを用いたコントロールケーブルおよびドア開閉機構
JP2011202321A (ja) * 2010-03-26 2011-10-13 Sumitomo Denko Steel Wire Kk 環状金属コード、無端金属ベルト及び環状金属コードの製造方法
JP2012082530A (ja) * 2010-10-06 2012-04-26 Sumitomo Denko Steel Wire Kk 環状金属コード、無端金属ベルト及び環状金属コードの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3293306A4 *

Also Published As

Publication number Publication date
EP3293306A1 (en) 2018-03-14
KR20170136587A (ko) 2017-12-11
US10426505B2 (en) 2019-10-01
JP2017048471A (ja) 2017-03-09
JP6611237B2 (ja) 2019-11-27
CN107614787A (zh) 2018-01-19
US20180161053A1 (en) 2018-06-14
EP3293306A4 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6611237B2 (ja) 操作用中空撚り線
WO2016208262A1 (ja) 操作用ロープ
US8608670B2 (en) Guidewire
US8622932B2 (en) Guidewire
US20080051694A1 (en) Medical treatment equipment
EP2361652A1 (en) Guidewire
KR20020008142A (ko) 가이드와이어
JP5870227B1 (ja) 操作用ロープ
US20220323078A1 (en) Rotationally torquable endovascular device with variable flexibility tip
JP5946186B2 (ja) コイル体
JP6423374B2 (ja) 操作用中空撚り線
JP6616811B2 (ja) 医療機器の操作用ロープ
JP2024055265A (ja) 操作用ロープ
JP4921859B2 (ja) カテーテルチューブ製造用芯材及びその製造方法、並びにカテーテルチューブの製造方法
US10912929B2 (en) Tubular body
JP2024055315A (ja) 操作用ロープ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177032357

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15580209

Country of ref document: US

Ref document number: 2016841186

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE