WO2017037870A1 - アクチュエータとその調整方法 - Google Patents

アクチュエータとその調整方法 Download PDF

Info

Publication number
WO2017037870A1
WO2017037870A1 PCT/JP2015/074855 JP2015074855W WO2017037870A1 WO 2017037870 A1 WO2017037870 A1 WO 2017037870A1 JP 2015074855 W JP2015074855 W JP 2015074855W WO 2017037870 A1 WO2017037870 A1 WO 2017037870A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
relative angle
correction value
value
shaft
Prior art date
Application number
PCT/JP2015/074855
Other languages
English (en)
French (fr)
Inventor
後藤 隆
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/074855 priority Critical patent/WO2017037870A1/ja
Priority to JP2017537120A priority patent/JP6391843B2/ja
Priority to US15/579,862 priority patent/US10284055B2/en
Priority to DE112015006868.6T priority patent/DE112015006868T5/de
Priority to CN201580082522.3A priority patent/CN107925332B/zh
Publication of WO2017037870A1 publication Critical patent/WO2017037870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a direct acting actuator provided with a Hall IC (Integrated Circuit) and a method for adjusting the actuator.
  • a Hall IC Integrated Circuit
  • Actuator drive system is classified into rotary type and direct acting type.
  • the shaft rotates in the rotation direction of the rotor.
  • the shaft reciprocates in a direction perpendicular to the rotation direction of the rotor.
  • a magnetic sensor such as a Hall IC is used to detect the position of the shaft in the reciprocating direction.
  • the magnetic flux density flowing through the magnetic sensor changes, so the magnetic flux density detected by the magnetic sensor is at the position in the reciprocating movement direction of the shaft. It is possible to convert.
  • an actuator that controls the opening and closing of a waste gate valve of a turbocharger needs to control the valve opening according to a command opening from an ECU (Engine Control Unit). It is desirable that the actual movement and the actual movement are the same.
  • the shaft position detected by the magnetic sensor and the actual shaft position due to the influence of the temperature on the magnetic sensor, the influence of the external magnetic field on the magnetic sensor, product variations of the actuator, rattling in the actuator, etc.
  • an error occurs in the shaft, and the shaft may move to an unintended position deviating from the command opening degree from the ECU.
  • an error between the shaft position detected by the magnetic sensor and the actual shaft position is referred to as a linearity error.
  • the linearity error of the actuator occurs, there is a problem that the vehicle may be greatly affected.
  • the boost pressure is lowered and the required performance cannot be obtained.
  • the boost pressure increases, so that the supercharging pressure also increases and the load on the turbine blade increases, causing damage to the turbine blade. Therefore, as a specification of the actuator, there is a demand for how to reduce the linearity error.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an actuator having a small linearity error.
  • the actuator according to the present invention includes a shaft that can reciprocate in the axial direction, a drive unit that reciprocates the shaft, a magnet that reciprocates in conjunction with the reciprocating movement of the shaft, and changes with the reciprocating movement of the magnet.
  • a magnetic detection unit that detects the magnetic flux density in two directions of the magnetic field, a correction value for each of three or more correction points set in advance within a relative angle range in which the magnet can reciprocate with respect to the magnetic detection unit, and a correction value
  • the relative angle of the magnet with respect to the magnetic detection unit is calculated using the storage unit that stores the function for calculating the interpolation correction value between the correction points using the parameter and the magnetic flux density in the two directions detected by the magnetic detection unit.
  • an arithmetic unit that corrects the linearity error of the relative angle using the interpolation correction value calculated from the correction value or function stored in the storage unit, and the storage unit
  • a correction value of the outermost correction point of the angle range a plurality of poles in the relative angle range indicated by the linearity error of the relative angle when corrected using an interpolation correction value calculated from a function using the correction value as a parameter Among the values, a correction value is stored in which the outermost extreme value is less than or equal to the inner extreme value.
  • the linearity error of the relative angle when the correction value at the outermost correction point in the relative angle range is corrected by the interpolation correction value calculated from the function using the correction value as a parameter is shown. Since a correction value in which the outermost extreme value is less than or equal to the inner extreme value among a plurality of extreme values in the relative angle range is stored, this correction value and this correction value are used as parameters. By using the interpolation correction value calculated from the function to correct the relative angle outside the relative angle range where the linearity error is large, an actuator with a small linearity error can be provided.
  • FIG. 1 it is a graph which shows the waveform of the magnetic flux density of 2 directions when the magnet for sensors moves. It is a graph which shows the waveform of the synthesized value which synthesize
  • FIG. 3 is a diagram for explaining equal angle relative correction in the simplified model of the Hall IC and the sensor magnet shown in FIG. 2. It is a graph which shows the linearity error which remains in the measurement line by which multipoint correction
  • FIG. 6 is a graph illustrating a method for calculating a correction value of an outermost correction point in a relative angle range in the first embodiment.
  • FIG. 9 is a graph showing an example in which the actual measurement line shown in FIG. 8 is subjected to multipoint correction using the correction value of the outermost correction point in the relative angle range calculated in the first embodiment.
  • 3 is a diagram illustrating a hardware configuration example of the Hall IC in the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a writing system according to a first embodiment.
  • 10 is a flowchart showing another example of an actuator adjustment method by the writing system according to the first embodiment.
  • FIG. 1 is a cross-sectional view showing a configuration example of an actuator 1 according to Embodiment 1 of the present invention.
  • the actuator 1 is a direct acting type, and reciprocates the shaft 2 in its axial direction.
  • the axial direction of the shaft 2 is called the X axis
  • the directions orthogonal to the X axis are called the Y axis and the Z axis.
  • the X axis is the vertical direction
  • the Y axis is the depth direction
  • the Z axis is the horizontal direction.
  • the direct acting actuator 1 is used for opening / closing a turbocharger waste gate valve.
  • the application of the actuator 1 is not limited to the waste gate, and any application may be used.
  • the motor unit 3 is a drive unit. Any driving unit may be used as long as it can generate a driving force for reciprocating the shaft 2 in the X-axis direction.
  • FIG. 1 shows an example in which a motor with a brush is used as the motor unit 3.
  • Two bearings 5 and 6 are installed in the motor housing 4 and a pipe 7 is rotatably supported.
  • a rotor core 8 and a rotor winding 9 serving as a rotor are fixed to the outer peripheral surface of the pipe 7.
  • a commutator 10 is fixed to one end of the pipe 7, and the rotor winding 9 is connected to the commutator 10.
  • a magnet 11 serving as a stator and a back yoke 12 are fixed to the inner peripheral surface of the motor housing 4 so as to surround the rotor.
  • the shaft 2 is arranged in the pipe 7.
  • a female thread portion 13 is formed on the inner peripheral surface of the pipe 7.
  • a male threaded portion 14 is formed on the outer peripheral surface of the shaft 2, and the male threaded portion 14 is screwed into the female threaded portion 13 and coupled.
  • One end side of the shaft 2 passes through the motor housing 4 and is connected to a waste gate valve (not shown).
  • a Hall IC 20 that is a magnetic sensor, a sensor shaft 21, and a sensor magnet 22 are disposed at the other end of the shaft 2 and at the tip of the commutator 10. Details of the Hall IC 20 will be described later.
  • the rotational motion of the rotor is converted into a linear motion in the X-axis direction by the coupling of the internal thread portion 13 of the pipe 7 and the external thread portion 14 of the shaft 2, and the shaft 2 is pushed out of the motor housing 4.
  • the rotor rotates in the opposite direction and the shaft 2 is drawn into the motor housing 4.
  • the waste gate valve opens and closes.
  • Stoppers 18a and 19a for restricting the range in which the shaft 2 reciprocates are provided at the lower end of the pipe 7 and the inner peripheral surface of the motor housing 4. Further, the shaft 2 is provided with a contact portion 18b that contacts the stopper 18a and a contact portion 19b that contacts the stopper 19a.
  • the stroke range in which the shaft 2 reciprocates is from the position where the contact portion 18b contacts the stopper 18a to the position where the contact portion 19b contacts the stopper 19a.
  • a Hall IC 20 that detects the magnetic flux density in two directions is fixed inside the sensor housing 17.
  • a sensor shaft 21 that is in contact with the end surface of the shaft 2 is disposed inside the sensor housing 17, and a sensor magnet 22 is fixed to the sensor shaft 21. Therefore, the sensor shaft 21 and the sensor magnet 22 also reciprocate in conjunction with the reciprocation of the shaft 2 in the X-axis direction.
  • the sensor housing 17 and the sensor shaft 21 are nonmagnetic materials.
  • FIG. 2 is a diagram for explaining a simplified model of the Hall IC 20 and the sensor magnet 22 in the first embodiment.
  • the sensor magnet 22 moves to the position P1 in conjunction with it.
  • the sensor magnet 22 moves to the position P3 in conjunction with it.
  • the position P2 is a position where the sensor magnet 22 is closest to the Hall IC 20, and is substantially equidistant from the positions P1 and P3.
  • the range of the relative angle in which the sensor magnet 22 can reciprocate with respect to the Hall IC 20 corresponding to the range from the position P1 to the position P3 that is the stroke range of the shaft 2 is referred to as a “relative angle range”. It is assumed that the Bx axis, By axis, and Bz axis parallel to the X axis, the Y axis, and the Z axis are set for the magnetic field generated by the sensor magnet 22.
  • FIG. 3 is a block diagram illustrating a configuration example of the Hall IC 20 according to the first embodiment.
  • the Hall IC 20 is set in advance within a relative angle range between the magnetic detection unit 201 that detects the magnetic flux density in two directions of the magnetic field that changes as the sensor magnet 22 reciprocates, and the magnetic detection unit 201 and the sensor magnet 22.
  • a storage unit 202 that stores a correction value for each of the three or more correction points, and a function for calculating an interpolation correction value between correction points using the correction value as a parameter, and a magnetic detection unit 201 detect the correction value.
  • the relative angle of the sensor magnet 22 with respect to the magnetic detection unit 201 is calculated using the magnetic flux density in the two directions, and the linearity error of the relative angle is corrected using the correction value or function stored in the storage unit 202. And an arithmetic unit 203.
  • the magnetic detection unit 201 detects the magnetic flux density in the Bx axis direction and the magnetic flux density in the Bz axis direction as the magnetic flux density in two directions.
  • the magnetic detection unit 201 may detect the magnetic flux density in the Bx axis direction and the magnetic flux density in the By axis direction as the magnetic flux density in the two directions.
  • the calculation unit 203 calculates the relative angle ⁇ of the sensor magnet 22 with respect to the Hall IC 20 with respect to the Bz axis, using the magnetic flux density in the Bx axis direction and the magnetic flux density in the Bz axis direction, using Equation (1).
  • the relative angle ⁇ calculated by the equation (1) is a value that can be converted into the stroke position of the shaft 2 in the X-axis direction.
  • Bx is the magnetic flux density in the Bx axis direction
  • Bz is the magnetic flux density in the Bz axis direction.
  • atan (Bx / Bz) (1)
  • FIG. 4 shows waveforms of the magnetic flux density in the Bx axis direction and the magnetic flux density in the Bz axis direction when the sensor magnet 22 moves.
  • FIG. 5 shows a waveform of a composite value B obtained by combining the magnetic flux density in the Bx axis direction and the magnetic flux density in the Bz axis direction in FIG. 4 and 5, the vertical axis of the graph indicates the magnetic flux density, and the horizontal axis of the graph indicates the position of the sensor magnet 22, that is, the stroke of the shaft 2.
  • the composite value B is calculated by equation (2).
  • the combined value B from the position P ⁇ b> 1 is the sensor magnet 22. It is desirable to select a magnet that is larger than the minimum magnetic flux density P that can be detected by the Hall IC 20 in the entire stroke range up to the position P3. Furthermore, the cost can be suppressed by selecting the minimum size magnet that satisfies this condition.
  • a samarium cobalt sintered magnet is basically desirable as the sensor magnet 22 used in the actuator 1 for opening and closing the waste gate valve.
  • the samarium cobalt sintered magnet is suitable for high temperature use because the temperature change rate of the magnetic flux density is as small as 0.1 mT / ° C. or less.
  • a neodymium magnet or a ferrite magnet may be used as the sensor magnet 22 depending on the use environment of the actuator 1.
  • FIG. 6 is a graph for explaining an ideal line and an actual measurement line indicating the correspondence between the relative angle ⁇ calculated from the detected value of the magnetic flux density in two directions and the stroke, and the actual measurement line is at two points as will be described later.
  • the corrected one is shown.
  • the unit of the relative angle ⁇ calculated by the equation (1) is radians, but here it is expressed in degrees.
  • the vertical axis of the graph represents the relative angle ⁇ of the sensor magnet 22 with respect to the Hall IC 20, and the horizontal axis represents the stroke of the shaft 2.
  • the characteristic of the actuator 1, that is, the correspondence between the relative angle ⁇ calculated by the Hall IC 20 and the actual stroke of the shaft 2 is ideally a straight line as shown as an ideal line.
  • the linearity error represents the degree of deviation of the actual measurement line from the ideal line.
  • the linearity error L is relative to the difference 2y between the maximum value y and the minimum value ⁇ y of the relative angle ⁇ calculated by the Hall IC 20 relative to the relative angle ⁇ indicated by the actual measurement line and the ideal line. It is expressed as a ratio ⁇ y with respect to the angle ⁇ .
  • L (%) ⁇ y / 2y ⁇ 100 (3)
  • two points of the maximum value and the minimum value are determined as correction points in the relative angle range from the position P1 to the position P3, and the actual measurement line is coincident with the ideal line at the two correction points. It has been corrected. Further, the actual measurement line between the two correction points is corrected so as to approximate, for example, a sine wave curve or a parabolic curve.
  • the calculation unit 203 determines the matching correction point. The relative angle is corrected using the correction value.
  • the correction value is a value corresponding to the linearity error included in the calculated relative angle.
  • the correction point indicates a relative angle including a linearity error corresponding to the ideal stroke position of the shaft 2.
  • the calculation unit 203 calculates the correction values of the two correction points.
  • the interpolation correction value is calculated by performing interpolation using a predetermined function such as a sine wave curve or a parabolic curve, and the relative angle is corrected using the calculated interpolation correction value. To do.
  • the interpolation correction value in this case is a value corresponding to the linearity error included in the calculated relative angle.
  • the interpolation correction value is not a value corresponding to the linearity error included in the calculated relative angle, but may be a value corresponding to a value after correcting the linearity error included in the calculated relative angle. Good. That is, when the calculated relative angle is different from any of the two predetermined correction points, the calculation unit 203 uses the correction values of the two correction points and the calculated relative angle as parameters to determine the sine By performing interpolation using a predetermined function such as a wave curve or a parabolic curve, an interpolation correction value corresponding to the relative angle after correcting the linearity error is calculated, and the relative angle is set to the calculated interpolation correction value. Correction is performed by replacing.
  • FIG. 7 is a graph showing the linearity error remaining in the two-point corrected actual measurement line shown in FIG.
  • the vertical axis of the graph indicates the linearity error calculated by the above equation (3), and the horizontal axis indicates the stroke.
  • the arithmetic unit 203 performs multipoint correction with the number of correction points n ⁇ 3 to reduce the linearity error.
  • FIG. 8 is a graph for explaining an ideal line and an actual measurement line indicating a correspondence relationship between the relative angle ⁇ calculated from the detected value of the magnetic flux density in two directions and the stroke, and the actual measurement line is multipoint corrected.
  • the vertical axis of the graph is the relative angle ⁇
  • the horizontal axis is the stroke.
  • a graph of an actual measurement line corrected by two points shown in FIG. 6 is also shown.
  • n ⁇ 3 correction points are set within the relative angle range, and the actual measurement line is corrected so as to coincide with the ideal line at n ⁇ 3 correction points.
  • an actual measurement line between two adjacent correction points is corrected so as to approximate, for example, a sine wave curve or a parabolic curve.
  • FIG. 9 is a graph showing the linearity error remaining in the multipoint corrected actual measurement line shown in FIG.
  • the vertical axis of the graph indicates the linearity error L calculated by the above equation (3), and the horizontal axis indicates the stroke.
  • a graph of the linearity error remaining on the two-point corrected actual measurement line shown in FIG. 7 is also shown.
  • the capacity of the storage unit 202 for storing correction values corresponding to the respective correction points increases. For this reason, the cost of the Hall IC 20 increases and the Hall IC 20 increases in size. Therefore, it is desirable that the number n of correction points satisfy the linearity required as the specification of the actuator 1 and that the cost and size are allowed as a product.
  • the stroke position is not corrected at equal intervals when converted into the stroke of the shaft 2. Therefore, the distances La to Lc between the correction points become longer as the sensor magnet 22 is further away from the position P2. That is, La> Lb> Lc. Therefore, as shown in FIG. 9, in the actual measurement line corrected for multiple points, the linearity error increases and the linearity deteriorates as the sensor magnet 22 moves away from the position P2. The linearity error becomes the largest on the position P1 side and the position P3 side where the interval between the correction points is the longest. Therefore, in the first embodiment, the actuator 1 having a small linearity error is provided by reducing the linearity error between the position P1 side and the position P3 side.
  • FIG. 11 shows the linearity error remaining in the actual measurement line corrected for multiple points.
  • the vertical axis of the graph indicates the linearity error L calculated by the above equation (3)
  • the horizontal axis indicates the stroke.
  • the outermost peak on the position P1 side among the plurality of peak-shaped curves indicated by the linearity error remaining in the relative angle when the relative angle is corrected by the correction value and the interpolation correction value Is defined as a “first mountain”, and a mountain inside the “first mountain” is defined as a “second mountain”. Further, the outermost mountain on the position P3 side is defined as “third mountain”, and the mountain on the inner side of this “third mountain” is defined as “fourth mountain”.
  • the first peak curve uses an interpolation correction value calculated by a function using the correction value at the correction point at the position P1 and the correction value at the correction point immediately inside the correction point at the position P1 as parameters.
  • This is the linearity error of the relative angle corrected in this way.
  • This function is, for example, a function such as a sine wave curve or a parabolic curve, and is stored in the storage unit 202 as interpolation information.
  • the curve of the mountain other than the first mountain is also the linearity of the relative angle corrected using the interpolation correction value calculated by the function using the two correction values at the two correction points sandwiching the mountain as a parameter. It is an error.
  • the first mountain> the second mountain and the third mountain> the fourth mountain are formed.
  • the relative angle ⁇ should be corrected to a value matching the ideal line at the correction point.
  • the first embodiment by correcting the relative angle ⁇ to a value that does not coincide with the ideal line at each correction point corresponding to the positions P1 and P3, the first peak and the first peak where the linearity is most deteriorated. Reduce the linearity error of 3 peaks.
  • FIG. 12 is a graph illustrating a method for calculating the correction value of the outermost correction point in the relative angle range in the first embodiment.
  • FIG. 13 is a graph showing an example in which the actual measurement line shown in FIG. 8 is corrected at multiple points using the correction value of the outermost correction point in the relative angle range calculated in the first embodiment.
  • a PC (Personal Computer) tool which will be described later, uses a correction value at a correction point at the position P1 and a correction value at a correction point one inner side from the correction point at the position P1 as parameters, and a function that is interpolation information. An interpolation correction value for each relative angle between the correction points is calculated. Then, the PC tool calculates the linearity error remaining at each relative angle between the correction points corrected by the interpolation correction value, obtains the first peak, and sets the maximum value as the linearity error L1. Further, the PC tool uses the correction value at the correction point one inner side from the correction point at the position P1 and the correction value at the correction point two inner sides from the correction point at the position P1 as parameters, and uses the function as described above.
  • An interpolation correction value for each relative angle between the correction points is calculated. Then, the PC tool calculates a linearity error remaining at each relative angle between the correction points corrected by the interpolation correction value, obtains a second peak, and sets the maximum value as the linearity error L2.
  • the PC tool calculates a difference ⁇ between the linearity error L1 that is the maximum value of the first peak and the linearity error L2 that is the maximum value of the second peak by Expression (4). Then, the PC tool calculates the correction value L ⁇ of the correction point corresponding to the position P1 such that the linearity error L1 that is the maximum value of the first peak is equal to or less than the value obtained by subtracting the difference ⁇ from the L1. .
  • the relative angle Ya corrected by the correction value L ⁇ is a value that deviates from the ideal line of the straight line.
  • the correction value L ⁇ is a “first correction value” and is stored in the storage unit 202.
  • ⁇ (4)
  • the correction value L ⁇ of the correction point corresponding to the position P3 opposite to the position P1 may be used as it is.
  • the correction value L ⁇ is calculated separately from the correction value L ⁇ . May be.
  • the PC tool calculates the difference ⁇ between the linearity error L3, which is the minimum value of the third peak, and the linearity error L4, which is the minimum value of the fourth peak, using Expression (5).
  • the PC tool calculates the correction value L ⁇ of the correction point corresponding to the position P3 such that the linearity error L3 that is the minimum value of the third peak is equal to or smaller than the value obtained by subtracting the difference ⁇ from the L3. .
  • the relative angle Yb corrected by the correction value L ⁇ is a value deviated from the ideal line of the straight line.
  • the correction value L ⁇ is a “second correction value” and is stored in the storage unit 202.
  • ⁇ (5)
  • the correction values are changed to the correction values L ⁇ and L ⁇ calculated as described above, instead of the correction values so that the corrected relative angle matches the ideal line.
  • the linearity error between the first peak and the third peak can be reduced.
  • the storage unit 202 stores correction values for each of three or more predetermined correction points within a relative angle range.
  • the correction point indicates a relative angle including a linearity error corresponding to the ideal stroke position of the shaft 2.
  • the correction value for each correction point is a value for correcting the linearity error included in the relative angle calculated from the magnetic flux density detected by the magnetic detection unit 201, and the corrected relative angle is an ideal line. Matching value.
  • the correction values of the correction points located on the outermost side of the relative angle range are L ⁇ and L ⁇ whose corrected relative angles do not coincide with the ideal line.
  • the storage unit 202 stores, as interpolation information, a function for calculating an interpolation correction value between correction points using the correction value as a parameter.
  • the calculation unit 203 calculates the relative angle ⁇ by the above equation (1) using the magnetic flux density in the Bx axis direction and the magnetic flux density in the Bz axis direction detected by the magnetic detection unit 201. Subsequently, when the calculated relative angle ⁇ matches any one of the three or more correction points stored in the storage unit 202, the calculation unit 203 uses the correction values of the matching correction points. The relative angle ⁇ is corrected. In addition, when the calculated relative angle ⁇ is different from any of the three or more correction points stored in the storage unit 202, the calculation unit 203 sets the two correction points adjacent to each other with the relative angle ⁇ interposed therebetween.
  • the interpolation correction value is calculated by performing interpolation using a function of the interpolation information stored in the storage unit 202 using the two corresponding correction values as parameters. Then, the calculation unit 203 corrects the relative angle ⁇ using the interpolation correction value. As described above, the interpolation correction value calculated by the function is not a value corresponding to the linearity error included in the relative angle ⁇ but a value corresponding to the relative angle after correcting the linearity error. Also good.
  • FIG. 13 is a graph for explaining an ideal line and an actual measurement line indicating a correspondence relationship between the relative angle ⁇ calculated from the detected value of the magnetic flux density in two directions and the stroke, and the actual measurement line is corrected by multipoints.
  • the correction values L ⁇ and L ⁇ are corrected so that the relative angles Ya and Yb do not coincide with the ideal line at the two correction points at both ends of the relative angle range, as compared with the case where the relative angle is corrected so as to coincide with the ideal line. In the case, as a whole, the deviation between the ideal line and the actual measurement line is smaller, and the linearity is improved.
  • FIG. 14 is a diagram illustrating a hardware configuration example of the Hall IC 20 in the first embodiment.
  • the hall element 211 detects the magnetic flux density in the Bx-axis direction and outputs it to the multiplexer 213.
  • the hall element 212 detects the magnetic flux density in the Bz axis direction and outputs it to the multiplexer 213.
  • These Hall elements 211 and 212 are the magnetic detection unit 201.
  • An analog signal that is a detected value of the magnetic flux density in two directions output from the Hall elements 211 and 212 is input to the amplifier 214 via the multiplexer 213, and after the gain is changed in the amplifier 214, AD (Analog-Digital). It is converted into a digital signal by the converter 215 and input to a CPU (Central Processing Unit) 216.
  • the CPU 216 calculates a relative angle using the magnetic flux density in two directions, corrects the linearity error of the relative angle, and then outputs a digital signal that is the corrected relative angle.
  • This digital signal is converted into an analog signal by a DA (Digital-Analog) converter 217 and output to the outside of the Hall IC 20. Note that the DA converter 217 is not necessary when the corrected relative angle is output as a digital signal from the Hall IC 20 to the outside.
  • the function of the calculation unit 203 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in a ROM (Read Only Memory) 218.
  • the CPU 216 implements the function of the calculation unit 203 by reading and executing a program stored in the ROM 218. That is, when the Hall IC 20 is executed by the CPU 216, a program that calculates a relative angle using the magnetic flux density in two directions and corrects a linearity error of the relative angle is executed.
  • a RAM (Random Access Memory) 219 is a work area that temporarily stores data input to and output from the CPU 216 or a program read from the ROM 218.
  • An EEPROM (Electrically Erasable Programmable ROM) 220 calculates a correction value for each of three or more correction points predetermined in the relative angle range and an interpolation correction value between the correction points using the correction values as parameters.
  • a storage unit 202 stores functions. The data in the EEPROM 220 can be rewritten by a writing tool or the like which will be described later. Interpolation information such as a function for calculating the interpolation correction value may be stored in the EEPROM 220 or may be stored in the ROM 218 as a part of the program.
  • the ROM 218, the RAM 219, and the EEPROM 220 are the storage unit 202.
  • the IC is configured as one IC chip having the functions of the magnetic detection unit 201, the storage unit 202, and the calculation unit 203, but some functions may be configured as a dedicated circuit.
  • FIG. 15 is a diagram illustrating a configuration example of the writing system 30 for writing the correction value in the EEPROM 220 of the Hall IC 20.
  • the writing system 30 includes a linear gauge 31, a counter 32, a PC tool 33, and a writing tool 34.
  • the linear gauge 31 measures the position of the tip of the shaft 2 of the actuator 1 and outputs a measurement signal to the counter 32.
  • the counter 32 receives the measurement signal from the linear gauge 31, converts it into an electrical signal that can be received by the PC tool 33, and outputs it to the PC tool 33.
  • the linear gauge 31 and the counter 32 are measuring devices that measure the stroke position of the shaft 2.
  • the measuring device is not limited to the configuration in which the linear gauge 31 and the counter 32 are combined, and any device that can measure the stroke position of the shaft 2 may be used.
  • the PC tool 33 controls energization to the rotor winding 9 through the connector terminal 15 of the actuator 1 and sweeps the shaft 2 of the actuator 1, that is, moves it in one direction at a constant speed.
  • the PC tool 33 reads the relative angle output from the Hall IC 20 through the connector terminal 15 and the stroke position of the shaft 2 output from the counter 32 while the shaft 2 is swept.
  • the stroke position from the counter 32 is a value that can be converted into the relative angle of the sensor magnet 22 with respect to the Hall IC 20.
  • the correspondence relationship between the converted relative angle and the stroke position corresponds to the ideal line described above.
  • the correspondence between the stroke position from the counter 32 and the relative angle from the Hall IC 20 corresponds to the above-described actual measurement line.
  • the PC tool 33 links the stroke position with the relative angle from the Hall IC 20 at that time, and temporarily holds it. Further, the PC tool 33 converts the stroke position into a relative angle with respect to the set of linked stroke positions and the relative angle from the Hall IC 20 to obtain an ideal value on the ideal line. Then, the PC tool 33 calculates a difference between the calculated ideal value and the relative angle from the Hall IC 20, and sets the difference as a correction value. It is assumed that information necessary for the conversion from the stroke position to the relative angle is given to the PC tool 33 in advance. Further, the PC tool 33 uses the relative angle from the Hall IC 20 as a correction point for use in correction.
  • the PC tool 33 links the correction point, which is a relative angle from the Hall IC 20, with the correction value calculated using the stroke position from the counter 32 to form a set of data.
  • the PC tool 33 calculates the correction values L ⁇ and L ⁇ described above for the two correction points at the positions P1 and P3 that are the outermost in the relative angle range. Then, the PC tool 33 outputs, to the writing tool 34, data obtained by linking correction points and correction values for all three or more correction points.
  • the PC tool 33 is a control device such as a PC, a microcomputer, or a DSP (Digital Signal Processor).
  • the writing tool 34 receives data from the PC tool 33, converts it into an electrical signal that can be received by the Hall IC 20, and writes it into the EEPROM 220 of the Hall IC 20 through the connector terminal 15 of the actuator 1.
  • the writing tool 34 is a writing device that writes data to the EEPROM 220 of the Hall IC 20 and is configured by a dedicated circuit or the like.
  • interpolation information such as a function for calculating an interpolation correction value may be held in advance by the Hall IC 20, or may be written to the Hall IC 20 by the PC tool 33 via the writing tool 34.
  • FIG. 16 is a diagram illustrating correction value writing timing.
  • the horizontal axis indicates the stroke of the shaft 2 from the position P1 to the position P3.
  • Double circles ( ⁇ ) indicate the timing when the PC tool 33 performs an operation of reading the relative angle from the Hall IC 20 and the stroke position from the counter 32.
  • An asterisk ( ⁇ ) indicates the timing at which the PC tool 33 performs a line for writing correction points and correction values to the Hall IC 20 via the writing tool 34.
  • the PC tool 33 moves the shaft 2 so that the stroke position from the counter 32 coincides with the first correction point, reads the relative angle from the Hall IC 20 at that time, and reads the correction value. The calculation is performed, and the correction point and the correction value corresponding to the position P1 are written in the Hall IC 20. Subsequently, the PC tool 33 moves the shaft 2 to the next correction point, reads the relative angle from the Hall IC 20 at that time, and writes it in the Hall IC 20 as the correction point and the correction value. The PC tool 33 repeats this operation for each correction point until the position P3.
  • the PC tool 33 sweeps the shaft 2 without stopping from the position P1 to the position P3, and during the operation, the relative angle from the Hall IC 20 and the counter are counted for each correction point.
  • the stroke position from 32 is read.
  • the PC tool 33 calculates a correction value for each correction point after the sweep, and writes the correction value for each correction point to the Hall IC 20 at a time.
  • the writing time can be shortened by reducing the communication process, the process capability is improved, and the tact can be shortened in the production line.
  • FIG. 17 is a flowchart showing a method for adjusting the actuator 1.
  • the PC tool 33 controls the movement of the shaft 2 to bring the contact portion 19b into contact with the stopper 19a.
  • the contact position between the stopper 19a and the contact portion 19b corresponds to the position P1.
  • step 2 if the stroke position from the counter 32 or the relative angle from the Hall IC 20 does not change for a predetermined time, the PC tool 33 determines that the stopper 19a and the contact portion 19b are in contact (step ST2 “YES” "), The process proceeds to step ST3. On the other hand, when the stroke position from the counter 32 or the relative angle from the Hall IC 20 changes within a predetermined time, the PC tool 33 determines that the stopper 19a and the contact portion 19b are not in contact (step ST2 “NO”). ), The process returns to step ST1.
  • step ST3 the PC tool 33 sweeps the shaft 2 from the position P1 side to the position P3 side. Further, during the sweep operation, the PC tool 33 reads the relative angle from the Hall IC 20 and the stroke position from the counter 32, links the stroke position and the relative angle for each correction point, and temporarily holds them.
  • step ST4 the PC tool 33 determines whether or not the shaft 2 has moved to the position P3. Specifically, if the stroke position from the counter 32 or the relative angle from the Hall IC 20 does not change for a predetermined time, the PC tool 33 determines that the stopper 18a and the contact portion 18b are in contact (step ST4 " YES "), go to step ST5. On the other hand, when the stroke position from the counter 32 or the relative angle from the Hall IC 20 changes within a predetermined time, the PC tool 33 determines that the stopper 19a and the contact portion 19b are not in contact (step ST4 “NO”). ), The process returns to step ST3.
  • step ST5 if the PC tool 33 can acquire the stroke position and the relative angle at all three or more predetermined correction points (step ST5 “YES”), the process proceeds to step ST6. On the other hand, if there is a correction point at which the stroke position and the relative angle could not be acquired (step ST5 “NO”), the PC tool 33 returns to step ST1 and repeats the processing of steps ST1 to ST5.
  • step ST6 the PC tool 33 calculates the correction values L ⁇ and L ⁇ of the correction points corresponding to the positions P1 and P3, and other correction point correction values are converted from the stroke positions acquired in step ST3. A correction value based on the angle is calculated.
  • step ST ⁇ b> 7 the PC tool 33 writes all correction points and correction values to the Hall IC 20 through the writing tool 34.
  • the shaft 2 is swept from the position P1 side to the position P3 side is shown, but conversely, the shaft 2 may be swept from the position P3 side to the position P1 side. Since the positions P1 and P3 corresponding to both ends of the relative angle range are defined by the contact between the metal stoppers 18a and 19a and the contact portions 18b and 19b, even if surface pressure is applied to the contact portions. It is difficult to deform and has high positional accuracy. Therefore, it is not necessary to adjust the relative angle range of the Hall IC 20 and the stroke range of the shaft 2 for each product of the actuator 1. In addition, plastic deformation when the stoppers 18a and 19a are in contact with the contact portions 18b and 19b can be suppressed to a minimum, and the linearity at the time of correction by the calculation unit 203 can be made highly accurate.
  • the measurement operation of the Hall IC 20 may be suppressed by repeating the reading operation in the sweep operation a plurality of times and calculating a plurality of sets of correction values L ⁇ and L ⁇ . An example of this will be described with reference to the flowchart of FIG.
  • the PC tool 33 performs steps ST1 to ST5 in the same manner as in FIG.
  • step ST11 the PC tool 33 determines whether or not the sweep operation in steps ST1 to ST5 has been performed m times.
  • step ST12 the PC tool 33 calculates m correction values L ⁇ and m correction values L ⁇ using m stroke positions and relative angles acquired at the correction points corresponding to the positions P1 and P3. .
  • the PC tool 33 calculates one final correction value L ⁇ in consideration of variations in m correction values L ⁇ , and one final in consideration of variations in m correction values L ⁇ .
  • a correct correction value L ⁇ is calculated.
  • the PC tool 33 calculates the variation of the m correction values L ⁇ , and sets the median value of the variations as the final correction value L ⁇ .
  • the PC tool 33 calculates an average value of m correction values L ⁇ , and sets the average value as a final correction value L ⁇ .
  • the PC tool 33 calculates the correction value L ⁇ by the same method. As the correction values of correction points other than the positions P1 and P3, the stroke position acquired by one sweep operation out of m times may be used, and m variations are considered in the same manner as the correction values L ⁇ and L ⁇ . A value may be calculated and used.
  • step ST7 the PC tool 33 writes all correction points and correction values to the Hall IC 20 via the writing tool 34.
  • the actuator 1 reciprocates in conjunction with the shaft 2 that can reciprocate in the axial direction, the motor unit 3 that reciprocates the shaft 2, and the reciprocation of the shaft 2.
  • a storage unit 202 storing a correction value for each of three or more correction points determined within a relative angle range, and a function for calculating an interpolation correction value between the correction points using the correction value as a parameter;
  • the relative angle of the sensor magnet 22 with respect to the magnetic detection unit 201 is calculated using the magnetic flux density in two directions detected by the detection unit 201 and stored in the storage unit 202.
  • the correction value is stored such that the outermost extreme value is equal to or less than the inner extreme value. Therefore, by correcting the relative angle outside the relative angle range where the linearity error is large by using this correction value and the interpolation correction value calculated from the function using this correction value as a parameter, the linearity error is corrected.
  • a small actuator 1 can be provided.
  • the storage unit 202 uses the outermost pole on one side among the plurality of extreme values in the relative angle range as the correction value of the outermost correction point on one side of the relative angle range.
  • the first correction value whose value is less than or equal to the extreme value inside it, and the correction value of the outermost correction point on the other side of the relative angle range, the other of the multiple extreme values in the relative angle range
  • a second correction value in which the outermost extreme value on the side is equal to or less than the extreme value on the inner side. Therefore, component tolerances of the actuator 1 can be absorbed on both sides of the relative angle range. Therefore, even when there is a product variation in the actuator 1, the same linearity can be obtained.
  • the actuator 1 is configured to include the metal stoppers 18a and 19a and the contact portions 18b and 19b as stoppers for restricting the range in which the shaft 2 reciprocates. Therefore, plastic deformation at the time of contact can be minimized, and linearity at the time of correction can be made highly accurate.
  • the linear gauge 31 and the counter 32 measure the position of the shaft 2, and the PC tool 33 operates the actuator 1 to move the shaft 2 in one direction.
  • the position of the shaft 2 measured by the linear gauge 31 and the counter 32 during the movement and the relative angle calculated by the calculation unit 203 every three or more correction points predetermined within the relative angle range
  • the writing tool 34 writes the correction value for each correction point calculated by the PC tool 33 to the storage unit 202 at a time after the movement of the shaft 2 is completed. Therefore, the writing time can be shortened.
  • the PC tool 33 moves the shaft 2 a plurality of times, and uses the position and the relative angle of the shaft 2 for a plurality of times, and the outermost relative angle range.
  • the correction value of the correction point was calculated. Therefore, measurement variations of the Hall IC 20 can be suppressed, and the linearity at the time of correction can be made highly accurate.
  • the relative angle may be converted into the stroke position of the shaft 2 and output.
  • the storage unit 202 stores information such as a function necessary for the conversion of the relative angle and the stroke position
  • the calculation unit 203 uses the information stored in the storage unit 202 to store the relative angle. Is converted into a stroke position and output.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the linearity outside the relative angular range where the linearity is most deteriorated is improved. It is suitable for use in actuators that require high-precision operation, such as actuators that control opening and closing of waste gate valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Direct Current Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 アクチュエータのホールICは、2方向の磁束密度を用いて相対角度を算出し、記憶部に記憶されている補正点ごとの補正値、および補正点間の補間補正値を算出するための関数を用いて当該相対角度の直線性誤差を補正する。この記憶部には、相対角度範囲の最も外側の補正点の補正値として、当該補正値をパラメータに用いた関数から算出された補間補正値により補正されたときの相対角度の直線性誤差が示す複数の極値のうち、最も外側の極値である直線性誤差(L1,L3)がその1つ内側の極値である直線性誤差(L2,L4)以下になる補正値Lα,Lβが記憶されている。

Description

アクチュエータとその調整方法
 この発明は、ホールIC(Integrated Circuit)を備えた直動式のアクチュエータ、および当該アクチュエータの調整方法に関するものである。
 自動車の排出ガス規制は年々厳しくなる傾向にあり、将来は更に規制が進むと予想される。そのため、排出ガス規制対策としてエンジンとその周辺装置の電動化が進み、制御駆動部に電動アクチュエータが用いられることが多い(例えば、特許文献1,2参照)。
 アクチュエータの駆動方式は回転式と直動式に分類される。回転式のアクチュエータは、ロータの回転方向にシャフトが回転する。直動式のアクチュエータは、ロータの回転方向に対して垂直な方向にシャフトが往復移動する。
特開2012-13179号公報 特表2014-509362号公報
 従来の直動式アクチュエータにおいては、シャフトの往復移動方向の位置を検出するために、例えばホールICなどの磁気センサが用いられる。シャフトの往復移動に伴って当該シャフトに固定されたセンサ用マグネットも往復移動することにより、磁気センサを流れる磁束密度が変化するため、磁気センサが検出した磁束密度はシャフトの往復移動方向の位置に変換することが可能である。
 アクチュエータは、エンジンルーム内で用いられる場合、排気ガス削減のために高精度な動作が求められる。例えば、ターボチャージャのウェイストゲートバルブを開閉制御するアクチュエータは、ECU(Engine Control Unit)からの指令開度に従ってバルブ開度を制御する必要があるため、ECUからの指令開度に従ったシャフトの理想的な動き方と実際の動き方とが同一であることが望ましい。しかしながら、実際には、磁気センサに対する温度の影響、当該磁気センサに対する外部磁界の影響、アクチュエータの製品ばらつき、およびアクチュエータ内部のがたつき等により、磁気センサが検出したシャフト位置と実際のシャフト位置とに誤差が生じ、ECUからの指令開度とはずれた、意図しない位置にシャフトが移動する場合があった。
 ここで、磁気センサが検出したシャフト位置と実際のシャフト位置との誤差を、直線性誤差と呼ぶ。
 アクチュエータの直線性誤差が発生すると、車両に大きな影響を与える可能性があるという課題があった。例えば、前述のウェイストゲートバルブ用のアクチュエータにおいて、バルブ開度がECUからの指令開度より開方向にずれると、ブースト圧が低下し、必要な性能を得られなくなる。反対に、閉方向にずれると、ブースト圧が上昇するため、過給圧も上昇してタービンブレードに対する負荷が高まり、タービンブレードの破損を引き起こす。そのため、アクチュエータの仕様として、直線性誤差を如何に小さくするかが求められている。
 この発明は、上記のような課題を解決するためになされたもので、直線性誤差の小さいアクチュエータを提供することを目的とする。
 この発明に係るアクチュエータは、軸方向に往復移動が可能なシャフトと、シャフトを往復移動させる駆動部と、シャフトの往復移動に連動して往復移動するマグネットと、マグネットの往復移動に伴って変化する磁界の2方向の磁束密度を検出する磁気検出部と、磁気検出部に対してマグネットが往復移動可能な相対角度範囲内に予め定められた3点以上の補正点ごとの補正値、および補正値をパラメータに用いて補正点間の補間補正値を算出する関数を記憶している記憶部と、磁気検出部により検出された2方向の磁束密度を用いて磁気検出部に対するマグネットの相対角度を算出し、記憶部に記憶されている補正値または関数から算出した前記補間補正値を用いて当該相対角度の直線性誤差を補正する演算部とを備え、記憶部は、相対角度範囲の最も外側の補正点の補正値として、当該補正値をパラメータに用いた関数から算出された補間補正値により補正されたときの相対角度の直線性誤差が示す相対角度範囲における複数の極値のうち、最も外側の極値がその1つ内側の極値以下になる補正値を記憶しているものである。
 この発明によれば、相対角度範囲の最も外側の補正点の補正値として、当該補正値をパラメータに用いた関数から算出された補間補正値により補正されたときの相対角度の直線性誤差が示す相対角度範囲における複数の極値のうち、最も外側の極値がその1つ内側の極値以下になる補正値を記憶しているようにしたので、この補正値およびこの補正値をパラメータとする関数から算出される補間補正値を用いて、直線性誤差が大きい相対角度範囲内の外側の相対角度を補正することにより、直線性誤差の小さいアクチュエータを提供することができる。
この発明の実施の形態1に係るアクチュエータの構成例を示す断面図である。 実施の形態1におけるホールICとセンサ用マグネットの簡易モデルを説明する図である。 実施の形態1におけるホールICの構成例を示すブロック図である。 実施の形態1において、センサ用マグネットが移動したときの2方向の磁束密度の波形を示すグラフである。 図4における2方向の磁束密度を合成した合成値の波形を示すグラフである。 2方向の磁束密度の検出値から算出される相対角度とストロークとの対応関係を示す理想線と実測線とを説明するグラフであり、実測線は2点補正されている。 図6に示した2点補正された実測線に残る直線性誤差を示すグラフである。 2方向の磁束密度の検出値から算出される相対角度とストロークとの対応関係を示す理想線と実測線とを説明するグラフであり、実測線は多点補正されている。 図8に示した多点補正された実測線に残る直線性誤差のグラフである。 図2に示したホールICとセンサ用マグネットの簡易モデルにおいて、相対角度の等分補正を説明する図である。 多点補正された実測線に残る直線性誤差を示すグラフである。 実施の形態1において相対角度範囲の最も外側の補正点の補正値の算出方法を説明するグラフである。 実施の形態1において算出した相対角度範囲の最も外側の補正点の補正値を用いて、図8に示した実測線を多点補正した例を示すグラフである。 実施の形態1におけるホールICのハードウェア構成例を示す図である。 実施の形態1に係る書き込みシステムの構成例を示す図である。 実施の形態1に係る書き込みシステムによる補正値の書き込みタイミングを説明する図である。 実施の形態1に係る書き込みシステムによるアクチュエータの調整方法の一例を示すフローチャートである。 実施の形態1に係る書き込みシステムによるアクチュエータの調整方法の別の例を示すフローチャートである。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係るアクチュエータ1の構成例を示す断面図である。アクチュエータ1は、直動式であって、シャフト2をその軸方向に往復移動させる。実施の形態1では、シャフト2の軸方向をX軸と呼び、X軸に直交する方向をY軸およびZ軸と呼ぶ。図1の紙面上では、X軸が上下方向になり、Y軸が奥行き方向になり、Z軸が左右方向になる。
 以下では、直動式のアクチュエータ1を、ターボチャージャのウェイストゲートバルブを開閉する用途に用いるものとして説明する。なお、アクチュエータ1の用途は、ウェイストゲートに限定されるものではなく、どのような用途に用いてもよい。
 モータ部3は駆動部である。駆動部は、シャフト2をX軸方向に往復移動させる駆動力を発生可能なものであれば、どのようなものを用いてもよい。図1では、モータ部3としてブラシ付きモータを用いた例を示している。モータハウジング4に2箇所の軸受5,6が設置され、パイプ7が回転自在に支持されている。パイプ7の外周面に、ロータとなるロータコア8とロータ巻線9とが固定されている。また、パイプ7の一端側にコンミテータ10が固定され、ロータ巻線9がコンミテータ10に接続されている。モータハウジング4の内周面には、ロータを取り囲むように、ステータとなるマグネット11とバックヨーク12とが固定されている。
 パイプ7の中にはシャフト2が配置されている。パイプ7の内周面には雌ねじ部13が形成されている。また、シャフト2の外周面には雄ねじ部14が形成されており、この雄ねじ部14が雌ねじ部13にねじ込まれて結合される。シャフト2の一端側は、モータハウジング4を貫通して、不図示のウェイストゲートバルブに連結される。シャフト2の他端側であってコンミテータ10の先には、磁気センサであるホールIC20と、センサ用シャフト21と、センサ用マグネット22とが配置されている。ホールIC20等の詳細は後述する。
 コネクタ端子15に電圧が印加されると、電流がブラシ16を流れ、コンミテータ10を介して、ロータ巻線9に通電される。ロータ巻線9に通電されることにより、ロータコア8が磁化され、極を形成する。磁化されたロータコア8がマグネット11に引き付けられることにより、ロータが回転し、ロータに一体化されたパイプ7とコンミテータ10も回転する。コンミテータ10の回転に伴いロータ巻線9に流れる電流の相が切り替わることにより、ロータコア8の極も切り替わり、ロータが回転し続ける。ロータの回転運動は、パイプ7の雌ねじ部13とシャフト2の雄ねじ部14との結合によってX軸方向の直線運動に変換され、シャフト2がモータハウジング4の外へ押し出される。ロータ巻線9に流れる電流が逆転すると、ロータが逆向きに回転し、シャフト2がモータハウジング4の内へ引き込まれる。シャフト2の往復移動に伴い、ウェイストゲートバルブが開閉する。
 パイプ7の下端部およびモータハウジング4の内周面には、シャフト2が往復移動する範囲を規制するストッパ18a,19aが設けられている。また、シャフト2には、ストッパ18aに当接する当接部18bと、ストッパ19aに当接する当接部19bとが設けられている。シャフト2が往復移動するストローク範囲は、当接部18bがストッパ18aに当接する位置から、当接部19bがストッパ19aに当接する位置までである。当接部18b,19bがストッパ18a,19aに当接する際、モータ部3の駆動力によりある程度の面圧が掛かるため、ストッパ18a,19aおよび当接部18b,19bには、変形しやすい樹脂などの材料を避け、変形しにくい金属部材を用いることが望ましい。
 センサハウジング17の内部には、2方向の磁束密度を検出するホールIC20が固定されている。また、センサハウジング17の内部には、シャフト2の端面に接するセンサ用シャフト21が配置され、このセンサ用シャフト21にはセンサ用マグネット22が固定されている。よって、シャフト2のX軸方向の往復移動に連動して、センサ用シャフト21とセンサ用マグネット22も往復移動する。なお、センサハウジング17とセンサ用シャフト21は、非磁性体である。
 図2は、実施の形態1におけるホールIC20とセンサ用マグネット22の簡易モデルを説明する図である。シャフト2がストッパ19aと当接部19bの当接位置に移動すると、連動してセンサ用マグネット22が位置P1に移動する。シャフト2がストッパ18aと当接部18bの当接位置に移動すると、連動してセンサ用マグネット22が位置P3に移動する。位置P2は、センサ用マグネット22がホールIC20に最も近づく位置であり、位置P1,P3から略等距離である。
 シャフト2のストローク範囲である位置P1から位置P3までの範囲に対応する、ホールIC20に対してセンサ用マグネット22が往復移動可能な相対角度の範囲を、「相対角度範囲」と呼ぶ。
 また、センサ用マグネット22が発生する磁界について、X軸、Y軸、Z軸に平行なBx軸、By軸、Bz軸が設定されているものとする。
 図3は、実施の形態1におけるホールIC20の構成例を示すブロック図である。
 ホールIC20は、センサ用マグネット22の往復移動に伴って変化する磁界の2方向の磁束密度を検出する磁気検出部201と、磁気検出部201とセンサ用マグネット22との相対角度範囲内に予め定められた3点以上の補正点ごとの補正値、および前記補正値をパラメータに用いて補正点間の補間補正値を算出する関数を記憶している記憶部202と、磁気検出部201により検出された2方向の磁束密度を用いて磁気検出部201に対するセンサ用マグネット22の相対角度を算出し、記憶部202に記憶されている補正値または関数を用いて当該相対角度の直線性誤差を補正する演算部203とを備えている。
 図2の例では、磁気検出部201は、2方向の磁束密度として、Bx軸方向の磁束密度とBz軸方向の磁束密度とを検出する。なお、磁気検出部201は、2方向の磁束密度として、Bx軸方向の磁束密度とBy軸方向の磁束密度とを検出してもよい。
 演算部203は、式(1)により、Bx軸方向の磁束密度とBz軸方向の磁束密度とを用いて、Bz軸を基準としたホールIC20に対するセンサ用マグネット22の相対角度θを算出する。式(1)により算出される相対角度θは、X軸方向におけるシャフト2のストローク位置に変換可能な値である。また、式(1)および後述する式(2)において、Bxは、Bx軸方向の磁束密度であり、Bzは、Bz軸方向の磁束密度である。
  θ=atan(Bx/Bz)   (1)
 図4に、センサ用マグネット22が移動したときのBx軸方向の磁束密度およびBz軸方向の磁束密度の波形を示す。また、図5に、図4におけるBx軸方向の磁束密度およびBz軸方向の磁束密度を合成した合成値Bの波形を示す。図4および図5において、グラフの縦軸は磁束密度を示し、グラフの横軸はセンサ用マグネット22の位置、つまりシャフト2のストロークを示す。合成値Bは、式(2)により算出される。
Figure JPOXMLDOC01-appb-I000001
 図2に示したように、Bz軸方向においてホールIC20とセンサ用マグネット22との間に一定量のエアギャップGが設けられている場合、センサ用マグネット22として、合成値Bが、位置P1から位置P3までの全ストローク範囲においてホールIC20で検出可能な最低磁束密度Pより大きくなるようなマグネットが選定されることが望ましい。さらに、この条件を満たす最小サイズのマグネットを選定することで、コストを抑制することができる。
 なお、自動車部品は高温環境下で使用されるため、ウェイストゲートバルブ開閉用のアクチュエータ1に用いるセンサ用マグネット22としては、基本的にはサマリウムコバルト焼結マグネットが望ましい。サマリウムコバルト焼結マグネットは、磁束密度の温度変化率が0.1mT/℃以下と小さいため、高温使用に適している。ただし、アクチュエータ1の使用環境によっては、センサ用マグネット22として、ネオジムマグネットまたはフェライトマグネット等を用いてもよい。
 図6は、2方向の磁束密度の検出値から算出される相対角度θとストロークとの対応関係を示す理想線と実測線とを説明するグラフであり、実測線は後述するように2点において補正されたものを示している。なお、式(1)により算出される相対角度θの単位はラジアンであるが、ここでは度で示す。グラフの縦軸はホールIC20に対するセンサ用マグネット22の相対角度θであり、横軸はシャフト2のストロークである。アクチュエータ1の特性、つまりホールIC20が算出する相対角度θと実際のシャフト2のストロークとの対応関係は、理想線として示すような直線であることが理想とされる。しかしながら、実際には、ホールIC20に対する温度の影響、当該ホールIC20に対する外部磁界の影響、アクチュエータ1の製品ばらつき、およびアクチュエータ1の内部のがたつき等により、ホールIC20が算出する相対角度θからなる実測線は理想線から乖離し、直線性誤差が生じる。
 直線性誤差は、理想線に対する実測線の乖離の度合いを表す。式(3)のように、直線性誤差Lは、ホールIC20が算出する相対角度θの最大値yと最小値-yとの差2yに対する、実測線が示す相対角度θと理想線が示す相対角度θとの差Δyの割合で表される。
  L(%)=Δy/2y×100   (3)
 また、図6のグラフでは、位置P1から位置P3までの相対角度範囲において最大値と最小値の2点を補正点と定め、実測線が理想線に2点の補正点でそれぞれ一致するように補正されている。さらに、2点の補正点間の実測線は、例えば正弦波曲線または放物曲線等に近似するように補正されている。
 具体的には、演算部203は、磁気検出部201により検出された磁束密度から算出した相対角度が、予め定められた2点の補正点のいずれか一方と一致する場合、一致する補正点の補正値を用いて当該相対角度を補正する。補正値は、前記算出した相対角度に含まれる直線性誤差に相当する値である。また、補正点は、シャフト2の理想のストローク位置に対応する、直線性誤差を含んだ相対角度を示すものとする。
 また、演算部203は、磁気検出部201により検出された磁束密度から算出した相対角度が、予め定められた2点の補正点のいずれとも異なる場合、当該2点の補正点の補正値と算出した相対角度とをパラメータに用いて、正弦波曲線または放物曲線等の予め定められた関数により補間を行うことで補間補正値を算出し、算出した補間補正値を用いて当該相対角度を補正する。この場合の補間補正値は、前記算出した相対角度に含まれる直線性誤差に相当する値である。
 なお、補間補正値は、前記算出した相対角度に含まれる直線性誤差に相当する値でなく、前記算出した相対角度に含まれる直線性誤差を補正した後の値に相当する値であってもよい。つまり、演算部203は、算出した相対角度が、予め定められた2点の補正点のいずれとも異なる場合、当該2点の補正点の補正値と算出した相対角度とをパラメータに用いて、正弦波曲線または放物曲線等の予め定められた関数により補間を行うことで、直線性誤差を補正した後の相対角度に相当する補間補正値を算出し、相対角度を当該算出した補間補正値に置き換えることにより補正を行う。
 図7は、図6に示した2点補正された実測線に残る直線性誤差を示すグラフである。グラフの縦軸は上式(3)により算出される直線性誤差を示し、横軸はストロークを示す。補正点数n=2の補正では、直線性誤差が大きい。
 そこで、実施の形態1では、演算部203において補正点数n≧3として多点補正を行い、直線性誤差を小さくする。
 図8は、2方向の磁束密度の検出値から算出される相対角度θとストロークとの対応関係を示す理想線と実測線とを説明するグラフであり、実測線は多点補正されている。グラフの縦軸は相対角度θ、横軸はストロークである。また、参考として、図6に示した2点補正された実測線のグラフも示す。
 図8のグラフにおいては、相対角度範囲内にn≧3の補正点を定め、実測線が理想線にn≧3の補正点でそれぞれ一致するように補正されている。また、隣り合う2点の補正点間の実測線は、例えば正弦波曲線または放物曲線等に近似するように補正されている。
 図9は、図8に示した多点補正された実測線に残る直線性誤差を示すグラフである。グラフの縦軸は上式(3)により算出される直線性誤差Lを示し、横軸はストロークを示す。また、参考として、図7に示した2点補正された実測線に残る直線性誤差のグラフも示す。
 補正点数nが多いほど、直線性誤差が小さくなり、直線性が改善される。ただし、補正点数nが多いほど、各補正点に対応する補正値を記憶するための記憶部202の容量が大きくなる。そのため、ホールIC20のコストが上昇し、かつ、ホールIC20が大型化する。従って、補正点数nは、アクチュエータ1の仕様として要求される直線性を満たし、かつコストおよびサイズが製品として許容される程度にすることが望ましい。
 また、図10に示すように、相対角度θを等分補正する必要があるため、シャフト2のストロークに換算すると、ストローク位置は等間隔には補正されない。そのため、センサ用マグネット22が位置P2から遠ざかるほど、補正点間の間隔La~Lcが長くなる。つまり、La>Lb>Lcとなる。従って、図9に示したように、多点補正された実測線において、センサ用マグネット22が位置P2から遠ざかるほど、直線性誤差が大きくなり、直線性が悪化する。そして、補正点間の間隔が最も長くなる位置P1側と位置P3側において、直線性誤差が最も大きくなる。そこで、実施の形態1では、位置P1側と位置P3側の直線性誤差を低減することにより、直線性誤差の小さいアクチュエータ1を提供する。
 図11に、多点補正された実測線に残る直線性誤差を示す。グラフの縦軸は上式(3)により算出される直線性誤差Lを示し、横軸はストロークを示す。
 ここで、相対角度範囲において、相対角度を補正値および補間補正値により補正したときの当該相対角度に残る直線性誤差が示す、複数の山状の曲線のうち、位置P1側の最も外側の山を「第1の山」、この「第1の山」の1つ内側の山を「第2の山」と定義する。また、位置P3側の最も外側の山を「第3の山」、この「第3の山」の1つ内側の山を「第4の山」と定義する。
 例えば、第1の山の曲線は、位置P1の補正点における補正値と、位置P1の補正点より1つ内側の補正点における補正値とをパラメータとした関数により算出される補間補正値を用いて補正された相対角度の直線性誤差である。この関数は、例えば、正弦波曲線または放物曲線等の関数であり、補間情報として記憶部202に記憶されている。
 第1の山以外の山の曲線も、その山を間に挟む2点の補正点における2つの補正値をパラメータとした関数により算出される補間補正値を用いて補正された相対角度の直線性誤差である。
 図11に示すように、第1の山>第2の山、および第3の山>第4の山が形成される。
 本来、「補正」は、理想線と実測線の乖離をゼロにするため、補正点においては相対角度θを理想線に一致する値に補正すべきである。
 しかし、実施の形態1では、位置P1,P3に対応する各補正点において、理想線に一致しないような値に相対角度θを補正することにより、直線性が最も悪化する第1の山と第3の山の直線性誤差を低減する。
 実施の形態1において、図12と図13に示すグラフを参照して、相対角度範囲の最も外側の補正点の補正値、つまり位置P1,P3に対応する補正点の補正値の算出方法を説明する。
 図12は、実施の形態1において相対角度範囲の最も外側の補正点の補正値の算出方法を説明するグラフである。図13は、実施の形態1において算出した相対角度範囲の最も外側の補正点の補正値を用いて、図8に示した実測線を多点補正した例を示すグラフである。
 後述するPC(Personal Computer)ツール等は、位置P1の補正点における補正値と、位置P1の補正点より1つ内側の補正点における補正値とをパラメータに用いて、補間情報である関数により、補正点間の各相対角度の補間補正値を算出する。そして、PCツールは、当該補間補正値により補正された前記補正点間の各相対角度に残る直線性誤差を算出して第1の山を求め、その極大値を直線性誤差L1とする。
 また、PCツールは、位置P1の補正点より1つ内側の補正点における補正値と、位置P1の補正点より2つ内側の補正点における補正値とをパラメータに用いて、上記同様に関数により補正点間の各相対角度の補間補正値を算出する。そして、PCツールは、当該補間補正値により補正された前記補正点間の各相対角度に残る直線性誤差を算出して第2の山を求め、その極大値を直線性誤差L2とする。
 PCツールは、式(4)により、第1の山の極大値である直線性誤差L1と第2の山の極大値である直線性誤差L2との差分αを算出する。そして、PCツールは、第1の山の極大値である直線性誤差L1が、当該L1から差分αを減算した値以下になるような、位置P1に対応する補正点の補正値Lαを算出する。図13に示すように、この補正値Lαにより補正された相対角度Yaは、直線の理想線上からずれた値となる。また、この補正値Lαは「第1の補正値」であり、記憶部202に記憶されることになる。
  |L1-L2|=α   (4)
 位置P1とは反対側の位置P3に対応する補正点の補正値Lβは、位置P1の補正値Lαをそのまま利用してもよい。しかし、アクチュエータ1の部品公差等により位置P1側と位置P3側の直線性誤差がばらついて補正値Lαと補正値Lβとが一致しない場合もあるため、補正値Lβを補正値Lαとは別に算出してもよい。
 例えば、PCツールは、式(5)により、第3の山の極小値である直線性誤差L3と第4の山の極小値である直線性誤差L4との差分βを算出する。そして、PCツールは、第3の山の極小値である直線性誤差L3が、当該L3から差分βを減算した値以下になるような、位置P3に対応する補正点の補正値Lβを算出する。図13に示すように、この補正値Lβにより補正された相対角度Ybは、直線の理想線上からずれた値となる。また、この補正値Lβは「第2の補正値」であり、記憶部202に記憶されることになる。ここでは、アクチュエータ1の部品公差等により、α≠β、かつ、Lα≠Lβである。
  |L3-L4|=β   (5)
 以上のように、位置P1,P3に対応する補正点において、補正後の相対角度が理想線に一致するような補正値ではなく、上記のようにして演算した補正値Lα,Lβに変更することにより、図12に示すように、第1の山と第3の山の直線性誤差を低減することができる。
 次に、補正値を用いた補正方法を説明する。
 記憶部202には、相対角度範囲内に予め定められた3点以上の補正点ごとの補正値が記憶されている。補正点は、シャフト2の理想のストローク位置に対応する、直線性誤差を含んだ相対角度を示すものである。補正点ごとの補正値は、磁気検出部201により検出された磁束密度から算出された相対角度に含まれている直線性誤差を補正するための値であり、補正後の相対角度は理想線に一致する値になる。ただし、上述したように、相対角度範囲の最も外側に位置する補正点の補正値は、補正後の相対角度が理想線に一致しないLα,Lβである。また、記憶部202には、補正値をパラメータに用いて補正点間の補間補正値を算出する関数等が、補間情報として記憶されている。
 演算部203は、磁気検出部201により検出されたBx軸方向の磁束密度とBz軸方向の磁束密度とを用いて、上式(1)により相対角度θを算出する。
 続いて演算部203は、算出した相対角度θが、記憶部202に記憶されている3点以上の補正点のうちのいずれか1点と一致する場合、一致する補正点の補正値を用いて相対角度θを補正する。
 また、演算部203は、算出した相対角度θが、記憶部202に記憶されている3点以上の補正点のいずれとも異なる場合、相対角度θを間に挟んで隣り合う2点の補正点に対応する2つの補正値をパラメータに用いて、記憶部202に記憶されている補間情報の関数により補間を行うことで補間補正値を算出する。そして、演算部203は、補間補正値を用いて相対角度θを補正する。
 なお、上述したように、関数により算出される補間補正値は、相対角度θに含まれる直線性誤差に相当する値でなく、直線性誤差を補正した後の相対角度に相当する値であってもよい。
 図13は、2方向の磁束密度の検出値から算出される相対角度θとストロークとの対応関係を示す理想線と実測線とを説明するグラフであり、実測線は多点補正されている。相対角度範囲の両端2点の補正点において、相対角度が理想線と一致するように補正した場合に比べ、補正値Lα,Lβによって理想線と一致しない相対角度Ya,Ybになるように補正した場合の方が、全体としてみれば理想線と実測線との乖離が小さく、直線性が改善されている。
 次に、ホールIC20のハードウェア構成を説明する。
 図14は、実施の形態1におけるホールIC20のハードウェア構成例を示す図である。
 ホール素子211は、Bx軸方向の磁束密度を検出して、マルチプレクサ213へ出力する。ホール素子212は、Bz軸方向の磁束密度を検出して、マルチプレクサ213へ出力する。これらホール素子211,212は、磁気検出部201である。
 ホール素子211,212から出力された2方向の磁束密度の検出値であるアナログ信号は、マルチプレクサ213を介してアンプ214に入力され、アンプ214においてゲインが変更された後、AD(Analog-Digital)コンバータ215によりデジタル信号に変換され、CPU(Central Processing Unit)216へ入力される。CPU216は、2方向の磁束密度を用いて相対角度を算出し、当該相対角度の直線性誤差を補正した後、補正した相対角度であるデジタル信号を出力する。このデジタル信号は、DA(Digital-Analog)コンバータ217によりアナログ信号に変換され、ホールIC20外部へ出力される。なお、補正した相対角度をデジタル信号のままホールIC20から外部へ出力する場合には、DAコンバータ217は不要である。
 演算部203の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、ROM(Read Only Memory)218に格納される。CPU216は、ROM218に記憶されたプログラムを読み出して実行することにより、演算部203の機能を実現する。即ち、ホールIC20は、CPU216により実行されるときに、2方向の磁束密度を用いて相対角度を算出し、当該相対角度の直線性誤差を補正するステップが結果的に実行されることになるプログラムを格納するためのメモリを備える。また、このプログラムは、演算部203の手順または方法をコンピュータに実行させるものであるともいえる。RAM(Random Access Memory)219は、CPU216に入出力されるデータまたはROM218から読み出されたプログラムを一時的に記憶するワークエリアである。
 また、EEPROM(Electrically Erasable Programmable ROM)220は、相対角度範囲に予め定められた3点以上の補正点ごとの補正値、および当該補正値をパラメータに用いて補正点間の補間補正値を算出する関数を記憶する記憶部202である。このEEPROM220内のデータは、後述する書き込みツール等によって書き換えが可能である。補間補正値を算出するための関数等の補間情報は、EEPROM220に記憶されていてもよいし、上記プログラムの一部としてROM218に記憶されていてもよい。
 ROM218、RAM219およびEEPROM220は、記憶部202である。
 なお、図14の例では、磁気検出部201、記憶部202および演算部203の機能を持つ1つのICチップとして構成したが、一部の機能を専用の回路として構成してもよい。
 次に、アクチュエータ1の調整方法を説明する。アクチュエータ1の調整は、アクチュエータ1の製造工程においてアクチュエータ1を組み立てた後に実施される。
 図15は、ホールIC20のEEPROM220に補正値を書き込むための書き込みシステム30の構成例を示す図である。書き込みシステム30は、リニアゲージ31、カウンタ32、PCツール33および書き込みツール34を備えている。
 リニアゲージ31は、アクチュエータ1のシャフト2の先端の位置を測定し、測定信号をカウンタ32へ出力する。カウンタ32は、リニアゲージ31からの測定信号を受け取り、PCツール33が受け取り可能な電気信号に変換して、PCツール33へ出力する。
 これらのリニアゲージ31とカウンタ32は、シャフト2のストローク位置を測定する測定装置である。なお、測定装置は、リニアゲージ31とカウンタ32を組み合わせた構成に限定されるものではなく、シャフト2のストローク位置を測定可能な装置であれば何でもよい。
 PCツール33は、アクチュエータ1のコネクタ端子15を通じてロータ巻線9への通電を制御し、アクチュエータ1のシャフト2をスイープ、つまり一定速度で一方向に移動させる。PCツール33は、シャフト2をスイープ動作させている期間、コネクタ端子15を通じてホールIC20から出力される相対角度を読み込むと共に、カウンタ32から出力されるシャフト2のストローク位置を読み込む。カウンタ32からのストローク位置は、ホールIC20に対するセンサ用マグネット22の相対角度に変換可能な値である。そして、変換された相対角度とストローク位置との対応関係は、上述した理想線に相当する。カウンタ32からのストローク位置とホールIC20からの相対角度との対応関係は、上述した実測線に相当する。
 PCツール33は、カウンタ32からのストローク位置が予め定められた3点以上の補正点に一致するごとに、当該ストローク位置とそのときのホールIC20からの相対角度とをリンクさせ、一時保持する。
 また、PCツール33は、リンクさせた1組のストローク位置とホールIC20からの相対角度とについて、当該ストローク位置を相対角度に変換して、理想線上の理想値とする。そして、PCツール33は、演算した理想値とホールIC20からの相対角度との差分を演算し、当該差分を補正値とする。なお、ストローク位置から相対角度への変換に必要な情報は、予めPCツール33に与えられているものとする。また、PCツール33は、ホールIC20からの相対角度を、補正時に使用するための補正点とする。つまり、PCツール33は、ホールIC20からの相対角度である補正点と、カウンタ32からのストローク位置を用いて演算した補正値とをリンクさせ、1組のデータにする。
 また、PCツール33は、相対角度範囲において最も外側となる、位置P1と位置P3の2点の補正点については、上述した補正値Lα,Lβを演算する。
 そして、PCツール33は、3点以上の補正点のすべてについて補正点と補正値とをリンクさせたデータを、書き込みツール34へ出力する。
 このPCツール33は、PC、マイクロコンピュータまたはDSP(Digital Signal Processor)等の制御装置である。
 書き込みツール34は、PCツール33からのデータを受け取り、ホールIC20が受け取り可能な電気信号に変換して、アクチュエータ1のコネクタ端子15を通じてホールIC20のEEPROM220へ書き込む。
 この書き込みツール34は、ホールIC20のEEPROM220へデータを書き込む書き込み装置であり、専用の回路等により構成されている。
 なお、補間補正値を算出するための関数等の補間情報は、ホールIC20が予め保持していてもよいし、PCツール33が書き込みツール34を介してホールIC20へ書き込んでもよい。
 図16は、補正値の書き込みタイミングを説明する図である。横軸は、位置P1から位置P3までのシャフト2のストロークを示す。二重丸印(◎)は、PCツール33がホールIC20からの相対角度とカウンタ32からのストローク位置とを読み込む作業を行うタイミングを示す。星印(☆)は、PCツール33が書き込みツール34を介してホールIC20に、補正点と補正値とを書き込む行を行うタイミングを示す。
 参考例として示す作業例では、PCツール33は、カウンタ32からのストローク位置が最初の補正点に一致するようにシャフト2を移動させ、そのときのホールIC20からの相対角度を読み込んで補正値を演算し、位置P1に対応する補正点と補正値とをホールIC20に書き込む。続いて、PCツール33は、シャフト2を次の補正点まで移動させ、そのときのホールIC20からの相対角度を読み込み、補正点と補正値としてホールIC20に書き込む。PCツール33は、位置P3までこの作業を補正点ごとに繰り返し行う。
 一方、実施の形態1の作業例では、PCツール33は、シャフト2を位置P1から位置P3まで停止することなくスイープ動作させ、その動作中に、補正点ごとにホールIC20からの相対角度とカウンタ32からのストローク位置とを読み込んでいく。PCツール33は、スイープ後に補正点ごとの補正値を演算し、補正点ごとの補正値を一度にホールIC20に書き込む。これにより、参考例と比較して、通信工程の削減による書き込み時間の短縮が可能となり、工程能力が向上し、生産ラインにおいてタクト短縮が可能となる。
 図17は、アクチュエータ1の調整方法を示すフローチャートである。
 ステップST1において、PCツール33は、シャフト2の移動を制御して、当接部19bをストッパ19aに当接させる。ストッパ19aと当接部19bの当接位置は、位置P1に相当する。
 ステップ2において、PCツール33は、カウンタ32からストローク位置またはホールIC20からの相対角度が所定時間変化しなければ、ストッパ19aと当接部19bが当接していると判定して(ステップST2“YES”)、ステップST3へ進む。一方、PCツール33は、カウンタ32からストローク位置またはホールIC20からの相対角度が所定時間内に変化した場合、ストッパ19aと当接部19bは当接していないと判定して(ステップST2“NO”)、ステップST1へ戻る。
 ステップST3において、PCツール33は、シャフト2を位置P1側から位置P3側へとスイープ動作させる。また、PCツール33は、スイープ動作中に、ホールIC20からの相対角度とカウンタ32からのストローク位置とを読み込み、補正点ごとにストローク位置と相対角度とをリンクさせ、一時保持する。
 ステップST4において、PCツール33は、シャフト2が位置P3まで移動したか否かを判定する。具体的には、PCツール33は、カウンタ32からストローク位置またはホールIC20からの相対角度が所定時間変化しなければ、ストッパ18aと当接部18bが当接していると判定して(ステップST4“YES”)、ステップST5へ進む。一方、PCツール33は、カウンタ32からストローク位置またはホールIC20からの相対角度が所定時間内に変化した場合、ストッパ19aと当接部19bは当接していないと判定して(ステップST4“NO”)、ステップST3へ戻る。
 ステップST5において、PCツール33は、予め定められた3点以上の補正点すべてにおいてストローク位置と相対角度とを取得できた場合(ステップST5“YES”)、ステップST6へ進む。一方、PCツール33は、ストローク位置と相対角度とを取得できなかった補正点があった場合(ステップST5“NO”)、ステップST1へ戻り、ステップST1~ST5の処理をやり直す。
 ステップST6において、PCツール33は、位置P1,P3に対応する補正点の補正値Lα,Lβを演算し、それ以外の補正点の補正値としては、ステップST3で取得したストローク位置から変換した相対角度に基づく補正値を演算する。
 ステップST7において、PCツール33は、すべての補正点と補正値とを、書き込みツール34を介してホールIC20に書き込む。
 なお、上記説明では、位置P1側から位置P3側へシャフト2をスイープ動作させる例を示したが、反対に位置P3側から位置P1側へシャフト2をスイープ動作させてもよい。
 相対角度範囲の両端に相当する位置P1と位置P3は、金属製のストッパ18a,19aと当接部18b,19bとの当接により規定されるため、当接部分に面圧が掛ったとしても変形し難く、位置精度が高い。そのため、アクチュエータ1の製品ごとに、ホールIC20の相対角度範囲とシャフト2のストローク範囲とを調整する必要がない。また、ストッパ18a,19aと当接部18b,19bとが当接する時の塑性変形を最小に抑えることができ、演算部203による補正時の直線性を高精度にすることができる。
 さらに、上記スイープ動作における読み込み作業を複数回繰り返して、複数組の補正値Lα,Lβを演算することにより、ホールIC20の測定ばらつきを抑制するようにしてもよい。この一例を、図18のフローチャートを用いて説明する。
 図18のフローチャートにおいて、PCツール33は、図17と同様にステップST1~ST5の処理を行う。
 ステップST11において、PCツール33は、ステップST1~ST5のスイープ動作をm回行ったか否かを判定する。mは予め定められた値であり、例えばm=3~5とする。PCツール33は、スイープ動作をm回行ったと判定した場合(ステップST11“YES”)、ステップST12へ進み、m回未満であれば(ステップST11“NO”)、ステップST1へ戻ってスイープ動作を行う。
 ステップST12において、PCツール33は、位置P1,P3に対応する補正点で取得したm回分のストローク位置と相対角度とを用いて、m個の補正値Lαとm個の補正値Lβを演算する。
 ステップST13において、PCツール33は、m個の補正値Lαのばらつきを考慮した1個の最終的な補正値Lαを演算すると共に、m個の補正値Lβのばらつきを考慮した1個の最終的な補正値Lβを演算する。例えば、PCツール33は、m個の補正値Lαのばらつきを演算し、このばらつきの中央値を最終的な補正値Lαとする。また、例えば、PCツール33は、m個の補正値Lαの平均値を演算し、この平均値を最終的な補正値Lαとする。PCツール33は、補正値Lβも同様の方法により演算する。
 位置P1,P3以外の補正点の補正値は、m回のうちの1回のスイープ動作により取得したストローク位置を用いてもよいし、補正値Lα,Lβと同様にm回のばらつきを考慮した値を演算して用いてもよい。
 ステップST7において、PCツール33は、すべての補正点と補正値とを、書き込みツール34を介してホールIC20に書き込む。
 なお、上記説明では、位置P1側から位置P3側へシャフト2をスイープ動作させる例を示したが、反対に位置P3側から位置P1側へシャフト2をスイープ動作させてもよい。また、1回のスイープ動作ごとにシャフト2を移動させる方向を逆向きにしてもよい。
 以上より、実施の形態1によれば、アクチュエータ1は、軸方向に往復移動が可能なシャフト2と、シャフト2を往復移動させるモータ部3と、シャフト2の往復移動に連動して往復移動するセンサ用マグネット22と、センサ用マグネット22の往復移動に伴って変化する磁界の2方向の磁束密度を検出する磁気検出部201と、磁気検出部201に対してセンサ用マグネット22が往復移動可能な相対角度範囲内に予め定められた3点以上の補正点ごとの補正値、および補正値をパラメータに用いて補正点間の補間補正値を算出する関数を記憶している記憶部202と、磁気検出部201により検出された2方向の磁束密度を用いて磁気検出部201に対するセンサ用マグネット22の相対角度を算出し、記憶部202に記憶されている補正値または関数から算出した補間補正値を用いて相対角度の直線性誤差を補正する演算部203とを備える構成である。そして、記憶部202は、相対角度範囲の最も外側の補正点の補正値として、当該補正値をパラメータに用いた関数から算出された補間補正値により補正されたときの相対角度の直線性誤差が示す前記相対角度範囲における複数の極値のうち、最も外側の極値がその1つ内側の極値以下になる補正値を記憶している構成である。そのため、この補正値およびこの補正値をパラメータに用いた関数から算出される補間補正値を用いて、直線性誤差が大きい相対角度範囲内の外側の相対角度を補正することにより、直線性誤差の小さいアクチュエータ1を提供することができる。
 また、実施の形態1によれば、記憶部202は、相対角度範囲の一方側の最も外側の補正点の補正値として、相対角度範囲における複数の極値のうち、一方側の最も外側の極値がその1つ内側の極値以下になる第1の補正値と、相対角度範囲のもう一方側の最も外側の補正点の補正値として、相対角度範囲における複数の極値のうち、もう一方側の最も外側の極値がその1つ内側の極値以下になる第2の補正値とを記憶している構成である。そのため、相対角度範囲の両側それぞれにおいて、アクチュエータ1の部品公差等を吸収できる。よって、アクチュエータ1に製品ばらつきがある場合でも、同一の直線性を得ることが可能となる。
 また、実施の形態1によれば、アクチュエータ1は、シャフト2が往復移動する範囲を規制するストッパとして、金属製のストッパ18a,19a,と当接部18b,19bとを備える構成である。そのため、当接時の塑性変形を最小に抑えることができ、補正時の直線性を高精度にすることができる。
 また、実施の形態1によれば、アクチュエータ1の調整方法として、リニアゲージ31およびカウンタ32がシャフト2の位置を測定し、PCツール33がアクチュエータ1を動作させてシャフト2を一方向に移動させ、当該移動中にリニアゲージ31およびカウンタ32により測定されたシャフト2の位置と演算部203により算出された相対角度とを用いて、相対角度範囲内に予め定められた3点以上の補正点ごとの補正値を演算し、書き込みツール34が、シャフト2の移動が終了した後、PCツール33により演算された補正点ごとの補正値を記憶部202に一度に書き込むようにした。そのため、書き込み時間の短縮が可能である。
 また、実施の形態1によれば、アクチュエータ1の調整方法として、PCツール33がシャフト2を複数回移動させ、複数回分のシャフト2の位置と相対角度とを用いて、相対角度範囲の最も外側の補正点の補正値を演算するようにした。そのため、ホールIC20の測定ばらつきを抑制でき、補正時の直線性を高精度にすることができる。
 また、実施の形態1では、ホールIC20が相対角度を出力する構成例を説明したが、この相対角度をシャフト2のストローク位置に変換して出力する構成であってもよい。この構成の場合、例えば、記憶部202が相対角度とストローク位置の変換に必要な関数等の情報を記憶しており、演算部203は記憶部202に記憶されている当該情報を用いて相対角度をストローク位置に変換して出力する。
 なお、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。
 この発明に係るアクチュエータは、等角度間隔で多点補正が可能なホールICを用いる場合に、直線性が最も悪化する相対角度範囲内の外側の直線性を改善するようにしたので、ターボチャージャのウェイストゲートバルブを開閉制御するアクチュエータ等のような、高精度な動作が求められるアクチュエータに用いるのに適している。
 1 アクチュエータ、2 シャフト、3 モータ部、4 モータハウジング、5,6 軸受、7 パイプ、8 ロータコア、9 ロータ巻線、10 コンミテータ、11 マグネット、12 バックヨーク、13 雌ねじ部、14 雄ねじ部、15 コネクタ端子、16 ブラシ、17 センサハウジング、18a,19a ストッパ、18b,19b 当接部、20 ホールIC、21 センサ用シャフト、22 センサ用マグネット、30 書き込みシステム、31 リニアゲージ(測定装置)、32 カウンタ(測定装置)、33 PCツール(制御装置)、34 書き込みツール(書き込み装置)、201 磁気検出部、202 記憶部、203 演算部、211,212 ホール素子、213 マルチプレクサ、214 アンプ、215 ADコンバータ、216 CPU、217 DAコンバータ、218 ROM、219 RAM、220 EEPROM。

Claims (6)

  1.  軸方向に往復移動が可能なシャフトと、
     前記シャフトを往復移動させる駆動部と、
     前記シャフトの往復移動に連動して往復移動するマグネットと、
     前記マグネットの往復移動に伴って変化する磁界の2方向の磁束密度を検出する磁気検出部と、
     前記磁気検出部に対して前記マグネットが往復移動可能な相対角度範囲内に予め定められた3点以上の補正点ごとの補正値、および前記補正値をパラメータに用いて補正点間の補間補正値を算出する関数を記憶している記憶部と、
     前記磁気検出部により検出された前記2方向の磁束密度を用いて前記磁気検出部に対する前記マグネットの相対角度を算出し、前記記憶部に記憶されている前記補正値または前記関数から算出した前記補間補正値を用いて当該相対角度の直線性誤差を補正する演算部とを備え、
     前記記憶部は、前記相対角度範囲の最も外側の補正点の補正値として、当該補正値をパラメータに用いた前記関数から算出された補間補正値により補正されたときの相対角度の直線性誤差が示す前記相対角度範囲における複数の極値のうち、最も外側の極値がその1つ内側の極値以下になる補正値を記憶していることを特徴とするアクチュエータ。
  2.  前記記憶部は、
     前記相対角度範囲の一方側の最も外側の補正点の補正値として、前記相対角度範囲における前記複数の極値のうち、一方側の最も外側の極値がその1つ内側の極値以下になる第1の補正値と、
     前記相対角度範囲のもう一方側の最も外側の補正点の補正値として、前記相対角度範囲における前記複数の極値のうち、もう一方側の最も外側の極値がその1つ内側の極値以下になる第2の補正値とを記憶していることを特徴とする請求項1記載のアクチュエータ。
  3.  前記第1の補正値と前記第2の補正値とは異なる値であることを特徴とする請求項2記載のアクチュエータ。
  4.  前記シャフトが往復移動する範囲を規制する、金属製のストッパを備えることを特徴とする請求項1記載のアクチュエータ。
  5.  請求項1記載のアクチュエータが備える前記記憶部に補正値を書き込むアクチュエータの調整方法であって、
     測定装置が、前記シャフトの位置を測定し、
     制御装置が、前記アクチュエータを動作させて前記シャフトを一方向に移動させ、当該移動中に前記測定装置により測定された前記シャフトの位置と前記演算部により算出された相対角度とを用いて、前記相対角度範囲内に予め定められた3点以上の補正点ごとの補正値を演算し、
     書き込み装置が、前記シャフトの移動が終了した後、前記制御装置により演算された前記補正点ごとの補正値を前記記憶部に一度に書き込むことを特徴とするアクチュエータの調整方法。
  6.  前記制御装置が、前記シャフトを複数回移動させ、複数回分の前記シャフトの位置と前記相対角度とを用いて、前記相対角度範囲の最も外側の補正点の補正値を演算することを特徴とする請求項5記載のアクチュエータの調整方法。
PCT/JP2015/074855 2015-09-01 2015-09-01 アクチュエータとその調整方法 WO2017037870A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/074855 WO2017037870A1 (ja) 2015-09-01 2015-09-01 アクチュエータとその調整方法
JP2017537120A JP6391843B2 (ja) 2015-09-01 2015-09-01 アクチュエータとその調整方法
US15/579,862 US10284055B2 (en) 2015-09-01 2015-09-01 Actuator and method of adjusting actuator
DE112015006868.6T DE112015006868T5 (de) 2015-09-01 2015-09-01 Aktor und Verfahren zur Aktoreinstellung
CN201580082522.3A CN107925332B (zh) 2015-09-01 2015-09-01 致动器及其调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074855 WO2017037870A1 (ja) 2015-09-01 2015-09-01 アクチュエータとその調整方法

Publications (1)

Publication Number Publication Date
WO2017037870A1 true WO2017037870A1 (ja) 2017-03-09

Family

ID=58188574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074855 WO2017037870A1 (ja) 2015-09-01 2015-09-01 アクチュエータとその調整方法

Country Status (5)

Country Link
US (1) US10284055B2 (ja)
JP (1) JP6391843B2 (ja)
CN (1) CN107925332B (ja)
DE (1) DE112015006868T5 (ja)
WO (1) WO2017037870A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537322A (zh) * 2017-10-26 2019-12-03 日本精工株式会社 电动机控制装置、电动机控制方法以及电动动力转向装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI701533B (zh) * 2019-11-14 2020-08-11 緯創資通股份有限公司 控制方法以及電動助行器
DE102020211083A1 (de) * 2020-09-02 2022-03-03 MICRO-EPSILON-MESSTECHNIK GmbH & Co. K.G. Sensorsystem und Verfahren zum Betrieb eines Sensorsystems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288166A (ja) * 2005-04-05 2006-10-19 Seiko Epson Corp 双方向の電磁駆動力を利用したアクチュエータ
WO2008102482A1 (ja) * 2007-02-19 2008-08-28 Mitsubishi Electric Corporation モータの端子構造
US20130032111A1 (en) * 2011-08-02 2013-02-07 Schaeffler Technologies AG & Co. KG Displacement groove contour of sliding cam assemblies of an internal combustion reciprocating piston engine
WO2013061357A1 (ja) * 2011-10-24 2013-05-02 三菱電機株式会社 ターボ用アクチュエータ
WO2015083612A1 (ja) * 2013-12-04 2015-06-11 三菱重工業株式会社 ターボチャージャ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178612A (ja) 1994-12-22 1996-07-12 Zexel Corp 回転角度検出器
JP4079515B2 (ja) * 1998-06-15 2008-04-23 松下電器産業株式会社 電子部品実装方法
JP2006020415A (ja) * 2004-07-01 2006-01-19 Yamazaki Mazak Corp リニアモータ用位置検出装置
JP4590511B2 (ja) 2007-03-23 2010-12-01 アイチ・マイクロ・インテリジェント株式会社 電子コンパス
JP5090418B2 (ja) * 2009-09-17 2012-12-05 日立オートモティブシステムズ株式会社 パワーステアリング装置
JP2012013179A (ja) 2010-07-02 2012-01-19 Denso Corp バルブ制御装置
DE102011004018A1 (de) 2011-02-14 2012-08-16 Robert Bosch Gmbh Stellantrieb, Strömungsventil, Abgasturbolader
FR3017959B1 (fr) * 2014-02-24 2017-08-25 Lohr Electromecanique Procede de detection d'un court-circuit dans une machine synchrone equipee d'un capteur de position angulaire
US10205412B2 (en) * 2014-08-08 2019-02-12 Johnson Electric International AG Motor driving circuit and motor component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288166A (ja) * 2005-04-05 2006-10-19 Seiko Epson Corp 双方向の電磁駆動力を利用したアクチュエータ
WO2008102482A1 (ja) * 2007-02-19 2008-08-28 Mitsubishi Electric Corporation モータの端子構造
US20130032111A1 (en) * 2011-08-02 2013-02-07 Schaeffler Technologies AG & Co. KG Displacement groove contour of sliding cam assemblies of an internal combustion reciprocating piston engine
WO2013061357A1 (ja) * 2011-10-24 2013-05-02 三菱電機株式会社 ターボ用アクチュエータ
WO2015083612A1 (ja) * 2013-12-04 2015-06-11 三菱重工業株式会社 ターボチャージャ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537322A (zh) * 2017-10-26 2019-12-03 日本精工株式会社 电动机控制装置、电动机控制方法以及电动动力转向装置
US11001295B2 (en) 2017-10-26 2021-05-11 Nsk Ltd. Motor control device, motor control method, and electric power steering device

Also Published As

Publication number Publication date
JPWO2017037870A1 (ja) 2017-12-28
US10284055B2 (en) 2019-05-07
CN107925332A (zh) 2018-04-17
CN107925332B (zh) 2020-04-21
DE112015006868T5 (de) 2018-05-17
US20180358869A1 (en) 2018-12-13
JP6391843B2 (ja) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6391843B2 (ja) アクチュエータとその調整方法
JP5101528B2 (ja) 変化する磁化方向を有する運動磁気センサ及び同センサの製造方法
WO2018198779A1 (ja) 回転角度検出装置及び回転角度検出方法
WO2013157279A1 (ja) 多回転エンコーダ
US20150035520A1 (en) Calibration and monitoring of an angle measuring system for electrical machines
KR102247797B1 (ko) 범용형 로터리 인코더 및 그것을 사용한 서보모터
CN105304299B (zh) 旋转变压器
EP3627113B1 (en) Calibration and linearization of position sensor
WO2014125873A1 (ja) 電磁誘導式位置検出器の検出位置補正方法
TW201307803A (zh) 位置檢測裝置
JP4842314B2 (ja) シリンダ位置検出装置
US9719807B2 (en) Method for precise position determination
JP4214466B2 (ja) 磁気式エンコーダ及びその回転角度算出方法
JP2009271054A (ja) 位置検出装置およびそれを備えた回転直動モータ
JP6419922B1 (ja) 直流モータの制御装置
JP6232526B1 (ja) 直流モータの制御装置
JP2018201299A (ja) 二軸一体型モータ
US9488461B2 (en) Rotation angle detection device
WO2015033538A1 (ja) 回転検出センサ及びその製造方法
US7605512B2 (en) Method of designing a reluctance resolver
Kumar et al. Design and development of a variable reluctance-based thin planar angle sensor
KR101788814B1 (ko) 레졸버
US20210164807A1 (en) Determination of an item of position information relating to a position of a magnetic field transducer relative to a position sensor
WO2016125303A1 (ja) アクチュエータ
JP5839238B2 (ja) 回転角検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537120

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015006868

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902990

Country of ref document: EP

Kind code of ref document: A1