WO2017037784A1 - プローブデータ収集方法及びプローブデータ収集装置 - Google Patents

プローブデータ収集方法及びプローブデータ収集装置 Download PDF

Info

Publication number
WO2017037784A1
WO2017037784A1 PCT/JP2015/074453 JP2015074453W WO2017037784A1 WO 2017037784 A1 WO2017037784 A1 WO 2017037784A1 JP 2015074453 W JP2015074453 W JP 2015074453W WO 2017037784 A1 WO2017037784 A1 WO 2017037784A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe data
vehicle
server
seconds
vehicles
Prior art date
Application number
PCT/JP2015/074453
Other languages
English (en)
French (fr)
Inventor
誠秀 中村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP15902910.7A priority Critical patent/EP3343532B1/en
Priority to CA2997047A priority patent/CA2997047C/en
Priority to CN201580082756.8A priority patent/CN107924612A/zh
Priority to RU2018106919A priority patent/RU2684977C1/ru
Priority to MX2018002139A priority patent/MX365927B/es
Priority to JP2017537054A priority patent/JP6323614B2/ja
Priority to KR1020187006428A priority patent/KR101928715B1/ko
Priority to BR112018003599A priority patent/BR112018003599A2/pt
Priority to US15/748,664 priority patent/US10096241B2/en
Priority to MYPI2018700733A priority patent/MY169012A/en
Priority to PCT/JP2015/074453 priority patent/WO2017037784A1/ja
Publication of WO2017037784A1 publication Critical patent/WO2017037784A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/065Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096716Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information does not generate an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to a probe data collection method and a probe data collection device in a probe data management system that collects probe data transmitted from a vehicle.
  • the type of probe data is determined on the vehicle side that transmits the data, and the transmission method is varied depending on the determined result. For this reason, the server (center) side that receives the probe data cannot control the timing of receiving the data (the timing at which the data is transmitted), and the real-time property of the probe data cannot be sufficiently secured, There has been a problem that the communication load becomes excessive.
  • the present invention has been made paying attention to the above problem, and provides a probe data collection method and a probe data collection apparatus capable of achieving both real-time property of collected probe data and reduction of communication load of a server.
  • the purpose is to provide.
  • the present invention is a probe data collection method in a probe data management system comprising a server that receives probe data transmitted from a vehicle and a database that accumulates probe data received by the server.
  • the server detects the total number of transmitted vehicles and the upload time of probe data for each vehicle based on the received probe data. Then, based on the upload time detected for each vehicle, a correction value for the upload time corresponding to the total number of vehicles is calculated for each vehicle. Then, the calculated correction value is transmitted to each vehicle.
  • the server calculates the correction value of the upload time of the probe data of the vehicle according to the total number of vehicles that have transmitted the probe data. And the correction value of this upload time is transmitted to the vehicle which transmitted probe data.
  • the upload timing of each vehicle can be controlled by the server according to the vehicle density.
  • the probe data reception timing of the server can be controlled, and it is possible to prevent the data reception interval from being biased or the amount of data to be received from becoming enormous. And it is possible to achieve both the real-time property of the collected probe data and the reduction of the communication load of the server.
  • FIG. 1 is an overall system diagram showing a probe data management system having a probe data collection device of Embodiment 1.
  • FIG. It is an image figure of the point sequence data shown based on probe data.
  • 3 is a flowchart illustrating a flow of data collection control processing executed in the first embodiment. It is explanatory drawing which shows the transmission / reception timing of the probe data before performing transmission space
  • Example 1 shown in the drawings.
  • Example 1 First, the configuration of the probe data collection apparatus according to the first embodiment will be described by dividing it into “system overall configuration” and “data collection control processing configuration”.
  • FIG. 1 is an overall system diagram illustrating a probe data management system including the probe data collection apparatus according to the first embodiment. The overall system configuration of the embodiment will be described below with reference to FIG.
  • the probe data management system 1 includes a server 10 and a database 20 as shown in FIG.
  • the server 10 is a computer that collects probe data from a large number of vehicles and stores the collected probe data in a database in association with vehicle IDs. As illustrated in FIG. 1, the server 10 includes a reception unit 11, a probe data collection controller 12, and a transmission unit 13.
  • the receiving unit 11 receives an ignition signal (including a start switch signal) and probe data transmitted from a large number of vehicles 30 and stores the received probe data in the database 20.
  • the vehicle 30 includes a truck, a bus, and a motorcycle in addition to an engine vehicle having only an engine as a travel drive source and an electric vehicle (hybrid vehicle or electric vehicle) having a motor as a travel drive source.
  • the probe data includes an identification number (vehicle ID) assigned to each vehicle 30 and position information obtained from GPS (Global Positioning System) mounted on each vehicle 30.
  • vehicle ID vehicle ID
  • GPS Global Positioning System
  • It has at least point sequence data and trip data. Note that the point sequence data and the trip data are stored in the database 20 in association with the vehicle ID.
  • the point sequence data is data transmitted from each vehicle 30 at regular intervals (for example, 30 seconds) between ignition ON and ignition OFF, and includes data transmission time, data transmission position, and travel distance.
  • the “data transmission position” is information (position information) indicating the position of the vehicle 30 when data is transmitted, and is indicated by latitude and longitude.
  • the “travel distance” is information indicating the distance from the position where the previous data was transmitted to the position where the current data was transmitted.
  • “data transmission positions” shown on the map are connected in time series based on the point sequence data, the movement trajectory information as shown in FIG. 2 is obtained.
  • the trip data is data transmitted from each vehicle 30 only once from ignition ON to ignition OFF, and includes departure time, arrival time, departure position, arrival position, and total travel distance.
  • “departure time” is information indicating the time when the ignition is turned on.
  • the “arrival time” is information indicating the time when the ignition is turned off.
  • “Departure position” is information indicating the vehicle position when the ignition is turned on.
  • the “arrival position” is information indicating the vehicle position when the ignition is turned off.
  • the “departure position” and “arrival position” are indicated by latitude and longitude.
  • the “total travel distance” is information indicating the distance from the position where the ignition is turned on to the position where the ignition is turned off, and is the sum of the “travel distance” in the point sequence data.
  • the probe data collection controller 12 grasps the reception timing of probe data in the reception unit 11. Then, in order to control the reception timing, a probe data collection control process, which will be described later, is executed, and the vehicle 30 (A, B, C in FIG. 1) is present in a predetermined travel area ⁇ (a region surrounded by a broken line in FIG. 1). ) To calculate the correction value for the upload time of the probe data. The calculated correction value for the upload time of the probe data is output from the probe data collection controller 12 to the transmission unit 13.
  • the transmission unit 13 is an external communication mechanism that communicates with a vehicle 30 (A, B, C in FIG. 1) that exists in a predetermined travel area ⁇ designated by the probe data collection controller 12.
  • the correction value of the upload time output from the probe data collection controller 12 is transmitted to the vehicles 30 (A, B, C) in the predetermined travel area ⁇ .
  • Each vehicle 30 includes a data transmission unit that transmits probe data to the reception unit 11 of the server 10 and a data reception unit that receives the correction value of the upload time from the transmission unit 13.
  • the timing for transmitting the probe data (upload time) is changed according to the correction value. .
  • the database 20 is a memory capable of transmitting / receiving data to / from the server 10.
  • this database 20 in addition to probe data obtained from a plurality of vehicles 30, map data, user information including a vehicle ID and a User ID are stored.
  • FIG. 3 is a flowchart illustrating a flow of data collection control processing executed in the first embodiment.
  • the data collection control processing configuration of the first embodiment will be described with reference to FIG.
  • step S1 a vehicle in the ignition ON state is detected, and the process proceeds to step S2.
  • the ignition ON state is determined by an input of an ignition signal from the vehicle 30 to the receiving unit 11.
  • step S2 following the detection of the ignition ON vehicle in step S1, it is determined whether or not there is an ignition ON vehicle. If YES (ignition ON vehicle is present), the process proceeds to step S3. If NO (ignition ON vehicle is not present), the process returns to step S1.
  • step S3 following the determination that there is an ignition-on vehicle in step S2, the vehicle ID of the vehicle (ignition-on vehicle) detected in step S2 is compared with the User ID stored in the database 20 in advance. The process proceeds to step S4.
  • step S4 following the verification of the vehicle ID in step S3, the current location of the vehicle (ignition ON vehicle) detected in step S2 is detected for each vehicle, and the process proceeds to step S5.
  • the current location information is detected based on the data transmission position information included in the point sequence data of the probe data.
  • the detection of the current location is executed for all the vehicles detected in step S2.
  • the current location information may include not only the latitude and longitude indicating the vehicle position but also the traveling direction of the traveling vehicle.
  • step S5 following the detection of the current location of the vehicle in step S4, the upload time of the vehicle (ignition ON vehicle) detected in step S2 is detected for each vehicle, and the process proceeds to step S6.
  • the upload time is a time indicating the timing at which probe data is transmitted from the vehicle 30. For example, “every minute 00 seconds and 30 seconds” or “00 seconds ⁇ 35 seconds ⁇ 10 seconds ⁇ 45 seconds ⁇ 20 seconds ⁇ 55 seconds ⁇ 30 seconds ... ”.
  • This upload time information is detected based on data transmission time information included in the point sequence data of the probe data. The upload time is detected for all the vehicles detected in step S2.
  • step S6 following the detection of the upload time in step S5, based on the current location for each vehicle detected in step S4, the travel area where the vehicle (ignition ON vehicle) detected in step S2 exists is determined for each vehicle. Classify and proceed to step S7.
  • the “traveling area” is an individual area obtained by dividing a plurality of areas in which the server 10 can receive probe data, and is arbitrarily set in advance. This travel area is, for example, a region along a specific lane, a region along an up lane in a specific lane, or the like. Moreover, you may divide a travel area based on the link, intersection, etc. which were set on the lane.
  • the classification of the travel areas is performed based on the current location information detected in step S4 and the preset travel area classification. Further, the classification of the travel areas is executed for all the vehicles detected in step S2.
  • step S7 following the classification of the travel area in step S6, a predetermined travel area is arbitrarily selected from a plurality of preset travel areas, and the process proceeds to step S8.
  • the selection of the travel area may be performed in a preset order or may be performed based on arbitrarily set conditions.
  • step S8 following the selection of the travel area in step S7, the total number of vehicles 30 existing in the selected travel area is detected, and the process proceeds to step S9.
  • the total number of vehicles in the travel area is detected based on the current location information detected in step S4 and the presence travel area information of each vehicle classified in step S6.
  • step S9 following the detection of the total number of vehicles in step S8, it is determined whether or not the total number of vehicles in the predetermined traveling area detected in step S8 is equal to or greater than a predetermined value Th. If YES (predetermined value Th or more), the process proceeds to step S10, and if NO (less than the predetermined value Th), the process proceeds to step S11.
  • the “predetermined value Th” is the number that the communication load of the server 10 seems to be excessive. As the total number of vehicles in the traveling area increases, the number of probe data received increases, and the real-time property of the probe data improves. However, if the total number of vehicles increases too much, the number of data received by the server 10 becomes enormous, resulting in a communication load.
  • the “predetermined value Th” is a value set based on the boundary between the real-time property and the communication load.
  • step S10 following the determination that the total number of vehicles in step S9 is equal to or greater than the predetermined value Th, thinning correction is performed for each upload time of the vehicle 30 existing in the selected travel area, and the process proceeds to step S12. .
  • the “decimation correction” is to calculate a correction value for reducing the number of probe data received by the receiving unit 11 of the server 10 during a predetermined period.
  • the “transmission interval” is determined according to the total number of vehicles.
  • One of “extension correction”, “transmission data number reduction correction”, and “data transmission vehicle reduction correction” is performed. Note that a first threshold Th1 and a second threshold Th2 described later are arbitrarily set.
  • Transmission interval extension correction is to calculate a correction value that lengthens the upload interval of probe data by each vehicle 30, and when the total number of vehicles in a predetermined travel area is relatively small even if it is equal to or greater than a predetermined value Th. (When the total number of vehicles is less than the first threshold Th1 (> Th)). That is, in this “transmission interval extension correction”, probe data is transmitted from each vehicle 30 at intervals of 30 seconds, while one vehicle X corrects the upload interval to 40 seconds, and another vehicle Y uploads. The interval is corrected to 35 seconds. In this “transmission interval extension correction”, it is not necessary to extend the upload interval of all vehicles, and the upload interval may not be extended depending on the vehicle.
  • the “transmission data number reduction correction” is to calculate a correction value for reducing the number of times the probe data is uploaded by each vehicle 30 within a predetermined time, and the total number of vehicles in the predetermined traveling area is equal to or greater than the predetermined value Th. And when the total number of vehicles is not less than the first threshold Th1 and less than the second threshold Th2 (> Th1). That is, in this “transmission data number reduction correction”, the probe data is transmitted from each vehicle 30 at intervals of 30 seconds, whereas a certain vehicle M is corrected to transmit at intervals of 60 seconds (that is, before correction). The number of uploads is halved compared to the other), and another vehicle N is corrected to transmit at 90-second intervals (the number of uploads is reduced to 1/3 compared to before the correction).
  • the “data transmission vehicle reduction correction” is to calculate a correction value that reduces the number of vehicles that transmit probe data, and when the total number of vehicles in a predetermined travel area is equal to or greater than a predetermined value Th ( (When the total number of vehicles is equal to or greater than the second threshold Th2). That is, in this “data transmission vehicle reduction correction”, all the vehicles 30 in the predetermined travel area ⁇ have transmitted probe data, whereas only half of the vehicles 30 existing in the travel area are probe data. Is corrected to transmit. In the “data transmission vehicle reduction correction”, the number of vehicles for which data transmission is stopped is arbitrarily set.
  • step S11 following the determination that the total number of vehicles in step S9 is less than the predetermined value Th, equalization correction is performed for each upload time of the vehicles 30 existing in the selected travel area, and the process proceeds to step S12. move on.
  • the “equalization correction” is a correction for offsetting the upload time without changing the probe data upload interval and calculating a correction value for distributing the probe data reception intervals by the server 10. This is done by calculating a correction value of the upload time that makes the probe data reception interval by the server 10 constant. In other words, the upload time of a certain vehicle P is “20 seconds and 50 seconds per minute”, and the upload time of another vehicle Q is “25 seconds and 55 seconds per minute”.
  • the probe data is transmitted from the vehicle P at 20 seconds per minute and 50 seconds per minute, and the probe data is transmitted from the vehicle Q at 25 seconds per minute and 55 seconds per minute.
  • step S12 when the upload time correction value is calculated in step S10 or step S11, the upload time correction value for each vehicle 30 is transmitted to each of the vehicles 30 existing in the selected travel area. Proceed to S13.
  • step S13 following the transmission of the upload time correction value in step S12, it is determined whether or not the correction of the upload time of the vehicle 30 existing in each travel area has been completed in all preset travel areas. To do. If YES (correction complete), the process proceeds to return, and if NO (correction incomplete), the process returns to step S7.
  • the operations of the probe data collection device of the first embodiment are “upload time correction operation”, “transmission interval extension correction operation”, “transmission data number reduction correction operation”, “data transmission vehicle reduction correction operation”, “equalization correction operation”. It is divided and explained.
  • probe data transmitted from the vehicle 30 existing around the server 10 of the probe data management system 1 is received and accumulated in the database 20 to collect probe data.
  • the probe data is continuously transmitted to the server 10 at a preset timing (for example, every 30 seconds) until the ignition is turned off. That is, in each vehicle 30, the upload time is set based on the time when the host vehicle is in the ignition ON state, and probe data is transmitted when the set upload time is reached.
  • the server 10 that receives the probe data receives the probe data when each vehicle 30 transmits the probe data, and the server 10 receives the probe data at the ignition ON time for each vehicle 30 and the probe data. It depends on the total number of vehicles 30. That is, when the plurality of vehicles 30 are continuously in the ignition ON state, the server 10 continuously receives the probe data in a short time, and after a certain time, the probe data is continuously received again. The data reception timing is biased. Further, if the total number of vehicles 30 that transmit probe data is small or the frequency of data transmission in each vehicle 30 is small, the number of probe data that can be collected by the server 10 is small. In these cases, there is a problem that the probe data cannot be appropriately collected in time series and the real-time property of the data cannot be secured.
  • the server 11 calculates the correction value of the upload time of the probe data of each vehicle 30 and controls the timing at which the server 10 receives the probe data. This suppresses a bias in reception timing of probe data and an increase in the number of data, and achieves both real-time property and reduction of communication load.
  • step S1 in order to control the timing at which the reception unit 11 of the server 10 receives probe data transmitted from the vehicle 30, first, in the flowchart shown in FIG. 3, step S1, step S2, and step S3. , The vehicle in the ignition ON state is detected, and the vehicle ID of the detected ignition ON vehicle is collated with User ⁇ ID.
  • step S4 the verification of the vehicle ID and the User ID is completed, the process proceeds from step S4 to step S5 to step S6, where the current location and the upload time are detected for each vehicle 30, and the travel area where each vehicle 30 exists is determined. It is classified for each vehicle 30.
  • step S7 When the travel area classification is completed for all the vehicles 30 in the ignition ON state, the process proceeds to step S7, and a predetermined travel area is arbitrarily selected. If a travel area is selected, it will progress to step S8, the total number of the vehicles 30 which exist in the said travel area is detected, and the correction value of upload time will be calculated according to the total number of vehicles in a travel area. That is, if the total number of vehicles in the travel area is equal to or greater than the predetermined value Th, the process proceeds from step S9 to step S10, and the number of probe data received by the receiving unit 11 of the server 10 is reduced during the predetermined period. Correction "is performed.
  • step S9 the upload time is offset without changing the probe data upload interval, and the server 10 receives the probe data. “Equalization correction” is performed to distribute the intervals.
  • the upload time correction value for each vehicle 30 is calculated, the upload time correction value is transmitted to each vehicle 30 existing in the selected travel area.
  • the upload time of each vehicle 30 is controlled by the server 10, and the bias of the probe data reception timing and the increase in the number of received probe data in the server 10 are eliminated. As a result, both real-time property of the probe data and reduction of the communication load on the server 10 can be achieved.
  • the area where the probe data can be received by the server 10 is divided into a plurality of travel areas, and a correction value corresponding to the total number of vehicles existing in the travel area is calculated for each travel area. ing. Therefore, the reception timing of the probe data is controlled for each limited section, and the calculation of the upload time correction value can be facilitated. Thereby, the upload time can be quickly corrected with respect to the change in the total number of vehicles, and the reception timing of the probe data can be appropriately controlled.
  • the upload time correction method is varied depending on the total number of vehicles existing in the selected travel area. That is, when the total number of vehicles existing in the travel area is equal to or greater than a predetermined value Th, “thinning correction” is performed to reduce the number of probe data received by the server during a predetermined period. Further, when the total number of vehicles existing in the travel area is less than the predetermined value Th, the “equalization correction” that offsets the upload time without changing the probe data upload interval and distributes the probe data reception intervals by the server 10. I do.
  • the reception frequency of the probe data by the server 10 can be dynamically changed according to the vehicle density for each travel area, and it is appropriate to prevent an excessive communication load on the server 10 and to ensure real-time property of the probe data. Can be done.
  • FIG. 4A is an explanatory diagram showing probe data transmission / reception timing before performing transmission interval extension correction
  • FIG. 4B shows probe data transmission / reception when transmission interval extension correction is performed on the transmission / reception timing shown in FIG. 4A. It is explanatory drawing which shows a timing.
  • FIGS. 4A and 4B the transmission interval extension correcting action of the first embodiment will be described.
  • each of the “thinning corrections” is included when the number is relatively small, that is, less than the first threshold Th1. “Transmission interval extension correction” for increasing the upload interval of the vehicle 30 is performed.
  • each vehicle A, B, C transmits probe data every 30 seconds based on the time when the own vehicle is in the ignition ON state.
  • the upload time of the vehicle A Is "every minute 00 seconds and 30 seconds”
  • the vehicle B upload time is "every minute 03 seconds and 33 seconds”
  • the vehicle C upload time is "every minute 28 seconds and 58 seconds”. In this case, as shown in FIG.
  • “transmission interval extension correction” is performed, and a correction value is calculated in which the upload interval of vehicle A is 35 seconds, the upload interval of vehicle B is 40 seconds, and the upload interval of vehicle C is 32 seconds.
  • the upload time of the vehicle A is corrected as “35 seconds ⁇ 10 seconds ⁇ 45 seconds ⁇ 20 seconds...”.
  • the upload time of the vehicle B is corrected as “43 seconds ⁇ 23 seconds ⁇ 03 seconds...”.
  • the upload time of the vehicle C is corrected as “30 seconds ⁇ 02 seconds ⁇ 34 seconds ⁇ 06 seconds...”.
  • the time t 1 when the vehicles A, B, the correction value of the upload time is transmitted to the C, changes the timing of the vehicles A, B, probe data from C is transmitted Is done.
  • the server 10 30 seconds (vehicle C) ⁇ 35 seconds (vehicle A) ⁇ 43 seconds (vehicle B) ⁇ 02 seconds (vehicle C) ⁇ 10 seconds (vehicle A) ⁇ 23 seconds (vehicle B) ⁇ 34 Second (vehicle C) ⁇ 45 seconds (vehicle A)... Probe data is received.
  • the probe data reception timing at the server 10 can be varied with respect to the fact that the server 10 has received the probe data at an unbalanced timing. Further, it becomes difficult to generate a biased free time when receiving probe data, and the real-time property of the probe data can be ensured.
  • FIG. 5A is an explanatory diagram showing probe data transmission / reception timing before performing transmission data number reduction correction
  • FIG. 5B shows probe data when transmission data number reduction correction is performed with respect to the transmission / reception timing shown in FIG. 5A. It is explanatory drawing which shows the transmission / reception timing of.
  • the transmission data number reduction correction operation of the first embodiment will be described with reference to FIGS. 5A and 5B.
  • each vehicle A, B, C, D, E transmits probe data every 30 seconds based on the time when the own vehicle is in the ignition ON state.
  • the upload time of A is “00 seconds and 30 seconds per minute”
  • the upload time of vehicle B is “07 seconds and 37 seconds per minute”
  • the upload time of vehicle C is “15 seconds and 45 seconds per minute”
  • the upload time of the vehicle D is “22 seconds and 52 seconds per minute”
  • the upload time of the vehicle E is “10 seconds and 40 seconds per minute”.
  • “transmission data number reduction correction” is performed, and the probe data is transmitted once per minute in each vehicle A, B, C, D, E. That is, a correction value is calculated by setting the upload interval for each vehicle A, B, C, D, E to 60 seconds.
  • the upload time of vehicle A is corrected to “00 seconds per minute”
  • the upload time of vehicle B is corrected to “37 seconds per minute”
  • the upload time of vehicle C is corrected to “15 seconds per minute”.
  • the upload time of the vehicle D is corrected to “22 seconds per minute”
  • the upload time of the vehicle E is corrected to “40 seconds per minute”.
  • the vehicle A at time t 2 time, B, C, D, the correction value of the upload time is sent to the E, the probe from the vehicles A, B, C, D, E
  • the timing at which data is transmitted is changed.
  • the probe data in the server 10 can be easily reduced. Then, the communication load on the server 10 can be reduced by appropriately spacing the data reception timing.
  • [Data transmission vehicle reduction correction] 6A is an explanatory diagram illustrating probe data transmission / reception timing before performing data transmission vehicle reduction correction
  • FIG. 6B illustrates probe data when data transmission vehicle reduction correction is performed with respect to the transmission / reception timing illustrated in FIG. 6A. It is explanatory drawing which shows the transmission / reception timing of.
  • action of Example 1 is demonstrated.
  • probe data is included in the “thinning correction”.
  • Data transmission vehicle reduction correction is performed to reduce the number of vehicles that transmit.
  • each of the vehicles A to H transmits the probe data every 30 seconds based on the time when the own vehicle is in the ignition ON state, and the upload time of each vehicle is as follows. Street.
  • Vehicle A ⁇ “00 seconds and 30 seconds per minute”, Vehicle B ⁇ “03 seconds and 33 seconds per minute” Vehicle C ⁇ “22 seconds and 52 seconds per minute”, vehicle D ⁇ “28 seconds and 58 seconds per minute” Vehicle E ⁇ “07 seconds and 37 seconds per minute”, Vehicle F ⁇ “15 seconds and 45 seconds per minute” Vehicle G ⁇ “03 and 33 seconds per minute”, Vehicle H ⁇ “20 and 50 seconds per minute” In this case, as shown in FIG.
  • “data transmission vehicle reduction correction” is performed, and for vehicle B, vehicle D, vehicle G, and vehicle H, a correction value for stopping the transmission of probe data is calculated. That is, the vehicles that transmit probe data are vehicles A, C, E, and F, and the number of vehicles that transmit probe data is halved. Thereby, the upload times of the vehicle B, the vehicle D, the vehicle G, and the vehicle H are each corrected to “zero (none)”.
  • the vehicle B at time t 3 time, the vehicle D, vehicle G, the correction value of the upload time is transmitted to the vehicle H, the vehicle B, vehicle D, vehicle G, from the vehicle H Transmission of probe data is stopped.
  • the server 10 every second, 00 seconds (vehicle A) ⁇ 07 seconds (vehicle E) ⁇ 15 seconds (vehicle F) ⁇ 22 seconds (vehicle C) ⁇ 30 seconds (vehicle A) ⁇ 37 seconds ( Vehicle E) ⁇ 45 seconds (vehicle F) ⁇ 52 seconds (vehicle C) ⁇ 00 seconds (vehicle A)... Probe data is received.
  • the “data transmission vehicle reduction correction” is performed, so that The number of receptions can be easily reduced. Then, the communication load on the server 10 can be reduced by appropriately spacing the data reception timing.
  • FIG. 7A is an explanatory diagram showing the transmission / reception timing of probe data before performing equalization correction
  • FIG. 7B shows the transmission / reception timing of probe data when equalization correction is performed on the transmission / reception timing shown in FIG. 7A. It is explanatory drawing shown.
  • the equalization correction operation of the first embodiment will be described.
  • the upload time is offset without changing the upload interval in each vehicle 30, and the probe data of the server 10 is updated. “Equalization correction” for distributing reception intervals is performed, and a correction value for upload time that makes the reception interval of probe data by the server 10 constant is calculated.
  • each of the vehicles A and B transmits the probe data every 30 seconds with reference to the time when the own vehicle is in the ignition ON state. “00 seconds and 30 seconds per minute”, and the upload time of the vehicle B is “03 seconds and 33 seconds per minute”. In this case, as shown in FIG.
  • “equalization correction” is performed, and the upload times of the vehicles A and B are offset so that the reception intervals of the probe data at the server 10 are equalized. That is, while the upload time of the vehicle A is maintained at “00 seconds and 30 seconds per minute”, the correction value 12 seconds to be added and corrected so that the upload time of the vehicle B becomes “15 seconds and 45 seconds per minute”. calculate. As a result, the upload time of the vehicle B is corrected to “15 seconds and 45 seconds per minute”.
  • the server 10 receives the probe data as 00 seconds (vehicle A) ⁇ 15 seconds (vehicle B) ⁇ 30 seconds (vehicle A) ⁇ 45 seconds (vehicle B) ⁇ 00 seconds (vehicle A). Become.
  • the reception timing of the probe data at the server 10 can be evenly dispersed. Further, there is no biased free time when probe data is received, and the real time property of the probe data can be ensured.
  • the number of probe data received by the server 10 within a predetermined time (for example, one minute) can be maintained at the same number as before the correction. Thereby, even if the total number of the vehicles 30 existing in the predetermined travel area is relatively small, the probe data transmitted from each vehicle 30 can be appropriately received without being wasted.
  • the correction value of the upload time of each vehicle A and B for making the probe data reception interval constant by the server 10 is calculated by first obtaining the average reception interval in the server 10 (for example, the upload interval is 30 seconds). If there are two vehicles, 15 seconds). Next, the upload time of one vehicle (for example, vehicle A) is used as a reference. Then, other vehicles (for example, necessary for setting the interval between the upload time of the reference vehicle (vehicle A) and the upload time of another vehicle (for example, vehicle B) as the average reception interval in the server 10) The offset time of the upload time of the vehicle B) is obtained. This offset time becomes the “correction value”.
  • a probe data management system 1 having a server 10 that receives probe data transmitted from a vehicle 30 and a database 20 that accumulates probe data received by the server 10,
  • the server 10 Based on the received probe data, the total number of transmitted vehicles 30 and the upload time of the probe data for each vehicle 30 are detected, Based on the detected upload time, a correction value for the upload time corresponding to the total number of the vehicles 30 is calculated for each vehicle 30; The calculated correction value is transmitted to the vehicle 30.
  • the probe data includes position information;
  • the server 10 classifies the traveling area ⁇ where the vehicle 30 exists based on the received probe data,
  • the correction value is calculated for each vehicle 30 existing in the classified travel area. Thereby, it is possible to easily calculate the correction value for the upload time, and to quickly correct the upload time with respect to the change in the total number of vehicles.
  • the server 10 is configured to perform the thinning correction by increasing the upload interval of probe data by the vehicle 30. As a result, it is difficult to generate a biased free time when receiving probe data, and the real-time property of the probe data can be ensured.
  • the server 10 is configured to perform the thinning correction by reducing the number of times probe data is uploaded by the vehicle 30. As a result, it is possible to appropriately reduce the data reception timing interval and reduce the communication load on the server 10.
  • the server 10 is configured to perform the thinning correction by reducing the number of vehicles that transmit the probe data. As a result, it is possible to appropriately reduce the data reception timing interval and reduce the communication load on the server 10.
  • the server 10 is configured to perform the equalization correction by calculating a correction value of the upload time that makes the probe data reception interval by the server 10 constant.
  • the probe data management system 1 having the server 10 that receives the probe data transmitted from the vehicle 30 and the database 20 that stores the probe data received by the server 10,
  • the server 10 Based on the received probe data, the total number of transmitted vehicles and the upload time of the probe data for each vehicle are detected, Based on the detected upload time, a correction value for the upload time corresponding to the total number of the vehicles 30 is calculated for each vehicle 30;
  • the probe data collection controller 12 that transmits the calculated correction value to the vehicle 30 is provided.
  • the upload interval is extended for all the vehicles A to C existing in a predetermined travel area.
  • the upload interval may not be extended depending on the vehicle. That is, the extension time of the upload interval is set based on the upload time before correction of the vehicles A to C existing in the travel area and the reception timing of the probe data at the server 10. Should be done appropriately.
  • the number of uploads may not be reduced depending on the vehicle, and the number of uploads to be reduced may be reduced by 1/3 or 1/4, for example. That is, the number of uploads to be reduced within the predetermined time is determined by the server 10 based on the upload time before correction of the vehicles A to E existing in the traveling area and the reception timing of the probe data at the server 10. What is necessary is just to carry out so that reception timing may become appropriate.
  • the probe data for vehicles (B, D, G, H) arbitrarily selected from vehicles A to H existing in a predetermined travel area.
  • An example of stopping the transmission of is performed by the server 10 based on the upload time before correction of the vehicles A to H existing in the travel area and the reception timing of the probe data at the server 10. The reception timing may be set appropriately.
  • the upload time may be offset without changing the upload interval in the vehicles A and B existing in the travel area, and the probe data reception intervals by the server 10 may be distributed. It does not have to be exactly equal. That is, by offsetting the upload time, it is only necessary to eliminate an extreme bias in the reception interval of probe data by the server 10.
  • the vehicle in the ignition ON state is detected again, and the current location of each vehicle 30 is detected.
  • the upload time is reviewed and the upload time is corrected.
  • the present invention is not limited to this, and if the vehicle has been corrected once for the upload time, the correction may not be performed until the ignition is turned off. Further, it is not necessary to perform the next correction within a predetermined time after correcting the upload time, while existing in the same travel area, or while traveling on the same road type.
  • Example 1 the example which calculates the correction value of the upload time of the vehicle 30 for every traveling area which divided the area which can receive probe data by the server 10 in multiple was shown.
  • the upload time correction value may be calculated for all areas where the server 10 can receive the probe data.
  • the server 10 calculates the correction value of the upload time based on the number of vehicles to which the probe data is transmitted and the upload time for each vehicle, and dynamically controls the reception timing of the probe data. If you can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

収集したプローブデータのリアルタイム性の確保と、サーバの通信負荷の軽減との両立を図ることができるプローブデータ収集方法を提供すること。 受信したプローブデータに基づいて、プローブデータを送信した車両総数及び車両(30)ごとのプローブデータのアップロード時刻を検出し、検出したアップロード時刻に基づいて、車両(30)ごとに、車両総数に応じたアップロード時刻の補正値を算出する。そして、算出した補正値を車両(30)に対してそれぞれ送信する。

Description

プローブデータ収集方法及びプローブデータ収集装置
 本発明は、車両から送信されるプローブデータを収集するプローブデータ管理システムにおけるプローブデータ収集方法及びプローブデータ収集装置に関する発明である。
 従来、車両から送信するプローブデータが、リアルタイム送信データであるか、非リアルタイム送信データであるかを判別し、リアルタイム送信データを非リアルタイム送信データよりも優先的に送信するプローブデータ収集方法が知られている(例えば、特許文献1参照)。
特開2006-65391号公報
 しかしながら、従来のプローブデータ収集方法では、データを送信する車両側でプローブデータの種類を判別し、判別した結果に応じて送信方法を異ならせている。そのため、プローブデータを受信するサーバ(センター)側では、データを受信するタイミング(データが送信されるタイミング)を制御することができず、プローブデータのリアルタイム性が十分に確保できなかったり、サーバの通信負荷が過大になったりする問題が生じていた。
 本発明は、上記問題に着目してなされたもので、収集したプローブデータのリアルタイム性の確保と、サーバの通信負荷の軽減との両立を図ることができるプローブデータ収集方法及びプローブデータ収集装置を提供することを目的とする。
 上記目的を達成するため、本発明は、車両から送信されるプローブデータを受信するサーバと、前記サーバによって受信したプローブデータを蓄積するデータベースと、を有するプローブデータ管理システムにおけるプローブデータ収集方法である。
 ここで、サーバは、受信したプローブデータに基づいて、送信した車両の総数と、車両ごとのプローブデータのアップロード時刻と、を検出する。そして、車両ごとに検出したアップロード時刻に基づいて、車両ごとに、車両の総数に応じたアップロード時刻の補正値を算出する。そして、算出した前記補正値を、各車両に対してそれぞれ送信する。
 よって、本発明では、サーバが、車両のプローブデータのアップロード時刻の補正値を、プローブデータを送信した車両総数に応じて算出する。そして、このアップロード時刻の補正値がプローブデータを送信した車両へと送信される。これにより、各車両のアップロードのタイミングを、車両密度に応じてサーバによってコントロールすることができる。
 この結果、サーバのプローブデータ受信タイミングを制御でき、データ受信間隔に偏りが生じたり、受信するデータ数が膨大になったりすることを防止することができる。そして、収集したプローブデータのリアルタイム性の確保と、サーバの通信負荷の軽減との両立を図ることができる。
実施例1のプローブデータ収集装置を有するプローブデータ管理システムを示す全体システム図である。 プローブデータに基づいて示される点列データのイメージ図である。 実施例1にて実行されるデータ収集制御処理の流れを示すフローチャートである。 送信間隔延長補正を行う前のプローブデータの送受信タイミングを示す説明図である。 図4Aに示す送受信タイミングに対して送信間隔延長補正を実施したときのプローブデータの送受信タイミングを示す説明図である。 送信データ数低減補正を行う前のプローブデータの送受信タイミングを示す説明図である。 図5Aに示す送受信タイミングに対して送信データ数低減補正を実施したときのプローブデータの送受信タイミングを示す説明図である。 データ送信車両低減補正を行う前のプローブデータの送受信タイミングを示す説明図である。 図6Aに示す送受信タイミングに対してデータ送信車両低減補正を実施したときのプローブデータの送受信タイミングを示す説明図である。 均等化補正を行う前のプローブデータの送受信タイミングを示す説明図である。 図7Aに示す送受信タイミングに対して均等化補正を実施したときのプローブデータの送受信タイミングを示す説明図である。
 以下、本発明のプローブデータ収集方法及びプローブデータ収集装置を実施するための形態を、図面に示す実施例1に基づいて説明する。
 (実施例1)
 まず、実施例1におけるプローブデータ収集装置の構成を、「システム全体構成」、「データ収集制御処理構成」に分けて説明する。
 [システム全体構成]
 図1は、実施例1のプローブデータ収集装置を備えたプローブデータ管理システムを示す全体システム図である。以下、図1に基づき、実施例のシステム全体構成を説明する。
 実施例1のプローブデータ管理システム1は、図1に示すように、サーバ10と、データベース20と、を有している。
 前記サーバ10は、多数の車両からプローブデータを収集し、収集したプローブデータを車両IDと関連付けてデータベースに格納するコンピュータである。このサーバ10は、図1に示すように、受信部11と、プローブデータ収集コントローラ12と、送信部13と、を有している。
 前記受信部11は、多数の車両30から送信されるイグニッション信号(スタートスイッチ信号を含む)及びプローブデータを受信し、受信したプローブデータをデータベース20に格納する。
なお、車両30は、走行駆動源としてエンジンのみを有するエンジン車、走行駆動源としてモータを有する電動車両(ハイブリッド車や電気自動車)に加え、トラックやバス、自動二輪車も含む。
 一方、プローブデータとは、車両30ごとに付された識別番号(車両ID)と、各車両30に搭載されたGPS(Global Positioning System)から得られる位置情報と、を含んでおり、ここでは、少なくとも点列データと、トリップデータと、を有している。なお、点列データ及びトリップデータは、それぞれ車両IDに関連付けてデータベース20に格納される。
 前記点列データは、イグニッションONからイグニッションOFFまでの間に、各車両30から一定間隔(例えば30秒)ごとに送信されるデータであり、データ送信時刻・データ送信位置・走行距離からなる。
ここで、「データ送信位置」は、データを送信したときの車両30の位置を示す情報(位置情報)であり、緯度経度によって示される。「走行距離」は、前回データを送信した位置から今回データを送信した位置までの距離を示す情報である。
なお、この点列データに基づいて地図上に示される「データ送信位置」を時系列でつないでいくと、図2に示すような移動軌跡情報となる。
 前記トリップデータは、イグニッションONからイグニッションOFFまでの間に、各車両30から一度だけ送信されるデータであり、出発時刻・到着時刻・出発位置・到着位置・総走行距離からなる。
ここで、「出発時刻」は、イグニッションONを行った時刻を示す情報である。「到着時刻」は、イグニッションOFFを行った時刻を示す情報である。「出発位置」は、イグニッションONをしたときの車両位置を示す情報である。「到着位置」は、イグニッションOFFをしたときの車両位置を示す情報である。「出発位置」及び「到着位置」は、緯度経度によって示される。「総走行距離」は、イグニッションONをした位置からイグニッションOFFをした位置までの距離を示す情報であり、点列データにおける「走行距離」の総和となる。
 前記プローブデータ収集コントローラ12は、受信部11におけるプローブデータの受信タイミングを把握する。そして、この受信タイミングをコントロールするため、後述するプローブデータ収集制御処理を実行し、所定の走行エリアα(図1において破線で囲んだ領域)に存在する車両30(図1ではA,B,C)におけるプローブデータのアップロード時刻の補正値を算出する。算出したプローブデータのアップロード時刻の補正値は、プローブデータ収集コントローラ12から、送信部13へと出力される。
 前記送信部13は、プローブデータ収集コントローラ12によって指定された所定の走行エリアαに存在する車両30(図1ではA,B,C)との通信を行う外部通信機構である。プローブデータ収集コントローラ12から出力されたアップロード時刻の補正値を、所定の走行エリアα内の車両30(A,B,C)に送信する。
なお、各車両30は、サーバ10の受信部11にプローブデータを送信するデータ送信部と、送信部13からのアップロード時刻の補正値を受信するデータ受信部と、を有している。所定の走行エリアα内の車両30(A,B,C)は、送信部13からアップロード時刻の補正値を受信したら、プローブデータを送信するタイミング(アップロード時刻)を、補正値に応じて変更する。
 前記データベース20は、サーバ10との間でデータの送受信が可能なメモリである。このデータベース20には、複数の車両30から得られたプローブデータに加え、地図データ、車両ID及びUser IDを含むユーザ情報、等が格納される。
 [データ収集制御処理構成]
 図3は、実施例1にて実行されるデータ収集制御処理の流れを示すフローチャートである。以下、図3に基づき、実施例1のデータ収集制御処理構成を説明する。
 ステップS1では、イグニッションON状態の車両を検出し、ステップS2へ進む。
ここで、イグニッションON状態は、受信部11に車両30からイグニッション信号の入力があることで判断する。
 ステップS2では、ステップS1でのイグニッションON車両の検出に続き、イグニッションON状態の車両が存在するか否かを判断する。YES(イグニッションON車両あり)の場合にはステップS3へ進み、NO(イグニッションON車両なし)の場合にはステップS1に戻る。
 ステップS3では、ステップS2でのイグニッションON車両ありとの判断に続き、このステップS2にて検出した車両(イグニッションON車両)の車両IDと、データベース20に予め格納されたUser IDとの照合を行い、ステップS4へ進む。
 ステップS4では、ステップS3での車両IDの照合に続き、ステップS2にて検出した車両(イグニッションON車両)の現在地点を車両ごとに検出し、ステップS5へ進む。
ここで、現在地点情報は、プローブデータの点列データに含まれるデータ送信位置情報に基づいて検出する。また、この現在地点の検出は、ステップS2にて検出した車両のすべてについて実行する。
 なお、この現在地点情報には、車両位置を示す緯度経度だけでなく、走行中の車両における進行方向を含めてもよい。
 ステップS5では、ステップS4での車両の現在地点の検出に続き、ステップS2にて検出した車両(イグニッションON車両)のアップロード時刻を車両ごとに検出し、ステップS6へ進む。
ここで、アップロード時刻とは、車両30からプローブデータを送信するタイミングを示す時刻であり、例えば「毎分00秒と30秒」や「00秒→35秒→10秒→45秒→20秒→55秒→30秒…」といった情報となる。このアップロード時刻情報は、プローブデータの点列データに含まれるデータ送信時刻情報に基づいて検出する。また、このアップロード時刻の検出は、ステップS2にて検出した車両のすべてについて実行する。
 ステップS6では、ステップS5でのアップロード時刻の検出に続き、ステップS4にて検出した車両ごとの現在地点に基づき、ステップS2にて検出した車両(イグニッションON車両)が存在する走行エリアを車両ごとに分類し、ステップS7へ進む。
ここで、「走行エリア」とは、サーバ10がプローブデータを受信可能なエリアを複数に区画した個々の領域であり、予め任意に設定しておく。この走行エリアは、例えば、特定の車線に沿った領域や、特定の車線のうちの上り車線に沿った領域等である。また、車線上に設定されたリンクや交差点等に基づいて走行エリアを区画してもよい。
そして、この走行エリアの分類は、ステップS4にて検出した現在地情報と、予め設定された走行エリア区分と、に基づいて行う。また、この走行エリアの分類は、ステップS2にて検出した車両のすべてについて実行する。
 ステップS7では、ステップS6での走行エリアの分類に続き、あらかじめ設定された複数の走行エリアから、所定の走行エリアを任意に選択し、ステップS8へ進む。
ここで、走行エリアの選択は、予め設定された順番通りに行ってもよいし、任意に設定した条件に基づいて行ってもよい。
 ステップS8では、ステップS7での走行エリアの選択に続き、選択された走行エリア内に存在する車両30の総数を検出し、ステップS9へ進む。
ここで、走行エリア内の車両総数の検出は、ステップS4にて検出した現在地情報と、ステップS6にて分類した各車両の存在走行エリア情報と、に基づいて行う。
 ステップS9では、ステップS8での車両総数の検出に続き、このステップS8にて検出した所定の走行エリア内の車両総数が、予め設定した所定値Th以上であるか否かを判断する。YES(所定値Th以上)の場合にはステップS10へ進み、NO(所定値Th未満)の場合にはステップS11へ進む。
ここで、「所定値Th」とは、サーバ10の通信負荷が過大になると思われる台数である。走行エリア内の車両総数が多くなるほど受信するプローブデータの数が多くなり、プローブデータのリアルタイム性は向上する。しかし、車両総数が多くなりすぎると、サーバ10によって受信するデータ数が膨大になり、通信負荷となる。上記「所定値Th」は、このリアルタイム性の確保と通信負荷との境界に基づいて設定する値である。
 ステップS10では、ステップS9での車両総数が所定値Th以上との判断に続き、選択された走行エリア内に存在する車両30のそれぞれのアップロード時刻に対し、間引き補正を実施し、ステップS12へ進む。
ここで、「間引き補正」とは、所定期間の間にサーバ10の受信部11によって受信するプローブデータの数を減らす補正値を算出することであり、ここでは、車両総数に応じて「送信間隔延長補正」、「送信データ数低減補正」、「データ送信車両低減補正」のいずれかを行う。なお、後述する第1閾値Th1及び第2閾値Th2は、任意に設定する。
「送信間隔延長補正」は、各車両30によるプローブデータのアップロード間隔を長くする補正値を算出することであり、所定の走行エリア内の車両総数が所定値Th以上であっても比較的少ないとき(車両総数が第1閾値Th1(>Th)未満のとき)に行う。すなわち、この「送信間隔延長補正」では、各車両30からプローブデータが30秒間隔で送信されていたのに対し、ある車両Xはアップロード間隔を40秒に補正し、別のある車両Yはアップロード間隔を35秒に補正する。なお、この「送信間隔延長補正」では、全ての車両のアップロード間隔を延長する必要はなく、車両によってはアップロード間隔の延長を行わなくてもよい。
また、「送信データ数低減補正」は、各車両30によるプローブデータの所定時間内のアップロード回数を減らす補正値を算出することであり、所定の走行エリア内の車両総数が所定値Th以上であって比較的少なくないとき(車両総数が第1閾値Th1以上で、第2閾値Th2(>Th1)未満のとき)に行う。すなわち、この「送信データ数低減補正」では、各車両30からプローブデータが30秒間隔で送信されていたのに対し、ある車両Mは60秒間隔で送信するように補正し(つまり、補正前と比べてアップロード回数を半分にする)、別のある車両Nは90秒間隔で送信するように補正する(補正前と比べてアップロード回数を1/3にする)。なお、この「送信データ数低減補正」では、全ての車両のアップロード回数を低減する必要はなく、車両によってはアップロード回数の低減を行わなくてもよい。
さらに、「データ送信車両低減補正」は、プローブデータを送信する車両数を減らす補正値を算出することであり、所定の走行エリア内の車両総数が所定値Th以上であって比較的多いとき(車両総数が第2閾値Th2以上のとき)に行う。すなわち、この「データ送信車両低減補正」では、所定の走行エリアα内の車両30の全てがプローブデータを送信していたことに対し、当該走行エリア内に存在する車両30の半分だけがプローブデータを送信するように補正する。なお、この「データ送信車両低減補正」では、データ送信を停止する車両の数は任意に設定する。
 ステップS11では、ステップS9での車両総数が所定値Th未満との判断に続き、選択された走行エリア内に存在する車両30のそれぞれのアップロード時刻に対し、均等化補正を実施し、ステップS12へ進む。
ここで、「均等化補正」とは、プローブデータのアップロード間隔を変えずにアップロード時刻をオフセットし、サーバ10によるプローブデータの受信間隔を分散させる補正値を算出する補正であり、具体的には、サーバ10によるプローブデータの受信間隔を一定にするアップロード時刻の補正値を算出することで行う。
すなわち、ある車両Pのアップロード時刻が「毎分20秒と50秒」であり、別のある車両Qのアップロード時刻が「毎分25秒と55秒」であるとする。この場合、車両Pからは毎分20秒と毎分50秒にプローブデータが送信され、車両Qからは毎分25秒と毎分55秒にプローブデータが送信される。これに対し、車両Pのアップロード時刻は補正せず(補正値=ゼロ)、車両Qはアップロード時刻が「毎分05秒と35秒」になるようにアップロード時刻に加算する補正値を算出(補正値=10秒)する。
 ステップS12では、ステップS10又はステップS11にてアップロード時刻の補正値を算出したら、車両30ごとのアップロード時刻の補正値を、選択された走行エリア内に存在する車両30に対してそれぞれ送信し、ステップS13へ進む。
 ステップS13では、ステップS12でのアップロード時刻の補正値の送信に続き、予め設定された全ての走行エリアにおいて、各走行エリア内に存在する車両30のアップロード時刻の補正が完了したか否かを判断する。YES(補正完了)の場合にはリターンへ進み、NO(補正未完了)の場合にはステップS7へ戻る。
 次に、作用を説明する。
 実施例1のプローブデータ収集装置の作用を、「アップロード時刻補正作用」、「送信間隔延長補正作用」、「送信データ数低減補正作用」、「データ送信車両低減補正作用」、「均等化補正作用」に分けて説明する。
 [アップロード時刻補正作用]
 実施例1のプローブデータ管理システム1では、このプローブデータ管理システム1のサーバ10の周囲に存在する車両30から送信されるプローブデータを受信し、データベース20に蓄積することでプローブデータを収集する。
ここで、各車両30では、イグニッションON状態になったら、イグニッションOFF状態になるまでの間、予め設定されたタイミング(例えば30秒間隔)でプローブデータをサーバ10へと送信し続ける。つまり、各車両30では、自車両がイグニッションON状態になった時刻を基準にアップロード時刻が設定され、この設定されたアップロード時刻になったらプローブデータを送信する。
 そのため、プローブデータを受信するサーバ10では、各車両30がプローブデータを送信したら受信することになり、サーバ10によるプローブデータの受信タイミングは、車両30ごとのイグニションON時刻や、プローブデータを送信する車両30の総数によって左右されることになる。
すなわち、複数の車両30が続けてイグニッションON状態になれば、サーバ10では、プローブデータを短時間に続けて受信し、一定時間を空けた後、再びプローブデータを続けて受信するといったようにプローブデータの受信タイミングに偏りが生じる。また、プローブデータを送信する車両30の総数が少なかったり、各車両30におけるデータ送信頻度が少なかったりすると、サーバ10にて収集できるプローブデータ数が少なくなる。これらの場合では、時系列に沿ったプローブデータの適切な収集ができず、データのリアルタイム性の確保ができないという問題が生じる。
 一方、例えば渋滞の発生時などのように、一定の走行エリアに車両30が集中した場合では、当該走行エリアから送信されるプローブデータ数が膨大になる。そのため、サーバ10での通信負荷が過大になり、サーバ10での情報処理負荷が過大になって適切な情報処理を行うことが難しくなる等の問題が生じる。
 これに対し、実施例1のプローブデータ収集装置では、サーバ11によって各車両30のプローブデータのアップロード時刻の補正値を算出し、サーバ10がプローブデータを受信するタイミングを制御する。これにより、プローブデータの受信タイミングの偏りやデータ数の増大を抑制し、リアルタイム性の確保と通信負荷の軽減との両立を図る。
 すなわち、実施例1において、車両30から送信されるプローブデータをサーバ10の受信部11にて受信するタイミングを制御するには、まず、図3に示すフローチャートにおいて、ステップS1→ステップS2→ステップS3へと進み、イグニッションON状態の車両が検出されると共に、検出されたイグニッションON車両の車両IDがUser IDと照合される。そして、車両IDとUser IDとの照合が終了したら、ステップS4→ステップS5→ステップS6へと進み、車両30ごとに現在地点及びアップロード時刻が検出されると共に、各車両30が存在する走行エリアが車両30ごとに分類される。
 そして、イグニッションON状態の車両30の全てについて走行エリアの分類が終了したら、ステップS7へと進み、所定の走行エリアが任意に選択される。
走行エリアを選択したら、ステップS8へと進み、当該走行エリア内に存在する車両30の総数を検出し、走行エリア内の車両総数に応じてアップロード時刻の補正値が算出される。つまり、当該走行エリア内の車両総数が所定値Th以上であれば、ステップS9→ステップS10へと進んで、所定期間の間にサーバ10の受信部11によって受信するプローブデータの数を減らす「間引き補正」が実施される。また、当該走行エリア内の車両総数が所定値Th未満であれば、ステップS9→ステップS11へと進んで、プローブデータのアップロード間隔を変えずにアップロード時刻をオフセットし、サーバ10によるプローブデータの受信間隔を分散させる「均等化補正」が実施される。
そして、車両30ごとのアップロード時刻の補正値が算出されたら、このアップロード時刻の補正値を、選択した走行エリア内に存在する車両30にそれぞれ送信する。
 この結果、各車両30のアップロード時刻がサーバ10によって制御されたものになり、サーバ10におけるプローブデータの受信タイミングの偏りやプローブデータの受信数の増大が解消される。
これにより、プローブデータのリアルタイム性の確保と、サーバ10での通信負荷の軽減との両立を図ることができる。
 また、この実施例1では、サーバ10によってプローブデータを受信可能なエリアを、複数の走行エリアに区画し、走行エリアごとに、当該走行エリア内に存在する車両総数を応じた補正値を算出している。
そのため、限られた区画ごとにプローブデータの受信タイミングを制御することになり、アップロード時刻の補正値の算出を容易にすることができる。これにより、車両総数の変化に対して速やかにアップロード時刻を補正することができ、プローブデータの受信タイミングを適切に制御することができる。
 また、この実施例1では、選択した走行エリア内に存在する車両総数に応じて、アップロード時刻の補正の方法を異ならせている。すなわち、走行エリア内に存在する車両の総数が所定値Th以上のときには、所定期間の間に前記サーバによって受信する前記プローブデータの数を減らす「間引き補正」を行う。また、走行エリア内に存在する車両の総数が所定値Th未満のときには、プローブデータのアップロード間隔を変えずにアップロード時刻をオフセットし、サーバ10によるプローブデータの受信間隔を分散させる「均等化補正」を行う。
 これにより、走行エリアごとの車両密度に応じてサーバ10によるプローブデータの受信頻度を動的に変更することができ、サーバ10での通信負荷の過大防止や、プローブデータのリアルタイム性の確保を適切に行うことができる。
 [送信間隔延長補正作用」
 図4Aは、送信間隔延長補正を行う前のプローブデータの送受信タイミングを示す説明図であり、図4Bは、図4Aに示す送受信タイミングに対して送信間隔延長補正を実施したときのプローブデータの送受信タイミングを示す説明図である。以下、図4A及び図4Bに基づき、実施例1の送信間隔延長補正作用を説明する。
 実施例1のデータ収集制御処理では、所定の走行エリア内に存在する車両総数が所定値Th以上であるものの、比較的少ないとき、つまり第1閾値Th1未満のときには、「間引き補正」の中でも各車両30のアップロード間隔を長くする「送信間隔延長補正」を行う。
 以下、具体的に説明する。
 所定の走行エリア内に、車両A、車両B、車両Cの3台の車両30が存在しているとする。このとき、補正前では、各車両A,B,Cは、それぞれ自車両がイグニッションON状態になった時刻を基準に、それぞれ30秒ごとにプローブデータを送信しており、例えば車両Aのアップロード時刻を「毎分00秒と30秒」とし、車両Bのアップロード時刻を「毎分03秒と33秒」とし、車両Cのアップロード時刻を「毎分28秒と58秒」とする。
この場合では、図4Aに示すように、サーバ10では、毎分ごとに58秒(車両C)→00秒(車両A)→03秒(車両B)→(25秒間の空き)→28秒(車両C)→30秒(車両A)→33秒(車両B)→(25秒間の空き)→58秒(車両C)→00秒(車両A)…というタイミングでプローブデータの受信を繰り返す。
そのため、3台の車両A,B,Cから続けてプローブデータを受信しては、一定時間の空きが生じるといったように、サーバ10での受信タイミングに偏りが生じてしまい、プローブデータが受信できない間の走行状況等を把握できず、データのリアルタイム性の確保ができない。
 これに対し、「送信間隔延長補正」を実施し、車両Aのアップロード間隔を35秒とし、車両Bのアップロード間隔を40秒とし、車両Cのアップロード間隔を32秒とする補正値を算出する。これにより、車両Aのアップロード時刻は「35秒→10秒→45秒→20秒…」と補正される。また、車両Bのアップロード時刻は「43秒→23秒→03秒…」と補正される。さらに、車両Cのアップロード時刻は「30秒→02秒→34秒→06秒…」と補正される。
 そのため、図4Bに示すように、時刻t時点で各車両A,B,Cにアップロード時刻の補正値が送信されると、各車両A,B,Cからプローブデータが送信されるタイミングが変更される。この結果、サーバ10では、30秒(車両C)→35秒(車両A)→43秒(車両B)→02秒(車両C)→10秒(車両A)→23秒(車両B)→34秒(車両C)→45秒(車両A)…とプローブデータを受信することになる。
 このように、サーバ10が偏ったタイミングでプローブデータを受信していたことに対し、サーバ10におけるプローブデータの受信タイミングをばらつかせることができる。そして、プローブデータの受信時に偏った空き時間が生じにくくなり、プローブデータのリアルタイム性を確保することができる。
 [送信データ数低減補正作用]
 図5Aは、送信データ数低減補正を行う前のプローブデータの送受信タイミングを示す説明図であり、図5Bは、図5Aに示す送受信タイミングに対して送信データ数低減補正を実施したときのプローブデータの送受信タイミングを示す説明図である。以下、図5A及び図5Bに基づき、実施例1の送信データ数低減補正作用を説明する。
 実施例1のデータ収集制御処理では、所定の走行エリア内に存在する車両総数が所定値Th以上であるものの少なくないとき、つまり第1閾値Th1以上第2閾値Th2未満のときには、「間引き補正」の中でも各車両30による所定時間内のアップロード回数を減らす「送信データ数低減補正」を行う。
 以下、具体的に説明する。
 所定の走行エリア内に、車両A、車両B、車両C、車両D、車両Eの5台の車両30が存在しているとする。このとき、補正前では、各車両A,B,C,D,Eは、それぞれ自車両がイグニッションON状態になった時刻を基準に、それぞれ30秒ごとにプローブデータを送信しており、例えば車両Aのアップロード時刻を「毎分00秒と30秒」とし、車両Bのアップロード時刻を「毎分07秒と37秒」とし、車両Cのアップロード時刻を「毎分15秒と45秒」とし、車両Dのアップロード時刻を「毎分22秒と52秒」とし、車両Eのアップロード時刻を「毎分10秒と40秒」とする。
この場合では、図4Aに示すように、サーバ10では、毎分ごとに30秒(車両A)→37秒(車両B)→40秒(車両E)→45秒(車両C)→52秒(車両D)→00秒(車両A)→07(車両B)→10秒(車両E)→15秒(車両C)→22秒(車両D)→30秒(車両A)…というタイミングでプローブデータの受信を繰り返す。
そのため、サーバ10において受信するプローブデータ数が多くなり、サーバ10での通信負荷が過大になって、適切な情報処理を行うことが難しくなる。
 これに対し、「送信データ数低減補正」を実施し、各車両A,B,C,D,Eにおいて1分間に行うプローブデータの送信を1回とする。つまり、各車両A,B,C,D,Eでのアップロード間隔をそれぞれ60秒とする補正値を算出する。これにより、車両Aのアップロード時刻は「毎分00秒」に補正され、車両Bのアップロード時刻は「毎分37秒」に補正され、車両Cのアップロード時刻は「毎分15秒」に補正され、車両Dのアップロード時刻は「毎分22秒」に補正され、車両Eのアップロード時刻は「毎分40秒」に補正される。
 そのため、図5Bに示すように、時刻t時点で各車両A,B,C,D,Eにアップロード時刻の補正値が送信されると、各車両A,B,C,D,Eからプローブデータが送信されるタイミングが変更される。この結果、サーバ10では、毎分ごとに、00秒(車両A)→15秒(車両C)→22秒(車両D)→37秒(車両B)→40秒(車両E)→00秒(車両A)…とプローブデータを受信することになる。
 このように、走行エリア内に存在する車両30の総数が多く、サーバ10に送信されるプローブデータ数が多くても、「送信データ数低減補正」を実施することで、サーバ10におけるプローブデータの受信数を容易に低減することができる。そして、データ受信タイミングの間隔を適切に空けて、サーバ10での通信負荷の軽減を図ることができる。
 [データ送信車両低減補正作用]
 図6Aは、データ送信車両低減補正を行う前のプローブデータの送受信タイミングを示す説明図であり、図6Bは、図6Aに示す送受信タイミングに対してデータ送信車両低減補正を実施したときのプローブデータの送受信タイミングを示す説明図である。以下、図6A及び図6Bに基づき、実施例1のデータ送信車両低減補正作用を説明する。
 実施例1のデータ収集制御処理では、所定の走行エリア内に存在する車両総数が所定値Th以上であって比較的多いとき、つまり第2閾値Th2以上のときには、「間引き補正」の中でもプローブデータを送信する車両数を減らす「データ送信車両低減補正」を行う。
 以下、具体的に説明する。
 所定の走行エリア内に、車両A~車両Hまでの8台の車両30が存在しているとする。このとき、補正前では、各車両A~Hは、それぞれ自車両がイグニッションON状態になった時刻を基準に、それぞれ30秒ごとにプローブデータを送信しており、各車両のアップロード時刻は以下の通りとする。
 車両A→「毎分00秒と30秒」、車両B→「毎分03秒と33秒」
 車両C→「毎分22秒と52秒」、車両D→「毎分28秒と58秒」
 車両E→「毎分07秒と37秒」、車両F→「毎分15秒と45秒」
 車両G→「毎分03秒と33秒」、車両H→「毎分20秒と50秒」
この場合では、図6Aに示すように、サーバ10では、毎分ごとに20秒(車両H)→22秒(車両C)→28秒(車両D)→30秒(車両A)→33秒(車両B及び車両G)→37秒(車両E)→45秒(車両F)→50秒(車両H)→52秒(車両C)→58秒(車両D)→00秒(車両A)→03秒(車両B及び車両G)→07(車両E)→15秒(車両F)→20秒(車両H)…というタイミングでプローブデータの受信を繰り返す。
そのため、サーバ10において受信するプローブデータ数が非常に多くなり、サーバ10での通信負荷が過大になって、適切な情報処理を行うことが難しくなる。
 これに対し、「データ送信車両低減補正」を実施し、車両B、車両D、車両G、車両Hについては、プローブデータの送信を停止させる補正値を算出する。つまり、プローブデータを送信する車両は車両A、車両C、車両E、車両Fとなり、プローブデータを送信する車両数を半減させる。これにより、車両B、車両D、車両G、車両Hのアップロード時刻は、それぞれ「ゼロ(なし)」に補正される。
 そのため、図6Bに示すように、時刻t時点で車両B、車両D、車両G、車両Hにアップロード時刻の補正値が送信されると、車両B、車両D、車両G、車両Hからのプローブデータの送信が停止される。この結果、サーバ10では、毎分ごとに、00秒(車両A)→07秒(車両E)→15秒(車両F)→22秒(車両C)→30秒(車両A)→37秒(車両E)→45秒(車両F)→52秒(車両C)→00秒(車両A)…とプローブデータを受信することになる。
 このように、走行エリア内に存在する車両30の総数が多く、サーバ10に送信されるプローブデータ数が多くても、「データ送信車両低減補正」を実施することで、サーバ10におけるプローブデータの受信数を容易に低減することができる。そして、データ受信タイミングの間隔を適切に空けて、サーバ10での通信負荷の軽減を図ることができる。
 [均等化補正作用]
 図7Aは、均等化補正を行う前のプローブデータの送受信タイミングを示す説明図であり、図7Bは、図7Aに示す送受信タイミングに対して均等化補正を実施したときのプローブデータの送受信タイミングを示す説明図である。以下、図7A及び図7Bに基づき、実施例1の均等化補正作用を説明する。
 実施例1のデータ収集制御処理では、所定の走行エリア内に存在する車両総数が所定値Th未満のときには、各車両30におけるアップロード間隔を変えずにアップロード時刻をオフセットし、サーバ10によるプローブデータの受信間隔を分散させる「均等化補正」を実施し、サーバ10によるプローブデータの受信間隔を一定にするアップロード時刻の補正値を算出する。
 以下、具体的に説明する。
 所定の走行エリア内に、車両A及び車両Bの2台の車両30が存在しているとする。このとき、補正前では、各車両A,Bは、それぞれ自車両がイグニッションON状態になった時刻を基準に、それぞれ30秒ごとにプローブデータを送信しており、例えば車両Aのアップロード時刻を「毎分00秒と30秒」とし、車両Bのアップロード時刻を「毎分03秒と33秒」とする。
この場合では、図7Aに示すように、サーバ10では、毎分ごとに00秒(車両A)→03秒(車両B)→(27秒間の空き)→30秒(車両A)→33秒(車両B)→(27秒間の空き)→00秒(車両A)…というタイミングでプローブデータの受信を繰り返す。
そのため、2台の車両A,Bから続けてプローブデータを受信しては、一定時間の空きが生じるといったように、サーバ10での受信タイミングに偏りが生じてしまい、プローブデータが受信できない間の走行状況等を把握できず、データのリアルタイム性の確保ができない。
 これに対し、「均等化補正」を実施し、サーバ10でのプローブデータの受信間隔が均等になるように、各車両A,Bのアップロード時刻をオフセットする。すなわち、車両Aのアップロード時刻は「毎分00秒と30秒」を維持させる一方、車両Bのアップロード時刻が「毎分15秒と45秒」になるように、加算補正する補正値12秒を算出する。これにより、車両Bのアップロード時刻は「毎分15秒と45秒」に補正される。
 そのため、図7Bに示すように、時刻t時点で車両Bにアップロード時刻の補正値が送信されると、車両Bからプローブデータが送信されるタイミングが変更される。この結果、サーバ10では、00秒(車両A)→15秒(車両B)→30秒(車両A)→45秒(車両B)→00秒(車両A)…とプローブデータを受信することになる。
 このように、サーバ10が偏ったタイミングでプローブデータを受信していても、サーバ10におけるプローブデータの受信タイミングを均等にばらつかせることができる。そして、プローブデータの受信時に偏った空き時間が生じることがなく、プローブデータのリアルタイム性を確保することができる。
しかも、この均等化補正では、所定時間(例えば1分間)内にサーバ10にて受信するプローブデータの数は、補正前と同じ数を維持することができる。これにより、所定の走行エリア内に存在する車両30の総数が比較的少なくても、各車両30から送信されるプローブデータを無駄にすることなく適切に受信することができる。
 なお、サーバ10によるプローブデータの受信間隔を一定にするための各車両A,Bのアップロード時刻の補正値の算出は、まず、サーバ10における平均受信間隔を求める(例えば、アップロード間隔が30秒であって車両が2台の場合では、15秒)。次に、一台の車両(例えば車両A)のアップロード時刻を基準とする。そして、この基準とした車両(車両A)のアップロード時刻と、他の車両(例えば車両B)のアップロード時刻との間隔を、サーバ10での平均受信間隔とするために必要な他の車両(例えば車両B)のアップロード時刻のオフセット時間を求める。このオフセット時間が「補正値」となる。
 次に、効果を説明する。
 実施例1のプローブデータ収集方法及びプローブデータ収集装置にあっては、下記に列挙する効果が得られる。
 (1) 車両30から送信されるプローブデータを受信するサーバ10と、前記サーバ10によって受信したプローブデータを蓄積するデータベース20と、を有するプローブデータ管理システム1において、
 前記サーバ10は、
 受信した前記プローブデータに基づき、送信した車両30の総数と、前記車両30ごとの前記プローブデータのアップロード時刻と、を検出し、
 検出したアップロード時刻に基づき、前記車両30ごとに、前記車両30の総数に応じた前記アップロード時刻の補正値を算出し、
 算出した前記補正値を、前記車両30に対してそれぞれ送信する構成とした。
 これにより、収集したプローブデータのリアルタイム性の確保と、サーバの通信負荷の軽減との両立を図ることができる。
 (2) 前記プローブデータは位置情報を含み、
 前記サーバ10は、受信した前記プローブデータに基づいて、当該車両30が存在する走行エリアαを分類し、
 分類した前記走行エリア内に存在する車両30ごとに、前記補正値を算出する構成とした。
 これにより、アップロード時刻の補正値の算出を容易にし、車両総数の変化に対して速やかにアップロード時刻を補正することができる。
 (3) 前記サーバ10は、前記補正値を算出する際、
 検出した車両30の総数が予め設定した所定値Th以上のとき、所定期間の間に前記サーバ10によって受信する前記プローブデータの数を減らす間引き補正を行い、
 検出した車両30の総数が前記所定値Th未満のとき、前記プローブデータのアップロード間隔を変えずにアップロード時刻をオフセットし、前記サーバ10による前記プローブデータの受信間隔を分散させる均等化補正を行う構成とした。
 これにより、走行エリアごとの車両密度に応じてサーバ10によるプローブデータの受信頻度を動的に変更することができ、サーバ10での通信負荷の過大防止や、プローブデータのリアルタイム性の確保を適切に行うことができる。
 (4) 前記サーバ10は、前記間引き補正を、前記車両30によるプローブデータのアップロード間隔を長くすることで行う構成とした。
 これにより、プローブデータの受信時に偏った空き時間が生じにくくなり、プローブデータのリアルタイム性を確保することができる。
 (5) 前記サーバ10は、前記間引き補正を、前記車両30によるプローブデータのアップロード回数を減らすことで行う構成とした。
 これにより、データ受信タイミングの間隔を適切に空けて、サーバ10での通信負荷の軽減を図ることができる。
 (6) 前記サーバ10は、前記間引き補正を、前記プローブデータを送信する車両数を減らすことで行う構成とした。
 これにより、データ受信タイミングの間隔を適切に空けて、サーバ10での通信負荷の軽減を図ることができる。
 (7) 前記サーバ10は、前記均等化補正を、前記サーバ10による前記プローブデータの受信間隔を一定にする前記アップロード時刻の補正値を算出することで行う構成とした。
 これにより、各車両30から送信されるプローブデータを無駄にすることなく受信できると共に、プローブデータの受信時に偏った空き時間が生じることがなく、プローブデータのリアルタイム性を確保することができる。
 (8) 車両30から送信されるプローブデータを受信するサーバ10と、前記サーバ10によって受信したプローブデータを蓄積するデータベース20と、を有するプローブデータ管理システム1において、
 前記サーバ10は、
 受信した前記プローブデータに基づき、送信した車両の総数と、前記車両ごとの前記プローブデータのアップロード時刻と、を検出し、
 検出したアップロード時刻に基づき、前記車両30ごとに、前記車両30の総数に応じた前記アップロード時刻の補正値を算出し、
 算出した前記補正値を、前記車両30に対してそれぞれ送信するプローブデータ収集コントローラ12を備える構成とした。
 これにより、収集したプローブデータのリアルタイム性の確保と、サーバの通信負荷の軽減との両立を図ることができる。
 以上、本発明の車両のプローブデータ収集方法及びプローブデータ収集装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加などは許容される。
 実施例1では、「送信間隔延長補正」の実施時、所定の走行エリア内に存在する全ての車両A~Cでのアップロード間隔を延長する例を示した。しかしながら、車両によってはアップロード間隔の延長を行わなくてもよい。すなわち、このアップロード間隔の延長時間の設定は、走行エリア内に存在する車両A~Cの補正前のアップロード時刻と、サーバ10でのプローブデータの受信タイミングとに基づいて、サーバ10での受信タイミングが適切になるように行えばよい。
 また、実施例1では、「送信データ数低減補正」の実施時、所定の走行エリア内に存在する全ての車両A~Eでのアップロード回数を半減する例を示した。しかしながら、車両によってはアップロード回数を低減しなくてもよいし、低減するアップロード回数も例えば1/3減や1/4減としてもよい。すなわち、この所定時間内に減らすアップロード回数の設定は、走行エリア内に存在する車両A~Eの補正前のアップロード時刻と、サーバ10でのプローブデータの受信タイミングとに基づいて、サーバ10での受信タイミングが適切になるように行えばよい。
 さらに、実施例1では、「データ送信車両低減補正」の実施時、所定の走行エリア内に存在する車両A~Hのうち、任意に選択した車両(B,D,G,H)についてプローブデータの送信を停止させる例を示した。しかしながら、このプローブデータの送信を停止させる車両の選択は、走行エリア内に存在する車両A~Hの補正前のアップロード時刻と、サーバ10でのプローブデータの受信タイミングとに基づいて、サーバ10での受信タイミングが適切になるように行えばよい。
 また、実施例1では、「均等化補正」の実施時、サーバ10によるプローブデータの受信間隔を一定にするアップロード時刻の補正値を算出する例を示した。しかしながら、これに限らず、走行エリア内に存在する車両A,Bにおけるアップロード間隔を変えずにアップロード時刻をオフセットし、サーバ10によるプローブデータの受信間隔を分散させればよく、プローブデータ受信間隔が厳密に均等にならなくてもよい。つまり、アップロード時刻をオフセットすることで、サーバ10によるプローブデータの受信間隔の極端な偏りを解消すればよい。
 さらに、実施例1では、予め設定した全ての走行エリアにおいて、各走行エリア内に存在する車両30のアップロード時刻の補正が完了したら、再度イグニッションON状態の車両を検出し、各車両30の現在地点及びアップロード時刻を見直して、アップロード時刻の補正を行う例を示した。しかしながら、これに限らず、アップロード時刻の補正を一度行った車両であれば、イグニッションOFF状態になるまで補正を行わなくてもよい。また、アップロード時刻を補正してから所定時間内、又は、同一走行エリアに存在している間、又は、同一道路種別を走行している間は、次の補正を行なわなくてもよい。
 そして、実施例1では、サーバ10によってプローブデータを受信可能なエリアを複数に区画した走行エリアごとに、車両30のアップロード時刻の補正値を算出する例を示した。しかしながら、サーバ10によってプローブデータを受信可能なエリアすべてを対象として、アップロード時刻の補正値の算出を行ってもよい。
すなわち、本願発明では、サーバ10がプローブデータを送信した車両数と、車両ごとのアップロード時刻と、に基づいて、アップロード時刻の補正値を算出し、プローブデータの受信タイミングを動的に制御することができればよい。

Claims (8)

  1.  車両から送信されるプローブデータを受信するサーバと、前記サーバによって受信したプローブデータを蓄積するデータベースと、を有するプローブデータ管理システムにおいて、
     前記サーバは、
     受信した前記プローブデータに基づき、送信した車両の総数と、前記車両ごとの前記プローブデータのアップロード時刻と、を検出し、
     検出したアップロード時刻に基づき、前記車両ごとに、前記車両の総数に応じた前記アップロード時刻の補正値を算出し、
     算出した前記補正値を、前記車両に対してそれぞれ送信する
     ことを特徴とするプローブデータ収集方法。
  2.  請求項1に記載のプローブデータ収集方法において、
     前記プローブデータは位置情報を含み、
     前記サーバは、受信した前記プローブデータに基づいて、当該車両が存在する走行エリアを分類し、
     分類した前記走行エリア内に存在する車両ごとに、前記補正値を算出する
     ことを特徴とするプローブデータ収集方法。
  3.  請求項1又は請求項2に記載のプローブデータ収集方法において、
     前記サーバは、前記補正値を算出する際、
     検出した車両の総数が予め設定した所定値以上のとき、所定期間の間に前記サーバによって受信する前記プローブデータの数を減らす間引き補正を行い、
     検出した車両の総数が前記所定値未満のとき、前記プローブデータのアップロード間隔を変えずにアップロード時刻をオフセットし、前記サーバによる前記プローブデータの受信間隔を分散する均等化補正を行う
     ことを特徴とするプローブデータ収集方法。
  4.  請求項3に記載されたプローブデータ収集方法において、
     前記サーバは、前記間引き補正を、前記車両によるプローブデータのアップロード間隔を長くすることで行う
     ことを特徴とするプローブデータ収集方法。
  5.  請求項3に記載されたプローブデータ収集方法において、
     前記サーバは、前記間引き補正を、前記車両によるプローブデータのアップロード回数を減らすことで行う
     ことを特徴とするプローブデータ収集方法。
  6.  請求項3に記載されたプローブデータ収集方法において、
     前記サーバは、前記間引き補正を、前記プローブデータを送信する車両数を減らすことで行う
     ことを特徴とするプローブデータ収集方法。
  7.  請求項3から請求項6のいずれか一項に記載されたプローブデータ収集方法において、
     前記サーバは、前記均等化補正を、前記サーバによる前記プローブデータの受信間隔を一定にする前記アップロード時刻の補正値を算出することで行う
     ことを特徴とするプローブデータ収集方法。
  8.  車両から送信されるプローブデータを受信するサーバと、前記サーバによって受信したプローブデータを蓄積するデータベースと、を有するプローブデータ管理システムにおいて、
     前記サーバは、
     受信した前記プローブデータに基づき、送信した車両の総数と、前記車両ごとの前記プローブデータのアップロード時刻と、を検出し、
     検出したアップロード時刻に基づき、前記車両ごとに、前記車両の総数に応じた前記アップロード時刻の補正値を算出し、
     算出した前記補正値を、前記車両に対してそれぞれ送信するプローブデータ収集コントローラを備える
     ことを特徴とするプローブデータ収集装置。
PCT/JP2015/074453 2015-08-28 2015-08-28 プローブデータ収集方法及びプローブデータ収集装置 WO2017037784A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP15902910.7A EP3343532B1 (en) 2015-08-28 2015-08-28 Probe data collection method and probe data collection device
CA2997047A CA2997047C (en) 2015-08-28 2015-08-28 Probe data collection method and probe data collection device
CN201580082756.8A CN107924612A (zh) 2015-08-28 2015-08-28 探测数据收集方法以及探测数据收集装置
RU2018106919A RU2684977C1 (ru) 2015-08-28 2015-08-28 Способ и система сбора данных с датчиков
MX2018002139A MX365927B (es) 2015-08-28 2015-08-28 Metodo de coleccion de datos de sonda y dispositivo de coleccion de datos de sonda.
JP2017537054A JP6323614B2 (ja) 2015-08-28 2015-08-28 プローブデータ収集方法及びプローブデータ収集装置
KR1020187006428A KR101928715B1 (ko) 2015-08-28 2015-08-28 프로브 데이터 수집 방법 및 프로브 데이터 수집 장치
BR112018003599A BR112018003599A2 (pt) 2015-08-28 2015-08-28 método de coleta de dados de sonda e dispositivo para coleta de dados de sonda
US15/748,664 US10096241B2 (en) 2015-08-28 2015-08-28 Probe data collection method and probe data collection device
MYPI2018700733A MY169012A (en) 2015-08-28 2015-08-28 Probe data collection method and probe data collection device
PCT/JP2015/074453 WO2017037784A1 (ja) 2015-08-28 2015-08-28 プローブデータ収集方法及びプローブデータ収集装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074453 WO2017037784A1 (ja) 2015-08-28 2015-08-28 プローブデータ収集方法及びプローブデータ収集装置

Publications (1)

Publication Number Publication Date
WO2017037784A1 true WO2017037784A1 (ja) 2017-03-09

Family

ID=58187124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074453 WO2017037784A1 (ja) 2015-08-28 2015-08-28 プローブデータ収集方法及びプローブデータ収集装置

Country Status (10)

Country Link
US (1) US10096241B2 (ja)
EP (1) EP3343532B1 (ja)
JP (1) JP6323614B2 (ja)
KR (1) KR101928715B1 (ja)
CN (1) CN107924612A (ja)
BR (1) BR112018003599A2 (ja)
CA (1) CA2997047C (ja)
MX (1) MX365927B (ja)
RU (1) RU2684977C1 (ja)
WO (1) WO2017037784A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729488A (zh) * 2017-10-26 2019-05-07 丰田自动车株式会社 信息管理装置和记录程序的非暂态计算机可读记录介质
WO2020008554A1 (ja) * 2018-07-04 2020-01-09 三菱電機株式会社 情報送信制御装置、サーバ、情報送信制御システム、および情報送信制御方法
US11074812B2 (en) 2018-11-29 2021-07-27 Here Global B.V. Method, apparatus, and computer program product for reducing redundant data uploads
JP7470539B2 (ja) 2020-03-18 2024-04-18 日立建機株式会社 施工履歴情報管理システム
EP4358056A1 (en) 2022-10-21 2024-04-24 Fujitsu Limited Method for determining upload frequency and program thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018214224B3 (de) * 2018-08-23 2019-12-19 Audi Ag Verfahren zur Steuerung von Erfassungseinrichtungen von Fahrzeugen einer Fahrzeugflotte durch eine zentrale Steuereinheit, um einen Datenbestand an Messdaten zu beschaffen
WO2020137950A1 (ja) * 2018-12-28 2020-07-02 パイオニア株式会社 移動体管理装置、制御方法、プログラム及び記憶媒体
CN114008409B (zh) * 2019-06-12 2024-08-20 株式会社电装 地图数据生成装置
JP7247859B2 (ja) * 2019-10-25 2023-03-29 トヨタ自動車株式会社 検査用データ収集システム、および、検査用データ収集方法
CN111339498B (zh) * 2020-03-17 2022-11-15 厦门市环境监测站(厦门市机动车排气检测中心) 一种荧光溶解有机质数据的快速校正方法及系统
CN111752918B (zh) * 2020-05-15 2023-12-22 南京国电南自维美德自动化有限公司 一种历史数据交互系统及其配置方法
US11617074B2 (en) * 2020-06-15 2023-03-28 Toyota Motor North America, Inc. Secure boundary area communication systems and methods
US11335142B1 (en) 2021-06-01 2022-05-17 Geotab Inc. Systems for analyzing vehicle journeys
US11527153B1 (en) * 2021-06-01 2022-12-13 Geotab Inc. Systems for analyzing vehicle traffic between geographic regions
US11862011B2 (en) 2021-06-01 2024-01-02 Geotab Inc. Methods for analyzing vehicle traffic between geographic regions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063997A (ja) * 1996-08-23 1998-03-06 Mitsubishi Denki Eng Kk 移動体管理装置
JPH11306490A (ja) * 1998-04-23 1999-11-05 Pub Works Res Inst Ministry Of Constr ダイナミックにチャネルを配分する車両通信システムおよび方法
JP2002074591A (ja) * 2000-09-01 2002-03-15 Fujitsu Ltd 位置情報通知装置
US20100273491A1 (en) * 2007-12-20 2010-10-28 Telecom Italia S.P.A. Method and System for Estimating Road Traffic

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513640C2 (de) * 1994-11-28 1997-08-07 Mannesmann Ag Verfahren zur Reduzierung einer aus den Fahrzeugen einer Fahrzeugflotte zu übertragenden Datenmenge
DE19956682B4 (de) 1999-11-25 2004-07-15 Daimlerchrysler Ag Verfahren zur Steuerung der Übertragungszeitpunkte von Daten, die Ereignisse betreffen, die durch Fahrzeuge detektiert werden
SE0201404D0 (sv) * 2002-05-06 2002-05-06 Pilotfish Networks Ab Method and apparatus providing information transfer
US7246007B2 (en) 2004-03-24 2007-07-17 General Motors Corporation System and method of communicating traffic information
JP4259430B2 (ja) 2004-08-24 2009-04-30 株式会社デンソー 車両情報送信装置および車両
EA200700450A1 (ru) * 2007-01-18 2008-04-28 Совместное Белорусско-Российское Предприятие "Технотон" Закрытое Акционерное Общество Способ и система сбора эксплуатационных данных с транспортных средств для автотракторных парков
US8494709B2 (en) * 2008-02-25 2013-07-23 Mitsubishi Electric Corporation On-vehicle communication device
JP2010263410A (ja) 2009-05-07 2010-11-18 Renesas Electronics Corp 車両通信装置
RU104356U1 (ru) * 2010-11-23 2011-05-10 Юрий Владимирович Леонов Автоматизированная система глобальной безопасности дорожного движения, мониторинга дорожной обстановки, дорожной ситуации, режимов работы всех бортовых систем и узлов автомобиля, сбора, обработки, передачи полученной информации от одних автомобилей к другим автомобилям и специальным государственным службам средствами связи и навигации

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063997A (ja) * 1996-08-23 1998-03-06 Mitsubishi Denki Eng Kk 移動体管理装置
JPH11306490A (ja) * 1998-04-23 1999-11-05 Pub Works Res Inst Ministry Of Constr ダイナミックにチャネルを配分する車両通信システムおよび方法
JP2002074591A (ja) * 2000-09-01 2002-03-15 Fujitsu Ltd 位置情報通知装置
US20100273491A1 (en) * 2007-12-20 2010-10-28 Telecom Italia S.P.A. Method and System for Estimating Road Traffic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343532A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729488A (zh) * 2017-10-26 2019-05-07 丰田自动车株式会社 信息管理装置和记录程序的非暂态计算机可读记录介质
JP2019079422A (ja) * 2017-10-26 2019-05-23 トヨタ自動車株式会社 情報管理装置及びプログラム
US10943473B2 (en) 2017-10-26 2021-03-09 Toyota Jidosha Kabushiki Kaisha Information management apparatus and non-transitory computer-readable recording medium recording program
WO2020008554A1 (ja) * 2018-07-04 2020-01-09 三菱電機株式会社 情報送信制御装置、サーバ、情報送信制御システム、および情報送信制御方法
JPWO2020008554A1 (ja) * 2018-07-04 2020-08-27 三菱電機株式会社 情報送信制御装置、サーバ、情報送信制御システム、および情報送信制御方法
DE112018007629B4 (de) 2018-07-04 2022-02-24 Mitsubishi Electric Corporation Informationsversandsteuervorrichtung, server,informationsversandsteuersystem und informationsversandsteuerverfahren
US11387966B2 (en) 2018-07-04 2022-07-12 Mitsubishi Electric Corporation Information transmission control device, server, and information transmission control system
US11074812B2 (en) 2018-11-29 2021-07-27 Here Global B.V. Method, apparatus, and computer program product for reducing redundant data uploads
JP7470539B2 (ja) 2020-03-18 2024-04-18 日立建機株式会社 施工履歴情報管理システム
EP4358056A1 (en) 2022-10-21 2024-04-24 Fujitsu Limited Method for determining upload frequency and program thereof

Also Published As

Publication number Publication date
MX365927B (es) 2019-06-20
EP3343532A1 (en) 2018-07-04
US20180225962A1 (en) 2018-08-09
EP3343532B1 (en) 2020-10-28
BR112018003599A2 (pt) 2018-09-25
CN107924612A (zh) 2018-04-17
CA2997047C (en) 2019-08-13
RU2684977C1 (ru) 2019-04-16
JP6323614B2 (ja) 2018-05-16
MX2018002139A (es) 2018-06-18
EP3343532A4 (en) 2018-09-19
CA2997047A1 (en) 2017-03-09
KR20180030222A (ko) 2018-03-21
JPWO2017037784A1 (ja) 2018-06-07
US10096241B2 (en) 2018-10-09
KR101928715B1 (ko) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6323614B2 (ja) プローブデータ収集方法及びプローブデータ収集装置
US10788845B2 (en) Optimization of mission efficiency through platoon opportunity assessment
KR102220607B1 (ko) 한 군집에서 차량군들의 자체-순서화
EP3316062B1 (en) Platoon control
US11814040B2 (en) System and method for avoiding a collision course
US11738776B2 (en) Perception performance evaluation of a vehicle ADAS or ADS
US20180061226A1 (en) Method and system for establishing whether a road section is suitable for autonomous vehicle driving
US20200201315A1 (en) Adaptive multi-network vehicle architecture
WO2019210148A1 (en) Systems and methods for managing space at a location for receiving autonomous vehicles
CN107045794B (zh) 路况处理方法及装置
CN104875740B (zh) 用于管理跟随空间的方法、主车辆以及跟随空间管理单元
DE102017007814A1 (de) Kolonnenbildungsorchestrator
JP2020076757A (ja) 分散型ルート決定システム
CN114642022A (zh) 用于在用于交通参与者与至少一个另外的交通参与者之间通信的通信网络中传输消息的方法
US20230406359A1 (en) Collision imminent detection
US20140067243A1 (en) Centralized route determination
CN113496607B (zh) 运行管理装置、运行管理方法以及交通系统
DE102015008174B4 (de) Verfahren zum Bereitstellen einer alternativen Reiseroute für ein Kraftfahrzeug
US20210312800A1 (en) A method for controlling vehicles
US20170094614A1 (en) Communication apparatus and communication system
JP2011227728A (ja) 車群走行制御装置
CN113734184A (zh) 自动驾驶车辆在途组队方法、装置及电子设备
EP4357213A1 (en) A method for determining whether an automatic collision avoidance steering maneuver should be executed or not
US20240083429A1 (en) Traveling position determination device, traveling position determination method, nontransitory computer readable storage medium storing traveling position determination program, non-transitory computer readable storage medium storing map data structure
US20240203257A1 (en) Information processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15748664

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017537054

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/002139

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2997047

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006428

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018106919

Country of ref document: RU

Ref document number: 2015902910

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018003599

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018003599

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180223