WO2017036062A1 - 触控电极的电学性能检测装置和检测方法 - Google Patents

触控电极的电学性能检测装置和检测方法 Download PDF

Info

Publication number
WO2017036062A1
WO2017036062A1 PCT/CN2016/070103 CN2016070103W WO2017036062A1 WO 2017036062 A1 WO2017036062 A1 WO 2017036062A1 CN 2016070103 W CN2016070103 W CN 2016070103W WO 2017036062 A1 WO2017036062 A1 WO 2017036062A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch electrode
capacitance
capacitor
forming unit
detecting
Prior art date
Application number
PCT/CN2016/070103
Other languages
English (en)
French (fr)
Inventor
陈庆友
李继
陈俊
张�成
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/504,095 priority Critical patent/US20170277303A1/en
Publication of WO2017036062A1 publication Critical patent/WO2017036062A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • H03K2217/960775Emitter-receiver or "fringe" type detection, i.e. one or more field emitting electrodes and corresponding one or more receiving electrodes

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an electrical performance detecting device and a detecting method for a touch electrode.
  • capacitive touch screens have been popularly welcomed by the public for their high light transmittance, wear resistance, environmental temperature change, environmental humidity resistance, long life, and advanced complex functions such as multi-touch.
  • capacitive touch screens are divided into mutual capacitive touch screens and self-capacitive touch screens.
  • the mutual capacitance type touch screen is provided with two oppositely disposed mutual capacitance electrode layers.
  • a fixed mutual capacitance is generated between the corresponding mutual capacitance electrodes of the two mutual capacitance electrode layers.
  • the touch detection chip can detect the position of the touched point of the finger by detecting the change amount of the mutual capacitance before and after the finger touches the screen.
  • the self-capacitive touch screen is provided with only one self-capacitance electrode layer.
  • the capacitance of the respective capacitor electrodes in the self-capacitance electrode layer is a fixed value.
  • the respective capacitor electrodes are The received capacitor is a fixed value superimposed on the human body capacitance. Therefore, the touch detection chip can determine the touch position by detecting the change of the capacitance value of each capacitor electrode.
  • a pair of mutual capacitance electrodes for forming mutual capacitances can be directly selected, and the pair of mutual capacitances are detected by a capacitance detecting device (for example, a multimeter).
  • the capacitance between the electrodes, and the electrical properties of the pair of mutual capacitance electrodes are evaluated based on the detected capacitance values.
  • the electrical properties of the self-capacitance electrode are generally evaluated by measuring the resistance of the respective capacitor electrodes.
  • the means for evaluating the electrical performance of the respective capacitor electrodes based on the resistance of the respective capacitor electrodes is not reliable.
  • the invention provides an electrical performance detecting device and a detecting method for a touch electrode, which can effectively detect the electrical performance of the self-capacitance touch electrode.
  • a capacitor forming unit configured to form a capacitor structure with the touch electrode
  • a capacitance detecting unit configured to acquire a capacitance value of the capacitor structure.
  • the capacitor forming unit includes:
  • the capacitance detecting unit being configured to be electrically connected to the conductive electrode.
  • the material of the insulating dielectric layer is a low dielectric constant material.
  • the material of the conductive electrode is a metal material.
  • the capacitor forming unit further includes: a protective layer disposed on a surface of the insulating dielectric layer.
  • the material of the protective layer is a flexible material.
  • the conductive electrode and the touch electrode have the same shape and size.
  • the touch electrode is provided with a metal lead, and the capacitance detecting unit is configured to be electrically connected to the touch electrode through the metal lead.
  • the electrical performance detecting device of the touch electrode further includes:
  • a driving unit connected to the capacitor forming unit for driving the capacitor forming unit to perform motion.
  • the driving unit is detachably connected to the capacitance forming unit.
  • the present invention further provides a method for detecting electrical properties of a touch electrode, wherein the electrical performance detecting method of the touch electrode utilizes the electrical performance detecting device of the touch electrode to perform the following steps:
  • the capacitance value of the capacitor structure is acquired by the capacitance detecting unit.
  • the present invention provides an electrical performance detecting device and a detecting method for a touch electrode, wherein the electrical performance detecting device includes: a capacitor forming unit and a capacitance detecting unit, wherein the capacitor forming unit is configured to form a capacitor structure with the touch electrode to be detected.
  • the capacitance detecting unit is configured to acquire a capacitance value of the formed capacitor structure.
  • the technical solution of the present invention forms a capacitor structure with the touch electrode to be detected by the capacitor forming unit, and then obtains the capacitance value of the capacitor structure by using the capacitor detecting unit. At this time, the detecting personnel can touch the capacitance value of the obtained capacitor structure.
  • the electrical properties of the electrodes are evaluated efficiently and accurately.
  • FIG. 1 is a schematic structural diagram of an electrical performance detecting apparatus for a touch electrode according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the touch sensor when the electrical performance detecting device shown in FIG. 1 is used.
  • FIG. 3 is a flowchart of a method for detecting electrical performance of a touch electrode according to an embodiment of the present invention.
  • touch electrode in the present application specifically refers to a self-capacitive touch.
  • Self-capacitive touch electrodes in the screen are also refers to a self-capacitive touch.
  • FIG. 1 is a schematic structural diagram of an electrical performance detecting apparatus for a touch electrode according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of detecting a touch electrode by using the electrical performance detecting apparatus shown in FIG. 1
  • the electrical performance detecting device includes a capacitor forming unit 1 and a capacitor detecting unit 2, wherein the capacitor forming unit 1 is configured to form a capacitor structure with the touch electrode 4, and the capacitor detecting unit 2 is configured to acquire The capacitance value of the formed capacitor structure.
  • the capacitance detecting unit 2 has two detecting ends 21, 22, one of which is electrically connected to the touch electrode 4, and the other detecting end 22 is electrically connected to the capacitor forming unit 1, thereby acquiring the capacitance value of the formed capacitor structure.
  • the capacitance detecting unit 2 in this embodiment may be a multimeter.
  • the capacitor forming unit 1 forms a capacitor structure with the touch electrode 4 to be detected, and then the capacitance detecting unit 2 is used to acquire the capacitance value of the formed capacitor structure. At this time, the detecting personnel based on the obtained capacitor. The capacitance value of the structure is evaluated for the electrical properties of the touch electrode 4 to be detected (the electrical properties of the components in the capacitor forming unit 1 can be obtained in advance).
  • the capacitor forming unit 1 includes: a conductive electrode 11 and an insulating dielectric layer 12 formed on the surface of the conductive electrode 11 (in the drawing, below the conductive electrode 11), and a detecting end 22 of the capacitance detecting unit 2 and the conductive The electrodes 11 are electrically connected.
  • the insulating dielectric layer 12 is only required to be in contact with the touch electrode 4 to be detected. At this time, the conductive electrode 11 and the touch electrode 4 to be detected can form a capacitor structure.
  • a protective layer 13 may be provided on the surface of the insulating dielectric layer 12 (in the drawing, below the insulating dielectric layer 12) for preventing the insulating dielectric layer 12 from being treated.
  • the surface of the detected touch electrode 4 causes damage.
  • the material of the protective layer 13 is a flexible material.
  • the protective layer 13 may cover the entire surface of the insulating dielectric layer 12.
  • the protective layer 13 when the electrical properties of the touch electrode 4 are detected, the protective layer 13 is in contact with the touch electrode 4 to be detected.
  • the shape and size of the conductive electrode 11 in order to detect the electrical performance of the entire touch electrode 4, can be set to be exactly the same as the touch electrode 4 to be detected. At this time, the conductive electrode 11 can be detected with the conductive electrode 11 to be detected.
  • the touch electrodes 4 are completely opposite.
  • the shape and size of the insulating dielectric layer 12 and the protective layer 13 described above may also be set to be identical to those of the conductive electrode 11.
  • the material of the insulating dielectric layer 12 is a low dielectric constant material, such as a carbon doped silicon oxide film, a fluorine doped silicon oxide film, a porous silicon film, a polyimide, a polytetrafluoroethylene, a ring. Oxy- cyanate, nano glass, and the like. Since the low dielectric constant material has characteristics of low loss, low leakage current, high adhesion, corrosion resistance, and low shrinkage, in the present embodiment, the low dielectric constant material is used to form the insulating dielectric layer 12, which is effective.
  • the parasitic capacitance between the conductive electrode 11 and the touch electrode 4 to be detected is reduced, thereby ensuring accurate detection of the capacitance between the conductive electrode 11 and the touch electrode 4 in the subsequent process, and at the same time, effectively reducing The overall power consumption of the device.
  • the tops of the two detecting ends 21, 22 are set to be thinner.
  • the thinner probe ends 21, 22 are in contact with the conductive electrodes 11 and the touch electrodes 4 to be detected in the formed capacitor structure, the surfaces of the conductive electrodes 11 and the touch electrodes 4 are easily damaged.
  • the conductive material 11 is prepared by using a metal material in the embodiment, so that the conductivity of the conductive electrode 11 can be satisfied, and the conductive electrode 11 can be ensured to have a certain hardness.
  • the surface of the conductive electrode 11 can be effectively prevented from being damaged by the detecting end 22, thereby making the life of the conductive electrode 11 longer.
  • the detecting end 21 of the capacitance detecting unit 2 is not directly connected to the touch electrode 4 to be detected, but the detecting end 21 is used to prevent damage to the surface of the touch electrode 4 to be detected.
  • the metal lead 5 (for transmitting a signal between the touch electrode 4 and the chip) can electrically connect the capacitance detecting unit 2 to the touch electrode 4 to be detected.
  • the electrical performance detecting device further includes a driving unit 3, and the driving unit 3 is connected to the capacitor forming unit 1.
  • the driving unit 3 is configured to drive the capacitor forming unit 1 to perform motion.
  • the setting of the drive unit 3 can effectively increase the degree of automation of the device. More importantly, the control between the capacitor forming unit 1 and the touch electrode 4 to be detected can be more accurately controlled by the control of the driving unit 3, and the electrical performance of the touch electrode 4 is more accurately evaluated. .
  • the electrical performance detecting device provided in this embodiment, a plurality of capacitor forming units 1 of different shapes and sizes can be disposed, so that the touches of different shapes and sizes can be realized by using the electrical property detecting device. Detection of the electrical properties of the electrode 4.
  • the driving unit 3 is detachably connected to the capacitance forming unit 1, so that the replacement of the capacitance forming unit 1 can be facilitated.
  • the embodiment of the present invention provides an electrical performance detecting device for a touch electrode.
  • the electrical performance detecting device includes a capacitor forming unit and a capacitor detecting unit.
  • the capacitor forming unit is configured to form a capacitor structure with the touch electrode to be detected, and the capacitor detecting unit Used to obtain the capacitance value of the formed capacitor structure.
  • the technical solution of the present invention forms a capacitor structure with the touch electrode to be detected by the capacitor forming unit, and then obtains the capacitance value of the capacitor structure by using the capacitor detecting unit. Therefore, the detecting personnel can touch the capacitance value of the obtained capacitor structure.
  • the electrical properties of the electrodes are evaluated efficiently and accurately.
  • FIG. 3 is a flowchart of a method for detecting electrical performance of a touch electrode according to an embodiment of the present invention. As shown in FIG. 3, the electrical property detecting method is implemented by using the electrical property detecting device in the above embodiment, and the electrical property detecting method includes:
  • Step 101 Move the capacitor forming unit to a position facing the touch electrode to be detected and contact the touch electrode to be detected, so that the capacitor forming unit forms a capacitive structure with the touch electrode to be detected.
  • the capacitor forming unit can be moved to a position facing the touch electrode to be detected and contacted with the touch electrode to be detected by the driving unit in the above embodiment, so that the capacitor forming unit and the to-be-detected The touch electrode forms a capacitor structure.
  • the above-mentioned driving unit moves the capacitor forming unit to and after
  • the technical means for detecting the position of the touch electrode is the preferred embodiment of the present embodiment.
  • the detecting component can also manually move the capacitor forming unit to face and contact the touch electrode to be detected. .
  • Step 102 Acquire a capacitance value of the formed capacitor structure by using a capacitance detecting unit.
  • the capacitance detecting unit is used to acquire the capacitance value of the capacitor structure formed by the capacitor forming unit and the touch electrode to be detected.
  • the inspector can evaluate the electrical properties of the touch electrodes to be detected based on the capacitance values detected by the capacitance detecting unit.
  • the embodiment of the invention provides a method for detecting electrical performance of a touch electrode, comprising the steps of: moving a capacitor forming unit to a position facing the touch electrode to be detected and contacting the touch electrode to be detected, A capacitor structure is formed between the capacitor forming unit and the touch electrode to be detected; and the capacitance value of the formed capacitor structure is obtained by the capacitor detecting unit.
  • the technical solution of the present invention forms a capacitor structure with the touch electrode to be detected by the capacitor forming unit, and then acquires the capacitance value of the formed capacitor structure by using the capacitor detecting unit. Therefore, the detecting personnel can calculate the capacitance value based on the obtained capacitor structure. Effective and accurate evaluation of the electrical properties of the touch electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Position Input By Displaying (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种触控电极的电学性能检测装置和检测方法,其中,该电学性能检测装置包括:电容形成单元(1)和电容检测单元(2),电容形成单元用于与待检测的触控电极(4)形成电容结构,电容检测单元(4)用于获取所形成的电容结构的电容值。通过电容形成单元(1)来与待检测的触控电极(4)形成电容结构,然后利用电容检测单元(2)获取该电容结构的电容值,此时检测人员基于获取到的电容结构的电容值可对触控电极(4)的电学性能进行有效且准确的评估。

Description

触控电极的电学性能检测装置和检测方法 技术领域
本发明涉及显示技术领域,特别涉及一种触控电极的电学性能检测装置和检测方法。
背景技术
近来,电容式触摸屏以其透光率高、耐磨损、耐环境温度变化、耐环境湿度变化、寿命长、可实现如多点触控的高级复杂功能而受到大众的欢迎。
目前,电容式触摸屏分为互电容式触摸屏和自电容式触摸屏。互电容式触摸屏中设置有两个相对设置的互电容电极层。当手指未触碰屏幕时,两个互电容电极层中对应的互电容电极之间产生固定大小的互电容,当手指触碰屏幕时,对应的互电容电极之间的互电容会发生变化,由此,触控侦测芯片通过检测手指触屏前后该互电容的改变量,可检测出手指触摸点的位置。自电容式触摸屏中仅设置有一个自电容电极层,当手指未触碰屏幕时,自电容电极层中各自电容电极所承受的电容为一固定值,当手指触碰屏幕时,各自电容电极所承受的电容为固定值叠加人体电容,由此,触控侦测芯片通过检测各自电容电极的电容值变化可以判断出触控位置。
为保证触摸屏的触控性能,需要对触摸屏上用于实现触控功能的互电容电极层中的各互电容电极或自电容电极层中的各自电容电极的电学特性进行检测,以对触摸屏的触控性能进行评估。
在对互电容式触摸屏中的互电容电极的电学特性进行检测时,可直接选定用于形成互电容的一对互电容电极,通过电容检测装置(例如,万用表)来检测这一对互电容电极之间的电容大小,并根据检测出的电容值来评估这一对互电容电极的电学性能。然而,在对自电容式触摸屏中的自电容电极的电学特性进行检测时,由于所有的自 电容电极均同层设置,所以各自电容电极无法与其他自电容电极构成电容结构,因此无法采用测量电容的方式来评估自电容电极的电学性能。针对该问题,现有技术中一般是采用测量各自电容电极的电阻的方式来评估自电容电极的电学性能。
然而,由于各自电容电极的电阻大小容易受到外界环境的影响而发生变化,从而导致测量结果不准确,因此基于各自电容电极的电阻来评估各自电容电极的电学性能的手段并不可靠。
因此,如何更准确、更有效地对自电容电极的电学性能进行检测是本领域技术人员亟需解决的技术问题。
发明内容
本发明提供一种触控电极的电学性能检测装置和检测方法,可有效地对自电容触控电极的电学性能进行准确地检测。
本发明提供的触控电极的电学性能检测装置,包括:
电容形成单元,用于与所述触控电极形成电容结构;以及
电容检测单元,用于获取所述电容结构的电容值。
可选地,所述电容形成单元包括:
导电电极和形成于所述导电电极表面的绝缘电介质层,所述电容检测单元用于与所述导电电极电连接。
可选地,所述绝缘电介质层的材料为低介电常数材料。
可选地,所述导电电极的材料为金属材料。
可选地,所述电容形成单元还包括:设置于所述绝缘电介质层表面的保护层。
可选地,所述保护层的材料为柔性材料。
可选地,所述导电电极与所述触控电极的形状和尺寸均相同。
可选地,所述触控电极上设置有金属引线,所述电容检测单元用于通过所述金属引线与所述触控电极电连接。
可选地,所述触控电极的电学性能检测装置还包括:
驱动单元,其与所述电容形成单元连接,用于带动所述电容形成单元进行运动。
可选地,所述驱动单元可拆卸地与所述电容形成单元连接。
为实现上述目的,本发明还提供了一种触控电极的电学性能检测方法,所述触控电极的电学性能检测方法利用上述的触控电极的电学性能检测装置来执行以下步骤:
将所述电容形成单元移动至与所述触控电极正对的位置并与所述触控电极接触,以使得所述电容形成单元与所述触控电极形成电容结构;以及
利用所述电容检测单元获取所述电容结构的电容值。
本发明具有以下有益效果:
本发明提供了一种触控电极的电学性能检测装置和检测方法,其中该电学性能检测装置包括:电容形成单元和电容检测单元,电容形成单元用于与待检测的触控电极形成电容结构,电容检测单元用于获取所形成的电容结构的电容值。本发明的技术方案通过电容形成单元来与待检测的触控电极形成电容结构,然后利用电容检测单元获取该电容结构的电容值,此时检测人员基于获取到的电容结构的电容值可对触控电极的电学性能进行有效且准确的评估。
附图说明
图1为本发明实施例提供的触控电极的电学性能检测装置的结构示意图。
图2为利用图1所示的电学性能检测装置对触控电极进行检测时的示意图。
图3为本发明实施例提供的触控电极的电学性能检测方法的流程图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的触控电极的电学性能检测装置和检测方法进行详细描述。
需要说明的是,在本申请中的触控电极具体是指自电容式触摸 屏中的自电容式触控电极。
图1为本发明实施例提供的触控电极的电学性能检测装置的结构示意图,图2为利用图1所示的电学性能检测装置对触控电极进行检测时的示意图。如图1和图2所示,该电学性能检测装置包括:电容形成单元1和电容检测单元2,其中,电容形成单元1用于与触控电极4形成电容结构,电容检测单元2用于获取所形成的电容结构的电容值。电容检测单元2具有两个探测端21、22,其中一个探测端21与触控电极4电连接,另一探测端22与电容形成单元1电连接,从而获取所形成的电容结构的电容值。
需要说明的是,本实施例中的电容检测单元2可以为万用表。
在本实施例中,通过电容形成单元1来与待检测的触控电极4形成电容结构,然后利用电容检测单元2获取所形成的电容结构的电容值,此时,检测人员基于获取到的电容结构的电容值来对待检测的触控电极4的电学性能进行评估(电容形成单元1中各部件的电学性能可以预先获取)。
可选地,电容形成单元1包括:导电电极11和形成于导电电极11表面(在附图中,为导电电极11的下方)的绝缘电介质层12,电容检测单元2的一个探测端22与导电电极11电连接。在对待检测的触控电极4的电学性能进行检测时,仅需将绝缘电介质层12与待检测的触控电极4接触,此时导电电极11与待检测的触控电极4可形成电容结构。
在利用电容形成单元1与待检测的触控电极4形成电容结构的过程中,由于待检测的触控电极4往往由ITO等软质导电材料构成,因此当将绝缘电介质层12与待检测的触控电极4接触时,可能会划伤触控电极4的表面,从而导致触控电极4的不良。为解决上述技术问题,本实施例中,可以在绝缘电介质层12的表面(在附图中,为绝缘电介质层12的下方)设置保护层13,该保护层13用于防止绝缘电介质层12对待检测的触控电极4的表面造成损伤。可选地,保护层13的材料为柔性材料。可选地,该保护层13可以覆盖绝缘电介质层12的整个表面。
需要说明的是,当电容形成单元1中包括保护层13时,在对触控电极4的电学性能进行检测时,将该保护层13与待检测的触控电极4接触。
本实施例中,为了对整个触控电极4的电学性能进行检测,可将导电电极11的形状和尺寸设置为与待检测的触控电极4完全相同,此时导电电极11可以与待检测的触控电极4完全正对。当然,上述绝缘电介质层12和保护层13的形状和尺寸也可以设置为与导电电极11完全相同。
可选地,绝缘电介质层12的材料为低介电常数材料,如:碳掺杂的氧化硅薄膜、氟掺杂的氧化硅薄膜、多孔硅薄膜、聚酰亚胺、聚四氟乙烯、环氧氰酸酯、纳米玻璃等。由于低介电常数材料具有低损耗、低泄漏电流、高附着力、耐腐蚀性和低收缩性等特点,因此在本实施例中,利用低介电常数材料来形成绝缘电介质层12,可有效地降低导电电极11与待检测的触控电极4之间的寄生电容,从而能保证后续过程中对导电电极11与触控电极4之间的电容的精准检测,与此同时,还能有效降低装置的整体功耗。
此外,在利用电容检测单元2获取所形成的电容结构的电容值的过程中,为确保电容检测单元2的探测端21、22与所形成的电容结构之间的接触电阻较小,往往会将两探测端21、22的顶部设置为较细。然而,在将顶部较细的探测端21、22与所形成的电容结构中的导电电极11和待检测的触控电极4接触时,容易对导电电极11和触控电极4表面造成损伤。
为防止探测端22对导电电极11的表面造成损伤,本实施例中采用金属材料来制备导电电极11,这样不仅可以满足导电电极11的导电性,还可以保证导电电极11具备一定的硬度,从而能有效地避免导电电极11的表面被探测端22损伤,进而使得导电电极11的使用寿命更长。
为防止探测端21对待检测的触控电极4的表面造成损伤,本实施例中不再将电容检测单元2的探测端21直接连接到待检测的触控电极4上,而是将探测端21连接至与待检测的触控电极4上设置的 金属引线5(用于在触控电极4与芯片之间传递信号),通过该金属引线5可使得电容检测单元2与待检测的触控电极4电连接。
可选地,该电学性能检测装置还包括:驱动单元3,驱动单元3与电容形成单元1连接,驱动单元3用于带动电容形成单元1进行运动。在本实施例中,驱动单元3的设置可有效地提升装置的自动化程度。更重要的是,通过驱动单元3的控制,可以使得电容形成单元1与待检测的触控电极4之间的对位更加精准,此时对触控电极4的电学性能的评估也更为准确。
需要补充说明的是,在本实施例提供的电学性能检测装置中,可以配置多种不同形状、尺寸的电容形成单元1,这样,利用该电学性能检测装置可以实现对不同形状、尺寸的触控电极4的电学性能的检测。优选的,驱动单元3可拆卸地与电容形成单元1连接,从而可方便电容形成单元1的更换。
本发明实施例提供了一种触控电极的电学性能检测装置,该电学性能检测装置包括电容形成单元和电容检测单元,电容形成单元用于与待检测的触控电极形成电容结构,电容检测单元用于获取所形成的电容结构的电容值。本发明的技术方案通过电容形成单元来与待检测的触控电极形成电容结构,然后利用电容检测单元获取该电容结构的电容值,因此,检测人员基于获取到的电容结构的电容值可对触控电极的电学性能进行有效且准确的评估。
图3为本发明实施例提供的触控电极的电学性能检测方法的流程图。如图3所示,该电学性能检测方法利用上述实施例中的电学性能检测装置实现检测,该电学性能检测方法包括:
步骤101:将电容形成单元移动至与待检测的触控电极正对的位置并且与待检测的触控电极接触,以使得电容形成单元与待检测的触控电极形成电容结构。
在步骤101中,可通过上述实施例中的驱动单元将电容形成单元移动至与待检测的触控电极正对的位置并且与待检测的触控电极接触,从而使得电容形成单元与待检测的触控电极形成电容结构。
需要说明的是,上述采用驱动单元将电容形成单元移动至与待 检测的触控电极正对的位置的技术手段为本实施例中的优选方案,本实施例中还可以由检测人员手动地移动电容形成单元以使其与待检测的触控电极正对并接触。
步骤102:利用电容检测单元获取所形成的电容结构的电容值。
在步骤102中,利用电容检测单元来获取由电容形成单元和待检测的触控电极所构成的电容结构的电容值。在电容形成单元中各部件的电学性能可以预先获取的情况下,检测人员基于电容检测单元所检测的电容值可以对待检测的触控电极的电学性能进行评估。
本发明实施例提供了一种触控电极的电学性能检测方法,其包括以下步骤:将电容形成单元移动至与待检测的触控电极正对的位置并且与待检测的触控电极接触,以使得电容形成单元与待检测的触控电极之间形成电容结构;利用电容检测单元获取所形成的电容结构的电容值。本发明的技术方案通过电容形成单元来与待检测的触控电极形成电容结构,然后利用电容检测单元获取所形成的电容结构的电容值,因此,检测人员基于获取到的电容结构的电容值可对触控电极的电学性能进行有效且准确的评估。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种触控电极的电学性能检测装置,包括:
    电容形成单元,用于与所述触控电极形成电容结构;以及
    电容检测单元,用于获取所述电容结构的电容值。
  2. 根据权利要求1所述的触控电极的电学性能检测装置,其中,所述电容形成单元包括:
    导电电极和形成于所述导电电极表面的绝缘电介质层,所述电容检测单元用于与所述导电电极电连接。
  3. 根据权利要求2所述的触控电极的电学性能检测装置,其中,所述绝缘电介质层的材料为低介电常数材料。
  4. 根据权利要求2所述的触控电极的电学性能检测装置,其中,所述导电电极的材料为金属材料。
  5. 根据权利要求2所述的触控电极的电学性能检测装置,其中,所述电容形成单元还包括:设置于所述绝缘电介质层表面的保护层。
  6. 根据权利要求5所述的触控电极的电学性能检测装置,其中,所述保护层的材料为柔性材料。
  7. 根据权利要求2所述的触控电极的电学性能检测装置,其中,所述导电电极与所述触控电极的形状和尺寸均相同。
  8. 根据权利要求1所述的触控电极的电学性能检测装置,其中,所述触控电极上设置有金属引线,所述电容检测单元通过所述金属引线与所述触控电极电连接。
  9. 根据权利要求1-8中任一项所述的触控电极的电学性能检测装置,还包括:
    驱动单元,其与所述电容形成单元连接,用于带动所述电容形成单元进行运动。
  10. 根据权利要求9所述的触控电极的电学性能检测装置,其中,所述驱动单元可拆卸地与所述电容形成单元连接。
  11. 一种触控电极的电学性能检测方法,其中,所述触控电极的电学性能检测方法利用权利要求1-10中任一项所述的触控电极的电学性能检测装置来执行以下步骤:
    将所述电容形成单元移动至与所述触控电极正对的位置并与所述触控电极接触,以使得所述电容形成单元与所述触控电极形成电容结构;以及
    利用所述电容检测单元获取所述电容结构的电容值。
  12. 根据权利要求11所述的触控电极的电学性能检测方法,其中,利用驱动单元将所述电容形成单元移动至与所述触控电极正对的位置并与所述触控电极接触。
PCT/CN2016/070103 2015-08-31 2016-01-05 触控电极的电学性能检测装置和检测方法 WO2017036062A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/504,095 US20170277303A1 (en) 2015-08-31 2016-01-05 Electrical Property Detection Device and Method for Touch Electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510549213.4A CN105224153A (zh) 2015-08-31 2015-08-31 触控电极的电学性能检测装置和检测方法
CN201510549213.4 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017036062A1 true WO2017036062A1 (zh) 2017-03-09

Family

ID=54993168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070103 WO2017036062A1 (zh) 2015-08-31 2016-01-05 触控电极的电学性能检测装置和检测方法

Country Status (3)

Country Link
US (1) US20170277303A1 (zh)
CN (1) CN105224153A (zh)
WO (1) WO2017036062A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117074886A (zh) * 2023-08-28 2023-11-17 国网湖北省电力有限公司超高压公司 耐热屏蔽服试验电极的测试方法及系统
CN118566792A (zh) * 2024-07-30 2024-08-30 南通三喜电子有限公司 一种抗压式耐湿防潮贴片电容器的性能测试方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10572080B2 (en) * 2016-06-13 2020-02-25 Samsung Display Co., Ltd. Optical touch film, display device including the same, and manufacturing method thereof
CN109283417B (zh) * 2018-11-26 2023-12-19 深圳市诺峰光电设备有限公司 一种三工位dito全自动测试机及其测试工艺
DE102021101621A1 (de) 2021-01-26 2022-07-28 Valeo Schalter Und Sensoren Gmbh Vorrichtung und Verfahren zum Überprüfen einer Bedieneinrichtung mit einem berührungsempfindlichen Bedienfeld
CN113608044A (zh) * 2021-06-28 2021-11-05 南京华睿川电子科技有限公司 一种按键触摸屏的测试治具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062905A1 (en) * 2000-03-06 2003-04-03 Ute Kollmer Circuit configuration and method for assessing capacitances in matrices
CN101846712A (zh) * 2010-04-01 2010-09-29 苏州崴展电子科技有限公司 电容式触摸屏ito电气特性检测方法及检测系统
CN102508105A (zh) * 2011-11-22 2012-06-20 汕头超声显示器(二厂)有限公司 一种采用近场检测电容触摸屏的方法
CN203444049U (zh) * 2013-06-21 2014-02-19 群嘉精密股份有限公司 触控面板检测装置
CN103675489A (zh) * 2012-08-31 2014-03-26 晨星软件研发(深圳)有限公司 应用于触控装置的测试系统及测试方法
CN103941109A (zh) * 2013-01-21 2014-07-23 宸鸿科技(厦门)有限公司 触控面板的测试装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005021823D1 (de) * 2004-12-22 2010-07-22 Texas Instruments Deutschland Verfahren und vorrichtung zum kontaktlosen prüfen von rfid-schlaufen
US8253425B2 (en) * 2007-05-08 2012-08-28 Synaptics Incorporated Production testing of a capacitive touch sensing device
US7920134B2 (en) * 2007-06-13 2011-04-05 Apple Inc. Periodic sensor autocalibration and emulation by varying stimulus level
US8692777B2 (en) * 2008-02-08 2014-04-08 Apple Inc. Method for rapidly testing capacitance sensing array fault conditions using a floating conductor
US8279197B2 (en) * 2009-08-25 2012-10-02 Pixart Imaging Inc. Method and apparatus for detecting defective traces in a mutual capacitance touch sensing device
US8766930B2 (en) * 2010-06-02 2014-07-01 Pixart Imaging Inc. Capacitive touchscreen system with drive-sense circuits
JP5152296B2 (ja) * 2010-10-26 2013-02-27 株式会社デンソー 乗員検知センサの検査装置および検査方法
US9490048B2 (en) * 2012-03-29 2016-11-08 Cam Holding Corporation Electrical contacts in layered structures
CN102722282A (zh) * 2012-06-06 2012-10-10 青岛海信移动通信技术股份有限公司 一种触摸屏检测方法及电子产品
US8810263B1 (en) * 2013-03-12 2014-08-19 Cypress Semiconductor Corporation Adaptive resolution circuit
CN203385802U (zh) * 2013-06-25 2014-01-08 彩虹(佛山)平板显示有限公司 一种单层多点ito的电气性能测试装置
CN104063101B (zh) * 2014-05-30 2016-08-24 小米科技有限责任公司 触摸屏控制方法和装置
US9857413B2 (en) * 2014-07-02 2018-01-02 Avery Dennison Retail Information Services, Llc Systems and methods for testing RFID straps

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062905A1 (en) * 2000-03-06 2003-04-03 Ute Kollmer Circuit configuration and method for assessing capacitances in matrices
CN101846712A (zh) * 2010-04-01 2010-09-29 苏州崴展电子科技有限公司 电容式触摸屏ito电气特性检测方法及检测系统
CN102508105A (zh) * 2011-11-22 2012-06-20 汕头超声显示器(二厂)有限公司 一种采用近场检测电容触摸屏的方法
CN103675489A (zh) * 2012-08-31 2014-03-26 晨星软件研发(深圳)有限公司 应用于触控装置的测试系统及测试方法
CN103941109A (zh) * 2013-01-21 2014-07-23 宸鸿科技(厦门)有限公司 触控面板的测试装置
CN203444049U (zh) * 2013-06-21 2014-02-19 群嘉精密股份有限公司 触控面板检测装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117074886A (zh) * 2023-08-28 2023-11-17 国网湖北省电力有限公司超高压公司 耐热屏蔽服试验电极的测试方法及系统
CN117074886B (zh) * 2023-08-28 2024-05-14 国网湖北省电力有限公司超高压公司 耐热屏蔽服试验电极的测试方法及系统
CN118566792A (zh) * 2024-07-30 2024-08-30 南通三喜电子有限公司 一种抗压式耐湿防潮贴片电容器的性能测试方法及系统

Also Published As

Publication number Publication date
CN105224153A (zh) 2016-01-06
US20170277303A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2017036062A1 (zh) 触控电极的电学性能检测装置和检测方法
TWI566150B (zh) 具多層電極結構之高精確度觸壓感應裝置
TWI539352B (zh) 觸控螢幕面板短路之原位偵測
US9007334B2 (en) Baseline capacitance calibration
TW201512913A (zh) 觸摸屏觸摸識別方法
TWI591517B (zh) 動態偵測電容筆於觸控面板上顯示筆觸之臨界值的方法
JP2015018538A (ja) タッチパネルの入力信号識別方法
TWI511012B (zh) 觸摸識別方法
CN104216597A (zh) 一种电阻式触摸屏的触摸检测方法及系统
JP5220201B2 (ja) フライング・キャパシタを用いて、表面型静電容量方式タッチ・パネルの上の位置を測定する方法およびシステム
KR20140091917A (ko) 터치 패널의 검사 장치 및 그 방법
Ge et al. Integrated multifunctional electronic skins with low‐coupling for complicated and accurate human–robot collaboration
CN104090389B (zh) 测试元件组、阵列基板、显示装置和测试方法
TWI459267B (zh) 觸摸屏觸摸點之感測方法
Shao et al. A highly accurate, stretchable touchpad for robust, linear, and stable tactile feedback
TW201624242A (zh) 電容式感測裝置及其方法
CN107943642B (zh) 一种电容式触摸感应装置的性能测试方法
TWI537807B (zh) 電容式感測裝置及其方法
TWI533175B (zh) 觸控處理裝置及系統與其觸控偵測方法
CN106483410B (zh) 一种触摸屏响应时间测试装置、系统和方法
TWI470496B (zh) 觸控面板之觸點座標的取樣方法
TW201617626A (zh) 測試座
JP2018194373A (ja) 基板検査装置、検査治具、及び基板検査方法
US20190094006A1 (en) Determination of a flexible display
JP6221145B2 (ja) タッチパネル検査装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15504095

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16840502

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16840502

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16840502

Country of ref document: EP

Kind code of ref document: A1