WO2017034654A1 - Independent 3d stacking - Google Patents

Independent 3d stacking Download PDF

Info

Publication number
WO2017034654A1
WO2017034654A1 PCT/US2016/037690 US2016037690W WO2017034654A1 WO 2017034654 A1 WO2017034654 A1 WO 2017034654A1 US 2016037690 W US2016037690 W US 2016037690W WO 2017034654 A1 WO2017034654 A1 WO 2017034654A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
package
die
level die
rdl
Prior art date
Application number
PCT/US2016/037690
Other languages
French (fr)
Inventor
Kwan-Yu LAI
Jun Zhai
Kunzhong Hu
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to CN201680043123.0A priority Critical patent/CN107851615B/en
Priority to KR1020187004420A priority patent/KR102033865B1/en
Publication of WO2017034654A1 publication Critical patent/WO2017034654A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/89Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using at least one connector not provided for in any of the groups H01L24/81 - H01L24/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/0805Shape
    • H01L2224/08057Shape in side view
    • H01L2224/08058Shape in side view being non uniform along the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/08147Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bonding area connecting to a bonding area disposed in a recess of the surface of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8034Bonding interfaces of the bonding area
    • H01L2224/80357Bonding interfaces of the bonding area being flush with the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/186Material

Definitions

  • Embodiments described herein relate to semiconductor packaging. More particularly, embodiments relate to packages including 3D stacked die.
  • SiP system in package
  • PoP package on package
  • a 3D stacking implementation such as chip on wafer (CoW) includes mounting of die onto a support wafer, followed by singulation of stacked die SiPs.
  • CoW chip on wafer
  • W2W wafer to wafer
  • Both of the conventional 3D stacking implementations require that one of the package level tiers (e.g. mounted die, or die within wafer) to be bigger or equal to the other tier.
  • the package level tiers e.g. mounted die, or die within wafer
  • CoW may involve the singulated area of the support wafer being bigger than the die mounted on the support wafer
  • W2W may involve equal areas of the singulated wafers.
  • a package includes a first level redistribution layer (RDL), and a front side of a first package level on the RDL.
  • the first package level includes one or more first level die encapsulated within a gap fill oxide layer on the RDL.
  • a plurality of through oxide vias (TOVs) extend through the gap fill oxide layer.
  • the TOVs and the first level die have a height of about 20 microns or less.
  • a second level die is included in a second package level, and the second level die is hybrid bonded to a back side of the first package level, with the hybrid bond including direct bonded oxide-oxide surfaces and direct bonded metal-metal surfaces.
  • the second level die may be encapsulated in molding compound, for example, on the first package level.
  • the RDL is formed on an in electrical contact with a front side of the first level die and the plurality of TOVs.
  • the first package level includes a first package level RDL on a back side of the first level die and the gap fill oxide layer.
  • the second level die may be hybrid bonded to a planarized back surface of the first package level RDL.
  • the first package level RDL may include an oxide dielectric layer and metal redistribution line, and the second level die is hybrid bonded to the oxide dielectric layer and the metal redistribution line.
  • the first level die may include a plurality of through silicon vias (TSVs), with the first package level RDL formed on an in electrical contact with the plurality of TSVs.
  • TSVs through silicon vias
  • the TOVs may be arranged in rows.
  • the plurality of TOVs may include a first row of TOVs and a second row of TOVs.
  • the first and second rows of TOVs are laterally adjacent to a first pair of laterally opposite sides of the first level die.
  • a second- first level die and a third- first level die can be located laterally adjacent to a second pair of laterally opposite sides of the first level die.
  • the RDL may be formed on an in electrical contact with a front side of the first level die, a front side of the second- first level die, a front side of the third- first level die, the first row of TOVs, and the second row of TOVs.
  • the first level die may additionally include a plurality of TSVs, for example, with a maximum width of about 10 microns or less.
  • a package includes an RDL, and a front side of a first package level on a back side of the RDL.
  • a first level die is encapsulated in a gap fill oxide layer on the back side of the RDL.
  • a first row of TOVs and a second row of TOVs protrude from the back side of the RDL, and the first level die is located laterally between the first and second rows of TOVs.
  • a plurality of second level die are hybrid bonded to a back side of the first package level with direct bonded oxide-oxide surfaces and direct bonded metal-metal surfaces.
  • the first package level may additionally include a first package level RDL on a back side of the first level die and the gap fill oxide layer.
  • the first package level RDL may include an oxide dielectric layer and a metal redistribution line
  • the second level die is hybrid bonded to the oxide dielectric layer and the metal redistribution line.
  • the first package level may additionally include a second- first level die and a third- first level die laterally adjacent to opposite sides of the first level die. The first level die, second- first level die, and third- first level die may all be on an in electrical contact with the RDL.
  • the first level die is rectangular, the first and second rows of TOVs are laterally adjacent to a first pair of laterally opposite sides of the first level die, and the second- first level die and the third- first level die are laterally adjacent to a second pair of laterally opposite sides of the first level die.
  • the first level die, the first row of TOVs, and the second row of TOVs may all have a height of 20 microns or less.
  • a plurality of TSVs may be within the first level die, with each TSV having a maximum width of 10 microns or less.
  • a method of forming a package includes forming a first package level on a carrier substrate, the first package level including a first level die encapsulated in a gap fill oxide layer, and a plurality of though oxide vias (TOVs).
  • the TOVs may have a height of about 20 microns or less.
  • a second level die is hybrid bonded to the first package level with direct bonded oxide-oxide surfaces and metal-metal surfaces. The second level die is encapsulated on a back side of the first package level.
  • the carrier substrate is removed, and a RDL is formed on a front side of the first package level.
  • the method of forming the package additionally includes attaching the first level die to the carrier substrate, depositing the gap fill oxide layer over the first level die, planarizing the gap fill oxide layer, and forming the plurality of TOVs in the gap fill oxide layer.
  • the first level die is ground to reduce a thickness of the first level die after attaching the first level die to the carrier substrate and prior to depositing the gap fill oxide layer over the first level die.
  • a first level RDL is formed on the planarized gap fill oxide layer and first level die, and the first level RDL is planarized, and the second level die is hybrid bonded to the planarized first level RDL.
  • FIG. 1 is a flow chart illustrating a method of forming a package in accordance with an embodiment.
  • FIG. 2 is a schematic cross-sectional side view illustration of a first level die including blind vias in accordance with an embodiment.
  • FIG. 3 is a cross-sectional side view illustration of first level die attached to a carrier substrate in accordance with an embodiment.
  • FIG. 4 is a cross-sectional side view illustration of thinned first level die in accordance with an embodiment.
  • FIG. 5 is a cross-sectional side view illustration of a gap fill oxide layer formed over thinned first level die in accordance with an embodiment.
  • FIG. 6 is a cross-sectional side view illustration of a planarized gap fill oxide layer including through oxide vias in accordance with an embodiment.
  • FIG. 7 is a cross-sectional side view illustration of a first level redistribution layer formed over a planarized gap fill oxide layer including through oxide vias in accordance with an embodiment.
  • FIG. 8 is a cross-sectional side view illustration of a first package level including a planarized first level redistribution layer in accordance with an embodiment.
  • FIG. 9 is a cross-sectional side view illustration including a close-up view of second level die hybrid bonded to a first package level in accordance with an embodiment.
  • FIG. 10 is a cross-sectional side view illustration of encapsulated second level die on a first package level in accordance with an embodiment.
  • FIG. 11 is a cross-sectional side view illustration of package including hybrid bonded second level die in accordance with an embodiment.
  • FIG. 12 is a cross-sectional side view illustration of package including a thinned second package level in accordance with an embodiment.
  • FIG. 13 is a schematic bottom view illustration of a package including stacked die, through oxide vias, and through silicon vias in accordance with an embodiment.
  • FIG. 14 is a flow chart illustrating a method of forming a package in accordance with an embodiment.
  • FIGS. 15A-15D are cross-sectional side view illustrations of a method of forming a package with more than two package levels in accordance with an embodiment.
  • FIG. 16 is a flow chart illustrating a method of forming a package in accordance with an embodiment.
  • FIGS. 17A-17D are cross-sectional side view illustrations of a method of forming a package in accordance with an embodiment.
  • FIG. 17E is a cross-sectional side view illustration of a package with more than two package levels in accordance with an embodiment.
  • FIG. 18 a schematic bottom view illustration of a die stack arrangement and a close-up perspective view of a row of through oxide vias in accordance with an embodiment.
  • FIG. 19A is a cross-sectional side view illustration of a package taken along line A-A in FIG. 18 in accordance with an embodiment.
  • FIG. 19B is a cross-sectional side view illustration of a package taken along line B-B in FIG. 18 in accordance with an embodiment.
  • Embodiments describe semiconductor packages and packaging processes of
  • heterogeneous stacked die In accordance with embodiments, flexibility in heterogeneous die integration may be achieved independent of die area or thickness, in any package level.
  • SoC system on chip
  • IP intellectual property
  • top, bottom, front, “back”, “over”, “to”, “between”, and “on” as used herein may refer to a relative position of one layer with respect to other layers.
  • One layer “over”, or “on” another layer or bonded “to” or in “contact” with another layer may be directly in contact with the other layer or may have one or more intervening layers.
  • One layer “between” layers may be directly in contact with the layers or may have one or more intervening layers.
  • a package includes a first package level including one or more first level die encapsulated within a gap fill oxide layer and a first level RDL spanning across the one or more first level die and the gap fill oxide layer.
  • a planarized front surface of a second level die is hybrid bonded to a planarized surface of the first level RDL, which may include coplanar metal and oxide surfaces.
  • the hybrid bonds include oxide- oxide bonds and metal-metal bonds between the second level die and the first level RDL.
  • through silicon vias may optionally be formed through the one or more first level die and through oxide vias (TOVs) may be formed through the gap fill oxide layer encapsulating the one or more first level die within the first package level.
  • a thickness of the first level die, gap fill oxide layer, and TOVs may be reduced to about 20 ⁇ or less, such as 2 ⁇ -20 ⁇ , or 5 ⁇ -10 ⁇ . In this manner, not only is z-height savings realized, it is possible to form narrow TSVs and TOVs without height being a practical limiting factor to minimum width of the TSVs and TOVs.
  • TSVs and/or TOVs, and hybrid bonding allows for significant flexibility in heterogeneous die integration.
  • embodiments describe system on chip (SoC) die partitioning and/or die splitting within an SiP structure (e.g. 3D memory package) in which IP cores such as CPU, GPU, IO, DRAM, SRAM, cache, ESD, power management, and integrated passives may be freely segregated throughout the package, while also mitigating total z-height of the package.
  • IP cores such as CPU, GPU, IO, DRAM, SRAM, cache, ESD, power management, and integrated passives may be freely segregated throughout the package, while also mitigating total z-height of the package.
  • IP cores can be segregated into different die within the package.
  • die partitioning may allow the integration of different process nodes into separate die.
  • different IP cores in different die can be processed at different process nodes.
  • central processing unit (CPU) and general processing unit (GPU) can be separate die processed at different process nodes. Flexibility in die partitioning may be facilitated by the ability to access the power supply line anywhere. Flexibility in die partition
  • the first level die is an active die that includes active IP cores that benefit from relieved routing densities and short routing paths, such as a central processing unit/general processing unit (CPU/GPU) die.
  • the package is a 3D memory package, such as a wide I/O DRAM package.
  • the one or more second level die are memory die, such as, but not limited to, DRAM.
  • the additional first level die, such as the second- first level die and the third- first level die are a partitioned IP core, such as, but not limited to, split I/O die.
  • a thickness or height of the first level die and TOVs is about 20 ⁇ or less, such as 5 to 10 ⁇ . In this manner, not only is z-height savings realized, it is possible to form narrow TOVs.
  • an exemplary TOV is about 10 ⁇ wide, though narrower or wider TOVs may be formed, for example, easily within a 10: 1 (height : diameter) aspect ratio.
  • an exemplary TOV is about 2 ⁇ wide.
  • the reduced thickness of the first level die allows for the formation of TOVs with substantially less width (or diameter) compared to common TSVs such as those in a traditional interposer.
  • TOVs and optionally TSVs may be used to provide short vertical communication paths between the package levels.
  • TOVs may also be arranged in rows to provide short routing paths from the second level die to edges (e.g. each edge) of a first level die (e.g. active die), which can also allow for high routing densities with mitigated routing jam.
  • the pitch between TOVs in a row of TOVs may have a gap ratio of TO V to oxide between TOVs of 1 : 1.
  • exemplary 10 ⁇ wide TOVs have a pitch of 20 ⁇ (in x and/or y dimensions). This may correspond to a density of 50 x 50 per mm 2 (or 2,500 per mm 2 ).
  • Embodiments are not limited to these exemplary gap ratios, TOV pitches, and TOV densities.
  • the amount of oxide between TOVs can be increased above the 1 : 1 gap ratio.
  • embodiments describe an embedded TSV first level die configuration that may have a comparatively low keep out zone (KOZ). It has been observed that TSVs, such as copper TSVs through a silicon die, can create stress in the surrounding die area. As a result, active devices are arranged outside of a lateral KOZ around a TSV to mitigate TSV-induced stress on the active devices, such as affecting carrier mobility in the active devices.
  • the reduced thickness of the embedded first level (e.g. active) die can allow the formation of TSVs with a substantially less width (or diameter) compared to common TSVs such as those in a traditional interposer.
  • aspect ratios of at most 10: 1 first level die thickness : TSV maximum width are well within processing parameters.
  • TSVs having a maximum width (or diameter) of 2-10 ⁇ , or less are possible.
  • An exemplary list of TSV dimensions and aspect ratios is provided in Table 1 for illustrative purposes.
  • a reduced TSV height may allow for reduced TSV maximum width (or diameter), as well as increased TSV density and a smaller KOZ.
  • a TSV density of 250 x 250 per mm 2 e.g. 62,500 per mm 2
  • a TSV density of 250 x 250 per mm 2 is possible, which may be greater than that achievable with traditional interposers at approximately 10 x 10 per mm 2 (or 100 per mm 2 ).
  • a KOZ of less than approximately 5 ⁇ is possible.
  • a TSV through the first level die is within 5 ⁇ of an active device (e.g. transistor) in the first level die. In one aspect, this may allow for a greater degree of freedom in location of the active devices, as well as location and density of the TSVs to provide a shorter and more direct routing to the stacked second level die.
  • the stacked second level die can have relatively straight routing to the bottom landing pad or conductive bump of the package, where the power plane is, for example on a circuit board.
  • a flow chart is provided illustrating a method of forming a package in accordance with an embodiment.
  • the first package level 150 may include a first level die 110 encapsulated in a gap fill oxide layer 130, and a plurality of though oxide vias (TOVs) 134.
  • the TOVs 134 have a height of about 20 ⁇ or less.
  • a second level die 210 is then hybrid bonded to the first package level 150 at operation 1012 to form direct bonded oxide-oxide surfaces (e.g.
  • the second level die 210 is encapsulated on a back side 165 of the first package level 150, followed by removal of the carrier substrate 101, 103 at operation 1016.
  • An RDL 300 may then be formed on a front side 170 of the first package level 150 at operation 1018.
  • the one or more first level die 110 may be active die, though this is not required. In other embodiments, the first level die 110 may be replaced with silicon interposers, or silicon integrated passive devices (IPDs). Referring now to FIG. 2 a schematic cross-sectional side view is provided of a first level die 110 including blind vias 119 in accordance with an embodiment.
  • the first level die 110 may be an active die such as a logic die or SOC die including an active component(s) such as, but not limited to, a microprocessor, memory, RF transceiver, and mixed-signal component.
  • an active device 121 e.g. transistor of an active component is shown by way of example.
  • the active devices 121 may be formed on a substrate 117 such as a silicon substrate or silicon on insulator (SOI) substrate.
  • the active devices 121 are formed in a top epitaxial silicon layer 116, formed over a base silicon substrate 114.
  • the KOZ is less than 5 ⁇
  • a blind via 119 is formed within 5 ⁇ (laterally) of an active device 121.
  • One or more interconnect layers 118 may be formed for routing purposes to connect the active devices 121 and blind vias 119 to landing pads 128 (including both 128A, 128B on the front side 111) of the first level die 110.
  • the interconnect layers 118 may include one or more metal layers 126 and/or dielectric layers 124.
  • the blind vias 119 (which will become TSVs 120) are interspersed between the active devices 121 in the first level die 110.
  • the metal layer(s) 126 may provide lateral interconnect paths, with vias 127 providing vertical connections.
  • the front side 111 of the first level die 110 may include insulating layer 122 (e.g. oxide, or polymer) landing pads 128B connected to blind vias 119, and/or landing pads 128 A connected to the active devices 121 of the first level die 110.
  • the blind vias 119 are formed in the active layer (e.g. top epitaxial layer 116) of the active devices 121.
  • the blind vias 119 may extend completely through the active layer (e.g. epitaxial layer 116) and optionally into the base substrate 114.
  • the depth of the blind vias 119 may be at least the depth of the final TSVs 120 to be formed.
  • the blind vias 119 may optionally extend at least partially through the interconnect layer(s) 118.
  • blind vias 119 may extend through the interconnect layer 118 to landing pads 128A, or to a metal layer 126 in an embodiment.
  • blind vias 119 may not contact a landing pad (e.g. 128A, 128B) on the front side 111 and instead connect with an active device 121 through one or more metal layers 126 and vias 127 in the interconnect layer 118. In this manner, the TSVs 120 to be formed can connect directly to the active devices 121 within the first level die 110.
  • first level die 110 are mounted on a carrier substrate 101 such as a glass panel, silicon wafer, metal panel, etc.
  • the carrier substrate 101 may include a release layer 102 for mounting the first level die.
  • the release layer 102 is an oxide layer and the first level die 110 are mounted on the carrier substrate 101 with oxide-oxide bonds (e.g. bonding with oxide insulating layer 122).
  • the release layer 102 is an adhesive (e.g. polymer) or tape layer for mounting the first level die 110.
  • the first level die 110 are mounted onto the carrier substrate 101 face down, such that the front sides 111 including the insulating layer 122 and landing pads 128 (128A, 128B) is face down.
  • the one or more first level 110 may be different die, including different components, with different thicknesses and areas.
  • One or more of the first level die 110 may be active die.
  • Blind vias 119 are optionally formed within one or more of the first level die 110, though this is not required.
  • the one or more first level die 110 may then be ground using a suitable technique such as chemical mechanical polishing (CMP) to reduce a thickness of the first level die 110, as shown in FIG. 4.
  • CMP chemical mechanical polishing
  • the thinning of the first level die 110 may expose the blind vias 119, resulting in a back side 115 of the first level die 110 including exposed surfaces 123 of TSVs 120.
  • the first level die 110 are thinned to about 20 ⁇ or less, such as 2 ⁇ -20 ⁇ , or 5 ⁇ -10 ⁇ .
  • gap fill oxide layer 130 may then be formed over the thinned first level die 110.
  • gap fill oxide layer 130 is deposited using a suitable technique such as chemical vapor deposition (CVD), though other techniques may be used. Due to the reduced thickness of the first level die 110, a quality gap fill oxide layer 130 can be deposited using CVD, which may aid in hybrid bonding.
  • CVD chemical vapor deposition
  • TOVs 134 may be formed through the gap fill oxide layer 130.
  • the gap fill oxide layer 130 may be planarized, patterned, and TOVs 134 formed within the planarized gap fill oxide layer 130.
  • TSVs 120 may also be optionally formed.
  • TSVs 120 may be formed at this stage in embodiments in which blind vias 119 were not previously formed in the first level die 110.
  • the thinned first level die 110 do not include TSVs 120.
  • the back surface 131 of the gap fill oxide layer 130 and back side 115 of the first level die 110 are planarized, exposing surfaces 135 of the TOVs 134, and optionally surfaces 123 of the TSVs 120.
  • a first level RDL 160 may be optionally formed over the gap fill oxide layer 130 and thinned first level die 110 as illustrated in FIG. 7.
  • the first level RDL may be formed on an in electrical contact with the plurality of TOVs 134 and/or TSVs 120.
  • the first level RDL 160 may include one or more metal redistribution lines 162 (e.g. copper) and insulating layers 164.
  • one or more insulating layers 164 are formed of an oxide (e.g. S1O2) for subsequent hybrid bonding.
  • the gap fill oxide layer 130, TOVs 134, first level die 110, and optional first level RDL 160 form the first package level 150.
  • a back side 165 of the first package level 150 (e.g. the first level RDL 160) may be planarized using a suitable technique such as CMP to form a planar surface for hybrid bonding.
  • One or more second level die 210 may then be hybrid bonded to the first package level 150 as shown in the embodiment illustrated in FIG. 9.
  • the second level die 210 are hybrid bonded face down, with the (e.g. planar) front sides 211 of the second level die 210 hybrid bonded to the back side 165 (e.g. planar back surface) of the first package level 150.
  • the front surfaces 211 may be hybrid bonded to the first level RDL 160, when present.
  • the close-up view of the hybrid bond in FIG. 9 shows direct bonded oxide-oxide surfaces of an insulating layer 164 (e.g. S1O2) of the first level RDL 160 with an insulating layer 264 (e.g.
  • the second level die 210 are then encapsulated in a second level molding compound 240 on the back side 165 of the first package level 150.
  • the second level molding compound 240 may include a thermosetting cross-linked resin (e.g. epoxy), though other materials may be used as known in electronic packaging. Encapsulation may be accomplished using a suitable technique such as, but not limited to, transfer molding, compression molding, and lamination.
  • the second level molding compound 240 covers the back sides 215 of the second level die 210.
  • a thicker second level molding compound 240 may provide structural support during subsequent processing.
  • RDL 300 may be formed on the front side 170 of the first package level 150. Specifically, RDL 300 may be formed on the gap fill oxide layer 130 and front sides 111 of the first level die 110. As shown, RDL 300 may also be formed on an in electrical contact with the plurality of TOVs 134. RDL 300 may include a single redistribution line 302 or multiple redistribution lines 302 and dielectric layers 304. RDL 300 may be formed by a layer-by-layer process, and may be formed using thin film technology. In an embodiment, the RDL 300 has a total thickness of less than 50 ⁇ , or more specifically less than 30 ⁇ , such as approximately 20 ⁇ .
  • RDL 300 includes embedded redistribution lines 302 (embedded traces).
  • the redistribution lines 302 may be created by first forming a seed layer, followed by forming a metal (e.g. copper) pattern.
  • redistribution lines 302 may be formed by deposition (e.g. sputtering) and etching.
  • the material of redistribution lines 302 can include, but is not limited to, a metallic material such as copper, titanium, nickel, gold, and combinations or alloys thereof.
  • the metal pattern of the redistribution lines 302 is then embedded in a dielectric layer 304, which is optionally patterned.
  • the dielectric layer(s) 304 may be any suitable material such as an oxide, or polymer (e.g. polyimide).
  • a plurality of conductive bumps 350 e.g. solder bumps, or stud bumps
  • Individual packages 100 may then be singulated from the reconstituted substrate.
  • a thickness of the second package level 250 including the second level molding compound 240 and second level die 210 may be reduced using a suitable technique such as CMP prior to singulation. In the embodiment illustrated in FIG. 12, the thickness of the second package level 250 may be reduced to expose the back side 215 of one or more second level die 210.
  • FIG. 13 is a schematic bottom view illustration of a package 100 in accordance with embodiments illustrating a variety of TOV 134 and optionally TSV 120 connections from the first package level 150 including the first level die 110 to the second package level 250 including the second level die 210.
  • FIG. 13 also illustrates freedom of die size (x, y dimensions) and location (x, y placement) within package levels that may be possible with embodiments.
  • heterogeneous die may be integrated into multiple package levels without one package level having to be larger than another package level. Thus, specific die need not be packaged into a primary carrier package level. Furthermore, short communication paths between package levels are achievable.
  • vias may be located at any location in the entire face of the first package level 150, which may allow for full access to power distribution for both the first level die 110 and second level die 210.
  • short communication path lengths between first level die 110 and second level die 210 can additionally be provided where the die overlap.
  • a first level die 110 may be a bridging die, which includes TSVs 120 directly underneath and in communication with two separate second level die 210.
  • FIG. 14 is a flow chart illustrating a method of forming a package in accordance with an embodiment, which may optionally include forming more than two package levels.
  • a first level die 110 is attached to a carrier substrate 101, similarly as previously described with regard to FIG. 3A.
  • a thickness of the first level die 110 is reduced, similarly as described with regard to FIG. 4.
  • a gap fill oxide layer 130 is deposited over the thinned first level die 110, similarly as described with regard to FIG. 5.
  • the gap fill oxide layer 130 (and optionally the first level die 110) is planarized, similarly as described with regard to FIG. 6.
  • TOVs 134 are formed through the gap fill oxide layer 130, similarly as described with regard to FIG. 6.
  • a first level RDL 160 is formed over the gap fill oxide layer 130 and the first level die 110, similarly as described with regard to FIGS. 7-8, resulting in the structure illustrated in FIG. 15B.
  • a second level die 210 is hybrid bonded to the first level RDL 160, similarly as described with regard to FIG. 9, resulting in the structure illustrated in FIG. 15C.
  • operations 1412-1422 may be repeated one or more times to form additional package levels 150A, 150B, etc.
  • the second level die 210 is encapsulated on a back side of the first package level, similarly as described with regard to FIG. 10.
  • the carrier substrate 101 is removed, and at operation 1428 an RDL is formed on a front side of the first package level, similarly as described with regard to FIG. 11. A thickness of the second package level 250 may then be reduced similarly as described with regard to FIG. 12. Referring to FIG.
  • 15D a process flow is illustrated in which two package levels 150A, 150B are formed, the second level die 210 is encapsulated on a back side 165B of the first package level 150B, and the RDL 300 is formed on the front side 170A of the first package level 150A.
  • FIG. 16 is a flow chart illustrating a method of forming a package in accordance with an embodiment.
  • a 1610 a first level die 110 is attached to a first carrier substrate 101 similarly as previously described with regard to FIG. 3.
  • a thickness of the first level die 110 is reduced, similarly as described with regard to FIG. 4.
  • a gap fill oxide layer 130 is deposited over the thinned first level die 110, similarly as described with regard to FIG. 5.
  • TOVs 134 are formed through the gap fill oxide layer 130, similarly as described with regard to FIG. 6, resulting in the structure illustrated in FIG. 17 A.
  • a second carrier substrate 103 is attached to the thinned first level die 110 and gap fill oxide layer 130.
  • the first carrier substrate 101 may then be removed at operation 1622, and a first level RDL 160 is formed over the gap fill oxide layer 130 and first level die 110 at operation 1624, resulting in the structure illustrated in FIG. 17B.
  • the front side 111 of the first level die 110 is facing up toward the first level RDL 160 in the first package level 150.
  • a second level die 210 is hybrid bonded to the first level RDL 160, similarly as described with regard to FIG. 9, resulting in the structure illustrated in FIG. 17C.
  • operations 1412-1422 or 1612-1626 may be repeated one or more times to form additional package levels 150A, 150B, etc.
  • the second level die 210 is encapsulated on a back side of the first package level, similarly as described with regard to FIG. 10.
  • the second carrier substrate 103 is removed, and at operation 1632 an RDL is formed on a front side of the first package level, similarly as described with regard to FIG. 11. A thickness of the second package level 250 may then be reduced similarly as described with regard to FIG. 12. Referring to FIG.
  • FIG. 17D a process flow is illustrated in which one first package level 150 is formed, with the front side 111 of the first level die 110 and front side 211 of the second level die 210 facing toward one another.
  • FIG. 17E a process flow is illustrated in which two first package levels 150A, 150B are formed, the second level die 210 is encapsulated on a back side 165B of the first package level 150B, and the RDL 300 is formed on the front side 170A of the first package level 150A.
  • front side 111 of the first level die 110A within the first package level 150A, and front side 111 of the first level die HOB within the first package level 150B are facing toward one another.
  • the orientation of either of the first level die 110A or 110B may be reversed.
  • FIG. 18 a schematic bottom view illustration of a die stack arrangement and close-up perspective view of a row of TOVs are provided in accordance with an
  • FIG. 19A is a cross-sectional side view illustration of a package taken along line A- A in FIG. 18 in accordance with an embodiment.
  • FIG. 19B is a cross-sectional side view illustration of a package taken along line B-B in FIG. 18 in accordance with an embodiment.
  • a package 100 includes a first level die 11 OA, a second- first level die HOB, and a third- first level die HOC, a first row 136A of TOVs 134, and a second row 136B of TOVs 134.
  • the second- first level die 110B and the third- first level die 1 IOC are laterally adjacent to opposite sides of the first level die 110A. Referring to FIG.
  • the first level die 110A is rectangular, though other shapes are possible in accordance with embodiments.
  • the first and second rows 136A, 136B of TOVs 134 are laterally adjacent (and parallel) to a first pair of laterally opposite sides 105A, 105B of the first level die 110A.
  • the second- first level die HOB and the third- first level die HOC are laterally adjacent (and parallel to) to a second pair of laterally opposite sides 108A, 108B of the first level active die 110A, respectively.
  • a first- second level die 210A and a second- second level die 210B are arranged side-by-side over the first level die.
  • the first row 136A of TOVs 134 is located beneath the first- second level die 210A
  • the second row 136B of TOVs 134 is located beneath the second- second level die 210B.
  • the rows 136A, 136B of TOVs 134 may be parallel to the adjacent edges 203 of the corresponding second level die 21 OA, 210B.
  • a back side 115 of the first level e.g.
  • first active die 210A is facing the front sides 111 of the first- second level die 21 OA and the second- second level die 210B laterally between the first and second rows 136A, 136B of TOVs 134.
  • short electrical routing paths illustrated by arrows in FIG. 18
  • an RDL 300 may be formed on and in electrical contact with the first level active die 110A, the first and second rows 136A, 136B of TOVs 134, and the second- first level die HOB and the third- first level die HOC.
  • a package 100 includes an RDL 300, and a front side 170 of a first package level 150 on a back side 315 of the RDL 300.
  • a first level die 110A is encapsulated in a gap fill oxide layer 130 on the back side 315 of the RDL 300.
  • a second- first level die HOB and a third- first level die HOC may be located laterally adjacent to opposite sides of the first level die 110A.
  • the first level die 110A, HOB, 1 IOC may all be on an in electrical contact with the RDL 300.
  • a first row 136A of TOVs 134 and a second row 136B of TOVs 134 protrude from the back side 315 of the RDL 300, and the first level die 11 OA is located laterally between the first and second rows 136A, 136B of TOVs 134.
  • the RDL 300 may be formed on an in electrical contact with front sides 111 of the first level die 11 OA, HOB, HOC and the first and second rows 136A, 136B of TOVs.
  • a plurality of second level die 210A, 210B are hybrid bonded to a back side 165 of the first package level 150 with direct bonded oxide-oxide surfaces and direct bonded metal-metal surfaces.
  • the first package level 150 may additionally include a first package level RDL 160 on a back side 115 of the first level die 110A and the gap fill oxide layer 130.
  • first level die 110A, second- first level die HOB, and/or third- first level die HOC may include TSVsl20 as previously described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Semiconductor Memories (AREA)

Abstract

Packages and 3D die stacking processes are described. In an embodiment, a package includes a second level die hybrid bonded to a first package level including a first level die encapsulated in an oxide layer, and a plurality of through oxide vias (TOVs) extending through the oxide layer. In an embodiment, the TOVs and the first level die have a height of about 20 microns or less.

Description

INDEPENDENT 3D STACKING
BACKGROUND
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of priority from U.S. Provisional Application No. 62/208,544, filed on August 21, 2015, which is herein incorporated by reference.
FIELD
[0002] Embodiments described herein relate to semiconductor packaging. More particularly, embodiments relate to packages including 3D stacked die.
BACKGROUND INFORMATION
[0003] The current market demand for portable and mobile electronic devices such as mobile phones, personal digital assistants (PDAs), digital cameras, portable players, gaming, and other mobile devices requires the integration of more performance and features into increasingly smaller spaces. Additionally, while the form factor (e.g. thickness) and footprint (e.g. area) for semiconductor die packaging is decreasing, the number of input/output (I/O) pads is increasing.
[0004] Various multiple-die packaging solutions such as system in package (SiP) and package on package (PoP) have become more popular to meet the demand for higher die/component density devices. In an SiP a number of different die are enclosed within the package as a single module. Thus, the SiP may perform all or most of the functions of an electronic system.
[0005] A 3D stacking implementation such as chip on wafer (CoW) includes mounting of die onto a support wafer, followed by singulation of stacked die SiPs. A 3D stacking
implementation such as wafer to wafer (W2W) includes mounting of a top wafer onto a bottom wafer, followed by singulation of stacked die SiPs. Both of the conventional 3D stacking implementations require that one of the package level tiers (e.g. mounted die, or die within wafer) to be bigger or equal to the other tier. For example, CoW may involve the singulated area of the support wafer being bigger than the die mounted on the support wafer, while W2W may involve equal areas of the singulated wafers.
SUMMARY
[0006] Embodiments describe semiconductor die packages. In one embodiment, a package includes a first level redistribution layer (RDL), and a front side of a first package level on the RDL. The first package level includes one or more first level die encapsulated within a gap fill oxide layer on the RDL. A plurality of through oxide vias (TOVs) extend through the gap fill oxide layer. In an embodiment, the TOVs and the first level die have a height of about 20 microns or less. A second level die is included in a second package level, and the second level die is hybrid bonded to a back side of the first package level, with the hybrid bond including direct bonded oxide-oxide surfaces and direct bonded metal-metal surfaces. The second level die may be encapsulated in molding compound, for example, on the first package level. In an embodiment, the RDL is formed on an in electrical contact with a front side of the first level die and the plurality of TOVs.
[0007] In an embodiment, the first package level includes a first package level RDL on a back side of the first level die and the gap fill oxide layer. The second level die may be hybrid bonded to a planarized back surface of the first package level RDL. For example, the first package level RDL may include an oxide dielectric layer and metal redistribution line, and the second level die is hybrid bonded to the oxide dielectric layer and the metal redistribution line. The first level die may include a plurality of through silicon vias (TSVs), with the first package level RDL formed on an in electrical contact with the plurality of TSVs.
[0008] In accordance with some embodiments, the TOVs may be arranged in rows. For example, the plurality of TOVs may include a first row of TOVs and a second row of TOVs. In a particular arrangement, the first and second rows of TOVs are laterally adjacent to a first pair of laterally opposite sides of the first level die. A second- first level die and a third- first level die can be located laterally adjacent to a second pair of laterally opposite sides of the first level die. In such an arrangement, the RDL may be formed on an in electrical contact with a front side of the first level die, a front side of the second- first level die, a front side of the third- first level die, the first row of TOVs, and the second row of TOVs. The first level die may additionally include a plurality of TSVs, for example, with a maximum width of about 10 microns or less.
[0009] In an embodiment, a package includes an RDL, and a front side of a first package level on a back side of the RDL. A first level die is encapsulated in a gap fill oxide layer on the back side of the RDL. A first row of TOVs and a second row of TOVs protrude from the back side of the RDL, and the first level die is located laterally between the first and second rows of TOVs. A plurality of second level die are hybrid bonded to a back side of the first package level with direct bonded oxide-oxide surfaces and direct bonded metal-metal surfaces.
[0010] The first package level may additionally include a first package level RDL on a back side of the first level die and the gap fill oxide layer. For example, the first package level RDL may include an oxide dielectric layer and a metal redistribution line, and the second level die is hybrid bonded to the oxide dielectric layer and the metal redistribution line. [0011] The first package level may additionally include a second- first level die and a third- first level die laterally adjacent to opposite sides of the first level die. The first level die, second- first level die, and third- first level die may all be on an in electrical contact with the RDL. In an embodiment, the first level die is rectangular, the first and second rows of TOVs are laterally adjacent to a first pair of laterally opposite sides of the first level die, and the second- first level die and the third- first level die are laterally adjacent to a second pair of laterally opposite sides of the first level die. In accordance with embodiments, the first level die, the first row of TOVs, and the second row of TOVs may all have a height of 20 microns or less. In accordance with embodiments, a plurality of TSVs may be within the first level die, with each TSV having a maximum width of 10 microns or less.
[0012] In an embodiment, a method of forming a package includes forming a first package level on a carrier substrate, the first package level including a first level die encapsulated in a gap fill oxide layer, and a plurality of though oxide vias (TOVs). The TOVs may have a height of about 20 microns or less. A second level die is hybrid bonded to the first package level with direct bonded oxide-oxide surfaces and metal-metal surfaces. The second level die is encapsulated on a back side of the first package level. The carrier substrate is removed, and a RDL is formed on a front side of the first package level.
[0013] In an embodiment, the method of forming the package additionally includes attaching the first level die to the carrier substrate, depositing the gap fill oxide layer over the first level die, planarizing the gap fill oxide layer, and forming the plurality of TOVs in the gap fill oxide layer. In an embodiment, the first level die is ground to reduce a thickness of the first level die after attaching the first level die to the carrier substrate and prior to depositing the gap fill oxide layer over the first level die. In an embodiment, a first level RDL is formed on the planarized gap fill oxide layer and first level die, and the first level RDL is planarized, and the second level die is hybrid bonded to the planarized first level RDL.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] FIG. 1 is a flow chart illustrating a method of forming a package in accordance with an embodiment.
[0015] FIG. 2 is a schematic cross-sectional side view illustration of a first level die including blind vias in accordance with an embodiment.
[0016] FIG. 3 is a cross-sectional side view illustration of first level die attached to a carrier substrate in accordance with an embodiment.
[0017] FIG. 4 is a cross-sectional side view illustration of thinned first level die in accordance with an embodiment. [0018] FIG. 5 is a cross-sectional side view illustration of a gap fill oxide layer formed over thinned first level die in accordance with an embodiment.
[0019] FIG. 6 is a cross-sectional side view illustration of a planarized gap fill oxide layer including through oxide vias in accordance with an embodiment.
[0020] FIG. 7 is a cross-sectional side view illustration of a first level redistribution layer formed over a planarized gap fill oxide layer including through oxide vias in accordance with an embodiment.
[0021] FIG. 8 is a cross-sectional side view illustration of a first package level including a planarized first level redistribution layer in accordance with an embodiment.
[0022] FIG. 9 is a cross-sectional side view illustration including a close-up view of second level die hybrid bonded to a first package level in accordance with an embodiment.
[0023] FIG. 10 is a cross-sectional side view illustration of encapsulated second level die on a first package level in accordance with an embodiment.
[0024] FIG. 11 is a cross-sectional side view illustration of package including hybrid bonded second level die in accordance with an embodiment.
[0025] FIG. 12 is a cross-sectional side view illustration of package including a thinned second package level in accordance with an embodiment.
[0026] FIG. 13 is a schematic bottom view illustration of a package including stacked die, through oxide vias, and through silicon vias in accordance with an embodiment.
[0027] FIG. 14 is a flow chart illustrating a method of forming a package in accordance with an embodiment.
[0028] FIGS. 15A-15D are cross-sectional side view illustrations of a method of forming a package with more than two package levels in accordance with an embodiment.
[0029] FIG. 16 is a flow chart illustrating a method of forming a package in accordance with an embodiment.
[0030] FIGS. 17A-17D are cross-sectional side view illustrations of a method of forming a package in accordance with an embodiment.
[0031] FIG. 17E is a cross-sectional side view illustration of a package with more than two package levels in accordance with an embodiment.
[0032] FIG. 18 a schematic bottom view illustration of a die stack arrangement and a close-up perspective view of a row of through oxide vias in accordance with an embodiment.
[0033] FIG. 19A is a cross-sectional side view illustration of a package taken along line A-A in FIG. 18 in accordance with an embodiment.
[0034] FIG. 19B is a cross-sectional side view illustration of a package taken along line B-B in FIG. 18 in accordance with an embodiment. DETAILED DESCRIPTION
[0035] Embodiments describe semiconductor packages and packaging processes of
heterogeneous stacked die. In accordance with embodiments, flexibility in heterogeneous die integration may be achieved independent of die area or thickness, in any package level. In this aspect, system on chip (SoC) die partitioning within an SiP structure may be possible in which intellectual property (IP) cores are freely segregated throughout the package.
[0036] In various embodiments, description is made with reference to figures. However, certain embodiments may be practiced without one or more of these specific details, or in combination with other known methods and configurations. In the following description, numerous specific details are set forth, such as specific configurations, dimensions and processes, etc., in order to provide a thorough understanding of the embodiments. In other instances, well-known semiconductor processes and manufacturing techniques have not been described in particular detail in order to not unnecessarily obscure the embodiments. Reference throughout this specification to "one embodiment" means that a particular feature, structure, configuration, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase "in one embodiment" in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, configurations, or characteristics may be combined in any suitable manner in one or more embodiments.
[0037] The terms "top", "bottom", "front", "back", "over", "to", "between", and "on" as used herein may refer to a relative position of one layer with respect to other layers. One layer "over", or "on" another layer or bonded "to" or in "contact" with another layer may be directly in contact with the other layer or may have one or more intervening layers. One layer "between" layers may be directly in contact with the layers or may have one or more intervening layers.
[0038] In one embodiment, a package includes a first package level including one or more first level die encapsulated within a gap fill oxide layer and a first level RDL spanning across the one or more first level die and the gap fill oxide layer. A planarized front surface of a second level die is hybrid bonded to a planarized surface of the first level RDL, which may include coplanar metal and oxide surfaces. In accordance with embodiments, the hybrid bonds include oxide- oxide bonds and metal-metal bonds between the second level die and the first level RDL. In this aspect, significant package z-height savings may be realized by eliminating interface materials for bonding. Furthermore, hybrid bonding may allow for a high connection density.
[0039] In accordance with embodiments, through silicon vias (TSVs) may optionally be formed through the one or more first level die and through oxide vias (TOVs) may be formed through the gap fill oxide layer encapsulating the one or more first level die within the first package level. In accordance with embodiments, a thickness of the first level die, gap fill oxide layer, and TOVs may be reduced to about 20 μιη or less, such as 2 μιη -20 μιη, or 5 μιη -10 μιη. In this manner, not only is z-height savings realized, it is possible to form narrow TSVs and TOVs without height being a practical limiting factor to minimum width of the TSVs and TOVs. In this aspect, direct and short communication paths to the second level die within the second level package are possible, at virtually any place through the first package level. This may additionally allow for minimal routing penalties due to routing length lengths, and full access for die in any package level to power distribution. In accordance with embodiments, the combination of TSVs and/or TOVs, and hybrid bonding allows for significant flexibility in heterogeneous die integration.
[0040] In one aspect, embodiments describe system on chip (SoC) die partitioning and/or die splitting within an SiP structure (e.g. 3D memory package) in which IP cores such as CPU, GPU, IO, DRAM, SRAM, cache, ESD, power management, and integrated passives may be freely segregated throughout the package, while also mitigating total z-height of the package. Different IP cores can be segregated into different die within the package. Additionally, die partitioning may allow the integration of different process nodes into separate die. Likewise different IP cores in different die can be processed at different process nodes. By way of example, central processing unit (CPU) and general processing unit (GPU) can be separate die processed at different process nodes. Flexibility in die partitioning may be facilitated by the ability to access the power supply line anywhere. Flexibility in die partitioning may also mitigate thermal constraints across the system.
[0041] In an embodiment, the first level die is an active die that includes active IP cores that benefit from relieved routing densities and short routing paths, such as a central processing unit/general processing unit (CPU/GPU) die. In an embodiment, the package is a 3D memory package, such as a wide I/O DRAM package. In an embodiment, the one or more second level die are memory die, such as, but not limited to, DRAM. In an embodiment, the additional first level die, such as the second- first level die and the third- first level die are a partitioned IP core, such as, but not limited to, split I/O die.
[0042] In accordance with embodiments, a thickness or height of the first level die and TOVs is about 20 μιη or less, such as 5 to 10 μιη. In this manner, not only is z-height savings realized, it is possible to form narrow TOVs. In an embodiment, an exemplary TOV is about 10 μιη wide, though narrower or wider TOVs may be formed, for example, easily within a 10: 1 (height : diameter) aspect ratio. In an embodiment, an exemplary TOV is about 2 μιη wide. In this aspect, the reduced thickness of the first level die allows for the formation of TOVs with substantially less width (or diameter) compared to common TSVs such as those in a traditional interposer.
[0043] In accordance with embodiments, TOVs and optionally TSVs may be used to provide short vertical communication paths between the package levels. In accordance with
embodiments TOVs may also be arranged in rows to provide short routing paths from the second level die to edges (e.g. each edge) of a first level die (e.g. active die), which can also allow for high routing densities with mitigated routing jam. In an exemplary embodiment, the pitch between TOVs in a row of TOVs may have a gap ratio of TO V to oxide between TOVs of 1 : 1. By way of example, exemplary 10 μιη wide TOVs have a pitch of 20 μιη (in x and/or y dimensions). This may correspond to a density of 50 x 50 per mm2 (or 2,500 per mm2).
Embodiments are not limited to these exemplary gap ratios, TOV pitches, and TOV densities. For example, the amount of oxide between TOVs can be increased above the 1 : 1 gap ratio.
Larger pitches, such as 40 μιη - 70 μιη may also be implemented. Additionally, narrower TOVs may be fabricated. In another exemplary embodiment, TOVs are 2 μιη wide. Assuming a 1 : 1 gap ratio, this may correspond to a pitch of 4 μιη, and a density of 250 x 250 per mm2 (or 62,500 per mm2).
[0044] In one aspect, embodiments describe an embedded TSV first level die configuration that may have a comparatively low keep out zone (KOZ). It has been observed that TSVs, such as copper TSVs through a silicon die, can create stress in the surrounding die area. As a result, active devices are arranged outside of a lateral KOZ around a TSV to mitigate TSV-induced stress on the active devices, such as affecting carrier mobility in the active devices. In accordance with embodiments, the reduced thickness of the embedded first level (e.g. active) die can allow the formation of TSVs with a substantially less width (or diameter) compared to common TSVs such as those in a traditional interposer. In some embodiments, aspect ratios of at most 10: 1 first level die thickness : TSV maximum width are well within processing parameters. For example, TSVs having a maximum width (or diameter) of 2-10 μιη, or less are possible. An exemplary list of TSV dimensions and aspect ratios is provided in Table 1 for illustrative purposes.
Table 1. TSV dimensions and aspect ratios
Figure imgf000009_0001
[0045] A reduced TSV height may allow for reduced TSV maximum width (or diameter), as well as increased TSV density and a smaller KOZ. In some embodiments, a TSV density of 250 x 250 per mm2 (e.g. 62,500 per mm2) is possible, which may be greater than that achievable with traditional interposers at approximately 10 x 10 per mm2 (or 100 per mm2). In some
embodiments, a KOZ of less than approximately 5 μιη is possible. In an embodiment, a TSV through the first level die is within 5 μιη of an active device (e.g. transistor) in the first level die. In one aspect, this may allow for a greater degree of freedom in location of the active devices, as well as location and density of the TSVs to provide a shorter and more direct routing to the stacked second level die. In accordance with embodiments the stacked second level die can have relatively straight routing to the bottom landing pad or conductive bump of the package, where the power plane is, for example on a circuit board.
[0046] Referring now FIG. 1 a flow chart is provided illustrating a method of forming a package in accordance with an embodiment. In interest of clarity, the following description of FIG. 1 is made with regard to reference features found in other figures described herein. At operation a 1010 a first package level 150 is formed on a carrier substrate 101, 103. The first package level 150 may include a first level die 110 encapsulated in a gap fill oxide layer 130, and a plurality of though oxide vias (TOVs) 134. In an embodiment the TOVs 134 have a height of about 20 μιη or less. A second level die 210 is then hybrid bonded to the first package level 150 at operation 1012 to form direct bonded oxide-oxide surfaces (e.g. for layers 164, 264) and metal-metal surfaces (e.g. for layers 162, 262), (see FIG. 9). At operation 1014 the second level die 210 is encapsulated on a back side 165 of the first package level 150, followed by removal of the carrier substrate 101, 103 at operation 1016. An RDL 300 may then be formed on a front side 170 of the first package level 150 at operation 1018.
[0047] In accordance with embodiments, the one or more first level die 110 may be active die, though this is not required. In other embodiments, the first level die 110 may be replaced with silicon interposers, or silicon integrated passive devices (IPDs). Referring now to FIG. 2 a schematic cross-sectional side view is provided of a first level die 110 including blind vias 119 in accordance with an embodiment. In accordance with embodiments, the first level die 110 may be an active die such as a logic die or SOC die including an active component(s) such as, but not limited to, a microprocessor, memory, RF transceiver, and mixed-signal component. In the particular embodiment illustrated, an active device 121 (e.g. transistor) of an active component is shown by way of example. As shown, the active devices 121 may be formed on a substrate 117 such as a silicon substrate or silicon on insulator (SOI) substrate. In an embodiment, the active devices 121 are formed in a top epitaxial silicon layer 116, formed over a base silicon substrate 114. In an embodiment, the KOZ is less than 5 μιη, and a blind via 119 is formed within 5 μιη (laterally) of an active device 121. One or more interconnect layers 118 may be formed for routing purposes to connect the active devices 121 and blind vias 119 to landing pads 128 (including both 128A, 128B on the front side 111) of the first level die 110. The interconnect layers 118 may include one or more metal layers 126 and/or dielectric layers 124. In the embodiment illustrated, the blind vias 119 (which will become TSVs 120) are interspersed between the active devices 121 in the first level die 110.
[0048] The metal layer(s) 126 may provide lateral interconnect paths, with vias 127 providing vertical connections. In accordance with embodiments, the front side 111 of the first level die 110 may include insulating layer 122 (e.g. oxide, or polymer) landing pads 128B connected to blind vias 119, and/or landing pads 128 A connected to the active devices 121 of the first level die 110. In the embodiment illustrated, the blind vias 119 are formed in the active layer (e.g. top epitaxial layer 116) of the active devices 121. The blind vias 119 may extend completely through the active layer (e.g. epitaxial layer 116) and optionally into the base substrate 114. The depth of the blind vias 119 may be at least the depth of the final TSVs 120 to be formed. In an embodiment, the blind vias 119 may optionally extend at least partially through the interconnect layer(s) 118. For example, blind vias 119 may extend through the interconnect layer 118 to landing pads 128A, or to a metal layer 126 in an embodiment. In an embodiment, blind vias 119 may not contact a landing pad (e.g. 128A, 128B) on the front side 111 and instead connect with an active device 121 through one or more metal layers 126 and vias 127 in the interconnect layer 118. In this manner, the TSVs 120 to be formed can connect directly to the active devices 121 within the first level die 110.
[0049] Referring now to FIG. 3, one or more first level die 110 are mounted on a carrier substrate 101 such as a glass panel, silicon wafer, metal panel, etc. The carrier substrate 101 may include a release layer 102 for mounting the first level die. In an embodiment, the release layer 102 is an oxide layer and the first level die 110 are mounted on the carrier substrate 101 with oxide-oxide bonds (e.g. bonding with oxide insulating layer 122). In an embodiment, the release layer 102 is an adhesive (e.g. polymer) or tape layer for mounting the first level die 110. As shown, the first level die 110 are mounted onto the carrier substrate 101 face down, such that the front sides 111 including the insulating layer 122 and landing pads 128 (128A, 128B) is face down. As shown, the one or more first level 110 may be different die, including different components, with different thicknesses and areas. One or more of the first level die 110 may be active die. Blind vias 119 are optionally formed within one or more of the first level die 110, though this is not required.
[0050] The one or more first level die 110 may then be ground using a suitable technique such as chemical mechanical polishing (CMP) to reduce a thickness of the first level die 110, as shown in FIG. 4. In accordance with embodiments, the thinning of the first level die 110 may expose the blind vias 119, resulting in a back side 115 of the first level die 110 including exposed surfaces 123 of TSVs 120. In an embodiment, the first level die 110 are thinned to about 20 μιη or less, such as 2 μιη -20 μιη, or 5 μιη -10 μιη.
[0051] Referring to the embodiment illustrated in FIG. 5, a gap fill oxide layer 130 may then be formed over the thinned first level die 110. In an embodiment, gap fill oxide layer 130 is deposited using a suitable technique such as chemical vapor deposition (CVD), though other techniques may be used. Due to the reduced thickness of the first level die 110, a quality gap fill oxide layer 130 can be deposited using CVD, which may aid in hybrid bonding.
[0052] Referring now to FIG. 6, TOVs 134 may be formed through the gap fill oxide layer 130. For example, the gap fill oxide layer 130 may be planarized, patterned, and TOVs 134 formed within the planarized gap fill oxide layer 130. TSVs 120 may also be optionally formed. For example, TSVs 120 may be formed at this stage in embodiments in which blind vias 119 were not previously formed in the first level die 110. In an embodiment, the thinned first level die 110 do not include TSVs 120. In the particular embodiment illustrated in FIG. 6, the back surface 131 of the gap fill oxide layer 130 and back side 115 of the first level die 110 are planarized, exposing surfaces 135 of the TOVs 134, and optionally surfaces 123 of the TSVs 120.
[0053] A first level RDL 160 may be optionally formed over the gap fill oxide layer 130 and thinned first level die 110 as illustrated in FIG. 7. The first level RDL may be formed on an in electrical contact with the plurality of TOVs 134 and/or TSVs 120. As shown, the first level RDL 160 may include one or more metal redistribution lines 162 (e.g. copper) and insulating layers 164. In an embodiment, one or more insulating layers 164 are formed of an oxide (e.g. S1O2) for subsequent hybrid bonding. Together, the gap fill oxide layer 130, TOVs 134, first level die 110, and optional first level RDL 160 form the first package level 150. As illustrated in FIG. 8, a back side 165 of the first package level 150 (e.g. the first level RDL 160) may be planarized using a suitable technique such as CMP to form a planar surface for hybrid bonding.
[0054] One or more second level die 210 may then be hybrid bonded to the first package level 150 as shown in the embodiment illustrated in FIG. 9. In the particular embodiment illustrated, the second level die 210 are hybrid bonded face down, with the (e.g. planar) front sides 211 of the second level die 210 hybrid bonded to the back side 165 (e.g. planar back surface) of the first package level 150. More specifically, the front surfaces 211 may be hybrid bonded to the first level RDL 160, when present. The close-up view of the hybrid bond in FIG. 9 shows direct bonded oxide-oxide surfaces of an insulating layer 164 (e.g. S1O2) of the first level RDL 160 with an insulating layer 264 (e.g. S1O2) of a build-up structure 260 for the second level die 210, and direct bonded metal-metal surfaces of redistribution line 162 (e.g. copper) of the first level RDL 160 with a metal layer 262 (e.g. copper) of the build-up structure 260 for the second level die 210.
[0055] The second level die 210 are then encapsulated in a second level molding compound 240 on the back side 165 of the first package level 150. For example, the second level molding compound 240 may include a thermosetting cross-linked resin (e.g. epoxy), though other materials may be used as known in electronic packaging. Encapsulation may be accomplished using a suitable technique such as, but not limited to, transfer molding, compression molding, and lamination. In the embodiment illustrated, the second level molding compound 240 covers the back sides 215 of the second level die 210. A thicker second level molding compound 240 may provide structural support during subsequent processing.
[0056] Referring now to FIG. 11, the carrier substrate 101 is removed, and an RDL 300 may be formed on the front side 170 of the first package level 150. Specifically, RDL 300 may be formed on the gap fill oxide layer 130 and front sides 111 of the first level die 110. As shown, RDL 300 may also be formed on an in electrical contact with the plurality of TOVs 134. RDL 300 may include a single redistribution line 302 or multiple redistribution lines 302 and dielectric layers 304. RDL 300 may be formed by a layer-by-layer process, and may be formed using thin film technology. In an embodiment, the RDL 300 has a total thickness of less than 50 μιη, or more specifically less than 30 μιη, such as approximately 20 μιη. In an embodiment, RDL 300 includes embedded redistribution lines 302 (embedded traces). For example, the redistribution lines 302 may be created by first forming a seed layer, followed by forming a metal (e.g. copper) pattern. Alternatively, redistribution lines 302 may be formed by deposition (e.g. sputtering) and etching. The material of redistribution lines 302 can include, but is not limited to, a metallic material such as copper, titanium, nickel, gold, and combinations or alloys thereof. The metal pattern of the redistribution lines 302 is then embedded in a dielectric layer 304, which is optionally patterned. The dielectric layer(s) 304 may be any suitable material such as an oxide, or polymer (e.g. polyimide). Following formation of RDL 300 a plurality of conductive bumps 350 (e.g. solder bumps, or stud bumps) may be formed on a front side 311 of the RDL 300. Individual packages 100 may then be singulated from the reconstituted substrate. In some embodiments, a thickness of the second package level 250 including the second level molding compound 240 and second level die 210 may be reduced using a suitable technique such as CMP prior to singulation. In the embodiment illustrated in FIG. 12, the thickness of the second package level 250 may be reduced to expose the back side 215 of one or more second level die 210.
[0057] FIG. 13 is a schematic bottom view illustration of a package 100 in accordance with embodiments illustrating a variety of TOV 134 and optionally TSV 120 connections from the first package level 150 including the first level die 110 to the second package level 250 including the second level die 210. FIG. 13 also illustrates freedom of die size (x, y dimensions) and location (x, y placement) within package levels that may be possible with embodiments. In accordance with embodiments, heterogeneous die may be integrated into multiple package levels without one package level having to be larger than another package level. Thus, specific die need not be packaged into a primary carrier package level. Furthermore, short communication paths between package levels are achievable. In accordance with embodiments, vias (TOV or TSV) may be located at any location in the entire face of the first package level 150, which may allow for full access to power distribution for both the first level die 110 and second level die 210. In accordance with embodiments, short communication path lengths between first level die 110 and second level die 210 can additionally be provided where the die overlap. In one embodiment, a first level die 110 may be a bridging die, which includes TSVs 120 directly underneath and in communication with two separate second level die 210.
[0058] FIG. 14 is a flow chart illustrating a method of forming a package in accordance with an embodiment, which may optionally include forming more than two package levels. In the following description of FIG. 14 reference is made with regard to the features found in the cross- sectional side view illustrations provided in FIGS. 3-12 and FIGS. 15A-15D. Referring to FIG. 14, at operation 1410 a first level die 110 is attached to a carrier substrate 101, similarly as previously described with regard to FIG. 3A. At operation 1412 a thickness of the first level die 110 is reduced, similarly as described with regard to FIG. 4. At operation 1414, a gap fill oxide layer 130 is deposited over the thinned first level die 110, similarly as described with regard to FIG. 5. At operation 1416, the gap fill oxide layer 130 (and optionally the first level die 110) is planarized, similarly as described with regard to FIG. 6. At operation 1418, TOVs 134 are formed through the gap fill oxide layer 130, similarly as described with regard to FIG. 6. At operation 1420, a first level RDL 160 is formed over the gap fill oxide layer 130 and the first level die 110, similarly as described with regard to FIGS. 7-8, resulting in the structure illustrated in FIG. 15B.
[0059] At operation 1422, a second level die 210, or optionally first level die 110, is hybrid bonded to the first level RDL 160, similarly as described with regard to FIG. 9, resulting in the structure illustrated in FIG. 15C. At this stage, operations 1412-1422 may be repeated one or more times to form additional package levels 150A, 150B, etc. At operation 1424, the second level die 210 is encapsulated on a back side of the first package level, similarly as described with regard to FIG. 10. At operation 1426, the carrier substrate 101 is removed, and at operation 1428 an RDL is formed on a front side of the first package level, similarly as described with regard to FIG. 11. A thickness of the second package level 250 may then be reduced similarly as described with regard to FIG. 12. Referring to FIG. 15D a process flow is illustrated in which two package levels 150A, 150B are formed, the second level die 210 is encapsulated on a back side 165B of the first package level 150B, and the RDL 300 is formed on the front side 170A of the first package level 150A.
[0060] FIG. 16 is a flow chart illustrating a method of forming a package in accordance with an embodiment. In the following description of FIG. 16 reference is made with regard to the features found in the cross-sectional side view illustrations provided in FIGS. 3-12 and FIGS. 17A-17E. Referring to FIG. 16, at operation a 1610 a first level die 110 is attached to a first carrier substrate 101 similarly as previously described with regard to FIG. 3. At operation 1612 a thickness of the first level die 110 is reduced, similarly as described with regard to FIG. 4. At operation 1614, a gap fill oxide layer 130 is deposited over the thinned first level die 110, similarly as described with regard to FIG. 5. At operation 1618, TOVs 134 are formed through the gap fill oxide layer 130, similarly as described with regard to FIG. 6, resulting in the structure illustrated in FIG. 17 A.
[0061] At operation 1620 a second carrier substrate 103 is attached to the thinned first level die 110 and gap fill oxide layer 130. The first carrier substrate 101 may then be removed at operation 1622, and a first level RDL 160 is formed over the gap fill oxide layer 130 and first level die 110 at operation 1624, resulting in the structure illustrated in FIG. 17B. At this stage, the front side 111 of the first level die 110 is facing up toward the first level RDL 160 in the first package level 150.
[0062] At operation 1626, a second level die 210 is hybrid bonded to the first level RDL 160, similarly as described with regard to FIG. 9, resulting in the structure illustrated in FIG. 17C. At this stage, operations 1412-1422 or 1612-1626 may be repeated one or more times to form additional package levels 150A, 150B, etc. At operation 1628, the second level die 210 is encapsulated on a back side of the first package level, similarly as described with regard to FIG. 10. At operation 1630, the second carrier substrate 103 is removed, and at operation 1632 an RDL is formed on a front side of the first package level, similarly as described with regard to FIG. 11. A thickness of the second package level 250 may then be reduced similarly as described with regard to FIG. 12. Referring to FIG. 17D a process flow is illustrated in which one first package level 150 is formed, with the front side 111 of the first level die 110 and front side 211 of the second level die 210 facing toward one another. Referring to FIG. 17E a process flow is illustrated in which two first package levels 150A, 150B are formed, the second level die 210 is encapsulated on a back side 165B of the first package level 150B, and the RDL 300 is formed on the front side 170A of the first package level 150A. In the embodiment illustrated in FIG. 17E, front side 111 of the first level die 110A within the first package level 150A, and front side 111 of the first level die HOB within the first package level 150B are facing toward one another. Alternatively, the orientation of either of the first level die 110A or 110B may be reversed.
[0063] Referring now to FIG. 18 a schematic bottom view illustration of a die stack arrangement and close-up perspective view of a row of TOVs are provided in accordance with an
embodiment. FIG. 19A is a cross-sectional side view illustration of a package taken along line A- A in FIG. 18 in accordance with an embodiment. FIG. 19B is a cross-sectional side view illustration of a package taken along line B-B in FIG. 18 in accordance with an embodiment. In the embodiments illustrated, a package 100 includes a first level die 11 OA, a second- first level die HOB, and a third- first level die HOC, a first row 136A of TOVs 134, and a second row 136B of TOVs 134. The second- first level die 110B and the third- first level die 1 IOC are laterally adjacent to opposite sides of the first level die 110A. Referring to FIG. 18, the first level die 110A is rectangular, though other shapes are possible in accordance with embodiments. As shown, the first and second rows 136A, 136B of TOVs 134 are laterally adjacent (and parallel) to a first pair of laterally opposite sides 105A, 105B of the first level die 110A. As shown, the second- first level die HOB and the third- first level die HOC are laterally adjacent (and parallel to) to a second pair of laterally opposite sides 108A, 108B of the first level active die 110A, respectively.
[0064] Referring to FIG. 18 and FIGS. 19A-19B, a first- second level die 210A and a second- second level die 210B are arranged side-by-side over the first level die. The first row 136A of TOVs 134 is located beneath the first- second level die 210A, and the second row 136B of TOVs 134 is located beneath the second- second level die 210B. The rows 136A, 136B of TOVs 134 may be parallel to the adjacent edges 203 of the corresponding second level die 21 OA, 210B. In an embodiment, a back side 115 of the first level (e.g. active) die 210A is facing the front sides 111 of the first- second level die 21 OA and the second- second level die 210B laterally between the first and second rows 136A, 136B of TOVs 134. In such a configuration, short electrical routing paths (illustrated by arrows in FIG. 18) to each different edge of the first level active die 110A can be achieved. For example, an RDL 300 (see FIGS. 19A-19B, for example) may be formed on and in electrical contact with the first level active die 110A, the first and second rows 136A, 136B of TOVs 134, and the second- first level die HOB and the third- first level die HOC.
[0065] In an embodiment, a package 100 includes an RDL 300, and a front side 170 of a first package level 150 on a back side 315 of the RDL 300. A first level die 110A is encapsulated in a gap fill oxide layer 130 on the back side 315 of the RDL 300. Additionally, a second- first level die HOB and a third- first level die HOC may be located laterally adjacent to opposite sides of the first level die 110A. The first level die 110A, HOB, 1 IOC may all be on an in electrical contact with the RDL 300. A first row 136A of TOVs 134 and a second row 136B of TOVs 134 protrude from the back side 315 of the RDL 300, and the first level die 11 OA is located laterally between the first and second rows 136A, 136B of TOVs 134. In an embodiment, the RDL 300 may be formed on an in electrical contact with front sides 111 of the first level die 11 OA, HOB, HOC and the first and second rows 136A, 136B of TOVs. A plurality of second level die 210A, 210B are hybrid bonded to a back side 165 of the first package level 150 with direct bonded oxide-oxide surfaces and direct bonded metal-metal surfaces. The first package level 150 may additionally include a first package level RDL 160 on a back side 115 of the first level die 110A and the gap fill oxide layer 130.
[0066] It is to be appreciated, that the particular arrangement of a pair of second level die 210A, 210B, and a pair of second- first level die HOB and third- first level die HOC are exemplary. While the particular arrangement may be used to form short electrical routing paths to each side of the first level die 11 OA, other configurations are possible. Additionally, the first level die 110A, second- first level die HOB, and/or third- first level die HOC may include TSVsl20 as previously described.
[0067] While several package variations are described and illustrated separately, many of the structural features and processing sequences may be combined in a single embodiment. In utilizing the various aspects of the embodiments, it would become apparent to one skilled in the art that combinations or variations of the above embodiments are possible for forming package including heterogeneous stacked die. Although the embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the appended claims are not necessarily limited to the specific features or acts described. The specific features and acts disclosed are instead to be understood as embodiments of the claims useful for illustration.

Claims

CLAIMS What is claimed is:
1. A package comprising:
a redistribution layer (RDL);
a front side of a first package level on the RDL, the first package level including:
a first level die encapsulated in a gap fill oxide layer on the RDL; and a plurality of through oxide vias (TOVs) extending through the gap fill oxide layer;
wherein the TOVs and the first level die have a height of about 20 microns or less; and
a second package level including a second level die hybrid bonded to a back side of the first package level, the hybrid bond including directed bonded oxide-oxide surfaces and direct bonded metal-metal surfaces.
2. The package of claim 1 , wherein the first package level includes a first package level RDL on a back side of the first level die and the gap fill oxide layer, and the plurality of TOVs provide an electrical connection between the RDL and the first package level RDL.
3. The package of claim 2, wherein the second level die is hybrid bonded to a planarized back surface of the first package level RDL.
4. The package of claim 3, wherein the first package level RDL includes an oxide dielectric layer and metal redistribution line, and the second level die is hybrid bonded to the oxide dielectric layer and the metal redistribution line.
5. The package of claim 2, wherein the first level die includes a plurality of through silicon vias (TSVs) and the first package level RDL is formed on an in electrical contact with the plurality of TSVs.
6. The package of claim 1 , wherein the RDL is formed on and in electrical contact with a front side of the first level die and the plurality of TOVs.
7. The package of claim 1, wherein the second level die is encapsulated in a molding compound on the first package level.
8. The package of claim 1, further comprising:
a second row of TOVs;
wherein the plurality of TOVs comprises a first row of TOVs, and the first and second rows of TOVs are laterally adjacent to a first pair of laterally opposite sides of the first level die; a second- first level die and a third- first level die laterally adjacent to a second pair of laterally opposite sides of the first level die;
wherein the RDL is formed on and in electrical contact with a front side of the first level die, a front side of the second- first level die, a front side of the third- first level die, the first row of TOVs, and the second row of TOVs.
9. The package of claim 8, further comprising a plurality of TSVs within the first level die, wherein each TSV has a maximum width of about 10 μιη or less.
10. A package comprising:
a redistribution layer (RDL);
a front side of a first package level on a back side of the RDL, the first package level including:
a first level die encapsulated in a gap fill oxide layer on the back side of the RDL; a first row of through oxide vias (TOVs) protruding from the back side of the RDL;
a second row of through oxide vias (TOVs) protruding from the back side of the RDL;
wherein the first level die is located laterally between the first and second rows of TOVs; and
a plurality of second level die hybrid bonded to a back side of the first package level, the hybrid bond including directed bonded oxide-oxide surfaces and direct bonded metal-metal surfaces.
11. The package of claim 10, wherein the first package level includes a first package level RDL on a back side of the first level die and the gap fill oxide layer, and the plurality of TOVs provide an electrical connection between the RDL and the first package level RDL.
12. The package of claim 11, wherein the first package level RDL includes an oxide dielectric layer and a metal redistribution line, and the second level die is hybrid bonded to the oxide dielectric layer and the metal redistribution line.
13. The package of claim 10, further comprising a second- first level die and a third- first level die laterally adjacent to opposite sides of the first level die, wherein the first level die, the second- first level die, and the third- first level die are on and in electric contact with the RDL.
14. The package of claim 13, wherein the first level die is rectangular, the first and second rows of TOVs are laterally adjacent to a first pair of laterally opposite sides of the first level die, and the second- first level die and the third- first level die are laterally adjacent to a second pair of laterally opposite sides of the first level die.
15. The package of claim 14, wherein the first level die, the first row of TOVs, and the second row of TOVs have a height of about 20 μιη or less.
16. The package of claim 15, further comprising a plurality of TSVs within the first level die, wherein each TSV has a maximum width of about 10 μιη or less.
17. A method of forming a package comprising:
forming a first package level on a carrier substrate, the first package level including a first level die encapsulated in a gap fill oxide layer, and a plurality of though oxide vias (TOVs), wherein the TOVs have a height of about 20 μιη or less;
hybrid bonding a second level die to the first package level, wherein the hybrid bond includes direct bonded oxide-oxide surfaces and metal-metal surfaces;
encapsulating the second level die on a back side of the first package level;
removing the carrier substrate; and
forming a redistribution layer (RDL) on a front side of the first package level.
18. The method of claim 17, wherein forming the first package level on the carrier substrate comprises:
attaching the first level die to the carrier substrate;
depositing the gap fill oxide layer over the first level die;
planarizing the gap fill oxide layer; and
forming the plurality of TOVs in the gap fill oxide layer.
19. The method of claim 18, further comprising grinding the first level die to reduce a thickness of the first level die after attaching the first level die to the carrier substrate and prior to depositing the gap fill oxide layer over the first level die.
20. The method of claim 17:
wherein forming the first package level on the carrier substrate comprises:
forming a first level RDL on the planarized gap fill oxide layer and first level die; and
planarizing the first level RDL; and
wherein hybrid bonding the second level die to the first package level comprises:
hybrid bonding the second level die to the planarized first level RDL.
PCT/US2016/037690 2015-08-21 2016-06-15 Independent 3d stacking WO2017034654A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680043123.0A CN107851615B (en) 2015-08-21 2016-06-15 Independent 3D stacking
KR1020187004420A KR102033865B1 (en) 2015-08-21 2016-06-15 Independent 3D Stacking

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562208544P 2015-08-21 2015-08-21
US62/208,544 2015-08-21
US14/935,310 US9559081B1 (en) 2015-08-21 2015-11-06 Independent 3D stacking
US14/935,310 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017034654A1 true WO2017034654A1 (en) 2017-03-02

Family

ID=57867523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/037690 WO2017034654A1 (en) 2015-08-21 2016-06-15 Independent 3d stacking

Country Status (5)

Country Link
US (1) US9559081B1 (en)
KR (1) KR102033865B1 (en)
CN (1) CN107851615B (en)
TW (1) TWI621228B (en)
WO (1) WO2017034654A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020010265A1 (en) * 2018-07-06 2020-01-09 Invensas Bonding Technologies, Inc. Microelectronic assemblies
US10879226B2 (en) 2016-05-19 2020-12-29 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
US11056390B2 (en) 2015-06-24 2021-07-06 Invensas Corporation Structures and methods for reliable packages
US11387214B2 (en) 2017-06-15 2022-07-12 Invensas Llc Multi-chip modules formed using wafer-level processing of a reconstituted wafer
US11476213B2 (en) 2019-01-14 2022-10-18 Invensas Bonding Technologies, Inc. Bonded structures without intervening adhesive
US11476201B2 (en) 2019-09-27 2022-10-18 Taiwan Semiconductor Manufacturing Company. Ltd. Package-on-package device
US11538781B2 (en) 2020-06-30 2022-12-27 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages including bonded structures
US11652083B2 (en) 2017-05-11 2023-05-16 Adeia Semiconductor Bonding Technologies Inc. Processed stacked dies
US11728273B2 (en) 2020-09-04 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11764189B2 (en) 2018-07-06 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Molded direct bonded and interconnected stack
US11764177B2 (en) 2020-09-04 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11862604B2 (en) 2018-06-22 2024-01-02 Adeia Semiconductor Inc. Systems and methods for releveled bump planes for chiplets
US11916054B2 (en) 2018-05-15 2024-02-27 Adeia Semiconductor Bonding Technologies Inc. Stacked devices and methods of fabrication
US11935907B2 (en) 2014-12-11 2024-03-19 Adeia Semiconductor Technologies Llc Image sensor device
US11955463B2 (en) 2019-06-26 2024-04-09 Adeia Semiconductor Bonding Technologies Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
US11955433B2 (en) 2019-09-27 2024-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Package-on-package device

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109092B2 (en) 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
US7485968B2 (en) 2005-08-11 2009-02-03 Ziptronix, Inc. 3D IC method and device
US8735219B2 (en) 2012-08-30 2014-05-27 Ziptronix, Inc. Heterogeneous annealing method and device
US20150262902A1 (en) 2014-03-12 2015-09-17 Invensas Corporation Integrated circuits protected by substrates with cavities, and methods of manufacture
US10886250B2 (en) 2015-07-10 2021-01-05 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US9953941B2 (en) 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US10078183B2 (en) * 2015-12-11 2018-09-18 Globalfoundries Inc. Waveguide structures used in phonotics chip packaging
US9852988B2 (en) 2015-12-18 2017-12-26 Invensas Bonding Technologies, Inc. Increased contact alignment tolerance for direct bonding
US10446532B2 (en) 2016-01-13 2019-10-15 Invensas Bonding Technologies, Inc. Systems and methods for efficient transfer of semiconductor elements
US20170338204A1 (en) * 2016-05-17 2017-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Device and Method for UBM/RDL Routing
US10332841B2 (en) * 2016-07-20 2019-06-25 Taiwan Semiconductor Manufacturing Company, Ltd. System on integrated chips and methods of forming the same
US10446487B2 (en) 2016-09-30 2019-10-15 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US10580735B2 (en) 2016-10-07 2020-03-03 Xcelsis Corporation Stacked IC structure with system level wiring on multiple sides of the IC die
TWI822659B (en) 2016-10-27 2023-11-21 美商艾德亞半導體科技有限責任公司 Structures and methods for low temperature bonding
TWI623049B (en) * 2016-11-04 2018-05-01 英屬開曼群島商鳳凰先驅股份有限公司 Package substrate and its fabrication method
US10002844B1 (en) 2016-12-21 2018-06-19 Invensas Bonding Technologies, Inc. Bonded structures
US10796936B2 (en) 2016-12-22 2020-10-06 Invensas Bonding Technologies, Inc. Die tray with channels
WO2018125673A2 (en) 2016-12-28 2018-07-05 Invensas Bonding Technologies, Inc Processing stacked substrates
US20180182665A1 (en) 2016-12-28 2018-06-28 Invensas Bonding Technologies, Inc. Processed Substrate
KR20190092584A (en) 2016-12-29 2019-08-07 인벤사스 본딩 테크놀로지스 인코포레이티드 Bonded structure with integrated passive components
JP7030825B2 (en) 2017-02-09 2022-03-07 インヴェンサス ボンディング テクノロジーズ インコーポレイテッド Joined structure
WO2018169968A1 (en) 2017-03-16 2018-09-20 Invensas Corporation Direct-bonded led arrays and applications
US10515913B2 (en) 2017-03-17 2019-12-24 Invensas Bonding Technologies, Inc. Multi-metal contact structure
US10508030B2 (en) 2017-03-21 2019-12-17 Invensas Bonding Technologies, Inc. Seal for microelectronic assembly
US10784191B2 (en) 2017-03-31 2020-09-22 Invensas Bonding Technologies, Inc. Interface structures and methods for forming same
US10008454B1 (en) * 2017-04-20 2018-06-26 Nxp B.V. Wafer level package with EMI shielding
US10269756B2 (en) 2017-04-21 2019-04-23 Invensas Bonding Technologies, Inc. Die processing
US10529634B2 (en) 2017-05-11 2020-01-07 Invensas Bonding Technologies, Inc. Probe methodology for ultrafine pitch interconnects
US10446441B2 (en) 2017-06-05 2019-10-15 Invensas Corporation Flat metal features for microelectronics applications
US10276551B2 (en) * 2017-07-03 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device package and method of forming semiconductor device package
CN107507816A (en) * 2017-08-08 2017-12-22 中国电子科技集团公司第五十八研究所 Fan-out-type wafer scale multilayer wiring encapsulating structure
US10840205B2 (en) 2017-09-24 2020-11-17 Invensas Bonding Technologies, Inc. Chemical mechanical polishing for hybrid bonding
US11195748B2 (en) 2017-09-27 2021-12-07 Invensas Corporation Interconnect structures and methods for forming same
WO2019065668A1 (en) 2017-09-29 2019-04-04 株式会社村田製作所 High frequency module and communication device
US11031285B2 (en) 2017-10-06 2021-06-08 Invensas Bonding Technologies, Inc. Diffusion barrier collar for interconnects
US10622342B2 (en) * 2017-11-08 2020-04-14 Taiwan Semiconductor Manufacturing Company Ltd. Stacked LED structure and associated manufacturing method
US10658313B2 (en) 2017-12-11 2020-05-19 Invensas Bonding Technologies, Inc. Selective recess
US11011503B2 (en) 2017-12-15 2021-05-18 Invensas Bonding Technologies, Inc. Direct-bonded optoelectronic interconnect for high-density integrated photonics
US10217708B1 (en) 2017-12-18 2019-02-26 Apple Inc. High bandwidth routing for die to die interposer and on-chip applications
US10923408B2 (en) 2017-12-22 2021-02-16 Invensas Bonding Technologies, Inc. Cavity packages
US11380597B2 (en) 2017-12-22 2022-07-05 Invensas Bonding Technologies, Inc. Bonded structures
US10727219B2 (en) 2018-02-15 2020-07-28 Invensas Bonding Technologies, Inc. Techniques for processing devices
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US11256004B2 (en) 2018-03-20 2022-02-22 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
US11056348B2 (en) 2018-04-05 2021-07-06 Invensas Bonding Technologies, Inc. Bonding surfaces for microelectronics
US11244916B2 (en) 2018-04-11 2022-02-08 Invensas Bonding Technologies, Inc. Low temperature bonded structures
US10790262B2 (en) 2018-04-11 2020-09-29 Invensas Bonding Technologies, Inc. Low temperature bonded structures
US10964664B2 (en) 2018-04-20 2021-03-30 Invensas Bonding Technologies, Inc. DBI to Si bonding for simplified handle wafer
TWI672791B (en) 2018-05-07 2019-09-21 財團法人工業技術研究院 Chip package structure and manufacturing method thereof
US10727203B1 (en) * 2018-05-08 2020-07-28 Rockwell Collins, Inc. Die-in-die-cavity packaging
US11004757B2 (en) 2018-05-14 2021-05-11 Invensas Bonding Technologies, Inc. Bonded structures
CN112514059B (en) 2018-06-12 2024-05-24 隔热半导体粘合技术公司 Interlayer connection for stacked microelectronic components
US11393779B2 (en) 2018-06-13 2022-07-19 Invensas Bonding Technologies, Inc. Large metal pads over TSV
EP3807927A4 (en) 2018-06-13 2022-02-23 Invensas Bonding Technologies, Inc. Tsv as pad
WO2020010056A1 (en) 2018-07-03 2020-01-09 Invensas Bonding Technologies, Inc. Techniques for joining dissimilar materials in microelectronics
US11515291B2 (en) 2018-08-28 2022-11-29 Adeia Semiconductor Inc. Integrated voltage regulator and passive components
US11296044B2 (en) 2018-08-29 2022-04-05 Invensas Bonding Technologies, Inc. Bond enhancement structure in microelectronics for trapping contaminants during direct-bonding processes
US11011494B2 (en) 2018-08-31 2021-05-18 Invensas Bonding Technologies, Inc. Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
US11158573B2 (en) 2018-10-22 2021-10-26 Invensas Bonding Technologies, Inc. Interconnect structures
US10861808B2 (en) 2018-11-21 2020-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Bonding structure of dies with dangling bonds
US11282761B2 (en) 2018-11-29 2022-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages and methods of manufacturing the same
US11244920B2 (en) 2018-12-18 2022-02-08 Invensas Bonding Technologies, Inc. Method and structures for low temperature device bonding
KR20200092566A (en) 2019-01-25 2020-08-04 에스케이하이닉스 주식회사 Semiconductor package including bridge die
US10770433B1 (en) 2019-02-27 2020-09-08 Apple Inc. High bandwidth die to die interconnect with package area reduction
US11901281B2 (en) 2019-03-11 2024-02-13 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
US10854578B2 (en) 2019-03-29 2020-12-01 Invensas Corporation Diffused bitline replacement in stacked wafer memory
US11205625B2 (en) 2019-04-12 2021-12-21 Invensas Bonding Technologies, Inc. Wafer-level bonding of obstructive elements
US11373963B2 (en) 2019-04-12 2022-06-28 Invensas Bonding Technologies, Inc. Protective elements for bonded structures
US11610846B2 (en) 2019-04-12 2023-03-21 Adeia Semiconductor Bonding Technologies Inc. Protective elements for bonded structures including an obstructive element
CN112614831B (en) * 2019-04-15 2023-08-08 长江存储科技有限责任公司 Integrated semiconductor device with processor and heterogeneous memory and method of forming the same
CN110731012B (en) 2019-04-15 2021-01-29 长江存储科技有限责任公司 Integrated semiconductor device with processor and heterogeneous memory and forming method thereof
KR20240045345A (en) 2019-04-15 2024-04-05 양쯔 메모리 테크놀로지스 씨오., 엘티디. Bonded semiconductor devices having processor and dynamic random-access memory and methods for forming the same
WO2020211272A1 (en) * 2019-04-15 2020-10-22 Yangtze Memory Technologies Co., Ltd. Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same
US11355404B2 (en) 2019-04-22 2022-06-07 Invensas Bonding Technologies, Inc. Mitigating surface damage of probe pads in preparation for direct bonding of a substrate
US11562982B2 (en) * 2019-04-29 2023-01-24 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit packages and methods of forming the same
CN110720143B (en) 2019-04-30 2021-01-29 长江存储科技有限责任公司 Bonded semiconductor device with processor and NAND flash memory and method of forming the same
CN113853670A (en) * 2019-05-22 2021-12-28 华为技术有限公司 Manufacturing method of 3DIC chip and 3DIC chip
US11385278B2 (en) 2019-05-23 2022-07-12 Invensas Bonding Technologies, Inc. Security circuitry for bonded structures
KR102661671B1 (en) * 2019-07-25 2024-04-29 삼성전자주식회사 Semiconductor package having stacked semiconductor chips
CN110739292A (en) * 2019-09-02 2020-01-31 上海先方半导体有限公司 3D packaging structure and manufacturing method thereof
US11856800B2 (en) 2019-09-20 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices with system on chip devices
DE102020106799A1 (en) * 2019-09-20 2021-03-25 Taiwan Semiconductor Manufacturing Co., Ltd. SEMICONDUCTOR COMPONENTS AND METHOD OF MANUFACTURING
US11264314B2 (en) * 2019-09-27 2022-03-01 International Business Machines Corporation Interconnection with side connection to substrate
US11004819B2 (en) 2019-09-27 2021-05-11 International Business Machines Corporation Prevention of bridging between solder joints
US11587905B2 (en) * 2019-10-09 2023-02-21 Industrial Technology Research Institute Multi-chip package and manufacturing method thereof
US11410968B2 (en) * 2019-10-18 2022-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of forming the same
US11532533B2 (en) 2019-10-18 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit package and method
DE102020113986B4 (en) * 2019-10-18 2023-07-27 Taiwan Semiconductor Manufacturing Co., Ltd. INTEGRATED CIRCUIT PACKAGE AND METHOD
TWI701777B (en) * 2019-10-22 2020-08-11 財團法人工業技術研究院 Image sensor package and manufacture method thereof
US11862602B2 (en) 2019-11-07 2024-01-02 Adeia Semiconductor Technologies Llc Scalable architecture for reduced cycles across SOC
WO2021092779A1 (en) * 2019-11-12 2021-05-20 华为技术有限公司 Chip package on package structure and electronic device
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
US11876076B2 (en) 2019-12-20 2024-01-16 Adeia Semiconductor Technologies Llc Apparatus for non-volatile random access memory stacks
US11721653B2 (en) 2019-12-23 2023-08-08 Adeia Semiconductor Bonding Technologies Inc. Circuitry for electrical redundancy in bonded structures
KR20220120631A (en) 2019-12-23 2022-08-30 인벤사스 본딩 테크놀로지스 인코포레이티드 Electrical Redundancy for Bonded Structures
KR20230003471A (en) 2020-03-19 2023-01-06 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 Dimensional Compensation Control for Directly Coupled Structures
US11742314B2 (en) 2020-03-31 2023-08-29 Adeia Semiconductor Bonding Technologies Inc. Reliable hybrid bonded apparatus
US11804469B2 (en) * 2020-05-07 2023-10-31 Invensas Llc Active bridging apparatus
WO2021236361A1 (en) 2020-05-19 2021-11-25 Invensas Bonding Technologies, Inc. Laterally unconfined structure
US11728254B2 (en) 2020-05-22 2023-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Giga interposer integration through chip-on-wafer-on-substrate
US11710688B2 (en) 2020-07-07 2023-07-25 Mediatek Inc. Semiconductor package structure
US11264357B1 (en) 2020-10-20 2022-03-01 Invensas Corporation Mixed exposure for large die
US20220148953A1 (en) * 2020-11-09 2022-05-12 Qualcomm Incorporated Hybrid reconstituted substrate for electronic packaging
US11764171B2 (en) * 2021-04-27 2023-09-19 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit structure and method
US11735529B2 (en) 2021-05-21 2023-08-22 International Business Machines Corporation Side pad anchored by next adjacent via
CN113544827A (en) * 2021-05-21 2021-10-22 广东省科学院半导体研究所 Chip packaging method and chip packaging structure
CN115547981A (en) * 2021-06-30 2022-12-30 联发科技股份有限公司 Semiconductor packaging structure
US12015003B2 (en) 2021-09-29 2024-06-18 International Business Machines Corporation High density interconnection and wiring layers, package structures, and integration methods
CN114937633B (en) * 2022-07-25 2022-10-18 成都万应微电子有限公司 Radio frequency chip system-in-package method and radio frequency chip system-in-package structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124949A1 (en) * 2012-11-06 2014-05-08 Jong Sik Paek Semiconductor device and method of manufacturing semiconductor device
US20140256087A1 (en) * 2013-03-06 2014-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid Bonding and Apparatus for Performing the Same
US20150028498A1 (en) * 2013-07-29 2015-01-29 Samsung Electro-Mechanics Co., Ltd. Molding composition for semiconductor package and semiconductor package using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263434B2 (en) 2009-07-31 2012-09-11 Stats Chippac, Ltd. Semiconductor device and method of mounting die with TSV in cavity of substrate for electrical interconnect of Fi-PoP
US8518746B2 (en) 2010-09-02 2013-08-27 Stats Chippac, Ltd. Semiconductor device and method of forming TSV semiconductor wafer with embedded semiconductor die
US9947609B2 (en) 2012-03-09 2018-04-17 Honeywell International Inc. Integrated circuit stack
US9385052B2 (en) * 2012-09-14 2016-07-05 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming build-up interconnect structures over carrier for testing at interim stages
US9818734B2 (en) * 2012-09-14 2017-11-14 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming build-up interconnect structures over a temporary substrate
KR101419601B1 (en) 2012-11-20 2014-07-16 앰코 테크놀로지 코리아 주식회사 Semiconductor device using epoxy molding compound wafer support system and fabricating method thereof
US8946784B2 (en) * 2013-02-18 2015-02-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for image sensor packaging
US9728453B2 (en) * 2013-03-15 2017-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for hybrid wafer bonding integrated with CMOS processing
US9087821B2 (en) * 2013-07-16 2015-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Hybrid bonding with through substrate via (TSV)
US9379078B2 (en) 2013-11-07 2016-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. 3D die stacking structure with fine pitches
US9293437B2 (en) * 2014-02-20 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Functional block stacked 3DIC and method of making same
US9666520B2 (en) * 2014-04-30 2017-05-30 Taiwan Semiconductor Manufactuing Company, Ltd. 3D stacked-chip package
KR101729378B1 (en) * 2014-05-30 2017-04-21 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor devices and methods of manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124949A1 (en) * 2012-11-06 2014-05-08 Jong Sik Paek Semiconductor device and method of manufacturing semiconductor device
US20140256087A1 (en) * 2013-03-06 2014-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid Bonding and Apparatus for Performing the Same
US20150028498A1 (en) * 2013-07-29 2015-01-29 Samsung Electro-Mechanics Co., Ltd. Molding composition for semiconductor package and semiconductor package using the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11935907B2 (en) 2014-12-11 2024-03-19 Adeia Semiconductor Technologies Llc Image sensor device
US11056390B2 (en) 2015-06-24 2021-07-06 Invensas Corporation Structures and methods for reliable packages
US11837596B2 (en) 2016-05-19 2023-12-05 Adeia Semiconductor Bonding Technologies Inc. Stacked dies and methods for forming bonded structures
US10879226B2 (en) 2016-05-19 2020-12-29 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
US11658173B2 (en) 2016-05-19 2023-05-23 Adeia Semiconductor Bonding Technologies Inc. Stacked dies and methods for forming bonded structures
US11652083B2 (en) 2017-05-11 2023-05-16 Adeia Semiconductor Bonding Technologies Inc. Processed stacked dies
US11387214B2 (en) 2017-06-15 2022-07-12 Invensas Llc Multi-chip modules formed using wafer-level processing of a reconstituted wafer
US11916054B2 (en) 2018-05-15 2024-02-27 Adeia Semiconductor Bonding Technologies Inc. Stacked devices and methods of fabrication
US11862604B2 (en) 2018-06-22 2024-01-02 Adeia Semiconductor Inc. Systems and methods for releveled bump planes for chiplets
US11764189B2 (en) 2018-07-06 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Molded direct bonded and interconnected stack
WO2020010265A1 (en) * 2018-07-06 2020-01-09 Invensas Bonding Technologies, Inc. Microelectronic assemblies
US11837582B2 (en) 2018-07-06 2023-12-05 Adeia Semiconductor Bonding Technologies Inc. Molded direct bonded and interconnected stack
US11462419B2 (en) 2018-07-06 2022-10-04 Invensas Bonding Technologies, Inc. Microelectronic assemblies
US11476213B2 (en) 2019-01-14 2022-10-18 Invensas Bonding Technologies, Inc. Bonded structures without intervening adhesive
US11817409B2 (en) 2019-01-14 2023-11-14 Adeia Semiconductor Bonding Technologies Inc. Directly bonded structures without intervening adhesive and methods for forming the same
US11955463B2 (en) 2019-06-26 2024-04-09 Adeia Semiconductor Bonding Technologies Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
US11955433B2 (en) 2019-09-27 2024-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Package-on-package device
US11476201B2 (en) 2019-09-27 2022-10-18 Taiwan Semiconductor Manufacturing Company. Ltd. Package-on-package device
US11538781B2 (en) 2020-06-30 2022-12-27 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages including bonded structures
US11631647B2 (en) 2020-06-30 2023-04-18 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages with integrated device die and dummy element
US11764177B2 (en) 2020-09-04 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11728273B2 (en) 2020-09-04 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure

Also Published As

Publication number Publication date
CN107851615B (en) 2021-01-05
US20170053897A1 (en) 2017-02-23
KR20180030147A (en) 2018-03-21
CN107851615A (en) 2018-03-27
TW201712824A (en) 2017-04-01
TWI621228B (en) 2018-04-11
US9559081B1 (en) 2017-01-31
KR102033865B1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US9559081B1 (en) Independent 3D stacking
US11239157B2 (en) Package structure and package-on-package structure
US9679801B2 (en) Dual molded stack TSV package
US11217563B2 (en) Fully interconnected heterogeneous multi-layer reconstructed silicon device
US20200350293A1 (en) Semiconductor device having laterally offset stacked semiconductor dies
US9935087B2 (en) Three layer stack structure
US10636678B2 (en) Semiconductor die assemblies with heat sink and associated systems and methods
TWI627716B (en) System in package fan out stacking architecture and process flow
US9570429B2 (en) Methods of fabrication and testing of three-dimensional stacked integrated circuit system-in-package
US8093711B2 (en) Semiconductor device
US11056373B2 (en) 3D fanout stacking
JP2012253392A (en) Stack package manufactured using molded reconfigured wafer, and method for manufacturing the same
KR20180027679A (en) Semiconductor package and method of fabricating the same
TWI407540B (en) Multi-chip stacked structure having through silicon via and fabrication method thereof
KR20130077627A (en) Semicondcutor apparatus and method of manufacturing the same
US20230031430A1 (en) Package structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187004420

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735762

Country of ref document: EP

Kind code of ref document: A1