WO2017034294A1 - 트리아졸 유도체 및 이를 포함하는 항암제용 약제학적 조성물 - Google Patents

트리아졸 유도체 및 이를 포함하는 항암제용 약제학적 조성물 Download PDF

Info

Publication number
WO2017034294A1
WO2017034294A1 PCT/KR2016/009306 KR2016009306W WO2017034294A1 WO 2017034294 A1 WO2017034294 A1 WO 2017034294A1 KR 2016009306 W KR2016009306 W KR 2016009306W WO 2017034294 A1 WO2017034294 A1 WO 2017034294A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
doxorubicin
chondroitin sulfate
amlodipine
pkm2
Prior art date
Application number
PCT/KR2016/009306
Other languages
English (en)
French (fr)
Inventor
전선덕
황성우
박수영
강경란
빈혜린
지용훈
윤석균
김성헌
김남두
이성우
이상광
Original Assignee
대우제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우제약 주식회사 filed Critical 대우제약 주식회사
Publication of WO2017034294A1 publication Critical patent/WO2017034294A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems

Definitions

  • the present invention relates to a process for the preparation of 4-ethyl-7- (2-fluoro-benzylsulfanyl) -2-methyl-1-thia-3b, 5,6- triaza- cyclopenta [ -tetra-3b, 5,6-triaza-cyclopenta [a] indene) and pharmaceutical compositions for anticancer agents comprising the same.
  • cancer has been an incurable disease for humans and the development of treatment methods for it has been an effort for decades, cancer remains a disease that occupies the first or second place in modern human deaths due to disease, Is increasingly recognized as a limitation of the treatment effect.
  • Lung cancer is the number one cause of cancer deaths in Koreans.
  • Avastin, Tarceva, Alimata, Gemzar and taxotere are the most common types of non-small cell lung cancer.
  • Cancer cells have been shown to enhance biosynthesis and promote proliferation through their own metabolism program, in which enzymes called pyruvate kinase M2 (PKM2) play an important role in regulating cancer-specific metabolic programs.
  • PPM2 pyruvate kinase M2
  • PKM2 is a major marker for the growth of cancer cells such as prostate cancer cells, lung cancer cells, breast cancer cells, and leukemia.
  • PKM2 is an important enzyme that determines the rate-limiting response (the conversion of phosphoenolpyruvate to pyruvate) of the corresponding aerobic action and is over expressed in most cancer cells, but the PKM2 enzyme activity as a pyruvate kinase by PKM2 is inhibited by the signaling pathway of cancer cells .
  • Such inhibition of PKM2 activity may slow down the rate of action and cause glucose and sub-metabolism (eg, glucose-6-phosphate) bottlenecks, resulting in the accumulation of glucose metabolites and replacement of the pentose phosphate pathway By pathway, macromolecules and antioxidants (for example, NADPH) are produced to help cancer cells proliferate.
  • glucose and sub-metabolism eg, glucose-6-phosphate
  • NADPH pentose phosphate
  • the inventors of the present invention conducted a single dose toxicity test at 2 g / kg in vivo as a result of single-dose administration of the compound of formula (1), but did not show any toxicity in the case of in vivo test, And the toxicity was observed.
  • the compound of Formula 1 is prepared as follows.
  • Intermediate compound S-1 was prepared by reacting with dimethyl formamide (DMF), sodium azide (manufacturer: Aldrich) and methyl bromoacetate (manufacturer: TCI).
  • reaction mixture was cooled at room temperature, and methylene chloride was added thereto.
  • the reactants were filtered to remove impurities and residual reagents which were not soluble in methylene chloride.
  • the mobile phase was ethyl acetate: hexane (5: 5) and the final compound was obtained.
  • the obtained compound was confirmed to be a compound of the formula (1) as shown in Figs. 2 and 3, and it was named " DN10227 ".
  • the chemical formula of the compound prepared was C 18 H 16 FN 3 S 2 , the molecular weight (MW) was 357.47, and the melting point (mp) was 125.
  • DN10227 inhibits the signal transduction pathway directly related to the main factors controlling cancer cell proliferation, and thus DN10227 was used as an anticancer agent.
  • DN10227 can inhibit cancer cell proliferation by increasing the activity of PKM2 inhibited by cancer cells.
  • Cancers which can be prevented or treated by the pharmaceutical composition according to the present invention are those which can be prevented or treated by the pharmaceutical composition according to the present invention such as cervical cancer, breast cancer, stomach cancer, brain cancer, colon / rectal cancer, pancreatic cancer, colon cancer, lung cancer, Ovarian cancer, thyroid cancer, gallbladder cancer, bladder cancer, kidney cancer, laryngeal cancer, pharyngitis and liver cancer.
  • the pharmaceutical composition of the present invention may further comprise an anticancer agent as an active ingredient
  • the additional anticancer agent includes, for example, nitrogene mustard, imatinib, oxaliplatin, rituximab, elotinib, , Zetitib, vandetanib, nilotinib, semathanib, conservative nib, acacinib, cediranib, lestaurintinib, trastuzumab, gepetinib, bortezomib, suminitinib, Cetuximab, biscum alum, asparaginase, tretinoin, hydroxycarbamide, dasatinib, estramerstin, gemtuzumab ozogamicin, ibritumotemit, cetane, heptaplate, But are not limited to, laminin, laminin, laminin, laminin, laminin, laminin, laminin, laminin,
  • DN10227 of the present invention When DN10227 of the present invention is applied to a pharmaceutical preparation, it corresponds to all formulations such as tablets, powders, granules, injections, and liquid preparations.
  • the amount of DN10227 to be used may vary depending on the patient's age, sex, body weight, etc., but it may be administered in an amount of 0.01 to 1,000 mg / kg divided once to several times a day.
  • the dose of DN10227 can be increased or decreased depending on the route of administration, degree of disease, sex, weight, age and the like of the patient.
  • the dosage amounts are not intended to limit the scope of the invention in any manner.
  • composition comprising DN10227 according to the present invention and a pharmaceutically acceptable carrier can be formulated into various oral or parenteral dosage forms.
  • Formulations for oral administration include, for example, tablets, capsules, etc. These formulations may contain, in addition to the active ingredient, a diluent such as lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and / or glycine, For example, silica, talc, stearic acid and its magnesium or calcium salt and / or polyethylene glycol).
  • a diluent such as lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and / or glycine
  • silica silica, talc, stearic acid and its magnesium or calcium salt and / or polyethylene glycol.
  • Tablets may also contain binders such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and / or polyvinylpyrrolidine and may optionally contain magnesium stearate, citric acid, silicon dioxide .
  • a disintegrating or boiling mixture such as starch, agar, alginic acid or its sodium salt and / or an absorbent, a colorant, a flavoring agent, and a sweetening agent.
  • the formulations may be prepared by conventional mixing, granulating or coating methods.
  • a representative oral formulation can be prepared as follows.
  • DN10227 is dissolved in the pharmacopoeial alcohol, and then silicon dioxide, citric acid, magnesium stearate, corn starch and mannitol are added and granulated. After hot air drying, tablets can be made using a tablet machine.
  • parenteral administration formulations are isotonic aqueous solutions or suspensions which are suitable for injectable use.
  • parenteral injectable preparations can be prepared as follows.
  • Tween 80 After dissolving DN10227 in the pharmacopoeial alcohol, Tween 80, hydroxypropylmethylcellulose (HPMC) and glycerol are added, stirred, and water is added to make an injection.
  • HPMC hydroxypropylmethylcellulose
  • the present invention relates to the use of 4-ethyl-7- (2-fluoro-benzylsulfanyl) -2-methyl-1-thia-3b, 5,6-triaza-cyclopenta [a] indene (DN10227), and a pharmaceutical composition containing DN10227 can exhibit excellent anticancer effect.
  • FIG. 4 is a graph showing the result of selective activation of PKM2 by DN10227.
  • Figure 5 is a graph showing that DN10227 increases the initial rate of PKM2 activity by the substrate.
  • FIG. 6 is a graph (A) showing the morphological change of rh-PKM2 by DN10227 and a graph (B) comparing pyruvate kinase activity.
  • FIG. 7 is a graph (A) showing intracellular PKM2 changes to tetrameric form by DN10227 and a graph (B) showing activation of pyruvate kinase.
  • FIG. 8 shows the result of evaluating the colony formation effect of DN10227 on lung cancer cell lines A549 and H460.
  • FIG. 9 shows the results of evaluating the anticancer efficacy of DN10227 in the A549 xenograft model, in which 9a is the result of measuring body weight change, 9b is the result of measuring the tumor size, and 9c is the tumor weight And 9d is a photograph of the tumor.
  • Step 1 350 mL of DMF and 90.36 g of sodium azide (1.39 mol, manufacturer: Aldrich) were added and stirred at room temperature.
  • Methyl bromoacetate (124 mL, 1.307 mol, manufacturer: TCI) was slowly added to the solution and stirred at room temperature for 16 hours.
  • Step 2 Add 600 mL of methanol and add 179 mL (895 mmol, manufacturer: TCI) of sodium methoxide 5M in MeOH slowly at 0 ° C.
  • Step 3 250 mL of toluene and 67.59 g (302.75 mmol) of the compound S-2 were added and the mixture was refluxed at 200 ° C for 1 hour.
  • Step 4 180 mL of ethanol and 46.61 g (238.7 mmol) of the compound S-3 were added, 74.3 mL (238.7 mmol, manufactured by Aldrich) of hydrazine hydrate was added and the mixture was refluxed at 150 ° C for 17 hours. After completion of the reaction, the mixture was cooled at room temperature and freezing for 1 hour, filtered under reduced pressure and lyophilized to obtain 43.21 g of compound S-4.
  • Step 5 230 mL of DMF and 43.21 g (221.3 mmol) of the compound S-4 were added, followed by addition of trimethyl orthopropionate (34.4 mL, 243.43 mmol, manufacturer: TCI) and reflux stirring at 200 ° C for 17 hours.
  • Step 6 450.1 mL of benzene and 51.15 g (219.25 mmol) of the compound S-5 were added, and 44.34 g (109.62 mmol, Lawesson reagent, manufacturer: Aldrich) was added to the mixture and the mixture was refluxed at 150 ° C for 18 hours.
  • reaction mixture was cooled at room temperature, washed with n-hexane, and lyophilized to obtain 46.92 g of the compound S-6.
  • Step 7 264 g (188.16 mmol, manufacturer: Aldrich) of potassium carbonate and 1.69 g (6.4 mmol, manufacturer: Aldrich) of 18-crown-6 were sequentially added with 840 mL of acetonitrile and 46.92 g .
  • the reactants were filtered to remove impurities and residual reagents that did not dissolve in methylene chloride. After filtration, the filtrate was concentrated and the resulting solid was purified by column chromatography.
  • the mobile phase was ethyl acetate: hexane (5: 5), and 26.22 g of DN10227 was obtained (see also Fig. 1).
  • NMR analysis of DN10227 was performed using an analytical instrument Varian, 500 MHz (model name VNMRS500).
  • PKM2 activator was dissolved in DMSO in a kinase enzyme buffer (50 mM Tris-HCl (pH 7.4), 100 mM KCl, 10 mM MgCl 2 , 0.5% BSA, 2 mM PEP, 2 mM ADP) and 0.2-0.5 nM pyruvate kinase protein. (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and 50 ⁇ M) at room temperature for 50 minutes.
  • a kinase enzyme buffer 50 mM Tris-HCl (pH 7.4), 100 mM KCl, 10 mM MgCl 2 , 0.5% BSA, 2 mM PEP, 2 mM ADP
  • 0.2-0.5 nM pyruvate kinase protein 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and 50 ⁇ M
  • DN10227 (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50 ⁇ M) specifically activates PKM2 (see FIG.
  • DN10227 and positive control DASA-10 were used at a concentration of 50 ⁇ M.
  • the Michaelis constant (Km) of the control group without PKM2 activator was 1.62 ⁇ 0.24 mM, and the Km of DASA-10 and DN10227 were 0.54 ⁇ 0.03 mM and 0.48 ⁇ 0.05 mM, respectively.
  • Human recombinant PKM2 was used to determine the effect of FBP and DN10227 on changes in PKM2 (monomer-, dimer-, trimer-, and tetrameric form) and activity.
  • Control 1% DMSO or 70 ⁇ M of each test substance was mixed with 3.5 ⁇ M PKM2 and added to the reaction buffer [50 mM Tris-HCl (pH 7.4), 100 mM KCl, 10 mM MgCl 2 ] And then reacted at room temperature for 1 hour.
  • the amount of PKM2 in the fraction was confirmed by western blot.
  • kinase-Glo ® kit (Promega) was used to compare the pyruvate kinase activity of the reaction mixture.
  • the activity of pyruvate kinase in the reaction solution was increased about 16 times and the activity of PKM2 which reacted with DN10227 increased 2.5 times compared to the control.
  • A549 lung cancer cells were cultured, treated with 1 ⁇ M DN10227, cultured for 3 hours, and treated with 100 ⁇ M pervanadate (tyrosine phosphatase inhibitor) for 10 minutes.
  • the intracellular PKM2 protein is converted to a dimeric or monomeric form by pervanadate and its activity is inhibited.
  • PKM2 of A549 cells was converted to dimeric form and monomeric form by pervanadate and inhibited the activity of pervandate by 1 ⁇ M DN10227 and maintained the tetrameric PKM2 form (see FIG. 7A).
  • PKV2 activity was reduced by about 35% in pervanadate treatment but increased by about 90% in 1 PM DN10227 than in the control group (see FIG. 7B).
  • DN10227 inhibited pervanadate activity and produced tetrameric PKM2 and increased PKM2 activity.
  • DN10227 was treated twice a week with a drug Formation inhibitory effect.
  • FIG. 8 shows the effect of inhibiting colony formation by staining cells with MTT solution 10 days after the culture of lung cancer cells.
  • DN10227 inhibited colony formation up to 0.1-30 ⁇ M in a concentration-dependent manner. DN10227 30 ⁇ M treatment inhibited similar colony formation to 10 ⁇ M erlotinib.
  • mice Six-week-old BALB / c nude female mice were purchased and stabilized, and human-induced lung cancer cells, A549, were injected subcutaneously into RPMI-1640 medium and matrigel at 5 ⁇ 10 6 cells / Respectively.
  • DN10227 was suspended in 0.5% methylcellulose (1,500 cP) aqueous solution and the drug was administered orally five times a week for a certain period of time.
  • mice As a result of observing the weight change of mice during the drug administration period, no change in body weight was observed after administration of DN10227 oral or intraperitoneal administration group, but 10% body weight of cisplatin 1 mg / kg intraperitoneally administered group was decreased 10 days later than the control group See FIG. 9A).
  • mice were weighed and weighed. The results were as follows: 1. Cisplatin 1 mg / kg intraperitoneally, 0.53 ⁇ 0.24 g, and 53.2%, respectively.
  • DN10227 120 mg / kg oral administration group and 10 mg / kg intraperitoneal administration group showed similar level of anticancer activity to cisplatin administration group which is the first treatment for non-small cell lung cancer.
  • DN10227 of the present invention provides a pharmaceutical composition for anticancer drugs that has an anticancer effect in the same category without weight loss compared to the conventional anticancer drug cisplatin, and has an excellent anti-cancer effect with less side effects than existing anticancer drugs You can.
  • composition for the anticancer drug of the present invention has been specifically described, and the composition of the other additives is a general matter in the technical field, and a description thereof has been omitted, and such a configuration is within the scope of the present invention, It is to be understood that the invention is not limited thereto.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Physiology (AREA)

Abstract

본 발명은 화학식 1의 4-에틸-7-(2-플루로오-벤질설파닐)-2-메틸-1-티아-3b,5,6-트리아자-사이클로펜타[a]인덴 및 이를 포함하는 항암 효과가 우수한 항암제용 약제학적 조성물에 관한 것이다.

Description

트리아졸 유도체 및 이를 포함하는 항암제용 약제학적 조성물
본 발명은 하기 화학식 1의 4-에틸-7-(2-플루로오-벤질설파닐)-2-메틸-1-티아-3b,5,6-트리아자-사이클로펜타[a]인덴(4-ethyl-7-(2-fluoro-benzylsulfanyl)-2-methyl-1-thia-3b, 5, 6-triaza-cyclopenta[a]indene) 및 이를 포함하는 항암제용 약제학적 조성물에 관한 것이다:
[화학식 1]
Figure PCTKR2016009306-appb-I000001
암은 인간에게 불치의 병으로 이를 위한 치료방법의 개발이 수십여 년 간 노력되어 왔음에도 불구하고, 암은 아직까지 질병에 의한 현대인의 사망요인 1, 2위를 차지하는 질환으로 남아있으며, 기존 치료법에 의한 치료 효과의 한계성에 대한 인식이 확산되고 있다.
폐암은 한국인의 암으로 인한 사망원인 1위이며, 가장 흔한 타입인 비소세포 폐암의 경우 현재 치료제로서 Avastin, Tarceva, Alimata, Gemzar 그리고 taxotere가 시장의 대부분을 차지하고 있다.
그러나 이러한 표적치료제를 기존 화학요법제와 병용 투여했을 시 생존기간을 연장하나, 그 기간이 짧고, 표적치료제를 대상으로 한 여러 임상 실험에서 치료 효과에 대해 한계를 보이고 있다.
더욱이 소수의 환자 중에는 심각한 부작용이 나타나며, 내성이 발달하고 표적치료제 사용에 따른 고비용이 문제점으로 야기된다.
따라서 위와 같은 문제점을 해결하기 위하여 새로운 방식의 약물 기전을 갖는 약물 개발 및 치료 전략이 필요하다.
암 세포는 자체 대사 프로그램을 통하여 생합성을 향상시켜 증식을 촉진하는데, 이 과정에서 피루브산 키나아제(pyruvate kinase) M2(PKM2)라는 효소가 암 특이적 대사 프로그램을 조절하는데 중요한 역할을 하는 것으로 밝혀졌다.
Taro Hitosugi(2009)와 Stefano Elia(2008) 등은 PKM2가 전립선암세포, 폐암세포, 유방암세포, 백혈병 등의 암세포 생장에 주요한 마커(marker)임을 밝히고 있다.
PKM2는 호기성 해당 작용의 속도제한반응(phosphoenolpyruvate의 pyruvate로의 전환)을 결정하는 중요한 효소이며, 대부분의 암세포에서 과다 발현되나, 특이한 점은 PKM2의 피루브산 키나아제로서의 효소활성이 암세포의 신호전달 체계에 의해 저해되어 있다.
이러한 PKM2 활성 저해는 해당 작용의 속도를 늦춤으로써 포도당 및 하위 대사체(예로, glucose-6-phosphate)의 병목을 일으키고, 그 결과 포도당 대사체들의 축적을 유발하여 pentose phosphate pathway(PPP)와 같은 대체 경로에 의해 거대분자나 항산화 물질(예로, NADPH)을 생산함으로써 암세포의 증식에 도움을 주게 된다.
이러한 연구결과에 기인하여 선택적인 PKM2 활성제(activator)는 기존 항암제의 한계를 극복할 수 있는 새로운 기전의 치료법으로 기대된다.
이에 본 발명은 활성이 저해된 PKM2를 활성화하여 뛰어난 항암 효능을 가질 수 있는 신규 화합물을 제공하는 것을 그 기술적 과제로 한다.
또한, 본 발명은 상기 화합물을 포함하는 뛰어난 항암 효능과 종래 항암제의 단점인 체중감소현상을 나타내지 않는 약제학적 조성물을 제공하는 것을 그 기술적 과제로 한다.
상기와 같은 목적을 달성하기 위하여, 본 발명자들은 암세포의 신호전달 경로에 의해서 저해된 PKM2를 활성화하는 물질을 개발하고자 연구 노력한 결과 활성이 저해된 PKM2를 활성화하여 항암 작용에 뛰어난 활성을 가지는 하기 화학식 1의 4-에틸-7-(2-플루로오-벤질설파닐)-2-메틸-1-티아-3b,5,6-트리아자-사이클로펜타[a]인덴(4-ethyl-7-(2-fluoro-benzylsulfanyl)-2-methyl-1-thia-3b, 5, 6-triaza-cyclopenta[a]indene)을 확인하고 합성하여 본 발명을 완성하였다:
[화학식 1]
Figure PCTKR2016009306-appb-I000002
본 발명자들은 상기 화학식 1의 화합물이 단회 독성투여를 실시한 결과 in vivo에서는 2g/kg으로 단회투여독성시험을 경구투여로 실시하였으나 독성이 나타나지 않았으며, in vitro 결과에서는 정상세포에서는 독성이 나타나지 않고 암세포에서 독성이 나타나는 것으로 확인하였다.
그 결과 암세포만을 선택적으로 공격함을 발견하였고 암세포 내부의 PKM2의 신호전달 경로를 직접 저해함으로써, 암 세포의 증식을 억제할 수 있는지 여부를 확인하고자 하였으며, 그 결과 기존의 항암제 및 PKM2 activator의 비교연구를 통하여 항암 활성을 발견하였고 항암제의 단점인 항암제 투약 시 체중감소현상을 화학식 1의 화합물은 반복 투여 시 체중감소가 나타나지 않음을 밝혀내어 본 발명의 완성에 이르게 되었다
이하에서 본 발명을 보다 상세하게 설명한다.
본 발명에 따른 일 구체예에서 상기 화학식 1의 화합물을 다음과 같이 제조한다.
1. Dimethylformaimde(DMF), sodium azide(제조사: Aldrich) 및 methyl bromoacetate(제조사: TCI)를 반응시켜 중간체 화합물 S-1을 제조하였다.
C3H5BrO2 + NaN3 → C3H5N3O2 (화합물 S-1) + NaBr
2. Methanol에 sodium methoxide 용액(제조사: TCI)을 첨가하고, S-1 과 5-methyl-2-thiophenecarboxaldehyde(제조사: Aldrich)를 차례대로 천천히 첨가 후 교반하였다.
종료 후 NH4Cl 수용액 첨가 교반하고, 이를 여과 후 동결 건조하여 중간체 화합물 S-2를 제조하였다.
C3H5N3O2 + C6H6OS → C9H9N3O2S (화합물 S-2) + H2O
3. Toluene 용액에 화합물 S-2를 환류 교반 후 생성된 고체를 여과한 후 동결 건조하여 중간체 화합물 S-3을 제조하였다.
C9H9N3O2S → C9H9NO2S (화합물 S-3) + N2
4. Ethanol 용액에 화합물 S-3를 넣고 hydrazine hydrate(제조사:Aldrich)를 첨가하여 환류 교반 후 냉각시키고 감압 여과 및 동결 건조하여 중간체 화합물 S-4를 제조하였다.
C9H9NO2S + N2H4 → C8H9N3OS (화합물 S-4) + CH3OH
5. DMF 용액에 화합물 S-4를 넣고 trimethyl orthopropionate(제조사:TCI)를 첨가하여 환류 교반 후 상온과 냉동에서 냉각시킨 다음 여과하고, 진공 건조하여 중간체 화합물 S-5를 제조하였다.
C8H9N3OS + C6H14O3 → C11H11N3OS (화합물 S-5) + C3H9(OH)3
6. Benzene 용액에 화합물 S-5를 넣고 Lawesson reagent(제조사:Aldrich)을 첨가하여 환류 교반하였다.
반응 종료 후 상온에서 냉각시킨 후 n-hexane으로 세척 여과하고 동결 건조하여 중간체 화합물 S-6을 제조하였다.
C11H11N3OS + C14H14O2P2S4 → C11H11N3S2 (화합물 S-6) + C14H14O3P2S3
7. Acetonitrile 용액에 화합물 S-6를 넣고 potassium carbonate(제조사:Aldrich)과 18-crown-6(제조사:Aldrich)을 차례대로 첨가한 후 2-fluorobenzyl chloride(제조사:TCI)을 첨가하고 환류 교반하였다.
반응 종료 후 상온에서 냉각시키고 methylene chloride를 첨가하여 교반하였다.
반응물을 여과하여 methylene chloride에 녹지 않는 불순물 및 잔여 시약을 제거하였다.
여과 후 여액을 농축하여 얻어진 고체는 칼럼 크로마토그래피로 정제하였다.
이동상은 ethyl acetate : hexane(5 : 5)이고 최종 화합물을 수득하였다.
C11H11N3S2 + C7H6ClF → C18H16FN3S2 + HCl
수득된 화합물을 NMR 측정 결과 도 2 및 3에 나타난 바와 같이 화학식 1의 화합물임을 확인하고 이를 "DN10227"이라 명명하였다. 제조된 화합물의 화학식은 C18H16FN3S2이며, 분자량(MW)은 357.47이고, 녹는점(mp)은 125의 물성을 나타내었다.
본 발명에서는 DN10227이 암 세포의 증식을 조절하는 주요 인자와 직접적인 관련이 있는 신호전달경로를 저해하는 것을 확인하고, 이에 따라 DN10227을 항암제로서 이용하고자 하였다.
특히, 본 발명에서는 DN10227이 암세포에서 저해된 PKM2의 활성을 증가시킴으로써 암 세포의 증식을 억제할 수 있음을 확인하였다.
본 발명에 따른 약제학적 조성물에 의해 예방 또는 치료될 수 있는 암은, 예를 들어 자궁암, 유방암, 위암, 뇌암, 결장/직장암, 췌장암, 대장암, 폐암, 피부암, 혈액암, 구강암, 전립선암, 난소암, 갑상선암, 담낭암, 방광암, 신장암, 후두암, 인두암 및 간암을 포함한다.
또한, 본 발명의 약제학적 조성물은 활성 성분으로서 항암제를 추가로 포함할 수 있으며, 이들 추가로 포함하는 항암제는 예를 들어 나이트로젠 머스타드, 이마티닙, 옥살리플라틴, 리툭시맙, 엘로티닙, 라티닙, 라파티닙, 제피티닙, 반데타닙, 니로티닙, 세마사닙, 보수티닙, 악시티닙, 세디라닙, 레스타우르티닙, 트라스투주맙, 게피티니브, 보르테조밉, 수니티닙, 카보플라틴, 소라페닙, 베바시주맙,시스플라틴, 세툭시맙, 비스쿰알붐, 아스파라기나제, 트레티노인, 하이드록시카바마이드, 다사티닙, 에스트라머스틴, 겜투주맵오조가마이신, 이브리투모맙튜, 세탄,헵타플라틴, 메칠아미노레불린산, 암사크린, 알렘투주맙, 프로카르바진, 알프로스타딜, 질산홀뮴 키토산, 젬시타빈, 독시플루리딘, 페메트렉세드, 테가푸르, 카페시타빈, 기메라신, 오테라실, 아자시티딘, 메토트렉세이트, 우라실, 시타라빈, 플루오로우라실, 플루다가빈, 에노시타빈, 플루타미드, 데시타빈, 머캅토푸린, 티오구아닌, 클라드리빈, 카르모퍼, 랄티트렉세드, 도세탁셀, 파클리탁셀, 이리노테칸,벨로테칸, 토포테칸, 비노렐빈, 에토포시드, 빈크리스틴, 빈블라스틴, 테니포시드,독소루비신, 이다루비신, 에피루비신, 미톡산트론, 미토마이신, 블레로마이신, 다우노루비신, 닥티노마이신, 피라루비신, 아클라루비신, 페프로마이신, 템시롤리무스, 테모졸로마이드, 부설판, 이포스파미드, 사이클로포스파미드, 멜파란, 알트레트민, 다카바진, 치오테파, 니무스틴, 클로람부실, 미토락톨, 레우코보린, 트레토닌, 엑스메스탄, 아미노글루테시미드, 아나그렐리드, 나벨빈, 파드라졸, 타목시펜,토레미펜, 테스토락톤, 아나스트로졸, 레트로졸, 보로졸, 비칼루타미드, 로무스틴,크리조티니브 및 카르무스틴을 포함할 수 있다.
본 발명의 DN10227을 약학 제제에 적용할 경우에 정제, 산제, 과립제, 주사제, 액제 등의 모든 제형에 해당된다.
본 발명에 따르면 DN10227의 사용량은 환자의 나이, 성별, 체중 등에 따라 달라질 수 있으나, 0.01 내지 1,000 ㎎/㎏의 양을 1 일 1 회 내지 수회로 나누어 투여할 수 있다.
또한, DN10227의 투여량은 투여 경로, 질병의 정도, 환자의 성별, 체중, 나이 등에 따라서 증감될 수 있다. 따라서, 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.
본 발명에 따른 DN10227 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물은 다양한 경구 또는 비경구 투여 형태로 제형화 할 수 있다.
경구 투여용 제형으로는 예를 들면 정제, 캅셀제 등이 있는데, 이들 제형은 유효성분 이외에 희석제(예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로즈 및/ 또는 글리신), 활택제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/ 또는 폴리에틸렌 글리콜)를 함유할 수 있다.
정제는 또한 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및/또는 폴리비닐피롤리딘과 같은 결합제를 함유할 수 있으며, 경우에 따라 스테아린산마그네슘, 구연산, 이산화규소. 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제 또는 비등 혼합물 및/또는 흡수제, 착색제, 향미제, 및 감미제를 함유할 수 있다.
상기 제형은 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다.
대표적인 경구제형으로 정제는 다음과 같이 제조될 수 있다.
DN10227을 약전 알코올에 녹인 후 이산화규소, 구연산, 스테아린산마그네슘, 옥수수전분, 만니톨을 넣고 과립화한다. 열풍 건조한 후 타정기를 사용하여 정제를 만들 수 있다.
또한 비경구 투여용 제형의 대표적인 것은 주사용 제형으로 등장성 수용액 또는 현탁액이 바람직하다.
대표적인 비경구제형으로 주사제는 다음과 같이 제조될 수 있다.
DN10227을 약전 알코올에 녹인 후 Tween 80, 하이드록시프로필 메틸셀룰로오스(HPMC) 및 글리세롤을 넣고 교반한 다음 물을 넣고 현탁화하여 주사제를 만들 수 있다.
본 발명은 항암제로 유용한 화학식 1의 4-에틸-7-(2-플루로오-벤질설파닐)-2-메틸-1-티아-3b,5,6-트리아자-사이클로펜타[a]인덴(DN10227)을 제공하는 것이며, DN10227을 포함하는 약제학적 조성물은 우수한 항암 효과를 보여줄 수 있다.
또한, 항암 치료 시 체중감소의 부작용을 예방하는 효과를 가지고 있다.
도 1은 DN10227의 합성 공정이다.
도 2는 1H-NMR의 결과이다.
도 3은 13C-NMR의 결과이다.
도 4는 DN10227이 PKM2를 선택적으로 활성화시키는 결과 그래프이다.
도 5는 DN10227이 기질에 의한 PKM2 활성 초기 속도를 증가시키는 결과 그래프이다.
도 6은 DN10227에 의한 rh-PKM2의 형태 변화를 나타낸 그림(A)과 pyruvate kinase 활성을 비교한 그래프(B)이다.
도 7은 세포내 PKM2가 DN10227에 의해 tetrameric form으로 변화하는 그림(A)과 pyruvate kinase 활성화시키는 결과 그래프(B)이다.
도 8은 폐암세포주 A549, H460에서 DN10227의 콜로니 형성 효과를 평가한 결과이다.
도 9는 A549 이종이식(xenograft) 모델에서 DN10227의 항암 효능을 평가한 결과로, 9a는 체중의 변화를 측정한 결과이고, 9b는 종양 크기의 변화를 측정한 결과이며, 9c는 종양 무게를 측정한 결과이고, 9d는 종양을 촬영한 사진이다.
이하, 본 발명을 실시예에서 의해서 보다 상세하게 설명한다. 다만 실시예는 본 발명의 이해를 돕기 위하여 예시하는 것일 뿐, 본 발명의 권리범위가 실시예에 의해서 한정되는 것은 아니다.
실시예 1: DN10227의 제조
1단계: DMF 350 mL와 sodium azide 90.36 g(1.39 mol, 제조사: Aldrich)을 넣고 상온에서 교반하였다.
Methyl bromoacetate 124 mL(1.307 mol, 제조사: TCI)를 상기 용액에 천천히 첨가한 후 상온에서 16시간 교반하였다.
반응 종료한 후 ethyl acetate로 추출하고 물로 여러 번 세척하여 DMF를 제거하고 회수된 유기용액을 감압여과 및 농축하여 화합물 S-1(103.59 g)을 수득하였다.
2단계: Methanol 600 mL를 넣고 sodium methoxide 5M in MeOH 179 mL(895 mmol, 제조사: TCI)를 0℃에서 천천히 첨가하였다.
화합물 S-1 103.09 g(895 mmol)과 5-methyl-2-thiophenecarboxaldehyde 48.68 mL(447.5 mmol, 제조사: Aldrich)을 차례대로 천천히 첨가하였다.
첨가 후 20℃ 내외로 18시간 교반하였다. 종료 후 NH4Cl 수용액 800 mL를 첨가하여 1시간 교반하였다.
생성물을 여과 후 동결 건조하여 화합물 S-2(67.59 g)를 수득하였다.
3단계: Toluene 250 mL와 화합물 S-2 67.59 g(302.75mmol)을 넣고 200℃에서 1시간 환류 교반하였다.
생성된 고체를 여과한 후 동결 건조하여 화합물 S-3(46.61 g)를 수득하였다.
4단계: Ethanol 180 mL과 화합물 S-3 46.61 g(238.7mmol)을 넣고 hydrazine hydrate 74.3 mL(238.7mmol, 제조사: Aldrich)를 첨가하여 150℃에서 17시간 환류 교반하였다. 반응 종료 후 상온과 냉동에서 1시간 냉각시킨 후 감압 여과하고 동결 건조하여 화합물 S-4(43.21g)를 수득하였다.
5단계: DMF 230 mL와 화합물 S-4 43.21 g(221.3 mmol)을 넣고 trimethyl orthopropionate 34.4 mL(243.43 mmol, 제조사: TCI)를 첨가하여 200℃에서 17시간 환류 교반하였다.
반응 종료 후 상온과 냉동에서 1시간 냉각시킨 후 여과하고 진공 건조하여 화합물 S-5(51.15 g)를 수득하였다.
6단계: Benzene 450 mL와 화합물 S-5 51.15 g(219.25 mmol)을 넣고 Lawesson reagent 44.34 g(109.62 mmol, 제조사: Aldrich)을 첨가하여 150℃에서 18시간 환류 교반하였다.
반응 종료 후 상온에서 냉각시킨 후 n-hexane으로 세척 여과하고 동결 건조하여 상기 화합물 S-6(46.92 g)를 수득하였다.
7단계: Acetonitrile 840 mL와 화합물 S-6 46.92 g(188.16 mmol)을 넣고 potassium carbonate 26 g(188.16 mmol, 제조사: Aldrich)과 18-crown-6 1.69g(6.4 mmol, 제조사: Aldrich)을 차례대로 첨가하였다.
그 다음 2-fluorobenzyl chloride 23.04 mL(193.8 mmol, 제조사: TCI)을 첨가하고 150℃에서 18시간 환류 교반하였다.
반응 종료 후 상온에서 냉각시키고 methylene chloride를 첨가하여 1시간 교반하였다.
반응물을 필터 하여 methylene chloride에 녹지 않는 불순물 및 잔여 시약을 제거하였다. 필터 후 여액을 농축하여 얻어진 고체는 칼럼 크로마토그래피로 정제하였다.
이동상은 ethyl acetate : hexane(5 : 5)이고, 26.22 g의 DN10227을 수득하였다(도 1 공정도 참조).
실시예 2: DN10227의 NMR 분석
분석기기 Varian, 500 MHz(모델명 VNMRS500)를 사용하여 DN10227의 NMR 분석을 하였다.
분석 data 결과는 1H-NMR(500 MHz, DMSO) δ 7.60~7.57(m, 1H), 7.40(s, 1H), 7.35~7.31(m, 1H), 7.23~7.19(m, 1H), 7.17~7.14(m, 2H), 4.63(s, 2H), 3.27~3.22(m, 2H), 2.60(s, 3H), 1.38(t, J = 7.25 Hz, 3H) ppm이며 13C-NMR (125 MHz, DMSO) δ 161.9, 160.0, 151.8, 146.7, 143.8, 132.4, 132.0, 131.9, 130.1, 130.0, 128.9, 124.9, 124.9, 124.8, 124.0, 115.9, 115.7, 113.0, 97.3, 25.9, 25.8, 25.7, 17.2, 10.2 ppm 임을 알 수 있었다(도 2 및 3 참조).
분석결과로 DN10227의 구조를 확인하였다.
실시예 3: PKM2의 활성도 분석( PKM2 activity assay)
DN10227이 PKM2 활성에 미치는 영향을 조사하기 위하여 Kinase-Glo® kit(Promega)를 사용하였다.
Kinase enzyme buffer[50 mM Tris-HCl(pH7.4), 100mM KCl, 10mM MgCl2, 0.5% BSA, 2mM PEP, 2mM ADP]와 0.2-0.5nM pyruvate kinase 단백질에 PKM2 activator는 DMSO에 녹여 1% DMSO가 되도록 농도별(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50 μM)로 첨가한 후 실온에서 50 분간 반응하였다.
반응액과 동량의 kinase glo reagent를 첨가하고 10분간 교반 후 Infinite F200 pro 장비로 형광신호를 측정하였다.
(1) DN10227의 PKM2 선택적 활성화
PKM1과 PKM2 단백질의 활성화에 DN10227이 미치는 영향을 조사하였다.
실험 결과, DN10227(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50 μM)이 PKM2를 특이적으로 활성화하는 것을 확인하였다(도 4 참조).
(2) DN10227에 의한 PKM2 Km값 변화
단백질과 기질 복합체의 친화도를 확인하기 위하여 PEP 농도에 따른 초기 속도(v0) 변화를 측정하였다.
실험에 사용된 DN10227과 양성 대조군 DASA-10은 50 μM의 농도로 사용하였다.
PKM2 activator를 첨가하지 않은 대조군의 미카엘리스 상수(Km)는 1.62±0.24 mM이고 DASA-10과 DN10227의 Km은 각각, 0.54±0.03 mM과 0.48±0.05 mM이었다.
따라서 PKM2와 PEP 친화도는 DASA-10에 의해 약 3배 증가하였고 DN10227에 의해 약 3.4배 증가하였다(도 5 참조).
실시예 4: PKM2 형태와 활성의 변화
(1) Enzyme based assay
PKM2 형태(monomer-, dimer-, trimer-, tetrameric form)변화와 활성 변화에 FBP와 DN10227이 미치는 영향을 알아보기 위하여 human recombinant PKM2를 사용하였다.
Control(1% DMSO) 또는 70 μM의 각 시험물질을 3.5 μM PKM2와 혼합하고 총 반응 부피가 500 ㎕가 되도록 reaction buffer[50mM Tris-HCl(pH7.4), 100 mM KCl, 10mM MgCl2] 첨가한 후, 실온에서 1시간 동안 반응하였다.
반응 단백질의 형태를 확인하기 위하여 ENrichTM SEC650 column(10 × 300 column 24 ml, cat.# 780-1650)이 장착된 FPLC 장비로 size exclusion chromatography를 수행하였고, 200 ㎕씩 분액을 받았다.
분액의 PKM2 양은 western blot으로 확인하였다.
또한, 반응액의 pyruvate kinase 활성을 비교하기 위하여 Kinase-Glo® kit (Promega)를 사용하였다.
DN10227과 FBP가 PKM2의 형태변화에 미치는 영향을 확인한 결과, FBP는 PKM2의 dimeric 또는 monomeric form을 tetrameric 또는 trimeric form으로 전환시켰으나, DN10227은 그 효과가 미비하였다.
FBP와 DN10227을 함께 처리한 경우, FBP를 단독으로 처리한 그룹에 비해 PKM2의 tetrameric form 또는 trimeric form으로 더 많이 전환시켰다(도 6의 A 참조).
반응액의 pyruvate kinase 활성을 평가한 결과, 대조군에 비해 FBP와 반응했던 PKM2의 활성은 약 16배 증가하였고 DN10227과 반응했던 PKM2의 활성은 2.5배 증가하였다.
FBP와 DN10227을 함께 처리한 PKM2의 활성은 25배 증가하여 단독 처리군에 비해 높아진 활성을 확인할 수 있었다(도 6의 B 참조).
Enzyme based assay에서 PKM2 tetrameric form 형성과 pyruvate kinase 활성 확인 결과 DN10227을 단독으로 처리할 때보다 FBP와 함께 처리할 경우 PKM2 activator로서의 효과를 더욱 분명히 확인할 수 있었다.
(2) Cell based assay
암세포 내의 PKM2 형태 및 활성 변화에 DN10227이 미치는 영향을 조사하였다.
A549 폐암 세포를 배양한 뒤 1 μM DN10227을 처리하고 3시간 배양한 후 100 μM pervanadate(tyrosine phosphatase inhibitor)를 처리하여 10분간 반응하였다.
세포내 PKM2 단백질은 pervanadate에 의해 dimeric 또는 monomeric form으로 변하며 활성이 저해된다.
반응 후, RIPA buffer를 이용하여 세포 단백질을 추출하고 추출된 단백질에서 PKM2 활성을 Kinase-Glo® kit(Promega)로 확인하였다.
세포 단백질을 size exclusion chromatography 수행 후 200 ㎕씩 분액을 받고, 분액의 PKM2 양을 western blot으로 확인하였다.
A549 세포의 PKM2가 pervanadate에 의해 dimeric form과 monomeric form으로 전환되었고, 1 μM DN10227에 의해 pervandate의 활성을 저해하며 tetrameric PKM2 형태를 유지하였다(도 7 A 참조).
A549 세포 단백질의 pyruvate kinase 활성을 평가한 결과, 대조군에 비해 pervanadate 처리 시 약 35% PKM2 활성이 감소하였지만 1 μM DN10227에 의해 대조군보다 활성이 약 90% 증가하였다(도 7 B 참조).
DN10227은 pervanadate 활성을 저해하여 tetrameric PKM2를 생성하고 PKM2 활성을 증가시켰다.
실시예 5: In vitro assay
사람 유래 폐암 세포 2종(A549, H460)을 6-well plate에 10일 동안 CO2 incubator(37, 5.0%)에서 계대 배양하여 콜로니 형성을 유도하였고, DN10227을 1주일에 2회 약물 처리하여 콜로니 형성 억제 효과를 확인하였다.
도 8은 폐암 세포를 배양한 지 10일째, MTT solution으로 세포를 염색하여 콜로니 형성 억제 효과를 확인한 그림이다.
DN10227은 0.1-30 μM까지 농도 의존적으로 콜로니 형성을 억제하였고, DN10227 30 μM 처리 시 기존 항암제인 Erlotinib 10 μM과 유사한 콜로니 형성 억제 효능이 나타남을 확인하였다.
실시예 6: In vivo assay
6 주령의 BALB/c nude 암컷 마우스를 구입하여 안정화시킨 후, 사람 유래 폐암 세포인 A549를 5×106 cells/mice가 되게 RPMI-1640 배지와 matrigel에 섞어 쥐의 오른쪽 등에 200 ㎕를 피하로 주사하였다.
종양의 크기가 평균 100 mm3이 되었을 때 약물처리를 시작하였으며, 0.5% methylcellulose(1,500 cP) 수용액에 DN10227을 현탁시켜 1 주일에 5회 일정한 시간에 경구로 약물을 투여하였다.
Cisplatin과 DN10227 10 mg/kg 복강 투여군은 DMSO : EtOH : PEG400 : Cremophor EL : water = 7.5 : 54 : 25 : 12.5 : 50(vehicle)으로 동일한 비율로 제조한 후 1 주일에 5회, 일정한 시간에 약물을 대조군 Cisplatin 1 mg/kg과 DN10227 10 mg/kg은 복강 투여하였다. 투여 경로 변경에 대하여 동일한 효력을 나타내는지에 대한 실험으로 30, 50, 120 mg/kg을 경구 투여하여 비교하였다.
약물 투여기간 동안 마우스의 체중 변화를 관찰한 결과, DN10227 경구 또는 복강 투여군 모두 약물 투여 후 체중의 변화가 나타나지 않았으나, cisplatin 1 mg/kg 복강 투여군은 10일 이후 대조군에 비하여 10% 체중이 감소하였다(도 9 A 참조).
약물 투여기간 동안 마우스 종양의 크기를 측정결과로 대조군은 95.1 ± 15.3 mm3에서 977.7 ± 193.3 mm3로 종양 크기가 증가하였으며, cisplatin 1 mg/kg 복강 투여군은 95.0 ± 15.1 mm3에서 447.6 ± 36.8 mm3으로 54.2%의 항암 효력을 확인하였다.
DN10227 10 mg/kg 복강 투여군은 94.4 ± 17.5 mm3에서 550.0 ± 78.9 mm3으로 43.7%의 항암 효력을 확인하였고, DN10227 30, 60, 120 mg/kg 경구 투여군은 농도 의존적으로 종양 크기를 억제하였으며, DN10227 120 mg/kg 경구 투여군은 94.5 ± 17.5 mm3에서 459.1 ± 39.6 mm3으로 53%의 항암 효력을 확인하였다(도 9 B 참조).
마우스 종양을 적출한 후 무게를 측정한 결과 대조군은 1.14 ± 0.12 g에 비하여 cisplatin 1 mg/kg 복강 투여군은 0.53 ± 0.24 g으로 53.2%의 항암 효력을 확인하였으며, DN10227 10 mg/kg 복강 투여군은 0.69 ± 0.11 g으로 43.7%, DN10227 120 mg/kg 경구 투여군은 0.52 ± 0.08 g으로 53.0%의 항암 효력을 확인하였다(도 9 C 참조).
DN10227 120mg/kg 경구 투여군과 10mg/kg 복강 투여군은 비소세포폐암 1차 치료제인 cisplatin 투여군과 유사한 수준의 항암 효력이 나타남을 확인하였다.
이상에서 살펴본 바와 같이 본 발명의 DN10227은 종래의 항암제인 cisplatin에 비하여 체중 감소 없이 동일한 범주에 항암효과를 가지는 것으로, 기존의 항암제에 비하여 부작용이 적은 우수한 항암 효과를 가지는 항암제용 약제학적 조성물을 제공할 수 있는 것이다.
이상 본 발명의 항암제용 약제학적 조성물에 대하여 구체적으로 설명하였으며, 기타 첨가제에 대한 구성은 이 기술 분야의 일반적인 사항으로, 이에 대한 설시는 생략하였으며, 이러한 구성은 본 발명의 권리범위 내에 속하는 것으로, 통상의 기술자이면 자명한 사항이므로 이로 인하여 본 발명의 권리가 제한되어서는 아니 될 것이다.

Claims (6)

  1. 하기 화학식 1의 4-에틸-7-(2-플루로오-벤질설파닐)-2-메틸-1-티아-3b,5,6-트리아자-사이클로펜타[a]인덴(4-ethyl-7-(2-fluoro-benzylsulfanyl)-2-methyl-1-thia-3b, 5, 6-triaza-cyclopenta[a]indene):
    [화학식 1]
    Figure PCTKR2016009306-appb-I000003
  2. 유효성분으로서 제1항의 화합물 및 약제학적으로 허용되는 담체를 포함하는 항암제용 약제학적 조성물.
  3. 제2항에 있어서, 상기 암은 자궁암, 유방암, 위암, 뇌암, 결장/직장암, 췌장암, 대장암, 폐암, 피부암, 혈액암, 구강암, 전립선암, 난소암, 갑상선암, 담낭암, 방광암, 신장암, 후두암, 인두암 및 간암으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 항암제용 약제학적 조성물.
  4. 제2항에 있어서, 나이트로젠 머스타드, 이마티닙, 옥살리플라틴, 리툭시맙, 엘로티닙, 라티닙, 라파티닙, 제피티닙, 반데타닙,니로티닙, 세마사닙, 보수티닙, 악시티닙, 세디라닙, 레스타우르티닙, 트라스투주맙, 게피티니브, 보르테조밉, 수니티닙, 카보플라틴, 소라페닙, 베바시주맙, 시스플라틴, 세툭시맙, 비스쿰알붐, 아스파라기나제, 트레티노인, 하이드록시카바마이드, 다사티닙, 에스트라머스틴, 겜투주맵오조가마이신, 이브리투모맙튜, 세탄, 헵타플라틴, 메칠아미노레불린산, 암사크린, 알렘투주맙, 프로카르바진, 알프로스타딜, 질산홀뮴 키토산, 젬시타빈, 독시플루리딘, 페메트렉세드, 테가푸르, 카페시타빈, 기메라신, 오테라실, 아자시티딘, 메토트렉세이트, 우라실, 시타라빈, 플루오로우라실, 플루다가빈, 에노시타빈, 플루타미드, 데시타빈, 머캅토푸린, 티오구아닌, 클라드리빈, 카르모퍼, 랄티트렉세드, 도세탁셀, 파클리탁셀, 이리노테칸, 벨로테칸, 토포테칸, 비노렐빈, 에토포시드, 빈크리스틴, 빈블라스틴, 테니포시드, 독소루비신, 이다루비신, 에피루비신, 미톡산트론, 미토마이신, 블레로마이신, 다우노루비신, 닥티노마이신, 피라루비신, 아클라루비신, 페프로마이신, 템시롤리무스, 테모졸로마이드, 부설판, 이포스파미드, 사이클로포스파미드, 멜파란, 알트레트민, 다카바진, 치오테파, 니무스틴, 클로람부실, 미토락톨, 레우코보린, 트레토닌, 엑스메스탄, 아미노글루테시미드, 아나그렐리드, 나벨빈, 파드라졸, 타목시펜, 토레미펜, 테스토락톤, 아나스트로졸, 레트로졸, 보로졸, 비칼루타미드, 로무스틴, 크리조티니브 및 카르무스틴으로 이루어진 군에서 선택되는 하나 이상의 항암제를 추가로 포함하는 것을 특징으로 하는 항암제용 약제학적 조성물.
  5. 제2항에 있어서, 경구용 또는 비경구용 제제 형태인 것을 특징으로 하는 항암제용 약제학적 조성물.
  6. 제2항에 있어서, 활성이 저해된 PKM2(pyruvate kinase M2)의 활성을 증가시키는 것을 특징으로 하는 항암제용 약제학적 조성물.
PCT/KR2016/009306 2015-08-24 2016-08-23 트리아졸 유도체 및 이를 포함하는 항암제용 약제학적 조성물 WO2017034294A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0118738 2015-08-24
KR1020150118738A KR101713678B1 (ko) 2015-08-24 2015-08-24 신규 화합물 4-Ethyl-7-(2-fluoro-benzylsulfanyl)-2-methyl-1-thia-3b, 5, 6-triaza-cyclopenta[a]indene 및 이를 포함하는 항암제용 약제학적 조성물

Publications (1)

Publication Number Publication Date
WO2017034294A1 true WO2017034294A1 (ko) 2017-03-02

Family

ID=58100372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009306 WO2017034294A1 (ko) 2015-08-24 2016-08-23 트리아졸 유도체 및 이를 포함하는 항암제용 약제학적 조성물

Country Status (2)

Country Link
KR (1) KR101713678B1 (ko)
WO (1) WO2017034294A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713876A1 (en) * 1994-11-24 1996-05-29 Wakamoto Pharmaceutical Co., Ltd. Triazine derivative, chymase activity inhibitor and nitric oxide production inhibitor
WO2010042867A2 (en) * 2008-10-09 2010-04-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Activators of human pyruvate kinase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713876A1 (en) * 1994-11-24 1996-05-29 Wakamoto Pharmaceutical Co., Ltd. Triazine derivative, chymase activity inhibitor and nitric oxide production inhibitor
WO2010042867A2 (en) * 2008-10-09 2010-04-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Activators of human pyruvate kinase

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE Chemical Abstract 11 July 2006 (2006-07-11), retrieved from STN Database accession no. 892087-54-6 *
GUPTA, S. ET AL.: "Discovery of Dual Binding Site Acetylcholinesterase Inhibitors Identified by Pharmacophore Modeling and Sequential Virtual Screening Techniques", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 21, no. 4, 2011, pages 1105 - 1112, XP028138651 *
IL YIN, A. P. ET AL.: "Synthesis of Heterocyclic Compounds Possessing the 4H-Thieno [3, 2-b] Pyrrole Moiety", JOURNAL OF COMBINATORIAL CHEMISTRY, vol. 9, no. 1, 2007, pages 96 - 106, XP055368585 *

Also Published As

Publication number Publication date
KR101713678B1 (ko) 2017-03-09
KR20170024194A (ko) 2017-03-07

Similar Documents

Publication Publication Date Title
EP3070089B1 (en) Aminomethyl tryptanthrin derivative, preparation method and application thereof
HU217611B (hu) Új indolopirrolokarbazolszármazékok, ilyen vegyületeket tartalmazó gyógyászati készítmények és eljárás ezek előállítására
WO2008141385A1 (en) Viral polymerase inhibitors
EP3838901B1 (en) Compound for treatment of rabies and method for treatment of rabies
US5552427A (en) Glutaminase inhibitory compounds, compositions, and methods of use
CN115353508B (zh) 5-吡啶-1h-吲唑类化合物、药物组合物和应用
CN112300153A (zh) 一种杂环化合物、药物组合物和用途
TW202003496A (zh) 一種新穎磷酸肌醇3 - 激酶抑制劑及其製備方法和用途
EP3418277B1 (en) Substituted amino six-membered nitric heterocyclic ring compound and preparation and use thereof
JPH03167191A (ja) イソチアゾロキノリン誘導体およびそれを含有する腫瘍性疾患治療剤
EP3865487A1 (en) Aromatic ring-linked dioxane-quinazoline or -quinoline compounds, compositions and use thereof
CN111943906B (zh) 脒类衍生物、及其制法和药物组合物与用途
WO2017034294A1 (ko) 트리아졸 유도체 및 이를 포함하는 항암제용 약제학적 조성물
JPH06329678A (ja) 多環式化合物及びその製造方法
KR102606167B1 (ko) 불소 함유 치환 벤조티오펜 화합물, 그의 약학적 조성물 및 응용
CN112341390B (zh) 用于制备靶向组蛋白甲基转移酶ezh2共价抑制剂的化合物及其制备方法和用途
WO2015178608A2 (ko) 3,4-디히드로퀴나졸린 유도체 및 그를 포함하는 복합제
WO2021020879A1 (en) Dinucleotide compounds for treating cancers and medical uses thereof
CA2361580A1 (en) Thiazoloindolinone compounds
WO2014102315A1 (en) Selected macrolides with pde4-inhibiting activity
CN109476677B (zh) 抗hcmv病毒化合物
EP4104902A1 (en) Compound and drug containing same
EP1252155B1 (en) Ethanol solvate of (-)-cis-2-(2-chlorophenyl)-5,7-dihydroxy-8- [4r-(3s-hydroxy-1-methyl)piperidinyl]-4h-1-benzopyran-4-one
WO2021092892A1 (zh) 喹啉或喹唑啉类化合物在制备抗肿瘤药物中的应用
CN115724830A (zh) 作为tyk2/jak1假激酶结构域(jh2)抑制剂的化合物及合成和使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839583

Country of ref document: EP

Kind code of ref document: A1