WO2017033791A1 - しごき加工用ダイス及びダイスモジュール - Google Patents
しごき加工用ダイス及びダイスモジュール Download PDFInfo
- Publication number
- WO2017033791A1 WO2017033791A1 PCT/JP2016/073841 JP2016073841W WO2017033791A1 WO 2017033791 A1 WO2017033791 A1 WO 2017033791A1 JP 2016073841 W JP2016073841 W JP 2016073841W WO 2017033791 A1 WO2017033791 A1 WO 2017033791A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- die
- ironing
- carbon film
- temperature adjusting
- film
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/28—Deep-drawing of cylindrical articles using consecutive dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/01—Selection of materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/16—Heating or cooling
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/18—Lubricating, e.g. lubricating tool and workpiece simultaneously
Definitions
- the present invention relates to an ironing die having a carbon film formed on the processing surface, and more particularly to a die module provided with this die.
- a carbon film containing a diamond component which is a carbon crystal has extremely high hardness and excellent wear resistance. For this reason, by forming a carbon film on the surface of sliding tools such as cutting tools such as tools, end mills, and files, plastic molds such as punches and dies, valve lifters, and bearings, workability and mechanical life can be improved. It has been done conventionally.
- the carbon film as described above includes a diamond film containing a large amount of a diamond component and a DLC film containing a large amount of a graphite component (diamond-like carbon film). Particularly, the composition of a carbon film applied to a cutting tool or a plastic working die. Various studies have been conducted on the characteristics of these.
- Patent Document 1 discloses that the intensity of the maximum peak which is made of diamond and amorphous carbon and has a surface roughness Rmax of 2 ⁇ m or less and present at 1333 ⁇ 10 cm ⁇ 1 in Raman spectroscopic analysis is ID.
- Hardness having an intensity ratio I G / I D of 0.2 to 20 (I D / I G 0.05 to 5), where I G is the maximum peak intensity existing at 1500 ⁇ 100 cm ⁇ 1
- I G is the maximum peak intensity existing at 1500 ⁇ 100 cm ⁇ 1
- a metal processing jig in which a carbon film is formed on a sliding surface with a metal to be processed has been proposed. Specifically, this metal working jig is a die used for drawing, a punch, or a drawing die used for wire drawing.
- Patent Document 2 discloses a diamond film for a cutting tool formed on a base material, and this film is formed of a plurality of film layers.
- I G / ID the mechanical properties of the coating layer by I G / ID ).
- the peak in the region around 1333 cm ⁇ 1 in the above Raman spectroscopic analysis is derived from the diamond component, and the peak in the region around 1500 cm ⁇ 1 is derived from the graphite component. Therefore, as the strength ratio (I D / I G ) is larger, the diamond component is more contained and the amount of the graphite component is smaller. This indicates that the carbon film is a high-purity diamond, that is, has a high hardness.
- the intensity ratio (I G / ID or I D / I G ) in Raman spectroscopic analysis is set within a certain range, both of which improve the wear resistance and the film This is to extend the life.
- metal plastic working is usually performed by press working, and typical methods include drawing and ironing.
- a metal can such as an aluminum can is formed by punching a flat metal plate into a disk shape of a predetermined size, then drawing, forming a drawn can with a low height, and performing ironing, Manufactured through a molding process to make it a thin metal can base with a high height.
- Patent Document 3 discloses a mold capable of performing aluminum drawing without using a lubricant, and a diamond-like carbon film having a thickness of 0.5 ⁇ m to 5 ⁇ m is formed on the surface of the mold. Providing is disclosed.
- the ironing process is a severe molding in which sliding of the jig to be used with respect to the work material is large.
- the processed surface of the die is affected by the work hardening of the work material as the ironing rate increases.
- a large surface pressure is applied.
- the forming limit is low and the ironing process having a large ironing rate cannot be endured.
- the ironing rate is 40% or more, the sliding resistance between the jig and the workpiece increases, and the tensile stress exceeding the allowable stress is applied to the workpiece due to thinning, resulting in molding defects.
- ironing ratio a plate thickness reduction rate, ironing before plate thickness t 0, when the plate thickness after processing was t 1, represented by the following formula, as the ironing ratio is large, the surface applied to the die The pressure is large, resulting in severe molding.
- Ironing rate (%) 100 ⁇ (t 0 ⁇ t 1 ) / t 0
- an object of the present invention is to effectively perform ironing without causing molding defects even when ironing at a high ironing rate in a so-called dry process (non-lubricating method or low-lubrication method).
- An object of the present invention is to provide an ironing die having a carbon film.
- Another object of the present invention is to provide a die module including the ironing die described above.
- a die for ironing is formed, and a carbon film is formed so as to cover at least a processed surface of the die, and the carbon film has the following formula (1): ID / IG (1) Where ID is 1333 ⁇ in the Raman spectrum of the carbon film surface. Maximum peak intensity at 10 cm ⁇ 1 , I G is, 1500 ⁇ in the Raman spectrum of the carbon film surface The maximum peak intensity at 100 cm ⁇ 1 , The intensity ratio represented by the formula (1) shows a Raman spectroscopic spectrum of 1.0 or more, and the surface of the carbon film is a smooth surface having an arithmetic average roughness Ra of 0.1 ⁇ m or less. Dies for use are provided.
- the carbon film is a diamond film having the strength ratio of 1.2 or more.
- the arithmetic average roughness Ra of the surface of the carbon film is 0.05 ⁇ m or less, Is preferred.
- the holding tool includes the ironing die described above and a holder provided so as to sandwich the non-processed surface of the die from the upstream side in the processing direction and the downstream side in the processing direction. Is provided with a die module in which a temperature adjusting fluid flow channel is formed to flow a temperature adjusting fluid so as to come into contact with the non-processed surface of the die.
- a fluid for temperature adjustment is present on both side surfaces of the non-machined surface on the upstream side in the machining direction and the side of the non-machined surface on the downstream side in the machining direction.
- the temperature adjusting fluid channel is formed so as to come into contact;
- the carbon film of the ironing die is continuously formed up to the non-working surface that comes into contact with the fluid flowing through the temperature control fluid passage; Is desirable.
- the ironing die of the present invention for example, a molded article having a mirror surface or a smooth surface close to the mirror surface without causing molding defects even in a severe ironing process in which the ironing rate exceeds 40% or exceeds 40%. (Thin products) can be obtained.
- the die module having the ironing die is provided with a holder so that the temperature adjusting fluid flows so as to come into contact with the non-machined surface of the die, the cooling fluid or the heating fluid is supplied.
- the temperature of the die can be adjusted within a certain range.
- the temperature control of the die is performed through the carbon film having high heat conductivity, so that the entire die is kept at a constant temperature. It can be adjusted quickly. Further, the temperature can be controlled effectively by contacting the temperature adjusting fluid with the non-processed surface close to the processed surface of the die.
- thermocontrol fluid channel so that the temperature control fluid contacts both sides of the non-processed surface downstream of the die and the non-processed surface upstream of the processing direction. Can do. Furthermore, it is possible to effectively relieve the thermal strain of the die due to temperature change, to increase the life of the die and to stabilize the accuracy of the molded product.
- the ironing die of the present invention can provide a molded product having a mirror surface or a smooth surface close to the mirror surface even when used for ironing at a high ironing rate.
- a molded product having a mirror surface or a smooth surface close to the mirror surface even when used for ironing at a high ironing rate.
- an aluminum can It is used suitably for manufacture of metal cans.
- FIG. 3 is a schematic partial side sectional view of a die module including the ironing die of FIG. 2.
- the top view of the die module of FIG. The figure which shows an example of the Raman spectroscopy spectrum of a die
- FIG. 1 shows a metal can manufacturing process, which is a representative example of a press forming process using ironing.
- a base plate (for example, an aluminum plate) 1 used for forming a metal can is first subjected to a punching process, whereby a disc 3 for a metal can is obtained (see FIG. 1 (a)). ).
- a punching punch 5 having an outer diameter corresponding to the diameter of the disc 3 and a die 7 that holds the base plate 1 and has an opening corresponding to the diameter of the disc 3 are used. That is, by punching the base plate 1 held on the die 7 by the punch 5, the disc 3 having a predetermined size is obtained.
- the base plate 1 may be punched into another shape (for example, a rectangular shape).
- the disk 3 obtained as described above is subjected to a drawing process, whereby a drawn can (bottomed tubular body) 9 having a low height is obtained (see FIG. 1B).
- a drawn can (bottomed tubular body) 9 having a low height is obtained (see FIG. 1B).
- the disc 3 punched on the die 11 is held, and the periphery of the disc 3 is held by a wrinkle pressing jig 13.
- An opening is formed in the die 11, and the drawn can 9 is obtained by pushing the disc 3 into the opening of the die 11 using the punch 15 for drawing.
- a rounded portion (curvature portion) is formed at the corner portion (the side holding the disc 3) of the opening of the die 11 so that the disc 3 can be opened quickly and without breaking.
- the outer diameter of the punch 15 is set to be smaller than the diameter of the opening of the die 11 by an amount corresponding to the thickness of the disk 3. In other words, thinning is hardly performed in this drawing process.
- the drawing process may be performed a plurality of times depending on the shape of the molded product.
- the drawn can 9 obtained above is subjected to ironing, thereby forming a metal can base (drawn and ironed can) 17 having a high height and a reduced thickness (see FIG. 1C). ).
- a punch 19 for ironing is inserted into the drawing can 9 obtained by the drawing process described above, and the punch 19 is pressed while the outer surface of the cylindrical body 9 is pressed against the inner surface of the ring-shaped die 21. Is lowered, the side wall of the cylindrical body 9 is thinned by the die 21. Thereby, the metal can base
- the ironing die 30 of the present invention generally indicated by 30 has a carbon film 50 on the surface of a rigid substrate 31. Is formed.
- the die 30 has a tapered surface as a whole on the side facing the workpiece 60 during ironing.
- the pair of inclined surfaces 33a and 33b and the inclined surfaces 33a and 33b are respectively connected to side surfaces 37a and 37b extending in parallel with each other, and the side surfaces 37a and 37b are acting surfaces. It is continued to the surface 39 that faces. Note that the surface of the workpiece 60 opposite to the die 30 is in pressure contact with the ironing punch 63.
- the inclined surface 33a and the side surface 37a are located on the upstream side in the machining direction
- the inclined surface 33b and the side surface 37b are located on the downstream side in the machining direction
- the workpiece 60 A region that contacts the workpiece 60 is a processed surface 41
- a region that does not contact the workpiece 60 is a processed surface 43.
- the carbon film 50 is formed on at least the above-described processing surface 41 (that is, the surface to which surface pressure is applied during ironing).
- the carbon film 50 extends to the processing surface 43, and the carbon film 50 is formed so as to cover the inclined surfaces 33a and 33b and the side surfaces 37a and 37b. That is, as far as ironing is concerned, it is sufficient that the carbon film 50 is formed only on the processing surface 41.
- problems such as film peeling will occur. It is easy to produce.
- FIG. 2 such inconvenience can be effectively avoided by extending the carbon film 50 to a position far away from the processing surface 41.
- the carbon film 50 can be used to take advantage of the high heat transfer property of the die 30. It becomes easy to adjust the overall temperature of the liquid to a certain range. That is, the temperature of the die 30 can be easily adjusted by bringing the cooling fluid or the heating fluid into contact with the carbon film 50 at the surface 43 to be processed. Furthermore, since the rigid base material 31 is covered with the carbon film 50, corrosion of the rigid base material 31 by the cooling or heating fluid used above can be effectively avoided. As a matter of course, even if the carbon film 50 is extended to the facing surface 39 and the entire rigid base material 31 is covered with the carbon film 50, no problem occurs.
- the carbon film 50 has the following formula (1): ID / IG (1) Where ID is 1333 ⁇ in the Raman spectrum of the carbon film surface. Maximum peak intensity at 10 cm ⁇ 1 , I G is, 1500 ⁇ in the Raman spectrum of the carbon film surface The maximum peak intensity at 100 cm ⁇ 1 , Is in the range of 1.0 or more, preferably 1.2 or more.
- the peak intensity I D is derived from the diamond component in the film
- the peak intensity I G is derived from a graphite component in the film. Therefore, the larger the peak intensity ratio, the smaller the graphite content, and the closer the film is to a diamond crystal (high-purity diamond film).
- the carbon film 50 having a peak intensity ratio in the above range is a diamond film with extremely high hardness having a Vickers hardness of 8000 or more. Further, the diamond crystal has high chemical stability, and the reaction with the workpiece at the interface is suppressed. Thereby, since slip property becomes favorable, the severe ironing process in which the ironing rate on dry process conditions exceeds 40% is attained.
- a carbon film having a peak intensity ratio smaller than the above range for example, a carbon film containing a large amount of components other than the diamond component such as graphite, such as a diamond-like carbon film, has a low sliding property and an ironing rate of 40% or more. Processing will cause molding defects. If the peak intensity ratio is excessively large, the carbon film 50 becomes brittle and the durability may be impaired. Therefore, the peak intensity is preferably 5 or less.
- the surface roughness Ra JIS B-0601-1994
- the surface of the carbon film 50 having the peak intensity ratio of the Raman spectrum as described above is usually a rough surface having a relatively large surface roughness.
- the surface pressure applied to the workpiece 60 is extremely large. In particular, the surface pressure increases as the ironing rate increases. For this reason, the processing surface 41 (the surface of the carbon film 50) of the die 30 is transferred to the surface of the workpiece 60 as it is.
- the surface of the carbon film 50 is a rough surface, it becomes difficult to make the surface of the workpiece 60 a mirror surface or a state close to a mirror surface.
- the surface of the carbon film 50 having the peak intensity ratio in the above-described range is polished, and the surface roughness Ra is adjusted to the small range as described above.
- the friction coefficient ⁇ is lower than 0.1, and not only the slidability is improved, but also the surface of the molded body obtained by ironing the workpiece 60 is a mirror surface having a similar surface roughness or close to a mirror surface. It can be a smooth surface.
- the carbon film 50 having the peak intensity ratio and the surface roughness Ra as described above is formed on the surface of the rigid substrate 31 by a known method such as plasma CVD, for example, microwave plasma CVD, high frequency plasma CVD, thermal plasma CVD. It is manufactured by forming a film and then polishing the surface.
- plasma CVD for example, microwave plasma CVD, high frequency plasma CVD, thermal plasma CVD. It is manufactured by forming a film and then polishing the surface.
- a gas obtained by diluting a hydrocarbon gas such as methane, ethane, propane, acetylene or the like with hydrogen gas to about 1% is generally used as the source gas.
- a small amount of gas such as oxygen, carbon monoxide and carbon dioxide may be mixed as appropriate.
- hydrogen atoms dissociated in the plasma selectively etch the graphite and amorphous carbon generated on the rigid base material 31, thereby increasing the diamond component and increasing the peak intensity of the Raman spectrum of the film.
- the ratio can be within the range described above.
- Surface polishing of the formed carbon film can be performed by a method known per se.
- a mechanical polishing method that performs co-machining of a carbon film using diamond abrasive grains (grinding stone) may be used, or a polishing method that utilizes chemical action may be used.
- a polishing method combining these mechanical and chemical methods may be used. By these polishing methods, the surface roughness Ra of the film is adjusted to the above-described range, whereby the target carbon film 50 can be obtained.
- the rigid base 31 on which the carbon film 50 as described above is formed has a rigidity that can withstand severe ironing with high surface pressure, and at the time of forming the carbon film 50.
- a heat-resistant material that can withstand high temperature heating is used.
- Examples of such a material include so-called cemented carbide obtained by sintering a mixture of tungsten carbide (WC) and a metal binder such as cobalt, metal carbide such as titanium carbide (TiC), and titanium carbonitride ( Cermet obtained by sintering a mixture of a titanium compound such as TiCN) and a metal binder such as nickel or cobalt, or silicon carbide (SiC), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), Examples thereof include hard ceramics such as zirconia (ZrO 2 ).
- the ironing die 30 of the present invention provided with the carbon film 50 described above is excellent in moldability, and a dry process (for example, a non-lubricating method that does not use a lubricant such as wax, or a lubricant such as wax, Even in a low lubrication system with a very small amount of use, severe ironing can be performed effectively, and the limit of the ironing rate exceeds 40%.
- the ironing process using the ironing die 30 can be applied to various metals or alloy materials. For example, aluminum, copper, iron or alloys containing these metals, tin-plated steel plates such as tinplate, surface-treated steel plates such as aluminum plates subjected to chemical conversion treatment, pre-coated metal plates having an organic coating on at least one surface, etc.
- the ironing die 30 of the present invention can be suitably used for ironing when producing a metal can base by the process shown in FIG. 1 described above. It is most suitably applied to the production of aluminum cans that are likely to cause defects and slippage.
- the ironing die 30 of the present invention is usually applied to ironing as a die module equipped with a holder including a temperature adjusting fluid channel.
- 3 and 4 are a partial side sectional view (FIG. 3) and a plan view (FIG. 4) showing a die module used for ironing in the metal can manufacturing process (see FIG. 1 (c)).
- the module is generally indicated at 70 and the dice are indicated with the same reference numerals as in FIG.
- the die 30 in the die module 70 has a ring shape (see FIG. 4), and the non-machined surface 43 of the die 30 having such a configuration is arranged on the downstream side in the machining direction and the upstream in the machining direction.
- the holder 71 provided so that it may clamp from the side is provided.
- the die 30 has a ring shape so that the side surface 37a on the upstream side in the machining direction and the side surface 37b on the downstream side in the machining direction (both are non-machined surfaces 43) are sandwiched.
- the holder 71 is fixed.
- the holder 71 is made of a metal such as steel, stainless steel, or aluminum, and is formed by screwing a part that is in close contact with the side surface 37a and a part that is in close contact with the side surface 37b with a die 30 in between. ing.
- a temperature adjusting fluid channel 73 for flowing a temperature adjusting fluid is formed, and the temperature adjusting fluid is supplied to the channel 73 from a supply port 73a.
- the fluid is discharged from the discharge port 73b.
- the flow path shape is appropriately designed so that the temperature is controlled efficiently and uniformly.
- water, oil, or the like is used as the temperature adjusting fluid, whereby the die 30 is held at a constant temperature, leading to stabilization of slipperiness and accuracy of the molded product, and thermal strain of the die 30. Can be relaxed and its life can be improved.
- the temperature adjusting fluid flow path 73 of the die 30 is provided so that the temperature adjusting fluid is in direct contact with the side surface 37a on the upstream side in the processing direction and the side surface 37b on the downstream side in the processing direction.
- the carbon film 50 extends to the side surface 37a and the side surface 37b where the temperature adjusting fluid directly contacts. That is, the temperature adjustment of the die 30 with the temperature adjusting fluid is performed by bringing the temperature adjusting fluid into contact with the carbon film 50.
- the carbon film 50 is excellent in heat conductivity, and is formed so as to cover the entire surface excluding the surface 39 of the die 30 from the processed surface 41.
- the temperature of the die 30 can be controlled more efficiently than through the rigid base material 31 that is inferior in heat conductivity as compared with the carbon film 50.
- a cooling medium as a temperature control fluid and performing ironing while flowing the cooling medium through the flow path 73
- the die 30 can be cooled to a certain level, and when the ironing process is not performed, the heating medium is appropriately passed through the flow path 73 so that the temperature is not lowered more than necessary.
- the temperature can be adjusted. For this reason, it is suitably used for forming a precoated plate having an organic coating that is particularly susceptible to the temperature during forming.
- the temperature adjusting fluid for example, water does not directly contact the rigid substrate 31 of the die 30, thereby preventing the rigid substrate 31 from being corroded by the temperature adjusting fluid. This can be effectively avoided and the life of the die 30 can be improved.
- the above-described die module 70 can be used for one-stage ironing processing, or a plurality of die modules 70 can be arranged with an appropriate spacer in between to perform multi-stage ironing processing.
- the invention is illustrated by the following experimental example.
- the surface roughness and the peak intensity in the Raman spectrum were measured by the following methods.
- Peak intensity in the Raman spectrum A Raman spectroscopic spectrum was measured using a Raman spectroscope (DXR Raman Microscope) manufactured by Thermo Fisher Scientific Co., Ltd. An example of the Raman spectrum at that time is shown in FIG. A sharp peak I D to 1333 cm -1 vicinity, it can be seen that the gentle peak I G is detected in the vicinity of 1500 cm -1.
- the obtained Raman spectrum spectrum curve was approximated by a quadratic polynomial, and this was used as a baseline to correct the Raman spectrum spectrum to obtain the highest peak intensity among peaks existing in an arbitrary section.
- the die used for ironing was a cemented carbide substrate surface coated with a carbon film by the hot filament CVD method. During coating, the film formation conditions were changed to change the state of the carbon film for comparison.
- the so-called DLC film causes adhesion of the workpiece to the mold and peeling of the DLC film even at a squeezing rate as low as about 20%. It cannot be molded.
- the in intensity ratio in the Raman spectroscopic analysis I D / I G 1.0 or more die (Sample Nanba2,3,4,5), even in molding at ironing rate of more than 35%, the mold A molded can having a good appearance can be obtained without causing adhesion of the work material.
- the intensity ratio I D / I G 1.1 following the die (Sample Nanba2,3), despite its surface is sufficiently smooth, the ironing near ironing ratio of 40% ironing A molding defect occurred in which the molded product was broken during processing.
- the intensity ratio I D / I G 1.2 or more die (Sample Nanba4,5), even in the processing of a high ironing ratio of around 40%, without causing molding defects such as breakage, appearance A good molded product was obtained.
- the mold surface roughness is large in an unpolished state, and breakage occurs even when used for molding.
- the mold surface roughness is reduced, and the convex portions on the mold surface are removed by polishing, so that the inner diameter of the mold is expanded and the ironing rate is reduced.
- the mold surface roughness Ra exceeds 0.1 um, breakage occurs and a molded can cannot be obtained.
- the mold surface roughness Ra is 0.1 ⁇ m or less, a molded can can be obtained without breaking.
- the mold surface roughness Ra is around 0.1 ⁇ m, no breakage occurs, but a can with a good appearance cannot be obtained because the entire circumference of the molded can is scratched.
- the mold surface roughness Ra is polished to 0.05 ⁇ m or less, a molded can having a high specularity and good appearance can be obtained.
- the intensity ratio I D / I G represented by the Raman spectrum is 1.0 or more, and the mold surface roughness There needs to be less to 0.1um the Ra, in addition, about 40%, in order to carry out the molding at a higher ironing ratio that is the intensity ratio I D / I G 1.2 or higher
- the mold surface roughness Ra is desirably 0.05 ⁇ m or less in order to obtain a can having high specularity and good appearance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
また、特許文献2には、基材上に形成される切削工具用ダイヤモンド皮膜であって、この皮膜は複数の皮膜層から形成されており、ラマン分光スペクトル分析による強度比(ID/IGあるいはIG/ID)により皮膜層の機械的特性を制御することが提案されている。
尚、しごき率は、板厚減少率であり、しごき加工前の板厚t0、加工後の板厚をt1としたとき、下記式で表され、しごき率が大きいほど、ダイスに加わる面圧が大きく、過酷な成形となる。
しごき率(%)=100×(t0-t1)/t0
本発明の他の目的は、上記のしごき加工用ダイスを備えたダイスモジュールを提供することにある。
ID/IG (1)
式中、
IDは、前記炭素膜表面のラマン分光スペクトルにおける1333±
10cm-1での最大ピーク強度であり、
IGは、前記炭素膜表面のラマン分光スペクトルにおける1500±
100cm-1での最大ピーク強度である、
で表される強度比が1.0以上のラマン分光スペクトルを示し、且つ該炭素膜の表面は、算術平均粗さRaが0.1μm以下の平滑面となっていることを特徴とするしごき加工用ダイスが提供される。
(1)前記炭素膜は、前記強度比が1.2以上のダイヤモンド膜であること、
(2)前記炭素膜の表面の算術平均粗さRaが0.05μm以下であること、
が好適である。
(3)加工方向に沿った側断面でみて、前記ダイスの加工方向上流側の非加工面の側面と加工方向下流側の非加工面の側面との両側面に、温調のための流体が接触するように前記温調流体用流路が形成されていること、
(4)しごき加工用ダイスの炭素膜は、前記温調流体用流路を流れる流体と接触する非加工面にまで連続的に形成されていること、
が望ましい。
特に、温調流体が接触する部分にまで炭素膜が連続的に形成されていることにより、ダイスの温調が伝熱性の高い炭素膜を介して行われるため、ダイスの全体を一定の温度に速やかに調整することができる。また、ダイスの加工面に近い非加工面に温調流体が接触することによっても効果的に温調を行える。ダイスの加工方向下流側の非加工面と加工方向上流側の非加工面との両側面に温調流体が接触するように温調流体用流路を設けることによっても、より速やかに調整することができる。
さらには、温度変化によるダイスの熱歪などを有効に緩和し、ダイスの寿命を高めるとともに成形品の精度を安定させることができる。
図1は、しごき加工を利用したプレス成形プロセスの代表例である金属缶の製造プロセスを示したものである。
かかる打ち抜き加工では、円板3の直径に相当する外径を有する打ち抜き用パンチ5と、素板1を保持し且つ円板3の直径に相当する開口を有するダイ7が使用される。即ち、パンチ5によりダイ7上に保持された素板1を打ち抜くことにより、所定の大きさの円板3が得られる。
尚、かかる製造プロセスで製造する成形物の形態によっては、素板1は、他の形状(例えば矩形状)に打ち抜かれることもある。
かかる絞り加工においては、ダイ11上に打ち抜かれた円板3が保持され、この円板3の周囲はしわ押え用の治具13によって保持されている。ダイ11には、開口が形成されており、絞り用のパンチ15を用いてダイ11の開口内に円板3を押し込むことにより、絞り缶9が得られることとなる。
尚、このダイ11の開口の上端のコーナー部(円板3を保持している側)にアール(曲率部)が形成されており、円板3が速やかに且つ折れることなく、ダイ11の開口内に押し込まれるようになっており、パンチ15の外径は、円板3のほぼ厚みに相当する分だけ、ダイ11の開口の径よりも小さく設定されている。即ち、この絞り加工では、薄肉化はほとんど行われない。尚、絞り加工は成形品の形状に応じて複数回行う場合もある。
このしごき加工では、上記の絞り加工により得られた絞り缶9の内部にしごき用のパンチ19を挿入し、リング形状のダイス21の内面に該筒状体9の外面を圧接しながら、パンチ19を降下させることにより、ダイス21により、筒状体9の側壁が薄肉化されていくこととなる。これにより、薄肉化され、且つ薄肉化の程度に応じてハイトが高くなった金属缶基体17が得られることとなる。
従って、このしごき加工に用いるダイス21の加工面(被加工物とダイス21とが接触する面)には、後述する炭素膜を設けることが必要となる。
前述した図1(特に図1(c))と共に、図2を参照して、全体として30で示されている本発明のしごき加工用ダイス30は、剛性基材31の表面に炭素膜50が形成されている。
即ち、このダイス30は、しごき加工に際して、被加工物60に対面する側の作用面が全体として先細形状を有しており、一対の傾斜面33a、33bと、これらの傾斜面33a,33bの間のフラット或いはフラットに極めて近い先端面35とを有しており、傾斜面33a、33bは、それぞれ、互いに平行に延びている側面37a,37bに連なっており、側面37a,37bは、作用面に対面する面39に連なっている。
尚、ダイス30に対して、被加工物60の反対側の面は、しごき用のパンチ63に圧接されている。
尚、当然のことながら、対面39まで炭素膜50を延ばし、剛性基材31の全体を炭素膜50で覆っても何ら問題を生じない。
ID/IG (1)
式中、
IDは、前記炭素膜表面のラマン分光スペクトルにおける1333±
10cm-1での最大ピーク強度であり、
IGは、前記炭素膜表面のラマン分光スペクトルにおける1500±
100cm-1での最大ピーク強度である、
で表される強度比が1.0以上、好ましくは1.2以上の範囲にある。
例えば、ピーク強度比が上記の範囲にある炭素膜50は、ビッカース硬度が8000以上の著しく高硬度なダイヤモンド膜である。さらに、ダイヤモンド結晶は化学的安定性が高く、界面での被加工材との反応が抑制される。これにより、すべり性が良好となるため、ドライプロセス条件でのしごき率が40%を超える過酷なしごき加工が可能となる。一方、ピーク強度比が上記範囲よりも小さい炭素膜、例えば、グラファイト等のダイヤモンド成分以外の成分を多く含む炭素膜、例えばダイヤモンドライクカーボン膜は、すべり性が低く、しごき率が40%以上のしごき加工では成形不良を生じてしまう。
尚、ピーク強度比が過度に大きいと、炭素膜50が脆くなり、耐久性が損なわれる恐れがあるため、このピーク強度は5以下であることが好ましい。
即ち、上記のようなラマン分光スペクトルのピーク強度比を有する炭素膜50の表面は、通常、比較的表面粗さが大きい粗面となる。しかるに、しごき加工では、被加工物60が受ける面圧が極めて大きく、特にしごき率が大きくなるほど、この面圧は大きくなる。このため、ダイス30の加工面41(炭素膜50の表面)が被加工物60の表面にそのまま転写されてしまう。この結果、炭素膜50の表面が粗い面であると、被加工物60の表面を鏡面或いは鏡面に近い状態とすることが困難となってしまう。
しかるに、本発明では、ピーク強度比が前述した範囲にある炭素膜50の表面を研磨し、その表面粗さRaを、上記のような小さな範囲に調整することにより、例えば、加工に際して各種材料に対する摩擦係数μが0.1よりも低くなり、摺動性が高められるばかりか、被加工物60をしごき加工して得られる成形体の表面を、同様の表面粗さを有する鏡面或いは鏡面に近い平滑面とすることができる。
上記の原料ガスを使用し、上記剛性基材31を700~1000℃の高温に加熱し、マイクロ波や高周波等によりプラズマを発生させ、プラズマ中で原料ガスを分解して活性種を生成せしめ、剛性基材31上でダイヤモンド結晶を成長させることにより成膜が行われる。かかる成膜に際しては、プラズマ中で解離した水素原子が、剛性基材31上に生成したグラファイトやアモルファスカーボンを選択的にエッチングし、これにより、ダイヤモンド成分が多く、膜のラマン分光スペクトルのピーク強度比を前述した範囲内とすることができる。
ダイヤモンド砥粒(砥石)を用いて、炭素膜の共削り加工を行う機械的な研磨方法でもよいし、化学作用を利用した研磨方法でもよい。これらの機械的および化学的手法を複合した研磨方法でもよい。これらの研磨方法により、膜の表面粗さRaを前述した範囲に調整し、これにより、目的とする炭素膜50を得ることができる。
このような材料としては、例えば、タングステンカーバイド(WC)とコバルトなどの金属バインダーとの混合物を焼結して得られる所謂超硬合金や、炭化チタン(TiC)などの金属炭化物や炭窒化チタン(TiCN)などのチタン化合物とニッケルやコバルトなどの金属バインダーとの混合物を焼結して得られるサーメット、あるいは炭化ケイ素(SiC)や窒化ケイ素(Si3N4)、アルミナ(Al2O3)、ジルコニア(ZrO2)といった硬質セラミックスなどを挙げることができる。
このようなしごき加工用ダイス30を用いてのしごき加工は、種々の金属ないし合金材に適用することができる。例えば、アルミニウム、銅、鉄或いは、これらの金属を含む合金、さらにはブリキなどの錫めっき鋼板や化成処理を施したアルミニウム板などの表面処理鋼板、少なくとも一面に有機被膜をもつプレコート金属板などについても、本発明のしごき加工用ダイス30を用いて、しごき率の高い過酷なしごき加工を行うことができる。
特に、本発明のしごき加工用ダイス30は、前述した図1に示すプロセスで金属缶基体を製造する際のしごき加工に好適に使用することができ、中でも、反応性が高く、凝着による外観不良の発生やすべり性の悪化を生じやすいとされるアルミニウム缶の製造に最も好適に適用される。
本発明のしごき加工用ダイス30は、通常、温調流体用流路を含む保持具が装着されたダイスモジュールとして、しごき加工に適用される。
図3及び図4は、金属缶の製造プロセスでのしごき加工(図1(c)参照)に用いるダイスモジュールを示す部分側断面図(図3)及び平面図(図4)であり、このダイスモジュールは全体として70で示されており、ダイスは、図2と同じ引照数字で示されている。
かかる保持具71は、スチール、ステンレス、アルミニウム等の金属で形成されており、側面37aと密着するパーツと側面37bに密着するパーツとを、間にダイス30を挟んでビス止めすることによって形成されている。
しかるに、この炭素膜50は、伝熱性に優れており、加工面41から、ダイス30の面39を除く全面を覆うように形成されている。このため、かかるダイスモジュール70では、炭素膜50と比べて伝熱性の劣る剛性基材31を介するよりも効率よく、ダイス30の温調を行うことができる。例えば、温調用流体として冷却媒体を用い、この冷却媒体を流路73に流しながらしごき加工を行うことにより、しごき加工時の摩擦熱による温度上昇がもっとも大きな加工面41の部分を含めてダイス30の全体を一定のレベルに冷却することができ、また、しごき加工が行われていない待機時には、適宜、加熱媒体を流路73に流すことにより、必要以上の温度低下を生じさせず、ダイス30の温調を行うことができる。このため、特に、成形時の温度の影響を受けやすい、有機被膜をもつプレコート板の成形に好適に使用される。
尚、以下の実験例において、表面粗さおよびラマン分光スペクトルにおけるピーク強度は、以下の方法により測定した。
(株)東京精密製表面粗さ計(サーフコム2000SD3)を使用し、JIS-B-0601に準拠し、算術平均粗さRaを測定した。
サーモフィッシャーサイエンティフィック(株)製ラマン分光装置(DXR Raman Microscope)を使用し、ラマン分光スペクトルを測定した。その際の、ラマン分光スペクトルの一例を図5に示した。1333cm-1近傍に鋭いピークIDと、1500cm-1近傍になだらかなピークIGが検出されていることがわかる。得られたラマン分光スペクトルの曲線を二次多項式にて近似し、これをベースラインとして、ラマン分光スペクトルを補正し、任意区間に存在するピークのうち最も高いピーク強度を取得した。
表面にダイヤモンドコーティングが施されたダイスを用いて、アルミニウム板のしごき加工を行った。アルミニウム板は、A3104材を板厚0.27mmに圧延したものを打ち抜き、絞り加工を行いΦ95mmの有底筒状体を成形し、成形試験に用いた。成形試験は、油圧プレスを用いて、外径Φ66mmのパンチを速度1m/sにて移動させ、まず絞り加工を行いΦ66mmの筒状体を成形し、そのまま、三回のしごき加工に付せた。この時、各工程のダイス内径を変化させることにより、最終工程のしごき率を変化させ、成形缶の比較を行った。その際の、成形不良の有無を表1に示した。
つぎに、ダイス表面粗さの影響について評価するために、同一のダイスを成形、研磨、成形と繰り返した。成形は、実験例1と同様に、Φ95mmの有底筒状体を、絞り加工した後にそのまま二回のしごき加工に付せた。また、研磨は、ダイス表面をダイヤモンド砥石で共削りすることでダイス表面の平滑化をおこなった。その際の、ダイスの表面粗さと成形不良の有無を表2に示した。
31:剛性基材
33a,33b:傾斜面
35:先端面
37a,37b:側面
41:加工面
43:非加工面
50:炭素膜
60:被加工物
63:しごき加工用パンチ
70:ダイスモジュール
71:保持具
73:温調流体用流路
Claims (6)
- しごき加工用ダイスであって、該ダイスの少なくとも加工面を覆うように炭素膜が形成されており、該炭素膜は、下記式:
ID/IG
式中、
IDは、前記炭素膜表面のラマン分光スペクトルにおける13
33±10cm-1での最大ピーク強度であり、
IGは、前記炭素膜表面のラマン分光スペクトルにおける15
00±100cm-1での最大ピーク強度である、
で表される強度比が1.0以上のラマン分光スペクトルを示し、且つ該炭素膜の表面は、算術平均粗さRaが0.1μm以下の平滑面となっていることを特徴とするしごき加工用ダイス。 - 前記炭素膜は、前記強度比が1.2以上のダイヤモンド膜である請求項1に記載のしごき加工用ダイス。
- 前記炭素膜の表面の算術平均粗さRaが0.05μm以下である請求項1または2に記載のしごき加工用ダイス。
- 請求項1または2に記載のしごき加工用ダイスと、加工方向上流側と加工方向下流側とから該ダイスの非加工面を挟持するように設けられた保持具とからなり、該保持具には、該ダイスの非加工面と接触するように温調のための流体を流す温調流体用流路が形成されているダイスモジュール。
- 加工方向に沿った側断面でみて、前記ダイスの加工方向上流側の非加工面の側面と加工方向下流側の非加工面の側面との両側面に、温調のための流体が接触するように前記温調流体用流路が形成されている請求項4に記載のダイスモジュール。
- 前記炭素膜は、前記温調流体用流路を流れる流体と接触する非加工面にまで連続的に形成されている請求項4または5に記載のダイスモジュール。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16839138.1A EP3342501A4 (en) | 2015-08-26 | 2016-08-15 | STRETCH MATRIX AND MATRIX MODULE |
CN201680047797.8A CN107921518B (zh) | 2015-08-26 | 2016-08-15 | 减薄加工用冲模和冲模模块 |
BR112018003601-3A BR112018003601B1 (pt) | 2015-08-26 | 2016-08-15 | Matriz para trabalho de estiramento, e, módulo de matriz |
JP2017536760A JP6933578B2 (ja) | 2015-08-26 | 2016-08-15 | しごき加工用ダイス及びダイスモジュール |
KR1020187006297A KR20180035897A (ko) | 2015-08-26 | 2016-08-15 | 아이어닝 가공용 다이스 및 다이스 모듈 |
US15/750,224 US20180229287A1 (en) | 2015-08-26 | 2016-08-15 | Die for ironing working and die module |
US17/099,487 US20210069767A1 (en) | 2015-08-26 | 2020-11-16 | Die for ironing working and die module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015166675 | 2015-08-26 | ||
JP2015-166675 | 2015-08-26 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/750,224 A-371-Of-International US20180229287A1 (en) | 2015-08-26 | 2016-08-15 | Die for ironing working and die module |
US17/099,487 Continuation US20210069767A1 (en) | 2015-08-26 | 2020-11-16 | Die for ironing working and die module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017033791A1 true WO2017033791A1 (ja) | 2017-03-02 |
Family
ID=58100192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073841 WO2017033791A1 (ja) | 2015-08-26 | 2016-08-15 | しごき加工用ダイス及びダイスモジュール |
Country Status (7)
Country | Link |
---|---|
US (2) | US20180229287A1 (ja) |
EP (1) | EP3342501A4 (ja) |
JP (1) | JP6933578B2 (ja) |
KR (1) | KR20180035897A (ja) |
CN (1) | CN107921518B (ja) |
TW (1) | TWI739758B (ja) |
WO (1) | WO2017033791A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019166561A (ja) * | 2018-03-26 | 2019-10-03 | 東洋製罐グループホールディングス株式会社 | 金属加工物 |
JP2020069506A (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | 金属塑性加工用治具 |
JP2020069500A (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | シームレス缶体の製造方法 |
JP2020069505A (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | 機械加工用治具及び機械加工方法 |
JP2020069502A (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | プレス加工用金型およびプレス加工方法 |
WO2020090504A1 (ja) | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | 機械加工用治具及び機械加工方法、並びにシームレス缶体の製造方法 |
CN112236243A (zh) * | 2018-07-04 | 2021-01-15 | 日本制铁株式会社 | 热压成型品的制造方法、压制成型品、冲模模具及模具套件 |
WO2021193003A1 (ja) | 2020-03-27 | 2021-09-30 | 東洋製罐グループホールディングス株式会社 | 有底筒状体の製造方法 |
EP3778060A4 (en) * | 2018-04-13 | 2022-04-13 | Nippon Steel Corporation | PRODUCTION METHOD FOR HOT PRESS MOLDED ARTICLES, PRESS MOLDED ARTICLE, MATRIX MOLD AND MOLD SET |
WO2022158593A1 (ja) * | 2021-01-25 | 2022-07-28 | 東洋製罐グループホールディングス株式会社 | 絞りしごき缶の製造方法及び絞りしごき缶 |
WO2023037703A1 (ja) | 2021-09-09 | 2023-03-16 | 東洋製罐株式会社 | しごき加工パンチ |
JP7521225B2 (ja) | 2020-03-27 | 2024-07-24 | 東洋製罐グループホールディングス株式会社 | 有底筒状体の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11684963B2 (en) * | 2017-10-12 | 2023-06-27 | Nippon Steel Corporation | Method and apparatus for producing outer panel having character line |
ES2971108T3 (es) | 2018-03-28 | 2024-06-03 | Lg Energy Solution Ltd | Método para evaluar la estabilidad de un separador |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07149583A (ja) * | 1993-11-30 | 1995-06-13 | Kyocera Corp | 硬質炭素膜被覆部材 |
JP2006055862A (ja) * | 2004-08-17 | 2006-03-02 | Toyo Seikan Kaisha Ltd | 絞り・しごき成形におけるダイ冷却の方法とその構造 |
JP2013163187A (ja) * | 2012-02-09 | 2013-08-22 | Mitsubishi Materials Corp | プレス加工用金型 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945231A (en) * | 1973-10-31 | 1976-03-23 | Toyo Seikan Kaisha Limited | Process and apparatus for preparation of thin walled cylindrical vessels |
JPS5850501A (ja) * | 1981-09-22 | 1983-03-25 | Nippon Synthetic Chem Ind Co Ltd:The | 偏光板 |
US5020350A (en) * | 1989-06-19 | 1991-06-04 | Aluminum Company Of America | Apparatus and method for lubricating and cooling in a draw and iron press |
JP2801451B2 (ja) * | 1991-12-25 | 1998-09-21 | 京セラ株式会社 | 金属加工用治具 |
TW252961B (en) * | 1994-02-15 | 1995-08-01 | Toyo Seikan Kaisha Ltd | Method of producing seamless cans |
DE102009011813B4 (de) * | 2008-03-26 | 2019-06-27 | Schaeffler Technologies AG & Co. KG | Kalibrierwerkzeug und Umformwerkzeug für die Fertigung von Tellerfedern |
EP2859965B1 (en) * | 2012-06-07 | 2017-03-29 | Toyo Seikan Group Holdings, Ltd. | Deep draw moulding method and moulding metal die therefor |
-
2016
- 2016-08-15 CN CN201680047797.8A patent/CN107921518B/zh active Active
- 2016-08-15 EP EP16839138.1A patent/EP3342501A4/en active Pending
- 2016-08-15 JP JP2017536760A patent/JP6933578B2/ja active Active
- 2016-08-15 US US15/750,224 patent/US20180229287A1/en not_active Abandoned
- 2016-08-15 WO PCT/JP2016/073841 patent/WO2017033791A1/ja active Application Filing
- 2016-08-15 KR KR1020187006297A patent/KR20180035897A/ko active Search and Examination
- 2016-08-22 TW TW105126676A patent/TWI739758B/zh active
-
2020
- 2020-11-16 US US17/099,487 patent/US20210069767A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07149583A (ja) * | 1993-11-30 | 1995-06-13 | Kyocera Corp | 硬質炭素膜被覆部材 |
JP2006055862A (ja) * | 2004-08-17 | 2006-03-02 | Toyo Seikan Kaisha Ltd | 絞り・しごき成形におけるダイ冷却の方法とその構造 |
JP2013163187A (ja) * | 2012-02-09 | 2013-08-22 | Mitsubishi Materials Corp | プレス加工用金型 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3342501A4 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111902226A (zh) * | 2018-03-26 | 2020-11-06 | 东洋制罐集团控股株式会社 | 金属加工物 |
WO2019188324A1 (ja) * | 2018-03-26 | 2019-10-03 | 東洋製罐グループホールディングス株式会社 | 金属加工物 |
US11745245B2 (en) | 2018-03-26 | 2023-09-05 | Toyo Seikan Group Holdings, Ltd. | Metallic worked articles |
JP7155568B2 (ja) | 2018-03-26 | 2022-10-19 | 東洋製罐グループホールディングス株式会社 | 金属加工物 |
CN111902226B (zh) * | 2018-03-26 | 2022-09-09 | 东洋制罐集团控股株式会社 | 金属加工物 |
JP2019166561A (ja) * | 2018-03-26 | 2019-10-03 | 東洋製罐グループホールディングス株式会社 | 金属加工物 |
EP3778060A4 (en) * | 2018-04-13 | 2022-04-13 | Nippon Steel Corporation | PRODUCTION METHOD FOR HOT PRESS MOLDED ARTICLES, PRESS MOLDED ARTICLE, MATRIX MOLD AND MOLD SET |
CN112236243A (zh) * | 2018-07-04 | 2021-01-15 | 日本制铁株式会社 | 热压成型品的制造方法、压制成型品、冲模模具及模具套件 |
JP2020069500A (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | シームレス缶体の製造方法 |
KR20210082216A (ko) | 2018-10-31 | 2021-07-02 | 도요세이칸 그룹 홀딩스 가부시키가이샤 | 금속 소성 가공용 지그 |
KR20230006600A (ko) | 2018-10-31 | 2023-01-10 | 도요세이칸 그룹 홀딩스 가부시키가이샤 | 금속 소성 가공용 지그 |
JP7268327B2 (ja) | 2018-10-31 | 2023-05-08 | 東洋製罐グループホールディングス株式会社 | しごき加工方法 |
US12036597B2 (en) | 2018-10-31 | 2024-07-16 | Toyo Seikan Group Holdings, Ltd. | Jig for metal plastic working |
CN113039026B (zh) * | 2018-10-31 | 2024-04-05 | 东洋制罐集团控股株式会社 | 冲压加工用模具及冲压加工方法 |
WO2020090475A1 (ja) | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | 金属塑性加工用治具 |
JP7415319B2 (ja) | 2018-10-31 | 2024-01-17 | 東洋製罐グループホールディングス株式会社 | シームレス缶体の製造方法 |
JP2020069505A (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | 機械加工用治具及び機械加工方法 |
WO2020090271A1 (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | プレス加工用金型およびプレス加工方法 |
WO2020090504A1 (ja) | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | 機械加工用治具及び機械加工方法、並びにシームレス缶体の製造方法 |
JP2020069502A (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | プレス加工用金型およびプレス加工方法 |
CN113039026A (zh) * | 2018-10-31 | 2021-06-25 | 东洋制罐集团控股株式会社 | 冲压加工用模具及冲压加工方法 |
JP2020069506A (ja) * | 2018-10-31 | 2020-05-07 | 東洋製罐グループホールディングス株式会社 | 金属塑性加工用治具 |
JP7338143B2 (ja) | 2018-10-31 | 2023-09-05 | 東洋製罐グループホールディングス株式会社 | 金属塑性加工用治具 |
JP7363023B2 (ja) | 2018-10-31 | 2023-10-18 | 東洋製罐グループホールディングス株式会社 | プレス加工用金型およびプレス加工方法 |
WO2021193003A1 (ja) | 2020-03-27 | 2021-09-30 | 東洋製罐グループホールディングス株式会社 | 有底筒状体の製造方法 |
JP7521225B2 (ja) | 2020-03-27 | 2024-07-24 | 東洋製罐グループホールディングス株式会社 | 有底筒状体の製造方法 |
JP7521224B2 (ja) | 2020-03-27 | 2024-07-24 | 東洋製罐グループホールディングス株式会社 | 有底筒状体の製造方法 |
WO2022158593A1 (ja) * | 2021-01-25 | 2022-07-28 | 東洋製罐グループホールディングス株式会社 | 絞りしごき缶の製造方法及び絞りしごき缶 |
WO2023037703A1 (ja) | 2021-09-09 | 2023-03-16 | 東洋製罐株式会社 | しごき加工パンチ |
Also Published As
Publication number | Publication date |
---|---|
JP6933578B2 (ja) | 2021-09-08 |
EP3342501A1 (en) | 2018-07-04 |
TW201718240A (zh) | 2017-06-01 |
CN107921518A (zh) | 2018-04-17 |
US20210069767A1 (en) | 2021-03-11 |
BR112018003601A2 (ja) | 2018-09-25 |
KR20180035897A (ko) | 2018-04-06 |
US20180229287A1 (en) | 2018-08-16 |
EP3342501A4 (en) | 2019-04-03 |
BR112018003601A8 (pt) | 2023-01-03 |
TWI739758B (zh) | 2021-09-21 |
JPWO2017033791A1 (ja) | 2018-06-28 |
CN107921518B (zh) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017033791A1 (ja) | しごき加工用ダイス及びダイスモジュール | |
JP5295325B2 (ja) | 表面被覆切削工具 | |
JP4942326B2 (ja) | 表面被覆部材および表面被覆部材を用いた切削工具 | |
JP6875824B2 (ja) | 絞りしごきブランク缶 | |
KR20210130271A (ko) | 알루미늄 캔 | |
Martinho et al. | Cutting forces and wear analysis of Si3N4 diamond coated tools in high speed machining | |
CN110565065A (zh) | 碳化硅-纳米金刚石复合涂层、其制备方法和应用、冷挤压模具凸模及模具 | |
JP2012115928A (ja) | ダイヤモンド被覆切削工具 | |
JP7338143B2 (ja) | 金属塑性加工用治具 | |
JP7268327B2 (ja) | しごき加工方法 | |
JP4845615B2 (ja) | 表面被覆切削工具 | |
WO2020090504A1 (ja) | 機械加工用治具及び機械加工方法、並びにシームレス缶体の製造方法 | |
BR112018003601B1 (pt) | Matriz para trabalho de estiramento, e, módulo de matriz | |
JP7155568B2 (ja) | 金属加工物 | |
WO2007139015A1 (ja) | 成膜方法、金型及び金型の製造方法 | |
BR112020019363B1 (pt) | Artigo trabalhado metálico, e, método para produzir um artigo trabalhado metálico |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839138 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017536760 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15750224 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187006297 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018003601 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112018003601 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180223 |