WO2017033760A1 - 車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法 - Google Patents

車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法 Download PDF

Info

Publication number
WO2017033760A1
WO2017033760A1 PCT/JP2016/073703 JP2016073703W WO2017033760A1 WO 2017033760 A1 WO2017033760 A1 WO 2017033760A1 JP 2016073703 W JP2016073703 W JP 2016073703W WO 2017033760 A1 WO2017033760 A1 WO 2017033760A1
Authority
WO
WIPO (PCT)
Prior art keywords
meet point
torque
clutch
value
lock
Prior art date
Application number
PCT/JP2016/073703
Other languages
English (en)
French (fr)
Inventor
聡光 荒木
誠史 笠原
若山 英史
孝治 齊藤
田中 寛康
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to EP16839107.6A priority Critical patent/EP3343075A4/en
Priority to JP2017536740A priority patent/JP6434156B2/ja
Priority to CN201680049242.7A priority patent/CN107923526B/zh
Priority to US15/753,705 priority patent/US10371256B2/en
Priority to KR1020187004946A priority patent/KR101992072B1/ko
Publication of WO2017033760A1 publication Critical patent/WO2017033760A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/421Control of lock-up type clutches, e.g. in a torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/10462Dog-type clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3024Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30421Torque of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3065Torque of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3166Detection of an elapsed period of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5012Accurate determination of the clutch positions, e.g. treating the signal from the position sensor, or by using two position sensors for determination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50236Adaptations of the clutch characteristics, e.g. curve clutch capacity torque - clutch actuator displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0087Adaptive control, e.g. the control parameters adapted by learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • F16H2061/146Control of torque converter lock-up clutches using electric control means for smoothing gear shift shock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle

Definitions

  • the present invention relates to a vehicle lock-up clutch control device and a lock-up clutch control method for performing control for obtaining a learning value based on meet point information at which the lock-up clutch starts torque transmission.
  • the present invention has been made by paying attention to the above-mentioned problem.
  • learning control is performed based on meet point information at which the lock-up clutch starts torque transmission
  • the vehicle of the vehicle prevents erroneous learning while ensuring the learning frequency. It is an object of the present invention to provide a lockup clutch control device and a lockup clutch control method.
  • the present invention is equipped with a torque converter having a lock-up clutch between the engine and the transmission.
  • the vehicle includes a lockup control unit that performs engagement control of the lockup clutch, and a meetpoint learning control unit that performs learning control for obtaining a learning value based on meetpoint information at which the lockup clutch starts torque transmission.
  • the meet point learning control unit estimates the lockup transmission torque based on the difference between the engine torque and the torque converter transmission torque when the lockup clutch shifts from the non-engaged state to the engaged state while the vehicle is running.
  • the meet point detection hydraulic pressure when it is determined that the estimated value of the lockup transmission torque has entered an upward trend is used as meet point information.
  • the meet point detection hydraulic pressure when it is determined that the estimated value of the lockup transmission torque enters an upward trend is used as meet point information in the meet point learning control. That is, when the engine speed fluctuates during traveling, the transmission torque of the torque converter changes and the transmission torque of the lockup clutch also changes.
  • the meet point detection hydraulic pressure decreases the hydraulic pressure at which the estimated lockup transmission torque estimated based on the difference between the engine torque and the torque converter transmission torque tends to increase, that is, the transmission torque of the lockup clutch decreases. The oil pressure is gone.
  • the learning value is determined using the meet point detection hydraulic pressure when it is determined that the estimated value of the lockup transmission torque has entered an upward trend, so erroneous learning is prevented.
  • the meet point learning control process is started.
  • learning control is performed based on meet point information at which the lockup clutch starts torque transmission, erroneous learning can be prevented while ensuring the learning frequency.
  • FIG. 1 is an overall system diagram illustrating an engine vehicle to which a lockup clutch control device and a lockup clutch control method according to a first embodiment are applied. It is a shift map figure which shows an example of the shift map used by the shift control of a CVT control unit. It is a lockup map figure which shows an example of a lockup map used by the lockup clutch control of a CVT control unit. It is the flowchart 1 which shows the flow of the lockup learning control process performed in the meet point learning control part of the CVT control unit of Example 1. FIG. It is the flowchart 2 which shows the flow of the lockup learning control process performed in the meet point learning control part of the CVT control unit of Example 1. FIG.
  • Example 6 is a time chart illustrating characteristics of an LU command value and an LU transmission torque estimation value for explaining a meet point detection operation when the lockup clutch shifts from a non-engaged state to an engaged state during traveling in the first embodiment. It is a time chart which shows the meet point learning effect
  • the lockup clutch control device and the lockup clutch control method in the first embodiment are applied to an engine vehicle equipped with a torque converter with a lockup clutch and a continuously variable transmission.
  • the configuration of the engine vehicle lock-up clutch control device according to the first embodiment will be described by dividing it into an “overall system configuration” and a “meet point learning control processing configuration”.
  • FIG. 1 shows an engine vehicle to which the lockup clutch control device and the lockup clutch control method of the first embodiment are applied.
  • the overall system configuration will be described below with reference to FIG.
  • the vehicle drive system includes an engine 1, an engine output shaft 2, a lock-up clutch 3, a torque converter 4, a transmission input shaft 5, and a continuously variable transmission 6 (transmission).
  • the drive shaft 7 and the drive wheel 8 are provided.
  • the lock-up clutch 3 is built in the torque converter 4 and connects the engine 1 and the continuously variable transmission 6 via the torque converter 4 when the clutch is released, and directly connects the engine output shaft 2 and the transmission input shaft 5 when the clutch is engaged. To do.
  • the lockup clutch 3 is controlled to be engaged / slip engaged / released by the LU actual hydraulic pressure generated based on the LU command pressure from the CVT control unit 12 described later.
  • the transmission input shaft 5 is provided with an oil pump 9 that is pump-driven by a driving force transmitted from the engine 1 via the torque converter 4.
  • the torque converter 4 includes a pump impeller 41, a turbine runner 42 disposed opposite to the pump impeller 41, and a stator 43 disposed between the pump impeller 41 and the turbine runner 42.
  • the torque converter 4 is a fluid coupling that transmits torque by circulating hydraulic oil filled therein through the blades of the pump impeller 41, the turbine runner 42, and the stator 43.
  • the pump impeller 41 is connected to the engine output shaft 2 via a converter cover 44 whose inner surface is a fastening surface of the lockup clutch 3.
  • the turbine runner 42 is connected to the transmission input shaft 5.
  • the stator 43 is provided on a stationary member (transmission case or the like) via a one-way clutch 45.
  • the continuously variable transmission 6 is a belt-type continuously variable transmission that continuously controls the gear ratio by changing the belt contact diameter to the primary pulley and the secondary pulley, and the output rotation after the shift is via the drive shaft 7. And transmitted to the drive wheel 8.
  • the vehicle control system includes an engine control unit 11 (ECU), a CVT control unit 12 (CVTCU), and a CAN communication line 13 as shown in FIG.
  • the engine control unit 11 performs various controls related to the engine 1 such as fuel injection control and fuel cut control to the engine 1. Then, the engine control unit 11 generates an engine torque signal based on the rotational speed and torque-related characteristics of the engine 1 and the engine rotational speed and fuel injection amount at that time. When there is a request from the CVT control unit 12, the engine torque signal information is provided to the CVT control unit 12.
  • the CVT control unit 12 performs shift control for controlling the gear ratio of the continuously variable transmission 6, lockup clutch control for switching engagement / slip engagement / release of the lockup clutch 3, and the like. Further, meet point learning control is performed to acquire a meet point learning value (LU command pressure) for starting torque transmission when the lockup clutch 3 is engaged.
  • meet point learning control is performed to acquire a meet point learning value (LU command pressure) for starting torque transmission when the lockup clutch 3 is engaged.
  • the basic control of the lock-up clutch control is performed by a lock-up control unit 12b included in the CVT control unit 12, and is intended to improve fuel consumption in a driving state by depressing the accelerator, using a lock-up map shown in FIG. Done. That is, when the operating point determined by the vehicle speed VSP and the accelerator opening APO crosses the OFF ⁇ ON line in FIG. 3 in the low vehicle speed range, an LU engagement request is issued and the unlocked lockup clutch 3 is engaged. On the other hand, when the operating point determined by the vehicle speed VSP and the accelerator opening APO crosses the ON ⁇ OFF line in FIG. 3, an LU release request is issued, and the lockup clutch 3 in the engaged state is released.
  • the meet point learning control is performed by the meet point learning control unit 12c included in the CVT control unit 12.
  • [Meetpoint learning control processing configuration] 4 and 5 show the flow of a meet point learning control process executed by the meet point learning control unit 12c of the CVT control unit 12 of the first embodiment (meet point learning control means).
  • this meet point learning control process is started every time an LU engagement operation for engaging the unlocked lockup clutch 3 is started when the LU engagement request is output in the lockup clutch control.
  • “LU” is an abbreviation for “lock-up”
  • “LU / C” is an abbreviation for “lock-up clutch”
  • T / C” is an abbreviation for “torque converter”. It is.
  • the LU transmission torque is estimated, and the process proceeds to step S2.
  • the LU transmission torque estimated value which is the estimated value of the LU transmission torque, is basically obtained from the difference between the engine torque and the torque converter transmission torque. More specifically, it is calculated by the following equation.
  • Estimated LU transmission torque Te- ⁇ x Ne 2 -OPLOS (1)
  • Te Engine torque signal value
  • Torque capacity coefficient (default)
  • Ne Engine speed signal value (from engine speed sensor 14)
  • OPLOS Oil pump friction loss torque
  • the engine torque signal value Te is obtained from the engine control unit 11 by issuing an information request.
  • the torque capacity coefficient ⁇ is given as a value corresponding to the speed ratio at that time using the torque capacity coefficient characteristic with respect to the speed ratio.
  • the engine speed signal value Ne is acquired from the engine speed sensor 14. ( ⁇ ⁇ Ne 2 ) in the equation (1) is a torque converter transmission torque.
  • Oil pump friction loss torque OPLOS OPLOS PL x O / P specific discharge amount + Ne x Engine rotation dependency coefficient (2)
  • PL Line pressure
  • O / P specific discharge amount O / P discharge amount on the engine shaft
  • Engine rotation dependency coefficient Calculated by a coefficient expression obtained through experiments or the like.
  • step S2 following the estimation of the LU transmission torque in step S1, a change amount of the LU transmission torque estimated value is calculated, and the process proceeds to step S3.
  • the LU transfer torque estimated value change amount is a change amount per unit time of the LU transfer torque estimated value
  • the LU transfer torque estimated value change amount LU transfer torque estimated value (current) ⁇ LU transfer torque estimated value ( For a predetermined time).
  • the monotonic increase determination flag TLUEDGEFLG is set in step S5 when the LU transfer torque estimated value change amount exceeds the edge detection threshold.
  • the “edge detection threshold value” is a value by which the LU transmission torque estimated value change amount can be determined that the LU transmission torque estimated value has entered an upward trend regardless of the influence of the rotational speed fluctuation or torque fluctuation of the engine 1, that is, The LU transmission torque estimated value change amount corresponding to the variation fluctuation is set to a value slightly larger.
  • step S6 following the setting of the monotonic increase determination flag TLUEDGEFLG in step S5, the LU transmission torque estimated value TLUEDGE and the LU command value LUPRSEDGE when it is determined that the LU transmission torque estimated value change amount> the edge detection threshold value are stored, Proceed to step S8.
  • the “monotonic increase determination threshold value” is a value for determining that the LU transfer torque estimated value change amount is increasing monotonically, that is, when the increase gradient of the LU transfer torque estimated value is low or does not increase. It is set to a value that excludes the case where it is horizontal.
  • step S8 LU transmission torque estimated value TLUEDGE and LU command value LUPRSEDGE in step S6 are stored, or LU transmission torque estimated value change amount in step S7> monotonic increase determination threshold value, LU transmission.
  • the calculation variation of the estimated torque value is calculated, and the process proceeds to step S9.
  • step S9 following the calculation of the LU transmission torque estimated value calculation variation in step S8, it is determined whether or not the LU transmission torque estimated value is larger than the LU transmission torque estimated value calculation variation. If YES (LU transmission torque estimated value> LU transmission torque estimated value calculation variation), the process proceeds to step S10. If NO (LU transmission torque estimated value ⁇ LU transmission torque estimated value calculation variation), the process proceeds to step S11.
  • the “lower point” and “upper point” are both points that are 50% or less of the T / C input torque.
  • step S13 following the determination that the lower point has been passed in step S12, the LU transmission torque estimated value TLULOP and the LU command value LUPRSLOP when passing the lower point are stored, and the process proceeds to step S14.
  • step S14 following the determination that the lower point has not been passed in step S12 or the storage of the LU transmission torque estimated value TLULOP and LU command value LUPRSLOP in step S13, the LU transmission torque estimated value is T / It is determined whether or not a predetermined ratio (upper point) has passed with respect to the C input torque. If YES (passed the upper point), the process proceeds to step S15. If NO (passed the upper point), the process proceeds to step S17.
  • the predetermined ratio of the “upper point” to the T / C input torque is higher than the “lower point” and 50% or less of the T / C input torque, and the “lower point” is a predetermined ratio width. This is the point of the estimated LU transmission torque that has been deviated.
  • step S15 following the determination that the upper point has been passed in step S14, the LU transmission torque estimated value TLUHIP and the LU command value LUPRSHIP when passing the upper point are stored, and the process proceeds to step S16.
  • step S16 following the storage of the LU transmission torque estimated value TLUHIP and LU command value LUPRSHIP in step S15, a meet point estimated pressure is calculated, and the process proceeds to step S17.
  • the “meet point estimated pressure” is the LU command value at the meet point from the LU transfer torque estimated value TLULOP and LU command value LUPRSLOP at the lower point, the LU transfer torque estimated value TLUHIP and the LU command value LUPRSHIP at the upper point.
  • LUPRSEDGE # LUPRSLOP- (LUPRSHIP-LUPRSLOP) / (TLUHIP-TLULOP) * (TLULOP-TLUEDGE).
  • This calculation formula is a formula for calculating the LU command value at the point where the LU transmission torque estimated value starts increasing when the lower point and the upper point are connected.
  • step S17 it is determined whether or not the lock-up clutch LU / C is engaged following the determination that the upper point has not been passed in step S14 or the calculation of the estimated meet point pressure in step S16. If YES (LU / C is engaged), the process proceeds to step S18. If NO (LU / C is not engaged), the process returns to step S1.
  • “LU / C has been engaged” is a determination that the lockup clutch LU / C has completed the engagement, and this determination is based on the assumption that the LU transmission torque estimate is relative to the T / C input torque. This is done by reaching a fastening determination ratio (for example, a value of 80% or more).
  • step S18 following the determination that the LU / C is engaged in step S17, the LU command value LUPRSEDGE stored in step S6 is set as the meet point detection pressure, and the process proceeds to step S19.
  • the meet point detection pressure refers to a value temporarily set by the current process as an LU command value corresponding to the meet point detection pressure.
  • step S19 following the temporary setting of the meet point detection pressure in step S18, it is determined whether the learning value update permission condition is satisfied. If YES (study value update permission condition is satisfied), the process proceeds to step S20. If NO (learning value update permission condition is not satisfied), the process proceeds to step S23.
  • step S20 following the determination that the learning value update permission condition is satisfied in step S19, it is determined whether the meet point verification result is valid. If YES (meet point verification result is valid), the process proceeds to step S21. If NO (meet point verification result is not valid), the process proceeds to step S23.
  • the meat point is verified by a lower limit predetermined value ⁇
  • step S21 following the determination that the meet point verification result in step S20 is valid, the update correction amount of the meet point learning value is calculated, and the process proceeds to step S22.
  • the meet point learning value is a value obtained based on the meet point detection pressure (the LU command value stored in step S6).
  • the difference amount is set.
  • the “learning correction amount” refers to a maximum correction amount that is determined in advance as a magnitude to be corrected each time one learning correction is experienced.
  • step S22 following the update correction amount calculation of the learning value in step S21, the meet point learning value is updated, and the process proceeds to step S23.
  • the update of the meet point learning value means that the meet point learned value stored up to the previous time is rewritten and stored as a new meet point learned value obtained from the previous meet point learned value and the learning correction amount. It means to make it.
  • step S23 it is determined in step S7 that LU transmission torque estimated value change amount ⁇ monotonic increase determination threshold, or in step S19, it is determined that the learning value update permission condition is not satisfied, or in step S20.
  • the flag is cleared and the process proceeds to the end.
  • the flags to be cleared are the monotonic increase determination flag TLUEDGEFLG and the capacity determination flag CAPAFLG.
  • the operations of the lockup clutch control device and the lockup clutch control method applied to the engine vehicle of the first embodiment are the “meet point learning control processing operation”, “meet point learning control operation”, and “meet point learning control characteristic operation”. It is divided and explained.
  • step S5 it is determined whether or not LU transmission torque estimated value change amount> monotonic increase determination threshold value. If LU transfer torque estimated value change amount> monotonic increase determination threshold value, the process proceeds to step S8 to meet point learning processing. Continue. If the LU transfer torque estimated value change amount ⁇ monotonic increase determination threshold value, the process proceeds from step S23 to the end, where the LU transfer torque estimated value change amount does not have a monotonically increasing relationship (using the monotonically increasing characteristic of the LU transfer torque estimated value) Therefore, the meeting point learning process is terminated.
  • step S7 While it is determined in step S7 that the LU transmission torque estimated value change amount is larger than the monotonic increase determination threshold value, the process proceeds from step S7 to step S8 to step S9.
  • step S8 the calculation variation of the LU transmission torque estimated value is calculated.
  • step S9 it is determined whether or not the LU transmission torque estimated value is larger than the LU transmission torque estimated value calculation variation. Then, when the process shifts from (LU transmission torque estimated value ⁇ LU transmission torque estimated value calculation variation) to (LU transmission torque estimated value> LU transmission torque estimated value calculation variation) in step S9, the process proceeds to step S10.
  • step S12 it is determined whether or not the LU transmission torque estimated value has passed a predetermined ratio (lower point) with respect to the T / C input torque. If the lower point has been passed, the process proceeds to step S13. In step S13, the LU transmission torque estimated value TLULOP and the LU command value LUPRSLOP when the lower point has been passed are stored. After passing the lower point, in step S14, it is determined whether or not the LU transmission torque estimated value has passed a predetermined ratio (upper point) with respect to the T / C input torque. If the upper point is passed, the process proceeds to step S15, and in step S15, the LU transmission torque estimated value TLUHIP and the LU command value LUPRSHIP when the upper point is passed are stored.
  • a predetermined ratio lower point
  • step S16 the meet point estimated pressure LUPRSEDGE #, which is the LU command value at the point where the LU transmission torque estimated value starts increasing when the lower point and the upper point are connected, is calculated, and the process proceeds to step S17. .
  • step S17 it is determined whether or not the lockup clutch LU / C is engaged. When the engagement of the lockup clutch LU / C is completed, the process proceeds to step S18 and subsequent steps. If the engagement of the lockup clutch LU / C has not been completed, the process returns to step S1, and the calculation of the LU transmission torque estimated value in step S1 and the calculation of the LU transmission torque estimated value change amount in step S2 are locked. The process continues until it is determined that the up-clutch LU / C has been engaged.
  • step S17 If it is determined in step S17 that the engagement of the lockup clutch LU / C has been completed, the process proceeds to step S18.
  • step S18 the LU command value LUPRSEDGE stored in step S6 is set as the meet point detection pressure.
  • step S19 it is determined whether or not the learning value update permission condition is satisfied. If it is determined in step S19 that the learning value update permission condition is not satisfied, the process proceeds from step S23 to end, and the meet point learning value is likely to be erroneously learned, and the meet point learning process is terminated. If it is determined in step S19 that the learning value update permission condition is satisfied, the process proceeds to step S20. In step S20, it is determined whether or not the meet point verification result is valid. If it is determined in step S20 that the meet point verification result is not valid, the process proceeds from step S23 to end, and the meet point learning value is likely to be erroneously learned, and the meet point learning process is terminated.
  • step S19 If it is determined in step S19 that the learning value update permission condition is satisfied, and it is determined in step S20 that the meet point verification result is valid, step S20 ⁇ step S21 ⁇ step S22 ⁇ step S23 ⁇ end. Advance and the meet point learning value is updated. That is, in step S21, the learning correction amount of the meet point learning value is calculated, and in the next step S22, the meet point learning value is updated.
  • time t1 is the output time of the LU engagement request.
  • Time t2 is the time for calculating the estimated meet point pressure.
  • Time t3 is the determination time of the meet point detection pressure, and time t4 is the lower point passage time.
  • Time t5 is the upper point passage time.
  • Time t6 is a 50% passage time with respect to the T / C input torque.
  • Time t7 is an engagement completion determination time of the lockup clutch 3.
  • the LU transfer torque estimated value and the LU transfer torque estimated value change amount are calculated from the time t1 when the LU engagement request is output, and when the LU transfer torque estimated value change amount exceeds the edge detection threshold at time t3, at time t3 LU command pressure is stored.
  • the stored LU command pressure reaches time t7, it is set to meet point detection pressure LUPRSEDGE.
  • the meet point estimated pressure LUPRSEDGE # is calculated using the acquired information at the lower point, the acquired information at the upper point, and the LU command pressure LUPRSEDGE. Is done. That is, as shown in FIG.
  • the LU command value at the position of the intersection (time t2) between the extension point and the coordinate line where the estimated value of the LU transmission torque is zero is connected to the lock-up clutch.
  • 3 is the meet point estimated pressure LUPRSEDGE # at which the torque transmission state is switched.
  • the meet point estimated pressure LUPRSEDGE # is calculated and it is determined that the learning value update permission condition is satisfied, it is determined whether or not the verification result of the meet point detection pressure LUPRSEDGE is valid. That is, as shown in FIG. 6, when the difference absolute value between the meet point detection pressure LUPRSEDGE and the meet point estimated pressure LUPRSEDGE # is within the range from the lower limit predetermined value to the upper limit predetermined value, the meet point verification result is valid. It is judged. When it is determined that the meet point verification result is valid, the currently acquired meet point detection pressure LUPRSEDGE is taken into the learning value update processing, and the meet point learned value stored up to the previous time is updated. If it is determined that the meet point verification result is not valid, the currently acquired meet point detection pressure LUPRSEDGE is discarded and the meet point learning value is not updated.
  • the “standby pressure” is a hydraulic pressure that does not have an L / U capacity for storing hydraulic oil in the lockup hydraulic circuit in preparation for the stroke start of the lockup clutch 3.
  • “Initial pressure P” is a hydraulic pressure given by an LU command value that rises stepwise so that the stroke of the lockup clutch 3 can be completed within a predetermined time at the start of LU engagement control. The lower oil pressure does not have L / U capacity.
  • the “learning value L” is set as an upper limit value to a lower limit value that can be taken due to hardware variations, and the initial learning value is determined as the variation lower limit value.
  • the “offset pressure” is a constant (adapted value for each accelerator opening) determined by how much the initial pressure P is lowered from the meet point M.
  • the LU command value (LUPRS) to the lock-up clutch 3 is increased at a predetermined slope (applicable value).
  • L_1 existing meet point learning value L_0 + learning correction amount E.
  • the LU command value is updated with the updated meet point learned value L_1 and the offset pressure. Is increased to the next initial pressure P_1 obtained at the same time. Then, LU engagement control is performed in which the LU command value raised to the initial pressure P_1 is increased by an inclination that suppresses the lock-up shock.
  • a stable lock-up clutch can be used so that the time required from the LU engagement request to the generation of the clutch transmission torque can be set to a short fixed time even if there are manufacturing variations and aging. 3 fastening responsiveness is ensured.
  • the LU transmission torque estimated value estimated based on the difference between the engine torque (engine torque signal value Te) and the torque converter transmission torque ( ⁇ ⁇ Ne 2 ) tends to increase. This is the hydraulic pressure at which the transmission torque of the lockup clutch 3 can no longer be reduced.
  • the learning value L is determined using the meet point detection pressure LUPRSEDGE when it is determined that the estimated lockup transmission torque value has entered an upward trend, so that erroneous learning is prevented.
  • the meet point learning control process is started.
  • learning control is performed based on the meet point information at which the lockup clutch 3 starts torque transmission, erroneous learning is prevented while ensuring the learning frequency.
  • the clutch meet point determination condition is that the amount of change in the LU transmission torque estimated value exceeds the edge detection threshold value indicating the start of monotonic increase in the LU transmission torque estimated value.
  • the meet point estimated pressure LUPRSEDGE # at which the lockup clutch 3 starts torque transmission is calculated based on an extension line connecting the lower point and the upper point on the rising characteristic line of the LU transmission torque estimated value. Then, the meet point detection pressure LUPRSEDGE and the meet point estimated pressure LUPRSEDGE # are compared, and if the difference is less than a predetermined value, the meet point detection pressure LUPRSEDGE is captured as meet point information for obtaining the learning value L. In other words, the meet point detection pressure LUPRSEDGE can be stored as the learning value of the meet point as it is, but since the determination of the clutch meet point using the LU transmission torque estimated value, the meet point detection pressure LUPRSEDGE is falsely detected.
  • the meet point estimated pressure LUPRSEDGE # This is confirmation information as to whether or not the point detection pressure LUPRSEDGE is incorrect. Therefore, when the meet point detection pressure LUPRSEDGE is erroneously detected, the erroneously detected meet point detection pressure LUPRSEDGE is prevented from being taken in as meet point information for obtaining the learning value L.
  • the intersection of the extended line of the connected lines and the coordinate line having the LU transmission torque estimated value of zero is set as the meet point estimated pressure LUPRSEDGE # at which the lockup clutch 3 starts torque transmission. That is, when the LU command pressure is given by a monotonically increasing characteristic, the LU transmission torque estimated value basically has a monotonically increasing characteristic.
  • the monotonic increase characteristic linear function characteristic
  • the monotonic increase characteristic of the LU transmission torque estimated value can be approximated by drawing a line connecting two separated points. Therefore, by approximating the monotonic increase characteristic of the LU transmission torque estimated value by connecting two points, the meet point estimated pressure LUPRSEDGE # is obtained with a simple calculation process.
  • the first predetermined ratio and the second predetermined ratio are set to 50% or less with respect to the T / C input torque. That is, when the LU command pressure is given by a monotonic increase characteristic, the increase characteristic of the LU transmission torque estimated value becomes a monotonic increase characteristic up to about 50% of the T / C input torque, and the T / C input torque If it exceeds 50%, the increasing gradient will gradually decrease. When approximating the characteristics of the LU transmission torque estimated value by connecting two points, the closeness is enhanced by selecting two points up to about 50% of the T / C input torque that is monotonically increasing.
  • the closeness to the monotonically increasing characteristic of the LU transmission torque estimated value can be improved and the accuracy can be improved.
  • the meet point estimated pressure LUPRSEDGE # is well acquired.
  • lock-up control means for controlling the engagement of the lock-up clutch 3 Unit 12b, FIG. 3
  • meet point learning control means for performing learning control for obtaining a learning value L based on meet point information at which the lockup clutch 3 starts torque transmission. 5
  • meet point learning control means meet point learning control unit 12c, FIG. 4 and FIG. 5 is used when the lockup clutch 3 shifts from the non-engaged state to the engaged state while the vehicle is running.
  • Lockup transmission based on the difference between engine torque (engine torque signal value Te) and torque converter transmission torque ( ⁇ ⁇ Ne 2 )
  • the estimated torque (LU transmission torque) (S1 in FIG. 4) and the meet point detection pressure LUPRSEDGE when it is determined that the lockup transmission torque estimated value (LU transmission torque estimated value) has entered an upward trend, Information (S18 in FIG. 5).
  • the meet point learning control means (meet point learning control unit 12c, FIG. 4 and FIG. 5) is an edge where the lockup transmission torque estimated value change amount (LU transfer torque estimated value change amount) indicates the start of monotonic increase.
  • the detection threshold is exceeded (YES in S4 in FIG. 4)
  • the lockup transmission torque estimated value (LU transmission torque estimated value) has started to increase
  • the hydraulic pressure information (LU command value) acquired at this determination timing is determined.
  • the meet point detection pressure LUPRSEDGE is set (S6 in FIG. 4). For this reason, in addition to the effect of (1), when the clutch meet point is determined using the lockup transmission torque estimated value (LU transmission torque estimated value), the meet point detection pressure LUPRSEDGE can be obtained with high accuracy.
  • the meet point learning control means (meet point learning control unit 12c, FIG. 4 and FIG. 5) has a plurality of hydraulic points (lower points) on the rising characteristic line of the lockup transmission torque estimated value (LU transmission torque estimated value).
  • Upper point is estimated based on the extension line connecting the lockup clutch 3 to estimate torque point LUPRSEDGE # at which torque transmission is started, and meet point detection pressure LUPRSEDGE and meet point estimation pressure LUPRSEDGE # are compared. Is less than the predetermined value, the meet point detection pressure LUPRSEDGE is taken in as meet point information for obtaining the learning value L (S20 ⁇ S21 ⁇ S22 in FIG. 5).
  • the meet point learning control means (meet point learning control unit 12c, FIG. 4 and FIG. 5) has a first predetermined ratio with respect to the torque converter input torque (T / C input torque) of the lockup clutch 3.
  • the first hydraulic pressure point (lower point) and the second hydraulic pressure point (upper point) having a second predetermined ratio larger than the first predetermined ratio are connected, and the extension line and the lockup transmission torque
  • the intersection with the coordinate line where the estimated value (LU transmission torque estimated value) is zero is estimated as the meet point estimated pressure LUPRSEDGE # at which the lockup clutch 3 starts torque transmission. For this reason, in addition to the effect of (3), the meet point estimated pressure LUPRSEDGE # can be obtained with high accuracy by a simple calculation process.
  • the meet point learning control means determines the first predetermined ratio and the second predetermined ratio as torque converter input torque (T / C input torque). 50% or less. For this reason, in addition to the effect of (4), the closeness to the monotonic increase characteristic of the lockup transmission torque estimated value (LU transmission torque estimated value) is enhanced, and the meet point estimated pressure LUPRSEDGE # can be obtained with high accuracy.
  • the lockup control means (lockup control unit 12b, FIG. 3) subtracts the offset pressure from the learning value L determined based on the meet point detection pressure LUPRSEDGE, for the initial pressure P supplied to the lockup clutch 3.
  • the engagement control of the lockup clutch 3 is performed using the calculated initial pressure P. For this reason, in addition to the effects of (1) to (5), even if there is a manufacturing variation or aging, the time required from the LU engagement request to the generation of the clutch transmission torque becomes a short fixed time, and the stable lock-up clutch 3 The fastening responsiveness can be ensured.
  • the meet point learning control unit 12c performs the learning control to obtain the meet value L of the meet point by the LU command value using the meet point detection pressure LUPRSEDGE at which the lockup clutch 3 starts torque transmission as the meet point information.
  • the meet point learning control unit 12c may be an example in which the meet point detection pressure LUPRSEDGE is used as meet point information and learning control is performed to obtain a learning value of the initial pressure based on the LU command value.
  • Example 1 shows an example in which the learning value L is obtained based on the meet point detection pressure LUPRSEDGE when the meet point learning control unit 12c is determined to be valid based on the verification result based on the meet point estimated pressure LUPRSEDGE #.
  • the meet point learning control unit 12c is verified based on conditions other than the meet point estimated pressure, such as a deviation range condition from the already stored meet point learned value, and is determined to be appropriate in the verification result.
  • the learning value may be obtained based on the meet point detection pressure.
  • the meet point learning control unit 12c may be configured to omit the verification by tightening the learning value update permission condition and obtain the learning value based on the meet point detection pressure when the learning value update permission condition is satisfied.
  • the meet point learning control unit 12c assumes that the LU transmission torque estimated value is a monotonic increase characteristic, determines the monotonic increase characteristic based on information from two points, the upper point and the lower point, and determines the meet point estimated pressure.
  • An example of obtaining LUPRSEDGE # is shown.
  • the meet point learning control unit 12c assuming that the LU transfer torque estimated value is a high-order function characteristic, the high-order function characteristic is determined based on information from three or more points, and the meet point estimated pressure is obtained. good.
  • Embodiment 1 shows an example in which the lockup clutch control device and the lockup clutch control method of the present invention are applied to an engine vehicle equipped with a continuously variable transmission.
  • the lock-up clutch control device and the lock-up clutch control method of the present invention can be applied to a hybrid vehicle as long as the vehicle is equipped with an engine as a drive source, and can also be used as a transmission.
  • a stepped transmission that performs automatic shifting in stages may be used. In short, it can be applied to any vehicle provided with a torque converter having a lock-up clutch between the engine and the transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Fluid Gearings (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

エンジン(1)と無段変速機(6)の間にロックアップクラッチ(3)を有するトルクコンバータ(4)を搭載した。この車両において、ロックアップクラッチ(3)がトルク伝達を開始するミートポイント情報に基づいて学習値(L)を得る学習制御を行うミートポイント学習制御部(12c)を設ける。ミートポイント学習制御部(12c)は、車両の走行中にロックアップクラッチ(3)が非締結状態から締結状態へ向かって移行するとき、エンジントルク信号値(Te)とトルクコンバータ伝達トルク(τ×Ne2)との差分に基づいてLU伝達トルクを推定し、LU伝達トルク推定値が上昇傾向に入ったと判断されたときのミートポイント検知圧(LUPRSEDGE)を、ミートポイント情報とする。

Description

車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法
 本発明は、ロックアップクラッチがトルク伝達を開始するミートポイント情報に基づいて学習値を得る制御を行う車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法に関する。
 従来、発進クラッチを徐々に締結していく際のエンジン回転数とクラッチ入力回転数を比較して、クラッチ入力回転数がエンジン回転数に対して所定回転数だけ落ち込んだ時点のクラッチ供給油圧をトルク伝達ポイントとして学習する方法が記載されている(例えば、特許文献1参照)。
 トルクコンバータに設けられるロックアップクラッチでも、燃費向上の要請から速やかな締結と、締結時の車両挙動の変化による運転者への違和感軽減の両立が求められる。このため、ロックアップクラッチにおいてトルク伝達ポイントを学習することが検討され、特許文献1に記載されている発進クラッチの学習制御を適用することが考えられる。
 しかしながら、学習頻度を確保しようとして走行中にロックアップクラッチのトルク伝達ポイントの学習制御を実施しようとすると、エンジン回転数がロックアップクラッチの締結状態によらず変化する場合があり、誤学習してしまう場合がある、という問題があった。
 本発明は、上記問題に着目してなされたもので、ロックアップクラッチがトルク伝達を開始するミートポイント情報に基づいて学習制御を行うとき、学習頻度を確保しながらも誤学習を防止する車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法を提供することを目的とする。
特開2002-295529号公報
 上記目的を達成するため、本発明は、エンジンと変速機の間にロックアップクラッチを有するトルクコンバータが搭載される。この車両において、ロックアップクラッチの締結制御を行うロックアップ制御部と、ロックアップクラッチがトルク伝達を開始するミートポイント情報に基づいて学習値を得る学習制御を行うミートポイント学習制御部と、を備える。ミートポイント学習制御部は、車両の走行中にロックアップクラッチが非締結状態から締結状態へ向かって移行するとき、エンジントルクとトルクコンバータ伝達トルクとの差分に基づいてロックアップ伝達トルクを推定し、ロックアップ伝達トルク推定値が上昇傾向に入ったと判断されたときのミートポイント検知油圧を、ミートポイント情報とする。
 よって、車両の走行中にロックアップクラッチが非締結状態から締結状態へ向かって移行するとき、エンジントルクとトルクコンバータ伝達トルクとの差分に基づいてロックアップ伝達トルクが推定される。そして、ロックアップ伝達トルク推定値が上昇傾向に入ったと判断されたときのミートポイント検知油圧が、ミートポイント学習制御でのミートポイント情報とされる。即ち、走行中においてエンジン回転数が変動すると、トルクコンバータの伝達トルクが変化するし、ロックアップクラッチの伝達トルクも変化する。これに対し、ミートポイント検知油圧は、エンジントルクとトルクコンバータ伝達トルクとの差分に基づいて推定されるロックアップ伝達トルク推定値が上昇傾向となった油圧、つまり、ロックアップクラッチの伝達トルクが下がらなくなった油圧である。このように、ロックアップ伝達トルク推定値が上昇傾向に入ったと判断されたときのミートポイント検知油圧を、ミートポイント情報として学習値が決められるので、誤学習が防止される。そして、走行中にロックアップクラッチが非締結状態から締結状態へ向かって移行するロックアップ締結制御を経験すると、ミートポイント学習制御処理が開始される。この結果、ロックアップクラッチがトルク伝達を開始するミートポイント情報に基づいて学習制御を行うとき、学習頻度を確保しながらも誤学習を防止することができる。
実施例1のロックアップクラッチ制御装置及びロックアップクラッチ制御方法が適用されたエンジン車を示す全体システム図である。 CVTコントロールユニットの変速制御で用いられ変速マップの一例を示す変速マップ図である。 CVTコントロールユニットのロックアップクラッチ制御で用いられロックアップマップの一例を示すロックアップマップ図である。 実施例1のCVTコントロールユニットのミートポイント学習制御部にて実行されるロックアップ学習制御処理の流れを示すフローチャート1である。 実施例1のCVTコントロールユニットのミートポイント学習制御部にて実行されるロックアップ学習制御処理の流れを示すフローチャート2である。 実施例1において走行中にロックアップクラッチが非締結状態から締結状態へ移行するときのミートポイント検知作用を説明するLU指令値及びLU伝達トルク推定値の特性を示すタイムチャートである。 実施例1においてミートポイント検知圧をミートポイント情報として取り込んだ時のミートポイント学習作用を示すタイムチャートである。
 以下、本発明の車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。実施例1におけるロックアップクラッチ制御装置及びロックアップクラッチ制御方法は、ロックアップクラッチ付きトルクコンバータ及び無段変速機を搭載したエンジン車に適用したものである。以下、実施例1におけるエンジン車のロックアップクラッチ制御装置の構成を、「全体システム構成」、「ミートポイント学習制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1のロックアップクラッチ制御装置及びロックアップクラッチ制御方法が適用されたエンジン車を示す。以下、図1に基づき、全体システム構成を説明する。
 車両駆動系は、図1に示すように、エンジン1と、エンジン出力軸2と、ロックアップクラッチ3と、トルクコンバータ4と、変速機入力軸5と、無段変速機6(変速機)と、ドライブシャフト7と、駆動輪8と、を備えている。
 前記ロックアップクラッチ3は、トルクコンバータ4に内蔵され、クラッチ解放によりトルクコンバータ4を介してエンジン1と無段変速機6を連結し、クラッチ締結によりエンジン出力軸2と変速機入力軸5を直結する。このロックアップクラッチ3は、後述するCVTコントロールユニット12からのLU指令圧に基づいて作り出されたLU実油圧により、締結/スリップ締結/解放が制御される。なお、変速機入力軸5には、エンジン1からトルクコンバータ4を介して伝達される駆動力によりポンプ駆動されるオイルポンプ9が設けられている。
 前記トルクコンバータ4は、ポンプインペラ41と、ポンプインペラ41に対向配置されたタービンランナ42と、ポンプインペラ41とタービンランナ42の間に配置されたステータ43と、を有する。このトルクコンバータ4は、内部に満たされた作動油が、ポンプインペラ41とタービンランナ42とステータ43の各ブレードを循環することによりトルクを伝達する流体継手である。ポンプインペラ41は、内面がロックアップクラッチ3の締結面であるコンバータカバー44を介してエンジン出力軸2に連結される。タービンランナ42は、変速機入力軸5に連結される。ステータ43は、ワンウェイクラッチ45を介して静止部材(トランスミッションケース等)に設けられる。
 前記無段変速機6は、プライマリプーリとセカンダリプーリへのベルト接触径を変えることにより変速比を無段階に制御するベルト式無段変速機であり、変速後の出力回転はドライブシャフト7を介して駆動輪8へ伝達される。
 車両制御系は、図1に示すように、エンジンコントロールユニット11(ECU)と、CVTコントロールユニット12(CVTCU)と、CAN通信線13と、を備えている。入力情報を得るセンサ類として、エンジン回転数センサ14と、タービン回転数センサ15(=CVT入力回転数センサ)と、CVT出力回転数センサ16(=車速センサ)と、アクセル開度センサ17と、セカンダリ回転数センサ18と、プライマリ回転数センサ19と、他のセンサ・スイッチ類20と、を備えている。
 前記エンジンコントロールユニット11は、エンジン1への燃料噴射制御や燃料カット制御等のように、エンジン1に関する様々な制御を行う。そして、エンジンコントロールユニット11では、エンジン1の回転数とトルク関係特性及びそのときのエンジン回転数や燃料噴射量等に基づき、エンジントルク信号を生成する。そして、CVTコントロールユニット12から要求があると、CVTコントロールユニット12に対しエンジントルク信号の情報を提供する。
 前記CVTコントロールユニット12は、無段変速機6の変速比を制御する変速制御、ロックアップクラッチ3の締結/スリップ締結/解放を切り替えるロックアップクラッチ制御、等を行う。さらに、ロックアップクラッチ3の締結時にトルク伝達を開始するミートポイント学習値(LU指令圧)を取得するミートポイント学習制御を行う。
 前記変速制御の基本制御は、CVTコントロールユニット12に有する変速制御部12aにて実施される。例えば、図2に示す変速マップを用い、車速VSPとアクセル開度APOにより決まる運転点がLow変速比側やHigh変速比側に移動したとき、変速指示を出し、目標入力回転数(=目標プライマリ回転数)を得るように変速比を変更する制御により行われる。
 前記ロックアップクラッチ制御の基本制御は、CVTコントロールユニット12に有するロックアップ制御部12bにて実施され、アクセル踏み込みによるドライブ走行状態での燃費向上を目的とし、図3に示すロックアップマップを用いて行われる。つまり、低車速域において、車速VSPとアクセル開度APOにより決まる運転点が図3のOFF→ON線を横切ったとき、LU締結要求を出し、解放状態のロックアップクラッチ3を締結する。一方、車速VSPとアクセル開度APOにより決まる運転点が図3のON→OFF線を横切ったとき、LU解除要求を出し、締結状態のロックアップクラッチ3を解放する。
 前記ミートポイント学習制御は、CVTコントロールユニット12に有するミートポイント学習制御部12cにて実施される。このミートポイント学習制御により取得されるミートポイント学習値(LU指令圧)は、ロックアップクラッチ制御において、ロックアップクラッチ3の締結を開始するとき、初期圧(=ミートポイント学習値-オフセット圧)を決める情報として用いられる。
 [ミートポイント学習制御処理構成]
 図4及び図5は、実施例1のCVTコントロールユニット12のミートポイント学習制御部12cにて実行されるミートポイント学習制御処理の流れを示す(ミートポイント学習制御手段)。以下、ミートポイント学習制御処理構成をあらわす図4及び図5の各ステップについて説明する。なお、このミートポイント学習制御処理は、ロックアップクラッチ制御において、LU締結要求が出力されると処理を開始し、解放状態のロックアップクラッチ3を締結するLU締結動作を経験する毎に実行される。また、図4及び図5で用いる「LU」は「ロックアップ」の略称であり、「LU/C」は「ロックアップクラッチ」の略称であり、「T/C」は「トルクコンバータ」の略称である。
 ステップS1では、スタート、或いは、ステップS4でのLU伝達トルク推定値変化量≦エッジ検出閾値であるとの判断、或いは、ステップS11でのCAPA=0であるとの判断、或いは、ステップS17でのLU/Cは締結していないとの判断に続き、LU伝達トルクを推定し、ステップS2へ進む。ここで、LU伝達トルクの推定値であるLU伝達トルク推定値は、基本的にエンジントルクとトルクコンバータ伝達トルクの差分により求められる。より詳しくは、下記の式により演算される。
LU伝達トルク推定値=Te-τ×Ne2-OPLOS  …(1)
Te:エンジントルク信号値
τ:トルク容量係数(既定値)
Ne:エンジン回転信号値(エンジン回転数センサ14から)
OPLOS:オイルポンプフリクションロストルク
なお、エンジントルク信号値Teは、情報要求を出してエンジンコントロールユニット11から取得する。トルク容量係数τは、速度比に対するトルク容量係数特性を用い、そのときの速度比に応じた値で与える。エンジン回転信号値Neは、エンジン回転数センサ14から取得する。(1)式の(τ×Ne2)は、トルクコンバータ伝達トルクである。オイルポンプフリクションロストルクOPLOSは、
OPLOS=PL×O/P固有吐出量+Ne×エンジン回転依存係数  …(2)
PL:ライン圧
O/P固有吐出量:エンジン軸上のO/P吐出量
エンジン回転依存係数:実験等により求められた係数
の式により演算される。
 ステップS2では、ステップS1でのLU伝達トルクの推定に続き、LU伝達トルク推定値の変化量を算出し、ステップS3へ進む。ここで、LU伝達トルク推定値変化量は、LU伝達トルク推定値の単位時間当たりにおける変化量であり、LU伝達トルク推定値変化量=LU伝達トルク推定値(現在)-LU伝達トルク推定値(所定時間前)、の式により演算される。
 ステップS3では、ステップS2でのLU伝達トルク推定値変化量の算出に続き、単調増加判定フラグTLUEDGEFLGが、TLUEDGEFLG=1であるか否かを判断する。YES(TLUEDGEFLG=1)の場合はステップS7へ進み、NO(TLUEDGEFLG=0)の場合はステップS4へ進む。ここで、単調増加判定フラグTLUEDGEFLGは、LU伝達トルク推定値変化量がエッジ検出閾値を超えたとき、ステップS5にてセットされる。
 ステップS4では、ステップS3でのTLUEDGEFLG=0であるとの判断に続き、LU伝達トルク推定値変化量>エッジ検出閾値であるか否かを判断する。YES(LU伝達トルク推定値変化量>エッジ検出閾値)の場合はステップS5へ進み、NO(LU伝達トルク推定値変化量≦エッジ検出閾値)の場合はステップS1へ戻る。ここで、「エッジ検出閾値」は、LU伝達トルク推定値変化量が、エンジン1の回転数変動やトルク変動等の影響にかかわらずLU伝達トルク推定値が上昇傾向に入ったと判定できる値、つまり、ばらつき変動分のLU伝達トルク推定値変化量を少し上回る値に設定される。
 ステップS5では、ステップS4でのLU伝達トルク推定値変化量>エッジ検出閾値であるとの判断に続き、単調増加判定フラグTLUEDGEFLGをセットし(TLUEDGEFLG=1)、ステップS6へ進む。
 ステップS6では、ステップS5での単調増加判定フラグTLUEDGEFLGのセットに続き、LU伝達トルク推定値変化量>エッジ検出閾値と判断されたときのLU伝達トルク推定値TLUEDGEとLU指令値LUPRSEDGEを記憶し、ステップS8へ進む。
 ステップS7では、ステップS3でのTLUEDGEFLG=1であるとの判断に続き、LU伝達トルク推定値変化量>単調増加判定閾値であるか否かを判断する。YES(LU伝達トルク推定値変化量>単調増加判定閾値)の場合はステップS8へ進み、NO(LU伝達トルク推定値変化量≦単調増加判定閾値)の場合はステップS23へ進む。ここで、「単調増加判定閾値」は、LU伝達トルク推定値変化量が単調に増加していることを判定する値、つまり、LU伝達トルク推定値の増加勾配が低い場合や増加がみられない横這いである場合を排除する値に設定される。
 ステップS8では、ステップS6でのLU伝達トルク推定値TLUEDGEとLU指令値LUPRSEDGEの記憶、或いは、ステップS7でのLU伝達トルク推定値変化量>単調増加判定閾値であるとの判断に続き、LU伝達トルク推定値の演算ばらつきを計算し、ステップS9へ進む。ここで、「LU伝達トルク推定値の演算ばらつき」とは、「エンジントルク信号値Teばらつき」と「トルク容量係数τばらつきによるトルクコンバータ伝達トルク(=τ×Ne2)のばらつき」との総和をいう。
 ステップS9では、ステップS8でのLU伝達トルク推定値演算ばらつきの計算に続き、LU伝達トルク推定値が、LU伝達トルク推定値演算ばらつきより大きくなったか否かを判断する。YES(LU伝達トルク推定値>LU伝達トルク推定値演算ばらつき)の場合はステップS10へ進み、NO(LU伝達トルク推定値≦LU伝達トルク推定値演算ばらつき)の場合はステップS11へ進む。このステップS9は、LU容量が発生していることを確定する判断ステップである。つまり、前回はLU伝達トルク推定値≦LU伝達トルク推定値演算ばらつきで、今回はLU伝達トルク推定値>LU伝達トルク推定値演算ばらつきになったというように、LU伝達トルク推定値がLU伝達トルク推定値演算ばらつきを通過したことを判断する。また、LU伝達トルク推定値がLU伝達トルク推定値演算ばらつきを通過したことを判断することにより、LU伝達トルク推定値演算ばらつき以下でクラッチミートポイント(=LU容量の発生ポイント)を検知したことを確認できる。
 ステップS10では、ステップS9でのLU伝達トルク推定値>LU伝達トルク推定値演算ばらつきであるとの判断に続き、容量フラグCAPAFLGをセットし(CAPAFLG=1)、ステップS11へ進む。
 ステップS11では、ステップS9でのLU伝達トルク推定値≦LU伝達トルク推定値演算ばらつきであるとの判断、或いは、ステップS10での容量フラグCAPAFLGのセットに続き、容量フラグCAPAFLGが、CAPAFLG=1であるか否かを判断する。YES(CAPAFLG=1)の場合はステップS12へ進み、NO(CAPAFLG=0)の場合はステップS1へ戻る。
 ステップS12では、ステップS11でのCAPAFLG=1であるとの判断に続き、LU伝達トルク推定値が、T/C入力トルクに対して、所定割合(下点)を通過したか否かを判断する。YES(下点を通過した)の場合はステップS13へ進み、NO(下点を通過していない)の場合はステップS14へ進む。ここで、「下点」のT/C入力トルクに対する所定割合は、CAPAFLG=1であるとの判断される割合よりも高く、かつ、後述する「上点」よりも低く、「上点」とは所定割合幅だけ乖離させたLU伝達トルク推定値の点とする。なお、「下点」と「上点」は、いずれもT/C入力トルクの50%以下の点とする。
 ステップS13では、ステップS12での下点を通過したとの判断に続き、下点を通過したときのLU伝達トルク推定値TLULOPとLU指令値LUPRSLOPを記憶し、ステップS14へ進む。
 ステップS14では、ステップS12での下点を通過していないとの判断、或いは、ステップS13でのLU伝達トルク推定値TLULOPとLU指令値LUPRSLOPの記憶に続き、LU伝達トルク推定値が、T/C入力トルクに対して、所定割合(上点)を通過したか否かを判断する。YES(上点を通過した)の場合はステップS15へ進み、NO(上点を通過していない)の場合はステップS17へ進む。ここで、「上点」のT/C入力トルクに対する所定割合は、「下点」よりも高く、かつ、T/C入力トルクの50%以下であり、「下点」とは所定割合幅だけ乖離させたLU伝達トルク推定値の点とする。
 ステップS15では、ステップS14での上点を通過したとの判断に続き、上点を通過したときのLU伝達トルク推定値TLUHIPとLU指令値LUPRSHIPを記憶し、ステップS16へ進む。
 ステップS16では、ステップS15でのLU伝達トルク推定値TLUHIPとLU指令値LUPRSHIPの記憶に続き、ミートポイント推定圧を計算し、ステップS17へ進む。ここで、「ミートポイント推定圧」は、下点におけるLU伝達トルク推定値TLULOPとLU指令値LUPRSLOPと上点におけるLU伝達トルク推定値TLUHIPとLU指令値LUPRSHIPからミートポイント時のLU指令値であるミートポイント推定圧LUPRSEDGE#を、LUPRSEDGE#=LUPRSLOP-(LUPRSHIP-LUPRSLOP)/(TLUHIP-TLULOP)*(TLULOP-TLUEDGE)、の式により推定計算する。この計算式は、下点と上点を結んだときにLU伝達トルク推定値が上昇を開始するポイントでのLU指令値を計算する式である。
 ステップS17では、ステップS14での上点を通過していないとの判断、或いは、ステップS16でのミートポイント推定圧の計算に続き、ロックアップクラッチLU/Cは締結したか否かを判断する。YES(LU/Cは締結した)の場合はステップS18へ進み、NO(LU/Cは締結していない)の場合はステップS1へ戻る。ここで、「LU/Cは締結した」とは、ロックアップクラッチLU/Cが締結を完了したとの判断であり、この判断は、LU伝達トルク推定値が、T/C入力トルクに対して締結判定用割合(例えば、80%以上の値)に到達したことにより行う。
 ステップS18では、ステップS17でのLU/Cは締結したとの判断に続き、ステップS6で記憶したLU指令値LUPRSEDGEをミートポイント検知圧とし、ステップS19へ進む。ここで、ミートポイント検知圧とは、ミートポイントの検知圧に相当するLU指令値として、今回の処理により仮設定された値をいう。
 ステップS19では、ステップS18でのミートポイント検知圧の仮設定に続き、学習値更新許可条件は整っているか否かを判断する。YES(学習値更新許可条件成立)の場合はステップS20へ進み、NO(学習値更新許可条件不成立)の場合はステップS23へ進む。
ここで、学習値更新許可条件としては、
・下限所定値<油温<上限所定値(油温条件)
・下限所定値<スロットル開度<上限所定値(スロットル開度条件)
・エンジントルク変化幅<トルク変化閾値(エンジントルク安定条件)
・スロットル開度変化幅<開度変化閾値(スロットル開度安定条件)
・所定値<エンジン回転数(油量収支判定条件)
があり、これらの条件を全て満足するときに学習値更新許可条件成立と判断される。
 ステップS20では、ステップS19での学習値更新許可条件成立との判断に続き、ミートポイントの検証結果は妥当であるか否かを判断する。YES(ミートポイント検証結果は妥当)の場合はステップS21へ進み、NO(ミートポイント検証結果は妥当でない)の場合はステップS23へ進む。ここで、ミートポイントの検証は、下限所定値<|ミートポイント推定圧-ミートポイント検知圧|<上限所定値、により行う。そして、ミートポイント推定圧とミートポイント検知圧の差分絶対値が下限所定値から上限所定値までの範囲内であるときにミートポイントの検証結果は妥当であると判断する。
 ステップS21では、ステップS20でのミートポイント検証結果は妥当であるとの判断に続き、ミートポイント学習値の更新補正量を算出し、ステップS22へ進む。ここで、ミートポイント学習値は、ミートポイント検知圧(ステップS6で記憶したLU指令値)に基づき得られる値である。ミートポイント学習値の更新補正量は、今回のミートポイント検知圧と前回までの記憶されているミートポイント学習値の差分(=検知差分)が学習補正量より大きい場合は学習補正量とする。一方、今回のミートポイント検知圧と前回までの記憶されているミートポイント学習値の差分(=検知差分)が学習補正量以下の場合は差分量とする。ここで、「学習補正量」とは、1回の学習補正を経験する毎に補正する大きさとして予め決められている最大補正量をいう。
 ステップS22では、ステップS21での学習値の更新補正量算出に続き、ミートポイント学習値を更新し、ステップS23へ進む。ここで、ミートポイント学習値の更新とは、前回までに記憶されているミートポイント学習値を、前回のミートポイント学習値と学習補正量により得られた新たなミートポイント学習値に書き替え、記憶させることをいう。
 ステップS23では、ステップS7でのLU伝達トルク推定値変化量≦単調増加判定閾値であるとの判断、或いは、ステップS19での学習値更新許可条件不成立であるとの判断、或いは、ステップS20でのミートポイント検証結果は妥当でないとの判断、或いは、ステップS22での学習値更新に続き、フラグをクリアにし、エンドへ進む。ここで、クリアにされるフラグは、単調増加判定フラグTLUEDGEFLGと容量確定フラグCAPAFLGであり、TLUEDGEFLG=1のときはTLUEDGEFLG=0とされ、CAPAFLG=1のときはCAPAFLG=0とされる。
 次に、作用を説明する。実施例1のエンジン車に適用されたロックアップクラッチ制御装置及びロックアップクラッチ制御方法における作用を、「ミートポイント学習制御処理作用」、「ミートポイント学習制御作用」、「ミートポイント学習制御の特徴作用」に分けて説明する。
 [ミートポイント学習制御処理作用]
 以下、実施例1におけるミートポイント学習制御処理作用を、図4及び図5に示すフローチャートに基づき説明する。
 停車からの発進により車速VSPが上昇し、LU締結要求が出力された直後は、単調増加判定フラグTLUEDGEFLGがTLUEDGEFLG=0であり、かつ、LU伝達トルク推定値変化量≦エッジ検出閾値である。このため、図4に示すフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4へと進む流れが繰り返される。この間は、ステップS1でLU伝達トルクが推定され、ステップS2では、LU伝達トルク推定値の変化量が算出される。
 その後、LU伝達トルク推定値変化量が立ち上がり、ステップS4にてLU伝達トルク推定値変化量>エッジ検出閾値であると判断されると、ステップS4からステップS5→ステップS6→ステップS8→ステップS9→ステップS11へと進む。ステップS5では、単調増加判定フラグTLUEDGEFLGが、TLUEDGEFLG=1にセットされ、ステップS6では、LU伝達トルク推定値変化量>エッジ検出閾値と判断されたときのLU伝達トルク推定値TLUEDGEとLU指令値LUPRSEDGEが記憶される。
 次の制御処理では、ステップS5でTLUEDGEFLG=1にセットされたことで、ステップS11からステップS1→ステップS2→ステップS3→ステップS7へと進む。ステップS7では、LU伝達トルク推定値変化量>単調増加判定閾値であるか否かが判断され、LU伝達トルク推定値変化量>単調増加判定閾値の場合は、ステップS8へ進み、ミートポイント学習処理を継続する。LU伝達トルク推定値変化量≦単調増加判定閾値の場合は、ステップS23→エンドへ進み、LU伝達トルク推定値変化量が単調増加する関係に無い状況(LU伝達トルク推定値の単調増加特性を利用した学習に適さない状況)であるためミートポイント学習処理を終了する。
 ステップS7にてLU伝達トルク推定値変化量>単調増加判定閾値と判断されている間は、ステップS7からステップS8→ステップS9へと進む。ステップS8では、LU伝達トルク推定値の演算ばらつきが計算される。ステップS9では、LU伝達トルク推定値が、LU伝達トルク推定値演算ばらつきより大きくなったか否かが判断される。そして、ステップS9にて(LU伝達トルク推定値≦LU伝達トルク推定値演算ばらつき)から(LU伝達トルク推定値>LU伝達トルク推定値演算ばらつき)へ移行すると、ステップS10へ進む。即ち、ステップS9にてLU伝達トルク推定値演算ばらつき以下でクラッチミートポイント(=LU容量の発生ポイント)を検知したことが確認されると、ステップS10では、容量フラグCAPAFLGが、CAPAFLG=1にセットされる。次のステップS11では、容量フラグCAPAFLGが、CAPAFLG=1であるか否かが判断され、CAPAFLG=1の場合は、ステップS11から図5のステップS12以降へ進む。
 ステップS12では、LU伝達トルク推定値が、T/C入力トルクに対して、所定割合(下点)を通過したか否かが判断される。下点を通過した場合はステップS13へ進み、ステップS13では下点を通過したときのLU伝達トルク推定値TLULOPとLU指令値LUPRSLOPが記憶される。下点を通過した後、ステップS14では、LU伝達トルク推定値が、T/C入力トルクに対して、所定割合(上点)を通過したか否かが判断される。上点を通過した場合はステップS15へ進み、ステップS15では、上点を通過したときのLU伝達トルク推定値TLUHIPとLU指令値LUPRSHIPが記憶される。そして、次のステップS16では、下点と上点を結んだときにLU伝達トルク推定値が上昇を開始するポイントでのLU指令値であるミートポイント推定圧LUPRSEDGE#が計算され、ステップS17へ進む。ステップS17では、ロックアップクラッチLU/Cは締結したか否かが判断される。ロックアップクラッチLU/Cの締結が完了した場合はステップS18以降へ進む。なお、ロックアップクラッチLU/Cの締結が完了していない場合はステップS1へ戻り、ステップS1でのLU伝達トルク推定値の演算、ステップS2でのLU伝達トルク推定値変化量の算出が、ロックアップクラッチLU/Cの締結が完了したと判断されるまで継続される。
 ステップS17にてロックアップクラッチLU/Cの締結が完了したと判断されると、ステップS18へ進み、ステップS18では、ステップS6で記憶したLU指令値LUPRSEDGEがミートポイント検知圧とされる。次のステップS19では、学習値更新許可条件は整っているか否かが判断される。ステップS19にて学習値更新許可条件不成立と判断された場合は、ステップS23→エンドへ進み、ミートポイント学習値が誤学習される可能性が高いためミートポイント学習処理を終了する。ステップS19にて学習値更新許可条件成立と判断された場合は、ステップS20へ進み、ステップS20では、ミートポイントの検証結果が妥当であるか否かが判断される。ステップS20にて、ミートポイント検証結果は妥当でないと判断された場合は、ステップS23→エンドへ進み、ミートポイント学習値が誤学習される可能性が高いためミートポイント学習処理を終了する。
 ステップS19にて学習値更新許可条件成立と判断され、かつ、ステップS20にてミートポイント検証結果は妥当であると判断された場合は、ステップS20→ステップS21→ステップS22→ステップS23→エンドへと進み、ミートポイント学習値が更新される。即ち、ステップS21では、ミートポイント学習値の学習補正量が算出され、次のステップS22では、ミートポイント学習値が更新される。
 [ミートポイント学習制御作用]
 まず、実施例1におけるミートポイント検知作用を、図6に示すタイムチャートに基づき説明する。図6において、時刻t1はLU締結要求の出力時刻である。時刻t2はミートポイント推定圧の計算時刻である。時刻t3はミートポイント検知圧の判断時刻、時刻t4は下点通過時刻である。時刻t5は上点通過時刻である。時刻t6はT/C入力トルクに対する50%通過時刻である。時刻t7はロックアップクラッチ3の締結完了判定時刻である。なお、LU指令値を、LU締結要求が出力される時刻t1(LU指令値=初期圧)から比例的に上昇させ、ロックアップクラッチ3を締結させるときのLU伝達トルク推定値によるミートポイント検知作用を例として説明する。
 LU締結要求が出力される時刻t1からLU伝達トルク推定値及びLU伝達トルク推定値変化量が計算され、時刻t3にてLU伝達トルク推定値変化量がエッジ検出閾値を超えると、時刻t3でのLU指令圧が記憶される。なお、記憶されたLU指令圧は時刻t7に到達すると、ミートポイント検知圧LUPRSEDGEとされる。
 そして、時刻t4にて下点を通過すると、そのときのLU伝達トルク推定値TLULOPとLU指令値LUPRSLOPが記憶される。さらに、時刻t5にて上点を通過すると、そのときのLU伝達トルク推定値TLUHIPとLU指令値LUPRSHIPが記憶される。時刻t5にてLU伝達トルク推定値TLUHIPとLU指令値LUPRSHIPが記憶されると、下点での取得情報と上点での取得情報とLU指令圧LUPRSEDGEを用い、ミートポイント推定圧LUPRSEDGE#が計算される。つまり、図6に示すように、下点と上点を結び、その延長線とLU伝達トルク推定値がゼロの座標線との交点(時刻t2)の位置でのLU指令値が、ロックアップクラッチ3がトルク伝達状態へと切り替わるミートポイント推定圧LUPRSEDGE#とされる。
 ミートポイント推定圧LUPRSEDGE#が計算され、かつ、学習値更新許可条件が成立であると判断されると、ミートポイント検知圧LUPRSEDGEの検証結果は妥当であるか否かが判断される。即ち、図6に示すように、ミートポイント検知圧LUPRSEDGEとミートポイント推定圧LUPRSEDGE#の差分絶対値が下限所定値から上限所定値までの範囲内であるとき、ミートポイントの検証結果は妥当であると判断される。そして、ミートポイント検証結果が妥当であると判断されると、今回取得されたミートポイント検知圧LUPRSEDGEが学習値の更新処理に取り込まれ、前回まで記憶されていたミートポイント学習値が更新される。なお、ミートポイント検証結果が妥当でないと判断されると、今回取得されたミートポイント検知圧LUPRSEDGEが廃棄され、ミートポイント学習値の更新が行われない。
 次に、ミートポイント検知圧LUPRSEDGE(=学習検知値)をミートポイント情報として取り込んだときのミートポイント学習制御作用を、図7に示すタイムチャートに基づき説明する。
 図7において、時刻t0にてブレーキオフ操作を行うと、スタンバイ圧を得るロックアップクラッチ3へのLU指令値(LUPRS)とされる。そして、時刻t0から少し時間が経過し、アクセルペダルが踏みこまれ(APO>0)、さらに、車速(VSP)がL/U車速に到達する時刻t1になると、初期圧Pを得るロックアップクラッチ3へのLU指令値(LUPRS)とされる。
 ここで、「スタンバイ圧」とは、ロックアップクラッチ3のストローク開始に備えて、ロックアップ油圧回路に作動油を込めておくためのL/U容量を持たない油圧である。「初期圧P」とは、LU締結制御の開始時、所定時間内にロックアップクラッチ3のストロークを終えることができるようにステップ的に立ち上がるLU指令値で与えられる油圧であり、ミートポイントよりも下の油圧であって、L/U容量を持たない油圧である。この初期圧Pは、初期圧P=ミートポイントM(=学習値L)-オフセット圧、の式により決められる。なお、「学習値L」は、ハードのばらつきにより取り得る上限値~下限値の値で設定し、学習初期値は、ばらつき下限値で決める。「オフセット圧」は、初期圧PをミートポイントMよりどれだけ下げるかで決める定数(アクセル開度毎の適合値)である。
 時刻t1以降は、所定の傾斜勾配(適合値)にてロックアップクラッチ3へのLU指令値(LUPRS)を上昇させる。このとき、時刻t2でのLU指令値(LUPRS)が記憶されている既存のミートポイント学習値L_0であるにもかかわらず、時刻t4でのLU指令値(LUPRS)がミートポイントM_1(=学習検知値)であると、検知差分E_1が、検知差分E_1=|ミートポイント学習値L_0-ミートポイントM_1(学習検知値)|、の式で求められる。
 このとき、検知差分E_1>学習補正量Eであるため、新たなミートポイント学習値L_1は、新たなミートポイント学習値L_1=既存のミートポイント学習値L_0+学習補正量Eの式で求められる。そして、新たなミートポイント学習値L_1が、時刻t3でのLU指令値(LUPRS)とされ、既存のミートポイント学習値L_0が、新たなミートポイント学習値L_1に書き替える更新処理が行われ、ミートポイント学習値として、ミートポイント学習値L_1が記憶される。
 よって、次回のLU締結制御での初期圧P_1は、次回の初期圧P_1=ミートポイント学習値L_1-オフセット圧、の式で求められる。
 このように、ミートポイント学習値が更新されると、次に、解放状態のロックアップクラッチ3を締結するLU締結要求があると、LU指令値が、更新されたミートポイント学習値L_1とオフセット圧により得られた次回の初期圧P_1まで一気に上げられる。そして、初期圧P_1まで上げたLU指令値を、ロックアップショックを抑える傾きにより上昇させるLU締結制御が行われる。このLU締結制御を行うことにより、製造ばらつきや経年変化があっても、LU締結要求からクラッチ伝達トルクの発生までに要する時間を短い一定時間とすることができるというように、安定したロックアップクラッチ3の締結応答性が確保される。
 [ミートポイント学習制御の特徴作用]
 実施例1では、車両の走行中にロックアップクラッチ3が非締結状態から締結状態へ向かって移行するとき、エンジントルク(エンジントルク信号値Te)とトルクコンバータ伝達トルク(τ×Ne2)との差分に基づいてLU伝達トルクを推定する。そして、ロックアップ伝達トルク推定値が上昇傾向に入ったと判断されたときのミートポイント検知圧LUPRSEDGEを、ミートポイント学習制御でのミートポイント情報とする構成とした。即ち、車両の走行中においてエンジン回転数が変動すると、トルクコンバータ4の伝達トルクが変化するし、ロックアップクラッチ3の伝達トルクも変化する。これに対し、ミートポイント検知圧LUPRSEDGEは、エンジントルク(エンジントルク信号値Te)とトルクコンバータ伝達トルク(τ×Ne2)との差分に基づいて推定されるLU伝達トルク推定値が上昇傾向となった油圧、つまり、ロックアップクラッチ3の伝達トルクが下がらなくなった油圧である。このように、ロックアップ伝達トルク推定値が上昇傾向に入ったと判断されたときのミートポイント検知圧LUPRSEDGEを、ミートポイント情報として学習値Lが決められるので、誤学習が防止される。そして、車両の走行中にロックアップクラッチ3が非締結状態から締結状態へ向かって移行するロックアップ締結制御を経験すると、ミートポイント学習制御処理が開始される。この結果、ロックアップクラッチ3がトルク伝達を開始するミートポイント情報に基づいて学習制御を行うとき、学習頻度を確保しながらも誤学習が防止される。
 実施例1では、LU伝達トルク推定値の変化量が、LU伝達トルク推定値の単調増加の開始をあらわすエッジ検出閾値を超えると、LU伝達トルク推定値が上昇傾向に入ったと判断し、この判断タイミングで取得したLU指令値をミートポイント検知圧LUPRSEDGEとする構成とした。即ち、LU伝達トルク推定値の変化量は、ロックアップクラッチ3がトルク伝達を開始するまでエンジン回転数の変動影響等により小さい変化幅で増減変動する。そこで、LU伝達トルク推定値の変化量が、LU伝達トルク推定値の単調増加開始をあらわすエッジ検出閾値を超えることをクラッチミートポイントの判断条件とする。これにより、ロックアップクラッチ3がトルク伝達を開始するまでの増減変動領域で、LU伝達トルク推定値が上昇傾向に入ったと判断されることがない。従って、LU伝達トルク推定値を用いてロックアップクラッチ3がトルク容量を出し始めるクラッチミートポイントを判断するとき、ミートポイント検知圧LUPRSEDGEが精度良く取得される。
 実施例1では、LU伝達トルク推定値の立ち上がり特性線上に有する下点と上点を結んだ延長線に基づいてロックアップクラッチ3がトルク伝達を開始するミートポイント推定圧LUPRSEDGE#を計算する。そして、ミートポイント検知圧LUPRSEDGEとミートポイント推定圧LUPRSEDGE#を比較し、その差分が所定値未満であれば、ミートポイント検知圧LUPRSEDGEを、学習値Lを得るミートポイント情報として取り込む構成としている。即ち、ミートポイント検知圧LUPRSEDGEをそのままミートポイントの学習値として記憶することもできるが、LU伝達トルク推定値を用いたクラッチミートポイントの判断である以上、ミートポイント検知圧LUPRSEDGEが誤検知であるという可能性を払拭できない。そこで、LU伝達トルク推定値が単調増加特性を示すことを利用し、ミートポイント検知圧LUPRSEDGEとは異なる手法によりミートポイント推定圧LUPRSEDGE#を計算することで、このミートポイント推定圧LUPRSEDGE#が、ミートポイント検知圧LUPRSEDGEが誤っているか否かの確認情報になる。従って、ミートポイント検知圧LUPRSEDGEが誤検知であった場合、誤検知したミートポイント検知圧LUPRSEDGEを、学習値Lを得るミートポイント情報として取り込むことが防止される。
 実施例1では、ロックアップクラッチ3のT/C入力トルクに対して第1の所定の割合になった下点と、第1の所定の割合より大きな第2の所定の割合になった上点を結ぶ。そして、結んだ線の延長線とLU伝達トルク推定値がゼロの座標線との交点をロックアップクラッチ3がトルク伝達を開始するミートポイント推定圧LUPRSEDGE#とする構成としている。即ち、LU指令圧を単調増加特性で与えた場合、基本的にLU伝達トルク推定値も単調増加特性になる。そして、単調増加特性(1次関数特性)である場合には、乖離した2つの点を結ぶ線を引くと、LU伝達トルク推定値の単調増加特性を近似できる。従って、LU伝達トルク推定値の単調増加特性を2つの点を結んで近似することで、簡単な計算処理により精度良くミートポイント推定圧LUPRSEDGE#が取得される。
 実施例1では、第1の所定の割合及び第2の所定の割合を、T/C入力トルクに対して50%以下とする構成としている。即ち、LU指令圧を単調増加特性で与えた場合、LU伝達トルク推定値の増加特性は、T/C入力トルクに対して50%程度までは単調増加特性になり、T/C入力トルクに対して50%を超えると増加勾配が徐々に低くなる。LU伝達トルク推定値の特性を2つの点を結んで近似する場合、単調増加特性になるT/C入力トルクに対して50%程度までの間で2つの点を選択すると近似性が高まる。従って、第1の所定の割合及び第2の所定の割合を、T/C入力トルクに対して50%以下とすることで、LU伝達トルク推定値の単調増加特性に対する近似性が高められ、精度良くミートポイント推定圧LUPRSEDGE#が取得される。
 次に、効果を説明する。実施例1のエンジン車に適用されたロックアップクラッチ制御装置及びロックアップクラッチ制御方法にあっては、下記に列挙する効果を得ることができる。
 (1) エンジン1と変速機(無段変速機6)の間にロックアップクラッチ3を有するトルクコンバータ4を搭載した車両において、ロックアップクラッチ3の締結制御を行うロックアップ制御手段(ロックアップ制御部12b、図3)と、ロックアップクラッチ3がトルク伝達を開始するミートポイント情報に基づいて学習値Lを得る学習制御を行うミートポイント学習制御手段(ミートポイント学習制御部12c、図4及び図5)と、を備え、ミートポイント学習制御手段(ミートポイント学習制御部12c、図4及び図5)は、車両の走行中にロックアップクラッチ3が非締結状態から締結状態へ向かって移行するとき、エンジントルク(エンジントルク信号値Te)とトルクコンバータ伝達トルク(τ×Ne2)との差分に基づいてロックアップ伝達トルク(LU伝達トルク)を推定し(図4のS1)、ロックアップ伝達トルク推定値(LU伝達トルク推定値)が上昇傾向に入ったと判断されたときのミートポイント検知圧LUPRSEDGEを、ミートポイント情報とする(図5のS18)。
 (2) ミートポイント学習制御手段(ミートポイント学習制御部12c、図4及び図5)は、ロックアップ伝達トルク推定値変化量(LU伝達トルク推定値変化量)が、単調増加の開始をあらわすエッジ検出閾値を超えると(図4のS4でYES)、ロックアップ伝達トルク推定値(LU伝達トルク推定値)が上昇傾向に入ったと判断し、この判断タイミングで取得した油圧情報(LU指令値)を、ミートポイント検知圧LUPRSEDGEとする(図4のS6)。このため、(1)の効果に加え、ロックアップ伝達トルク推定値(LU伝達トルク推定値)を用いてクラッチミートポイントを判断するとき、ミートポイント検知圧LUPRSEDGEを精度良く取得することができる。
 (3) ミートポイント学習制御手段(ミートポイント学習制御部12c、図4及び図5)は、ロックアップ伝達トルク推定値(LU伝達トルク推定値)の立ち上がり特性線上に有する複数の油圧点(下点、上点)を結んだ延長線に基づいてロックアップクラッチ3がトルク伝達を開始するミートポイント推定圧LUPRSEDGE#を推定し、ミートポイント検知圧LUPRSEDGEとミートポイント推定圧LUPRSEDGE#を比較し、その差分が所定値未満であれば、ミートポイント検知圧LUPRSEDGEを、学習値Lを得るミートポイント情報として取り込む(図5のS20→S21→S22)。このため、(1)又は(2)の効果に加え、ミートポイント検知圧LUPRSEDGEが誤検知であった場合、誤検知したミートポイント検知圧LUPRSEDGEを、学習値Lを得るミートポイント情報として取り込むことを防止することができる。
 (4) ミートポイント学習制御手段(ミートポイント学習制御部12c、図4及び図5)は、ロックアップクラッチ3のトルクコンバータ入力トルク(T/C入力トルク)に対して第1の所定の割合になった第1の油圧点(下点)と、第1の所定の割合より大きな第2の所定の割合になった第2の油圧点(上点)を結び、その延長線とロックアップ伝達トルク推定値(LU伝達トルク推定値)がゼロの座標線との交点をロックアップクラッチ3がトルク伝達を開始するミートポイント推定圧LUPRSEDGE#として推定する。このため、(3)の効果に加え、簡単な計算処理により精度良くミートポイント推定圧LUPRSEDGE#を取得することができる。
 (5) ミートポイント学習制御手段(ミートポイント学習制御部12c、図4及び図5)は、第1の所定の割合及び第2の所定の割合を、トルクコンバータ入力トルク(T/C入力トルク)に対して50%以下とする。このため、(4)の効果に加え、ロックアップ伝達トルク推定値(LU伝達トルク推定値)の単調増加特性に対する近似性が高められ、精度良くミートポイント推定圧LUPRSEDGE#を取得することができる。
 (6) ロックアップ制御手段(ロックアップ制御部12b、図3)は、ロックアップクラッチ3に供給する初期圧Pを、ミートポイント検知圧LUPRSEDGEに基づき決められた学習値Lからオフセット圧を差し引くことで算出し、算出した初期圧Pを用いてロックアップクラッチ3の締結制御を行う。このため、(1)~(5)の効果に加え、製造ばらつきや経年変化があっても、LU締結要求からクラッチ伝達トルクの発生までに要する時間が短い一定時間となり、安定したロックアップクラッチ3の締結応答性を確保することができる。
 以上、本発明の車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、ミートポイント学習制御部12cとして、ロックアップクラッチ3がトルク伝達を開始するミートポイント検知圧LUPRSEDGEをミートポイント情報とし、LU指令値によるミートポイントの学習値Lを得る学習制御を行う例を示した。しかし、ミートポイント学習制御部12cとしては、ミートポイント検知圧LUPRSEDGEをミートポイント情報とし、LU指令値による初期圧の学習値を得る学習制御を行う例としても良い。また、LU指令値の傾き学習値を得る学習制御を行う例としても良い。さらに、初期圧の学習値及びLU指令値の傾き学習値を得る学習制御を行う例としても良い。
 実施例1では、ミートポイント学習制御部12cとして、ミートポイント推定圧LUPRSEDGE#による検証結果で妥当であると判断されたとき、ミートポイント検知圧LUPRSEDGEに基づき学習値Lを得る例を示した。しかし、ミートポイント学習制御部12cとしては、既に記憶されているミートポイント学習値との乖離幅条件等のように、ミートポイント推定圧以外の条件により検証し、検証結果で妥当であると判断されたとき、ミートポイント検知圧に基づき学習値を得る例としても良い。さらに、ミートポイント学習制御部12cとしては、学習値更新許可条件を厳しくすることで検証を省略し、学習値更新許可条件が成立したらミートポイント検知圧に基づき学習値を得る例としても良い。
 実施例1では、ミートポイント学習制御部12cとして、LU伝達トルク推定値が単調増加特性であると仮定し、上点と下点の2点からの情報により単調増加特性を決め、ミートポイント推定圧LUPRSEDGE#を得る例を示した。しかし、ミートポイント学習制御部12cとしては、LU伝達トルク推定値が高次関数特性であると仮定し、3点以上からの情報により高次関数特性を決め、ミートポイント推定圧を得る例としても良い。
 実施例1では、本発明のロックアップクラッチ制御装置及びロックアップクラッチ制御方法を、無段変速機を搭載したエンジン車に適用する例を示した。しかし、本発明のロックアップクラッチ制御装置及びロックアップクラッチ制御方法は、駆動源にエンジンが搭載された車両であれば、ハイブリッド車に対しても適用することができるし、変速機としても、有段階の自動変速を行う有段変速機であっても良い。要するに、ロックアップクラッチを有するトルクコンバータを、エンジンと変速機の間に備えた車両であれば適用できる。

Claims (7)

  1.  エンジンと変速機の間にロックアップクラッチを有するトルクコンバータを搭載した車両において、
     前記ロックアップクラッチの締結制御を行うロックアップ制御部と、
     前記ロックアップクラッチがトルク伝達を開始するミートポイント情報に基づいて学習値を得る学習制御を行うミートポイント学習制御部と、を備え、
     前記ミートポイント学習制御部は、前記車両の走行中に前記ロックアップクラッチが非締結状態から締結状態へ向かって移行するとき、エンジントルクとトルクコンバータ伝達トルクとの差分に基づいてロックアップ伝達トルクを推定し、ロックアップ伝達トルク推定値が上昇傾向に入ったと判断されたときのミートポイント検知圧を、前記ミートポイント情報とする車両のロックアップクラッチ制御装置。
  2.  請求項1に記載された車両のロックアップクラッチ制御装置において、
     前記ミートポイント学習制御部は、前記ロックアップ伝達トルク推定値の変化量が、単調増加の開始をあらわすエッジ検出閾値を超えると、前記ロックアップ伝達トルク推定値が上昇傾向に入ったと判断し、この判断タイミングで取得した油圧情報を、前記ミートポイント検知圧とする車両のロックアップクラッチ制御装置。
  3.  請求項1又は請求項2に記載された車両のロックアップクラッチ制御装置において、
     前記ミートポイント学習制御部は、前記ロックアップ伝達トルク推定値の立ち上がり特性線上に有する複数の油圧点を結んだ延長線に基づいて推定される油圧を、前記ロックアップクラッチがトルク伝達を開始するミートポイント推定圧とし、前記ミートポイント検知圧と前記ミートポイント推定圧を比較し、その差分が所定値未満であれば、前記ミートポイント検知圧を、学習値を得るミートポイント情報として取り込む車両のロックアップクラッチ制御装置。
  4.  請求項3に記載された車両のロックアップクラッチ制御装置において、
     前記ミートポイント学習制御部は、前記ロックアップクラッチの前記ロックアップ伝達トルク推定値が完全締結状態における前記ロックアップクラッチの伝達トルクに対し第1の所定の割合になった第1の油圧点と、前記第1の所定の割合より大きな第2の所定の割合になった第2の油圧点を結び、その延長線と前記ロックアップ伝達トルク推定値がゼロの座標線との交点を、前記ミートポイント推定圧とする車両のロックアップクラッチ制御装置。
  5.  請求項4に記載された車両のロックアップクラッチ制御装置において、
     前記ミートポイント学習制御部は、前記第1の所定の割合及び前記第2の所定の割合を、トルクコンバータ入力トルクに対して50%以下とする車両のロックアップクラッチ制御装置。
  6.  請求項1から請求項5までの何れか一項に記載された車両のロックアップクラッチ制御装置において、
     前記ロックアップ制御部は、前記ロックアップクラッチに供給する初期圧を、前記ミートポイント検知圧に基づき決められた学習値からオフセット圧を差し引くことで算出し、算出した初期圧を用いて前記ロックアップクラッチの締結制御を行う車両のロックアップクラッチ制御装置。
  7.  エンジンと変速機の間にロックアップクラッチを有するトルクコンバータを搭載した車両において、
     前記ロックアップクラッチの締結制御を行うロックアップ制御部と、
     前記ロックアップクラッチがトルク伝達を開始するミートポイント情報に基づいて学習値を得る学習制御を行うミートポイント学習制御部と、を備え、
     前記ミートポイント学習制御部は、前記車両の走行中に前記ロックアップクラッチが非締結状態から締結状態へ向かって移行するとき、エンジントルクとトルクコンバータ伝達トルクとの差分に基づいてロックアップ伝達トルクを推定し、ロックアップ伝達トルク推定値が上昇傾向に入ったと判断されたときのミートポイント検知圧を、前記ミートポイント情報とする車両のロックアップクラッチ制御方法。
PCT/JP2016/073703 2015-08-24 2016-08-12 車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法 WO2017033760A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16839107.6A EP3343075A4 (en) 2015-08-24 2016-08-12 Vehicle lock-up clutch control device and lock-up clutch control method
JP2017536740A JP6434156B2 (ja) 2015-08-24 2016-08-12 車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法
CN201680049242.7A CN107923526B (zh) 2015-08-24 2016-08-12 车辆的锁止离合器控制装置及锁止离合器控制方法
US15/753,705 US10371256B2 (en) 2015-08-24 2016-08-12 Vehicle lock-up clutch control device and lock-up clutch control method
KR1020187004946A KR101992072B1 (ko) 2015-08-24 2016-08-12 차량의 로크업 클러치 제어 장치 및 로크업 클러치 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-165065 2015-08-24
JP2015165065 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017033760A1 true WO2017033760A1 (ja) 2017-03-02

Family

ID=58099986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073703 WO2017033760A1 (ja) 2015-08-24 2016-08-12 車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法

Country Status (6)

Country Link
US (1) US10371256B2 (ja)
EP (1) EP3343075A4 (ja)
JP (1) JP6434156B2 (ja)
KR (1) KR101992072B1 (ja)
CN (1) CN107923526B (ja)
WO (1) WO2017033760A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158056A (ja) * 2018-03-15 2019-09-19 ジヤトコ株式会社 自動変速機のロックアップ制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754175B2 (en) * 2019-10-09 2023-09-12 Jatco Ltd Lockup control device of automatic transmission and lockup control method thereof
CN111089166B (zh) * 2020-03-23 2020-07-10 盛瑞传动股份有限公司 液力变矩器的自学习方法及装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296337A (ja) * 1992-04-23 1993-11-09 Nissan Motor Co Ltd 流体作動式摩擦要素の締結制御装置
JP2001330139A (ja) * 2000-05-22 2001-11-30 Toyota Motor Corp 車両用クラッチの制御装置
JP2010286040A (ja) * 2009-06-11 2010-12-24 Jatco Ltd 自動変速機のロックアップ制御装置
JP2012241745A (ja) * 2011-05-17 2012-12-10 Daihatsu Motor Co Ltd ロックアップクラッチ制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10084972T1 (de) * 2000-06-27 2003-04-30 Unisia Jecs Corp Gangwechselsteuervorrichtung eines automatischen Getriebes und Verfahren davon
JP2002295529A (ja) 2001-03-28 2002-10-09 Isuzu Motors Ltd クラッチのトルク点学習方法
JP4742434B2 (ja) * 2001-03-23 2011-08-10 いすゞ自動車株式会社 クラッチの制御方法及びトルク点学習方法
JP4779452B2 (ja) * 2005-06-01 2011-09-28 トヨタ自動車株式会社 車両の制御装置
US8401755B2 (en) * 2008-04-15 2013-03-19 Allison Transmission, Inc. System and method for detecting lockup clutch on-coming capacity
JP4211862B1 (ja) * 2007-09-28 2009-01-21 トヨタ自動車株式会社 無段変速機の制御装置
JP4923080B2 (ja) * 2009-03-27 2012-04-25 ジヤトコ株式会社 無段変速機及びその制御方法
JP4910026B2 (ja) * 2009-09-18 2012-04-04 ジヤトコ株式会社 自動変速機の制御装置及びその学習方法
JP5031052B2 (ja) * 2010-03-16 2012-09-19 ジヤトコ株式会社 自動変速機の制御装置
JP5467974B2 (ja) * 2010-08-30 2014-04-09 ダイハツ工業株式会社 車両の自動変速装置
JP5464134B2 (ja) * 2010-12-02 2014-04-09 アイシン・エィ・ダブリュ株式会社 ロックアップ装置およびその制御方法
US9108614B2 (en) * 2012-05-04 2015-08-18 Ford Global Technologies, Llc Methods and systems for adapting a driveline disconnect clutch transfer function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296337A (ja) * 1992-04-23 1993-11-09 Nissan Motor Co Ltd 流体作動式摩擦要素の締結制御装置
JP2001330139A (ja) * 2000-05-22 2001-11-30 Toyota Motor Corp 車両用クラッチの制御装置
JP2010286040A (ja) * 2009-06-11 2010-12-24 Jatco Ltd 自動変速機のロックアップ制御装置
JP2012241745A (ja) * 2011-05-17 2012-12-10 Daihatsu Motor Co Ltd ロックアップクラッチ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343075A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158056A (ja) * 2018-03-15 2019-09-19 ジヤトコ株式会社 自動変速機のロックアップ制御装置
JP7106207B2 (ja) 2018-03-15 2022-07-26 ジヤトコ株式会社 自動変速機のロックアップ制御装置

Also Published As

Publication number Publication date
EP3343075A4 (en) 2018-08-29
EP3343075A1 (en) 2018-07-04
CN107923526B (zh) 2019-08-02
US10371256B2 (en) 2019-08-06
JP6434156B2 (ja) 2018-12-05
KR101992072B1 (ko) 2019-06-21
CN107923526A (zh) 2018-04-17
KR20180030691A (ko) 2018-03-23
US20180245688A1 (en) 2018-08-30
JPWO2017033760A1 (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP5278401B2 (ja) 電動車両の制御装置
EP3190316B1 (en) Lock-up clutch control device for vehicle
JP6628257B2 (ja) 車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法
JP4400409B2 (ja) エンジンの制御装置
JP6437124B2 (ja) 車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法
JP6434156B2 (ja) 車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法
JP2005042742A (ja) 車両の発進制御装置
JP4301021B2 (ja) エンジンの制御装置
JP5022284B2 (ja) 車両制御装置
JP5727035B2 (ja) 自動変速機の制御装置
CN108779852B (zh) 车辆的滑动锁止控制装置
JP5109855B2 (ja) 勾配推定装置
JP4924562B2 (ja) 車両の発進制御装置
JP4622234B2 (ja) 自動変速制御装置
CN110067854B (zh) 自动变速器的控制装置
KR101429268B1 (ko) 자동변속기용 변속제어방법
JP4924561B2 (ja) 車両の発進制御装置
JP5251554B2 (ja) 車両のエンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536740

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187004946

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753705

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016839107

Country of ref document: EP