WO2017033700A1 - 液晶表示素子 - Google Patents
液晶表示素子 Download PDFInfo
- Publication number
- WO2017033700A1 WO2017033700A1 PCT/JP2016/072937 JP2016072937W WO2017033700A1 WO 2017033700 A1 WO2017033700 A1 WO 2017033700A1 JP 2016072937 W JP2016072937 W JP 2016072937W WO 2017033700 A1 WO2017033700 A1 WO 2017033700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- liquid crystal
- formula
- present
- compound represented
- Prior art date
Links
- 0 CC(CC1)CCC1C1CCC(*c2cc(*)c(*)c(*)c2)CC1 Chemical compound CC(CC1)CCC1C1CCC(*c2cc(*)c(*)c(*)c2)CC1 0.000 description 3
- RFAFVAPNXFBQJX-UHFFFAOYSA-N CC(CC1)CCC1C1COC(CCC2COC(C)OC2)CC1 Chemical compound CC(CC1)CCC1C1COC(CCC2COC(C)OC2)CC1 RFAFVAPNXFBQJX-UHFFFAOYSA-N 0.000 description 3
- ZTLZJZSCNZWXQD-UHFFFAOYSA-N CC1COC(CCC2COC(C)CC2)OC1 Chemical compound CC1COC(CCC2COC(C)CC2)OC1 ZTLZJZSCNZWXQD-UHFFFAOYSA-N 0.000 description 2
- VZJPNZOEMUPMFO-UHFFFAOYSA-N Cc1ccc(CCc(cc2)cc(F)c2-c2cc(F)c(C)c(F)c2)cc1 Chemical compound Cc1ccc(CCc(cc2)cc(F)c2-c2cc(F)c(C)c(F)c2)cc1 VZJPNZOEMUPMFO-UHFFFAOYSA-N 0.000 description 2
- ZWJMKDWSBGLFEL-UHFFFAOYSA-N CC(C(Oc(cc1)ccc1-c(cc1)cc(F)c1OC(C(C)=C)=O)=O)=C Chemical compound CC(C(Oc(cc1)ccc1-c(cc1)cc(F)c1OC(C(C)=C)=O)=O)=C ZWJMKDWSBGLFEL-UHFFFAOYSA-N 0.000 description 1
- DAWASSOYJAUGDK-UHFFFAOYSA-N CCC(CC1)CCC1C(CC1)CCC1C=C Chemical compound CCC(CC1)CCC1C(CC1)CCC1C=C DAWASSOYJAUGDK-UHFFFAOYSA-N 0.000 description 1
- YHJODTFLSWNRLO-UHFFFAOYSA-N CCCNC(CC1)CCC1C(CC1)CCC1C=C Chemical compound CCCNC(CC1)CCC1C(CC1)CCC1C=C YHJODTFLSWNRLO-UHFFFAOYSA-N 0.000 description 1
- CDWQZDHRPZSNQJ-UHFFFAOYSA-N Cc(cc1)cc2c1c(F)c(C)cc2 Chemical compound Cc(cc1)cc2c1c(F)c(C)cc2 CDWQZDHRPZSNQJ-UHFFFAOYSA-N 0.000 description 1
- HBXFIXSFKULBOG-UHFFFAOYSA-N Cc1cc(F)c(C)c(F)c1 Chemical compound Cc1cc(F)c(C)c(F)c1 HBXFIXSFKULBOG-UHFFFAOYSA-N 0.000 description 1
- WJAVYWPXOXAOBS-UHFFFAOYSA-N Cc1cc(F)c(C)cc1 Chemical compound Cc1cc(F)c(C)cc1 WJAVYWPXOXAOBS-UHFFFAOYSA-N 0.000 description 1
- YLUCGURBBYPRDQ-UHFFFAOYSA-N Cc1cc2cc(F)c(C)c(F)c2cc1 Chemical compound Cc1cc2cc(F)c(C)c(F)c2cc1 YLUCGURBBYPRDQ-UHFFFAOYSA-N 0.000 description 1
- YGYNBBAUIYTWBF-UHFFFAOYSA-N Cc1cc2ccc(C)cc2cc1 Chemical compound Cc1cc2ccc(C)cc2cc1 YGYNBBAUIYTWBF-UHFFFAOYSA-N 0.000 description 1
- URLKBWYHVLBVBO-UHFFFAOYSA-N Cc1ccc(C)cc1 Chemical compound Cc1ccc(C)cc1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/42—Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
- C09K19/44—Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/22—Esters containing halogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/20—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3402—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present invention relates to a liquid crystal display element using a nematic liquid crystal composition that exhibits a positive dielectric anisotropy ( ⁇ ) useful as a liquid crystal display material.
- liquid crystal displays for smartphones are high-quality and have excellent visual characteristics, such as a horizontal alignment method such as an IPS (In-Plane Switching) mode or a fringe field switching mode liquid crystal display device that is a kind of liquid crystal display element of the IPS (The Fringe Field Switching mode Liquid Crystal Display (FFS mode liquid crystal display device) is widely used (see Patent Document 1 and Patent Document 2).
- the FFS mode is a method introduced to improve the low aperture ratio and transmittance of the IPS mode.
- materials using p-type liquid crystal compositions having a positive dielectric anisotropy are widely used as liquid crystal compositions used in lateral alignment type liquid crystal display devices because they can easily reduce the voltage. Yes.
- liquid crystal element manufacturers are actively developing such as adopting an array using IGZO.
- a laterally oriented electrode such as an IPS mode or an FFS mode has a plurality of strip-like electrodes formed on one side of the substrate surface arranged in parallel. Although the entire surface is covered with an alignment film, innumerable irregularities exist on the substrate surface on one side where the liquid crystal composition contacts in the liquid crystal display element. Due to this structural feature, the alignment of the liquid crystal composition is likely to be disturbed, and there are problems such as occurrence of dripping unevenness when the liquid crystal composition is applied onto the substrate.
- liquid crystal composition used for the active matrix drive liquid crystal display element driven by a TFT element or the like while maintaining the characteristics and performance required for a liquid crystal display element such as high-speed response performance, in addition to the characteristics of having a high specific resistance value or high voltage holding ratio, which are emphasized, and being stable against external stimuli such as light and heat, development in consideration of the manufacturing method of liquid crystal display elements has been required. ing.
- the problem of the present invention is to solve the above problems, dielectric anisotropy ( ⁇ ), viscosity ( ⁇ ), nematic phase-isotropic liquid transition temperature (TNI), nematic phase stability at low temperature, A p-type liquid crystal composition that is excellent in various characteristics as a liquid crystal display element such as rotational viscosity ( ⁇ 1) and that can realize excellent display characteristics when used in a horizontal alignment type liquid crystal display element provided with a photo-alignment film was used.
- the object is to provide a liquid crystal display element.
- Another object of the present invention is to provide a liquid crystal display element using a p-type liquid crystal composition capable of realizing excellent display characteristics when used in a liquid crystal display element of a horizontal alignment method provided with an alignment film with improved alignment regulation power. It is to provide.
- the inventors of the present application have made extensive studies to solve the above-mentioned problems, and as a result of studying the configuration of the horizontal alignment type liquid crystal display element and the various configurations of various liquid crystal compositions and alignment films, the present invention has been completed. It came.
- liquid crystal display element according to the present invention undergoes extremely small changes in contrast, specific resistance, and voltage holding ratio due to heat and light, the practicality of the product is high and high-speed response can be achieved.
- the liquid crystal composition according to the present invention is very useful because it can stably exhibit performance in the manufacturing process of the liquid crystal display element used, and can be manufactured with high yield by suppressing display defects caused by the process.
- the liquid crystal display element according to the present invention can use a liquid crystal composition excellent in low-temperature stability and high-speed response.
- the present invention can provide a liquid crystal display element provided with a photo-alignment film in which the alignment regulating force of liquid crystal molecules is improved.
- liquid crystal display element according to the present invention uses a liquid crystal composition containing a polymerizable monomer, it is possible to realize a high contrast excellent in alignment regulating power.
- FIG. 3 is a cross-sectional view of the liquid crystal display element shown in FIG. 1 cut along the line III-III in FIG.
- FIG. 3 is a modification of FIG. 2, and is an enlarged plan view of a region surrounded by II line of an electrode layer 3 formed on a substrate 2 in FIG. 1.
- FIG. 5 is a cross-sectional view of the liquid crystal display element shown in FIG. 1 taken along the line III-III in FIG. It is a top view which shows typically the electrode structure in the liquid crystal display element of this invention.
- FIG. 7 is a plan view schematically showing a driving state of a suitable liquid crystal layer used in the liquid crystal display element of the present invention in a region of a broken line part VII in FIG. 6.
- the present invention comprises a first substrate and a second substrate disposed opposite to each other, A liquid crystal layer containing a liquid crystal composition sandwiched between the first substrate and the second substrate; A first electrode provided on the first substrate; A second electrode provided on the same substrate as the first electrode and generating an electric field with the first electrode; An alignment film for aligning a liquid crystal layer provided on the first substrate; A polymer of a polymerizable substance different from the alignment film between the first substrate and the second substrate; Have The polymerizable substance contains one or more compounds represented by the general formula (i), The liquid crystal composition is represented by one or more compounds represented by general formula (ii), one or more compounds represented by general formula (iii) and general formula (iv).
- the present invention relates to a liquid crystal display device containing one or more compounds.
- R P1 is a formula (P-1) to a formula (P-20)
- R ii1 , R iii1 and R iv1 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are Each independently may be substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, X iii1 to X iii4 , X iv1 to X iv9 and X v1 to X v9 each independently represent a hydrogen atom, a fluorine atom or a chlorine atom, Y iv1 and Y v1 each independently represent a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 .
- FIG. 1 is a diagram schematically showing a configuration of a liquid crystal display element.
- the configuration of the liquid crystal display element 10 according to the present invention is sandwiched between a first (transparent insulating) substrate 2 and a second (transparent insulating) substrate 7 that are arranged to face each other.
- the first (transparent insulating) substrate 2 has an electrode layer 3 formed on the surface on the liquid crystal layer 5 side.
- the liquid crystal composition constituting the liquid crystal layer 5 is directly brought into contact to induce homogeneous alignment.
- the liquid crystal molecules in the liquid crystal composition are aligned so as to be substantially parallel to the substrates 2 and 7 when no voltage is applied.
- the second substrate 7 and the first substrate 2 may be sandwiched between a pair of polarizing plates 1 and 8.
- a color filter 6 is provided between the second substrate 7 and the alignment film 4.
- the liquid crystal display element according to the present invention may be a so-called color filter on array (COA), or may be provided with a color filter between an electrode layer including a thin film transistor and a liquid crystal layer, or the thin film transistor.
- COA color filter on array
- a color filter may be provided between the electrode layer containing and the second substrate.
- the liquid crystal display element of the present invention between the liquid crystal layer 5 and the first substrate 2 and between the liquid crystal layer 5 and the second substrate 7.
- the liquid crystal display element of the present invention is on the first substrate 2 or the second substrate 7. It is preferable that the photo-alignment film 4 is formed on at least one side.
- the photo-alignment film 4 is formed between the liquid crystal layer 5 and the first substrate 2 so as to contact the liquid crystal layer 5 on the first substrate 2, the other liquid crystal layer 5 and the second substrate 2 It is preferable to form a photo-alignment film or a rubbing alignment film without providing an alignment film between the substrate 7 and more preferably to form a photo-alignment film.
- the liquid crystal display element 10 includes a first polarizing plate 1, a first substrate 2, an electrode layer 3 including a thin film transistor, a (first) alignment film 4, and a liquid crystal composition. It is preferable that the liquid crystal layer 5, the (second) alignment film 4, the color filter 6, the second substrate 7, and the second polarizing plate 8 are sequentially stacked.
- the first substrate 2 and the second substrate 7 can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon.
- the two substrates 2 and 7 are bonded together by a sealing material and a sealing material such as an epoxy thermosetting composition disposed in the peripheral region, and in order to maintain the distance between the substrates, for example, Spacer columns made of resin formed by granular spacers such as glass particles, plastic particles, alumina particles, or the photolithography method may be arranged.
- the substrate according to the present invention preferably contains a transparent conductive material.
- FIG. 2 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG.
- FIG. 3 is a cross-sectional view of the liquid crystal display element shown in FIG. 1 cut along the line III-III in FIG. 2 and 3 describe an example of the FFS mode as an example of a horizontal alignment type liquid crystal display element according to the present invention.
- FIG. 4 and FIG. 5 described later describe an example of the IPS mode as an example of the horizontal alignment type liquid crystal display element according to the present invention.
- the electrode layer 3 including thin film transistors formed on the surface of the first substrate 2 includes a plurality of gate bus lines 26 for supplying scanning signals and a plurality of gate bus lines 26 for supplying display signals.
- Data bus lines 25 are arranged in a matrix so as to cross each other. In FIG. 2, only a pair of gate bus lines 26 and a pair of data bus lines 25 are shown.
- a unit pixel of the liquid crystal display device is formed by a region surrounded by the plurality of gate bus lines 26 and the plurality of data bus lines 25, and a pixel electrode 21 and a common electrode 22 are formed in the unit pixel. .
- a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of an intersection where the gate bus line 26 and the data bus line 25 intersect each other.
- the thin film transistor is connected to the pixel electrode 21 as a switch element that supplies a display signal to the pixel electrode 21.
- a common line 29 is provided in parallel with the gate bus line 26.
- the common line 29 is connected to the common electrode 22 in order to supply a common signal to the common electrode 22.
- a preferred embodiment of the structure of the thin film transistor is provided, for example, as shown in FIG. 3 so as to cover the gate electrode 11 formed on the surface of the substrate 2 and the gate electrode 11 and cover the substantially entire surface of the substrate 2.
- a source electrode 17 which covers the other side edge of the layer 14 and the semiconductor layer 13 and is in contact with the gate insulating layer 12 formed on the surface of the substrate 2; and the drain Has an insulating protective layer 18 provided to cover the electrode 16 and the source electrode 17, a.
- An anodic oxide film may be formed on the surface of the gate electrode 11 for reasons such as eliminating a step with the gate electrode.
- Amorphous silicon, polycrystalline polysilicon, or the like can be used for the semiconductor layer 13, but when a transparent semiconductor film such as ZnO, IGZO (In—Ga—Zn—O), ITO, or the like is used, it results from light absorption. It is also preferable from the viewpoint of suppressing the adverse effect of optical carriers and increasing the aperture ratio of the element.
- ohmic contact layers 15 may be provided between the semiconductor layer 13 and the drain electrode 16 or the source electrode 17 for the purpose of reducing the width and height of the Schottky barrier.
- a material in which an impurity such as phosphorus such as n-type amorphous silicon or n-type polycrystalline polysilicon is added at a high concentration can be used.
- the gate bus line 26, the data bus line 25, and the common line 29 are preferably metal films, more preferably Al, Cu, Au, Ag, Cr, Ta, Ti, Mo, W, Ni, or an alloy thereof, Al or Cu
- the case of using the alloy wiring is particularly preferable.
- the insulating protective layer 18 is a layer having an insulating function, and is formed of silicon nitride, silicon dioxide, silicon oxynitride film, or the like.
- the common electrode 22 is a flat electrode formed on almost the entire surface of the gate insulating layer 12, while the pixel electrode 21 is an insulating protective layer 18 covering the common electrode 22. It is a comb-shaped electrode formed on the top. That is, the common electrode 22 is disposed at a position closer to the first substrate 2 than the pixel electrode 21, and these electrodes are disposed so as to overlap each other via the insulating protective layer 18.
- the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), and the like. Since the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material, the area opened by the unit pixel area increases, and the aperture ratio and transmittance increase.
- the pixel electrode 21 and the common electrode 22 have an interelectrode distance (also referred to as a minimum separation distance): R between the pixel electrode 21 and the common electrode 22 in order to form a fringe electric field between the electrodes.
- the distance between the first substrate 2 and the second substrate 7 is smaller than G.
- the distance between electrodes: R represents the distance in the horizontal direction on the substrate between the electrodes.
- the FFS type liquid crystal display element can use a horizontal electric field formed in a direction perpendicular to a line forming the comb shape of the pixel electrode 21 and a parabolic electric field.
- the electrode width of the comb-shaped portion of the pixel electrode 21: l and the width of the gap of the comb-shaped portion of the pixel electrode 21: m are such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field. It is preferable to form.
- the liquid crystal display element according to the present invention is preferably an FFS liquid crystal display element using a fringe electric field, and an interelectrode distance R (common electrode 22) between the common electrode 22 and the pixel electrode 21 adjacent to the common electrode 22 is used.
- the pixel electrode 21 adjacent to the common electrode 22 is preferably shorter than the shortest separation distance G between the alignment layers 4 (inter-substrate distance).
- the FFS mode liquid crystal display element when a voltage is applied to the liquid crystal molecules arranged so that the long axis direction is parallel to the alignment direction of the alignment layer, it is common with the pixel electrode 21.
- An equipotential line of a parabolic electric field is formed between the electrode 22 and the upper part of the pixel electrode 21 and the common electrode 22 and is arranged along the electric field in which the major axis of the liquid crystal molecules in the liquid crystal layer 5 is formed.
- the liquid crystal composition according to the present invention uses liquid crystal molecules having positive dielectric anisotropy, the major axis direction of the liquid crystal molecules is aligned along the generated electric field direction.
- the common electrode and the pixel electrode are preferably formed on the same substrate.
- the common electrode and the pixel electrode are formed on the first substrate as shown in FIGS.
- the color filter 6 preferably forms a black matrix (not shown) in a portion corresponding to the thin film transistor and the storage capacitor 23 from the viewpoint of preventing light leakage.
- a pair of photo-alignment films 4 that are in direct contact with the liquid crystal composition constituting the liquid crystal layer 5 and induce homogeneous alignment are provided.
- an alignment film as a photo-alignment film, we can reduce the problem of the alignment restriction on liquid crystal molecules due to uneven rubbing and dust generated during rubbing, and provide an FFS liquid crystal display element with excellent transmittance characteristics. can do.
- the polarizing plate 1 and the polarizing plate 8 can be adjusted so that the viewing angle and the contrast are good by adjusting the polarizing axis of each polarizing plate, and the transmission axes thereof operate in the normally black mode.
- any one of the polarizing plate 1 and the polarizing plate 8 is preferably arranged so as to have a transmission axis parallel to the alignment direction of the liquid crystal molecules.
- a retardation film for widening the viewing angle can also be used.
- the common electrode is formed on substantially the entire surface of the first substrate and arranged on the first substrate side from the pixel electrode. That is, a preferred embodiment of the liquid crystal display element according to the present invention is filled between the first substrate and the second substrate that are disposed opposite to each other, and between the first substrate and the second substrate.
- a photo-alignment film layer for inducing homogeneous alignment formed between the liquid crystal layer and the first substrate and the second substrate, respectively, and the pixel electrode and the common electrode
- the horizontal component R of the inter-electrode distance is smaller than the distance G between the first substrate and the second substrate, the common electrode is formed almost on the entire surface of the first substrate, and the first component is higher than the pixel electrode. Arranged on the substrate side. Note that FIGS. 2 to 3 which are one mode of the present invention show a mode in which the common electrode is formed on almost the entire surface of the first substrate and
- the FFS type liquid crystal display element described with reference to FIGS. 2 to 3 is an example, and can be implemented in various other forms without departing from the technical idea of the present invention.
- FIGS. 4 and 5 are IPS liquid crystal display elements.
- FIG. 4 is another embodiment of the plan view in which the region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG. 1 is enlarged.
- the pixel electrode 21 may have a slit.
- the slit pattern may be formed to have an inclination angle with respect to the gate bus line 26 or the data bus line 25.
- the pixel electrode 21 shown in FIG. 4 has a shape in which a substantially rectangular flat plate electrode is cut out by a notch portion having a substantially rectangular frame shape.
- a comb-like common electrode 22 is formed on one surface of the back surface of the pixel electrode 21 via an insulating layer 18 (not shown).
- the (shortest) separation distance R between the adjacent common electrode and the pixel electrode is longer than the shortest separation distance G between the alignment layers (or substrates).
- the surface of the pixel electrode is preferably covered with a protective insulating film and an alignment film layer.
- a storage capacitor (not shown) for storing a display signal supplied through the data wiring 24 may be provided in an area surrounded by the plurality of gate bus lines 25 and the plurality of data bus lines 26. .
- the shape of the notch is not particularly limited, and is not limited to the substantially rectangular shape shown in FIG. 4, and a notch having a known shape such as an ellipse, a circle, a rectangle, a rhombus, a triangle, or a parallelogram. Can be used.
- a notch having a known shape such as an ellipse, a circle, a rectangle, a rhombus, a triangle, or a parallelogram.
- FIG. 5 is a cross-sectional view of a liquid crystal display element according to an embodiment different from that of FIG. 3.
- FIG. 5 is another cross-sectional view of the liquid crystal display element shown in FIG. 1 taken along the line III-III in FIG. It is an example.
- the first substrate 2 on which the alignment layer 4 and the electrode layer 3 including the thin film transistor are formed on the surface, and the second substrate 8 on which the alignment layer 4 is formed on the surface are separated so that the alignment layers face each other at a predetermined interval G.
- This space is filled with a liquid crystal layer 5 containing a liquid crystal composition.
- the gate insulating film 12, the common electrode 22, the insulating film 18, the pixel electrode 21, and the alignment layer 4 are stacked in this order on part of the surface of the first substrate 2.
- FIG. 5 shows an example in which the common electrode 22 is formed on the gate insulating film 12.
- the common electrode 22 is formed on the first substrate 2.
- the pixel electrode 21 may be provided via the gate insulating film 12.
- the electrode width of the pixel electrode 21: l, the electrode width of the common electrode 22: n, and the interelectrode distance: R are appropriately adjusted to such a width that all liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field. It is preferable.
- the interelectrode distance R is preferably longer than the shortest separation distance G between the substrates (that is, G ⁇ ).
- the pixel electrode 21 is provided on the liquid crystal layer side with respect to the common electrode 22, but the pixel electrode 21 and the common electrode 22 may be provided at the same height in the thickness direction, or the common electrode 22 is the pixel electrode. 21 may be provided on the liquid crystal layer side.
- the pixel electrode 21 and the common electrode 22 are provided at the same height in the thickness direction, as shown in FIG. 6A, the pixel electrode 21 and the common electrode 22 are loosely fitted on the same substrate. The structure to provide is mentioned.
- the common electrode and the pixel electrode are formed on the first substrate as shown in FIGS.
- an electric field substantially parallel to the substrate is generated between the electrodes.
- the liquid crystal display element according to the present invention preferably has an IPS-type liquid crystal display composition using a horizontal electric field with respect to the substrate, and the substrate having a separation distance between the common electrode 22 and the pixel electrode 21 adjacent to the common electrode 22. If the horizontal component R is longer than the shortest separation distance D between the substrates (distance between the substrates), a horizontal electric field is formed between the common electrode and the pixel electrode, and the liquid crystal molecules are moved in the in-plane direction depending on the presence or absence of voltage. Switching is possible.
- the IPS mode liquid crystal display element when a voltage is applied to the liquid crystal molecules arranged so that the long axis direction is parallel to the alignment direction of the alignment layer, the pixel electrode 21 is shared.
- An equipotential line of a horizontal electric field is formed between the electrode 22 and the substrate, and is arranged along the electric field in which the major axis of the liquid crystal molecules in the liquid crystal layer 5 is formed.
- the liquid crystal composition according to the present invention uses liquid crystal molecules having positive dielectric anisotropy, the major axis direction of the liquid crystal molecules is aligned along the generated electric field direction.
- the IPS mode liquid crystal display element according to the present invention uses a specific liquid crystal composition and a specific photo-alignment film, it is possible to achieve both high-speed response and suppression of display defects.
- a liquid crystal layer 5 is injected between the first substrate 2 and the second substrate 7 in a horizontal alignment type liquid crystal display element such as an IPS mode or an FFS mode
- a vacuum injection method or a drop injection A method such as an ODF (One Drop Fill) method is performed, but in the present invention, in the ODF method, it is possible to suppress the occurrence of a drop mark when the liquid crystal composition is dropped onto a substrate.
- a dripping mark is defined as a phenomenon in which a mark on which a liquid crystal composition has been dropped floats white.
- the occurrence of dripping marks is greatly affected by the liquid crystal material to be injected, but the influence is unavoidable depending on the configuration of the display element.
- the thin film transistor formed in the display element, the pixel electrode 21 having a comb shape or a slit, and the like are only the thin alignment film 4 or the thin alignment film 4 and the thin insulating protective layer 18. Since there is no member that separates the liquid crystal composition, there is a high possibility that the ionic substance cannot be completely blocked, and it was impossible to avoid the formation of dripping marks due to the interaction between the metal material constituting the electrode and the liquid crystal composition.
- generation of dripping marks can be effectively suppressed.
- liquid crystal display element in the manufacturing process of the liquid crystal display element by the ODF method, it is necessary to drop an optimal liquid crystal injection amount according to the size of the liquid crystal display element.
- the liquid crystal display element can be kept at a high yield because liquid crystal can be stably dropped over a long period of time with little influence on abrupt pressure change or impact in the apparatus.
- small liquid crystal display elements that are frequently used in smartphones that have been popular recently are difficult to control the deviation from the optimal value within a certain range because the optimal liquid crystal injection amount is small.
- a stable discharge amount of a liquid crystal material can be realized even in a small liquid crystal display element.
- liquid crystal layer The liquid crystal composition of the present application is represented by one or more compounds represented by the general formula (ii), one or more compounds represented by the general formula (iii), and the general formula (iv). 1 type or 2 types or more are contained.
- the lower limit of the preferable content of the compound represented by the formula (ii) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7 % And 10%.
- the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
- the compound represented by general formula (ii) is preferably a compound selected from the group of compounds represented by formula (ii.1) to formula (ii.3), and is represented by formula (ii.2) or formula ( It is preferable that it is a compound represented by ii.3), and it is especially preferable that it is a compound represented by Formula (ii.3).
- the lower limit of the preferable content of the compound represented by the formula (ii.3) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
- the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
- General formula (iii) is used in combination according to desired performance such as solubility at low temperature, transition temperature, electrical reliability, and birefringence.
- desired performance such as solubility at low temperature, transition temperature, electrical reliability, and birefringence.
- the type of the compound used is, for example, one type as one embodiment of the present invention, two types, and three or more types.
- the lower limit of the preferable content of the compound represented by the formula (iii) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10% %, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
- the compound represented by the general formula (iii) is preferably a compound represented by the formula (iii.1) to the formula (iii.4), specifically the formula (iii.1) or the formula A compound represented by (iii.2) is preferred, and a compound represented by formula (iii.2) is more preferred.
- the lower limit of the preferable content of the compound represented by the formula (iii.1) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, and 6%. .
- the upper limit of the preferable content is 15%, 13%, 10%, 8%, and 5%.
- the lower limit of the preferable content of the compound represented by the formula (iii.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, and 6%.
- the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
- the lower limit of the preferable content of the total of the compounds represented by formula (iii.1) and formula (iii.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 5% and 6%.
- the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
- the general formula (iv) used in the composition of the present invention is preferably combined from one to two or more in consideration of solubility at low temperature, transition temperature, electrical reliability, birefringence and the like.
- the content of the compound represented by the general formula (iv) has an upper limit value and a lower limit value for each embodiment in consideration of properties such as solubility at low temperature, transition temperature, electrical reliability, and birefringence. is there.
- the lower limit of the preferable content of the compound represented by the formula (iv) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8 %, 10%, 13%, 15%, 18%, and 20%.
- the upper limit of the preferable content is 20%, 18%, 15%, 13%, 10%, 8%, and 5%.
- the compound represented by the general formula (iv) used in the composition of the present invention is preferably a compound represented by the formula (iv.1) to the formula (iv.4).
- the lower limit of the preferred content of the compound represented by formula (iv.1) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, and 20%.
- the upper limit of the preferable content is 20%, 18%, 15%, 13%, 10%, 8%, and 5%.
- the lower limit of the preferable content of the compound represented by the formula (iv.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, and 20%.
- the upper limit of the preferable content is 20%, 18%, 15%, 13%, 10%, 8%, and 5%.
- the lower limit of the preferable total content of the compounds represented by formula (iv.1) and formula (iv.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10%, 13%, 15%, 18%, 20%.
- the upper limit of the preferable content is 20%, 18%, 15%, 13%, 10%, 8%, and 5%.
- composition of the present invention preferably contains one or more compounds represented by the general formula (J). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
- R J1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n J1 represents 0, 1, 2, 3 or 4;
- a J1 , A J2 and A J3 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O-.)
- the group (a), the group (b) and the group (c) are each independently selected from the group consisting of cyano group, fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoro May be substituted with a methoxy group
- Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
- n J1 is 2, 3 or 4 and a plurality of A J2 are present, they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present.
- X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group or a 2,2,2-trifluoroethyl group, The compounds represented by (iii) and (iv) are excluded.
- R J1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or alkenyloxy having 2 to 8 carbon atoms.
- a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
- An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
- R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
- the ring structure to which it is bonded is a phenyl group (aromatic)
- An alkenyl group having 4 to 5 atoms is preferable
- the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
- a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
- the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
- the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
- a J1 , A J2 and A J3 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic to improve the response speed.
- Z J1 and Z J2 each independently preferably represent —CH 2 O—, —OCH 2 —, —CF 2 O—, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond, OCH 2 —, —CF 2 O—, —CH 2 CH 2 — or a single bond is more preferred, and —OCH 2 —, —CF 2 O— or a single bond is particularly preferred.
- X J1 is preferably a fluorine atom or a trifluoromethoxy group, and more preferably a fluorine atom.
- n J1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and preferably 1 or 2 when emphasizing Tni .
- the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- the content of the compound represented by the general formula (J) is low temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
- the lower limit of the preferable content of the compound represented by the general formula (J) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
- the upper limit of the preferable content is, for example, 95%, 85%, 75%, 65%, and 55% with respect to the total amount of the composition of the present invention. Yes, 45%, 35%, 25%.
- the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
- R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
- the compound represented by the general formula (J) is preferably a compound represented by the general formula (M).
- composition of the present invention preferably contains one or more compounds represented by the general formula (M). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
- R M1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n M1 represents 0, 1, 2, 3 or 4;
- a M1 and A M2 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ).
- a hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom
- Z M1 and Z M2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
- n M1 is 2, 3 or 4 and a plurality of A M2 are present, they may be the same or different, and n M1 is 2, 3 or 4 and a plurality of Z M1 is present
- X M1 and X M3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom
- X M2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a
- R M1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms.
- a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
- An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
- R M1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
- the ring structure to which it is bonded is a phenyl group (aromatic)
- An alkenyl group having 4 to 5 atoms is preferable
- the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
- a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
- the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
- the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
- a M1 and A M2 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic for improving the response speed, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2, 3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6- It preferably represents a diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
- Z M1 and Z M2 each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, —CH 2 CH 2 — or a single bond is more preferable, and —CF 2 O— or a single bond is particularly preferable.
- n M1 is preferably 0, 1, 2, or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and preferably 1 or 2 when emphasizing Tni .
- the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- the content of the compound represented by the general formula (M) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
- the lower limit of the preferable content of the compound represented by the formula (M) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40% %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
- the upper limit of the preferable content is, for example, 95%, 85%, 75%, 65%, and 55% with respect to the total amount of the composition of the present invention. Yes, 45%, 35%, 25%.
- the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention keeps Tni high and a composition having good temperature stability is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
- the compound represented by the general formula (M) is preferably a compound selected from the group of compounds represented by the general formula (M-2), for example.
- R M21 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
- X M21 and X M22 each independently represent hydrogen represents an atom or a fluorine atom
- Y M21 represents a fluorine atom, a chlorine atom or OCF 3.
- the lower limit of the preferable content of the compound represented by the formula (M-1) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention is required to maintain a high Tni and hardly burn-in, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
- the compound represented by the general formula (M-2) is preferably a compound represented by the formula (M-2.1) to the formula (M-2.5). 3) or / and a compound represented by the formula (M-2.5) is preferable.
- the lower limit of the preferable content of the compound represented by the formula (M-2.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
- the upper limit of the preferable content is 15%, 13%, 10%, 8%, and 5%.
- the lower limit of the preferable content of the compound represented by the formula (M-2.3) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
- the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
- the lower limit of the preferable content of the compound represented by the formula (M-2.5) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 6% It is.
- the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
- Lower limit value of the preferable total content of the compounds represented by formulas (M-2.2), (M-2.3) and formula (M-2.5) with respect to the total amount of the composition of the present invention Is 1%, 2%, 5%, 6%.
- the upper limit of the preferable content is 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% It is.
- the content is preferably 1% or more with respect to the total amount of the composition of the present invention, more preferably 5% or more, further preferably 8% or more, further preferably 10% or more, and more preferably 14% or more. 16% or more is particularly preferable.
- the maximum ratio is preferably limited to 30% or less, more preferably 25% or less, more preferably 22% or less, and more preferably 20%. Less than is particularly preferred.
- the compound represented by the general formula (M) is preferably a compound selected from the group represented by the general formula (M-4).
- R M41 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
- X M41 to X M48 are each independently fluorine.
- Y M41 represents a fluorine atom, a chlorine atom or OCF 3.
- the content of the compound represented by the general formula (M-4) is an upper limit and a lower limit for each embodiment in consideration of properties such as solubility at low temperatures, transition temperature, electrical reliability, and birefringence. There is a value.
- the lower limit of the preferable content of the compound represented by the formula (M-4) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, and 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- composition of the present invention When used for a liquid crystal display device having a small cell gap, it is suitable to increase the content of the compound represented by the general formula (M-4).
- a liquid crystal display element having a low driving voltage When used for a liquid crystal display element having a low driving voltage, it is suitable to increase the content of the compound represented by the general formula (M-4).
- a liquid crystal display element used in a low temperature environment it is suitable to reduce the content of the compound represented by the general formula (M-4).
- a composition used for a liquid crystal display device having a high response speed it is suitable to reduce the content of the compound represented by the general formula (M-4).
- the compound represented by the general formula (M-4) used in the composition of the present invention is specifically represented by the formula (M-4.1) to the formula (M-4.4).
- it is a compound, and among them, it is preferable to contain a compound represented by the formula (M-4.2) to the formula (M-4.4), and a compound represented by the formula (M-4.2) It is more preferable to contain.
- the compound represented by the general formula (M) is preferably a compound represented by the general formula (M-5).
- R M51 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
- X M51 and X M52 are each independently hydrogen. represents an atom or a fluorine atom
- Y M51 represents a fluorine atom, a chlorine atom or OCF 3.
- the lower limit of the preferable content of the compound represented by the formula (M-5) with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8% 10%, 13%, 15%, 18%, 20%, 22%, 25%, 30%.
- the upper limit of the preferable content is 50%, 45%, 40%, 35%, 33%, 30%, 28%, 25%, 23% 20%, 18%, 15%, 13%, 10%, 8%, 5%.
- the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when the composition of the present invention is required to maintain a high Tni and hardly burn-in, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
- the compound represented by the general formula (M-5) is preferably a compound represented by the formula (M-5.1) to the formula (M-5.4), and the formula (M-5.
- a compound represented by formula (M-5.4) is preferable.
- the lower limit of the preferred content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-5) is preferably a compound represented by the formula (M-5.11) to the formula (M-5.17), and the formula (M-5. 11), a compound represented by formula (M-5.13) and formula (M-5.17) is preferable.
- the lower limit of the preferred content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-5) is preferably a compound represented by the formula (M-5.21) to the formula (M-5.28), and the formula (M-5. 21), a compound represented by formula (M-5.22), formula (M-5.23) and formula (M-5.25).
- the lower limit of the preferred content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 5%, 8%, 10%, 13% Yes, 15%, 18%, 20%, 22%, 25%, 30%.
- the upper limit of the preferable content is 40%, 35%, 33%, 30%, 28%, 25%, 23%, 20%, 18% 15% 13% 10% 8% 5%
- the compound represented by the general formula (M) is preferably a compound represented by the general formula (M-6).
- R M61 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
- X M61 to X M64 are each independently fluorine.
- Y M61 represents a fluorine atom, a chlorine atom or OCF 3
- the lower limit of the preferable content of the compound represented by the formula (M-6) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, and 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- composition of the present invention When the composition of the present invention is used for a liquid crystal display device having a low driving voltage, it is suitable to increase the content of the compound represented by the general formula (M-6). In the case of a composition used for a liquid crystal display device having a high response speed, it is suitable to reduce the content of the compound represented by the general formula (M-6).
- the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.1) to the formula (M-6.4). It is preferable to contain a compound represented by M-6.2) and formula (M-6.4).
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.11) to the formula (M-6.14). It is preferable to contain a compound represented by M-6.12) and formula (M-6.14).
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.21) to the formula (M-6.24). It is preferable to contain a compound represented by formula (M-6.21), formula (M-6.22) and formula (M-6.24).
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.31) to the formula (M-6.34). Among them, it is preferable to contain a compound represented by the formula (M-6.31) and the formula (M-6.32).
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-6) is specifically preferably a compound represented by the formula (M-6.41) to the formula (M-6.44). It is preferable to contain a compound represented by M-6.42).
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M) is preferably a compound selected from the group of compounds represented by the general formula (M-7).
- X M71 to X M76 each independently represents a fluorine atom or a hydrogen atom
- R M71 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or 1 to 4 represents an alkoxy group
- Y M71 represents a fluorine atom or OCF 3.
- the content of the compound represented by the general formula (M-7) is an upper limit and a lower limit for each embodiment in consideration of properties such as solubility at low temperatures, transition temperature, electrical reliability, and birefringence. There is a value.
- the lower limit of the preferable content of the compound represented by the formula (M-7) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% 8%, 10%, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- composition of the present invention When used for a liquid crystal display device having a small cell gap, it is suitable to increase the content of the compound represented by the general formula (M-7).
- the composition of the present invention When used for a liquid crystal display element with a low driving voltage, it is suitable to increase the content of the compound represented by the general formula (M-7).
- it when used for a liquid crystal display element used in a low temperature environment, it is suitable to reduce the content of the compound represented by the general formula (M-7).
- a composition used for a liquid crystal display device having a high response speed it is suitable to reduce the content of the compound represented by the general formula (M-7).
- the compound represented by the general formula (M-7) is preferably a compound represented by the formula (M-7.1) to the formula (M-7.4), and the formula (M-7. It is preferable that it is a compound represented by 2).
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-7) is preferably a compound represented by the formula (M-7.11) to the formula (M-7.14), and the formula (M-7. 11) and a compound represented by the formula (M-7.12) are preferable.
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-7) is preferably a compound represented by the formula (M-7.21) to the formula (M-7.24). 21) and a compound represented by the formula (M-7.22) are preferable.
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M) is preferably a compound represented by the general formula (M-8).
- X M81 to X M84 each independently represents a fluorine atom or a hydrogen atom
- Y M81 represents a fluorine atom, a chlorine atom or —OCF 3
- R M81 represents an alkyl group having 1 to 5 carbon atoms
- a M81 and A M82 are each independently 1,4-cyclohexylene group, 1,4-phenylene group or
- the hydrogen atom on the 1,4-phenylene group may be substituted with a fluorine atom.
- the lower limit of the preferable content of the compound represented by formula (M-8) with respect to the total amount of the composition of the present invention is 1%, 2%, 4%, 5% Yes, 8%, 10%, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the composition of the present invention keeps the viscosity low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Furthermore, when a composition that does not easily cause seizure is required, it is preferable to lower the lower limit and lower the upper limit. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
- the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.1) to the formula (M-8.4).
- it is a compound, and among them, it is preferable to contain a compound represented by formula (M-8.1) or formula (M-8.2).
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.11) to the formula (M-8.14).
- a compound is preferable, and among them, a compound represented by the formula (M-8.12) is preferably included.
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.21) to the formula (M-8.24).
- a compound is preferable, and among them, a compound represented by the formula (M-8.22) is preferably contained.
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.31) to the formula (M-8.34).
- a compound is preferable, and among them, a compound represented by the formula (M-8.32) is preferably contained.
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by formula (M-8) used in the composition of the present invention is specifically represented by formula (M-8.41) to formula (M-8.44).
- a compound is preferable, and among them, a compound represented by the formula (M-8.42) is preferably included.
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- the compound represented by the general formula (M-8) used in the composition of the present invention is specifically represented by the formula (M-8.51) to the formula (M-8.54).
- a compound is preferable, and among them, a compound represented by the formula (M-8.52) is preferably included.
- the lower limit of the preferred content of these compounds relative to the total amount of the composition of the present invention is 1%, 2%, 4%, 5%, 8%, 10% Yes, 13%, 15%, 18%, 20%.
- the upper limit of the preferred content is 30%, 28%, 25%, 23%, 20%, 18%, 15%, 13%, 10% 8% and 5%.
- composition of the present invention preferably contains one or more compounds represented by the general formula (L).
- the compound represented by the general formula (L) corresponds to a dielectrically neutral compound ( ⁇ value is ⁇ 2 to 2).
- R L1 and R L2 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n L1 represents 0, 1, 2 or 3,
- a L1 , A L2 and A L3 each independently represent (a) a 1,4-cyclohexylene group (one —CH 2 — present in the group or two or more —CH 2 — not adjacent to each other).
- the group (a), the group (b) and the group (c) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom
- n L1 is 2 or 3 and a plurality of A L2 are present, they may be the same or different, and when n L1 is 2 or 3, and a plurality of Z L2 are present, May be the same or different, but excludes compounds represented by general formulas (ii), (iii), (iv) and (J).
- the compound represented by general formula (L) may be used independently, it can also be used in combination.
- the types of compounds that can be combined but they are used in appropriate combinations according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- the kind of the compound used is, for example, one kind as one embodiment of the present invention.
- the content of the compound represented by the general formula (L) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, image sticking, It is necessary to appropriately adjust according to required performance such as dielectric anisotropy.
- the lower limit of the preferable content of the compound represented by the formula (L) with respect to the total amount of the composition of the present invention is 1%, 10%, 20%, 30%, 40 %, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
- the upper limit of the preferable content is 95%, 85%, 75%, 65%, 55%, 45%, 35%, and 25%.
- the above lower limit value is preferably high and the upper limit value is preferably high. Furthermore, when the composition of the present invention maintains a high Tni and requires a composition having good temperature stability, the above lower limit value is preferably high and the upper limit value is preferably high. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is lowered and the upper limit value is low.
- the compound represented by the general formula (L) does not have a halogen atom in the molecule, or preferably has one or two, preferably does not have a halogen atom or has one, and the halogen atom is fluorine.
- An atom is preferred. When importance is attached to compatibility with other liquid crystal compounds, it is preferable to have one fluorine atom in the molecule.
- R L1 and R L2 are preferably both alkyl groups, and when importance is placed on reducing the volatility of the compound, it is preferably an alkoxy group, and importance is placed on viscosity reduction. In this case, at least one is preferably an alkenyl group.
- R L1 and R L2 are each a linear alkyl group having 1 to 5 carbon atoms or a linear alkyl group having 1 to 4 carbon atoms when the ring structure to which R L1 is bonded is a phenyl group (aromatic).
- a phenyl group aromatic
- Alkyl groups, linear alkoxy groups having 1 to 4 carbon atoms and linear alkenyl groups having 2 to 5 carbon atoms are preferred.
- the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
- the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
- n L1 is preferably 0 when importance is attached to the response speed, 2 or 3 is preferred for improving the upper limit temperature of the nematic phase, and 1 is preferred for balancing these. In order to satisfy the properties required for the composition, it is preferable to combine compounds having different values.
- a L1 , A L2, and A L3 are preferably aromatic when it is required to increase ⁇ n, and are preferably aliphatic for improving the response speed, and are each independently trans- 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 -It preferably represents a diyl group or a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
- it represents a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
- Z L1 and Z L2 are preferably single bonds when the response speed is important.
- the number of halogen atoms in the molecule is preferably 0 or 1.
- the compound represented by the general formula (L) is preferably a compound selected from the group of compounds represented by the general formulas (L-1) to (L-7).
- the compound represented by the general formula (L-1) is the following compound.
- R L11 and R L12 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
- R L11 and R L12 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
- the compound represented by the general formula (L-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
- the lower limit of the preferable content is 1%, 2%, 3%, 5%, 7%, 10%, and 15% with respect to the total amount of the composition of the present invention. %, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and 55%.
- the upper limit of the preferable content is 95%, 90%, 85%, 80%, 75%, 70%, 65%, based on the total amount of the composition of the present invention. %, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%.
- the above lower limit value is preferably high and the upper limit value is preferably high. Furthermore, when the composition of the present invention requires a high Tni and a composition having good temperature stability, it is preferable that the lower limit value is moderate and the upper limit value is moderate. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the lower limit value is low and the upper limit value is low.
- the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-2).
- R L12 represents the same meaning as in general formula (L-1).
- the lower limit of the preferable content of the compound represented by the formula (L-1-2) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 15% 17%, 20%, 23%, 25%, 27%, 30%, 35%.
- the upper limit of the preferable content is 60%, 55%, 50%, 45%, 42%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 33%, and 30%.
- the compound represented by the general formula (L-1-2) is a compound selected from the group of compounds represented by the formula (L-1-2.1) to the formula (L-1-2.4).
- the compound represented by the formula (L-1-2.1) and the formula (L-1-2.2) is preferable, and in particular, the compound represented by the formula (L-1-2.2).
- Compounds are preferred because they particularly improve the response speed of the compositions of the present invention.
- Tni higher than the response speed
- the content of the compounds represented by the formulas (L-1-2.3) and (L-1-2.4) is not preferably 10% or more in order to improve the solubility at low temperatures.
- the lower limit of the preferable content of the compound represented by the formula (L-1-2.1) with respect to the total amount of the composition of the present invention is 10%, 15%, 18%, 20%, 23%, 25%, 27%, 30%, 33%, 35%, 38%, and 40%.
- the upper limit of the preferable content is 60%, 55%, 50%, 45%, 43%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 32%, 30%, 27%, 25%, and 22%.
- the lower limit of the preferable content of the compound represented by the formula (L-1-2.2) with respect to the total amount of the composition of the present invention is 10%, 15%, 18%, 20%, 23%, 25%, 27%, 30%, 33%, 35%, 38%, and 40%.
- the upper limit of the preferable content is 60%, 55%, 50%, 45%, 43%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 32%, 30%, 27%, 25%, and 22%.
- the lower limit of the preferable total content of the compound represented by formula (ii) and the compound represented by formula (L-1-2.2) with respect to the total amount of the composition of the present invention is 10%. Yes, 15%, 20%, 25%, 27%, 30%, 35%, 40%.
- the upper limit of the preferable content is 60%, 55%, 50%, 45%, 43%, 40%, and 38% with respect to the total amount of the composition of the present invention. %, 35%, 32%, 30%, 27%, 25%, and 22%.
- the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-3).
- R L13 and R L14 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
- R L13 and R L14 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
- the lower limit of the preferable content of the compound represented by the formula (L-1-3) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%, 23%, 25%, 30%.
- the upper limit of the preferable content is 60%, 55%, 50%, 45%, 40%, 37%, and 35% with respect to the total amount of the composition of the present invention. %, 33%, 30%, 27%, 25%, 23%, 23%, 20%, 17%, 15%, 13%, 10% %.
- the compound represented by the general formula (L-1-3) is a compound selected from the group of compounds represented by the formula (L-1-3.1) to the formula (L-1-3.12).
- the compound represented by the formula (L-1-3.1) is preferable because the response speed of the composition of the present invention is particularly improved. Further, when obtaining Tni higher than the response speed, the equation (L-1-3.3), the equation (L-1-3.4), the equation (L-1-3.11), and the equation (L ⁇ It is preferable to use a compound represented by 1-3.12). Sum of compounds represented by formula (L-1-3.3), formula (L-1-3.4), formula (L-1-3.11) and formula (L-1-3.12) The content of is not preferably 20% or more in order to improve the solubility at low temperatures.
- the lower limit of the preferable content of the compound represented by the formula (L-1-3.1) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%.
- the upper limit of the preferable content is 20%, 17%, 15%, 13%, 10%, 8%, and 7% with respect to the total amount of the composition of the present invention. % And 6%.
- the compound represented by the general formula (L-1) is preferably a compound selected from the group of compounds represented by the general formula (L-1-4) and / or (L-1-5).
- R L15 and R L16 each independently represent an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
- R L15 and R L16 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
- the lower limit of the preferable content of the compound represented by the formula (L-1-4) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%.
- the upper limit of the preferable content is 25%, 23%, 20%, 17%, 15%, 13%, and 10% with respect to the total amount of the composition of the present invention. %.
- the lower limit of the preferable content of the compound represented by the formula (L-1-5) with respect to the total amount of the composition of the present invention is 1%, 5%, 10%, 13% 15%, 17%, 20%.
- the upper limit of the preferable content is 25%, 23%, 20%, 17%, 15%, 13%, and 10% with respect to the total amount of the composition of the present invention. %.
- the compounds represented by the general formulas (L-1-4) and (L-1-5) are represented by the formulas (L-1-4.1) to (L-1-5.3).
- a compound represented by the formula (L-1-4.2) or the formula (L-1-5.2) is preferable.
- the lower limit of the preferable content of the compound represented by the formula (L-1-4.2) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, 7%, 10%, 13%, 15%, 18%, 20%.
- the upper limit of the preferable content is 20%, 17%, 15%, 13%, 10%, 8%, and 7% with respect to the total amount of the composition of the present invention. % And 6%.
- the compound represented by the general formula (L-2) is the following compound.
- R L21 and R L22 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
- R L21 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
- R L22 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
- An alkoxy group of 1 to 4 is preferable.
- the compound represented by the general formula (L-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
- the lower limit of the preferable content of the compound represented by the formula (L-2) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
- the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
- the compound represented by the general formula (L-2) is preferably a compound selected from the group of compounds represented by the formulas (L-2.1) to (L-2.6).
- a compound represented by formula (L-2.1), formula (L-2.3), formula (L-2.4) and formula (L-2.6) is preferred.
- the compound represented by the general formula (L-3) is the following compound.
- R L31 and R L32 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
- R L31 and R L32 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
- the compound represented by the general formula (L-3) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
- the lower limit of the preferable content of the compound represented by the formula (L-3) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7% and 10%.
- the upper limit of the preferable content is 20%, 15%, 13%, 10%, 8%, 7%, and 6% with respect to the total amount of the composition of the present invention. %, 5%, 3%.
- the effect is high when the content is set to be large.
- the effect is high when the content is set low.
- the compound represented by the general formula (L-3) is preferably a compound selected from the group of compounds represented by the formulas (L-3.1) to (L-3.4).
- a compound represented by the formula (L-3.7) from (L-3.2) is preferable.
- the compound represented by the general formula (L-4) is the following compound.
- R L41 and R L42 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
- R L41 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
- R L42 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
- An alkoxy group of 1 to 4 is preferable.
- the compound represented by the general formula (L-4) can be used alone, or two or more compounds can be used in combination.
- the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
- the content of the compound represented by the general formula (L-4) is low-temperature solubility, transition temperature, electrical reliability, birefringence, process compatibility, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
- the lower limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
- the upper limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10%, 5%.
- the compound represented by general formula (L-4) is preferably a compound represented by formula (L-4.1) to formula (L-4.3), for example.
- the formula (L-4.2) Even if it contains a compound represented by formula (L-4.1), it contains both a compound represented by formula (L-4.1) and a compound represented by formula (L-4.2). Or all of the compounds represented by formulas (L-4.1) to (L-4.3) may be included.
- the lower limit of the preferable content of the compound represented by formula (L-4.1) or formula (L-4.2) with respect to the total amount of the composition of the present invention is 3%, Yes, 7%, 9%, 11%, 12%, 13%, 18%, 21%, and the preferred upper limit is 45, 40% , 35%, 30%, 25%, 23%, 20%, 18%, 15%, 13%, 10%, 8% .
- the amount of both compounds relative to the total amount of the composition of the present invention is The lower limit of the preferred content is 15%, 19%, 24%, and 30%, and the preferred upper limit is 45, 40%, 35%, and 30%. Yes, 25%, 23%, 20%, 18%, 15%, 13%.
- the compound represented by the general formula (L-4) is preferably, for example, a compound represented by the formula (L-4.4) to the formula (L-4.6). It is preferable that it is a compound represented by this.
- the formula (L -4.5) contains both the compound represented by formula (L-4.4) and the compound represented by formula (L-4.5). May be.
- the lower limit of the preferable content of the compound represented by the formula (L-4.4) or the formula (L-4.5) with respect to the total amount of the composition of the present invention is 3%, Yes, 7%, 9%, 11%, 12%, 13%, 18%, 21%.
- Preferred upper limit values are 45, 40%, 35%, 30%, 25%, 23%, 20%, 18%, 15%, 13% %, 10%, and 8%.
- the amount of both compounds relative to the total amount of the composition of the present invention is The lower limit of the preferred content is 15%, 19%, 24%, and 30%, and the preferred upper limit is 45, 40%, 35%, and 30%. Yes, 25%, 23%, 20%, 18%, 15%, 13%.
- the compound represented by the general formula (L-4) is preferably a compound represented by the formula (L-4.7) to the formula (L-4.10), and particularly the formula (L-4.
- the compound represented by 9) is preferred.
- the compound represented by the general formula (L-5) is the following compound.
- R L51 and R L52 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
- R L51 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
- R L52 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
- An alkoxy group of 1 to 4 is preferable.
- the compound represented by the general formula (L-5) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
- the content of the compound represented by the general formula (L-5) includes solubility at low temperature, transition temperature, electrical reliability, birefringence index, process suitability, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
- the lower limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
- the upper limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. , 20%, 15%, 10%, 5%
- the compound represented by the general formula (L-5) is represented by the formula (L-5.1) or the formula (L-5.2).
- the compound represented by formula (L-5.1) is particularly desirable.
- the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
- the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
- the compound represented by the general formula (L-5) is preferably a compound represented by the formula (L-5.3) or the formula (L-5.4).
- the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
- the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
- the compound represented by the general formula (L-5) is preferably a compound selected from the group of compounds represented by the formulas (L-5.5) to (L-5.7).
- the compound represented by L-5.7) is preferred.
- the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
- the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
- the compound represented by the general formula (L-6) is the following compound.
- R L61 and R L62 each independently represent the same meaning as R L1 and R L2 in the general formula (L), and X L61 and X L62 each independently represent a hydrogen atom or a fluorine atom.
- R L61 and R L62 are each independently preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and one of X L61 and X L62 is a fluorine atom and the other is a hydrogen atom. Is preferred.
- the compound represented by the general formula (L-6) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
- the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
- the lower limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%, 23%, 26%, 30%, 35%, 40% .
- the upper limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the composition of the present invention is 50%, 40%, 35%, and 30%. 20%, 15%, 10%, 5%.
- the compound represented by the general formula (L-6) is preferably a compound represented by the formula (L-6.1) to the formula (L-6.9).
- the compound represented by the general formula (L-6) is preferably, for example, a compound represented by the formula (L-6.10) to the formula (L-6.17).
- a compound represented by L-6.11) is preferable.
- the lower limit of the preferable content of these compounds with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5%, and 7%.
- the upper limit of the preferable content of these compounds is 20%, 15%, 13%, 10%, and 9%.
- the compound represented by the general formula (L-7) is the following compound.
- R L71 and R L72 each independently represent the same meaning as R L1 and R L2 in Formula (L), A L71 and A L72 is A L2 and in the general formula (L) independently A L3 represents the same meaning, but the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, Z L71 represents the same meaning as Z L2 in formula (L), X L71 and X L72 each independently represent a fluorine atom or a hydrogen atom.
- R L71 and R L72 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and
- a L71 and A L72 Are each independently preferably a 1,4-cyclohexylene group or a 1,4-phenylene group, the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and
- the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
- the content of the compound represented by the general formula (L-7) includes solubility at low temperature, transition temperature, electrical reliability, birefringence index, process suitability, dripping marks, It is necessary to adjust appropriately according to required performance such as image sticking and dielectric anisotropy.
- the lower limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the composition of the present invention is 1%, 2%, 3%, 5% 7%, 10%, 14%, 16%, 20%.
- the upper limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the composition of the present invention is 30%, 25%, 23%, and 20%. 18%, 15%, 10%, 5%.
- the content of the compound represented by formula (L-7) is preferably increased, and when an embodiment with low viscosity is desired, the content is It is preferable to reduce the amount.
- the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.1) to the formula (L-7.4), and the formula (L-7. It is preferable that it is a compound represented by 2).
- the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.11) to the formula (L-7.13). It is preferable that it is a compound represented by 11).
- the compound represented by the general formula (L-7) is a compound represented by the formula (L-7.21) to the formula (L-7.23).
- a compound represented by formula (L-7.21) is preferable.
- the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.31) to the formula (L-7.34), and the formula (L-7. 31) or / and a compound represented by the formula (L-7.32).
- the compound represented by the general formula (L-7) is preferably a compound represented by the formula (L-7.41) to the formula (L-7.44), and the formula (L-7. 41) or / and a compound represented by formula (L-7.42).
- the preferred total content of the compounds represented by general formula (ii), general formula (iii), general formula (iv), general formula (L) and (J) with respect to the total amount of the composition of the present invention are 80%, 85%, 88%, 90%, 92%, 93%, 94%, 95%, 96%, 97 %, 98%, 99%, 100%.
- the upper limit of the preferable content is 100%, 99%, 98%, and 95%.
- the preferred total content of the compounds represented by general formula (ii), general formula (iii), general formula (iv), general formula (L) and (M) with respect to the total amount of the composition of the present invention are 80%, 85%, 88%, 90%, 92%, 93%, 94%, 95%, 96%, 97 %, 98%, 99%, 100%.
- the upper limit of the preferable content is 100%, 99%, 98%, and 95%.
- the lower limit of the preferable total content of 1) to General Formula (M-8) is 80%, 85%, 88%, 90%, 92%, 93% 94%, 95%, 96%, 97%, 98%, 99%, 100%.
- the upper limit of the preferable content is 100%, 99%, 98%, and 95%.
- composition of the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded in the molecule.
- the content of the compound having a carbonyl group is preferably 5% or less, more preferably 3% or less with respect to the total mass of the composition. Preferably, it is more preferably 1% or less, and most preferably not substantially contained.
- the content of the compound substituted with chlorine atoms is preferably 15% or less, preferably 10% or less, based on the total mass of the composition. % Or less, preferably 5% or less, more preferably 3% or less, and still more preferably substantially not contained.
- the content of a compound in which all the ring structures in the molecule are 6-membered rings is 80% relative to the total mass of the composition. % Or more, more preferably 90% or more, still more preferably 95% or more, and the composition is composed only of a compound in which all of the ring structures in the molecule are all 6-membered rings. Most preferably.
- the content of the compound having a cyclohexenylene group as a ring structure, and the content of the compound having a cyclohexenylene group as the total mass of the composition is preferably 10% or less, preferably 8% or less, more preferably 5% or less, preferably 3% or less, and still more preferably not contained.
- the content of a compound having a 2-methylbenzene-1,4-diyl group in the molecule, in which a hydrogen atom may be substituted with a halogen may be reduced.
- the content of the compound having a 2-methylbenzene-1,4-diyl group in the molecule is preferably 10% or less, more preferably 8% or less, based on the total mass of the composition. It is more preferably 5% or less, further preferably 3% or less, and still more preferably substantially not contained.
- substantially not contained in the present application means that it is not contained except for an unintentionally contained product.
- the alkenyl group when the compound contained in the composition of the first embodiment of the present invention has an alkenyl group as a side chain, when the alkenyl group is bonded to cyclohexane, the alkenyl group has 2 to 5 carbon atoms.
- the alkenyl group is bonded to benzene, the number of carbon atoms of the alkenyl group is preferably 4 to 5, and the unsaturated bond of the alkenyl group and benzene are directly bonded. Preferably not.
- the liquid crystal layer and / or the liquid crystal composition according to the present invention contains a polymerizable monomer, and the polymerizable monomer preferably exhibits liquid crystallinity.
- the specific content of the polymerizable monomer in the polymerizable monomer-containing liquid crystal composition according to the present invention is preferably 5% or less, more preferably 2% or less, still more preferably 1.5% or less, and further preferably 1% or less. Is particularly preferable, and 0.5% or less is most preferable. Generation
- the lower limit of the content of the polymerizable monomer in the liquid crystal composition is preferably 1000 ppm, more preferably 3000 ppm, and more preferably 5000 ppm.
- Examples of the polymerizable monomer exhibiting liquid crystallinity include the following structures.
- the polymerizable monomer of the general formula (P) according to the present invention is represented by the general formula (Pa), the general formula (Pb), the general formula (Pc), and the general formula (Pd). It is preferably at least one compound selected from the group consisting of compounds.
- R p1 and R p2 are each independently the following formulas (RI) to (R-IX):
- R 2 to R 6 are independently of each other a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or the number of carbon atoms. 1 to 5 halogenated alkyl groups, W is a single bond, —O— or a methylene group, T is a single bond or —COO—, and p, t and q are each independently 0, Represents 1 or 2, Ring A and Ring B are each independently 1,4-phenylene group, 1,4-cyclohexylene group, anthracene-2,6-diyl group, phenanthrene-2,7-diyl group, pyridine-2,5- Diyl group, pyrimidine-2,5-diyl group, naphthalene-2,6-diyl group, indan-2,5-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or 1, Represents
- Sp p1 and Sp p4 each represent a spacer group
- X p1 to X p4 preferably each independently represent a hydrogen atom or a halogen atom
- L p3 is preferably —CH ⁇ CHCOO—, —COOCH ⁇ CH— or —OCOCH ⁇ CH—.
- R p1 When a plurality of R p1 are present, they may be the same or different.
- R p1 When a plurality of R p1 are present, they may be the same or different, and a plurality of R p2 are present. In some cases, they may be the same or different.
- a plurality of Sp p1 When a plurality of Sp p1 are present, they may be the same or different. When there are a plurality of Sp p4 , they are the same.
- the photopolymerization time is shortened by combining the polymerizable monomer represented by the general formula (Pd) with the general formula (1) and the general formula (2). It becomes possible to make it.
- Preferred examples thereof include polymerizable monomers represented by the following formulas (Pa-1) to (Pa-31).
- the specific content of the polymerizable monomer represented by the general formula (Pa) is preferably 5% or less, more preferably 3% or less, further preferably 2% or less, and more preferably 1% or less. Particularly preferred is 0.8% or less.
- the lower limit of the content of the polymerizable monomer in the liquid crystal composition is preferably 1000 ppm, preferably 3000 ppm, and more preferably 5000 ppm.
- Preferred examples of the compound represented by the general formula (Pb) according to the present invention include polymerizable monomers represented by the following formulas (Pb-1) to (Pb-34).
- the specific content of the polymerizable monomer represented by the general formula (Pb) is preferably 5% or less, more preferably 3% or less. It is more preferably 2% or less, particularly preferably 1% or less, and most preferably 0.8% or less.
- the lower limit of the content of the polymerizable monomer in the liquid crystal composition is preferably 1000 ppm, preferably 3000 ppm, and more preferably 5000 ppm.
- Preferred examples of the compound represented by the general formula (Pc) according to the present invention include polymerizable monomers represented by the following formulas (Pc-1) to (Pc-52).
- the specific content of the polymerizable monomer represented by the general formula (Pc) is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less, and more preferably 1% or less. Particularly preferred is 0.8% or less.
- the lower limit of the content of the polymerizable monomer in the liquid crystal composition is preferably 1000 ppm, preferably 3000 ppm, and more preferably 5000 ppm.
- the compound represented by the general formula (Pd) according to the present invention is preferably a compound represented by the following general formula (P-d ').
- mp10 is more preferably 2 or 3.
- the other symbols are the same as those in the general formula (pd) and are omitted.
- Preferred examples of the compound represented by formula (Pd) according to the present invention include polymerizable monomers represented by the following formulas (Pd-1) to (Pd-31).
- the specific content of the polymerizable monomer represented by the general formula (Pd) is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less, and more preferably 1% or less. Particularly preferred is 0.8% or less.
- the lower limit of the content of the polymerizable monomer in the liquid crystal composition is preferably 1000 ppm, preferably 3000 ppm, and more preferably 5000 ppm.
- the liquid crystal layer and / or liquid crystal composition in the liquid crystal display device according to the present invention preferably contains a polymerizable monomer in the liquid crystal layer and / or liquid crystal composition, and the polymerizable monomer is polymerized. Thereby, the alignment control force of the liquid crystal molecules of the photo-alignment film is improved.
- FIG. 6A is a plan view of an IPS mode liquid crystal display element, in which the pixel electrode and the common electrode are formed in a comb shape, and they are separated from each other by a certain distance so as to be loosely fitted to each other on the same substrate. Is formed.
- FIG. 7 are enlarged views of the region of VII in the broken line portion.
- 7B and 7C and FIG. 8 are plan views in which the pixel electrode is on the upper side and the common electrode is on the lower side for the sake of convenience, the present invention is not limited to this.
- FIG. 7B shows that the liquid crystal composition of the present invention containing the liquid crystal compound 1a and the polymerizable monomer 1b is in a specific direction (along the alignment direction of the photo-alignment film) on the photo-alignment film. The arrangement is shown.
- FIG. 7B shows that the liquid crystal composition of the present invention containing the liquid crystal compound 1a and the polymerizable monomer 1b is in a specific direction (along the alignment direction of the photo-alignment film) on the photo-alignment film. The arrangement is shown.
- FIG. 1B shows that the liquid crystal composition of the present invention containing the liquid crystal compound 1a and the polymerizable monomer 1b is in a specific direction (along the alignment direction of the photo
- FIG. 7C shows a state in which the liquid crystal compound 1a and the polymerizable monomer 1b are arranged in a specific direction (along the alignment direction of the photo-alignment film) on the photo-alignment film (that is, (B) In a state where a polymerizable monomer is polymerized. Due to the presence of the polymerized polymer 1c, an alignment regulating force in a specific direction is generated for the liquid crystal molecules. That is, when the polymerizable monomer is polymerized in the (B) state (no voltage applied), the polymerizable monomers are connected in a state of being oriented in the specific orientation direction ((C) state).
- FIG. 8 schematically shows the state of alignment of liquid crystal molecules when the voltage is turned on or off with respect to the state of FIG. 7C.
- the liquid crystal molecules 1a are aligned along the direction of the electric field, and when the voltage is turned off, the liquid crystal molecules 1a have a polymer 1c in which polymerizable monomers are connected to each other in the liquid crystal layer, so that the initial alignment direction is maintained. It becomes easy to return to a specific orientation direction.
- the liquid crystal display element when the liquid crystal composition includes a polymerizable monomer and a liquid crystal compound and is provided with a liquid crystal layer obtained by polymerizing the polymerizable monomer, the polymerizable monomer can be used even when the voltage ON-OFF state is repeated.
- the interaction between the polymer 1c and the liquid crystal molecules 1b linked to each other is considered to improve the alignment regulating force on the liquid crystal molecules, which has been a problem in the past, and which decreases with time.
- a liquid crystal molecule can maintain the specific alignment direction given to the photo-alignment film, it is considered that the substantial alignment regulating force is improved.
- alignment regulating force with respect to the alignment direction in each alignment divided region can be improved.
- the polymerization proceeds even in the absence of a polymerization initiator, but may contain a polymerization initiator in order to accelerate the polymerization.
- the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
- the liquid crystal composition according to the present invention can further contain a compound represented by the general formula (Q) as an antioxidant.
- RQ is preferably an alkyl group having 1 to 22 carbon atoms or an alkoxy group, and the alkyl group (including the alkyl group in the alkoxy group) is linear or branched It may be a chain.
- the RQ represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched alkoxy group, and one or more of the alkyl groups (including the alkyl group in the alkoxy group).
- the CH 2 group is —O—, —CH ⁇ CH—, —CO—, —OCO—, —COO—, —C ⁇ C—, —CF 2 O—, —OCF so that the oxygen atom is not directly adjacent.
- R Q in the general formula (Q) is a number of 1 to 20 carbon atoms, a straight-chain alkyl groups, linear alkoxy groups, one CH 2 group has been replaced -OCO- or -COO- in
- the alkyl group is at least one selected from the group consisting of a linear alkyl group, a branched alkyl group, a branched alkoxy group and a branched alkyl group in which one CH 2 group is substituted with —OCO— or —COO—.
- a linear alkyl group having 1 to 10 carbon atoms a linear alkyl group in which one CH 2 group is substituted by —OCO— or —COO—, a branched alkyl group, a branched alkoxy group, and one CH 2 group More preferred is at least one selected from the group consisting of a branched alkyl group substituted with —OCO— or —COO—.
- MQ represents a trans-1,4-cyclohexylene group, a 1,4-phenylene group or a single bond, and a trans-1,4-cyclohexylene group or a 1,4-phenylene group is preferred.
- the compound represented by the general formula (Q) is preferably at least one compound selected from the group of compounds represented by the following general formulas (Qa) to (Qd): More preferably a compound represented by the general formula (Qa) and / or (Qc)
- R Q1 is preferably a linear alkyl group having 1 to 10 carbon atoms or a branched alkyl group
- R Q2 is a straight chain having 1 to 20 carbon atoms.
- a chain alkyl group or a branched chain alkyl group is preferable
- R Q3 is preferably a linear alkyl group having 1 to 8 carbon atoms, a branched chain alkyl group, a linear alkoxy group or a branched chain alkoxy group, and L Q is 1 carbon atom.
- a linear alkylene group or a branched alkylene group of 8 to 8 is preferred.
- the compound represented by the general formula (Q) is more preferably a compound represented by the following formula (Qa-1) and / or (Qc-1).
- the compound represented by the general formula (Q) preferably contains one or two compounds, more preferably contains one to five compounds, and the content is It is preferably 0.001 to 1% by mass, preferably 0.001 to 0.1% by mass, and 0.001 to 0.05% by mass with respect to the total mass of the liquid crystal composition of the present invention. It is preferable that
- an electrode layer 3 such as a TFT (a surface covered with a photo-alignment film) is formed on the surface of the same substrate (for example, the first substrate in FIGS. 3 and 5). Therefore, there are many irregularities on the surface, and it is easy to promote the generation of dripping marks, but this problem is alleviated by the combination of the alignment film and the polymer different from the alignment film. It is thought that there is.
- the polymer according to the present invention may be prepared by polymerizing a polymerizable substance in the alignment film, or may be introduced and polymerized together with the liquid crystal composition.
- the liquid crystal composition containing a polymerizable monomer is provided with a liquid crystal alignment ability by polymerizing the polymerizable monomer contained therein by ultraviolet irradiation, and controls the amount of transmitted light using the birefringence of the liquid crystal composition. It is preferably used for a liquid crystal display element.
- a liquid crystal display element it is useful for VA-IPS-LCD, FFS-LCD, AM-LCD (active matrix liquid crystal display element) and IPS-LCD (in-plane switching liquid crystal display element), but particularly useful for AM-LCD. Yes, it can be used for a transmissive or reflective liquid crystal display element.
- the two substrates of the liquid crystal cell used in the liquid crystal display element can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon.
- a transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
- the color filter can be produced by, for example, a pigment dispersion method, a printing method, an electrodeposition method, or a dyeing method.
- a method for producing a color filter by a pigment dispersion method will be described as an example.
- a curable coloring composition for a color filter is applied on the transparent substrate, subjected to patterning treatment, and cured by heating or light irradiation. By performing this process for each of the three colors red, green, and blue, a pixel portion for a color filter can be manufactured.
- a pixel electrode provided with an active element such as a TFT or a thin film diode may be provided on the substrate.
- the substrate is opposed so that the transparent electrode layer is on the inside.
- the thickness of the light control layer (liquid crystal layer) to be obtained is 1 to 100 ⁇ m. More preferably, the thickness is 1.5 to 10 ⁇ m.
- the polarizing plate it is preferable to adjust the product of the refractive index anisotropy ⁇ n of the liquid crystal and the cell thickness G so that the contrast is maximized.
- the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good.
- a retardation film for widening the viewing angle can also be used.
- the spacer include columnar spacers made of glass particles, plastic particles, alumina particles, a photoresist material, and the like.
- a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
- a normal vacuum injection method or an ODF method can be used as a method of sandwiching the liquid crystal composition (containing a polymerizable monomer as necessary) between the two substrates.
- a vacuum injection method there is a problem that an injection mark remains instead of a drop mark.
- it can use more suitably for the display element manufactured using ODF method.
- a sealant such as epoxy photothermal curing is drawn on a backplane or frontplane substrate using a dispenser in a closed-loop bank shape, and then removed.
- a liquid crystal display element can be manufactured by bonding a front plane and a back plane after dropping a predetermined amount of the liquid crystal composition in the air.
- the liquid crystal composition of the present invention can be preferably used because the liquid crystal composition can be stably dropped in the ODF process.
- an appropriate polymerization rate is desirable in order to obtain good alignment performance of the liquid crystal. Therefore, active energy rays such as ultraviolet rays or electron beams are irradiated singly or in combination or sequentially.
- the method of polymerizing by is preferred.
- ultraviolet rays When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used.
- the polymerization is performed in a state where the polymerizable monomer-containing liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be given appropriate transparency to the active energy rays. I must.
- the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, it is possible to use a means for polymerization.
- a means for polymerization In particular, when ultraviolet exposure is performed, it is preferable that the polymerizable monomer-containing liquid crystal composition is exposed to ultraviolet light without applying a voltage.
- the pretilt angle angle formed between the major axis of the liquid crystal molecules and the substrate surface
- the temperature during irradiation is preferably within a temperature range in which the liquid crystal state of the liquid crystal composition of the present invention is maintained. Polymerization is preferably performed at a temperature close to room temperature, that is, typically at a temperature of 15 to 35 ° C.
- a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
- a wavelength of the ultraviolet-rays to irradiate it is preferable to irradiate the ultraviolet-ray of the wavelength range which is not the absorption wavelength range of a liquid crystal composition, and it is preferable to cut and use an ultraviolet-ray as needed.
- Intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ⁇ 100W / cm 2, 2mW / cm 2 ⁇ 50W / cm 2 is more preferable.
- the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2 .
- the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiating ultraviolet rays, but when using a metal halide lamp, high pressure mercury lamp or ultra high pressure mercury lamp, it is preferably 10 seconds to 3600 seconds, more preferably 10 seconds to 600 seconds, and fluorescence. In the case of using a lamp, 60 seconds to 18000 seconds are preferable, and 600 seconds to 10800 seconds are preferable.
- the first substrate or the second substrate is not particularly limited as long as it is substantially transparent, and glass, ceramics, plastics, or the like can be used.
- Plastic substrates include cellulose derivatives such as cellulose, triacetyl cellulose, diacetyl cellulose, polycycloolefin derivatives, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polypropylene, polyethylene, etc.
- Inorganic-organic composite materials such as glass fiber-acrylic resin can be used.
- the function of the barrier film is to reduce the moisture permeability of the plastic substrate and to improve the reliability of the electrical characteristics of the liquid crystal display element.
- the barrier film is not particularly limited as long as it has high transparency and low water vapor permeability. Generally, vapor deposition, sputtering, chemical vapor deposition method (CVD method) using an inorganic material such as silicon oxide is used. ) Is used.
- the same material or different materials may be used as the first substrate or the second substrate, and there is no particular limitation.
- Use of a glass substrate is preferable because a liquid crystal display element having excellent heat resistance and dimensional stability can be manufactured.
- a plastic substrate is preferable because it is suitable for a manufacturing method using a roll-to-roll method and is suitable for weight reduction or flexibility. For the purpose of imparting flatness and heat resistance, good results can be obtained by combining a plastic substrate and a glass substrate.
- the measured characteristics are as follows.
- Tni Nematic phase-isotropic liquid phase transition temperature (° C) ⁇ n: Refractive index anisotropy at 295K (also known as birefringence) ⁇ : Dielectric anisotropy at 295K ⁇ : Viscosity at 295K (mPa ⁇ s) ⁇ 1: rotational viscosity at 295 K (mPa ⁇ s) VHR: Voltage holding ratio (%) at 313K under conditions of frequency 60Hz and applied voltage 5V Burn-in: The burn-in evaluation of the liquid crystal display element is based on the following four-step evaluation of the afterimage level of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1440 hours and then the entire screen is displayed uniformly. went.
- the process suitability is that the liquid crystal is dropped 40 pL at a time by using a constant volume metering pump 100000 times in the ODF process, and the following “0 to 200 times, 201 to 400 times, 401 to 600 times, ..., 99801 to 100,000 times ”, the change in the amount of liquid crystal dropped 200 times was evaluated in the following four stages.
- CRS change rate Polarizer-analyzer of optical measuring device (RETS-100, manufactured by Otsuka Electronics Co., Ltd.) equipped with white light source, spectroscope, polarizer (incident side polarizing plate), analyzer (exit side polarizing plate), detector
- the optical film to be measured was placed.
- the rotation angle between the polarizer and the analyzer is 0 degree (the polarization direction of the polarizer and the analyzer is the parallel position [parallel Nicol]
- the transmitted light is transmitted by the detector while rotating the optical film.
- the amount of transmitted light (on-time light amount) at the rotational position of the optical film (the polarization direction of the polarizer and the molecular long axis direction of the polymerizable liquid crystal are parallel) where the detected light amount becomes the largest is Yon. It was. In addition, with the position of the polarizer and the optical film fixed, the rotation angle of the analyzer with respect to the polarizer is 90 degrees (the polarization direction of the polarizer and the analyzer is the orthogonal position [cross Nicol]). The amount of light (light amount when off) was set to Yoff.
- the contrast CRS was obtained from the following equation.
- the contrast was measured immediately after creation of the display element (CRS 0) and after heating to 60 ° C. for 10 hours while applying a voltage (rectangular wave of 5 V, 60 Hz) (CRS 10).
- the CRS change rate is determined by the following equation from the obtained CRS0 and CRS10.
- compositions 1 to 7 Liquid crystal compositions (compositions 1 to 7) having the following compositions were prepared.
- Polymeric liquid crystal composition 1 was prepared by adding 0.3 g of the polymerizable compound represented by the formula (Mn-1) to 100 g of the composition 1. Similarly, polymerizable liquid crystal compositions 2 to 7 were prepared.
- the substrate on which the alignment film was formed was adjusted, and the substrates were laminated to a cell thickness of 3.0 ⁇ m to form a liquid crystal cell, and a liquid crystal display element was produced using the polymerizable liquid crystal compositions 1-7.
- the liquid crystal cell was irradiated with ultraviolet rays by a high-pressure mercury lamp (FL15UV34A (NP805) manufactured by Toshiba Lighting & Technology Corp.) through a filter that cuts ultraviolet rays of 320 nm or less.
- the cell surface was adjusted to have an irradiation intensity of 10 mW / cm 2 and irradiated for 700 seconds to polymerize the polymerizable substance in the polymerizable liquid crystal composition to prepare a liquid crystal display element.
- IPS elements and FFS elements were prepared by changing the electrode structure on the substrate having the thin film transistor and the transparent electrode layer.
- the liquid crystal display element of the present invention has excellent characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
前記第一の基板および前記第二の基板の間に挟持された液晶組成物を含有する液晶層と、
前記第一の基板上に設けられる第一の電極と、
前記第一の電極と同じ基板上に設けられ、前記第一の電極との間に電界を生じさせる第二の電極と、
前記第一の基板上に設けられる液晶層を配向させる配向膜と、
前記第一基板と前記第二基板との間に前記配向膜とは異なる、重合性物質の重合物と、
を有し、
前記重合性物質が一般式(i)で表される化合物を1種又は2種以上含有し、
前記液晶組成物が一般式(ii)で表される化合物を1種又は2種以上、一般式(iii)で表される化合物を1種又は2種以上及び一般式(iv)で表される化合物を1種又は2種以上含有する液晶表示素子に関するものである。
SpP1は1個の-CH2-又は隣接していない2個以上の-CH2-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-に置き換えられても良い炭素原子数1から20のアルキレン基を表し、
XP1は-CO-、-COO-、-OCO-又は単結合を表し、
AP1、AP2及びAP3はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH2-又は隣接していない2個以上の-CH2-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) (c)ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、アントラセン-2,6-ジイル基又はフェナントレン-2,7-ジイル基、(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子又はRP2-SpP2-XP2-(式中、RP2はRP1と同じ意味を表すがRP1と同一であっても異なっていてもよく、SpP2はSpP1と同じ意味を表すがSpP1と同一であっても異なっていてもよく、XP2はXP1と同じ意味を表すがXP1と同一であっても異なっていてもよい。)で置換されていても良く、AP2が複数存在する場合にはそれらは同一であっても異なっていてもよく、
ZP1及びZP2はそれぞれ独立して単結合、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-COO-、-OCO-、-OCF2-、-CF2O-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表すが、ZP1が複数存在する場合にはそれらは同一であっても異なっていてもよく、
YP1は水素原子、フッ素原子、塩素原子、臭素原子、シアノ基、ニトロ基、炭素原子数1から12のアルキル基又は-XP3-SpP3-RP3(式中、RP3はRP1と同じ意味を表すがRP1と同一であっても異なっていてもよく、SpP3はSpP1と同じ意味を表すがSpP1と同一であっても異なっていてもよく、XP3はXP1と同じ意味を表すがXP1と同一であっても異なっていてもよい。)
Xiii1~Xiii4、Xiv1~Xiv9及びXv1~Xv9はそれぞれ独立して、水素原子、フッ素原子又は塩素原子を表し、
Yiv1及びYv1はそれぞれ独立して、フッ素原子、塩素原子、-CF3又は-OCF3を表す。)
本発明に係る液晶表示素子の構造および当該液晶表示素子の構成要素である、基板および電極層について図1~8を用いて説明する。次いで、液晶表示素子の構成要素である液晶層及び重合物について詳説する。
本願液晶組成物は、一般式(ii)で表される化合物を1種又は2種以上、一般式(iii)で表される化合物を1種又は2種以上及び一般式(iv)で表される化合物を1種又は2種以上含有する。
nJ1は、0、1、2、3又は4を表し、
AJ1、AJ2及びAJ3はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH2-又は隣接していない2個以上の-CH2-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) (c)ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
ZJ1及びZJ2はそれぞれ独立して単結合、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-OCF2-、-CF2O-、-COO-、-OCO-又は-C≡C-を表し、
nJ1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
XJ1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表すが、一般式(iii)及び(iv)で表される化合物を除く。)
一般式(J)中、RJ1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
nM1は、0、1、2、3又は4を表し、
AM1及びAM2はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH2-又は隣接していない2個以上の-CH2-は-O-又は-S-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
ZM1及びZM2はそれぞれ独立して単結合、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-OCF2-、-CF2O-、-COO-、-OCO-又は-C≡C-を表し、
nM1が2、3又は4であってAM2が複数存在する場合は、それらは同一であっても異なっていても良く、nM1が2、3又は4であってZM1が複数存在する場合は、それらは同一であっても異なっていても良く、
XM1及びXM3はそれぞれ独立して水素原子、塩素原子又はフッ素原子を表し、
XM2は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表すが、一般式(iii)及び(iv)で表される化合物を除く。)
一般式(M)中、RM1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
本発明の組成物の総量に対しての式(M-1)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、5%であり、8%であり、10%であり、13%であり、15%であり、18%であり、20%であり、22%であり、25%であり、30%である。好ましい含有量の上限値は、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%であり、5%である。
組み合わせることのできる化合物に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などを考慮して1種、2種又は3種類以上組み合わせることが好ましい。
組み合わせることのできる化合物の種類に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などを考慮して、実施形態ごとに適宜組み合わせて使用する。例えば、本発明の一つの実施形態では1種類、別の実施形態では2種類、さらに別の実施形態では3種類、またさらに別の実施形態では4種類、またさらに別の実施形態では5種類、またさらに別の実施形態では6種類以上組み合わせる。
組み合わせることのできる化合物の種類に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などを考慮して実施形態ごとに適宜組み合わせる。
組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種~2種類含有することが好ましく、1種~3種類含有することがより好ましく、1種~4種類含有することが更に好ましい。
本発明の組成物の総量に対しての一般式(M-8)で表される化合物の好ましい含有量の下限値は、1%であり、2%であり、4%であり、5%であり、8%であり、10%であり、13%であり、15%であり、18%であり、20%である。好ましい含有量の上限値は、30%であり、28%であり、25%であり、23%であり、20%であり、18%であり、15%であり、13%であり、10%であり、8%であり、5%である。
nL1は0、1、2又は3を表し、
AL1、AL2及びAL3はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH2-又は隣接していない2個以上の-CH2-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) (c)ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
ZL1及びZL2はそれぞれ独立して単結合、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-COO-、-OCO-、-OCF2-、-CF2O-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
nL1が2又は3であってAL2が複数存在する場合は、それらは同一であっても異なっていても良く、nL1が2又は3であってZL2が複数存在する場合は、それらは同一であっても異なっていても良いが、一般式(ii)、(iii)、(iv)及び(J)で表される化合物を除く。)
一般式(L)で表される化合物は単独で用いてもよいが、組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類である。あるいは本発明の別の実施形態では2種類であり、3種類であり、4種類であり、5種類であり、6種類であり、7種類であり、8種類であり、9種類であり、10種類以上である。
RL11及びRL12は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
本発明の組成物の総量に対しての式(L-1-2)で表される化合物の好ましい含有量の下限値は、1%であり、5%であり、10%であり、15%であり、17%であり、20%であり、23%であり、25%であり、27%であり、30%であり、35%である。好ましい含有量の上限値は、本発明の組成物の総量に対して、60%であり、55%であり、50%であり、45%であり、42%であり、40%であり、38%であり、35%であり、33%であり、30%である。
RL13及びRL14は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
さらに、一般式(L-1-3)で表される化合物は、式(L-1-3.1)から式(L-1-3.12)で表される化合物群から選ばれる化合物であることが好ましく、式(L-1-3.1)、式(L-1-3.3)又は式(L-1-3.4)で表される化合物であることが好ましい。特に、式(L-1-3.1)で表される化合物は本発明の組成物の応答速度を特に改善するため好ましい。また、応答速度よりも高いTniを求めるときは、式(L-1-3.3)、式(L-1-3.4)、式(L-1-3.11)及び式(L-1-3.12)で表される化合物を用いることが好ましい。式(L-1-3.3)、式(L-1-3.4)、式(L-1-3.11)及び式(L-1-3.12)で表される化合物の合計の含有量は、低温での溶解度を良くするために20%以上にすることは好ましくない。
RL15及びRL16は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
RL21は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL22は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
RL31及びRL32はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
RL41は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL42は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。)
一般式(L-4)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
RL51は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL52は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
一般式(L-5)で表される化合物は、式(L-5.1)又は式(L-5.2)で表される化合物であることが好ましく、特に、式(L-5.1)で表される化合物であることが好ましい。
RL61及びRL62はそれぞれ独立して炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、XL61及びXL62のうち一方がフッ素原子他方が水素原子であることが好ましい。
式中、RL71及びRL72はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、AL71及びAL72はそれぞれ独立して1,4-シクロヘキシレン基又は1,4-フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、QL71は単結合又はCOO-が好ましく、単結合が好ましく、XL71及びXL72は水素原子が好ましい。
環Aおよび環Bはそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、アントラセン-2,6-ジイル基、フェナントレン-2,7-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、インダン-2,5-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、無置換であるか又は炭素原子数1~12のアルキル基、炭素原子数1~12のハロゲン化アルキル基、炭素原子数1~12のアルコキシ基、炭素原子数1~12のハロゲン化アルコキシ基、ハロゲン原子、シアノ基、ニトロ基又は-Rp1で置換されていていることが好ましく、
環Cは以下の式(c-i)~(c-ix):
Spp1及びSpp4はスペーサー基を表し、Xp1~Xp4は、それぞれ独立して、水素原子またはハロゲン原子を表すことが好ましく、
Lp4、Lp5およびLp6はそれぞれ独立して、単結合、-OCH2-、-CH2O-、-CO-、-C2H4-、-COO-、-OCO-、-COOC2H4-、-OCOC2H4-、-C2H4OCO-、-C2H4COO-、-CH=CH-、-CF2-、-CF2O-、-(CH2)z-C(=O)-O-、-(CH2)z-O-(C=O)-、-O-(C=O)-(CH2)z-、-(C=O)-O-(CH2)z-、-O-(CH2)z-O-、-OCF2-、-CH=CHCOO-、-COOCH=CH-、-OCOCH=CH-又は-C≡C-であることが好ましく、前記式中のzは、1~4の整数であることが好ましい。
本発明に係る一般式(P-d)で表される化合物の好ましい例として、下記式(P-d-1)~式(P-d-31)で表される重合性モノマーが挙げられる。
Δn :295Kにおける屈折率異方性(別名:複屈折率)
Δε :295Kおける誘電率異方性
η :295Kにおける粘度(mPa・s)
γ1 :295Kにおける回転粘性(mPa・s)
VHR:周波数60Hz,印加電圧5Vの条件下で313Kにおける電圧保持率(%)
焼き付き:
液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1440時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
○残像ごく僅かに有るも許容できるレベル
△残像有り許容できないレベル
×残像有りかなり劣悪
揮発性/製造装置汚染性 :
液晶材料の揮発性評価は、真空攪拌脱泡ミキサーの運転状態をストロボスコープで照らしながら観察し、液晶材料の発泡を目視により観察することによって行った。具体的には、容量2.0Lの真空攪拌脱泡ミキサーの専用容器に液晶組成物を0.8kg入れ、4kPaの脱気下、公転速度15S-1、自転速度7.5S-1で真空攪拌脱泡ミキサーを運転し、発泡が始まるまでの時間によって、以下の4段階評価で行った。
プロセス適合性は、ODFプロセスにおいて、定積計量ポンプを用いて1回に40pLずつ液晶を滴下することを100000回行い、次の「0~200回、201~400回、401~600回、・・・・99801~100000回」の各200回ずつ滴下された液晶量の変化を以下の4段階で評価した。
○変化が僅かに有るも許容できるレベル
△変化が有り許容できないレベル(斑発生により歩留まりが悪化)
×変化が有りかなり劣悪(液晶漏れや真空気泡が発生)
低温での溶解性:
低温での溶解性評価は、液晶組成物を調製後、1mLのサンプル瓶に液晶組成物を0.5g秤量し、これに温度制御式試験槽の中で、次を1サイクル「-20℃(1時間保持)→昇温(0.2℃/毎分)→0℃(1時間保持)→昇温(0.2℃/毎分)→20℃(1時間保持)→降温(-0.2℃/毎分)→0℃(1時間保持)→降温(-0.2℃/毎分)→-20℃」として温度変化を与え続け、目視にて液晶組成物からの析出物の発生を観察し、以下の4段階評価を行った。
白色光源、分光器、偏光子(入射側偏光板)、検光子(出射側偏光板)、検出器を備えた光学測定装置(RETS-100、大塚電子株式会社製)の、偏光子-検光子間に、測定対象である前記光学フィルムを配置した。ここで、偏光子と検光子との回転角が0度(偏光子と検光子の偏光方向が平行位置[パラレルニコル])である状態において、光学フィルムを回転させながら、検出器にて透過光の光量を検出し、検出した光量が最も大きくなる、光学フィルムの回転位置(偏光子の偏光方向と重合性液晶の分子長軸方向が平行)における、透過光の光量(オン時光量)をYonとした。また、偏光子と光学フィルムの位置を固定したまま、偏光子に対する検光子の回転角を90度(偏光子と検光子の偏光方向が直交位置[クロスニコル])としたときにおける、透過光の光量(オフ時光量)をYoffとした。コントラストCRSは、次式により求めた。
(側鎖)
-F -F フッ素原子
F- -F フッ素原子
-n -CnH2n+1 炭素原子数nの直鎖状のアルキル基
n- CnH2n+1- 炭素原子数nの直鎖状のアルキル基
-On -OCnH2n+1 炭素原子数nの直鎖状のアルコキシル基
nO- CnH2n+1O- 炭素原子数nの直鎖状のアルコキシル基
-V -CH=CH2
V- CH2=CH-
-V1 -CH=CH-CH3
1V- CH3-CH=CH-
-2V -CH2-CH2-CH=CH3
V2- CH3=CH-CH2-CH2-
-2V1 -CH2-CH2-CH=CH-CH3
1V2- CH3-CH=CH-CH2-CH2
(連結基)
-CF2O- -CF2-O-
-OCF2- -O-CF2-
-1O- -CH2-O-
-O1- -O-CH2-
-COO- -COO-
(環構造)
次に示す組成を有する液晶組成物(組成物1~7)を調製した。
1b 重合性モノマー
1c 重合性モノマーが重合したポリマー
100 第1基板
102 TFT層
103 画素電極
104 パッシベーション膜
105 第1配向膜
200 第2基板
201 平坦化膜(オーバーコート層)
202 ブラックマトリックス
203 カラーフィルタ
204 透明電極
205 第2配向膜
301 シール材
302 突起(柱状スペーサー)
303 液晶層
304 突起(柱状スペーサー)
401 マスクパターン
402 レジン層
L 光
1,8 偏光板
2 第一の基板
3 電極層
4 配向膜
5 液晶層
6 カラーフィルタ
6G カラーフィルタ緑
6R カラーフィルタ赤
6B カラーフィルタ青
7 第二の基板
11 ゲート電極
12 ゲート絶縁膜
13 半導体層
14 絶縁層
15 オーミック接触層
16 ドレイン電極
17 ソース電極
18 絶縁保護層
21 画素電極
22 共通電極
23 ストレイジキャパシタ
24 ドレイン電極
25 データ配線
27 ソース配線
29 共通ライン
30 バッファー層
Claims (6)
- 対向に配置された第一の基板および第二の基板と、
前記第一の基板および前記第二の基板の間に挟持された液晶組成物を含有する液晶層と、
前記第一の基板上に設けられる第一の電極と、
前記第一の電極と同じ基板上に設けられ、前記第一の電極との間に電界を生じさせる第二の電極と、
前記第一の基板上に設けられる液晶層を配向させる配向膜と、
前記第一基板と前記第二基板との間に前記配向膜とは異なる、重合性物質の重合物と、
を有し、
前記重合性物質が一般式(P)
SpP1は1個の-CH2-又は隣接していない2個以上の-CH2-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-に置き換えられても良い炭素原子数1から20のアルキレン基を表し、
XP1は-CO-、-COO-、-OCO-又は単結合を表し、
AP1、AP2及びAP3はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH2-又は隣接していない2個以上の-CH2-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) (c)ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、アントラセン-2,6-ジイル基又はフェナントレン-2,7-ジイル基、(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子又はRP2-SpP2-XP2-(式中、RP2はRP1と同じ意味を表すがRP1と同一であっても異なっていてもよく、SpP2はSpP1と同じ意味を表すがSpP1と同一であっても異なっていてもよく、XP2はXP1と同じ意味を表すがXP1と同一であっても異なっていてもよい。)で置換されていても良く、AP2が複数存在する場合にはそれらは同一であっても異なっていてもよく、
ZP1及びZP2はそれぞれ独立して単結合、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-COO-、-OCO-、-OCF2-、-CF2O-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表すが、ZP1が複数存在する場合にはそれらは同一であっても異なっていてもよく、
YP1は水素原子、フッ素原子、塩素原子、臭素原子、シアノ基、ニトロ基、炭素原子数1から12のアルキル基又は-XP3-SpP3-RP3(式中、RP3はRP1と同じ意味を表すがRP1と同一であっても異なっていてもよく、SpP3はSpP1と同じ意味を表すがSpP1と同一であっても異なっていてもよく、XP3はXP1と同じ意味を表すがXP1と同一であっても異なっていてもよい。)
で表される化合物を1種又は2種以上含有し、前記液晶組成物が一般式(ii)で表される化合物を1種又は2種以上、一般式(iii)で表される化合物を1種又は2種以上及び一般式(iv)で表される化合物を1種又は2種以上含有する液晶表示素子。
Xiii1~Xiii4、Xiv1~Xiv9及びXv1~Xv9はそれぞれ独立して、水素原子、フッ素原子又は塩素原子を表し、
Yiv1及びYv1はそれぞれ独立して、フッ素原子、塩素原子、-CF3又は-OCF3を表す。) - IPSモードである請求項1に記載の液晶表示素子。
- FFSモードである請求項1に記載の液晶表示素子。
- 液晶組成物中に更に一般式(J)で表される化合物
nJ1は、0、1、2、3又は4を表し、
AJ1、AJ2及びAJ3はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH2-又は隣接していない2個以上の-CH2-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) (c)ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
ZJ1及びZJ2はそれぞれ独立して単結合、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-OCF2-、-CF2O-、-COO-、-OCO-又は-C≡C-を表し、
nJ1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
XJ1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表すが、一般式(iii)及び(iv)で表される化合物を除く。)を1種類又は2種類以上含有する請求項1から3のいずれか1項に記載の液晶表示素子。 - 液晶組成物中に更に一般式(L)で表される化合物
nL1は0、1、2又は3を表し、
AL1、AL2及びAL3はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH2-又は隣接していない2個以上の-CH2-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) (c)ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
ZL1及びZL2はそれぞれ独立して単結合、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-COO-、-OCO-、-OCF2-、-CF2O-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
nL1が2又は3であってAL2が複数存在する場合は、それらは同一であっても異なっていても良く、nL1が2又は3であってZL2が複数存在する場合は、それらは同一であっても異なっていても良いが、一般式(ii)、(iii)及び(iv)で表される化合物を除く。)を1種類又は2種類以上含有する請求項1から4のいずれか1項に記載の液晶表示素子。 - 請求項1から4のいずれか1項に記載の液晶組成物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177033919A KR20180044229A (ko) | 2015-08-21 | 2016-08-04 | 액정 표시 소자 |
CN201680030836.3A CN107615146B (zh) | 2015-08-21 | 2016-08-04 | 液晶显示元件 |
JP2016570899A JP6179683B2 (ja) | 2015-08-21 | 2016-08-04 | 液晶表示素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015163946 | 2015-08-21 | ||
JP2015-163946 | 2015-08-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017033700A1 true WO2017033700A1 (ja) | 2017-03-02 |
Family
ID=58099943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072937 WO2017033700A1 (ja) | 2015-08-21 | 2016-08-04 | 液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6179683B2 (ja) |
KR (1) | KR20180044229A (ja) |
CN (1) | CN107615146B (ja) |
TW (1) | TW201723617A (ja) |
WO (1) | WO2017033700A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019045185A (ja) * | 2017-08-30 | 2019-03-22 | Dic株式会社 | 帯電インジケータ |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012219270A (ja) * | 2011-04-07 | 2012-11-12 | Merck Patent Gmbh | 液晶媒体および液晶ディスプレイ |
WO2013175645A1 (ja) * | 2012-05-23 | 2013-11-28 | Dic株式会社 | ネマチック液晶組成物及びこれを用いた液晶表示素子 |
CN104419428A (zh) * | 2013-08-26 | 2015-03-18 | 江苏和成显示科技股份有限公司 | 可聚合液晶组合物及其液晶显示器件 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4710231B2 (ja) * | 2004-02-17 | 2011-06-29 | Dic株式会社 | 高分子分散型液晶表示素子用組成物及び高分子分散型液晶表示素子 |
KR20110046481A (ko) * | 2008-08-28 | 2011-05-04 | 짓쏘 가부시끼가이샤 | 액정 조성물 및 액정 표시 소자 |
CN103492529B (zh) * | 2012-04-26 | 2015-04-15 | Dic株式会社 | 向列型液晶组合物以及使用其的液晶显示元件 |
US20150252263A1 (en) * | 2012-12-27 | 2015-09-10 | Dic Corporation | Fluorobiphenyl-containing composition |
WO2014136201A1 (ja) * | 2013-03-05 | 2014-09-12 | Dic株式会社 | 液晶組成物及びそれを使用した液晶表示素子 |
-
2016
- 2016-08-04 WO PCT/JP2016/072937 patent/WO2017033700A1/ja active Application Filing
- 2016-08-04 KR KR1020177033919A patent/KR20180044229A/ko unknown
- 2016-08-04 JP JP2016570899A patent/JP6179683B2/ja active Active
- 2016-08-04 CN CN201680030836.3A patent/CN107615146B/zh active Active
- 2016-08-19 TW TW105126547A patent/TW201723617A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012219270A (ja) * | 2011-04-07 | 2012-11-12 | Merck Patent Gmbh | 液晶媒体および液晶ディスプレイ |
WO2013175645A1 (ja) * | 2012-05-23 | 2013-11-28 | Dic株式会社 | ネマチック液晶組成物及びこれを用いた液晶表示素子 |
CN104419428A (zh) * | 2013-08-26 | 2015-03-18 | 江苏和成显示科技股份有限公司 | 可聚合液晶组合物及其液晶显示器件 |
Also Published As
Publication number | Publication date |
---|---|
TW201723617A (zh) | 2017-07-01 |
CN107615146A (zh) | 2018-01-19 |
KR20180044229A (ko) | 2018-05-02 |
JPWO2017033700A1 (ja) | 2017-08-24 |
CN107615146B (zh) | 2021-06-01 |
JP6179683B2 (ja) | 2017-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015122457A1 (ja) | 液晶表示素子 | |
WO2017026479A1 (ja) | 液晶表示素子 | |
WO2017098954A1 (ja) | 液晶表示素子 | |
JPWO2019003936A1 (ja) | 液晶組成物用自発配向助剤 | |
JP6721876B2 (ja) | 液晶表示素子 | |
CN107629805B (zh) | 液晶组合物和使用其的液晶显示元件 | |
JP6638822B2 (ja) | 重合性液晶組成物、液晶表示素子、及び液晶表示素子の製造方法 | |
WO2018117213A1 (ja) | 液晶表示素子 | |
JPWO2020026831A1 (ja) | 液晶表示素子 | |
WO2018105376A1 (ja) | 液晶組成物、液晶表示素子及び液晶ディスプレイ | |
JP2018106162A (ja) | 液晶表示素子及び重合性液晶組成物 | |
JP5943228B2 (ja) | 液晶表示素子 | |
JP6565648B2 (ja) | 液晶表示素子 | |
JP6179683B2 (ja) | 液晶表示素子 | |
WO2018043144A1 (ja) | 液晶表示素子 | |
WO2017195585A1 (ja) | 液晶表示素子 | |
JP2018101096A (ja) | 液晶表示素子及び重合性液晶組成物 | |
JP6409995B2 (ja) | 液晶表示素子 | |
WO2018105378A1 (ja) | 液晶組成物、液晶表示素子及び液晶ディスプレイ | |
WO2018105379A1 (ja) | 液晶組成物、液晶表示素子及び液晶ディスプレイ | |
WO2017033829A1 (ja) | 液晶表示素子 | |
JP6607419B2 (ja) | 液晶表示素子 | |
JP6296321B1 (ja) | 組成物及び液晶表示素子 | |
WO2017033830A1 (ja) | 液晶表示素子 | |
WO2018207247A1 (ja) | 液晶表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016570899 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839047 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177033919 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16839047 Country of ref document: EP Kind code of ref document: A1 |