JP2018106162A - 液晶表示素子及び重合性液晶組成物 - Google Patents

液晶表示素子及び重合性液晶組成物 Download PDF

Info

Publication number
JP2018106162A
JP2018106162A JP2017242788A JP2017242788A JP2018106162A JP 2018106162 A JP2018106162 A JP 2018106162A JP 2017242788 A JP2017242788 A JP 2017242788A JP 2017242788 A JP2017242788 A JP 2017242788A JP 2018106162 A JP2018106162 A JP 2018106162A
Authority
JP
Japan
Prior art keywords
mass
group
liquid crystal
formula
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017242788A
Other languages
English (en)
Inventor
芳典 岩下
Yoshinori Iwashita
芳典 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Publication of JP2018106162A publication Critical patent/JP2018106162A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/546Macromolecular compounds creating a polymeric network

Abstract

【課題】速いオフ応答を実現しつつ、高い誘電率異方性Δε及び高い屈折率異方性Δnを兼備させる。
【解決手段】透明基板間に、ポリマーネットワーク(A)と、液晶組成物(B)とを含有する液晶層が挟持されされており、かつ液晶組成物(B)が下記式(I)
Figure 2018106162

で表される液晶化合物(I),及び下記式(II)
Figure 2018106162

で表される液晶化合物(II)を必須の低分子液晶化合物として含有することを特徴とする液晶表示素子。
【選択図】なし

Description

本発明は液晶表示素子及び重合性液晶組成物に関する。
近年、液晶テレビの大型化が進んだ結果、画面上を移動する表示物の移動速度が速くなり、そのため液晶の応答速度の向上が求められている。そこで、表示の高速化を図るべく、例えば、主に垂直配向モードを採用し、液晶材料のチルト角を付与させて電圧印加時の立ち上がり応答(オン応答)を高速化させたPS(polymer−stabilised:高分子安定化)又はPSA(polymer−sustained alignment:高分子維持配向)ディスプレイが(特許文献1〜4参照)が広く利用されている。
斯かるPS又はPSAディスプレイは、具体的には、0.3質量%以上1質量%未満の重合性化合物を液晶媒体に添加して、上下電極に電界を印加して液晶分子を一方向に傾け、この状態でUV光を照射し重合性化合物を重合させて配向膜上にポリマー層を形成させる。このポリマー層により傾いた液晶の配向状態を固定化する技術を利用するものであり、これにより電圧印加時の立ち上がり応答(オン応答)を高速化させるものであった。
しかしながら、近年の液晶テレビの大型化が進んだ結果として、画面上を移動する表示物の移動速度がより一層速くなり、そのため液晶の応答速度の更なる向上が求められている。
そこで、従来より、応答速度の改善手段として、電圧印加時の立ち上がり応答(オン応答)の高速化のみならず、電圧印加から解放したとき(スイッチング・オフ時)の応答速度を改善する試みがなされており、例えば、特許文献5には、液晶材料と、メソゲン基含有ジアクリレートとを、該ジアクリレートを大凡2〜15質量%の範囲で含有する組成物を液晶セルに注入した後に紫外線を照射して、液晶セル中に重合体を形成させた液晶表示素子が開示されている。斯かる液晶表示素子は、液晶材料中に所定量のポリマーを含有させる結果、ポリマーと液晶分子との引力的な相互作用を利用して、スイッチング・オフ応答(以下、「オフ応答」と略記する。)の際の初期配向状態への緩和過程を加速することによってオフ応答の高速化を実現したものである。
然しながら、斯かる液晶表示素子は、液晶層中のポリマー含有率が高まることから、相対的に液晶化合物の量が少なくならざるを得ず、よって、使用する液晶には誘電率異方性Δεが高いものが必要であった。また、液晶層中の液晶の量が少なるなることから屈折率異方性Δnも高いものが要求されているのが現状であった。
特許4175826号公報 特許5020203号公報 特許5383994号公報 US8940375号公報 WO2015/122457号公報
従って、本発明が解決しようとする課題は、速いスイッチング・オフ応答を実現しつつ、高い誘電率異方性Δε及び高い屈折率異方性Δnを兼備させた液晶表示素子、及びこれに適した重合性液晶組成物を提供することにある。
本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、液晶層中のポリマー成分を除く液晶組成物において、特定の2種の液晶化合物を併用することにより、ポリマーネットワークの形成に起因する速いオフ応答性を実現しつつ、高い誘電率異方性Δεと高い屈折率異方性Δnが得られることを見出し、本発明を完成するに至った。
即ち、本発明は、少なくとも一方に電極を有する2枚の透明基板間に、ポリマーネットワーク(A)と液晶組成物(B)とを含有する液晶層が挟持されており、かつ、液晶組成物(B)が下記式(I)
Figure 2018106162
(式(I)中、R11及びR12は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4-フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、n11は1又は2を、n12は0又は1を表す。)
で表される液晶化合物(I)、及び下記式(II)
Figure 2018106162
(式(II)中、R21及びR22は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、Zは単結合または炭素原子数2〜5のアルキレン基を表し、nは0又は1を表す。)
で表される液晶化合物(II)を必須の低分子液晶化合物として含有することを特徴とする液晶表示素子に関する。
更に本発明は、下記式(P1)
Figure 2018106162
(式(P1)中、Ac及びAcは各々独立して、アクリロイルオキシ基またはメタクロイルオキシ基を表し、SpP11及びSpP12は、各々独立して単結合、炭素原子数1〜6のアルキレン基または炭素原子数1〜6のアルキレンオキシ基を表し、
p11及びLp12はそれぞれ独立して、単結合、−O−、−S−、−CH−、−OCH−、−CHO−、−CO−、−C−、−COO−、−OCO−、−OCOOCH−、−CHOCOO−、−OCHCHO−、−CO−NRP113−、−NRP113−CO−、−SCH−、−CHS−、−CH=CRP113−COO−、−CH=CRP113−OCO−、−COO−CRP113=CH−、−OCO−CRP113=CH−、−COO−CRP113=CH−COO−、−COO−CRP113=CH−OCO−、−OCO−CRP113=CH−COO−、−OCO−CRP113=CH−OCO−、−(CHtm12−C(=O)−O−、−(CHtm12−O−(C=O)−、−O−(C=O)−(CHtm12−、−(C=O)−O−(CHtm12−、−CH=CH−、−CF=CF−、−CF=CH−、−CH=CF−、−CF−、−CFO−、−OCF−、−CFCH−、−CHCF−、−CFCF−、−C≡C−、−N=N−、−CH=N−又は−C=N−N=C−(式中、RP113はそれぞれ独立して水素原子又は炭素原子数1〜4のアルキル基を表し、前記式中、tm12は1〜4の整数を表す。)を表し、
p11、Mp12およびMp13は、それぞれ独立に1,4−フェニレン基、1,3−フェニレン基、1,2−フェニレン基、1,4−シクロヘキシレン基、1,3−シクロヘキシレン基、1,2−シクロヘキシレン基、1,4−シクロヘキセニレン基、1,3−シクロヘキセニレン基、1,2−シクロヘキセニレン基、アントラセン−2,6−ジイル基、フェナントレン−2,7−ジイル基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ナフタレン−2,6−ジイル基、ナフタレン−1,4−ジイル基、インダン−2,5−ジイル基、フルオレン−2,6−ジイル基、フルオレン−1,4−ジイル基、フェナントレン−2,7−ジイル基、アントラセン−2,6−ジイル基、アントラセン−1,4−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又は1,3−ジオキサン−2,5−ジイル基を表すが、Mp11、Mp12およびMp13はそれぞれ独立に無置換であるか又は炭素原子数1〜12のアルキル基、炭素原子数1〜12のハロゲン化アルキル基、炭素原子数1〜12のアルコキシ基、炭素原子数1〜12のハロゲン化アルコキシ基、ハロゲン原子、シアノ基、ニトロ基又は−Spp11−Ac基で置換されていても良く、mp11は1又は2を表し、mp12〜mp13はそれぞれ独立して、0、1、2又は3を表す。)
で表される重合性単量体(a)と、
下記式(I)
Figure 2018106162
(式(I)中、R11及びR12は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4-フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、
11は1又は2を、n12は0又は1を表す。)
で表される液晶化合物(I)、及び下記式(II)
Figure 2018106162
(式(II)中、R21及びR22は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、Zは単結合または炭素原子数2〜5のアルキレン基を表し、nは0又は1を表す。)
で表される液晶化合物(II)を必須の低分子液晶化合物として含有する液晶組成物(B)が下記式(I)
Figure 2018106162
(式(I)中、R11及びR12は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4-フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、
11は1又は2を、n12は0又は1を表す。)
で表される液晶化合物(I)、及び下記式(II)
Figure 2018106162
(式(II)中、R21及びR22は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、Zは単結合または炭素原子数2〜5のアルキレン基を表し、nは0又は1を表す。)
で表される液晶化合物(II)を必須の低分子液晶化合物として含有する液晶組成物(B)とを必須成分とすることを特徴とする重合性液晶組成物に関する。
本発明によれば、速いスイッチング・オフ応答を実現しつつ、高い誘電率異方性Δε及び高い屈折率異方性Δnを兼備させた液晶表示素子、及びこれに適した重合性液晶組成物を提供できる。
図1は、本発明の液晶表示素子の模式図である。 図2は、図1の部分拡大図である。 図3は、本発明の液晶表示素子の断面図である。 図4は、図1の部分拡大図である。 図5は、本発明の液晶表示素子の断面図である。 図6は、本発明の液晶表示素子の模式図である。 図7は、図6の部分拡大図である。 図8は、本発明の液晶表示素子の断面図である。 図9は、本発明における斜め電界方式液晶表示装置の電極構造及び液晶分子配列を示す模式図である。 図10は、本発明における8分割斜め電界方式液晶表示装置の電極構造を示す模式図である。 図11は、実施例におけるフィッシュボーン型VA液晶セルの電極構造の模式図である。
本発明の液晶表示素子は、本発明の重合性液晶組成物を重合させることにって液晶層が形成されたものであり、前記した通り、少なくとも一方に電極を有し、少なくとも一方に透明性を有する2枚の基板間にポリマーネットワーク(A)と液晶組成物(B)とを含有する液晶層が挟持されており、かつ、液晶組成物(B)が下記式(I)
Figure 2018106162
(式(I)中、R11及びR12は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4-フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、n11は1又は2を、n12は0又は1を表す。)で表される液晶化合物(I)、及び下記式(II)
Figure 2018106162
(式(II)中、R21及びR22は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、Aは1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、Xは、それぞれ独立的に、塩素原子、又はフッ素原子であり、p21は0、1又は2を、p22は0、1又は2を表し、Zは単結合または炭素原子数2〜5のアルキレン基を表し、n2は0又は1を表す。)
で表される液晶化合物(II)を必須の低分子液晶化合物として含有するものである。
本発明では、前記式(I)で表される化合物を使用することにより、高い誘電率異方性Δεを液晶表示素子に付与することができ、一方、前記式(II)で表される化合物を使用することにより、高い屈折率異方性Δnを液晶表示素子に付与することができる。
以下、本発明の液晶組成物(B)について詳述する。
(液晶組成物(B))
本発明で用いる液晶組成物(B)中に必須成分として含まれる液晶化合物(I)は、前記した通り、下記式(I)
Figure 2018106162
(式(I)中、R11及びR12は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、
11は1又は2を、n12は0又は1を表す。)
で表されるものである。
具体的には、下記一般式(I−1)
Figure 2018106162
(式中、R11、R12及びn12はそれぞれ独立して、一般式(I)におけるR11、R12及びn12と同じ意味を表す。)
で現れる化合物は、粘度が低く、かつ、Δεが高い液晶層となる点から好ましい。
ここでR11は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基、ブチル基、ビニル基又は1−プロペニル基が好ましい。R12は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(I−1)で表される化合物は、誘電率異方性Δεを高める効果に優れ単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を高めに設定すると効果が高く、TNIを重視する場合は含有量を高めに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(I−1)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
さらに前記式(I−1)で表される化合物は、下記の式(I−1−1)から式(I−1−21)で表される化合物群から選ばれる化合物であることが好ましく、式(I−1−1)〜(I−1−5)、式(I−1−20)及び式(I−1−21)で表される化合物であることが好ましく、式(I−1−1)、式(I−1−2)、式(I−1−20)及び式(I−1−21)で表される化合物が好ましい。
Figure 2018106162
式(I−1−1)、式(I−1−2)、式(I−1−20)及び式(I−1−21)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明で用いる液晶組成物(B)の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
次に、前記式(I)で表される化合物として、下記式(I−2)
Figure 2018106162
(式中、R11、R12及びn12はそれぞれ独立して、一般式(I)におけるR11、R12及びn12と同じ意味を表す。)で表される化合物も低粘度とΔεの点から好ましく使用することができる。
ここでR11は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基、ブチル基、ビニル基又は1−プロペニル基が好ましい。R12は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
前記式(I−2)で表される化合物は、誘電率異方性Δεを高める効果に優れ単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を低めに設定すると効果が高く、TNIを重視する場合は含有量を高めに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(I−2)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
さらに、一般式(I−2)で表される化合物は、式(I−2−1)から式(I−2−15)で表される化合物群から選ばれる化合物であることが好ましく、式(I−2−1)〜(I−2−15)で表される化合物であることが好ましく、式(I−2−2)及び式(I−2−4)で表される化合物が好ましい。
Figure 2018106162
式(I−2−2)及び式(I−2−4)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明で用いる液晶組成物(B)の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
次に本発明において必須の液晶化合物である、下記式(II)
Figure 2018106162
(式(II)中、R21及びR22は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、Zは単結合または炭素原子数2〜5のアルキレン基を表し、nは0又は1を表す。)
で表される化合物を用いることにより高い屈折率異方性Δnを液晶表示素子に付与することができる。
斯かる式(II)で表される化合物は、先ず負の誘電違方性を持つ下記の式(II−1−a)で表される化合物が挙げられる。
Figure 2018106162
(式中、A、R21、R22、n及びZは式(II)におけるものと同義である。)
ここで、前記式(II−1−a)中、R21は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。一方、R22は炭素原子数1〜5のアルキル基、炭素原子数3〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、1−プロペニル基、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
前記式(II−1−a)で表される化合物は、屈折率異方性Δnを高める効果に優れ単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(II−1−a)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
さらに、一般式(II−1−a)で表される化合物は、先ず、前記式(II−1−a)中、nが1である化合物としては、式(II−1−1)から式(II−1−11)で表される化合物群から選ばれる化合物であることが好ましく、式(II−1−1)〜(II−1−7)及び式(II−1−11)で表される化合物であることが好ましく、式(II−1−1)、式(II−1−2)、式(II−1−3)、式(II−1−4)及び式(II−1−6)で表される化合物が好ましい。
Figure 2018106162
式(II−1−1)〜式(II−1−4)、式(II−1−6)及び式(II−1−21)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、式(II−1−1)及び式(II−1−2)の組み合わせ、式(II−1−3)、式(II−1−4)及び式(II−1−6)から選ばれる2種又は3種の組み合わせが好ましい。本発明で用いる液晶組成物(B)の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
次に、前記式(II−1−a)中、nが0である化合物としては、下記式(II−1−12)から式(II−1−19)で表される化合物群から選ばれる化合物であることが好ましい。特に、式(II−1−12)〜(II−1−15)で表される化合物であることが好ましく、式(II−1−12)、式(II−1−13)及び式(II−1−15)で表される化合物が好ましい。
Figure 2018106162
式(N−1−4.1)〜(N−1−4.14)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明で用いる液晶組成物(B)の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、11質量%であり、10質量%であり、8質量%である。
次に、前記式(II)において負の誘電違方性を持つ化合物として、下記の式(II−1−b)で表される化合物が挙げられる。
Figure 2018106162
(式中、R21及びR22は、それぞれ独立して、一般式(II)におけるR21及びR22と同じ意味を表す。)
21及びR22はそれぞれ独立して、炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましくエチル基、プロピル基又はブチル基が好ましい。
前記式(II−1−b)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を少なめに設定すると効果が高く、TNIを重視する場合は含有量を多めに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(II−1−b)で表される化合物の好ましい含有量の下限値は、5質量%であり、8質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
さらに、式(II−1−b)で表される化合物は、下記式(II―1−20)〜式(II―1−25)で表される化合物群から選ばれる化合物であることが好ましく、式(II―1−20)、式(II―1−21)、式(II―1−23)で表される化合物が好ましい。
Figure 2018106162
式(II―1−20)、式(II―1−21)、式(II―1−23)で表される化合物で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明で用いる液晶組成物(B)の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5質量%であり、8質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
次に、前記式(II)で表される化合物のうち、誘電率の異方性がほぼ無く、誘電的にほぼ中性の化合物(Δεの値が−2〜2)の液晶化合物としては、下記式(II−2)
Figure 2018106162
(式中、A、R21、R22、nは式(II)におけるものと同義である。)
で表される化合物が挙げられる。
液晶組成物(B)の総量に対して式(II−2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%である。これら化合物の好ましい含有量の上限値は、20質量%であり、15質量%であり、13質量%であり、10質量%であり、9質量%である。
斯かる式(II−2)で表される化合物としては、先ず、式(II−2)中、nが1であり、R21及びR22がアルキル基のものとして下記式(II−2−1)、式(II−2−2)で表されるものが挙げられる。式(II−2)で表される化合物としては、下記の式(II−2−1)又は式(II−2−2)で表される化合物であることが好ましく、特に、式(II−2−1)で表される化合物であることが他の液晶化合物との相溶性に優れ、かつ、少量の添加でΔn及びネマチック−等方相転移温度TNIの値を上げることができ、低温安定性が良好となる点からこのましい。とりわけ、後述する式(III−3−1)で表される化合物との併用した場合に、低温安定性が極めて優れたものとなる。
Figure 2018106162
斯かる式(II−2)で表される化合物としては、以下の化合物も挙げられる。
が1であり、R21がアルキル基であり、R22がアルケニル基のものとして下記式(II−2−3)、式(II−2−4)で表されるものが挙げられる。
Figure 2018106162
が1であり、R21がアルキル基であり、R22がアルコキシ基のものとして下記式(II−2−3)、式(II−2−4)で表されるものが挙げられる。
Figure 2018106162
次に、式(II−2)中、nが0である化合物は、下記式(II−2−b)
Figure 2018106162
(式中、R21及びR22は、それぞれ独立して、一般式(II)におけるR21及びR22と同じ意味を表す。)
で表さるものが挙げられる。
ここで、R21及びR22はそれぞれ独立して炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましい。
一般式(II−2−b)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
液晶組成物(B)の総量に対しての式(II−2−b)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
高い複屈折率を得る場合は含有量を多めに設定すると効果が高く、反対に、高いTniを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
さらに、一般式(II−2−b)で表される化合物は、式(II−2−8)から式(II−2−13)で表される化合物群から選ばれる化合物であることが好ましく、式((II−2−8)および(II−2−9)で表される化合物であることが好ましく、特に高いΔnを保持しつつ、かつ低粘度であること、或いはTniを高めつつ低粘度であることから、式(II−2−8)で表される化合物が好ましい。
Figure 2018106162
次に、前記式(II)で表される化合物のうち、もう一つの誘電率の異方性がほぼ無い誘電的にほぼ中性の化合物の液晶化合物としては、下記式(II−3)で表されるものが挙げられる。
Figure 2018106162
(式中、R21及びR22は前記式(II)と同じものを意味する。)
上記式(II−3)で表される化合物において、R21及びR22はそれぞれ独立して炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましい。
上記式(II−3)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
液晶組成物(B)の総量に対しての上記式(II−3)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。液晶組成物(B)の総量に対しての上記式(II−3)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である。Δnを大きくすることに重点を置く場合には含有量を多くした方が好ましく、低温での析出に重点を置いた場合には含有量は少ない方が好ましい。
上記式(II−3)で表される化合物は、具体的には、式(II−3−1)から式(II−3−9)で表される化合物であることが好ましい。
Figure 2018106162
組み合わせることができる化合物の種類に特に制限は無いが、これらの化合物の中から1種〜3種類含有することが好ましく、1種〜4種類含有することがさらに好ましい。また、選ぶ化合物の分子量分布が広いことも溶解性に有効であるため、例えば、式(II−3−1)又は(II−3−2)で表される化合物から1種類、式(II−3−4)又は(II−3−5)で表される化合物から1種類、式(II−3−6)又は式(II−3−7)で表される化合物から1種類、式(II−3−8)又は(II−3−9)で表される化合物から1種類の化合物を選び、これらを適宜組み合わせることが好ましい。その中でも、式(II−3−1)、式(II−3−3)、式(II−3−4)、式(II−3−6)及び式(II−3−9)で表される化合物を含むことが好ましい。
さらに、一般式(II−3)で表される化合物は、例えば式(II−3−10)から式(II−3−17)で表される化合物であることが好ましく、その中でも、式(II−3−11)で表される化合物であることが好ましい。
Figure 2018106162
本発明で用いる液晶組成物(B)は、以上詳述した式(I)で表される化合物(I)及び式(II)で表される化合物(II)に加え、下記式(III)
Figure 2018106162
で表される化合物(III)を併用することにより、液晶組成物(B)の粘度を飛躍的に低減でき、その結果、高い誘電率異方性Δεと高い屈折率異方性Δnとを兼備させつつ、液晶組成物(B)の粘度を低減させることができる。
ここで、前記式(III)中、R31及びR32は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表すが、R31及びR32は、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基であることが好ましい。
斯かる式(III)で表される化合物(III)は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
前記化合物(III)の好ましい含有量の下限値は、液晶組成物(B)の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、15質量%であり、20質量%であり、25質量%であり、30質量%であり、35質量%であり、40質量%であり、45質量%であり、50質量%であり、55質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、95質量%であり、90質量%であり、85質量%であり、80質量%であり、75質量%であり、70質量%であり、65質量%であり、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、35質量%であり、30質量%であり、25質量%である。
液晶組成物(B)の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、液晶組成物(B)のTniを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が中庸で上限値が中庸であることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値が低く上限値が低いことが好ましい。
前記化合物(III)は、具体的には、先ず下記式(III−1)で表される化合物が挙げられる。
Figure 2018106162
(式中R32は式(III)における意味と同じ意味を表す。)
前記式(III−1)で表される化合物は、式(III−1−1)から式(III−1−3)で表される化合物群から選ばれる化合物であることが好ましく、式(III−1−1)又は式(III−1−3)で表される化合物であることが好ましく、特に、式(III−1−3)で表される化合物であることが好ましい。
Figure 2018106162
また、前記化合物(III)は、下記式(III−2)で表される化合物群から選ばれる化合物であることが、特に液晶組成物(B)の粘度を低減効果が顕著なものとなる点から好ましい。
Figure 2018106162
(式中R32は式(III)における意味と同じ意味を表す。)
液晶組成物(B)の総量に対しての式(III−2)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、42質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%である。
さらに、式(III−2)で表される化合物は、式(III−2−1)から式(III−2−4)で表される化合物群から選ばれる化合物であることが好ましく、式(III−2)から式(III−2−4)で表される化合物であることが好ましい。特に、式(III−2−2)で表される化合物は液晶組成物(B)の応答速度を特に改善するため好ましい。
また、応答速度よりも高いTniを求めるときは、式(III−2-3)又は式(III−2−4)で表される化合物を用いることが好ましい。式(III−2−3)及び式(III−2−4)で表される化合物の含有量は、低温での溶解度を良くするために30質量%以上にすることは好ましくない。
Figure 2018106162
また、前記化合物(III)のうち、R31及びR32としてアルキル基又はアルコキシ基を持つ化合物としては、下記式(III−3)で表される化合物群から選ばれる化合物が挙げられる。
Figure 2018106162
ここで、式中、R31a及びR32bは、それぞれ独立して炭素原子数1〜5のアルキル基又は炭素原子数1〜5のアルコキシ基を表すが、R31a及びR32bは、更に直鎖状の炭素原子数1〜5のアルキル基、及び、直鎖状の炭素原子数1〜4のアルコキシ基であることが好ましい。
液晶組成物(B)の総量に対しての式(III−3)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、30質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、37質量%であり、35質量%であり、33質量%であり、30質量%であり、27質量%であり、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
また、式(III−3)で表される化合物は、具体的には、式(III−3−1)から式(III−3−7)で表される化合物群から選ばれる化合物であることが好ましく、式(III−3−1)、式(III−3−3)又は式(III−3−4)で表される化合物であることが好ましい。特に、式(III−3−1)で表される化合物は液晶組成物(B)の応答速度を特に改善するため好ましい。また、応答速度よりも高いTniを求めるときは、式(III−3−3)、式(III−3−4)、式(III−3−6)及び式(III−3−7)で表される化合物を用いることが好ましい。
これらの化合物の中でも、特に式(III−3−1)と式(III−3−3)とを併用した場合、液晶組成物(B)の相溶性に優れ、低温安定性が極めて良好なものとなる点から好ましい。
Figure 2018106162
液晶組成物(B)の総量に対しての式(III−3−1)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%である。
また、前記化合物(III)は、更に下記式(III−4)及び/又は(III−5)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018106162
式中R32aは炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基を表すが、特に直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基が好ましい。
液晶組成物(B)の総量に対しての式(III−4)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
液晶組成物(B)の総量に対しての式(III−5)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
さらに、一般式(III−4)及び(III−5)で表される化合物は、下記の式(III−4−1)から式(III−5−3)で表される化合物群から選ばれる化合物であることが好ましく、式(III−4−2)又は式(III−5−2)で表される化合物であることが好ましい。
Figure 2018106162
液晶組成物(B)の総量に対しての式(III−4−2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%である。
ここで、本発明では前記化合物(III)として、式(III−1−3)、式(III−2−2)、式(III−3−1)、式(III−3−3)、式(III−3−4)、式(III−3−5)及び式(III−3−6)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、これら化合物の合計の含有量の好ましい含有量の下限値は、液晶組成物(B)の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%であり、上限値は、液晶組成物(B)の総量に対して、80質量%であり、70質量%であり、60質量%であり、50質量%であり、45質量%であり、40質量%であり、37質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%である。
組成物の信頼性を重視する場合には、式(III−3−1)、式(III−3−3)及び式(III−3−4)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、組成物の応答速度を重視する場合には、式(III−1−3)、式(III−2−2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましい。
また、化合物(III)として下記式(III−6)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018106162
(式中R31b及びR32bはそれぞれ独立してメチル基又は水素原子を表す。)
液晶組成物(B)の総量に対しての式(III−6)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、42質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%である。
さらに、式(III−6)で表される化合物は、式(III−6−1)から式(III−6−3)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018106162
(その他のn型液晶化合物)
本発明で用いる液晶組成物(B)のうち、誘電率の異方性が負の液晶化合物(Δεの符号が負で、その絶対値が2より大きい。)は、前記した通り、前記化合物(I)、及び前記化合物(II)のうち誘電率異方性がn型のものを用いるものであるが、本発明では、更にこれらの化合物に加え、公知のN型液晶化合物を用いることもできる。
斯かる前記化合物(I)、前記化合物(II)の他の誘電率の異方性が負の液晶化合物としては、下記一般式(N−1)、(N−2)、(N−3)及び(N−4)で表される液晶化合物が挙げられる。
Figure 2018106162
[前記一般式(N−1)、(N−2)、(N−3)及び(N−4)中、RN11、RN12、RN21、RN22、RN31、RN32、RN41及びRN42はそれぞれ独立して炭素原子数1〜8のアルキル基、又は炭素原子数2〜8のアルキル鎖中の1個又は非隣接の2個以上の−CH−が、それぞれ独立して−CH=CH−、−C≡C−、−O−、−CO−、−COO−又は−OCO−によって置換された化学構造を持つ構造部位、
N11、AN12、AN21、AN22、AN31、AN32、AN41及びAN42はそれぞれ独立して
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−に置き換えられてもよい。)及び
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
(c) ナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又はデカヒドロナフタレン−2,6−ジイル基(ナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられても良い。)
(d) 1,4−シクロヘキセニレン基
からなる群より選ばれる基を表し、上記の基(a)、基(b)、基(c)及び基(d)は、その構造中の水素原子が、それぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
N11、単結合、−CHCH−、−(CH−、−OCH−、−COO−、−OCO−、−OCF−、−CFO−、−CH=N−N=CH−、−CH=CH−、−CF=CF−又は−C≡C−を表し、ZN12、ZN21、ZN22、ZN31、ZN32、ZN41及びZN42は、それぞれ独立して、単結合、−CHCH−、−(CH−、−OCH−、−CHO−、−COO−、−OCO−、−OCF−、−CFO−、−CH=N−N=CH−、−CH=CH−、−CF=CF−又は−C≡C−を表し、XN21は水素原子又はフッ素原子を表し、TN31は−CH−又は酸素原子を表し、XN41は、酸素原子、窒素原子、又は−CH−を表し、YN41は、単結合、又は−CH−を表し、nN11、nN12、nN21、nN22、nN31、nN32、nN41、及びnN42は、それぞれ独立して0〜3の整数を表すが、nN11+nN12、nN21+nN22及びnN31+nN32はそれぞれ独立して1、2又は3であり、AN11〜AN32、ZN11〜ZN32が複数存在する場合は、それらは同一であっても異なっていても良く、nN41+nN42は0〜3の整数を表すが、AN41及びAN42、ZN41及びZN42が複数存在する場合は、それらは同一であっても異なっていても良い。]
一般式(N−1)、(N−2)及び(N−3)中、RN11、RN12、RN21、RN22、RN31及びRN32はそれぞれ独立して、炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニル基又は炭素原子数2〜8のアルケニルオキシ基が好ましく、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、炭素原子数2〜5のアルケニル基又は炭素原子数2〜5のアルケニルオキシ基が好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が更に好ましく、炭素原子数2〜5のアルキル基又は炭素原子数2〜3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び炭素原子数4〜5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1〜5のアルキル基、直鎖状の炭素原子数1〜4のアルコキシ基及び直鎖状の炭素原子数2〜5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure 2018106162
N11、AN12、AN21、AN22、AN31及びAN32はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス−1,4−シクロへキシレン基、1,4−フェニレン基、2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、3,5−ジフルオロ−1,4−フェニレン基、2,3−ジフルオロ−1,4−フェニレン基、1,4−シクロヘキセニレン基、1,4−ビシクロ[2.2.2]オクチレン基、ピペリジン−1,4−ジイル基、ナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure 2018106162
トランス−1,4−シクロへキシレン基、1,4−シクロヘキセニレン基又は1,4−フェニレン基を表すことがより好ましい。
N11、ZN12、ZN21、ZN22、ZN31及びZN32はそれぞれ独立して−CHO−、−CFO−、−CHCH−、−CFCF−又は単結合を表すことが好ましく、−CHO−、−CHCH−又は単結合が更に好ましく、−CHO−又は単結合が特に好ましい。
N21はフッ素原子が好ましい。
N31は酸素原子が好ましい。
N11+nN12、nN21+nN22及びnN31+nN32は1又は2が好ましく、nN11が1でありnN12が0である組み合わせ、nN11が2でありnN12が0である組み合わせ、nN11が1でありnN12が1である組み合わせ、nN11が2でありnN12が1である組み合わせ、nN21が1でありnN22が0である組み合わせ、nN21が2でありnN22が0である組み合わせ、nN31が1でありnN32が0である組み合わせ、nN31が2でありnN32が0である組み合わせ、が好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
本発明で用いる液晶組成物(B)の総量に対しての式(N−2)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
本発明で用いる液晶組成物(B)の総量に対しての式(N−3)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。
本発明で用いる液晶組成物(B)の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。さらに、本発明で用いる液晶組成物(B)のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高く上限値が高いことが好ましい。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−1)で表されるものが挙げられる。
Figure 2018106162
(式中、RN111及びRN112はそれぞれ独立して、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニルを表す。)
ここで、RN111は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、プロピル基、ペンチル基又はビニル基が好ましい。RN112は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基又はブトキシ基が好ましい。
一般式(N−1−1)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−1)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、50質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
さらに、一般式(N−1−1)で表される化合物は、式(N−1−1.1)から式(N−1−1.22)で表される化合物群から選ばれる化合物であることが好ましく、式(N−1−1.1)〜(N−1−1.4)で表される化合物であることが好ましく、式(N−1−1.1)及び式(N−1−1.3)で表される化合物が好ましい。
Figure 2018106162
式(N−1−1.1)〜(N−1−1.22)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明で用いる液晶組成物(B)の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、50質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
前記式(N−1)で表される化合物としては、例えば一般式(N−1−2)で表される化合物のものが挙げられる。
Figure 2018106162
(式中、RN121及びRN122はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N121は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基、ブチル基又はペンチル基が好ましい。RN122は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、メチル基、プロピル基、メトキシ基、エトキシ基又はプロポキシ基が好ましい。
一般式(N−1−2)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を少なめに設定すると効果が高く、TNIを重視する場合は含有量を多めに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−2)で表される化合物の好ましい含有量の下限値は、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%であり、37質量%であり、40質量%であり、42質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、50質量%であり、48質量%であり、45質量%であり、43質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%である。
さらに、一般式(N−1−2)で表される化合物は、式(N−1−2.1)から式(N−1−2.22)で表される化合物群から選ばれる化合物であることが好ましく、式(N−1−2.3)から式(N−1−2.7)、式(N−1−2.10)、式(N−1−2.11)、式(N−1−2.13)及び式(N−1−2.20)で表される化合物であることが好ましく、Δεの改良を重視する場合には式(N−1−2.3)から式(N−1−2.7)で表される化合物が好ましく、TNIの改良を重視する場合には式(N−1−2.10)、式(N−1−2.11)及び式(N−1−2.13)で表される化合物であることが好ましく、応答速度の改良を重視する場合には式(N−1−2.20)で表される化合物であることが好ましい。
Figure 2018106162
式(N−1−2.1)から式(N−1−2.22)で表される化合物は単独で使用することも、組み合わせて使用することも可能であるが、本発明で用いる液晶組成物(B)の総量に対しての単独又はこれら化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、50質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−12)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1121及びRN1122はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1121は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1122は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(N−1−12)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−12)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−13)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1131及びRN1132はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1131は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1132は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(N−1−13)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−13)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−14)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1141及びRN1142はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1141は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1142は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(N−1−14)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−14)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−15)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1151及びRN1152はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1151は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1152は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(N−1−15)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−15)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−16)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1161及びRN1162はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1161は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1162は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(N−1−16)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−16)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−17)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1171及びRN1172はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1171は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。RN1172は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(N−1−17)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−17)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−18)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1181及びRN1182はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1181は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、メチル基、エチル基、プロピル基又はブチル基が好ましい。RN1182は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(N−1−18)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−18)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
さらに、一般式(N−1−18)で表される化合物は、式(N−1−18.1)から式(N−1−18.5)で表される化合物群から選ばれる化合物であることが好ましく、式(N−1−18.1)〜(N−1−11.3)で表される化合物であることが好ましく、式(N−1−18.2及び式(N−1−18.3)で表される化合物が好ましい。
Figure 2018106162
前記式(N−1)で表される化合物としては、例えば下記式(N−1−20)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1201及びRN1202はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1201及びRN1202はそれぞれ独立して、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。
一般式(N−1−20)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−20)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−21)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1211及びRN1212はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1211及びRN1212はそれぞれ独立して、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。
一般式(N−1−21)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−21)で表される化合物の好ましい含有量の下限値は、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
前記式(N−1)で表される化合物としては、例えば下記式(N−1−22)で表されるものが挙げられる。
Figure 2018106162
(式中、RN1221及びRN1222はそれぞれ独立して、一般式(N−1)におけるRN11及びRN12と同じ意味を表す。)
N1221及びRN1222はそれぞれ独立して、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、エチル基、プロピル基又はブチル基が好ましい。
一般式(N−1−22)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量をおおめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−1−21)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、35質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、5質量%である。
さらに、一般式(N−1−22)で表される化合物は、式(N−1−22.1)から式(N−1−22.12)で表される化合物群から選ばれる化合物であることが好ましく、式(N−1−22.1)〜(N−1−22.5)で表される化合物であることが好ましく、式(N−1−22.1)〜(N−1−22.4)で表される化合物が好ましい。
Figure 2018106162
次に、前記一般式(N−2)で表される化合物としては、下記一般式(N−2−a)から一般式(N−2−c)
Figure 2018106162
(式中、RN21、RN22及びXN21はそれぞれ独立して前記一般式(N−2)におけるRN21、RN22及びXN21と同じ意味を表し、ZN21は単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCH−、−CHO−、−OCF−又は−CFO−を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのがより好ましい。
一般式(N−3)で表される化合物は一般式(N−3−2)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018106162
(式中、RN321及びRN322はそれぞれ独立して、一般式(N−3)におけるRN11及びRN12と同じ意味を表す。)
N321及びRN322は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、プロピル基又はペンチル基が好ましい。
一般式(N−3−2)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
本発明で用いる液晶組成物(B)の総量に対しての式(N−3−2)で表される化合物の好ましい含有量の下限値は、3質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、50質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%である。
さらに、一般式(N−3−2)で表される化合物は、式(N−3−2.1)から式(N−3−2.3)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018106162
一般式(N−4)で表される化合物として、下記の一般式(N−4−1)で表される化合物群を挙げることができる。
Figure 2018106162
(式中、RN41及びRN42はそれぞれ独立して、一般式(N−4)におけるRN41及びRN42と同じ意味を表す。)
N321及びRN322は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルコキシ基が好ましく、プロピル基、ペンチル基、エトキシ基、プロポキシ基又はブトキシ基が好ましい。
一般式(N−4−1)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
Δεの改善を重視する場合には含有量を高めに設定することが好ましく、低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、TNIを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。
非重合性の液晶組成物の総量に対しての式(N−4−1)で表される化合物の好ましい含有量の下限値は、1質量%であり、3質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%である。好ましい含有量の上限値は、非重合性の液晶組成物の総量に対して、50質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%である。
さらに、一般式(N−4−1)で表される化合物は、式(N−4−1.1)から式(N−4−1.6)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018106162
(前記化合物(II)及び(III)の他の誘電率異方性がほぼ無い液晶化合物)
本発明で用いる液晶組成物(B)のうち、誘電率異方性がほぼ無い(Δεが−2〜2の範囲にあるもの)は、前記した通り、前記化合物(II)(Δεが―2よりも小さい負のものを除く)、及び前記化合物(III)のものを用いるものであるが、本発明では、更にこれらの化合物に加え、その他の公知の誘電率異方性が実質的にない、所謂ノンポーラー型液晶化合物(以下、「その他のノンポーラー液晶化合物」と略記する)を用いることもできる。
斯かるその他のノンポーラー液晶化合物としては、先ず下記式(L−2)で表される化合物が挙げられる。
Figure 2018106162
(式中RL21及びRL22は、それぞれ独立して炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基を表す。)
L21は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、RL22は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましい。
液晶組成物(B)の総量に対しての式(L−2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、液晶組成物(B)の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。
さらに、一般式(L−2)で表される化合物は、式(L−2.1)から式(L−2.6)で表される化合物群から選ばれる化合物であることが好ましい。
Figure 2018106162
一般式(L−2)で表される化合物は、上記式(L−2.1)、式(L−2.3)、式(L−2.4)及び式(L−2.6)で表される化合物であることが好ましい。
その他のノンポーラー液晶化合物として、次に、下記式(L−4)で表される化合物が挙げられる。
Figure 2018106162
(式中、RL41及びRL42は、それぞれ独立して炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基を表す。)
L41は炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基が好ましく、RL42は炭素原子数1〜5のアルキル基、炭素原子数4〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましい。)
一般式(L−4)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
液晶組成物(B)において、一般式(L−4)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
液晶組成物(B)の総量に対しての式(L−4)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。液晶組成物(B)の総量に対しての式(L−4)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である。
一般式(L−4)で表される化合物は、例えば式(L−4.1)から式(L−4.3)で表される化合物であることが好ましい。
Figure 2018106162
低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて、式(L−4.1)で表される化合物を含有していても、式(L−4.2)で表される化合物を含有していても、式(L−4.1)で表される化合物と式(L−4.2)で表される化合物との両方を含有していても良いし、式(L−4.1)から式(L−4.3)で表される化合物を全て含んでいても良い。液晶組成物(B)の総量に対しての式(L−4.1)又は式(L−4.2)で表される化合物の好ましい含有量の下限値は、3質量%であり、5質量%であり、7質量%であり、9質量%であり、11質量%であり、12質量%であり、13質量%であり、18質量%であり、21質量%であり、好ましい上限値は、45であり、40質量%であり、35質量%であり、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%である。
式(L−4.1)で表される化合物と式(L−4.2)で表される化合物との両方を含有する場合は、液晶組成物(B)の総量に対しての両化合物の好ましい含有量の下限値は、15質量%であり、19質量%であり、24質量%であり、30質量%であり、好ましい上限値は、45であり、40質量%であり、35質量%であり、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
一般式(L−4)で表される化合物は、例えば式(L−4.4)から式(L−4.6)で表される化合物であることが好ましく、式(L−4.4)で表される化合物であることが好ましい。
Figure 2018106162
低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて、式(L−4.4)で表される化合物を含有していても、式(L−4.5)で表される化合物を含有していても、式(L−4.4)で表される化合物と式(L−4.5)で表される化合物との両方を含有していても良い。
液晶組成物(B)の総量に対しての式(L−4.4)又は式(L−4.5)で表される化合物の好ましい含有量の下限値は、3質量%であり、5質量%であり、7質量%であり、9質量%であり、11質量%であり、12質量%であり、13質量%であり、18質量%であり、21質量%である。好ましい上限値は、45であり、40質量%であり、35質量%であり、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%である。
式(L−4.4)で表される化合物と式(L−4.5)で表される化合物との両方を含有する場合は、液晶組成物(B)の総量に対しての両化合物の好ましい含有量の下限値は、15質量%であり、19質量%であり、24質量%であり、30質量%であり、好ましい上限値は、45であり、40質量%であり、35質量%であり、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、13質量%である。
一般式(L−4)で表される化合物は、式(L−4.7)から式(L−4.10)で表される化合物であることが好ましく、特に、式(L−4.9)で表される化合物が好ましい。
Figure 2018106162
その他のノンポーラー液晶化合物として、次に、下記式(L−7)で表される化合物が挙げられる。
Figure 2018106162
(式中、RL71及びRL72は、それぞれ独立して炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基を表し、AL71及びAL72は、それぞれ独立して1,4−シクロヘキシレン基又は1,4−フェニレン基を表すが、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は一般式(L)におけるZL2と同じ意味を表し、XL71及びXL72はそれぞれ独立してフッ素原子又は水素原子を表す。)
式中、RL71及びRL72はそれぞれ独立して炭素原子数1〜5のアルキル基、炭素原子数2〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、AL71及びAL72はそれぞれ独立して1,4-シクロヘキシレン基又は1,4-フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は単結合又はCOO−が好ましく、単結合が好ましく、XL71及びXL72は水素原子が好ましい。
組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。
液晶組成物(B)において、一般式(L−7)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
液晶組成物(B)の総量に対しての式(L−7)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%である。液晶組成物(B)の総量に対しての式(L−7)で表される化合物の好ましい含有量の上限値は、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、10質量%であり、5質量%である。
液晶組成物(B)が高いTniの実施形態が望まれる場合は式(L−7)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。
さらに、一般式(L−7)で表される化合物は、式(L−7.1)から式(L−7.4)で表される化合物であることが好ましく、式(L−7.2)で表される化合物であることが好ましい。
Figure 2018106162
さらに、一般式(L−7)で表される化合物は、式(L−7.11)から式(L−7.13)で表される化合物であることが好ましく、式(L−7.11)で表される化合物であることが好ましい。
Figure 2018106162
さらに、一般式(L−7)で表される化合物は、式(L−7.21)から式(L−7.23)で表される化合物である。式(L−7.21)で表される化合物であることが好ましい。
Figure 2018106162
さらに、一般式(L−7)で表される化合物は、式(L−7.31)から式(L−7.34)で表される化合物であることが好ましく、式(L−7.31)又は/及び式(L−7.32)で表される化合物であることが好ましい。
Figure 2018106162
さらに、一般式(L−7)で表される化合物は、式(L−7.41)から式(L−7.44)で表される化合物であることが好ましく、式(L−7.41)又は/及び式(L−7.42)で表される化合物であることが好ましい。
Figure 2018106162
さらに、一般式(L−7)で表される化合物は、式(L−7.51)から式(L−7.53)で表される化合物であることが好ましい。
Figure 2018106162
その他のノンポーラー液晶化合物として、次に、下記式(L−8)で表される化合物が挙げられる。
Figure 2018106162
(式中、RL81及びRL82は、それぞれ独立して炭素原子数1〜8のアルキル基又は炭素原子数1〜8のアルコキシ基を表し、AL81は単結合、1,4−シクロヘキシレン基又は1,4−フェニレン基を表し、AL81上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、XL81〜XL86はそれぞれ独立してフッ素原子又は水素原子を表す。)
式中、RL81及びRL82はそれぞれ独立して炭素原子数1〜5のアルキル基、炭素原子数2〜5のアルケニル基又は炭素原子数1〜4のアルコキシ基が好ましく、AL81は1,4-シクロヘキシレン基又は1,4-フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、一般式(L−8)中の同一の環構造上にフッ素原子は0個又は1個が好ましく、分子内にフッ素原子は0個又は1個であることが好ましい。
組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。
液晶組成物(B)において、一般式(L−8)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。
液晶組成物(B)の総量に対しての式(L−8)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%である。液晶組成物(B)の総量に対しての式(L−8)で表される化合物の好ましい含有量の上限値は、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、10質量%であり、5質量%である。
液晶組成物(B)が高いTniの実施形態が望まれる場合は式(L−8)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。
さらに、一般式(L−8)で表される化合物は、式(L−8.1)から式(L−8.4)で表される化合物であることが好ましく、式(L−8.3)、式(L−8.5)、式(L−8.6)、式(L−8.13)、式(L−8.16)から式(L−8.18)、式(L−8.23)から式(L−8.28)で表される化合物であることがより好ましい。
Figure 2018106162
Figure 2018106162
Figure 2018106162
液晶組成物(B)の総量に対しての一般式(L−2)、(L−4)、(L−7)、(L−8)、(N−1)、(N−2)、(N−3)、及び(N−4)で表される化合物の合計の好ましい含有量の下限値は、80質量%であり、85質量%であり、88質量%であり、90質量%であり、92質量%であり、93質量%であり、94質量%であり、95質量%であり、96質量%であり、97質量%であり、98質量%であり、99質量%であり、100質量%である。好ましい含有量の上限値は、100質量%であり、99質量%であり、98質量%であり、95質量%である。ただし、Δεの絶対値が大きい組成物を得る観点からは、一般式(N−1)、(N−2)、(N−3)、(N−4)又は(J)で表される化合物のいずれか一方は0質量%であることが好ましい。
液晶組成物(B)の総量に対して一般式(L−2)、(L−4)、(L−7)、(L−8)、一般式(N−1)から(N−4)で表される化合物の合計の好ましい含有量の下限値は、80質量%であり、85質量%であり、88質量%であり、90質量%であり、92質量%であり、93質量%であり、94質量%であり、95質量%であり、96質量%であり、97質量%であり、98質量%であり、99質量%であり、100質量%である。好ましい含有量の上限値は、100質量%であり、99質量%であり、98質量%であり、95質量%である。
液晶組成物(B)は、分子内に過酸(−CO−OO−)構造等の酸素原子同士が結合した構造を持つ化合物を含有しないことが好ましい。
組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物の含有量を前記組成物の総質量に対して5質量%以下とすることが好ましく、3質量%以下とすることがより好ましく、1質量%以下とすることが更に好ましく、実質的に含有しないことが最も好ましい。
UV照射による安定性を重視する場合、塩素原子が置換している化合物の含有量を前記組成物の総質量に対して15質量%以下とすることが好ましく、10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
分子内の環構造がすべて6員環である化合物の含有量を多くすることが好ましく、分子内の環構造がすべて6員環である化合物の含有量を前記組成物の総質量に対して80質量%以上とすることが好ましく、90質量%以上とすることがより好ましく、95質量%以上とすることが更に好ましく、実質的に分子内の環構造がすべて6員環である化合物のみで組成物を構成することが最も好ましい。
組成物の酸化による劣化を抑えるためには、環構造としてシクロヘキセニレン基を有する化合物の含有量を少なくすることが好ましく、シクロヘキセニレン基を有する化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
粘度の改善及びTniの改善を重視する場合には、水素原子がハロゲンに置換されていてもよい2−メチルベンゼン−1,4−ジイル基を分子内に持つ化合物の含有量を少なくすることが好ましく、前記2−メチルベンゼン−1,4−ジイル基を分子内に持つ化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
本願において実質的に含有しないとは、意図せずに含有する物を除いて含有しないという意味である。
液晶組成物(B)に含有される化合物が、側鎖としてアルケニル基を有する場合、前記アルケニル基がシクロヘキサンに結合している場合には当該アルケニル基の炭素原子数は2〜5であることが好ましく、前記アルケニル基がベンゼンに結合している場合には当該アルケニル基の炭素原子数は4〜5であることが好ましく、前記アルケニル基の不飽和結合とベンゼンは直接結合していないことが好ましい。
以上詳述した非重合性の液晶組成物である液晶組成物(B)は、誘電率の異方性が負のものであり、具体的には、誘電率異方性Δεの値が−1.0〜−8.0の範囲であることが好ましく、−1.5〜−6.5であることがより好ましく、−2.0〜−6.0であることがさら好ましく、−2.5〜−5.5であることが特に好ましいが、低電圧駆動を重視する際には−3.0〜−6.0の範囲が好ましく、高速応答を重視する際には−2.0〜−3.5の範囲が好ましい。
屈折率異方性Δnの値は、高速応答を実現するためにセルギャップを薄くする場合には0.100〜0.140の範囲が好ましく、ディスプレイ製造における歩留まりを向上させるためにセルギャップを厚くする場合には0.080〜0.100の範囲が好ましいが、反射型のディスプレイを作製する場合には上記好ましい範囲はそれぞれ上記値の50%〜80%の値であることが好ましい。
ネマチック−等方相転移温度TNIの値は、65〜150℃の範囲であることが好ましいが、70〜130℃であることが好ましいが、高速応答を重視する場合や製造したディスプレイの使用環境が主に屋内である場合には70〜90℃の範囲であることが好ましく、製造したディスプレイの使用環境が主に屋外である場合には80〜120℃の範囲であることが好ましい。
回転粘性の値は、200mPa・s以下が好ましく、180mPa・s以下がより好ましく、150mPa・s以下が更に好ましく、130mPa・s以下が特に好ましく、100mPa・s以下が最も好ましい。
Δnの値は、高速応答を実現するためにセルギャップを薄くする場合には0.110〜0.160の範囲が好ましく、ディスプレイ製造における歩留まりを向上させるためにセルギャップを厚くする場合には0.090〜0.110の範囲が好ましいが、反射型のディスプレイを作製する場合には上記好ましい範囲はそれぞれ上記値の50%〜80%の値であることが好ましい。
ネマチック−等方相転移温度TNI範囲の好ましい範囲は、65〜150℃の範囲であることが好ましいが、70〜130℃であることが好ましいが、高速応答を重視する場合や製造したディスプレイの使用環境が主に屋内である場合には70〜90℃の範囲であることが好ましく、製造したディスプレイの使用環境が主に屋外である場合には80〜120℃の範囲であることが好ましい。回転粘性の値は、130mPa・s以下が好ましく、100mPa・s以下がより好ましく、90mPa・s以下が更に好ましく、75mPa・s以下が特に好ましく、60mPa・s以下が最も好ましい。
液晶組成物(B)に使用される液晶組成物の平均弾性定数(KAVG)は10から25が好ましいが、その下限値としては、10が好ましく、10.5が好ましく、11が好ましく、11.5が好ましく、12が好ましく、12.3が好ましく、12.5が好ましく、12.8が好ましく、13が好ましく、13.3が好ましく、13.5が好ましく、13.8が好ましく、14が好ましく、14.3が好ましく、14.5が好ましく、14.8が好ましく、15が好ましく、15.3が好ましく、15.5が好ましく、15.8が好ましく、16が好ましく、16.3が好ましく、16.5が好ましく、16.8が好ましく、17が好ましく、17.3が好ましく、17.5が好ましく、17.8が好ましく、18が好ましく、その上限値としては、25が好ましく、24.5が好ましく、24が好ましく、23.5が好ましく、23が好ましく、22.8が好ましく、22.5が好ましく、22.3が好ましく、22が好ましく、21.8が好ましく、21.5が好ましく、21.3が好ましく、21が好ましく、20.8が好ましく、20.5が好ましく、20.3が好ましく、20が好ましく、19.8が好ましく、19.5が好ましく、19.3が好ましく、19が好ましく、18.8が好ましく、18.5が好ましく、18.3が好ましく、18が好ましく、17.8が好ましく、17.5が好ましく、17.3が好ましく、17が好ましい。消費電力削減を重視する場合にはバックライトの光量を抑えることが有効であり、液晶表示素子は光の透過率を向上させることが好ましく、そのためにはKAVGの値を低めに設定することが好ましい。応答速度の改善を重視する場合にはKAVGの値を高めに設定することが好ましい。
液晶組成物(B)では、回転粘度と屈折率異方性の関数であるZが特定の値を示すことが好ましい。
Figure 2018106162
(式中、γ1は回転粘度を表し、Δnは屈折率異方性を表す。)
Zは、13000以下が好ましく、12000以下がより好ましく、11000以下が特に好ましい。
液晶組成物(B)は、アクティブマトリクス表示素子に使用する場合においては、1012(Ω・m)以上の比抵抗を有することが必要であり、1013(Ω・m)が好ましく、1014(Ω・m)以上がより好ましい。
(ポリマーネットワーク(A))
次に、本発明の液晶表示素子において液相層中に存在するポリマーネットワーク(A)は、一軸性の光学異方性、又は一軸性の屈折率異方性又は配向容易軸方向を有するものであることが好ましく、該ポリマーネットワークの光学軸又は配向容易軸と、液晶組成物(B)を構成する低分子液晶の配向容易軸が略一致するように形成されていることがより好ましい。尚、該ポリマーネットワークには、複数のポリマーネットワークが集合することにより高分子薄膜を形成したポリマーバインダも含まれる。該ポリマーバインダは、一軸配向性を示す屈折率異方性を有しており、該薄膜に低分子液晶が分散され、該薄膜の一軸性の光学軸と低分子液晶の光学軸が略同一方向へ揃っていることが特徴である。
従って、これにより、光散乱型液晶である高分子分散型液晶又はポリマーネットワーク型液晶とは異なり光散乱が起こらず偏光を用いた液晶表示素子に於いて高コントラストな表示が得られる点と、立下り時間を短くして液晶素子の応答性を向上させる、という特徴を有するものとなる。更に、本発明の液晶表示素子を構成する液晶層では、ポリマーネットワーク層が液晶表示素子全体に形成されている為、液晶素子基板上にポリマーの薄膜層を形成させてプレチルトを誘起させるPSA(Polymer Sustained Alignment)型液晶組成物と区別することができる。
斯かる液晶層は、分子構造中にメソゲン構造を有する(メタ)アクリレート成分(a)(以下、単に「重合性単量体成分(a)」又は「モノマー(a)」と略記する。)と、液晶組成物(B)とを必須成分とすることを特徴とする重合性液晶組成物を重合させることにより製造することができる。
具体的には、前記重合性液晶組成物が液晶相を示した状態で、該重合性液晶組成物中の重合性単量体成分(a)を重合させることにより、分子量が増加して液晶組成物(B)と重合体(もしくは共重合体)とに相分離させることにより前記液晶層を形成することができる。
ここで、二相に分離する形態は、含有する液晶組成物(B)の種類やモノマーの種類に依存する。例えば、液晶組成物(B)中にモノマー相が無数に島状の核として発生して成長するバイノーダル分解で相分離構造を形成しても良く、液晶組成物(B)中にモノマー相との濃度の揺らぎから相分離するスピノーダル分解により相分離構造を形成しても良い。バイノーダル分解によるポリマーネットワークを形成させるには、モノマーの反応速度が速い化合物を用いることにより可視光の波長より小さい大きさのモノマーの核を無数に発生させて線状に連結させる構造によりナノオーダーの相分離構造が形成されるので好ましい。結果としてモノマー相に於ける重合が進むと相分離構造に依存して可視光の波長より短い空隙間隔のポリマーネットワークが形成される。
一方、ポリマーネットワークの空隙は液晶組成物(B)相の相分離によるもので、この空隙の大きさが可視光の波長より小さいと、光散乱性が無く高コントラストで、且つポリマーネットワークからのアンカーリング力の影響が強まり立下り時間が短くなり高速応答の液晶表示素子が得られるようになり特に好ましい。バイノーダル分解に於けるモノマー相の核生成は、化合物の種類や組合せによる相溶性の変化や、反応速度、温度等のパラメータに影響され適宜必要に応じて調整することが好ましい。反応速度は、紫外線重合の場合は、モノマーの官能基や重合開始剤の種類及び含有量、紫外線照射強度によるもので反応性を促進するように紫外線照射条件を適宜調整すれば良く、少なくとも2mW/cm以上の紫外線照射強度が好ましい。一方、スピノーダル分解では周期性のある二相の濃度の揺らぎによる相分離微細構造が得られるので可視光波長より小さい均一な空隙間隔を容易に形成するので好ましい。
上述した何れの場合も、液晶組成物(B)の配向状態と同様の配向状態を保持しながらポリマーネットワークを形成させることができる。
ここで、前記した重合性液晶組成物は、重合性単量体成分(a)、前記液晶組成物(B)、及び必要に応じて重合開始剤を含むものであるが、前記重合性単量体成分(a)を重合性液晶組成物中、0.5〜20質量%、好ましくは1〜10質量%となる割合で用いることが液晶組成物(B)相の相分離とポリマーネットの形成が容易である点から好ましい。従って、本発明では、前記液相層は、ポリマーネットワーク(A)と液晶組成物(B)との総質量に対して、ポリマーネットワーク(A)が0.5〜20質量%、特に1〜10質量%となる割合で存在していることが好ましい。
本発明においてポリマーネットワーク(A)は、前記した通り、液晶組成物(B)の配向に倣うように光学異方性を示すことが好ましい。ポリマーネットワーク(A)中の液晶層の形態としては、ポリマーの3次元ネットワーク構造中に液晶組成物(B)が連続層をなす構造、液晶組成物(B)のドロップレットがポリマー中に分散している構造、又は両者が混在する構造、更に、両基板面を起点にポリマーネットワーク層が存在し、対面基板との中心付近では液晶層のみである構造が挙げられる。
何れもの構造もポリマーネットワークの作用により0〜90度のプレチルト角が液晶素子基板界面に対して誘起されていることが好ましいが、前記各構造のなかでも特にポリマーの3次元ネットワーク構造中に液晶組成物(B)が連続層をなす構造のものが、液晶分子のプレチルトの安定性に優れる点から好ましい。ここで、液相層を構成するポリマーネットワークは、共存する液晶組成物(B)を液晶セルの配向膜が示す配向方向へ配向させる機能を有することが好ましく、更に、ポリマー界面方向に対してプレチルトされた低分子液晶を安定化する機能を有していることも好ましい。ポリマー界面に対して低分子液晶のプレチルトを安定化させるモノマーを導入すると透過率の向上や液晶素子の駆動電圧を低くさせるのに有用であり好ましい。又、ポリマーネットワーク(A)は、屈折率異方性を有しても良く、配向方向へ低分子液晶を配向させる機能は、メソゲン基を有するモノマーを用いることによって実現できる。
斯かる観点から重合性単量体成分(a)は、液晶性のモノマーを使用することが好ましい。即ち、本発明の液晶表示素子は、液晶相中に液晶表示素子全面にポリマーネットワーク層が形成され、液晶相が連続している構造であって、ポリマーネットワークの配向容易軸や一軸の光学軸が低分子液晶の配向容易軸と略同一方向であること、また、低分子液晶のプレチルト角を誘起するようにポリマーネットワークを形成させることが、オフ応答の速度を高めることができる点から好ましく、そのため重合性単量体成分(A)を構成する重合性モノマーは、具体的には、分子構造中にメソゲン構造を有する(メタ)アクリレート(a1)であることが好ましい。
斯かる分子構造中にメソゲン構造を有する(メタ)アクリレート(a1)は、更に具体的には、アクリロイル基又はメタクロイル基が2〜6官能の化合物を選択することができる。然しながら、3官能以上の多官能モノマーは液晶との相溶性に劣り、重合前の本発明の重合性液晶組成物として保管又は輸送時に析出を招く等の問題が生じる場合がある。
従って、前記ポリアクリレート(a1)は、下記構造式(P1)
Figure 2018106162
(構造式(P1)中、Ac及びAcは各々独立して、アクリロイルオキシ基またはメタクロイルオキシ基を表し、SpP11及びSpP12は、各々独立して単結合、炭素原子数1〜6のアルキレン基または炭素原子数1〜6のアルキレンオキシ基を表し、
p11及びLp12はそれぞれ独立して、単結合、−O−、−S−、−CH−、−OCH−、−CHO−、−CO−、−C−、−COO−、−OCO−、−OCOOCH−、−CHOCOO−、−OCHCHO−、−CO−NRP113−、−NRP113−CO−、−SCH−、−CHS−、−CH=CRP113−COO−、−CH=CRP113−OCO−、−COO−CRP113=CH−、−OCO−CRP113=CH−、−COO−CRP113=CH−COO−、−COO−CRP113=CH−OCO−、−OCO−CRP113=CH−COO−、−OCO−CRP113=CH−OCO−、−(CHtm12−C(=O)−O−、−(CHtm12−O−(C=O)−、−O−(C=O)−(CHtm12−、−(C=O)−O−(CHtm12−、−CH=CH−、−CF=CF−、−CF=CH−、−CH=CF−、−CF−、−CFO−、−OCF−、−CFCH−、−CHCF−、−CFCF−、−C≡C−、−N=N−、−CH=N−又は−C=N−N=C−(式中、RP113はそれぞれ独立して水素原子又は炭素原子数1〜4のアルキル基を表し、前記式中、tm12は1〜4の整数を表す。)を表し、
p11、Mp12およびMp13は、それぞれ独立に1,4−フェニレン基、1,3−フェニレン基、1,2−フェニレン基、1,4−シクロヘキシレン基、1,3−シクロヘキシレン基、1,2−シクロヘキシレン基、1,4−シクロヘキセニレン基、1,3−シクロヘキセニレン基、1,2−シクロヘキセニレン基、アントラセン−2,6−ジイル基、フェナントレン−2,7−ジイル基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ナフタレン−2,6−ジイル基、ナフタレン−1,4−ジイル基、インダン−2,5−ジイル基、フルオレン−2,6−ジイル基、フルオレン−1,4−ジイル基、フェナントレン−2,7−ジイル基、アントラセン−2,6−ジイル基、アントラセン−1,4−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又は1,3−ジオキサン−2,5−ジイル基を表すが、
p11、Mp12およびMp13はそれぞれ独立に無置換であるか又は炭素原子数1〜12のアルキル基、炭素原子数1〜12のハロゲン化アルキル基、炭素原子数1〜12のアルコキシ基、炭素原子数1〜12のハロゲン化アルコキシ基、ハロゲン原子、シアノ基、ニトロ基又は−Spp11−Ac基で置換されていても良く、
mp11は1又は2を表し、mp12〜mp13はそれぞれ独立して、0、1、2又は3を表す。)
で表される化合物であることが好ましい。
上記した構造式(P1)で表されるモノマー(a)は、たとえばAc及びAcが各アクリロイルオキシ基である場合には、下記式(P1−A1)〜(P1−A14)で表されるものが挙げられる。
Figure 2018106162
(上記各式中、mP31は0または1の整数を表し、mP31が0の場合、mP32は1〜6の整数を表し、mp31が1の場合、mP32は2〜6の整数を表す)
また、上記式(P1)で表されるポリアクリレート(a1)として、オフ応答性に優れる点から下記式(P1−B1)〜(P1−B13)で表される化合物が好ましい。
Figure 2018106162
(上記各式中、mP42及びmP43はそれぞれ独立的に0または1の整数を表し、mP42が0の場合、mP41は1〜6の整数を表し、mp42が1の場合、mP41は2〜6の整数を表し、mP43が0の場合、mP44は1〜6の整数を表し、mP43が1の場合、mp44は2〜6の整数を表す)
また、上記式(P1)で表されるポリアクリレート(a1)として、メソゲン中にアリールエステル構造を有する、式(P1−C1)〜(P1−C6)で表される化合物が紫外線照射によって重合開始できる能力を有するため、重合開始剤の添加量を低減できるので好ましい。
Figure 2018106162
(式中、mP52及びmP53はそれぞれ独立的に0または1の整数を表し、mP52が0の場合、mP51は1〜6の整数を表し、mp52が1の場合、mP51は2〜6の整数を表し、mP53が0の場合、mP54は1〜6の整数を表し、mP53が1の場合、mp54は2〜6の整数を表す。)
また、上記式(P1)で表されるポリアクリレート(a1)として、下記式(P1−D1)〜(P1−D11)、(P1−E1)〜(P1−E11)、(P1−F1)〜(P1−F11)で表される、メソゲン骨格中に桂皮酸エステル基を導入した化合物も好ましい。
Figure 2018106162
Figure 2018106162
Figure 2018106162
(式中、mP62及びmP63はそれぞれ独立的に0または1の整数を表し、mP62が0の場合、mP61は1〜6の整数を表し、mp62が1の場合、mP61は2〜6の整数を表し、mP63が0の場合、mP64は1〜6の整数を表し、mP63が1の場合、mp64は2〜6の整数を表す。)
また、上記式(P1)で表されるポリアクリレート(a1)として、下記式(P1−G1)〜(P1−G5)で表されるような縮合環を有する化合物は、紫外線吸収域を単環化合物より可視光側にシフトさせることができるので、モノマーの感度調節の観点から好ましい。
Figure 2018106162
(式中、mP72及びmP73はそれぞれ独立的に0または1の整数を表し、mP72が0の場合、mP71は1〜6の整数を表し、mp72が1の場合、mP71は2〜6の整数を表し、mP73が0の場合、mP74は1〜6の整数を表し、mP73が1の場合、mp74は2〜6の整数を表す。)
また、上記式(P1)で表されるポリアクリレート(a1)として、モノマーとして光異性化する機能を付与することは、ワイゲルト効果を用いた光による光配列機能が利用できるので好ましい。このような観点からは(P1−H1)〜(P1−H11)で表される化合物が好ましい。
Figure 2018106162
(式中、mP102及びmP103はそれぞれ独立的に0または1の整数を表し、mP102が0の場合、mP101は1〜6の整数を表し、mp102が1の場合、mP101は2〜6の整数を表し、mP103が0の場合、mP104は1〜6の整数を表し、mP103が1の場合、mp104は2〜6の整数を表す)
一方、前記式(P1)において、Ac及びAcが共にメタクロイル基であるジメタクリレートとしては、例えば、下記式(P2−A1)〜(P2−A14)で表されるものが挙げられる。
Figure 2018106162
(式中、mP31は0または1の整数を表し、mP31が0の場合、mP32は1〜6の整数を表し、mp31が1の場合、mP32は2〜6の整数を表す)
また、上記式(P1)で表されるポリアクリレート(a1)として、下記式(P2−B1)〜(P2−B13)で表される化合物を使用することは、オフ応答を効果的に改善するのに有用であることから好ましい。
Figure 2018106162
(式中、mP42及びmP43はそれぞれ独立的に0または1の整数を表し、mP42が0の場合、mP41は1〜6の整数を表し、mp42が1の場合、mP41は2〜6の整数を表し、mP43が0の場合、mP44は1〜6の整数を表し、mP43が1の場合、mp44は2〜6の整数を表す)
また、前記ジメタクリレートとして、メソゲン中にアリールエステル構造を有する、式(P2−C1)〜(P2−C6)で表される化合物は紫外線照射によって重合開始できる能力を有するため、重合開始剤の添加量を低減できるので好ましい。
Figure 2018106162
(式中、mP52及びmP53はそれぞれ独立的に0または1の整数を表し、mP52が0の場合、mP51は1〜6の整数を表し、mp52が1の場合、mP51は2〜6の整数を表し、mP53が0の場合、mP54は1〜6の整数を表し、mP53が1の場合、mp54は2〜6の整数を表す)
また、前記ジメタクリレートとして、メソゲン構造中に桂皮酸エステル基を導入した、下記式(P2−D1)〜(P2−D11)、(P2−E1)〜(P2−E11)、(P2−F1)〜(P2−F11)で表される化合物も好ましい。
Figure 2018106162
Figure 2018106162
Figure 2018106162
(式中、mP62及びmP63はそれぞれ独立的に0または1の整数を表し、mP62が0の場合、mP61は1〜6の整数を表し、mp62が1の場合、mP61は2〜6の整数を表し、mP63が0の場合、mP64は1〜6の整数を表し、mP63が1の場合、mp64は2〜6の整数を表す)
また、前記ジメタクリレートとして、下記式(P2−G1)〜(P2−G5)で表されるような縮合環を有する化合物は、紫外線吸収域を単環化合物より可視光側にシフトさせることができるので、モノマーの感度調節の観点から好ましい。
Figure 2018106162
(式中、mP72及びmP73はそれぞれ独立的に0または1の整数を表し、mP72が0の場合、mP71は1〜6の整数を表し、mp72が1の場合、mP71は2〜6の整数を表し、mP73が0の場合、mP74は1〜6の整数を表し、mP73が1の場合、mp74は2〜6の整数を表す。)
また、前記ジメタクリレートとして、モノマーとして光異性化する機能を付与することは、ワイゲルト効果を用いた光による光配列機能が利用できるので好ましい。このような観点からは(P2−H1)〜(P2−H11)で表される化合物が好ましい。
Figure 2018106162
(式中、mP102及びmP103はそれぞれ独立的に0または1の整数を表し、mP102が0の場合、mP101は1〜6の整数を表し、mp102が1の場合、mP101は2〜6の整数を表し、mP103が0の場合、mP104は1〜6の整数を表し、mP103が1の場合、mp104は2〜6の整数を表す)
以上詳述した分子構造内にメソゲン構造を有するジメタクリレートのなかでも特にSpP11及びSpP12が単結合、炭素原子数1〜3のアルキレン基または炭素原子数1〜3のアルキレンオキシ基である場合、特に炭素原子数2以下のアルキレン基、炭素原子数2以下のアルキレンオキシ基、又は単結合である場合には、該メタクリレート自体が重合開始剤としても機能することとなり、重合開始剤が不要となって電圧保持率(VHR)に優れ、焼き付きなどの表示不良を改善できる点からとりわけ好ましい。
特にジアクリレートとして下記構造式(P2)
Figure 2018106162
(式中、X’は、それぞれ独立的にフッ素原子、又は炭素原子数1〜5のアルコキシ基を表し、op21及びop21は、それぞれ独立的に0、1、又は2であり、np2は1又は2であり、mP21及びmP23は1又は2であり、mP22及びmP23は0又は1である。)
で表される化合物は、残存モノマーが少なくなり、チルト角の経時変化の抑制と液晶材料中への溶解性確保の両立を図れる点、また液晶組成物(B)との相溶性の点からとりわけ好ましく、なかでも下記式(P2−B1’)〜(P2−B6’)で表される化合物が液晶材料全体としての液晶上限温度の拡大や重合時における紫外線感度を増加させることが可能になる点から特に好ましい。
Figure 2018106162
また、重合性液晶組成物中の重合性単量体成分(a)の含有率は前記した通り0.5質量%〜20質量%の範囲であることが好ましいが、高オフ応答速度と低駆動電圧の両立という観点から1質量%〜10質量%の範囲であることが好ましい。
このようにして形成されるポリマーネットワーク(A)の層は、ポリマーネットワークの平均空隙間隔が可視光の波長より小さい大きさであること、即ち450nm未満の平均空隙間隔であることが、光散乱が起こらなくなる点から好ましい。
更に、応答の立下り時間をポリマーネットワークと低分子液晶との相互作用効果(アンカーリング力)により低分子液晶単体の応答時間より短くするには、平均空隙間隔は50nm〜450nmの範囲にする事が好ましく、立下り時間が液晶のセル厚の影響が少なくなりセル厚が厚くても薄厚並の立下り時間を示すようにするには、200〜450nmの範囲であることが好ましい。また、駆動電圧の増加を25V以下に抑制して立ち下がり応答時間を短くするには250〜450nmの範囲であることが好ましく、駆動電圧が5V程度以内の増加に抑制するには、平均空隙間隔が300〜450nmの範囲にすることが好ましい。一方、駆動電圧を30V以上に高める場合には、平均空隙間隔を50〜250nmの範囲にすればよい。また、立下り時間を0.5msec以下にするには50〜200nmの範囲とすることが好ましい。
一方、ポリマーネットワークの平均直径は、平均空隙間隔と相反し、20nmから700nmの範囲にあることが好ましい。モノマーの含有量が増えると平均直径は増加する傾向にある。反応性を高くして重合相分離速度を高めるとポリマーネットワークの密度が増加してポリマーネットワークの平均直径が減少するので必要に応じて相分離条件を調整すれば良い。モノマー含有量が10%以下の場合は、平均直径が20nmから160nmにあることが好ましく、平均空隙間隔が200nmから450nm範囲に於いては、平均直径が40nmから160nmの範囲であることが好ましい。モノマー含有量が10質量%より大きくなると50nmから700nmの範囲が好ましく、50nmから400nmの範囲がより好ましい。
また、Spp11およびSpp12は、それぞれ独立して、単結合、炭素原子数1〜12の直鎖もしくは分岐状アルキレン基、又は、この直鎖もしくは分岐状のアルキレン構造の炭素原子は、酸素原子が隣接しない条件で、酸素原子もしくはカルボニル基で置換された化学構造を有する構造部位を表す。これらのなかでも、特に、炭素原子数1〜12の直鎖もしくは分岐状アルキレン基は、液晶材料(B)との相溶性を高めるので好ましく、液晶分子が持つアルキル基と同程度の炭素原子数1〜6のものが特に好ましい。
ここで、炭素原子数1〜12の直鎖もしくは分岐状アルキレン基であるSpp11とSpp12とを有する場合、これらが同一のものであることが該モノマーの製造が容易であること、また、アルキレン鎖長の異なる複数種の化合物の使用割合を調整することによって物性調整が容易となる点から好ましい。一方、Spp11およびSpp12が単結合である場合には、モノマーが基板面に集まり易く、ポリマーネットワークを形成する傾向よりも垂直配向膜表面に薄膜を形成する傾向が強くなるため、ポリマーネットワーク形成による高速応答の効果よりも配向膜にプレチルトを付与し固定化する効果がより強くなる。
本発明で用いる重合性液晶組成物の重合方法としては、ラジカル重合、アニオン重合、カチオン重合等を用いることが可能であるが、熱又は光によるラジカル重合により重合することが好ましく、光フリース転位によるラジカル重合、光重合開始剤によるラジカル重合がより好ましい。
ここで使用し得る光重合開始剤としては、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシル−フェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン、4′−フェノキシアセトフェノン、4′−エトキシアセトフェノン等のアセトフェノン系; ベンゾイン、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾイン系; 2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド系;ベンジル、メチルフェニルグリオキシエステル系;ベンゾフェノン、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、4,4′−ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4′−メチル−ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3′,4,4′−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、3,3′−ジメチル−4−メトキシベンゾフェノン、2,5−ジメチルベンゾフェノン、3,4−ジメチルベンゾフェノン等のベンゾフェノン系;2−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン系;ミヒラーケトン、4,4′−ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系;10−ブチル−2−クロロアクリドン、2−エチルアンスラキノン、9,10−フェナンスレンキノン、カンファーキノン等が挙げられる。
然しながら、本発明では、前記した通り、重合性単量体(a)として前記式(P1)においてSpP11及びSpP12が単結合、炭素原子数1〜3のアルキレン基または炭素原子数1〜3のアルキレンオキシ基であるジメタクリレートを用いた場合には、重合開始剤なしに該重合性単量体(a)の重合を行うことができ、高い電圧保持率(VHR)が得らえれ、表示不良を改善できる。
上記した素子製造用の重合性液晶組成物は、本発明の液晶表示素子をVAモード等の垂直配向セルに適用する場合には、重合性モノマーとして垂直配向を誘起するメソゲン基を有さず、1価もしくは2価であり、かつ炭素原子数が8〜18のアルコール化合物のアクリレートもしくはメタクリレートを併用してもよい。
以上詳述した液晶層を形成させる方法は、具体的には、2枚の基板を透明電極層が内側となるように対向させ、スペーサーを介して、基板の間隔を調整し、基板間に重合性液晶組成物を狭持させ、該組成物中の重合性単量体成分(a)を重合させる方法が挙げられる。
ここで、液晶層の厚さは1〜100μmとなるように調整するのが好ましく、1.5〜10μmの範囲が更に好ましく、偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラトが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。
ここで、スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料などからなる柱状スペーサー等が挙げられる。
2枚の基板間に重合性液晶組成物を狭持させる方法は、通常の真空注入法又はODF法などを用いることができる。ODF法の液晶表示素子製造工程においては、バックプレーンまたはフロントプレーンのどちらか一方の基板にエポキシ系光熱併用硬化性などのシール剤を、ディスペンサーを用いて閉ループ土手状に描画し、その中に脱気下で所定量の
重合性液晶組成物を滴下後、フロントプレーンとバックプレーンを接合することによって液晶表示素子を製造することができる。本発明に用いられる重合性液晶組成物は、ODF工程における液晶及び重合性単量体成分(a)の複合材料の滴下が安定的に行えるため、好適に使用することができる。
重合性単量体成分(a)を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、活性エネルギー線である紫外線又は電子線を単一又は併用して照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、液晶表示素子製造用の重合性液晶組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性を有するものを使用する。また、電圧印加によって液晶分子にプレチルトを付与する場合には、重合性単量体成分(a)を含有した重合性液晶組成物に対し、−50℃から20℃の温度範囲で交流電界を印加するとともに、紫外線又は電子線を照射することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数100Hzから5kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選択することができる。すなわち、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
照射時の温度は、前記した通り、重合性液晶組成物の温度が−50℃から30℃の範囲であることが好ましい。さらに20℃〜−10℃の範囲であることが、液晶分子の配向度が上昇した状態で重合できること、重合性単量体成分(a)の重合体と液晶組成物(B)との相溶性が低下し相分離が容易になってポリマーネットワーク(A)の空隙間隔が微細になり、オフ応答速度がより向上する点から好ましい。
紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、365nm未満の紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm〜100W/cmが好ましく、2mW/cm〜50W/cmがより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cmから500J/cmが好ましく、100mJ/cmから200J/cmがより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
垂直配向セルを用いて液晶層を形成する場合、ポリマーネットワーク(A)が繊維状、又は柱状の形態を有し、液晶セル基板に対して液晶組成物(B)の垂直方向と略同一の方向に形成されていることが好ましい。また、セル基板表面にある垂直配向膜に液晶が傾斜配向を誘起するようにラビング処理等を施してプレチルト角を誘起するようにした垂直配向膜が用いられた場合は、プレチルトして配向している液晶組成物(B)と同方向に繊維状、又は柱状のポリマーネットワーク(A)が傾斜して形成されていることが好ましい。
ここで垂直配向用の所謂VAモードにおいて、低分子液晶化合物にプレチルトを付与し、かつ、ポリマーネットワーク(A)を傾斜させる方法としては、
(1)電圧を印加して低分子液晶化合物を傾斜配向状態にして紫外線等を照射させてポリマーネットワーク(A)を形成させる方法、
(2)ポリマーネットワーク中に光配向機能を組み込む方法、
が挙げられ、必要に応じてこれらの中から選択して本発明の液晶素子を作製することができる。
具体的には、電圧を印加しながらプレチルト角を誘起する方法(1)としては、液晶組成物(B)の閾値電圧よりも0.9V程度低い電圧から2V程度高い電圧の範囲で電圧を印加しながら重合させる方法、或いは、閾値電圧以上の電圧をポリマーネットワーク(A)形成過程中に数秒〜数十秒の短時間印加した後、閾値電圧未満にしてポリマーネットワークを形成させる方法、或いは閾値電圧以上の電圧を印加させながら重合させる方法が挙げられる。
液晶層中に形成された繊維状又は柱状のポリマーネットワーク(A)は、垂直配向型の液晶表示素子の場合、透明基板平面に対して90度〜80度のプレチルト角を誘起するように傾斜して形成されていることが好ましく、斯かるプレチルト角は、90度〜85度の範囲、89.9度〜85度の範囲、89.9度〜87度の範囲、89.9度〜88度の範囲であることが特に好ましい。何れの方法で形成された繊維状、又は柱状のポリマーネットワークは、二枚のセル基板間を連結していることが特徴である。これにより、プレチルト角の熱的安定性が向上して液晶表示素子の信頼性を高めることができる。
次に、IPSやFFSモード等の平行配向セルを適用する場合には、液晶表示素子製造用の重合性液晶組成物を用いて相分離重合により繊維状、又は柱状のポリマーネットワーク(A)が液晶セル基板面に有る配向膜の配向方向に対して液晶組成物(B)は平行配向するが、形成された繊維状、又は柱状のポリマーネットワークの屈折率異方性又は配向容易軸方向と液晶組成物(B)の配向方向と略同一の方向に形成されていることが好ましい。更に、繊維状、又は柱状のポリマーネットワークは、液晶組成物(B)が分散している空隙を除いて略セル全体に存在していることがより好ましい。ポリマー界面方向に対して該プレチルト角を誘起させることを目的に、1価もしくは2価であり、かつ炭素原子数が8〜18のアルコール化合物のアクリレートもしくはメタクリレートをモノマーとして、メソゲン基を有するモノマーと用いることが好ましい。
本発明の液晶表示素子において、高いコントラストの表示を得るには光散乱が起こらないようにすることが望ましい。例えば、重合性液晶組成物中の重合性単量体(a)の含有率を増加させて、得られるポリマーネットワークの空隙間隔を可視光の波長よりも小さくすることによって光散乱を防止することができる。
本発明の液晶表示素子中の液晶層は、基板表面の極性が高い場合には、重合性単量体成分(a)が液晶セル基板界面付近に集まり易く、基板表面からポリマーネットワークが成長して基板界面に付着するようにポリマーネットワーク層が形成され、セル基板表面からポリマーネットワーク層、液晶層、ポリマーネットワーク層、対向基板の順で積層されるように形成される。本発明ではこの様なポリマーネットワーク層/液晶層/ポリマーネットワーク層の積層構造を示し、且つセル断面方向に対して少なくともセル厚の0.5%以上、好ましくは1%以上、より好ましくは5%以上の厚さのポリマーネットワーク層が形成されているとポリマーネットワークと低分子液晶とのアンカーリング力の作用により立下り時間が短くなる効果が発現して好ましい傾向を示す。但し、セル厚の影響が大きくなるのでセル厚を増すと立ち下がり時間が長くなる場合は、ポリマーネットワーク層の厚さを必要に応じて増加させれば良い。ポリマーネットワーク層に於けるポリマーネットワークの構造は、低分子液晶と配向容易軸や一軸の光学軸が略同一の方向へ揃っていれば良く、低分子液晶がプレチルト角を誘起するように形成されていれば良い。ポリマーネットワーク(A)の平均空隙間隔は90nmから450nmの範囲が好ましい。
また、本発明において、重合性液晶組成物中のモノマー含有量は、該含有量が低く過ぎる場合には、セル全体にポリマーネットワーク層が被うのに必要な量が不足しポリマーネットワーク層が不連続に形成されやすくことから、前記した通り、0.5〜20質量%の範囲であることが好ましい。ここで、液晶表示素子製造用の液晶組成物中のモノマー濃度が高いほど、液晶組成物(B)とポリマー界面とのアンカーリング力は大きくなり、立ち下りの応答時間(τd)は高速化する。一方、液晶組成物(B)とポリマー界面とのアンカーリング力は大きくなると、駆動電圧は上昇してしまう傾向がある。このような傾向から、液晶表示素子製造用の重合性液晶組成物中の重合性単量体(a)の濃度は、1〜10質量%の範囲、なかでも1.5〜8質量%の範囲、特に1.8〜5質量%の範囲であることが好ましい。
また、オフ応答速度と低駆動電圧の観点からは前記した通り、1〜10質量%の範囲がより好ましいが、更に高速のオフ応答速度を得たい場合には6〜10質量%の範囲が好ましい。斯かる6〜10質量%の範囲とする場合、該二官能モノマーとアンカーリング力が低い単官能モノマーとの組み合わせが好ましく、必要に応じて25℃から−20℃の範囲で重合を行い、重合相分離構造を形成させることが好ましい。また、重合を行う際、重合性単量体(a)の融点が室温以上であれば該融点より5℃程度低くすると低温重合と同様な効果が得られるので好ましい。
本発明の液晶表示素子をTFT駆動液晶表示素子に用いる場合は、フリッカーの抑制、焼付けによる残像等の信頼性を向上させる必要があり電圧保持率が重要な特性になる。電圧保持率を低下させる原因は、液晶表示素子製造用の液晶組成物内に含有しているイオン性不純物、特に、可動イオンがある為、少なくとも比抵抗を1014Ω・cm以上が得られるように精製処理等を施し可動イオンを取り除くことが好ましい。又、ラジカル重合でポリマーネットワークを形成させると光重合開始剤等から発生するイオン性不純物により電圧保持率が低下する場合があるが、有機酸や低分子の副生成物発生量が少ない重合開始剤を選定することが好ましい。
更に、本発明の液晶表示素子が、配向膜を有する場合、該配向膜の配向容易軸方向とポリマーネットワーク(A)の配向容易軸方向が同一であることが好ましい。この場合、偏光板、位相差フィルムなどを具備させることにより、この配向状態を利用して表示させることができる。
以上、詳述した液晶層を有する本発明の液晶表示素子の具体的な構造につき、図1〜図11を用いて説明する。
(FFS型液晶表示素子)
図1は、液晶表示素子の構成を模式的に示す図である。図1では、説明のために便宜上各構成要素を離間して記載している。本発明の一実施形態の液晶表示素子10の構成は、図1に記載するように、対向に配置された第一の透明絶縁基板2と、第二の透明絶縁基板7との間に挟持された液晶表示素子製造用の重合性液晶組成物(または液晶層5)を有する横電界方式(図では一例としてIPSの一形態としてのFFSモード)の液晶表示素子である。第一の透明絶縁基板2は、液晶層5側の面に電極層3が形成されている。また、液晶層5と、第一の透明絶縁基板2及び第二の透明絶縁基板7のそれぞれの間に、液晶層5を構成する液晶表示素子製造用の重合性液晶組成物と直接当接してホモジニアス配向を誘起する一対の配向膜4(4a,4b)を有し、該素子製造用の重合性液晶組成物中の液晶分子は、電圧無印加時に前記基板2,7に対して略平行になるように配向されている。
図1および図3に示すように、前記第二の基板7および前記第一の基板2は、一対の偏光板1,8により挟持されてもよい。さらに、図1では、前記第二の基板7と配向膜4との間にカラーフィルター6が設けられている。
なお、本発明に係る液晶表示素子の形態としては、いわゆるカラーフィルターオンアレイ(COA)であってもよく、薄膜トランジスタを含む電極層と液晶層との間にカラーフィルターを設けても、または当該薄膜トランジスタを含む電極層と第一の基板との間にカラーフィルターを設けてもよい。
すなわち、本発明の一実施形態の液晶表示素子10は、第一の偏光板1と、第一の基板2と、薄膜トランジスタを含む電極層3と、配向膜4と、液晶表示素子製造用の重合性液晶組成物を含む液晶層5と、配向膜4と、カラーフィルター6と、第二の基板7と、第二の偏光板8と、が順次積層された構成である。
第一の基板2と第二の基板7はガラス又はプラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。2枚の基板2、7は、周辺領域に配置されたエポキシ系熱硬化性組成物等のシール材及び封止材によって貼り合わされていて、その間には基板間距離を保持するために、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子等の粒状スペーサーまたはフォトリソグラフィ法により形成された樹脂からなるスペーサー柱が配置されていてもよい。
図2は、図1における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。図3は、図2におけるIII−III線方向に図1に示す液晶表示素子を切断した断面図である。図2に示すように、第一の基板2の表面に形成されている薄膜トランジスタを含む電極層3は、走査信号を供給するための複数のゲート配線24と表示信号を供給するための複数のデータ配線25とが、互いに交差してマトリクス状に配置されている。なお、図2には、一対のゲート配線24及び一対のデータ配線25のみが示されている。
複数のゲート配線24と複数のデータ配線25とにより囲まれた領域により、液晶表示装置の単位画素が形成され、該単位画素内には、画素電極21及び共通電極22が形成されている。ゲート配線24とデータ配線25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極26およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、画素電極21に表示信号を供給するスイッチ素子として、画素電極21と連結している。また、ゲート配線24と並行して、共通ライン(図示せず)が設けられる。この共通ラインは、共通電極22に共通信号を供給するために、共通電極22と連結している。
薄膜トランジスタの構造の好適な一態様は、例えば、図3で示すように、基板2表面に形成されたゲート電極11と、当該ゲート電極11を覆い、且つ前記基板2の略全面を覆うように設けられたゲート絶縁層12と、前記ゲート電極11と対向するよう前記ゲート絶縁層12の表面に形成された半導体層13と、前記半導体層13の表面の一部を覆うように設けられた保護層14と、前記保護層14および前記半導体層13の一方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたドレイン電極16と、前記保護層14および前記半導体層13の他方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたソース電極17と、前記ドレイン電極16および前記ソース電極17を覆うように設けられた絶縁保護層18と、を有している。ゲート電極11の表面にゲート電極との段差を無くす等の理由により陽極酸化被膜(図示せず)を形成してもよい。
前記半導体層13には、アモルファスシリコン、多結晶ポリシリコンなどを用いることができるが、ZnO、IGZO(In−Ga−Zn−O)、ITO等の透明半導体膜を用いると、光吸収に起因する光キャリアの弊害を抑制でき、素子の開口率を増大する観点からも好ましい。
さらに、ショットキー障壁の幅や高さを低減する目的で半導体層13とドレイン電極16またはソース電極17との間にオーミック接触層15を設けても良い。オーミック接触層には、n型アモルファスシリコンやn型多結晶ポリシリコン等のリン等の不純物を高濃度に添加した材料を用いることができる。
ゲート配線26やデータ配線25、共通ライン29は金属膜であることが好ましく、Al、Cu、Au、Ag、Cr、Ta、Ti、Mo、W、Ni又はその合金がより好ましく、Al又はその合金の配線を用いる場合が特に好ましい。また、絶縁保護層18は、絶縁機能を有する層であり、窒化ケイ素、二酸化ケイ素、ケイ素酸窒化膜等で形成される。
図2及び図3に示す実施の形態では、共通電極22はゲート絶縁層12上のほぼ全面に形成された平板状の電極であり、一方、画素電極21は共通電極22を覆う絶縁保護層18上に形成された櫛形の電極である。すなわち、共通電極22は画素電極21よりも第一の基板2に近い位置に配置され、これらの電極は絶縁保護層18を介して互いに重なりあって配置される。画素電極21と共通電極22は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)等の透明導電性材料により形成される。画素電極21と共通電極22が透明導電性材料により形成されるため、単位画素面積で開口される面積が大きくなり、開口率及び透過率が増加する。
また、画素電極21と共通電極22とは、これらの電極間にフリンジ電界を形成するために、画素電極21と共通電極22との間の電極間距離(最小離間距離とも称する):Rが、第一の基板2と第二の基板7との距離:Gより小さくなるように形成される。ここで、電極間距離:Rは各電極間の基板に水平方向の距離を表す。図3では、平板状の共通電極22と櫛形の画素電極21とが重なり合っているため、電極間距離:R=0となる例が示されており、最小離間距離:Rが第一の基板2と第二の基板7との距離(すなわち、セルギャップ):Gよりも小さくなるため、フリンジの電界Eが形成される。したがって、FFS型の液晶表示素子は、画素電極21の櫛形を形成するラインに対して垂直な方向に形成される水平方向の電界と、放物線状の電界を利用することができる。画素電極21の櫛状部分の電極幅:l、及び、画素電極21の櫛状部分の間隙の幅:mは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。また、画素電極と共通電極との最小離間距離Rは、ゲート絶縁層12の(平均)膜厚として調整することができる。また、本発明に係る液晶表示素子は、図3とは異なり、画素電極21と共通電極22との間の電極間距離(最小離間距離とも称する):Rが、第一の基板2と第二の基板7との距離:Gより大きくなるように形成されてもよい(IPS方式)。この場合、例えば、櫛状の画素電極および櫛状の共通電極が略同一面内に交互になるよう設けられる構成など挙げられる。
本発明に係る液晶表示素子の好ましい一形態は、図3に示す様にフリンジ電界を利用するFFS方式の液晶表示素子であることが好ましく、共通電極22と画素電極21との隣接する最短離間距離dが、配向膜4同士(基板間距離)の最短離間距離Dより短いと、共通電極と画素電極との間にフリンジ電界が形成され、液晶分子の水平方向および垂直方向の配向を効率的に利用することができる。本発明のFFS方式液晶表示素子の場合、長軸方向が、配向層の配向方向と平行になるように配置している液晶分子に電圧を印加すると、画素電極21と共通電極22との間に放物線形の電界の等電位線が画素電極21と共通電極22の上部にまで形成され、液晶層5内の液晶分子の長軸が形成された電界に沿って配列する。したがって、低い誘電異方性でも液晶分子が駆動することができる。
本発明に係るカラーフィルター6は、光の漏れを防止する観点で、薄膜トランジスタおよびストレイジキャパシタに対応する部分にブラックマトリックス(図示せず)を形成することが好ましい。また、カラーフィルター6は、通常R(赤)G(緑)B(青)の3つフィルター画素から映像や画像の1ドットからなり、例えば、これら3つのフィルターはゲート配線の延びる方向に並んでいる。当該カラーフィルター6は、例えば、顔料分散法、印刷法、電着法又は、染色法等によって作製することができる。顔料分散法によるカラーフィルターの作製方法を一例に説明すると、カラーフィルター用の硬化性着色組成物を、該透明基板上に塗布し、パターニング処理を施し、そして加熱又は光照射により硬化させる。この工程を、赤、緑、青の3色についてそれぞれ行うことで、カラーフィルター用の画素部を作製することができる。その他、該基板上に、TFT、薄膜ダイオード等の能動素子を設けた画素電極を設置したいわゆるカラーフィルターオンアレイでもよい。
電極層3及びカラーフィルター6上には、液晶層5を構成する素子製造用の重合性液晶組成物と直接当接してホモジニアス配向を誘起する一対の配向膜4が設けられている。
また、偏光板1及び偏光板8は、各偏光板の偏光軸を調整して視野角やコントラストが良好になるように調整することができ、それらの透過軸がノーマリーブラックモードで作動するように、互いに直行する透過軸を有することが好ましい。特に、偏光板1及び偏光板8のうちいずれかは、液晶分子の配向方向と平行な透過軸を有するように配置することが好ましい。また、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。更に、視野角を広げるための位相差フィルムも使用することもできる。
また、他の液晶表示素子の実施形態として、IPS方式の場合は、近接する共通電極と画素電極との最短離間距離dが液晶配向膜間の最短離間距離Gより長い条件であり、例えば、共通電極と画素電極とが同一基板上に形成され、かつ当該共通電極と当該画素電極とが交互に配置されている場合であって、近接する共通電極と画素電極との最短離間距離dが液晶配向膜間の最短離間距離Gより長い構造などが挙げられる。
本発明に係る液晶表示素子の製造方法において、電極層を有する基板および/または基板表面に被膜を形成した後、当該被膜が内側となるように一対の基板を離間して対向させた後、液晶組成物を基板間に充填することが好ましい。その際、スペーサーを介して、基板の間隔を調整することが好ましい。
前記基板間の距離(得られる液晶層の平均厚さであり、被膜間の離間距離とも称する。)は、1〜100μmとなるように調整するのが好ましい。前記被膜間の平均離間距離は、1.5〜10μmが更に好ましい。
本発明において、基板間の距離を調整するために使用するスペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料などからなる柱状スペーサー等が挙げられる。
(FFS型又はIPS型液晶表示素子)
本発明に係る液晶表示素子の他の実施形態を図4および図5を用いて以下説明する。
例えば、図4は、図1における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図の他の実施形態である。
図4に示すように、画素電極21がスリットを有する構成としてもよい。また、スリットのパターンを、ゲート配線24又はデータ配線25に対して傾斜角を持つようにして形成してもよい。
当該図4に示す画素電極21は、略長方形の平板体の電極を略矩形枠状の切欠き部でくり抜かれた形状である。また、当該画素電極21の背面には絶縁保護層18(図示せず)を介して櫛歯状の共通電極22が一面に形成されている。そして、隣接する共通電極と画素電極との最短離間距離Rは配向層同士の最短離間距離Gより短い場合はFFS方式になり、長い場合はIPS方式になる。また、前記画素電極の表面には保護絶縁膜及び配向膜層によって被覆されていることが好ましい。なお、上記と同様に、前記複数のゲート配線24と複数のデータ配線25とに囲まれた領域にはデータ配線25を介して供給される表示信号を保存するストレイジキャパシタ23を設けてもよい。なお、切欠き部の形状は特に制限されるものではなく、図4で示す略矩形だけでなく、楕円、円形、長方形状、菱形、三角形、または平行四辺形など公知の形状の切欠き部を使用できる。また、隣接する共通電極と画素電極との最短離間距離Rが配向層同士の最短離間距離Gより長い場合はIPS方式の表示素子となり、短い場合はFFS方式の表示素子となる。
図5は、図3とは別の実施形態であり、図2におけるIII−III線方向に図1に示す液晶表示素子を切断した断面図の他の例である。配向層4および薄膜トランジスタ20を含む電極層3が表面に形成された第一の基板2と、配向層4が表面に形成された第二の基板8とが所定の間隔Gで配向層同士向かい合うよう離間しており、この空間に液晶組成物を含む液晶層5が充填されている。第一の基板2の表面の一部にゲート絶縁層12、共通電極22、絶縁保護層18、画素電極21および配向層4の順で積層されている。また、図4にも示すように、画素電極21は、平板体の中央部および両端部が三角形状の切欠き部でくり抜かれ、さらに残る領域を長方形状の切欠き部でくり抜かれた形状であり、かつ共通電極22は前記画素電極21の略楕円形状の切欠き部と略平行に櫛歯状の共通電極が前記画素電極より第一の基板側に配置されてなる構造である。
図5に示す例では、櫛形あるいはスリットを有する共通電極22を用いており、画素電極21と共通電極22との電極間距離はR=αとなる(なお、図5では便宜上電極間距離の水平成分をRとして記載している)。さらに、
図3では共通電極22がゲート絶縁層12上に形成されている例が示されていたが、
図5に示されるように、共通電極22を第一の基板2上に形成して、ゲート絶縁層12を介して画素電極21を設けるようにしてもよい。画素電極21の電極幅:l、共通電極22の電極幅:n、及び、電極間距離:Rは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に適宜調整することが好ましい。さらに、図5では画素電極21と共通電極22の厚み方向の位置が異なるが、両電極の厚み方向における位置を同一にしてもまたは共通電極が液晶層5側に設けてもよい。
(垂直電界型の液晶表示素子)
本発明の好ましい他の実施形態は、液晶組成物を用いた垂直電界型の液晶表示素子である。図6は、垂直電界型の液晶表示素子の構成を模式的に示す図である。また、図6では、説明のために便宜上各構成要素を離間して記載している。
図7は、当該図6における基板上に形成された薄膜トランジスタを含む電極層300(または薄膜トランジスタ層300とも称する。)のVII線で囲まれた領域を拡大した平面図である。
図8は、図7におけるVIII−VIII線方向に図6に示す液晶表示素子を切断した断面図である。以下、図6〜8を参照して、本発明に係る垂直電界型の液晶表示素子を説明する。
本発明に係る垂直配向型の液晶表示素子1000の構成は、図6に記載するように透明導電性材料からなる透明電極(層)600(または共通電極600とも称する。)を具備した第二の基板800と、透明導電性材料からなる画素電極および各画素に具備した前記画素電極を制御する薄膜トランジスタを形成した薄膜トランジスタ層300を含む第一の基板200と、前記第一の基板200と第二の基板800との間に挟持された液晶表示素子製造用の重合性液晶組成物(または液晶層500)を有し、該素子製造用の重合性液晶組成物に係る中の液晶分子の電圧無印加時の配向が前記基板200,800に対して略垂直である液晶表示素子である。また図6および図8に示すように、前記第二の基板800および前記第一の基板200は、一対の偏光板100,900により挟持されてもよい。
さらに、図6では、前記第一の基板200と共通電極600との間にカラーフィルター700が設けられている。さらに、本発明に係る液晶層500と隣接し、かつ、当該液晶層500を構成する液晶表示素子製造用の重合性液晶組成物と直接接するよう一対の配向膜400が透明電極(層)600,1400表面に形成されている。
すなわち、本発明に係る垂直配向型の液晶表示素子1000は、第一の偏光板100と、第一の基板200と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)300と、光配向膜400と、液晶組成物を含む層500と、配向膜400と、共通電極600と、カラーフィルター700と、第二の基板800と、第二の偏光板900と、が順次積層された構成である。尚、配向膜400は光配向膜であることが好ましい。
配向膜は、配向処理(マスクラビングあるいは光配向)を用いて製造された液晶セルで、液晶セルの透明電極の内側(液晶層側)には、ガラス基板の法線方向から僅かに傾いた(0.1〜5.0°)垂直配向膜が形成されている。
ここで、液晶層500は、本発明の重合液晶組成物を基板間に挟持させた際、垂直配向膜の配向規制力を受け重合性モノマーが垂直方向に配列することとなり、次いで、紫外線光照射によって重合性モノマーを重合・固定化させてポリマーネットワーク(A)が生成することによって形成される。このようにして形成されたポリマーネットワーク(A)は、(1)上下基板にまたがってポリマーネットワークを形成、(2)上(下)基板から液晶方向に向かってポリマーネットワークを形成するが途中までのもの、(3)配向膜の表面近傍のみポリマーネットワークを形成。(主に単官能モノマーの場合)、(4)液晶層内でポリマーネットワーク同士が結合(Floatingはしていない)の、およそ4種類の構造を有するものと推定される。これらの形態は、何れも、ポリマーネットワークの屈折率異方性、又は配向容易軸は、閾値電圧以上の配向状態を安定化させるように形成されたものと、閾値電圧以下の配向状態を安定化させるように形成された二種類の異なる配向状態を安定化させるポリマーネットワークが混在している。
この様にして形成された異方性を有するポリマーポリマネットワーク(A)は、液晶組成物(B)とはほぼ完全に分離しており、これら高分子ネットワーク(A)の間に液晶分子は配向配列しているものと考えられる。このように液晶分子と高分子ネットワークが混在し、電圧無印加時に光散乱を起こす所謂ポリマーネットワーク型液晶の分子配列構造とは明らかに異なり、またPSA等で用いられる配向膜近傍に偏在する配向維持層のそれとも全く異なる構造を有するものである。
図6〜8では、マスクラビングあるいは光配向膜を用いた方法によるポリマーネットワークと液晶分子配列構造を示したが、リブやスリット等の構造物を有する所謂MVA方式や、PVA等においても、基板界面近傍のポリマーネットワークや液晶分子のプレチルトが、構造物やスリットを介して印加される斜め電界強度などによって形成され、前記図6と同等な素子構造となる。
この様なポリマーネットワークと液晶分子による液晶分子配列を有するすいVA型液晶表示装置では、電圧無印加時の液晶分子に対するアンカーリング力が、液晶配向膜とポリマーネットワークの持つアンカーリング力の相乗作用により、より強く作用する事となって、結果的に電圧OFF時の応答速度を速くすることが可能となる。
以上詳述した垂直配向型の液晶表示素子は、視野角依存を改善する為に画素が2分割乃至8分割されたマルチドメインを有する分割配向させたものが好ましい。斯かる分割配向は配向膜4をマスクラビングによって作成してもよいが、
1)第1の基板2側及び第2の基板7の双方にリブを形成させる手段、
2)第1の画素電極21に電極スリットを用い、第2の基板7上にリブを形成させる手段、
3)第1の画素電極21に微細スリット電極を用い、第2の基板7上にリブを形成させる手段、
4)第1の画素電極21、及び第2の共通電極22にスリット電極を用いる手段、
5)第1の画素電極21に微細スリット電極を用い、かつ、ポリマーによって液晶にプレチルトを形成させる手段、
6)配向膜として直線偏光紫外線照射によって均一な配向方位を液晶に付与できる所謂光配向膜を用いる手段等によって液晶の配向方位が規定されたマルチドメイン型のVA素子であることが、素子の製造が容易であることから好ましい。これらのなかでも、特に、液晶層5のポリマーネットワークを形成しやすいこと、また、液相層5内でポリマーネットワーク(A)の光軸方向又は配向容易軸方向と、前記液晶組成物(B)の配向容易軸方向が同一乃至略同一方向に制御することが容易であることから、前記5)ポリマーによって液晶にプレチルトを形成させる手段、又は前記6)の光配向膜を用いる手段によって得られた液晶表示素子であることが好ましい。
ここで、前記した画素電極22として微細スリット電極を用いる場合、図11に示す様な所謂フィッシュボーン型電極であることが配向方位の安定性の点から好ましい。該フィッシュボーン型電極を図24に基づいて詳述すれば、該電極はITOなどの透明電極から構成され、その電極材料(ITO)の一部を抜いたスリット部512cが設けられている。長方形のセルの各対向辺の中点を結ぶ十字状で幅3〜5μm程度のスリット部512cが配向規制用構造物として機能し、スリット部512cから斜め45°方向に延びて幅5μmのスリット部512cがピッチ8μmで複数形成されており、これらが傾斜時の方位角方向の乱れを抑える補助的な配向制御因子として機能する。表示用画素電極の幅は例えば3μmである。図24では、画素幹部電極512aと画素枝部電極512bは45度の角度を有しながら、画素中央を対称中心として90度ずつ異なる4方向に枝部電極が延在された構造を有している。液晶分子は電圧印加により傾斜配向するが、傾斜配向の方位がこれらの4方向と一致しするように傾斜配向するので、4分割されたドメインを一つの画素内に形成させて表示の視野角を広くすることができる。
(横・斜め電界型による配向分割された液晶表示素子)
配向膜に対してマスクラビングやマスク照射等の煩雑な工程を行なわず、電極構造を工夫するだけの簡便な手法で液晶表示領域を配向分割できる新たな表示技術として、斜め電界と横電界を液晶層に作用させる方法が提案されている。
この方式によれば、配向膜に対してマスクラビングや、光配向膜を用いたマスク照射等の煩雑な工程を行なわず、電極構造を工夫するだけの簡便な手法で液晶表示領域を配向分割できる。
図9は、TFT液晶表示素子の一画素PXにおける最小の単位構成体を概略的に示す平面図である。以下に、横・斜め電界モード液晶表示装置の構造及び動作について、簡単に説明する。
画素電極PEは、主画素電極PA及び副画素電極PBを有している。これらの主画素電極PA及び副画素電極PBは、互いに電気的に接続されており、これらの主画素電極PA及び副画素電極PBがともにアレイ基板ARに備えられている。主画素電極PAは、第2方向Yに沿って延出しており、副画素電極PBは、第2方向Yとは異なる第1方向Xに沿って延出している。
図9に図示した例では、画素電極PEは、略十字状に形成されている。副画素電極PBは、主画素電極PAの略中央部に結合し、主画素電極PAからその両側、即ち画素PXの左側及び右側に向かって延出している。これらの主画素電極PA及び副画素電極PBは、互いに略直交している。画素電極PEは、画素電極PBにおいて図示を省略したスイッチング素子と電気的に接続されている。
共通電極CEは、主共通電極CA及び副共通電極CBを有しており、これらの主共通電極CA及び副共通電極CBは、互いに電気的に接続されている。共通電極CEは、画素電極PEとは電気的に絶縁されている。共通電極CEにおいて、主共通電極CA及び副共通電極CBの少なくとも一部は、対向基板CTに備えられている。主共通電極CAは、第2方向Yに沿って延出している。この主共通電極CAは、主画素電極PAを挟んだ両側に配置されている。このとき、X−Y平面内において、主共通電極CAのいずれも主画素電極PAとは重ならず、主共通電極CAのそれぞれと主画素電極PAとの間には略等しい間隔が形成されている。つまり、主画素電極PAは、隣接する主共通電極CAの略中間に位置している。副共通電極CBは、第1方向Xに沿って延出している。副共通電極CBは、副画素電極PBを挟んだ両側に配置されている。このとき、X−Y平面内において、副共通電極CBのいずれも副画素電極PBとは重ならず、副共通電極CBのそれぞれと副画素電極PBとの間には略等しい間隔が形成されている。つまり、副画素電極PBは、隣接する副共通電極CBの略中間に位置している。
図9に図示した例では、主共通電極CAは、第2方向Yに沿って直線的に延出した帯状に形成されている。副共通電極CBは、第1方向Xに沿って直線的に延出した帯状に形成されている。なお、主共通電極CAは第1方向Xに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の左側の主共通電極をCALと称し、図中の右側の主共通電極をCARと称する。また、副共通電極CBは第2方向Yに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の上側の主共通電極をCBUと称し、図中の下側の主共通電極をCBBと称する。主共通電極CAL及び主共通電極CARは、副共通電極CBU及び副共通電極CBBと同電位である。図9に図示した例では、主共通電極CAL及び主共通電極CARは、副共通電極CBU及び副共通電極CBBとそれぞれ繋がっている。
主共通電極CAL及び主共通電極CARは、それぞれ当該画素PXと左右に隣接する画素間に配置されている。すなわち、主共通電極CALは図示した当該画素PXとその左側の画素(図示せず)との境界に跨って配置され、主共通電極CARは図示した当該画素PXとその右側の画素(図示せず)との境界に跨って配置されている。副共通電極CBU及び主共通電極CBBは、それぞれ当該画素PXと上下に隣接する画素間に配置されている。すなわち、副共通電極CBUは図示した当該画素PXとその上側の画素(図示せず)との境界に跨って配置され、副共通電極CBBは図示した当該画素PXとその下側の画素(図示せず)との境界に跨って配置されている。
図9に図示した例では、一画素PXにおいて、画素電極PEと共通電極CEとで区画された4つの領域が主として表示に寄与する開口部あるいは透過部として形成される。この例では、液晶分子LMの初期配向方向は、第2方向Yと略平行な方向である。第1配向膜AL1は、アレイ基板ARの対向基板CTと対向する面に配置され、アクティブエリアACTの略全体に亘って延在している。この第1配向膜AL1は、画素電極PEを覆っており、第2層間絶縁膜13の上にも配置されている。このような第1配向膜AL1は、水平配向性を示す材料によって形成されている。他方、第2配向膜AL2は、対向基板CTのアレイ基板ARと対向する面に配置されて、アクティブエリアACTの略全体に亘って延在している。なお、アレイ基板ARは、さらに、共通電極の一部として第1主共通電極及び第1副共通電極を備えている場合もある。
図10は、8分割斜め電界モード液晶セルの電極構造の模式図である。この様に1画素を8つに分割することで更なる広視野角化を実現できる。
次に、上記構成の液晶表示パネルの動作について説明する。液晶層に電圧が印加されていない状態、つまり画素電極PEと共通電極CEとの間に電界が形成されていない無電界時(OFF時)には、図9において破線で示したように液晶層LQの液晶分子LMは、その長軸が第1配向膜AL1の第1配向処理方向PD1及び第2配向膜AL2の第2配向処理方向PD2を向くように配向している。このようなOFF時が初期配向状態に相当し、OFF時の液晶分子LMの配向方向が初期配向方向に相当する。
厳密には、液晶分子LMは、X−Y平面に平行に配向しているとは限らず、プレチルトしている場合が多い。このため、液晶分子LMの厳密な初期配向方向とは、OFF時の液晶分子LMの配向方向をX−Y平面に正射影した方向である。
第1配向処理方向PD1及び第2配向処理方向PD2は、ともに第2方向Yと略平行な方向である。OFF時においては、液晶分子LMは、図9に破線で示したように、その長軸が第2方向Yと略平行な方向を向くように初期配向する。つまり、液晶分子LMの初期配向方向は、第2方向Yと平行(あるいは、第2方向Yに対して0°)である。
図示した例のように、第1配向処理方向PD1及び第2配向処理方向PD2が平行且つ同じ向きである場合、液晶層LQの断面において液晶分子LMは、液晶層LQの中間部付近で略水平(プレティルト角が略ゼロ)に配向し、ここを境界として第1配向膜AL1の近傍及び第2配向膜AL2の近傍において対称となるようなプレチルト角を持って配向する(スプレイ配向)。このように液晶分子LMがスプレイ配向している状態では、基板の法線方向から傾いた方向においても第1配向膜AL1の近傍の液晶分子LMと第2配向膜AL2の近傍の液晶分子LMとにより光学的に補償される。
したがって、第1配向処理方向PD1及び第2配向処理方向PD2が互いに平行、且つ、同じ向きである場合には、黒表示の場合に光漏れが少なく、高コントラスト比を実現することができ、表示品位を向上することが可能となる。なお、第1配向処理方向PD1及び第2配向処理方向PD2が互いに平行且つ逆向きである場合、液晶層LQの断面において、液晶分子LMは、第1配向膜AL1の近傍、第2配向膜AL2の近傍、及び、液晶層LQの中間部において略均一なプレチルト角を持って配向する(ホモジニアス配向)。バックライト4からのバックライト光の一部は、第1偏光板PL1を透過し、液晶表示パネルLPNに入射する。液晶表示パネルLPNに入射した光は、第1偏光板PL1の第1偏光軸AX1と直交する直線偏光である。このような直線偏光の偏光状態は、OFF時の液晶表示パネルLPNを通過した際にほとんど変化しない。このため、液晶表示パネルLPNを透過した直線偏光は、第1偏光板PL1に対してクロスニコルの位置関係にある第2偏光板PL2によって吸収される(黒表示)。
一方、液晶層LQに電圧が印加された状態、つまり、画素電極PEと共通電極CEとの間に電位差が形成された状態(ON時)では、画素電極PEと共通電極CEとの間に基板と略平行な横電界(あるいは斜め電界)が形成される。液晶分子LMは、電界の影響を受け、その長軸が図中の実線で示したようにX−Y平面と略平行な平面内で回転する。
図9に示した例では、画素電極PEと主共通電極CALとの間の領域のうち、下側半分の領域内の液晶分子LMは、第2方向Yに対して時計回りに回転し図中の左下を向くように配向し、また、上側半分の領域内の液晶分子LMは、第2方向Yに対して反時計回りに回転し図中の左上を向くように配向する。画素電極PEと主共通電極CARとの間の領域のうち、下側半分の領域内の液晶分子LMは、第2方向Yに対して反時計回りに回転し図中の右下を向くように配向し、上側半分の領域内の液晶分子LMは、第2方向Yに対して時計回りに回転し図中の右上を向くように配向する。このように、各画素PXにおいて、画素電極PEと共通電極CEとの間に電界が形成された状態では、液晶分子LMの配向方向は、画素電極PEと重なる位置を境界として複数の方向に分かれ、それぞれの配向方向でドメインを形成する。つまり、一画素PXには複数ドメインが形成される。
このようなON時には、第1偏光板PL1の第1偏光軸AX1と直交する直線偏光は、液晶表示パネルLPNに入射し、その偏光状態は、液晶層LQを通過する際に液晶分子LMの配向状態に応じて変化する。このようなON時においては、液晶層LQを通過した少なくとも一部の光は、第2偏光板PL2を透過する(白表示)。このような構造によれば、一画素内に4つのドメインを形成することが可能となるため、4方向での視野角を光学的に補償することができ、広視野角化が可能となる。したがって、階調反転がなく、高い透過率の表示を実現することができ、表示品位の良好な液晶表示装置を提供することが可能となる。また、一画素内において、画素電極PEと共通電極CEとで区画される4つの領域それぞれについて開口部の面積を略同一に設定することにより、各領域の透過率が略同等となり、それぞれの開口部を透過した光が互いに光学的に補償し合い、広い視野角範囲に亘って均一な表示を実現することが可能となる。
以上詳述した本発明の液晶表示素子は、TN、STN、ECB、VA、VA−TN、IPS、FFS、πセル、OCB、コレステリック液晶などの動作モードに適用できる。これらの中でも、VA、IPS、FFS、VA−TN、TN、ECBが特に好ましい。尚、本発明の液晶表示素子は、液晶層中にポリマーネットワークを形成する点において配向膜上に重合体又は共重合体を有するPSA(Polymer Sustained Alignment)型液晶表示素子と区別することができる。
以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
実施例において化合物の記載について以下の略号を用いる。
(側鎖)
-n -CnH2n+1 炭素数nの直鎖状のアルキル基
n- CnH2n+1- 炭素数nの直鎖状のアルキル基
-On -OCnH2n+1 炭素数nの直鎖状のアルコキシル基
nO- CnH2n+1O- 炭素数nの直鎖状のアルコキシル基
(連結基)
-2- -CH2-CH2-
-CF2O- -CF2-O-
-OCF2- -O-CF2-
-1O- -CH2-O-
-O1- -O-CH2-
-COO- -COO-
(環構造)
Figure 2018106162
実施例中、測定した特性は以下の通りである。
ni :ネマチック相−等方性液体相転移温度(℃)
Δn :20℃における屈折率異方性
Δε :25℃における誘電率異方性
γ :20℃における回転粘性(mPa・s)
VHR(UV) :高圧水銀ランプでUVを12(J)照射後の電圧保持率
[焼き付き]
液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを任意の試験時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像が、許容できない残像レベルに達するまでの試験時間を計測した。
1)ここで言う試験時間とは固定パターンの表示時間を示し、この時間が長いほど残像の発生が抑制されており、性能が高いことを示している。
2)許容できない残像レベルとは、出荷合否判定で不合格となる残像が観察されるレベルである。
(液晶組成物(B)の調整)
N型液晶組成物として下記表1の配合に従い、液晶ホスト(LCN−1)〜(LCN−4)を調製した。各液晶ホストの物性値を表1中に併記する。
Figure 2018106162
下記の各実施例及び比較例で使用したモノマー(M1)の構造は以下の通りである。
Figure 2018106162
実施例1
液晶組成物「LCN−1」96.57質量%に、重合性液晶モノマー「M1」3.43質量%、となるように褐色ビンに加えて80℃で2分間加熱して重合性液晶組成物(NPS−1)を得た。
得られた重合性液晶組成物を室温まで冷却した後に、ネマチック液晶相を示していることを偏光顕微鏡で確認した。液晶の垂直配向(ホメオトロピック配向)が得られるように、ポリイミド配向膜をガラス基板に形成した基板を用いて3.5μmのギャップとした後、基板の法線方向に対してプレチルト角が1度〜2度になるようにラビング配向処理を施しITO付きラビング配向セルを作成した。
その後真空注入法により作成したガラスセル内に注入した。注入後ガラスセルを取り出し、注入口を封口剤「3026E」(スリーボンド社製)で封止した。その後313nmの照射強度が3.8mW/cmの紫外線を、室温で1000秒間照射し、重合性液晶組成物の重合性化合物を重合させた。
これによりセル内全体に相分離構造を形成させたVAモードの液晶表示素子を得た。直交する二枚の偏光板の間に作製したセルを置くと黒くなりセルを方位角方向へ回転しても暗視野が変化せず、ポリマーネットワークの光軸方向と液晶配向容易軸方向が同一方向であることを確認した。
また、基板の法泉方向に対してプレチルト角が2度の状態で液晶が配向しているのをリタデーション測定から確認した。
得られたVAモードの液晶表示素子に60Hzの矩形波を印加して応答時間とVTカーブを測定したところ、オフ応答速度(τoff)は2.8msec、回転粘度(γ1)は100mPa・secであった。
その後、得られたセルをヘキサンで洗浄した後に破壊した1.4gのアセトニトリルで抽出した。
実施例2〜4
実施例1と同様にして、本発明の液晶表示素子を作製した。使用した液晶組成物、オフ応答速度(τoff)、回転粘度(γ1)を表2にまとめた。
Figure 2018106162

Claims (9)

  1. 少なくとも一方に電極を有する2枚の透明基板間に、ポリマーネットワーク(A)と液晶組成物(B)とを含有する液晶層が挟持されており、かつ、液晶組成物(B)が下記式(I)
    Figure 2018106162
    (式(I)中、R11及びR12は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
    は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、n11は1又は2を、n12は0又は1を表す。)
    で表される液晶化合物(I)、及び下記式(II)
    Figure 2018106162
    (式(II)中、R21及びR22は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、Aは1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、Xは、それぞれ独立的に、塩素原子、又はフッ素原子であり、p21は0、1又は2を、p22は0、1又は2を表し、Zは単結合または炭素原子数2〜5のアルキレン基を表し、nは0又は1を表す。)
    で表される液晶化合物(II)を必須の低分子液晶化合物として含有することを特徴とする液晶表示素子。
  2. 液晶組成物(B)が、更に、下記一般式(III)
    Figure 2018106162
    (式(III)中、R31及びR32は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し)
    で表される化合物(III)を含有する請求項1記載の液晶表示素子。
  3. 前記液晶化合物(II)として、
    Figure 2018106162
    (式中、A、R21、R22、Z、nは式(II)におけるものと同義である。)
    下記式(II−2)
    Figure 2018106162
    (式中、A、R21、R22、nは式(II)におけるものと同義である。)
    で表される液晶化合物(II−2)を含有する請求項1記載の液晶表示素子。
  4. 前記液晶層が、ポリマーネットワーク(A)の光軸方向又は配向容易軸方向と、前記液晶組成物(B)の配向容易軸方向が同一方向となっているものである請求項1記載の液晶表示素子。
  5. 前記ポリマーネットワーク(A)を液晶層中0.5〜20質量%となる割合で含有する請求項1記載の液晶表示素子。
  6. 前記ポリマーネットワーク(A)が、下記式(P1)
    Figure 2018106162
    (式(P1)中、Ac及びAcは各々独立して、アクリロイルオキシ基またはメタクロイルオキシ基を表し、SpP11及びSpP12は、各々独立して単結合、炭素原子数1〜6のアルキレン基または炭素原子数1〜6のアルキレンオキシ基を表し、
    p11及びLp12はそれぞれ独立して、単結合、−O−、−S−、−CH−、−OCH−、−CHO−、−CO−、−C−、−COO−、−OCO−、−OCOOCH−、−CHOCOO−、−OCHCHO−、−CO−NRP113−、−NRP113−CO−、−SCH−、−CHS−、−CH=CRP113−COO−、−CH=CRP113−OCO−、−COO−CRP113=CH−、−OCO−CRP113=CH−、−COO−CRP113=CH−COO−、−COO−CRP113=CH−OCO−、−OCO−CRP113=CH−COO−、−OCO−CRP113=CH−OCO−、−(CHtm12−C(=O)−O−、−(CHtm12−O−(C=O)−、−O−(C=O)−(CHtm12−、−(C=O)−O−(CHtm12−、−CH=CH−、−CF=CF−、−CF=CH−、−CH=CF−、−CF−、−CFO−、−OCF−、−CFCH−、−CHCF−、−CFCF−、−C≡C−、−N=N−、−CH=N−又は−C=N−N=C−(式中、RP113はそれぞれ独立して水素原子又は炭素原子数1〜4のアルキル基を表し、前記式中、tm12は1〜4の整数を表す。)を表し、
    p11、Mp12およびMp13は、それぞれ独立に1,4−フェニレン基、1,3−フェニレン基、1,2−フェニレン基、1,4−シクロヘキシレン基、1,3−シクロヘキシレン基、1,2−シクロヘキシレン基、1,4−シクロヘキセニレン基、1,3−シクロヘキセニレン基、1,2−シクロヘキセニレン基、アントラセン−2,6−ジイル基、フェナントレン−2,7−ジイル基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ナフタレン−2,6−ジイル基、ナフタレン−1,4−ジイル基、インダン−2,5−ジイル基、フルオレン−2,6−ジイル基、フルオレン−1,4−ジイル基、フェナントレン−2,7−ジイル基、アントラセン−2,6−ジイル基、アントラセン−1,4−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又は1,3−ジオキサン−2,5−ジイル基を表すが、
    p11、Mp12およびMp13はそれぞれ独立に無置換であるか又は炭素原子数1〜12のアルキル基、炭素原子数1〜12のハロゲン化アルキル基、炭素原子数1〜12のアルコキシ基、炭素原子数1〜12のハロゲン化アルコキシ基、ハロゲン原子、シアノ基、ニトロ基又は−Spp11−Ac基で置換されていても良く、
    mp11は1又は2を表し、mp12〜mp13はそれぞれ独立して、0、1、2又は3を表す。)
    で表される重合性単量体(a)を1種又は2種以上用いた重合体である請求項1記載の液晶表示素子。
  7. 液晶表示素子のセル構造がVAモード、IPSモード、FFSモード、VA−TNモード、TNモード又はECBモードである請求項1〜6のいずれか一項に記載の液晶表示素子。
  8. セル断面方向に対して少なくともセル厚の0.5%以上の厚さのポリマーネットワーク層が形成されている請求項1記載の液晶表示素子。
  9. 下記式(P1)
    Figure 2018106162
    (式(P1)中、Ac及びAcは各々独立して、アクリロイルオキシ基またはメタクロイルオキシ基を表し、SpP11及びSpP12は、各々独立して単結合、炭素原子数1〜6のアルキレン基または炭素原子数1〜6のアルキレンオキシ基を表し、
    p11及びLp12はそれぞれ独立して、単結合、−O−、−S−、−CH−、−OCH−、−CHO−、−CO−、−C−、−COO−、−OCO−、−OCOOCH−、−CHOCOO−、−OCHCHO−、−CO−NRP113−、−NRP113−CO−、−SCH−、−CHS−、−CH=CRP113−COO−、−CH=CRP113−OCO−、−COO−CRP113=CH−、−OCO−CRP113=CH−、−COO−CRP113=CH−COO−、−COO−CRP113=CH−OCO−、−OCO−CRP113=CH−COO−、−OCO−CRP113=CH−OCO−、−(CHtm12−C(=O)−O−、−(CHtm12−O−(C=O)−、−O−(C=O)−(CHtm12−、−(C=O)−O−(CHtm12−、−CH=CH−、−CF=CF−、−CF=CH−、−CH=CF−、−CF−、−CFO−、−OCF−、−CFCH−、−CHCF−、−CFCF−、−C≡C−、−N=N−、−CH=N−又は−C=N−N=C−(式中、RP113はそれぞれ独立して水素原子又は炭素原子数1〜4のアルキル基を表し、前記式中、tm12は1〜4の整数を表す。)を表し、
    p11、Mp12およびMp13は、それぞれ独立に1,4−フェニレン基、1,3−フェニレン基、1,2−フェニレン基、1,4−シクロヘキシレン基、1,3−シクロヘキシレン基、1,2−シクロヘキシレン基、1,4−シクロヘキセニレン基、1,3−シクロヘキセニレン基、1,2−シクロヘキセニレン基、アントラセン−2,6−ジイル基、フェナントレン−2,7−ジイル基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ナフタレン−2,6−ジイル基、ナフタレン−1,4−ジイル基、インダン−2,5−ジイル基、フルオレン−2,6−ジイル基、フルオレン−1,4−ジイル基、フェナントレン−2,7−ジイル基、アントラセン−2,6−ジイル基、アントラセン−1,4−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基又は1,3−ジオキサン−2,5−ジイル基を表すが、
    p11、Mp12およびMp13はそれぞれ独立に無置換であるか又は炭素原子数1〜12のアルキル基、炭素原子数1〜12のハロゲン化アルキル基、炭素原子数1〜12のアルコキシ基、炭素原子数1〜12のハロゲン化アルコキシ基、ハロゲン原子、シアノ基、ニトロ基又は−Spp11−Ac同じ意味の基で置換されていても良く、
    mp11は1又は2を表し、mp12〜mp13はそれぞれ独立して、0、1、2又は3を表す。)
    で表される重合性単量体(a)と、
    下記式(I)
    Figure 2018106162
    (式(I)中、R11及びR12は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
    は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4-フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、
    11は1又は2を、n12は0又は1を表す。)
    で表される液晶化合物(I)、及び下記式(II)
    Figure 2018106162
    (式(II)中、R21及びR22は、各々独立して、炭素原子数が1〜5のアルキル基、炭素原子数2〜5のアルケニル基または炭素原子数1〜5のアルコキシ基を表し、
    は1,4−シクロヘキシレン基または1,4−フェニレン基を表すが、該1,4−フェニレン基内の水素原子は、炭素原子数1〜3のアルキル基、炭素原子数1〜3のアルコキシ基またはハロゲン原子で置換されていてもよく、Zは単結合または炭素原子数2〜5のアルキレン基を表し、nは0又は1を表す。)
    で表される液晶化合物(II)を必須の低分子液晶化合物として含有することを特徴とする重合性液晶組成物。
JP2017242788A 2016-12-26 2017-12-19 液晶表示素子及び重合性液晶組成物 Pending JP2018106162A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016251160 2016-12-26
JP2016251160 2016-12-26

Publications (1)

Publication Number Publication Date
JP2018106162A true JP2018106162A (ja) 2018-07-05

Family

ID=62787077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242788A Pending JP2018106162A (ja) 2016-12-26 2017-12-19 液晶表示素子及び重合性液晶組成物

Country Status (2)

Country Link
JP (1) JP2018106162A (ja)
CN (1) CN108300487A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017475A (ja) * 2019-07-18 2021-02-15 Dic株式会社 液晶組成物及び液晶表示素子
JP2021017520A (ja) * 2019-07-23 2021-02-15 Dic株式会社 ネマチック液晶組成物、液晶表示素子、及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040774A (zh) * 2019-12-02 2020-04-21 Tcl华星光电技术有限公司 液晶极性单体、液晶显示面板以及液晶显示装置
CN113088295B (zh) * 2021-04-07 2023-02-17 浙江汽车仪表有限公司 一种用于汽车全液晶仪表盘的显示材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364010A (zh) * 2008-09-26 2009-02-11 友达光电股份有限公司 液晶显示面板以及液晶混合物
JP2012097222A (ja) * 2010-11-04 2012-05-24 Dic Corp ネマチック液晶組成物及びこれを用いた液晶表示素子
WO2012086504A1 (ja) * 2010-12-24 2012-06-28 Dic株式会社 重合性化合物含有液晶組成物及びそれを使用した液晶表示素子
JP2012241124A (ja) * 2011-05-20 2012-12-10 Dic Corp 重合性化合物含有液晶組成物及びそれを使用した液晶表示素子
JP2012241125A (ja) * 2011-05-20 2012-12-10 Dic Corp ネマチック液晶組成物及びこれを使用した液晶表示素子
WO2013022088A1 (ja) * 2011-08-11 2013-02-14 Dic株式会社 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
WO2015122457A1 (ja) * 2014-02-14 2015-08-20 Dic株式会社 液晶表示素子
US20160145492A1 (en) * 2014-11-21 2016-05-26 Shenzhen China Star Optoelectronics Technology Co. Ltd. Vertical alignment liquid crystal display and manufacture method thereof
JP2016206445A (ja) * 2015-04-23 2016-12-08 Dic株式会社 液晶表示素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490319B (zh) * 2013-02-06 2015-07-01 Dainippon Ink & Chemicals A liquid crystal composition, and a liquid crystal display device using the liquid crystal display device
WO2015009290A1 (en) * 2013-07-17 2015-01-22 Dai Nippon Printing Co., Ltd. Birefringence improving agent, ferroelectric liquid crystal composition and liquid crystal display device using the agent, and compound
JP6269832B2 (ja) * 2014-06-26 2018-01-31 Dic株式会社 液晶組成物及びこれを用いた液晶表示素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364010A (zh) * 2008-09-26 2009-02-11 友达光电股份有限公司 液晶显示面板以及液晶混合物
JP2012097222A (ja) * 2010-11-04 2012-05-24 Dic Corp ネマチック液晶組成物及びこれを用いた液晶表示素子
WO2012086504A1 (ja) * 2010-12-24 2012-06-28 Dic株式会社 重合性化合物含有液晶組成物及びそれを使用した液晶表示素子
JP2012241124A (ja) * 2011-05-20 2012-12-10 Dic Corp 重合性化合物含有液晶組成物及びそれを使用した液晶表示素子
JP2012241125A (ja) * 2011-05-20 2012-12-10 Dic Corp ネマチック液晶組成物及びこれを使用した液晶表示素子
WO2013022088A1 (ja) * 2011-08-11 2013-02-14 Dic株式会社 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
WO2015122457A1 (ja) * 2014-02-14 2015-08-20 Dic株式会社 液晶表示素子
US20160145492A1 (en) * 2014-11-21 2016-05-26 Shenzhen China Star Optoelectronics Technology Co. Ltd. Vertical alignment liquid crystal display and manufacture method thereof
JP2016206445A (ja) * 2015-04-23 2016-12-08 Dic株式会社 液晶表示素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017475A (ja) * 2019-07-18 2021-02-15 Dic株式会社 液晶組成物及び液晶表示素子
JP2021017520A (ja) * 2019-07-23 2021-02-15 Dic株式会社 ネマチック液晶組成物、液晶表示素子、及びその製造方法

Also Published As

Publication number Publication date
CN108300487A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
JP6439990B2 (ja) 重合性液晶組成物
JP6260747B2 (ja) 液晶表示素子
JP6358489B2 (ja) 液晶表示素子
JP6403037B2 (ja) 液晶表示素子およびその製造方法
JP2018106162A (ja) 液晶表示素子及び重合性液晶組成物
JP6638822B2 (ja) 重合性液晶組成物、液晶表示素子、及び液晶表示素子の製造方法
WO2018117213A1 (ja) 液晶表示素子
JP6798097B2 (ja) 液晶表示素子
JPWO2017098954A1 (ja) 液晶表示素子
WO2017026478A1 (ja) 液晶表示素子
JP2017037227A (ja) 液晶表示素子
JP6721876B2 (ja) 液晶表示素子
JP2018101096A (ja) 液晶表示素子及び重合性液晶組成物
JPWO2017195585A1 (ja) 液晶表示素子
WO2018216485A1 (ja) 液晶表示素子およびその製造方法
JP2020190675A (ja) 液晶表示素子の製造方法、及び液晶表示素子
JP6607419B2 (ja) 液晶表示素子
WO2018207247A1 (ja) 液晶表示素子

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221006

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221011

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221223

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230110